Using convert__constants

Beginning with 4D v11, plugin developers were discouraged from using the Macintosh
resource manager, so Active4D v6 does not. As a result, Active4D v6 cannot read custom 4D
constants, because they are kept in 4DK# resources.

The convert_constants method allows you to create an Active4D library that contains all
of the custom 4D constants in a given resource file. By importing the library in Active4D,
you will be able to reference the custom constants as you did before.

1. Import the convert_constants.c4d method into a structure.

2. Write a method that calls convert_ constants. The first parameter is the name of
the library you want to create (without the “.a4l” extension). If you want to convert
constants from a particular resource file, open the resource file using Open
resource file and pass the document reference as the second parameter to
convert_constants.

3. convert_constants will prompt you for a destination folder in which to place the
library. After selecting the folder, it will create the library and then ask you if you want
to view the created library.

Example

Let’s say we converted a database and migrated our custom constants to a “User
constants.bundle” plugin. Our custom constants have two themes:

“foo”
foo name “foobar”
foo age 27

“bar”
bar name “barfoo”
bar age 31

After importing the convert_ constants method into a database, we would convert them
into a library by writing a method like this:

$res:=Open resource file("")

If (OK=1)
convert_constants("constants";$res)
CLOSE RESOURCE FILE($res)

End if

After running, you will end up with a text file called “constants.a4l” in the destination folder
you selected. The source of the library will be as follows:

library "constants"

// foo
define(foo name; "foobar")
define(foo age; 27)

// bar
define(bar name; "barfoo")
define(bar age; 31)

end library

To use this library, put it in the Active4D folder (or in any folder listed in “lib dirs” in
Active4D.ini), and put this code in the On Application Start event handler in
ActiveqD.a4l:

import("constants")

After doing this all of your existing custom constant references will work as they did before.

