REFERENCE MANUAL

Act |ve4D

ultimate 4D web tool

Product and documentation by Aparajita Fishman

Copyright © 2001-2017 All rights reserved

Copyright and Trademarks

All trade names referenced in this document are the trademark or registered trademark
of their respective holder.

Active4D is copyright Aparajita Fishman and Victory-Heart Productions.

Active4D v6.4

4D and 4D Compiler are registered trademarks and 4D, 4D Server, and 4D Remote are
trademarks of 4D, Inc.

Windows is a trademark of Microsoft Corporation.
Macintosh and macOS are trademarks of Apple Computer, Inc.

JavaScript and Java are trademarks of Sun Microsystems, Inc.

Acknowledgements

First of all, thanks to the makers of PHP for giving me the vision of a better way.

Thanks to the client who asked me to generate every single character of HTML in 4D
code, which inspired me to come up with a better way.

Thanks to Mike Erickson for his convincing me that Active4D was worth doing. He was
right.

Thanks to all of the users for their feedback and encouragement.

And thank you to David Adams for so kindly including a chapter about Active4D in“The
4D Web Companion” and for allowing me to include his HTTP chapter with these docs.

Active4D v6.4

Table of Contents

Table of CONtENTS.o e 3
It OdUC I ON. . .. i e e e 25
W hat i ACHIVEAD Y ittt ittt e ettt e et ettt e e ettt 25
HTTP Wb SEIVET. . .ttt e et e e e e e e e e e e e e et e e 25

Y= V=]] e = 26
HTML-Embedded e e e e e et 26
SCHPTING LANQUAGE . ..ttt e e et e e e e e e e e e 26
DevelopmMeENt ENVIFONMENT.ottt ettt ettt e et e et e ety 26

I =51 111+ 1 = 27
What Can ACtiVeAD DOttt ettt ettt e e et et e e et et e teee e eteenanenenas 27
Database and ProtoCol SUPPOI. . ..o v ittt e ettt e e 28
ABrief History of ACtiVedDottt e e ettt aenenas 28
INStallatiON e 29
o 1T 1 29
RESOUICE FIleS. . .ot et e 29
ActivedD Shells. e e e 30
ACTIVEAD FOlder. ... e e e 30
Wb FOler .. e e 31
DEIMO. . e e 31
OS] | =T P 31
Key File Installation. e e e e e e e e 31
LGS T =T 13 o 32
VErSiON ChECKING .ottt e e e e e e e et e e e 32
Rl T T/ < 1= 33
TIMIEOUTS ottt e 33
LIS =T = AP 33
DEPlOYMENT LICENSE ..ottt ettt e e et e e e 33
OEM LGNSO .ottt et e e 34
Installation OPtioNSo i i it i i e et et et e e e i e 34
Starting a Database from SCratChiuii i e e e e 34
Installing into @ Non-ActivedD Databaseouiiiin i e e 34
Updating an Existing Active4D 4.x/v5 Databaseo.ouiiiiiiiiii i 35
Installing the Predefined Session Handler. e 35
Post-Installation Configuration ittt i i ittt it 36
Configuring for 4D's Web SerVer.uni ittt e e e e e e ettt 37

(@Y YT 10T aTe i o gl VLI P 38
Configuring 4D Remote as a Web Servert e e e e e 39
Using the Pre- and Post-Execute HOOKSottt it it ieneaen 39
Pre-EXeCUTE HOOK e 40
POST-EXECUTE HOOKttt et et 40

Table of Contents 3

Active4D v6.4

CoNfIgUIAtiON o e 41
Config File Search Path. i e e e e e 41
Configuration Files. i i e e e e e et e eaens 42

The Default DIFECOTY.ottt et e et e e et e e et eeeaas 42
Path FOIMAt ..ottt e ettt e e 43
The Standard Search Path and Path Lists..........o.iuiuii i e 44
ACHIVEAD NI . .o e 44
EXTENS ONM AN ¢ et e e e 47
REAIMIS NI, L e 47
VUAIHOSE SN . ettt 47

S U Y . oottt e 49

SOUNCE O SOCUNI Y. ..o\ttt ittt e ettt et e e ettt e et ettt e te e e eteneneeneeneneanens 49
Web Server Security = Source Code SECUIITY ...ttt et e e eeanes 49
Circumventing ACHIVEADt e e e e e e 49

Potential Attacks.o e 50
Executing/Accessing NoN-Web Files e et 50
The “safe script dirs” Config OptioN ... vuu ettt e e et n e 50
Misusing DocUMENT CoOMMANAS. .. vttt ettt ettt et e e et et e e e e e eneanenens 51
The “safe doc dirs” Config OpPtioN v ittt e e e e e et aeaaaas 51
SPoOfing FOrm Variables ot e e e e e et e e 51
The “auto create vars” Config OptioNttt ettty 52
Uploading HUGE FIlesot e e e et e et i 52

HT TP S @IVl e e e et e et e et 53

What Is @ Web Server?. e ettt 53

Active4D + Network Layer =Web Server 53
HTTP Fundamentals. o e e ettt 54
ActivedD HTTP Request Handling.o i e et e et eaeaans 54
Executable vs. Non-executable Files e 54
Request Header Parsingo.uu ittt et e et et e ettt 55
POST/PUT and File Upload Handlingo .o 56
Executable Request Handling. oo e e e ettt e 57
Non-Executable Request Handling. ... e e 58
CON i gUIAt ON i i e e e 59
ACTIVEAD NI . ¢ et e 59
(6000} 71 TP 59
EXEENSIONIMaAD N« ettt e e e e e e e e 59

User Authentication. e et 59
REAIMIS NI, . e e 60

VirtUal HOStiNGo i i e e ettt e et 61
VUAIHOSE SN . . e e e e e 61
AVIrtUAl HOSt EXaMIPIE . ottt e e e e et e 63

HTTP Error Handlingo ittt e ettt e ettt et eneaeaens 63
Customizing the Error Handlingo.oniiii i e e 64

INVOKING ACtIiVEAD i e et et ettt i 65
TYPES Of EXOCURION . ..ottt e ettt ettt e e et e et aneenas 65
ReqUESE EXOCUION it i i it it it e et et et e e e et i ety 65

A4D Execute <type> request Parametersttt e 65
A4D EXeCULe <ty Pe> FeQUEST . ..ttt ettt et et e e e 66

4 Table of Contents

Active4D v6.4

A4D EXECULE BLOB reQUEST . .ottt ittt ettt ettt e e e e e e e 69
AAD EXECUTE 4D reQUEST. . oottt ettt ettt e e et e e e e e e 70
A4D EXECULE STrEAM TG UEST. « ottt ettt et ettt ettt ettt ettt et et e e e e e et e i ettt ieaenennens 70
ReceivECallback. . ..o e 71
... Direct Execution72
Uses for DireCt EXECULIONttt e e e e et ettt et ety 72
AAD EXECULE file. . ot e e e 72
I =Y ol U) < =) 4 73
AAD EXECUTE BLO B . ittt i e e e e e e e e 73

08 =T o] = = 75
FloW Of EX@CUIONttt et et ettt e ettt e e et e te e te e eaeenanenenennns 75
EmMbedding SOUICe Codettt et ettt et 75

10T o U o 1 67 1 e R PP 75
LANGUAGE SY M AX. . ..ottt ettt e e 77
ENGlish ONly ..o e e e e e e 77
SOUICE COTE STIUCTUI .ottt ettt ettt et et ettt e e e ettt e e e et et et e e et eenens 77
QS8 SN IVt .ottt ettt e e et e e e e 78
EXPrEssSiON-0asedo 78

(000 3108 1= o &SP 79
Identifiers . ..o e e e e 80
(@I o] 0 WA= 0 0 T=To I @] 01 1 o 3 81

D F - T I3/« 1= PP 81
ComMPIlEr DECIAratiONS. . .\ttt ettt e et e e e e s 81
Process/INterprocess Variables.o e 82

LN =) VLU o o T o PP 82
PO N O SUP PO . . ettt e e e e e e e 83
Extended BOOIean EXPrasSiONSttt et e e 83
=T £ 83
NG LITEIalS ettt et e e 84
SN INTEIPOIAtION « ..ttt e e e e 84

[T T oYl 1 € o L3 87
DAte LItOralS vttt ettt e e e 87
TIME LIEralS .ottt et e e e 88
User-defined CONSTANTS ... uutnt ittt ettt et e e e e et e e e et 88
TYPING Of ValUES . .o e e e e ettt e e 88

(0] o =T - 1 o T AP 88
UNary/AsSigNmMENt OPErators.ttt ettt et ettt e et e e et 88

I 0] o<1 g3 [o PP 89
[aI=Ya Vel L] 1@ =] - | o 3 RO 20
Regular EXPression OPEratorse ettt ettt et e et e e ettt e e et eneneaenenns 90
STHNG FOIMAat OPrators. . ..ottt ettt ettt et et e et e et e e e e iea s 91

o Tet (1 £SO o] 1 () AP 91
Pointer DereferenCe OPEIatoruui ettt et ettt e e et e e e e 91

e O) 011 - | (o PP 91
Character Reference Operator [[]]. .. .ouinrir it et e ettt 92

T Yo 1N (T g Yo @) o 1= 1 o g 92
BOOIEAN OPEIATON | ...ttt ettt ettt e et 93
... Control Structures93
foreach/end for @aCh it e e e 94
o 94

1] A A 94

Table of Contents 5

Active4D v6.4

(a0) 40T P 94

2 94

20 11T o] =3 95
Working With Paths e e e ettt ety 96
URL-Style (POSIX) Pathsot e e e e e 926
Absolute vs. Relative Pathso e 926
Path UtIlItIes . ..ottt e e e e e e e 2
Pt LMt .ottt e e e 97
Including Other Files i e e e e ettt e ettt eaaens 97
Usesof Included Fileso e e e 97
INCIUAING ONIY ONCE . ..ottt e e e et e e e et e e 98
Calling AD Methods ...t et e et e e e et e e ettt e 98
ParamMEter Passingttt e e 98
Indirect Method Calls (aka Poor Man's method pointers)............ooiiiiiiiiii i 929
ColleCtioNS e 99
CollectioN HandIesot e e e e 100
Local vs. GIobal ColleCtionsot e e e e 100
USING CollRCLIONS ...ttt et e e e e e e e 100
Referencing Collection ValUes e 101
Embedded ColleCtionso e e 101
Element Referencing e e 102
[terating Over @ ColleCtion.t e e e e e 102

HT TP Data ACCeSS ...ttt et ettt ettt aeaeeaeeneenes 102
REQUEST DAt v ittt ittt e e e e e e e e e e 103
_query and _form CollECtioNSot e 103
Testing FOrm BUTtONS . ..ot e e e e e 104
0T o o) 0 LT < - | - 1S P 104
Working with Character Sets.t i e e i e ettt ettt eaeaenns 104
Platform CharaCter SEtt et e e e e e 105

(O 014 o U1 @ o T- Y =Yt d Y Y= 106
OULPUL ENCOAING. . .o et e e e e e e 106
HTTP ReqUESt DeCOAING. . . e ettt ettt e ettt e e e e e e e e eeaas 107
Informing the Browser of Your Qutput Character Setooiiiinin ittt 107
Working With Files e e e 107
Error Handlingoo i i e e e et e e et e e 107
A T S T '3 1= 11 P 108
MethOdsS e 109
DefiniNng Methodsot i e e e e ettt e et a e eaaas 109
Method Declaration.o e e e e 109
Method NaME ...t et e e e e e 109
Method Parameter Declarationiu oot e 110
Method Parameterst e e e e et 110
ParamM e el Ty P .ttt e 110
1Yo TSP 111
Referencing “Global” Local Variables.ooioi i e 112
Pass DY REfEIENCE . . .ttt e 112
DefaUlt Parameters.ttt e e e 113
RETUINING ValUBS . . o ettt e e e ettt e e e e et e e et 114

6 Table of Contents

Active4D v6.4

] o - 4 =T 117
Library Search Path i i i e e e ettt e 117
Library Definition e e e e 118
Importing Libraries oot e e e e 118

1] oo T @] o1 e [0 - 1o o VA 119
1Y 0] o =10 £ APt 119
AUTOMATIC RE-IMPOIT . et e e e e e e e 120
Library NameSPace.o.iiitit ittt et ettt e e ettt e e et ettt 120
NAME RESOIUTION. . . .ottt e et e e e ettt e e e e e e et 120
] 0 =Y Tl o) o1 121
The “global” lIorary. e e 121
Private Methods e e 122
Library-private ColleCtionsottt e e e e 122
Library Initialization/Deinitialization i e 123
Storing collections in library-private dataot e 124
Creating @aPoor Man's Classouuinin ittt e e e et e e eeaenes 124
LM atiONS. .« et e 126
Event Handlers.o e e 127
Event Handler Methods oo i e et 127
ON AP PIICATION St . ottt ettt et e e e e e e 127
(3 N 21= o U 1= PP 128
ON AUTRENTICATE .. .ottt 129
ON SESSION STart. . et e e 130
ON EXCUTE STt .ottt et 131
ON EXECUTE ENG . .o e e 131
ON SESSION BN .t e e 131
ON APPRIICAtION BN ..o e e e e 132
Modifying the ActivedD Library.ot i i i ittt et ie e eaeaes 132

Command ReferenCeooiiiiiii i 133

L0 B @Y 1T T- T T - 133
Usinga Default Table. e e e e e e e e 133
ActivedD Commands.o.t ittt e e 136
CoMMANA SYNTAXttt ettt et et e e e 140
Unicode and Charsetsttt et et 140
Y £ 141
B @PPENAING INAEX). . .ottt ettt e e et e e e ettt e et e 142
{-<index>} (from @NA INAEX) .. v vttt e e e e e e e e e e 142
AAd IEMENT . . e 143
APPENA TO @ITAY . - e ettt ettt ettt ettt e et e e e e e e e e 143
AR R A Y P> ettt ettt e e e e e e 144
LA A AY .ttt e e 145
COPY ARR AY . ittt e e 145
(@000 o1 T = 1 - VPP 146
1111 14 - /2 146
NSO INTO @ITAY . .ttt t ettt ettt et e e e e e e 147
L3 14 £)2 148
011 TR= L4 - 7/ 148
MUITISOIT @ITAYS -« e ettt ettt e ettt e et et e e e e et e e e e e e e eaens 149
MUIISOrT NAME @ITAYS. . . ettt ettt e e e e e e e e e e e e e eeens 150

Table of Contents 7

Active4D v6.4

LS 4= 1)V P 150
SELECTION/SELECTION RANGE TO ARRAY . . .ottt et e e e e e e 150
<] 0= =)/ 151
5] 0] 3PP 152
ColleCtioNS e 153
o] | 1Tt e o 10 154
NEW COlBCLION ..ottt e e e e 154
NEW 10Cal COllBCLION e e e e 155
New global CollEeCtiono e e 155
collection to blobo e 156
o] o) o o T el] | =Tt i o o TP 156
SAVE COllBCLION . . . e 157
ToT: To I afo] | 1=T e o o PSP 157
COPY COlBCLION. . ..ot e e e e 158
deep CopY COllRCLIONo e e e e 158
MErge COlRCLIONS . . .t e e e e e et e e 159
Clear COllECHIONo e e 160
deep clear ColleCtioNo e e e 160
G COllECtION « .o e 161
Gt COllRCLION @ITAY. . . ettt ettt e e e e e 161
get COllECHION AITAY SIZE ...ttt et e e e e e e 162
get COllECtioN HEM . ..o e 163
get collection ItEM COUNT.t e e e et e 163
get COlleCtioN KEYSo 164
£7=] A o | F=T o o TR 164
Y= o] | F=T et o] o - 1 - /2 165
1S @ COllECLION ..t e 166
COllECtiON Nas . ..o e 166
oo] 00 A efe] | F=Tt i o o T =] ' - 167
delete colleCtion LM e e e e 167
CrY P OgraP Y . ..o e 168
DASEBA dECOTE. . ..ttt 169
DASEBA ENCOME. . ..ottt 170
BIOWTISH AECIYPL . . e e e e e e e 171
BIOWEISh ENCIY DL . . et e 172
0070 ST ' P 174
Database 175
LI T 1] g =1 o) PN 175
Fleld A, . oo e 176
getfield NUMDbErS e 176
get field POINtEr. . .. e 177
QUERY . e e e 177
QUERY BY FORMULA . . ottt e e e e e e e e e e 178
QUERY SELECTION ..ottt ettt e et e et e e e e e e e ettt eee 178
QUERY SELECTION BY FORMULA. . . .ottt ettt e e e e e e e e 179
SET QUERY DESTINATION. . . .ttt ettt et e e e e e e e e e et e e e et e e eees 179
Table NAME L 179
Date and Timee.ttt e e 181
LU G @ '] ' - 1 o [P 181

8 Table of Contents

Active4D v6.4

D < 182
o Y] YT 1 182
Lo =] ATl [- 183
[0Cal datetime tO ULC . ..ttt ettt ettt e et e e 183
Fo Yo=Y I3 TN (o J UL P 184
ULCto local datetime e e 184
ULC 10 10Cal tiME . Lot e e 184
WEEK OF YOaK . .o 185
[0 1Y ¢ 11T ' 113 Ve 186
current orary Name ... 187
current INe NUMDETo e 187
CUITENt MEtNOT NAME . L ettt e e e e e e 187
get call Chain. ... e 188
11 o =T V20 L] P 188
WIEE 10 CONSOIE . . ettt ettt e e e e ettt e e 189
Error Handling it e ettt e ettt e e 190
o= =T o] g o = TP 191
o= =T g {0 51 ¥ | (U 191
Lo =] A 4 ol = ¢ o) g 0T T [192
gt log Vel . 192
1 T=T 0 o P 192
FoTe 0 T=T1T- o =P 193
L= A= g (0T o =T T 193
SEL LD BITON PG . o ettt et ettt e e e e 194
SELlOg LBVl . . 194
Fille Uploads. ..o i e i et e e e et e e 195
HoW File Upload WOrKS.t e e e e e e e ettt eeeaes 195
Referencing File Uploads e e 195
The Importance of Filename EXtENSIONS. u ittt ettt iaaanas 196
Upload AUto-Deletion. e e e e e e 196
COPY UPIOad .. e 196
oYU 1Y U o1 [- Yo L3 197
et UPIoad CONMEENT LY P, .ottt et e e e e e e e 197
get UPload @NCOING c e e 197
et UPIoad EXEENSION. . ..ottt e e 198
get upload remote filename. i 198
QL UPIOAd SIZE. . .t e 199
save upload to fieldo 199
UPIoAd to DlOb e e 200
FormVariables e e e e 201
When Form Variables Are Query Params (@nd VICE VEISa)euiuiriininen i aaanes 201
POSTING JSON Data . .o ettt ettt e e et e e e e et 201
POStING RaW Data . ..ottt e e e e 201
Multiple-choice Form Fieldso.ii i e e ettt 201
O . e 202
formM Variables. . .. 202
form variables Nas. 202
getformvariable. 203
getform variable ChoiCes. o 203
getformvariable CoUNt 204

Table of Contents 9

Active4D v6.4

getform variables.o e 205
countformvariables o e 205
Globals e 206
Locking and Unlocking the Globals e 206
GlObDalS . e 208
GlobalSs Nas. . . e 208
et global. . o e 208
et global Array e 209
get global array Sizeo e 210
get global Item. . .. e 210
L GIODal KEYS. . . et e 211
SEt global . .o e 211
St global array.o e 212
CoUNt GIobals . ..o e 212
delete global. e 213
lock globalso e 213
UNIOCK gIoDals . .. e 213
erators. ... e 214
USING fOr @aCh .o e 214
L8 T T =T = P 214
terator Validityo e e e 215
foreach/end for @acht e 216
L0 N (=1 o0 216
NEXE IO L 216
O IO KO .ttt e e e 217
L ITEM ValUE ..o e 217
o= =T 0 T 7] 0T 217
Lo = L= 0 =T 1 - 2 P 218
IS AN IEEIATON L. 218
JOON Lo e 219
LTSV £ P 220
o (o I (o 5 1Yo T3 R 220
Add datetimeE t0 JSON . .ttt e 222
Add FUNCHION 10 JSOMN . . . e e 223
AAA FOWSET T0 JSOMN .ttt ettt e ettt e e e e e e e e 224
Add SEIECION 1O JSON . .ttt e e et e e 226
STAMT JSON AITAY .ottt ettt e e 230
<] 0o 7o) - T -)2 231
SEArT JSON OBJCE. . ..ottt e 231
ENA JSON OO . .ttt e e e 232
JOOM B0 B L. ettt e 233
1T L (=I5 PP 233
AT L (=I5 0] 0T o PP 234
JSOM BNCOT. . ..ttt e e 234
=73 10 o P 236
[T3 T 1 - o AP 238
Call Ad Method s 239
CallMETNOd . . . e 239
CRO0SE. . . e 240
EfiNe o e 242

10

Table of Contents

Active4D v6.4

EXECUTE . ottt et et et et e e e e 244
EXECULE N A e e e e 244
foreach/end for @ach oo 245
[T oY 11 =] PP 247
GEEEhIOW COde. . ..o e e 248
L tNIOW MBSO . . ettt ettt et e e e 248
Global 248
1201 0] o PPt 249
1 el [e =P 250
1 el [e 1= e TP 250
Lo N E0 tIMIE . ettt e e e e e e 251
00T oo Te] P 252
Y180 T 10 T 252
o 1T ot P 253
LT |01 =P 253
RESOLVE POINTER. . . o ettt ettt ettt et ettt e e e et e e et et eens 254
] =TT o 254
B O . e 255
L 0TI o o g T 113 Y 255
1 1 256
NIAX OF & e e 257
00110 T P 257
FANAOM DEIWEEN ...ttt et e e e e e e e 257
(0] &3 1= ot I T 3 258
el 1T T g o] o) =T 259
COllECLION 1O ODJECL. . . ettt e e e e 259
0bJeCt 10 COllRCLION. . . .ot e e 259
PICUI S ... e e e 260
Using the image.add SCript . ..o e e e e 260
IMage.add (SCHPLIIlE) ...t e e e 261
Loading from the 4D picture brary. ... e 261
Loading from the database Via QUETY . ..ot e 262
Loading from the database via record number ot e 262
Loading from afile e 262
Loading from an ActivedD method call o i e 262
Loading froma4D method callo i e 263
EXAMIDIES . .ottt e e e e 263
W G, e e 264
AT L L= 1= PP 265
1T L (=5 T PP 266
1T L (=8 o) T PP 266
L0 LT = = P 267
QUERY/QUERY SELECTION. . . . ettt ettt et e e ettt e et e e e e 268
ORDER BY . . ettt et ettt e e e 268
ORDER BY FORMULA . . . ettt ettt et e et e e e 269
QUEIY Paramsttt e e e e e 270
QUETY Params HemMS . . oottt et e e e 270
Duplicate QUErY Parameters.ttt ettt e e e e e 270
o [1= PN 271

Table of Contents 11

Active4D v6.4

Lo [1= VA8 o T=1 =0 13 271
QUETY PAraMS NS . .ottt ettt e e e e e e e 271
Lo 1= e T U= 2 o =T =1 o 272
get query Param ChoICeS e e 272
o=y Ao U= A o =T = o (o 10 |1 273
Lo =3 e T =1 2N o =T =1 o - 274
(o 10| | [V 1T Y o = 1 = | 413 275
DU QUETY SEHING . o ettt e e e e et e e e e 275
RegUIAr EXPIreSSIONS. ittt ittt e ettt ettt e e e e 277
Pt SYNTaX . ..ttt e e e e 277
UsSiNg ReguIar EXPresSsioNsS.ttt et e ettt e e e e e 277
regex callback replace.o e 278
regeX find all IN array e 279
FegeX fINd IN @AY . . .o e e 280
=T 1 TqN 8 - o P 281
regex MatCh all e 282
FEOEX QUOTE PatTEIN . .ttt ettt e e et et et e e 283
=T 1= o] T P 284
2T 1708 oL P 287
ReqUESE COOKIESottt i e i e et e e et i i 289
FEQUEST COOKIES .\ttt ittt ettt ettt et e ettt e et et e e e et e e 290
L FEQUEST COOKIE . . . ettt ettt et e e ettt e e e e e e e e e 290
QL FEQUEST COOKIES . . ettt ettt ettt e e e e et e e e e ettt e e e 291
COUNT FEGUEST COOKIES . . ottt ettt et ettt e e ettt e e et et e e et e e et e e neaeneans 291
ReqUESEINTO. e e e i 292
Request INfo Collection HemS.o . it e e e ettt e 292
LYo LU= T o 293
et reqUEST INTO . . e 293
et TEQUEST INTOS . . .t e 293
COUNT FEQUEST INTOS. ..ottt e e e e et e e ettt ettt 294
ReqUEST ValUe. it i i e e e e e e e 295
L rEQUEST VAU . ..ottt e e e e 296
RS OUICES . ..ttt et e 297
GetiNAEXEd STING ...ttt e e e e e e e 298
STRING LIST TO ARRAY ..ttt 299
RESPONSE BUF o i 300
DU Er SIZE . . e 301
FESPONSE DU I SIZE . . .ot e e e e e e 301
Clear DU T . e 301
clear respoONSE BUfEro e e 301
get respoNnse bUFfer 302
St rESPONSE DU . . . o e e 302
L= YL o LU o] | PPN 303
L= 0T JEST 12N o T 4 LU 304
LYY e U4 o T Al = 7= 304
L OULPUL Charset . ..t e e e e e e e e 305
SEL OULPUL ENCOAING ettt ettt e e et e e e e e e 305
et OULPUL ENCOTING . .o ettt et e e e e e e et 306
1T 1= PP 307

12

Table of Contents

Active4D v6.4

W DO, L 307
WO, L e e 309
LT <1 309
(T L1 <] S AP 310
1T L L= - 1 PP 310
ittt e ettt et et e ettt e anan 311
RESPONSE COOKIESottt e e e et e e e e e 312
Co0KIE FIElAS. . .o et e 312
TS PONSE COOKIES. . ittt ettt ettt ettt e e ettt e e et e e e ettt 313
L FESPONSE COOKIE. . .ottt ettt e e et e e e e et e e 313
L FESPONSE COOKIES . . . ettt ettt ettt ettt e e e e e e e 314
SEL ESPONSE COOKIE ..ttt ettt et e e et e e ettt e e e 314
set response COOKIe dOMaiNt e e e e e e 315
get response COoKie dOmMaiN.ottt 316
SEt FESPONSE COOKIE BXIDINES. . .\ e\ttt ettt et ettt e e ettt e e et e et e e ieaeaeas 316
get reSPONSE COOKIE EXPIIESttt ettt ettt et e e e e e e e et eenes 316
set response cookie http ONlY. e 317
get response cookie http ONIY oo e e 317
Set resPONSe COOKIE PAth i e e e e e e 317
get response COOKIE Path. e e 318
SEt FESPONSE COOKIE SBCUIE ..\ttt ittt ettt et ettt e e et et e ettt et e e ieaeaeas 318
gt rEeSPONSE COOKIE SEBCUIE. . ..\ttt ettt e ettt e e e e e e et e eenes 318
COUNT FESPONSE COOKIES ..ttt ittt ettt e et e e et et e et e et e e eieaeaenns 319
delete reSPONSE COOKIE . . .ttt ittt ettt e e e e ettt ettt 319
Abandon resSPONSE COOKIEttt e e e e e 319
ResSpoNs@ HEAErS.t i et e e e 320
123 0o 0 T 0 1=T- o 1Y - 321
e rESPONSE NEATET . .ot e e 321
et reSPONSE NEATEIS ...ttt e e e e 321
St FESPONSE MATE . .\ttt ettt e e e e e e e e 322
COUNT rESPONSE NBATEIS . .ottt ettt e e e e e et e et et e et 322
delete respoNSE NEAT N i e e 323
RESPONSE ProPertiesottt i e e e e e e e e 324
get CaChe CONTIOl e e 325
SEL CAChE CONTIOL. . ..o e e 325
0= = o =3 325
L] A=D1 o = PPN 326
QL X PIIES At . ettt e 326
LYY =4 o1 =E3 I 326
o= A aoT) (=T 0 17/ o T 327
Y= o) (=] 01 Y/ o= 327
gL CONTENT CRAISE ..ottt e e e e e e e e 327
SEL CONTENT CNAISEL. . .ttt e e e e e e e e 328
L TESPONSE STATUS ..ottt ettt ettt ettt et et e et et e e et e et e e 328
] A =] oTo] Y35} =1 (U PPN 328
SCHIPt ENVIFONM Nt i i it i e e e e i i e e 329
B (=T 1113 AP 330
fUll requested Url. .. o et e e e e e 330
CUITENT Plat O L. e e e e 330
Gt ICBNSE INTO. . 331

Table of Contents 13

Active4D v6.4

et tIME rEMAINING. .ottt ettt et ettt e e e e e e e e 332
Lo 1= SRV 7=T £ (o] o P 332
CONTIGUIALION « . et e e e e 333
[0 2= 1 0 =] =] g 4T Yo [333
LT o U 12 i [U =] Y/ P 334
Set PlatfOrmM CNArS e . . .ot e e e 334
get platform Charset e 335
St SCIIPt tIMEOUL ..o e e e e e 335
et SCHPT tIMEOUL . . .ottt e et e e et 336
set cUrrent SCriPt tIMEOUL.ttt e e e e e 336
get cUITeNnt SCHPt tIMEOULt e e et e e 336
Selecting RECOKASo e e e e e e, 337
Loading Related RECOIASt e e e e e et 337
Configuring Related Record Auto-loading.t e 337
Compatibility With ACtIVEAD 2.0.X. . .ottt et e e e 338
2 1101 o] 1= 338
T o 3] = < 340
ALL RECORDS, FIRST/LAST/NEXT/PREVIOUS RECORDttt et eea e 340
L AULO FEIAtIONS « .ot 341
GOTO RECORD . . .ttt ettt et e e e e e e e e e e e e e e e e e e e 341
GOTO SELECTED RECORD . . .ttt ettt et et et et e e e e e e e e e et e e 342
LT] TP 343
SESSION LifOtime. . ..o e 343
SESSION D, . .ttt 344
S S SION EVONES . .ottt e e 344
When Active4D Sends Session COOKIES.ttt 345
COOKIRIESS SESSIONS . . .ttt ettt ettt e e e e e e e 345
Memory Caching of SESSIONSt 346
Session Timeout and MemOry USage.ttt ettt e e eeaes 346
Monitoring MemoOry USageo e ettt e e e e e 346
SeSSION CoONfIGUIATION . . .o .ttt e e e e e e e e 347
SESSION HaNAIErSo e e 348
£ =27 (0] o P 350
SESSION 10 DIOD . . . e 350
DIOD £0 SESSION . . ettt 351
o 1= 087211 o 351
Lo = 021 (o o 1= 1 =V 352
T SESSION @ITAY SIZE . . ettt ettt ettt ettt ettt e et e e e e e e e e e e 352
Lo 1= 08 =21 To I =1 o o 353
QL SO SION KO S . . ettt ettt e e e e e 353
£ 0= [354
Y= =111 (0] a1 1 4 = 778 355
GBS S 0N NS o et e 355
COUNT SESSION ITEIMS & .ottt ettt et e e e et ettt ettt e e a e 356
delete SESSION HEM. . .ttt e e e 356
ADANON SESSION . . .ttt e e e e 357
C7=T1 [X e 357
SESSION INtErNal ido e 357
SESSION 1OCAl ...t e 358
=11 (0] o 1o U 1= o 358
hide sessioN fleld. e 359

14

Table of Contents

Active4D v6.4

L] Y21 T o T 4 =0 11 PN 359
et SESSION TIMEOUL . ..ottt et e e e e et e et a e 360
o= =21 (o 1] = | 360
13 4 Ve 361
URL ENCOdING/DECOAING e ettt ettt ettt et e e ettt et e e e e eens 361
String Commands and UniCode. e e 361
9% (fOrmMatting OPEIATOL)ttt ettt e e et e e e e e 363
9% (fOrmMatting OPEIATON)ttt ettt ettt e ettt e e e e e e e 364
CAPITAlIZE .ot e e 365
Cell e e e e 366
(o]0 01 o F= T LY € 1 Ve {3 P 367
oo] V- | PPN 368
D7) 1 IR gV P 368
=] T Lo -7 369
£ Vo o) 370
£ o 371
1) 00 F= Y 41 Ve 371
IAENTICAl STINGS - ¢ et e e e e e e 372
L EY =Y o A T P 372
INEEIPOIATE STIING ..ttt et ettt e e e 373
LSt MOt Of . .ot e e e e 373
=13 o 374
1= 1 4o T 374
Y0 =Y g Ve Yo - 375
MACE0 M. L e e e 375
0 Y= Tl (o TR 7 376
0= =10 0 1 (=D P PP 376
PO IO . L ottt e e e e e e e 378
T |0 T2 P 379
] o= 1 T 380
] 0] 1057 oV 381
1] 1 Ve P 382
U S EIING ettt e e 383
L0 PSP 383
8T e 1= el oo I 384
Urldecode Patho e e 384
(0T e =T ele T L= [U]=Y oY/ P 384
8 =Y Tl 1 385
UFL eNCOde Path ... e e e 385
(UL =] Vel Yo <o [U =Y oY P 385
U1 5 o T ' - T 386
SYStemM DOCUMENTS. et e 387
DOCUMENT Paths ..ot e e e e e e e 387
Document Command ENhanCements.ouiniiii e et et 387
Affected ComMMANASttt et e ettt e 387
2o @ o [T 388
Working With Large Fileso .ot e e e 388
Yo 0= g Yo e [Tl] /s T=Y o X 389
(@ T Y1 [Yol U] ' =Y o ¥ 389
CUITENE Il o e e e e e e e e e e e 390
CUITENE PN ot e e e e e e e 390

Table of Contents 15

Active4D v6.4

efault dir@CtOrY . ..ot e e 391
DELETE FOLDRER.ttt ettt e ettt e e e e e e e e e e e e eans 391
o 1T (o) V)] £ 392
Lo 1= o) Vo 392
Lo 1=t (o) =Y o - -1 (o T 392
EXEENSION Of L e 393
fIl BXIS TS . ettt e 393
fllenamE Of . . 393
0 = 00 P 394
JOIN PAtNS L e e 394
MOVE DOCUMENT .« ottt et e e e et e e e e e e e et eea e 395
Native to Url Path. ... o e e 395
(0] o 7=Y a1 o Yal ¥ [y =T | S 396
RECEIVE PACKET ..ttt ettt e e et e e e e e e e e e e e e e e e 396
FeQUESTE Ul Lo e e e e e e e e e e 397
FESOIVE Path ..o e e 397
SEND PACKET . . ettt ettt ettt e e e e e e e e e e e 398
SET DOCUMENT POSITION. . . ottt ettt e e e et e e ettt e e 398
SPIE At L e e e 398
UF t0 NAtIVE Path. . o e e e e 399
B 114 T3 - T4 T+ PP 400
LTSRS =10 0T o T 2o T4 12 T | S AP 400
LI 1SE3 =10 0T o T 2 =S AP 400
Timestamp Normalizationo. i e e e e e et e e e 400
Using Timestamps with Optimistic LOCKINGoot i e 401
L1017 = 0 1 02 403
F= o Lo IR oI 1 ' =Ty =T o Y 404
timestamp differenCeo e 404
MESTAMD SErING . .ot e e e e e e e 405
10109 1SE 2= '] o 1 - 405
LR L= =0 0] oI 0 =S PP 406
get timestamp datetime. e 406
L8 T=IY =10 0] 01 V=TT PP 407
M aMD MONTN . .o e e e e 407
HIMES M Ay . . ettt e e 407
M AP MOUL. .o e e e e e e e e 408
LM S M D MINUTE L.ttt et et et e et e e e et e ne e nie e 408
1410911 2= 1] o JEY =T o) Lo S 409
timestamp MilliSECONdo e e 409
User Authentication. i e e ettt 410
E= 1014 o T2 11371 e 411
AU YD e e 411
AU U L e e 411
AUTNENTICATE . .ot 412
CUITENT AL e et e e e e e 412
Variables e e 413
o =] T3 V=T 414
o =] B[| P 414
local Variables.o e 415
721 B oY= 415

16

Table of Contents

Active4D v6.4

13T/ 0= [Tl £ o] o 416
UNAE NG .. e e e e e e e e 416
VaMAD e MAMIE. L e e e e 417
Plugin Commands. i i et e e 418
F VY o - Ve [JE-Y =11 (o) o 1 419
A4D Baseb4 deCOTEttt ittt ettt e e e 419
A4D BaseB4 ENCOUE . .. v ittt ittt ettt e e e e e e e 419
A4D BIoWTish deCrypt e 420
A4D BIOWTiSh @NCIYPL . ..o e e e 420
AAD FLUSH LIBRARY . . ettt ittt ettt et et e et e et et ettt e et 420
D Y=Y B - To [[T3 421
A4D GEt MAC AdAIESS . .ottt ittt ettt e ettt e e e e e e e e, 422
D T A o o | PP 422
AAD GET SESSION DA T A . ottt e e et e e e et e ettt e s 422
AAD GET SESSION ST AT S ittt et e et e e e e e ettt e e e a et 423
AAD GET LICENSE INFO . .ottt e e e e e e e e e e ettt e e e e eneans 424
A4D GEt MAC AdAIESS . v ottt ettt ettt ettt et e e e e e e e 424
A4D Gt tiMe reMaINING. . ettt ettt et e et ettt e e e e e 424
D T ARV T] oY PP 425
AAD IMPOrt lIDrary ... e 425
AAD LOG MESSAGE. . ..ottt e et e e e e et e et e e 425
A VDS .ottt e e e e e e e 426
A4D Native to URL path ... e ettt e 426
A4D RESTART SERVER . ..ottt ettt et e e e e e ettt et e e e aeeneans 426
A4D Set HTTP body callback. e 427
Y I (1 427
AAD STRIP AD TAGS .\ttt ittt ettt e e et e e e e e e 428
A4D URL decode pathouiii i e e et 428
AAD URL dCOR QUETY . . . ettt ettt et et e e e e e e e e e e et e 428
A4D URL encode path e e e e e e e 429
AAD URL @NCOAE QUETY . . . ettt ettt et e e e e e e e e e et e et e e e e 429
A4D URLto native path.o i e e e e 429
Standard Libraries. 431
Using the Standard Libraries.o i e 431
A4 CONSONE . ..o e e e e e 432
o] =T T 433

Lo 1U T80T o T 11 - Y/ 433
AUMP COlBCEION .ot e e e e e e e e e e e e e 434
dump form variables 435
AUMP ICENSE INFO . .t e e e e e e e e e e e 435

Lo [U L0 aY oo [U =] g VAN o - 1 7= 0 2 - 435
UMD FEQUEST INTO L ..ottt e e e e e e e e et e 436

o 11]5'0] 0 JE-Y T3 o) o 1S 436
AAd.debUg e e e 437
Lo 1T T80T o T 11 - Y/ 438
AUMP COllBCEION .ot e e e e e e e e e e e e 439
AUMP CONFIGUIATION. L .ottt e e e e e e et e e et 440
dump form variables e 440
AUMP ICENSE INFO . .t e e e e e e e e e 440

Table of Contents 17

Active4D v6.4

o 111 5'0] o o - | - 441
Lo [U T a0 oo [UT=T VAo - 1 - o 2 - 441
o 117 5'0] o 3 =Y [0 =T 442
UMD FEQUEST INTO Lot e e e e e e e e e e e 442
o 117 5'0] 0 JE-Y =1 1=T e [442
o 111 5'0] 0 JESY T3 1o o 1 443
o 111 5'0] o YT 10 o T 7= €3S 444
A JSON . ..o 445
TSP 446
= Lo (o 446
= To (o 1LY 4 - 449
AAADATETIME . .ottt e e e e 450
o (o |10 0t u oo R 451
AAAROW S B ..ottt e e 452
A Sl ECtION . L .ot e 455
] 1 - 458
=T 0o 1Y -V 459
=1 (0] o) =T ! 459
=T 0o (@] o) =T e A 460
TOJSON L e 461
1T 1= PP 462
(T L] o S A 462
=] o Yo 1< 463
LT oY =Y Y o - 463
ENCOAEBOOIEANo e 464
eNCOAECOIIECHION . ..ottt e e 464
ENCOAEDATE. . . .ttt ettt e e e e e 466
BNCOTESTIING ..ttt e e et e e 466
0= 1= PP 467
CONVEITJSONDALES . . . ettt ettt e et e et et e e e et e e e e e e e e 468
AL LIStS . ..o e 470
=T o] o T=T T 1S 471
ANTAY T OISt . et e e 471
ChangEeDElimS ... e 472
(a0) 1 - 110 -3 472
CONTAINSNOCASE. . e ettt ettt ettt et e e e et e e e e e e e e 473
o =] =] L 473
N . L e 473
FINANOCASE . .o ettt et e e e e e e e 474
1T 474
0= P 474
L EY =T 4 475
T P 475
=T P 476
T e SN - 2P 476
7T 7= o T 476
QUALITY o e 477
S 477
£ L 478
£ 0] o S 478
ValUBCOUNT ettt e et e e e e e e e 479

18

Table of Contents

Active4D v6.4

ValUECOUNTNOCAS . . .t ettt ettt ettt e ettt e et ettt e et e et e ettt e 479
ValUBLIS . .ottt e e e e e 479
AAUILS e i 481
APPIYTOSEIECHION . ..ot e e e 482
E= Tl 1] o 482
o] 10] o 1 o1 @(o 1=t o o VR 483
o] 10] o 1 1o 157 =T:11 T T o PR 483
eF=] 0 1= (=YYl I 484
el Vo o 1 1= S 484
COllECtiONTOBIODt 485
oL 486
deleteSelECtiON .. .o e e 491
1T =T @] 11Tl oo 492
fOrMaAtUS P NONE . . i e e e e 492
getMailMethod e 493
o= L ot BT =T I =Y ol o (o) 493
EtPOINTEIREIEIENT . . . ot e 494
GEtSMTPAULNONIZAtIONo e e e e e 494
GEtSMTPAULNPASSWOID e e e e e 495
GEESMT P AULNUSEE ..o e e e e e e 495
GEESMIT PHOST . ..ttt ettt e e e e e e 495
NEXEI D it e e e e e e e 496
0T 11T [496
PArSECONT I G . . ettt e 497
L3V =T £1= N - P 499
selectionRanNgeToCOlECtION e e e 499
SelectioNTOC Ol CtION ...ttt e e e e e e e 499
SENAMaI L. .. e e e 501
SESSIONTOBIOD ... e e 503
SEtMaAIIMETNO. . .. e e 503
SEtSMT P AULNOIZAtION. . ..ot e e e e e e e e e 504
SO S T PHOS . ettt e e e e e e e e e 504
L0 Ter= Y (< =) (P PP 504
UNIOCKANALOAd . . .t e e e e e e e e e e e e e e 505
VAl P e oot e e e e 506
YEArMONTNDIAY . . .ottt 507
QAR . .. e 508
o 509
BUIIdOPLIONSFIOMAITAYS . . . o ettt et e et e e e e e e e e e e eaans 509
o TUT] Fo [@] o34 o7] S ¢ /0] I £ 43 510
buildOptioNSFrOMOPLIONAITAYttt e ettt et e e e eaeeans 511
buildOptioNSFroMOPIONLISto\ttt et e et e et e 512
bUIldOPtIONSFIOMROWSELottt et e e et e e ettt et e e 513
bUildOPtioNSFrOMSEIECtION ...\ it e e e e e e e e 514
el =Tl T =1 515
el Y=l {00 D) =Y L 515
COllectioNItEMSTOQUETYttt ettt et e et e e e e e e e e e e e e 516
ele] [Tt o) o 1 e 10U 1] 517
1= 00 oT=Te (@] | =Tt T T 517
1< 0 0] oY=Te (@] =Tt T 0] =Y o T35 519
embedFormVariablelist.o.iii e 519

Table of Contents 19

Active4D v6.4

embedFormVariables e 519
emMbedQUEIYPAraMS e 520
embedVariables. e 520
L= 00 14V =T R P 521
formVariableListTOQUENYottt e e e e e 521
GEEEMPLYFIEIAS . ..o e 522
GeTUNIQUEID . ..o e 522
getVariableslteratoro e 522
e 1= =] o P 523
hideUnIqQUERIEIo e e e e e e e e e et e e 523
SAVEFOIMT 0SS ION « . ettt ettt et e e e e e e e 523
validateTextFields. e e 524
ValdEMAIIAAIESS. . . .ottt e e 524
warninvalidField e 525
WIHEEBOI . . oot e e 525
Batch ... o e 526
BatCh ALtrIDULES.o 526
Creating @ BatCh 526
How Batches Are Calculated e e 527
Generating Batch LiNKs.ot e 528
[terating ThroUGN ROWSottt e et e e e et 531
AUMPDE AU ..ot e e e e e e e e e e 532
DB AUILS . .o e 532
o 1= 5] 7 1 £ 533
MAKEFUSEDOXLINKS e 533
MAKELINKS . .ot 534
T2 537
MW TOM ATTAY . ettt e e e e e e e 538
NEWFIOMROWS L. . . ettt e e e e e 538
NEWFIOMSEIECHION e e e 539
TS 540
0 €377 o 18 3PP 540
SEEDEfAUILS. . .o e 541
Breadarumbs o e 542
USING BreadCrumbst et e e 542
Customizing BreadCrumbs APPEaranCettt ettt et 544
=T Lo 545
o 11151010 1 F R 545
fUSEDOXN W . .. e 546
T2 546
SEEDIVIA. . et e 547
L= Y=Y o [| (o) AP 547
1T 547
FUSEDIOX ... e 548
AN OVerview Of FUSEDOX.ottt e e 548
Why Should 1Use FUSEDOX?.ttt e e e e e 548
HOW DO I Learn FUSEDOX?ottt e et et e e e e e e eaas 549
Active4D’s Fusebox Implementation.iiiii i e e 549
ConfigUIING FUSEDOXottt e e e 550
Lo N 551

20

Table of Contents

Active4D v6.4

GETURLFACIONY . .ottt ettt et e e e e e e e e e 551
NANAIEEITOr .« . .ttt e e e e e e 551
NaNAIEEITOrINIING .. e e e e e 552
VAl AT ON. . .ottt it e e e e e e e e e e 553
ISFUSEOXREQUEST . . .ottt e e e e e e e 553
MNAKEU R ..ttt i e et e e e e e e e 554
POStHANAIEEITON . ..ottt e e e e et e e ettt et 554
SENAFUSEACT ON L ottt ettt e et e e e e e 555
SETURLFACTONY ..ttt et e e e e e e 555
fuseboOX.hEad. ... i e e e e 557
How To Use This Libraryot et e e e e 557
AAACSS o e e e 558
AAADUMID YIS . . ettt e e 559
E= o Lo I =YY 1Yol o 560
A o e 560
= To (o |1V =] = I T R 562
o =] 1L [562
SO Tl ottt e e e 563
1AL (= 563
ROW S Ot i i i i, 564
ENTer The ROV S L. . ottt e e e e e e e e e e e 564
USING ROW S OTS . . ettt ettt ettt e e e e et e e e 566
SUDSEttING SOUICE ROWSttt ettt e e e e e e e e e ee e 568
RO S T CUISOLS .\ttt ettt ettt ettt et et e et e et e et et et et et ettt it 568
Pl St BNt RO S S . . .\ttt i i e et e i 568
WhiCh ROWS et 10 USE. . oottt ittt et et it et e e e e e et e et 570
P <] I 1) PP 571
0 7<Y 0T 1<) =112 (PP 571
ClBANP IS S N ..ottt e e e e e e 571
COIUMNC OUNT ettt e e e e e et e et e e e e e e e 572
CUIT BN R OW . .. i et et e e e e 572
o 11T 5'0] o) oY] =T | 572
o 111 5'0] o 573
fINACOIUMN . o e i e i e e e 573
IR OW .ot e e e e e e 573
1 2] (PP 574
GEECOIUMIN. L e e 574
Lo =3 I - 575
o =] 4 =13 o 575
TP IS S OISt . ottt 575
GOTROW . .ottt e e e 576
o 1= 5] - [o 576
GEETIMEBOUL . . ettt ettt et e e e e e 576
JOTOROW . e e e 577
LY AN <] I 1 AP 577
(1 37<] {0 =1 T2 A AP 578
L1 At 578
L1 = 1 At 578
15 (PP 579
AKX ROV . ittt it e e i 579
00103t 579

Table of Contents 21

Active4D v6.4

W oM A Y S . .ottt et e e e e e e et e e 580
newFromQCachedSelection. e e e 581
NEWEFIOMDATA. . . .ottt et e e e e e e e 582
NEWF oM. . Lt e e 583
NEWFIOMSEIECHION e e e 584
TS P 589
01T 6]] (= 2 S PPt 589

0 €377 o 18 3PP 589
FOWEOUNT. .« e ettt ettt ettt e ettt e e e et e e et e e e ettt et e e et 590
SELCOIUMNAITAY. . . ettt ettt et e e e e e e e e e e e e e e 590
SELCOIUMNDALA . . .ttt e e e 591
SEEREIATEOINE . .t e 591

£ o 10 0= 0 U 592
L] o S 592

10 el <] 200y YL @ TU | o | 593
L1010 =T [U 593
SessionHaNndler e 594
NEXE e e e e e 595
T P 595

1T 1= PP 596

o =] =] 596
11 e = 597
DEbUGGING . ..o e 599
TRE BaSICS . .ot e e 599
LT T AT P 599
TraCiNg @XECUTION . ..ttt ettt et e e e e et e et e e et 599
Standard Library Methods i i e e ettt it 600
add.console and a4d.debUgo . e 600
THE ACIVEAD LOg .. .ottt ettt ettt e et e ettt et et et et et aeneeteeneaeneenenenenns 601
Changing the Log Level e e e e e e 602
The Session Editor. e e e e 603
USING the SeSSioN EAITOr. .. vttt ettt e ettt ettt et e et 603
The SessioN MONITOK o e e et 604
Displaying the Session MONItOrttt ettt et ettt et e e eeenns 604
UsSING the SeSSiON MONITOT. ...ttt ettt e et e e e et e e e eanns 605
The Active4D Debugging Console it e ettt ieneaenns 606
Using the Debugging Console.u it e e e e et 606
Filtering COoNSO0le MESSageS . . .« vttt ettt ettt ettt et e et et e e e et a e eeeeans 607
TuNING Console REfresh . .t e e e e e 608
Error Handlingo oo e 609
The Default Error MeSSageoovi ittt ittt e ettt et et e ettt eneae e enenenenns 609
Using a CuStom Error Pageottt ettt ettt et et et e e et e e ianans 610
The “error PAgE” OPtiON . ettt ettt ettt ettt e e e et 610
The “set error Page” ComMMaANdttt e e ettt et et e e aa e anenns 610
Error Page Variables e e 611
Custom Error Handling in FUSEDOX. . ..t v vttt e et et eaeans 612
THE ACIVEAD LOg .. .ottt i et e ettt e ettt et et e et e et 613
LOg VIS .ttt e e e e e 613

22 Table of Contents

Active4D v6.4

INndeX Of CoOMMANASt e et ettt et et e e e e 615
ISO LanNgUaAge Codes ..ottt ittt ettt et e e 629
AV F= T =T 0T T - T 1 631
Grouped by FUNCHION.o e e e e 631
... 633
Alphabetical ... e e 633

Table of Contents 23

Active4D v6.4

24 Table of Contents

CHAPTER 1

Introduction

Welcome to Active4D! You have chosen the ultimate environment for building world-
class web applications with 4D.

What is Active4D?

A dynamic web scripting environment has four layers: a TCP communications layer, an
HTTP server layer, a scripting layer, and a database layer. The different layers can be
pictured like this:

Scripting

HTTP Server DB

Network communications

The HTTP server builds on top of the network layer, and the scripting layer builds on top
of the HTTP server. The database is in a separate, independent layer.

Active4D is both an HTTP web server and a server-side HTML-embedded scripting language
and development environment.

That's a mouthful. Let’s break down the sentence and look at what it means.

HTTP Web Server

An HTTP (HyperText Transfer Protocol) web server is a piece of software that receives
HTTP requests, processes those requests and sends an appropriate response to the
origin. In essence, this is what a web server does.

4D’s built-in web server handles TCP communications and handles most of the HTTP
protocol.

NTK (Network Toolkit) in just what it says — not an HTTP server, but a toolkit that allows
you to write an HTTP server. Both come with sample databases which implement a web
server well for most purposes.

Chapter 1 Introduction 25

Active4D v6.4

Active4D implements an HTTP server in a plugin. As an HTTP server, it offers:

= Ease of setup: Active4D is ready to run out of the box. There is no complicated setup
needed.

= Speed: Asa plugin, Active4D always runs at native compiled speed, even in an
interpreted database. This can mean huge gains in productivity during development.

* Features: Active4D adds a wealth of advanced features like Virtual Hosting that offer
you some of the benefits of dedicated web servers like WebStar.

Server-Side

Scripting languages like JavaScript download their source code to the client browser and
execute it there. Active4D, on the other hand, is executed on the server and the source
code is removed before the page is sent to the client.

HTML-Embedded
With Active4D, dynamic HTML generation is directly embedded inside the HTML page.

4D’s web tag system, while providing some of the benefits of embedded scripting, still
requires you to write many, many 4D methods to handle simple tasks like queries and
ordering. In Active4D this is handled directly within the web page. In fact, with Active4D
all of your application code can (and in most cases should) exist entirely outside of 4D
itself.

Scripting Language

To generate dynamic HTML you must have a programming language. Active4D is a full
4D interpreter in a plugin. To program in Active4D you don't need to learn a new syntax
or specialized tag language. In many cases you can literally copy 4D code from a method
and paste it into a web page to be executed by Active4D.

Active4D supports all 4D data types except for 2D arrays. It implements over 170 of the
most important 4D commands, as well as almost 300 new commands which provide
unmatched power — and ease — to your web development.

Active4D also adds many often-requested extensions to the language, such as the break
and return keywords, pass-by-reference, sophisticated string formatting, and associative
arrays.

Development Environment

Active4D comes with a plethora of built-in debugging tools, both on the client side and
on the 4D side. In conjunction with all of the other features Active4D provides, there
simply is no more powerful or more productive web development environment for 4D,
period. Nothing else comes close.

26

Chapter 1 Introduction

Active4D v6.4

An Example

Here's a simple example of what an Active4D page looks like:

<html>
<body>
Here are 5 good reasons to use Active4D:

<%
for ($i; 1; 5)
writebr("It rocks!™)
end for
%>
</body>
</html>

Note that the code is fully embedded in the page, and that except for the writebr
command, which writes an expression to the HTML page, the embedded code is 4D
code.

During execution, Active4D passes HTML through to the response, executes everything
inside the <% %> tags, and spits out the following:

<html>
<body>
Here are 5 good reasons to use Active4D:

It rocks!

It rocksl

It rocksl

It rocks!

It rocks!

</body>
</html>

The source code has been replaced with the output of the Active4D code. You can find
out more about programming with Active4D in Chapter 7, “Interpreter.”

What Can Active4D Do?

Active4D can do anything that 4D can do in the context of a web page, plus quite a few
tricks that would be time-consuming if not impossible to implement in 4D.

If Active4D’s commands don't fit the bill, you can write methods and libraries of methods
completely within Active4D, using plain text files. And if you need to use a command or
plugin that is not in Active4D’s language, you can either execute it within Active4D using
the execute in 4d command, or you can call any 4D method, passing parameters of any
type and receiving a result of any type.

Primarily, however, Active4D is designed to act as a conduit between the database and
the web page. As such, it excels at the following essential tasks:

= Collecting information from forms and queries for easy access within your web
application

Chapter 1 Introduction 27

Active4D v6.4

= Managing user sessions

* Querying and manipulating data without having to write specialized 4D methods
= Handling file uploads

* Formatting text for output to HTML

= Generating JSON data for use with Javascript client libraries

= Handling character set issues

Database and Protocol Support

Active4D comes with built-in support for 4D’s built-in database engine. You could,
without much work, write wrapper methods for the various connectivity plugins that
would allow you to work with other databases such as MySQL.

In addition, you could also easily write method wrappers around the 4D Internet
Commands to allow you to access other internet protocols like SMTP.

A Brief History of Active4D

Many years ago | had the occasion to use another dynamic embedded scripting
language: PHP. | was amazed at the power it provided, and more importantly | realized
the advantages of the embedded scripting model.

Alittle later | was hired to work on a vertical market, web-based application that used 4D.
| was asked to add a new module to the existing application. To my amazement, this
application generated every single character of HTML programmatically in 4D methods.
This was before 4D offered its web tag system.

Having been exposed to embedded scripting, | quickly saw that this was a
fundamentally flawed approach, and | said to myself, “There has to be a better way." So |
set about creating one.

| never intended to create Active4D — it just sort of happened. A few months after |
began with a simple 4D-based parser that replaced variable and field names, | had a full
working 4D interpreter in a plugin.

A few features and a few months later, Active4D 1.0 was released. That was November of
2000. Since then | have had a chance to use Active4D heavily in web projects, and
decided it was time to fill in all of the holes in its feature set.

| systematically went down the list of every important feature in ASP (Microsoft's Active
Server Pages) and PHP, and implemented each and every one. And wherever possible |
added a few features that they don't have.

The result is what you see here: Active4D v6.4, the ultimate 4D web environment.

28

Chapter 1 Introduction

CHAPTER 2

Installation

Installation of Active4D is a fairly simple matter and should take no more than a few
minutes.

First you must of course download the latest version from:
http://www.aparajitaworld.com/downloads/active4d/latest.zip

There are four elements to Active4D:

* Plugin: There is a single plugin for all platforms.

= Shell: You must choose the appropriate shell for the environment in which you are
running Active4D. The shell acts as a conduit between the network communications
layer and Active4D.

= Documentation: Your best friend. :-)

* Demo: This 4D v13 database and web site demonstrates many of the key techniques
you will use with Active4D.

Plugin

The Active4D plugin bundle contains code for macOS (Intel) and Windows, both in
32/64-bit. This allows you to run on any platform or architecture.

Resource Files

Within the Active4D plugin bundle are resource files used by Active4D. These resource
files are located in Active4D.bundle/Contents/Resources. The resource files are:

= Active4D_58l.dat: Contains resources specific to Active4D.

* jcudt58l.dat: Contains resources used by ICU, a code library used by Active4D. This is
a very large file because it contains Unicode and internationalization data for every
country and language in the world.

The default location for these files is within the plugin bundle. They may also be placed
in the <shared 4D folder>/com.aparajita/icu folder. The shared 4D folder is the parent of
the folder which is returned by Get 4D folder(Licenses folder) within 4D. For the
location of this folder, please refer to the 4D documentation for the Get 4D folder
command.

If you decided to use the shared “icu” folder, both resource files must be placed there.

Chapter2 Installation 29

Active4D v6.4

Active4D Shells

The archive contains two 4D database folders which contain Active4D shells — the code
to integrate Active4D with either 4D’s web server or NTK. In addition, the shells contain
the forms and methods which implement the server-side debugging features of
Active4D.

Warning: You must use NTK 3.1 or later with the NTK shell in Active4D v6.4 or later.

Within each database folder, in addition to the standard 4D files and folders, you will also
see:

= An“Active4D” folder with the Active4D standard libraries and configuration files. For
more information see “Active4D Folder” on page 30.

= A“web"” folder with Active4D utility scripts. For more information see “Web Folder” on
page 31.

Active4D Folder

This folder contains the Active4D standard libraries and config files which are used by
Active4D.

* add.console.a4l: A library which provides methods for dumping various debugging
information to the debug console.

* a4d.debug.adl: A library which provides methods for dumping various debugging
information to a web page.

= a4dd.json.adl: A library which provides a full suite of methods for JSON (JavaScript
Object Notation) data for use with Javascript client libraries.

= add.lists.a4l: A library which provides a full suite of methods for working with
delimited lists.

= a4dd.utils.a4l: A library which provides various non-web-related utilities.

= a4d.web.a4l: A library which provides various web-related utilities, mostly for
working with forms.

* Active4D.a4l: A special library that contains global event handlers for your
application. For more information on event handlers, see Chapter 10, “Event Handlers.”

= ActivedD.ini: A config file which sets most of the options in Active4D.

= Batch.a4l: A library which provides methods for splitting large query results into
batches of rows and creating links to those batches.

= Breadcrumbs.a4l: A library which provides methods for creating a “trail” of
“breadcrumbs” — links to other pages — to aid the user in navigating through your
site.

= ExtensionMap.ini: A config file which maps filename extensions to Macintosh file
types and MIME types.

= fusebox.adl: A library which implements the Fusebox 3 core.

30

Chapter2 Installation

Active4D v6.4

= fusebox.conf.a4l: A library in which you can configure fusebox.
* Realms.ini: A config file which maps portions of a URL to security realms.

= RowsSet.adl: A library which provides an implementation independent
representation of rows of data.

= VirtualHosts.ini: A config file which provides the routing table for virtual hosts. For
more information on virtual hosts, see “Virtual Hosting” on page 61.

For more information on the standard libraries, see Chapter 12,“Standard Libraries." For
more information on config files, see Chapter 3, “Configuration.”

Web Folder
This folder contains files that you may use in your site:
* image.add: This file is an all-purpose script for dynamically loading images from the

database or from disk and optionally creating thumbnails from them. For more
information, see “image.a4d (script file)” on page 261.

* sed.ad4d: This file is a reusable script for examining and editing sessions. For more
information, see “The Session Editor” on page 603.

Demo

The demois a 4D v13 database and web site that illustrates many key Active4D
techniques. To run the demo do this:

1 Open the demo database. You can safely open and convert it in later versions of 4D.
2 Open a browser and enter “http://localhost:8080” or “http://127.0.0.1:83080".

3 Explore the demo and look at the underlying code.

Key Files

Active4D runs in one of several modes, depending on the license currently in force. The
license is determined by a key file (or lack thereof), which contains information about you
and your license.

Warning: You should always keep a backup of your key file.

Key File Installation

A key file must have a name which begins with “Active4D.” and ends with “key” (the dot
in the two parts may be the same character). Active4D will look for a key file in several
places, in the following order:

1 The <user 4D>/com.aparajita/Active4D folder. The user 4D folder is the folder which
is returned by Get 4D folder(Active 4D Folder) within 4D. For the location of this
folder, please refer to the 4D documentation for the Get 4D folder command.

Chapter2 Installation 31

Active4D v6.4

2 The <4D shared licenses>/com.aparajita/Active4D folder. The 4D shared licenses
folder is the folder which is returned by Get 4D folder(Licenses Folder) within 4D.
For the location of this folder, please refer to the 4D documentation for the Get 4D
folder command.

3 The Active4D.bundle/Contents/Resources folder.

Warning: If you are running 4D Server as a service, the key file must be placed in the
4D licenses/com.aparajita/Active4D folder (location #1 above).

Note: To place the key file in the Active4D.bundle/Contents/Resources folder on
macOS, right-click on the Active4D.bundle plugin and select “Show Package
Contents”. Then navigate into the Resources folder.

If you have a key file in more than one place the first one found will take precedence.

Key File Info

Key files contain the following information in encrypted format:

* The name and company of the key file purchaser

= The license type

= The platform for which the key is licensed

= The IP address for which the key is licensed (only used with deployment licenses)
= The expiration date of the key’s license (keys never expire, only their licenses do)
* An encoded serial number

You can access this information both through a 4D plugin call (A4D GET LICENSE INFO)
and through the Active4D command get license info. Even easier, you can use the
A4D_Prefs method in 4D to display a dialog with the license info, or use the
a4d.debug.dump license info method to display license info in a web page or the
add.console.dump license info method to display license info in the Active4D console.

Version Checking

Encoded in the serial number is the major/minor version of Active4D for which the key is
licensed. If you attempt to use an otherwise valid key file with a version of 4D newer than
the version encoded in the key file, the license will be temporarily downgraded.

Note: Version checking does not apply to bug fix releases; i.e. versions 6.4 and 6.4.1
are considered the same version, whereas 6.4 is considered newer.

32

Chapter2 Installation

Active4D v6.4

License Types

Each license has certain limitations of which you should be aware. The license types
Active4D supports are:

Trial Times out after 8 hours of continuous use

Deployment Tied to a single IP address, never times out on that address, times
out after one week on another address

OEM No time or IP address limitation, requires special 4D code which
ties it to a 4D structure

Timeouts

The trial license has a timeout period. When 4D has run continuously for the timeout
period, Active4D becomes disabled. Thereafter any attempts to execute Active4D will
return the text “Active4D has exceeded its time limit.” At that point 4D must be restarted
to reset the timeout and enable Active4D.

Trial License

If Active4D cannot find a key file, or if the key file is incorrect in some way, Active4D
operates in trial mode.

Deployment License

If Active4D finds a key file whose license type is Deployment, Active4D checks the IP
address of the host machine against the IP address in the key file. If an exact match is
found, Active4D operates in deployment mode with no timeout, unless the version
check fails, in which case Active4D reverts to trial mode.

If the host machine has more than one IP address, Active4D will check all of the host's IP
addresses for a match. On macOS, only interfaces whose names begin with “en”
(ethernet interfaces) will be checked.

If an IP address match cannot be made, Active4D reverts to expired mode, which times
out after one week of continuous use. Until you get a new key file, you must restart 4D
once a week.

Ideally you should obtain a new key file in advance if you know your application will be
moved to a server with a different IP address. However, if you unable to secure a new key
file before switching, this scheme allows you to operate Active4D for a full week after
switching. During this time you should be able to obtain a new key file. Once you have a
new key file, you must restart 4D to have Active4D run in Deployment mode once more.

If you are running Active4D on 4D Server, checking the license status from a 4D Remote
will indicate the license is running in expired mode, since the IP address of the 4D
Remote cannot match the Server IP address.

Chapter2 Installation 33

Active4D v6.4

To check the license status of a Server-based key file, you must use the
a4d.debug.dump license info method, the a4d.console.dump license info method, or
the get license info command on a page served by Active4D running on Server.

OEM License

For information on OEM licensing, please contact sales@aparajitaworld.com.

Installation Options

There are several installation scenarios: starting a database from scratch, installing into a
non-Active4D database, and updating an existing Active4D 4.x database.

Starting a Database from Scratch

The Active4D shell databases are perfect for use when you are starting a database from
scratch, as they are ready to run. You just need to build your database on top of the shell
appropriate to network layer you plan to use (4D/NTK).

Installing into a Non-Active4D Database

The Active4D environment relies on a small set of 4D methods, lists, forms and styles, all
of which have the prefix “A4D_" to prevent name conflicts with existing code (I hope).

To install Active4D into an existing database, follow these steps:

1 Open the shell database corresponding to the network layer you will be using
(4D/NTK).

Open the Explorer and click“Home” on the left side of the Explorer window.
Open the target database in a second copy of 4D.

4 Open the Explorer in the target database and click“Home" on the left side of the
Explorer window.

5 Arrange the Explorer windows in the shell and target databases so the contents lists
are visible in both.

6 From the shell database, drag the “Active4D” folder from the Explorer window to the
contents list of the Explorer window in the target database.

7 Switch to the target database. You may see a warning dialog asking you if you want
to continue. Click OK.

A“Moving Dialag” dialog will appear. Click Next, then click OK.
Quit the copy of 4D running the shell database.

10 Copy the Active4D plugin bundle into a directory which is accessible to the target
database. Please consult the 4D documentation for information on where plugins
may be placed.

11 Open the shell database folder. On macOS, you must right-click on the database and
select“Show Package Contents”.

12 Open the target database folder.

34

Chapter2 Installation

13

14
15

16

17

18

19

20

Active4D v6.4

Copy the "Active4D” and “web” folders from the shell database folder to the target
database folder.

Open the target database in 4D.

In your startup sequence (On Startup, On Server Startup, or a method called by them),
add a call to the method A4D_Startup.

In your shutdown sequence (On Exit, On Server Shutdown, or a method called by
them), add a call to the method A4D_Shutdown.

If you want to access the Active4D preferences dialog, console, or session monitor,
you will need to add menu items that call A4D_Prefs, A4D_Console or
A4D_SessionMonitor respectively.

If you plan on using 4D Remote as a web server, follow the instructions in
“Configuring 4D Remote as a Web Server” on page 39.

Depending on the network layer you are using (4D/NTK), there may be additional
configuration to perform. See the relevant section below for instructions on what to
do.

Restart 4D to activate your changes.

Updating an Existing Active4D 4.x/v5 Database
To update an existing Active4D 4.x/v5 database to Active4D v6, follow these steps:

1
2

Make a backup copy of your structure.

If you have made any changes to the Active4D shell, you will need to make note of
the changes you made so they can be integrated into the new shell.

Follow the steps above for installing into a non-Active4D database.

If are upgrading from 4.x and you made changes in the old A4D_DebuglnitHook
method, note that the second parameter, SioDialogTable, is no longer used, and
must be removed.

If you are using 4D’s web server to handle network communications, follow Step 1 of
“Configuring for 4D’s Web Server” on page 37.

Installing the Predefined Session Handler

A custom session handler allows you to store sessions in the database. If you would like
to do so, you may use the predefined session handler in the “SessionHandler” folder of
the plugin distribution archive. You have a choice of using 4D methods or a library.
Before using either one, you must create two tables:

add_session_id

Field name Type Attributes
id Long Integer Automatic index, Autoincrement
next Long Integer

Chapter2 Installation 35

Active4D v6.4

add_sessions

Field name Type Attributes

id Long Integer Automatic index
data BLOB

expires Real Automatic index

After creating the supporting tables, to use 4D methods as the session handler, do the
following:

1 Import the methods in the “SessionHandler/Methods” folder that begin with
“sessionHandler”. Name the methods according to the filename (without the
extension).

2 Add the declarations in “SessionHandler/Methods/Compiler_Methods.txt” to your
Compiler_Methods method (or whatever method you use for method compiler
declarations).

3 Add the following line to your Active4D.ini configuration file:
session handler = sessionHandler

To use a library as the session handler, do the following:

1 Move"“SessionHandler.a4l” to the “Active4D” folder of your database, or to one of the
directories specfied in the “lib dirs” configuration option in Active4D.ini.

2 Add the following line to your Active4D.ini configuration file:
session handler = *sessionHandler

For more information on session handlers, see “Session Handlers” on page 348.

Post-Installation Configuration

Active4D uses a special housekeeping process that takes care various internal tasks,
including running special code when a web session expires. By default this process is
given a stack size of 128K, which should be sufficient. If you need to change the stack
size, do the following:

1 Open the List Editor.
2 Click on the list"A4D_Config"

3 Change the number in the item that says “HousekeeperStack=128" to the amount in
kilobytes that you would like to reserve for the housekeeper’s stack.

4 Close the List Editor and restart 4D.

Depending on the network layer you are using (4D/NTK), there may be some extra
configuration necessary if you are installing Active4D for the first time.

36

Chapter2 Installation

Active4D v6.4

Configuring for 4D’s Web Server

If you are using the 4D web server to handle network communications, there are a few
steps you must take:

1 Setthe On Web Connection database method to the following code:

C_TEXT($1;$2;$3;%4;%$5;%6)
A4D_OnWebConnection($1;$2;$3;%$4;$5;%$6)

N

Create a directory called “web_static” in the database folder if you are web serving
with 4D Server or Standalone, or in the folder <shared 4D

folder>/com.aparajita/Active4D if you are web serving with 4D Remote. The shared
4D folder is the directory within which the 4D licenses folder is found. You can use

this directory for static content that you want to be served directly by 4D’s web
server.

w

Install the 4D Internet Commands plugin bundle in one of the plugins folders 4D
searches for plugins.

n

Open your database and then open the Database Settings dialog. Consult the tables
below and set each of the Web options according to the values in the tables.

5 Click OK to accept your changes, and then restart 4D.

Table 1: Configuration Preference Pane

Option Value

Launch Web Server at Startup [unchecked]
TCP Port [as necessary]
IP Address [as necessary]
Enable SSL [as necessary]
HTTPS Port Number 443

Default HTML Root web_static
Default Home Page [empty]
Non-contextual Mode [selected]

Table 2: Advanced/Options (I) Preference Pane

Option Value

Use the 4D Web cache [checked]
Pages Cache Size [as desired]
Inactive Process Timeout [as desired]
Web Passwords No passwords

Chapter2 Installation 37

Active4D v6.4

Table 3: Options/Options (Il) Preference Pane

Option Value

Send Extended Characters Directly [checked]

Standard Set [as desired, but must match Active4D character
set settings]

Use Keep-Alive Connections [as desired]

Number of requests by connection [as desired]

Timeout (seconds) [as desired]

Configuring for NTK

If you wish to use NTK as the network communications layer for Active4D, do the
following:

1 Open your database and then open the 4D Preferences dialog.

Select the Web/Configuration preference pane.

Uncheck“Publish Database at Startup/Launch Web Server at Startup”.
Click OK to save the changes.

i A W N

If you are using NTK 3.1+, open the project method
“A4D_HTTPD_CompressResponse” and uncomment line 47.

NTK's behavior as a web server can be configured using the 4D list “A4D_NTKConfig",
which contains the following items:

Item Description

IP= Defines the IP addresses on which NTK will listen. Leaving this
empty will listen on any IP address. Specifying an address
such as“192.168.1.13" will cause NTK to listen only on that

address.

Port=8080 Defines the default port on which NTK will listen for HTTP
requests.

SSLPort=443 Defines the default port on which NTK will listen for HTTPS
(SSL) requests.

NumThreads=13 Number of HTTP listeners to preallocate.

MaxThreads=27 Maximum number of HTTP listeners to allocate.

ThreadStack=128 Stack size for HTTP listener processes in kilobytes.

CompressResponse=1 Determines whether responses are compressed with gzip.
Change“1” to“0" to turn compression off.

KeepAliveTimeout=5 How many seconds a persistent (keep-alive) connection will
remain idle before closing.

38

Chapter2 Installation

Active4D v6.4

By changing the numbers in the various items, you can change how Active4D’s shell sets
up NTK.

If you are using NTK and would like to use SSL streams, you must follow these steps:
1 Open the method A4D_InitSSLHook.

2 Set SoutCertPath, SoutCertKeyPath, and SoutCertPassword to the values for your SSL
certificate, SSL private key, and SSL password.

3 Close the method and restart 4D to have your changes take effect.

Configuring File Types to Compress

By default, the NTK shell gzip compresses all files that have a MIME type of “text/@", or
whose MIME type appears in the 4D list "A4D_CompressContentTypes”. If you wish to
compress other file types, add the MIME types to the "A4D_CompressContentTypes” list
and also be sure to add an entry in ExtensionMap.ini for each file type.

Configuring 4D Remote as a Web Server

Ordinarily Active4D becomes inactive on 4D Remote, since it assumes it is serving web
pages from 4D Server. If you are using 4D Remote as a web server, you must explicitly tell
Active4D that you are doing so.

To enable Active4D’s web serving on 4D Remote, do the following:

1 Install the Active4D folder (containing the standard libraries and configuration files)
onto the 4D Remote machine. The location of the Active4D folder on a 4D Remote
machine must be in the standard search path as described in “Config File Search
Path” on page 41.

2 Open the method A4D_InitHook.

3 Uncomment the line SioClientlsWebServer->:=True. If no such line exists, add it to the
method. Depending on your setup, you may need to set the value based on some
set of conditions, as you may not want all 4D Remotes to be web servers.

4 Close the method.

If 4D passwords are active, open the 4D Preferences dialog. Select the
Web/Advanced preference pane. When 4D passwords are active, 4D Remote will
only give database access to the user selected in the Generic Web User drop-down
list. It is up to you to select the proper user, then click OK to save your changes. It is
also up to you to ensure that the 4D Remote acting as a web server will be logged in
as the generic web user.

6 Restart 4D.

Using the Pre- and Post-Execute Hooks

For some developers it is necessary to examine and perhaps modify a request before and
after Active4D. The Active4D shells provide hooks to allow the developer to do so
without changing the core shell methods.

Chapter2 Installation 39

Active4D v6.4

Pre-Execute Hook

The pre-execute hook allows you to inspect an incoming request. Within this hook you
are given access to the raw request and are free to do whatever you want with it. If you
decide to handle the requset yourself, you can prevent Active4D from handling the
request by returning False from the hook. If you return True Active4D will handle the
request normally.

Note: If youraim is to inspect and possibly change the URL, a better way to do this is
through the On Request event handler. For more information, see “On Request” on
page 128.

Actually, there are two pre-execute hooks. The hook you will use depends on the
network layer you are using.

If you are using 4D's web server as the network layer, you will use the hook method
called A4D_PreOnWebConnectionHook. This method receives a copy of the requested
URL, the request itself, and the remote address. Because the hook receives a copy of the
request, any changes you make to your copy of the request will be ignored by Active4D.

Note: By default, the call to A4D_PreOnWebConnectionHook is commented out to
prevent unnecessary copying of the request. If you plan to use this hook, you must
uncomment its call in On Web Connection.

If you are using NTK as the network layer, you will use the hook method called
A4D_PreStreamExecuteHook. This method receives a stream reference which you can use
to read and modify the request. Since Active4D uses the same stream reference, any
changes you make to the request will be used by Active4D.

Note: If you want Active4D to execute a request, you must be sure to put any data
you read (or a modified version thereof) back into the stream so that Active4D will
receive the entire request.

Post-Execute Hook

The A4D_PostExecuteHook method allows you to inspect and modify the response
headers and response body returned by Active4D after it has executed, but before the
response is sent. This method receives a pointer to the request and response header
names and values (as parallel text arrays) and a pointer to the response body BLOB.

Within this hook you may make any changes you wish to the response headers or the
response body, and those changes will be reflected in the response sent to the client.

If you change the response length, the Content-Length header must be changed
accordingly. There is already code in the A4D_PostExecuteHook to do this, but it must be
activated. If you do change the length of the response, do the following:

1 Locate the If (False) statement towards the bottom of the method.

2 Change False to True.

40

Chapter2 Installation

CHAPTER 3

Configuration

Active4D ships preconfigured to meet most needs, but you can configure virtually every
aspect of Active4D to fit your specific needs.

Before discussing the various configuration (or “config”) files, you must know where to
find them.

Config File Search Path

Active4D looks for each config file using the following search path:

<Database folder>/Active4D (Standalone/Server)

<User home>/Library/Application Support/4D/com.aparajita/Active4D/conf
(macQS)

<Disk>:\Users\<user>\AppData\Roaming\4D\com.aparajita\Active4D\conf
(Windows 7 or Vista)

<Disk>:\Documents and Settings\<user>\Application Data\4D\com.aparajita\conf
(Windows XP)

/Library/Application Support/4D/com.aparajita/Active4D/conf
(macOs)

<Disk>:\ProgramData\4D\com.aparajita\Active4D\conf
(Windows 7 or Vista)

<Disk>:\Documents and Settings\All Users\Application
Data\4D\com.aparajita\Active4D\conf
(Windows XP)

Active4D.bundle/Contents/Resources/conf

Note: Active4D will follow aliases and symbol links on macOS and shortcuts on
Windows.

This arrangement allows you to have multiple versions of config files, with those earlier
in the search path overriding those later in the search path.

Chapter 3 Configuration 41

Active4D v6.4

So, for example, you could establish a baseline set of configuration options which you
keep in the shared 4D folder, then override that configuration for a particular database
by putting a separate config file in <Database folder>/Active4D.

Warning: If 4D Remote is being used as a web server, you must install the config files
on the 4D Remote machine.

Configuration Files

Active4D has four config files: Active4D.ini, ExtensionMap.ini, Realms.ini and
VirtualHosts.ini. These are plain text files which may be created and edited on any
platform, as Active4D will accept Mac, Windows and Unix line endings.

Default versions of these files which should suit most needs are shipped with Active4D.
Each file is heavily commented, so if this documentation is not handy you can always
read the comments. It is recommended that you keep a copy of the default config files
somewhere safe in case you need to go back to a baseline configuration.

Active4D periodically checks to see if the config files have been modified. The interval
between checks is set with the “refresh interval” option in Active4D.ini. If a config file has
been modified, it is reloaded automatically, so there is no need to quit and restart 4D to
have the changes take effect.

Note: The config files are loaded on startup and their locations are cached, so you
may not move them without restarting the server.

The Default Directory

Some of the config files rely on the concept of the default directory. The default directory
is the directory from which relative paths are resolved.

Under 4D Standalone or Server, the default directory is the current database directory
(the one with the structure file). Under 4D Remote, the default directory defaults to:

= /Library/Application Support/4D/com.aparajita/Active4D (macOS)
= <System Disk>:\ProgramData\4D\com.aparajita\Active4D (Windows 7 or Vista)

= <System Disk>:\Documents and Settings\All Users\Application
Data\4D\com.aparajita\Active4D (Windows XP)

If 4D does not have sufficient permissions to create the Licenses folder at the above path,
or if you are running under 4D Volume Desktop Client and there is no Licenses folder in
the merged application, the default directory is:

= <User home>/Library/Application Support/4D/com.aparajita/Active4D (macOS)
= <System Disk>:\Users\Current user\AppData\Roaming\4D (Windows 7 or Vista)

= <System Disk>:\Documents and Settings\Current user\Application Data\4D

42

Chapter 3 Configuration

Active4D v6.4

To find out which path is used for the default directory, look in the Active4D log for a line
like this:

Sep 22 15:33:13 Active4dD: [info] interpreter: default directory:
/Users/web/Library/Application Support/4D/com.aparajita/Active4D

Path Format

All paths specified in config files must be in URL format (also known as Posix format),
which has the following attributes:

* The directory separator is '/’

= A full path begins with a leading '/, a relative path does not

= A directory path may or may not be terminated with a trailing’/’

= A file path must not be terminated with a trailing‘/’

* The path may not contain the native directory separators’ and '\’

= The path may begin with a special directory token, discussed below
* The path may contain directory movement (../)

* Any element of a path may be an alias or symbolic link in macOS, or a shortcut in
Windows

There are four tokens you may use at the beginning of a path to represent special
directories. The tokens are:

Token Directory

<default> The default directory, as defined in “The Default Directory” on
page 42

<web> The web root directory

<4d volume> The name of the volume on which the 4D application resides

<boot volume> The name of the system boot volume

The tokens include the <’ and ‘> and are replaced with the directories they represent,
without a trailing /" This allows you to create paths that are portable across machines
and 4D directories.

For example, you may want to include files from a folder called “includes” outside of the
web root, perhaps at the same level as the web root folder. To do so you would specify
this path:

<web>/../includes

To help you understand how URL paths map to the Mac or Windows paths used by 4D,
here are a few samples of full paths in 4D format and URL format, where “Dev” is the
name of the boot volume on macOS:

Chapter 3 Configuration 43

Active4D v6.4

Native Full Path Platform URL Path

Dev:site:web: Mac /site/web
Dev:site:web:index.a4d Mac /site/web/index.a4d
Images:02:0213.jpg Mac /Volumes/Images/02/0213.jpg
C:\Dev\site\web\ Win /C/Dev/site/web
C:\Dev\site\web\index.a4d Win /C/Dev/site/web/index.a4d
D:\02\0213.jpg Win /D/02/0213.jpg

Native Relative Path Platform URL Path

:siterweb Mac site/web

site\web\ Win site/web

Note: On macOS, full paths on the boot volume may begin either with
“/Volumes/<volume name>/" or just“/", whereas full paths on non-boot volumes
must begin with “/Volumes/<volume name>/". The first time Active4D converts a
Posix path to a 4D path, the boot volume name is looked up and then cached. If you
wish to rename your boot volume while 4D is running, you must restart 4D to ensure
path conversions are correct.

The Standard Search Path and Path Lists

Several config options allow you to specify a semicolon-delimited list of full paths to
search in addition to the standard search path. If such a list is provided, it is searched
after <Database directory>/Active4D.

For example, to add two directories to the search path, you might use something like
this:

<default>/libs;<boot>/Library/Application Support/4D/libs

Active4D.ini

The config file Active4D.ini controls most of the behavior of Active4D and must be in an
Active4D folder in the standard search path. There are several dozen options you can set
in this file. Each option is in the form:

<option> = <value>

Case is not significant either for keys or values, and you can have any amount of white
space surrounding the “=". You may also use line comments and block comments just as
you would in 4D and Active4D.

44

Chapter 3 Configuration

Active4D v6.4

The options in Active4D.ini are listed below. A detailed discussion of the options can be
found in the Active4D.ini file itself.

Table 1: Error Handling Options

Option Description

error page The root-relative URL path to a file to execute when an
error occurs

http error page The root-relative URL path to a file to execute when an
HTTP error occurs

log level A sum of the bit flags defining which type of events to log

Table 2: HTTP Server Options

allowed methods A list of allowed HTTP request methods

cache control The default cache control for executable files

default page Name of default page when directory URL is requested

doctype Indicates the doctype of the site (“html” or “xhtml")

executable extensions File extensions which Active4D will consider executable

expires The number of minutes before a page should expire

fusebox page Page through which Fusebox requests go

max request size The maximum size in kilobytes (K) of a request, including
the headers

parameter mode Which collections to use for form variables and query string
params

parse json request Whether to automatically parse JSON requests

receive timeout Maximum wait time when receiving from a TCP stream

root Root web directory

serve nonexecutables Whether Active4D should serve non-script files

Table 3: Interpreter Options

Option Description

auto relate one Whether to load related records in auto-related one tables

auto relate many Whether to load related records in auto-related many
tables

output charset The character set to convert to when writing text to the
response buffer

output encoding The encoding to perform on text written to the response
buffer

Chapter 3 Configuration 45

Active4D v6.4

Table 3: Interpreter Options

Option Description

platform charset The character set from which source files are converted to
Unicode

script timeout The minimum script timeout in seconds

Table 4: Library Options

auto refresh libs Whether to automatically refresh libraries

lib dirs Extra search paths for libraries

lib extension The extension for Active4D libraries

refresh interval How often to check libraries and config files for
modification

Table 5: Security Options

Option Description

auto create vars Whether to create local variables from form variables and
query params

safe doc dirs Directories allowed for document commands outside of
root
safe script dirs Script directories outside of root

Table 6: Session Options

Option Description

session cookie domain The domain of the session cookie

session cookie name The name of the cookie to store with the session ID
session cookie path The path of the session cookie
session cookie secure If true, the session cookie is marked secure and is only sent

in secure requests

session handler The base name of 4D methods or the name of an Active4D
library if prefixed with “*”

session purge interval The minimum interval in seconds between attempts to
purge expired sessions

session timeout The length of time in minutes that a session can live
without any user interaction

46

Chapter 3 Configuration

Active4D v6.4

Table 6: Session Options

Option Description

session var name The name of the local variable to automatically set to the
current session ID

use session cookies Whether Active4D should store session IDs in cookies
use sessions A global switch for session management
ExtensionMap.ini

This config file maps filename extensions to MIME types. It is used primarily by
Active4D’s HTTP server. For more information on this file, see “ExtensionMap.ini” on
page 59.

Realms.ini

This config file specifies the mapping between realm names and portions of a URL that
identify those realms. It is used primarily by Active4D’s HTTP server. For more
information on this file, see “User Authentication” on page 59.

VirtualHosts.ini

This config file provides a routing table for virtual hosting, which allows you to create
multiple independent web sites on the same machine. For more information on this file,
see “VirtualHosts.ini” on page 61.

Chapter 3 Configuration 47

Active4D v6.4

48 Chapter 3 Configuration

CHAPTER 4

Security

Security is something you should worry about with any web site. When a web site has
direct access to a mission-critical database, security is a mission-critical issue. Active4D
provides several mechanisms to ensure your site is as secure as possible.

Source Code Security

When you build a web site with Active4D, all or part of your source code is on the web
server in plain text form.

This does not mean your source code is not secure.

In determining the potential security risk, you must keep in mind these two important
facts:

= A web site is only as secure as its web server.

= Active4D removes the source code before serving the page.

Web Server Security = Source Code Security

If an attacker compromises the security of your web server, your source code is at risk —
but then, so is everything else on the web server, including the database.

If the attacker is bent on being destructive, there are far easier and more effective ways
to wreak havoc than to change the embedded source code in a web page. And it is
highly unlikely that the hackers of the world know the 4D language.

Circumventing Active4D

Active4D always strips out source code before sending a page to the client. But what if
the page is served directly without passing through Active4D?

Itis up to you to ensure that every request is passed to Active4D.

If you are using 4D’s built-in web server as the network layer, there is a potential risk.
Active4D is only invoked through the On Web Connection mechanism. On Web
Connection is only invoked when the user requests a URL that does not exist. URLs that
reference existing files are served directly by 4D without invoking On Web Connection.

Warning: If 4D’s web server has it's default HTML root set either to nothing or to your
real web root, there is nothing to prevent a casual user from reading your source
code.

Chapter4 Security 49

Active4D v6.4

For example, let’s suppose the user is given this URL:
www.myserver.com/4DCGl/mypages/mypage.a4d

Let us further suppose that this page exists within a directory called “web” within the
database directory, and the 4D web server’s default HTML root is set in the Database
Properties dialog to “web” If the user then enters the same URL without “/4DCGI", like
this:

www.myserver.com/mypages/mypage.a4d

4D will directly serve that page, complete with embedded source code, without going
through On Web Connection. On the other hand, if 4D’s default HTML root is set to
nothing, the user could still access the source with this URL:

www.myserver.com/web/mypages/mypage.a4d

It is critical that you create an empty “decoy” directory in your database directory and set
4D’s default HTML root to that folder, then set Active4D’s root directory to something
else. By doing this, you ensure that all URLs without “/4DCGI” will be to non-existent files,
thus forcing 4D to route the request through On Web Connection and ultimately to
Active4D.

Potential Attacks

Even if a miscreant does not succeed in hacking into your web server, there are still many
opportunities for mischief. For an excellent essay on the security issues arising from a
web-based scripting language, | recommend reading the following:

http://www.securereality.com.au/studyinscarlet.txt

If you do read this essay, please note that Active4D addresses almost every potential
attack outlined there.

Executing/Accessing Non-Web Files

One potential source of attack is to allow access to files outside of the web site itself.
Ordinarily, Active4D requires that any requested file be within the web root directory or a
subdirectory thereof. This includes files that are executed with the include or require
commands.

If an attempt is made to execute a file in an unauthorized directory, Active4D aborts
execution and returns the status code 403 Forbidden along with a message indicating the
error.

The “safe script dirs” Config Option

If you want to execute or include script files in a directory outside of the root directory,
you can provide a list of allowable script directories with the “safe script dirs” option in
Active4D.ini.

50

Chapter4 Security

Active4D v6.4

If an attempt is made to execute a file outside of the root directory, this path list is
checked. If the file lies within one of the specified directories, the execution is allowed to
proceed. Otherwise the behavior is as specified above for unauthorized directories.

By default the “safe script dirs” path list is empty.

Misusing Document Commands

Let us suppose that you have a script that deletes a file, and that the path to the file is
kept in the session. An attacker could potentially force the session to contain a path to a
critical system file outside of the web root directory.

To prevent this kind of attack, the path passed to all document commands (, DELETE
DOCUMENT, etc.) is checked to ensure that the path is within the web root directory or a
subdirectory thereof.

If an attempt is made to use a document command on an unauthorized directory,
Active4D does the following:

= Aborts execution of that command, but continues executing the script
= Sets OK to zero

= Sets the variable A4D_Error to -45 (File is locked)

As a result of this behavior, you should at least check the OK variable when using any
document commands.

The “safe doc dirs” Config Option

If you want to use document commands on files outside of the root directory, you must
add the directory path to the “safe doc dirs” path list in Active4D.ini. For information on
Active4D.ini, see Chapter 3, “Configuration.”

If a document command is given a path outside the root directory, this path list is
checked. If the path lies within one of the specified directories, the command is allowed
to proceed. Otherwise it behaves as specified above for unauthorized directories.

By default the “safe doc dirs” path list is empty.

Spoofing Form Variables

Suppose you have a form which posts some critical piece of information in a hidden form
variable called “f_id" In the form processing script, if the “auto create vars” option is on,
you would access the local variable called $f_id to get the hidden value, then use this ID
to perform some critical operation.

An attacker could execute the form processing script, passing in a query string with a
parameter “f_id” and some bogus value. Because Active4D ordinarily creates local
variables from both query parameters and form variables, your script would have no way
of knowing that the local variable $f_id did not come from a hidden form variable.
Depending on what you do with Sf_id, this could present a potential security breach.

Chapter4 Security 51

Active4D v6.4

The “auto create vars” Config Option

To prevent variable spoofing attacks, by default the “auto create vars” option in
Active4D.ini is turned off. If you have specifically turned this option on, it is
recommended that you turn it off and directly access form variables through the _form
collection. For more information, see “Form Variables” on page 201.

Uploading Huge Files

If you have a web page which provides file upload, an attacker could attempt to upload a
huge file. Most web servers buffer the request, thus it is possible to compromise the
stability of the web server by forcing it to run out of memory.

Active4D provides an option called “max request size” in Active4D.ini, which limits the
total size of the request Active4D will accept. By setting this option at something
reasonable for your particular application (the default is 64KB), you can prevent the
attack outlined above.

If a request is received which is larger than <max request size> bytes, Active4D aborts
execution and returns the status code 413 Request Entity Too Large, along with an error
message indicating that fact.

52

Chapter4 Security

CHAPTER 5

HTTP Server

You may remember from the introduction the diagram of the various layers that make up
a web scripting system. That diagram is reproduced here.

Both the HTTP server layer and scripting layer are handled fully by Active4D.

What Is a Web Server?

You may be wondering how Active4D differs from 4D’s built-in web server or from
dedicated web servers like apache.

Traditionally a web server handles the following tasks:

= Network communications between the host and the client

= Parsing of HTTP requests and obeying the rules of the HTTP protocol based on the
contents of those requests

* Finding the resource requested and returning it in a response with the appropriate
HTTP response headers

* Providing a means of specifying realms of the web site that require user authentication
= Error handling

= Virtual host routing

Active4D + Network Layer = Web Server

Active4D relies on the host to provide network communications. Other than that,
Active4D handles all of the task listed above, right out of the box, with no programming

Chapter5 HTTP Server 53

Active4D v6.4

required. And because Active4D is the web server, you have full access to every aspect of
both the HTTP request and the HTTP response from within Active4D.

Believe me, implementing a web server with all of those features using other tools is not
a trivial exercise!

The Active4D Shell comes preconfigured to use 4D’s web server. If you already are using
NTK and wish to use it with Active4D, it can be used as the network layer as well.

HTTP Fundamentals

To understand the functioning of a web server, it really pays to understand how HTTP
requests work. David Adams has been kind enough to allow me to include Chapter 47 of
his most excellent book, The 4D Web Companion. Before going on, | recommend taking
the time to read through this excellent introduction to HTTP, which is included in the
Active4D documentation distribution as a separate PDF document, “HTTP
Fundamentals.pdf

Note: You don't need to pay attention to his coverage of 4D web commands and
tags, as you will have no need for them with Active4D.

Active4D HTTP Request Handling

Now that you know a little bit about HTTP requests, we can look at how Active4D
handles an HTTP request. Before a request can be handled, a TCP/IP connection must
have established between the host and a remote client.

Note that the descriptions below will refer to collections, which are special data
structures used throughout Active4D. It is enough for now to know that a collection is an
associative array of key and values. For more information on collections, see “Collections”
on page 99.

At any step of the request handling, if Active4D detects either corrupt data or data that
does not conform to the HTTP specification, the status 400 (Bad Request) is returned
immediately.

Executable vs. Non-executable Files
When Active4D is asked to serve a file, it first checks the file's extension against the list of
executable extensions specified in Active4D.ini.

There are several reasons for determining if a file is considered executable or not:

= Efficiency: Itis inefficient to initialize and run the Active4D interpreter for a file that
has no executable code.

= Stability: If Active4D is asked to parse a file that is not textual, such as a GIF file, it is
possible that it could be fooled into executing nonsense, which would lead to an error
condition.

54

Chapter5 HTTP Server

Active4D v6.4

* Convenience: Active4D can be configured to serve non-executable files (including
binary files) and does all the work that an HTTP server should do, such as generating
proper headers, so you don't have to worry about it.

Note: If you are using 4D’s web server with Active4D, it is more efficient to put non-
executable files in the web_static directory so that 4D can serve them directly.

Request Header Parsing

The first step in handling a request is to retrieve and parse the request header.

1

10

The network layer invokes Active4D, passing in some basic context information like
the host and remote IP address of the current connection.

Two response headers are created: “X-VERSION: HTTP/1.1” and “X-STATUS: 200 OK".
The response status is initialized to 200 (OK).

If Active4D has been asked to retrieve the request via a TCP/IP stream, it retrieves the
request headers using a receive callback method. Otherwise it is given the entire
request. If the request size is greater than the size set in the “max request size”
option in Active4D.ini, a status of 413 (Request Entity Too Large) is returned
immediately.

The request method is parsed. If the method is missing or malformed, a status of 400
(Bad Request) is returned. Otherwise the request method is saved in the request
info collection.

If the request method is not supported by Active4D at all, a status of 501 (Not
Implemented) is returned. Otherwise it is checked against the list of allowed
methods as specified by the “allowed methods” option in Active4D.ini. If the request
method is not in the allowed methods list, a status of 405 (Method Not Allowed) is
returned.

The requested URL and HTTP version are parsed and saved.

The request headers are parsed. Each header and its associated value is put into the
“request info” collection.

If a“Cookie” header is present, the cookies are parsed out and their names and
values are put into the “request cookies” collection.

If an “Authentication” header is present and the authentication type is “Basic”, the
authentication username and password are decoded and saved.

If an “X-Requested-With” header is present with the value “XMLHttpRequest’, the
“*ajax” item in the request info collection is set to true, the content charset is set to
“UTF-8", and the output charset is set to A4D Charset UTF8.

Note: Every major browser and Javascript toolkit tested automatically sets this
header, you should never have to worry about setting it yourself.

11

If the request method is “POST” or “PUT” and the “Content-Length” header indicates
a request size larger than the “max request size” option in Active4D.ini, a status of
413 (Request Entity Too Large) is returned immediately. If you are using A4D

Chapter5 HTTP Server 55

Active4D v6.4

12

13

14

15

Execute Stream Request, the receive callback is called to read the rest of the
response before returning the 413 response.

If the request is a CORS request (it has an “Origin” header), the full URL including
protocol and host is assembled and matched against the entries in Cors.ini. If any
entries match, the appropriate CORS response headers are set.

If the URL contains a query string, the query string parameters are parsed and put
either into the query params or form variables collection, depending on the
“parameter mode” option in Active4D.ini.

If an On Request event handler is defined it is called, and if a status < 200 or > 206 is
returned, that status is returned immediately. For more information on the On
Request event handler, see “On Request” on page 128.

If the filename of the requested URL has an extension and the request method is not
“OPTIONS’, the extension is checked against the “executable extensions” option in
Active4D.ini. If it matches an extension there, it is considered executable. Otherwise
it is considered non-executable.

If the file is considered executable, what occurs next depends on the network layer used
in conjunction with Active4D.

POST/PUT and File Upload Handling

When Active4D is used in conjunction with 4D’s web server, a callback method is used to
call GET HTTP BODY, which retrieves the request body. When using NTK, the shell passes
the NTK stream reference to Active4D, which it then uses to retrieve the request data as
needed via a callback method.

1
2

Active4D uses a receive callback method to receive the entire request body.

Active4D determines what type of post was made, based on the Content-Type
header: regular form (www-form-urlencoded), multipart form (multipart/form-data),
JSON (application/json), or raw upload (all other content types).

If the post is a regular or multipart form, the form variable data in the request body is
parsed, and the names and values are put either into the form variables or query
params collection, depending on the “parameter mode” option in Active4D.ini. If the
request is an Ajax request, the form variables are automatically converted from UTF-
8.

If a multipart form contains uploaded files, they are saved temporarily to disk.

If the post is JSON and the “parse json request” option is true, the posted data is
parsed (in the same way as the parse json command) and the result is placed into
into the form variables or query params collection (depending on the “parameter
mode” option in Active4D.ini) under the name“_json_". If the “parse json request”
configuration option is false, the post is treated as raw data.

If any other type of post was made, the raw data in the post is placed into the form
variables or query params collection (depending on the “parameter mode” option in
Active4D.ini) as a BLOB under the name”_data_".

56

Chapter5 HTTP Server

Active4D v6.4

Executable Request Handling

If an executable request has been received and the header and body successfully parsed,
Active4D proceeds to the next step.

1

10

11

12

13

14
15

16
17
18
19

Context information such as host and remote IP address is put into the “request info”
collection.

The cache-control, expires, and content charset settings are initialized from the
configured values in Active4D.ini. The content type is set to “text/html”.

If virtual hosts have been defined, Active4D sets the root directory, virtual host name
and default page from the virtual host routing table specified in VirtualHosts.ini. For
more information on virtual hosts, see “Virtual Hosting” on page 61.

If the URL is prefixed with “/4DCGI’, the prefix is removed from the URL.

If the remaining URL is absolute (begins with /'), the current root directory path is
inserted at the beginning of the URL. This forms a full path to the requested
resource.

If the URL ends with '/} it is assumed to be a directory. If the URL was mapped by
VirtualHost.ini, the default page specified there is appended to the directory. If the
URL was not mapped, the next default page in the list of default pages is appended.

The full path is converted from URL to native format and any aliases in the path are
resolved to their targets. The resolved target path replaces the unresolved path.

The full path is checked to make sure it is either in the root directory or in one of the
directories specified in the “safe script dirs” option in Active4D.ini. If it is not, a status
of 403 (Forbidden) is returned immediately.

The full path is checked to see if it is a valid directory path. If so, a trailing‘/’ is added
and a redirect is issued to that URL.

If the full path is invalid and the request was not mapped by VirtualHosts.ini and
there are more default page names to try, the server goes back to step 6. Otherwise
404 (Not Found) is returned immediately.

The current realm (if any) is set from the realm map in Realms.ini. For more
information on realms, see “User Authentication” on page 59.

If the full path is valid, the file is opened and the interpreter is invoked to execute the
file. For information on what happens during execution, see Chapter 7, “Interpreter.”’

If a graphic has been written to the response buffer and the response buffer is
empty, something went wrong during the graphic conversion process and the
response status is set to 404 (Not Found).

If the status is >=400 (an error), skip to Step 21.

If cache-control has been set, a “Cache-Control” header is added to the response
headers. Since older browsers do not obey the “Cache-Control” header, if the cache-
control setting is “no-cache’, a“Pragma” response header with the value “no-cache”
is added, and the expires time is set to now.

If a content type has been set, a “Content-Type” response header is added.
If a charset has been set, it is appended to the “Content-Type” response header.
If an expires date has been set, an “Expires” response header is added.

The headers in the “response header” collection are added.

Chapter5 HTTP Server 57

Active4D v6.4

20 The cookies in the “response cookies” collection are added as “Set-Cookie” response
headers.

21 The“X-STATUS” response header is set to the response status.

22 If the request method is “HEAD’, the response buffer is cleared. In this case, or if the
response status is less than 400 (no error), skip to Step 25.

23 If the status is >=400 (an error), Active4D attempts to find a file in the root directory
with the name <status>.html, where <status> is the numeric status. Thus with a 404
(Not Found) status, Active4D would look for a file called “404.html".

24 |If such afile is found, it is placed in the response buffer, and a “Last-Modified”
response header is added. If such a file is not found and the HTTP spec says that an
error message should be returned for the current status, an appropriate error
message is placed in the response buffer.

25 A“Content-Length” response header is added which contains the size of the
response buffer.

26 A“Content-Type” response header is added with the MIME type of the response.

27 Control is returned to 4D. The shell code sends the response headers and then the
contents of the response buffer. If 4D 2003 is the network layer and the “Content-
Type” response header is “text/html”, 4D tags are stripped from the response.

Non-Executable Request Handling

By default, Active4D will serve static content if given a path to a non-executable file. If
you would like to serve static content yourself, you can do so by changing the “serve
nonexecutables” option to “false” or “no” in Active4D.ini, in which case Active4D does
not serve the file, but provides you with the full native path and modification date/time
of the requested file.

When it is determined that a request for a non-executable (static) file has been made,
Active4D does the following.

1 Iftherequested file is not found, a status of 404 (Not Found) is returned immediately.

2 If the requested file is found and the “serve nonexecutables” option is “false” or “no”,
Active4D returns the full native path of the file, the file’s modification date and the
modification time. For more information, see “outHeaderNames/outHeaderValues”
on page 67.

3 Ifthe requested file is found and the “serve nonexecutables” option is “true” or “yes’,
the file’s extension is checked. If it has an extension and the extension was specified
in ExtensionMap.ini, the content type of the file is set accordingly.

4 If no content type could be determined, the status is set to 404 (Not Found) and the
file will not be served for security reasons.

5 A“Content-Length” response header is added which contains the size of the
response buffer.

6 A"Content-Type” response header is added with the MIME type of the response, as
specified in ExtensionMap.ini.

7 If the“nonexecutable expires” option is empty or is greater than zero, a “Cache-
Control” header is added with “max-age” set to the value of the “nonexecutable
expires” option.

58

Chapter5 HTTP Server

Active4D v6.4

8 Controlis returned to 4D. The shell code sends the response headers and then the
contents of the response buffer.

Configuration

The Active4D web server is configured through the several config files: Active4D.ini,
Cors.ini, ExtensionMap.ini, Realms.ini and VirtualHosts.ini.

Active4D.ini

There are several config options in Active4D.ini that determine the basic behavior of the
web server. For information on the format of config options, see Chapter 3,
“Configuration.” For a detailed description of each option, see the comments in the
Active4D.ini file itself.

Cors.ini

Cross-Origin Resource Sharing (CORS) is a standard developed to allow servers to allow
cross-domain requests via XMLHttpRequests (Ajax). Ordinarily XMLHttpRequest will not
allow a request to another domain. CORS allows this if the server allows it.

A good introduction for CORS can be found here:
https://developer.mozilla.org/En/HTTP_access_control

Active4D implements full CORS support in its HTTP server. Details on how to configure
CORS support can be found in the Cors.ini file.

ExtensionMap.ini

When a web server sends a file to the client browser, it must inform the browser of the
file's type. Similarly, when a client uploads a file to the web server, the web server
receives the file's type. This type is sent and received as a MIME type. MIME types are
standardized and can identify a file’s type independently of its filename extension.

ExtensionMap.ini is a config file that allows Active4D’s web server to map filename
extensions to MIME types. For example, let us say that Active4D receives a request for the
file“logo.png” It looks into its extension map and finds an entry which says that the
corresponding MIME type is “image/png"

Details on the format of the extension map entries can be found in the ExtensionMap.ini
file.

User Authentication

Active4D provides full support for protecting portions of your web site against intruders
by using the basic HTTP authentication protocol. Currently authentication only works
with executable files.

For example, you may have an admin section of your web site that only administrators
should have access to. Another section of your web site is only for accounting users. By

Chapter5 HTTP Server 59

Active4D v6.4

defining realms — sections of the web site defined by a hostname or substring of a
requested file’s path — you can automatically be notified when a user’s credentials need
to be authenticated.

Note: The basic HTTP authentication protocol has a number of security problems if it
is not used over a secure SSL connection. In addition, each browser handles user
authentication differently. Therefore it is recommended that you use your own form-
based authentication if you need maximum control over the process.

The user authentication mechanism requires three elements that work together:

= Entries in Realms.ini
= On Authenticate event handler
= Use of the authenticate command

For information on the On Authenticate event handler, see “On Authenticate” on
page 129. For information on the authenticate command, see “User Authentication” on
page 410.

Realms.ini

This config file specifies the mapping between realm names and substrings of a path
that identify those realms.

Each entry in Realms.ini has two fields in this format:
Realm<tab>Match string

The realm is a logical name for the section of the web site you wish to protect. It need not
have any relation to an actual directory name. Realm names should not have any
extended characters or spaces. If there are extended characters they are ignored. Spaces
are converted to underscores.

You use the realm name internally to determine what section of the web site is being
accessed. The browser caches user credentials for each realm, so subsequent authorized
accesses in the same realm do not result in repeated requests for credentials.

If the match string begins with “?", it is matched against the query string portion of the
requested URL. If any portion of the query string matches, the corresponding realmis
set.

If the match string does not begin with “?” it is matched against the host name and the
fully resolved path of the requested URL. If any portion of the host name or path matches
the match string, the corresponding realm is made the current realm.

Matching is case-insensitive, but the entire match string must be found within the query
string, host name or path.

Note: The realm is matched to the path which results after virtual host mapping,
after the default page is added to a directory request and after any aliases have been
resolved.

60

Chapter5 HTTP Server

Active4D v6.4

Because the match string could be anywhere in the path, you must ensure that your web
directory names and match strings are selected such that the match strings do not
inadvertently match the wrong directory.

In addition, because the realm entries are scanned in order, realms cannot be nested. For
example, you may not put the directory admin in the “admin” realm and the subdirectory
admin/accounting in the “accounting” realm. Only one of them will ever be selected.

If a realm is matched and the On Authenticate event handler has been defined, it is called
before execution begins to allow you to authenticate the user.

If the match string is not found, there is no current realm and the authentication
mechanism is not invoked.

Let's look at some example Realm.ini entries.

“Realm Match string
secure-server www . myserver .com
admin /admin/

The first entry would place the entire host www.myserver.com in the realm
“www.myserver.com”. That means any request made on that server would have to be
authenticated for that realm.

The second entry places the directory admin in the “admin” realm. Note the use of the
leading and trailing slashes to ensure only a directory is matched in the path. Don't worry
if the user enters www.myserver.com/admin, because Active4D redirects that to
www.myserver.com/admin/ which will match correctly.

Virtual Hosting

If you create a large database in 4D, most likely it has more than one module. Often these
modules are restricted to a certain set of users.

When bringing a database to the web, you will want to carry the same structure to your
web site. You could accomplish this by directing the different classes of users to separate
subdirectories within the root directory. But wouldn't it be nice to have completely
separate web sites for each one?

Virtual hosts allow you to host more than one web site on a single machine and a single
instance of 4D. Each virtual host can be mapped to a different web root and/or different
default page.

VirtualHosts.ini
This config file specifies a routing table which determines where Active4D should route
HTTP requests. The criteria is uses to determine the routing are:

= hostname: This would be used if the client enters a domain name in the URL, such as
www.active4d.net.

= |P address: This would be used if the client enters a direct IP address in the URL, such
as 192.168.1.7.

Chapter5 HTTP Server 61

Active4D v6.4

= language: This would be used if you have partitioned a single domain/IP address into
separate sites based on the preferred language the client has specified in the browser.
The language is specified as an I1SO language code. A complete list of codes can be
found in “ISO Language Codes” on page 629.

Since this is a routing table, you must specify the target of the routing. The complete
format for a virtual host entry consists of a line with five tab-delimited fields:

IP Address[:port]<tab>Hostname[:port]<tab>Language<tab>Root|Host<tab>Default

There may be any number of tabs between fields. Line and block comments may be used
between entries as well.

The target of a given routing is specified by two fields:
* Root|Host: The Root|Host field may contain two values separated by “|” (vertical bar).

If this field does not contain
web root. If the field contains
and the portion to the right of the

“|"; the entire contents of the field is used to specify the
“|" the portion to the left of the “|” specifies the web root,

“|" specifies the virtual host name.

] | "

The web root portion should be a URL-style (Unix) path. If it is relative (not beginning
with “/”) it is relative to the default directory (see “The Default Directory” on page 42).
You may use any of the path tokens (such as <4d volume>) that are valid for the root
option in Active4D.ini, or you may use “*” (without quotes) to use the value of the
“root” option in Active4D.ini.

The virtual host name portion can be any text (including spaces). The specified name is
available through the “*virtual host” item in the request info collection. This is useful,
for example, if you are using common templates for each virtual host but skinning
them individually. You can use the virtual host name as a means of building a path to
images and stylesheets for each virtual host.

= Default: This field specifies the filename of the page that should be used as the
default page (when a directory is requested) for the given virtual host. Using “*”
(without quotes) will use the value of the “default page” option in Active4D.ini.

You may use a value of * in the IP Address, Hostname and Language fields to ignore that
field when matching.

The entries are searched in order, so they should progress from most specific to the least
specific. Hostname matching is case-insensitive and Language matching is case-
sensitive. Both the IP Address and Hostname fields accept standard 4D wildcard
characters to allow partial matches. Otherwise the entire field must match. An invalid or
missing value will result in that entry being ignored.

The Hostname field must include the port if the host is on a port other than 80.
The final entry in the table should be terminated with a line ending.

If a match is made with the IP Address, Hostname, and Language fields, the Root|Host and
Default fields are used to set the web root, virtual host, and default page.

62

Chapter5 HTTP Server

Active4D v6.4

A Virtual Host Example

To understand how virtual host routing works, let’s look at some examples for a site that
has an English and French version. We are using multihoming to have multiple IP
addresses on the same machine. In addition, we will define three hosts, mac.home.com,
mac.admin.com and mac.home.fr. The first two are on IP address 192.168.1.7, and the
third is on 192.168.1.27.

//1P address Hostname Lang. Root Default

* * fr web_fr|fr defaut.a4d
* mac.home.com * *|main *

* mac .admin.com * adminjadmin *
192.168.1.7 * * *|main *

* mac.home.fr * web_fr|fr defaut.add
192.168.1.27 * * web_fr|fr defaut.a4d
&3 @.foo.com 2 web_foo <3
192.168.2.0 * * web_foo *

The first entry routes all requests where the user’s browser is configured with French as
the preferred language. The directory “web_fr” is made the root directory for those
requests, the virtual host name is set to “fr’, and a URL to a directory will redirect to the
default file “defaut.a4d” in that directory.

The second entry will route all requests to mac.home.com. The root directory and default
file will be set to whatever they are configured to be in Active4D.ini. The virtual host
name will be “main”.

The third entry will route all requests to the virtual host mac.admin.com. The root
directory will be set to “admin’, the virtual host name will be “admin’, and the default file
will be set to whatever it is configured to be in Active4D.ini.

The fourth entry will route all other requests to the IP address 192.168.1.7 in the same
way the second entry does. For completeness, you should always have an entry for both
the hostname and IP address to catch all possible requests.

The fifth and sixth entries route all requests to the host mac.home.fr or the IP address
192.168.1.27.The directory “web_fr" is made the root directory for those requests, the
virtual host name will be “fr", and a URL to a directory will redirect to the default file
“defaut.a4d” in that directory.

The final entries route requests to the domain “foo.com” or to the subnet 192.168.2 to
the web root “web_foo". The virtual host name will be empty.

HTTP Error Handling

If an http error occurs during the processing of a request, before any scripts are executed,
Active4D returns the status code indicating the error that occurred and a default error
message where indicated by the HTTP specification. In addition, Active4D adds two
response headers:

= X-Error-Status: This header contains the HTTP error status code.

= X-Error-URL: This header contains the full requested URL that caused the error.

Chapter5 HTTP Server 63

Active4D v6.4

Customizing the Error Handling
You can override the default HTTP error message in several ways:

http error page: If you set the “http error page” option in Active4D.ini, Active4D will
attempt to execute that page if it is executable or load it statically if not. If you have not
specified anything in the “http error page” option, or you have and the page cannot be
found or an error occurs during its execution, Active4D moves on to the next option.

<status>.<ext>: The next option is to attempt to find a file called <status>.<ext> in
the current web root directory, where <status> is the HTTP status code (such as 404)
and <ext> is the first executable extension configured with the “executable
extensions” option in Active4D.ini, or “.a4d” if none have been configured. If no such
file exists, or if it exists and an error occurs during its execution, Active4D moves on to
the next option.

<status>.html: The next option is to attempt to find a static HTML file called
<status>.htmlin the current web root directory, where <status> is the HTTP status
code. If found, it is served statically. If it is not found, Active4D returns the default (but
very friendly) error message.

For example, to show a custom error page for a 404 (Not Found) error, simply create an
Active4D page and name it “404.a4d’, then place it in the root directory. When a 404
error occurs, Active4D will execute your custom page.

Note: If you use an executable HTTP error page to handle 407 Unauthorized, which is
the error status returned by the authenticate command, make sure the execution of
the error page does not trigger another call of authenticate.

Within the context of an http error handler, the response status is 200 (OK). If your error
handler does not change the response status, the original HTTP error status that
triggered the error handler will be returned to the browser along with any output you
generate.

64

Chapter5 HTTP Server

CHAPTER 6

Invoking Active4D

If you are just starting to use Active4D, the Active4D shell provides everything you need
to get up and running without the need to understand the details of the plugin API. If
you are using the shell as is, you may safely skip this chapter.

If on the other hand you are integrating Active4D with your existing web server code,
you will need to understand the plugin API.

Types of Execution

There are two different ways of executing scripts in Active4D: request execution and direct
execution.

Request execution requires that you pass a valid HTTP request to Active4D. The request
body contains the embedded script.

Direct execution requires only that you pass the embedded script to Active4D, although
you may optionally pass a query string as well.

Request Execution

Once the host web server receives HTTP request, you pass the request to Active4D
through one of the A4D Execute <type> request commands. They are:

A4D Execute BLOB request
A4D Execute 4D request

A4D Execute stream request

A4D Execute <type> request Parameters

The request execution commands all take similar parameters.

Chapter 6 Invoking Active4D 65

Active4D v6.4

version 2
A4D Execute <type> request modified version 3.0

A4D Execute <type> request(<inRequest>; inRequestinfo; outHeaderNames;
outHeaderValues; outResponse) — Longint

<inRequest> Varies — Request or means to retrieve it
inRequestinfo Array Text — See below

outHeaderNames Array Text < Response header field names
outHeaderValues Array Text < Response header field values
outResponse BLOB < Response body

Result Longint < HTTP status code

Discussion

The array parameters must be text arrays, otherwise an error is generated.

The inRequestinfo array provides Active4D with context information not available in the
HTTP request itself. It has a very specific format as follows:

Element 4DK# Name Description

1 A4D Request Remote Addr IP address of client (browser)

2 A4D Request Host Addr IP address of server on which request was
made

3 A4D Request Host Port Port on which request was made

4 A4D Request Secure “1"if SSL request, “0” if not

Examples of how to initialize this array are contained in the shell database methods On
Web Connection and A4D_HTTPD_RequestHandler (NTK shell).

The <inRequest> portion of the parameter list changes depending on the command
used. The parameters before the common parameters listed above are summarized in
the following pages.

After handling a request, Active4D returns everything necessary to create a proper HTTP
response in the last four parameters. The actual contents of those parameters depends

66 Chapter6 Invoking Active4D

Active4D v6.4

on whether or not the request executed successfully and what happened during
execution.

outHeaderNames/outHeaderValues

If Active4D is given a request to an executable file, these parallel arrays receive the HTTP
response headers. The headers returned for an executable file are as follows:

X-VERSION Always “HTTP/1.1", always first element

X-STATUS Always second element. See “Result” on page 68 for possible
values.

Content-Type The MIME type of the file

Content-Length The size of the response body (outResponse)

Cache-Control See RFC 2616 section 14.9

Pragma Automatically added with the value “no-cache” if Cache-
Control is “no-cache”.

Expires Unless explicitly set within Active4D, is set to the current time
to prevent response caching

Location If a redirect is performed

Set-Cookie If a session is created and session cookies are enabled, orif a

cookie is set within Active4D

WWW-Authenticate If the authenticate command is used

In addition to these headers, you can set response headers within Active4D with the set
response header command.

If Active4D is given a request to an non-executable file and is configured to serve non-
executables, the following headers are returned:

X-VERSION Same as above

X-STATUS Same as above

Content-Type Same as above

Content-Length The size of the file, which is in outResponse

Last-Modified The file's last modified datetime in HTTP format

Cache-Control If the ‘nonexecutable expires’ option in Active4D.ini is > 0, then

this header is passed. For more info, see RFC 2616 section 14.9.

Chapter6 Invoking Active4D 67

Active4D v6.4

If Active4D is given a request to an non-executable file and is not configured to serve
non-executables, outResponse is empty and the following headers are returned:

Path Full native path to the file
ModDate Modification date of file in MM DD YYYY Forced format
ModTime Modification time of file in HH MM SS format

Given this information, the host web server can easily serve the file. For example, using
4D’s web server you could call DOCUMENT TO BLOB followed by SEND HTML BLOB.
Using NTK you could call TCP Send File.

The modification date/time are returned to allow the host web server to implement a
caching mechanism.

outResponse

This parameter will always contain the response body. The actual contents depends on
the context:

Context Contents
Executable file, successful The result of the execution
execution

Executable file, error occurred Variable, see Chapter 7, “Interpreter,” for more info

Non-executable file, no The requested file (if it can be found)
If-Modified-Since header

passed in

Non-executable file, If the file can be found and it has not been modified
If-Modified-Since header since the time passed in, the response body will be
passed in empty. Otherwise the response body will contain the

requested file.

Result
The status code returned by Active4D will be one of the following:

Code Name Description
200 OK Allis well
301 Moved Permanently A permanent redirect has been performed in

response to a request from an HTTP 1.1 client

302 Found A redirect has been performed in response to a
request from an HTTP 1.0 client

303 See Other A redirect has been performed in response to a
request from an HTTP 1.1 client

304 Not Modified A non-executable file is being served and the
client passed an If-Modified-Since header and
the file has not been modified since that time

68

Chapter6 Invoking Active4D

Active4D v6.4

Code Name Description

400 Bad Request The request is malformed in some way

401 Unauthorized You used the authenticate command

403 Forbidden Either Active4D has timed out or an attempt

was made to execute a script outside of the safe
script directories

404 Not Found The requested resource could not be found

408 Request Timeout One of the callbacks returned an error during
execution of A4D Execute stream request

413 Request Entity Too Large The request size limit has been exceeded

500 Internal Server Error An unrecoverable error has occurred during
execution

-1 A4D Not Executable A non-executable file was requested and the

“server non-executables” option is off

-2 A4D License Timed Out The continuous execution time period for the
current license has expired

Active4D takes care of creating the proper response headers and response body for each
status code.

A4D Execute BLOB request version 2

A4D Execute BLOB request(inRequest; inRequestinfo; outHeaderNames;
outHeaderValues; outResponse) — Longint

inRequest Text — Complete (usually) HTTP request
<standard params>

Result Longint < HTTP status code

Discussion

This command expects the entire request (including uploaded files) to be in the
inRequest parameter. It could be used with NTK if you retrieve the entire request into a
BLOB first.

If 4D is running in Unicode mode, the contents of inRequest are assumed to be stored in
the format UTF8 Text without length.

Note: If you are using NTK, | recommend using A4D Execute stream request instead of
this command, as it performs a two-stage retrieval and relieves you of having to
retrieve the request.

Chapter6 Invoking Active4D 69

Active4D v6.4

version 2

A4D Execute 4D request modified v4.5

A4D Execute 4D request(inRequest; inRequestinfo; outHeaderNames; outHeaderValues;
outResponse) — Longint

inRequest Text — HTTP request
<standard params>

Result Longint < HTTP status code
Discussion

This command is designed for use with 4D built-in web server. It expects the header of
the request to be in the inRequest parameter. For posted forms, the body of the request is
retrieved through the A4D_GetHttpBodyCallback method.

If you want to change the callback method, call A4D Set HTTP body callback.

A4D Execute stream request version 2

A4D Execute stream request(inStreamRef; inRequestinfo;
outHeaderNames; outHeaderValues; outResponse
{; outReglnfoNames; outReqInfoValues})
— Longint

inStreamRef Longint — TCP/IP stream reference
<standard params>

outReqginfoNames Array Text < Receives request header names
outReqInfoValues Array Text < Receives request header values
Result Longint < HTTP status code

Discussion

This command is designed for use with an NTK-based web server. It does all the work of
receiving the request from the TCIP/IP stream referenced by inStreamRef. It does so in
two stages, first retrieving and parsing the request header, then retrieving the body if
necessary.

70

Chapter 6 Invoking Active4D

Active4D v6.4

AA4D Execute stream request returns request info in the two parallel arrays
outReqginfoNames and outReqinfoValues. The content of those arrays is as follows:

Name Value

*url The full requested URL
<HTTP header> <HTTP header value>

The first element is the full requested URL with query parameters. The rest of the
elements are exactly the same as the values returned by the Active4D get request info
command (see “Request Info Collection Items”).

These arrays are provided to allow you to do custom post-processing of a request
without having to parse it yourself. If you have no need for this information, you can
simply not pass outReginfoNames and outRegInfoValues.

Note: If Active4D is unable to read the request header, outRegInfoNames and
outReqinfoValues will be empty.

Setting the Stream Callbacks

Before using this command you must call:

A4D Set stream callbacks(inReceiveMethod)

The parameter is a string which contains the name of the callback method used by

Active4D to retrieve the request body from the TCP/IP stream.

Note: The callback method must be in the host database, not in a component.
The signature of inReceiveMethod is as follows:

version 2
ReceiveCallback modified v6.4r1

ReceiveCallback(inStreamRef; inStopString; inMaxLen; inTimeout) — BLOB

inStreamRef Longint — TCP/IP stream reference
inStopString String — Receiving stops at this
inMaxLen Longint — Maximum bytes to receive
inTimeout Longint — Maximum ticks to wait

Result BLOB < Received request body + status
Discussion

All of the parameters are passed in according to the rules of the NTK command TCP
Receive Blob. Basically, you shouldn't have to worry about how this method works, since
a receive callback method is provided for you in the shell.

The callback must append a single longint HTTP status code to the result BLOB.

Chapter 6 Invoking Active4D 71

Active4D v6.4

A4D Execute file

Direct Execution

In addition to executing HTTP requests, there are also a set of commands that allow you
to directly execute a file or to execute a block of text:

A4D Execute file
A4D Execute text
A4D Execute BLOB

With these commands you do not have access to most of the HTTP context information
like cookies, form variables, etc., since there is no HTTP request to parse.You can,
however, pass in a query string.

Uses for Direct Execution

Direct execution is useful in cases where you are not responding to an HTTP request. In
fact, you could easily use Active4D as a general-purpose scripting engine by executing
files or blocks of text that are nothing but Active4D code. You need only enclose the
scripts in the <% %> tags.

version 2
modified version 3.0

A4D Execute file(inPath; inQuery; inRequestinfo; outHeaderNames; outHeaderValues;
outResponse) — Longint

inPath Text — URL-style path tofile
inQuery Text — Query string

inRequestinfo Array Text — Execution context
outHeaderNames Array Text < Response header field names
outHeaderValues Array Text < Response header field values
outResponse BLOB < Response body

Result Longint < HTTP status code

Discussion

This command executes the file given by inPath as embedded Active4D code, just as if
the file were being served as a web page.

If inPath begins with '/, it is considered an absolute path. If inPath does not begin with/,
it is considered relative to the default directory. For information on the default directory,
see “The Default Directory” on page 42.

For more information on the format of inRequestinfo, see the discussion of inRequestinfo
in “A4D Execute <type> request” on page 66.

72

Chapter 6 Invoking Active4D

Active4D v6.4

version 2
A4D Execute text modified version 3.0

A4D Execute text(inText; inQuery; inRequestinfo; outHeaderNames; outHeaderValues;
outResponse) — Longint

inText Text — Text to execute

inQuery Text — Query string

inRequestinfo Array Text — Execution context
outHeaderNames Array Text < Response header field names
outHeaderValues Array Text < Response header field values
outResponse BLOB < Response body

Result Longint < HTTP status code

Discussion

This command executes the text given by inText as embedded Active4D code, just as if
the text were being served from a web page.

For more information on the format of inRequestinfo, see the discussion of inRequestinfo
in “A4D Execute <type> request” on page 66.

A4D Execute BLOB version 3.0

A4D Execute BLOB(inText; inQuery; inRequestinfo; outHeaderNames; outHeaderValues;
outResponse) — Longint

inText BLOB — Text to execute

inQuery Text — Query string

inRequestinfo Array Text — Execution context
outHeaderNames Array Text < Response header field names
outHeaderValues Array Text < Response header field values
outResponse BLOB < Response body

Result Longint < HTTP status code

Discussion

This command executes the text given by inText as embedded Active4D code, just as if
the text were being served from a web page. It as assumed that the text is stored in the
BLOB with the format UTF8 Text without length.

For more information on the format of inRequestinfo, see the discussion of inRequestinfo
in “A4D Execute <type> request” on page 66.

Chapter 6 Invoking Active4D 73

Active4D v6.4

74 Chapter6 Invoking Active4D

CHAPTER 7

Interpreter

Much of the power of Active4D lies in its language. Unlike 4D’s semi-dynamic HTML tags,
which are a transmogrified subset of the 4D language, Active4D’s language is a superset
of 4D’s language. In other words, with Active4D you just write 4D code. In fact, in some
cases you can write and test code in 4D and then paste it into a text editor to use with
Active4D.

Active4D’s interpreter is actually quite a bit stricter than 4D’s, in that syntax errors and
nonsensical constructions that 4D blithely ignores (but the compiler catches, of course)
are considered errors and abort execution.

Active4D extends 4D’s language in some important ways. In addition to defining new
operators, you can also define methods and libraries of methods. These are covered in
Chapter 8,”Methods.”

Flow of Execution

The Active4D interpreter is essentially a text processor. It parses text input (which might
be a file or a block of text) and writes to a response buffer. The text input may have any
mixture of HTML and embedded Active4D source code. When execution begins, the
response buffer is empty.

Embedding Source Code

Active4D source is separated from HTML by one the processing tag pair <% %>.

Like 4D, Active4D is line-based; the end of a line or the end of a code block marks the end
of a statement. However, you may have as much whitespace as you like between the
Active4D tags and the actual source.

Input Parsing

Let’s look at an extremely simple example which will illustrate how Active4D parses and
executes a script. Suppose we execute a file which has the following contents:

<html>

I was here at <% write(current time) %>
on <% write(current date) %>

</html>

Chapter7 Interpreter 75

Active4D v6.4

Active4D begins execution by scanning for a source code begin tag. As it scans, the text
is appended to the response buffer. When the first “<%" in the above example is reached,
the response buffer contains:

<html>
I was here at

Once a source code tag is found, Active4D skips past the tag and goes into execution
mode. In execution mode, Active4D continues to parses the text, but instead of passing
the text through to the response buffer, it resolves the text into executable tokens and
then executes the tokens.

It would be pretty useless if you could not write dynamically generated text to the
response buffer within your source code, so Active4D provides a write command to do
just that. The write command takes a value of any type, converts it to text, and appends
the result to the response buffer.

In the example above, the write command is the first token. The write command
handler is given control, which proceeds to evaluate the parenthesized expression
following the command. In this case the expression is the 4D command Current time,
which is converted to text as if passed to the String command. The text is appended to
the response buffer, and the interpreter then continues parsing.

The next token is “%>", which is a source code end tag. Active4D skips to the end of the
tag and switches back to scan mode. At this point the response buffer contains:

<html>
I was here at 19:27:13

The interpreter scans up to the next source code begin tag, appending to the response
buffer. At the start of the next source code block, the response buffer contains:

<html>
I was here at 19:27:13 on

The interpreter then executes the second source code block as it did the first, after which
the response buffer contains:

<html>
I was here at 19:27:13 on 10/19/2001

The interpreter scans to the end of the file and returns control to the caller. At that point
the response buffer contains:

<html>
I was here at 19:27:13 on 10/19/2001
</html>

If the interpreter was invoked by Active4D’s web server, the web server generates the
HTTP headers necessary to describe the response to the client. Finally, control returns to

76

Chapter7 Interpreter

Active4D v6.4

4D, and the shell sends the generated headers and response body to the client browser,
which displays the text:

Iwas here at 19:27:13 on 10/19/2009

The client cannot see the source code because it is stripped out before being sent back
from the server.

Language Syntax

For the most part Active4D’s language (henceforward just “Active4D”) has the same
syntax as 4D’s language. However, there are a few important differences and
enhancements.

English Only

When you write code in 4D’s method editor, 4D looks up the command names and
named constants in localized resources within the 4D application. For example, in
English you might type “query” to do a database search, but in French the command
name is “chercher”.

After looking up a command or named constant, 4D stores a universal token to represent
it. If you open the same method in different language versions of 4D, the tokens are
displayed in the localized language.

Because Active4D code is written in raw text, it exists on disk in the form it was written.
Hence no localization can be done, so all Active4D code must use the English 4D
commands and named constants.

Source Code Structure

Because Active4D source code is plain text, you are free to use whatever indentation
style and use of whitespace you wish — the 4D method editor is not there to do it for
you. Typically you will want to use tabs in your text editor to perform indentation of
control structures. For example:

<% write("hello™) %>

<%

write(""hello'™) "This is exactly equivalent to the previous block
%>

<%
if ($sort_ascending = "1") // Note the space around the =
order by([customers]; [customers]lastname; >)
else
order by([customers]; [customers]lastname; <)
end if
%>

Since you can use whitespace in your code, it is highly recommended that you take
advantage of the opportunity and get used to doing so.

Chapter7 Interpreter 77

Active4D v6.4

You can have any number of Active4D code blocks within an HTML page. In addition, it is
not necessary to complete control structures within the block in which they are declared.
This powerful feature allows constructs like this:

<% for ($i; 1; 3) “I1'm starting the loop here... %>
Active4D rocks!

<% end for %>

“Here is the output
Active4D rocks!
Active4D rocks!
Active4D rocks!

Using this feature with If/Else/End if, you can conditionally show entire tables, form
items, etc.

Note: Just because your source is embedded inside your web pages in text form
does not make it inherently insecure. To understand why, please see Chapter 4,
“Security”

Case Sensitivity

Like 4D, Active4D is not case sensitive, so you can just as easily write “first record” as
“FIRST RECORD". But whereas the 4D method editor would change “first record” to “FIRST
RECORD” when it parsed the line, in Active4D it will remain “first record” because you will
be using an external text editor.

Case-insensitivity extends to table and field names, method names, and variable names.

Expression-based

One difference between 4D’s language and Active4D is that Active4D is expression-
based, like most computer languages. In other words, everything is an expression,
including an assignment. So the assignment:

$i = 10

actually evaluates to the value of $i after the assignment, namely 10. This allows you to
do convenient tricks like this:

first record([contacts])

while (($name := [contacts]lastname) = "a@")
writebr($name)
next record([contacts])

end while

78 Chapter7 Interpreter

Active4D v6.4

Comments

Active4D supports regular 4D comments (indicated by °), either on a separate line or at
the end of the line, with no limit on their length. You may also use the characters”//” as a
synonym for " to indicate a 4D-style single-line comment. This style of commenting is
common to C++, Java, and Javascript. Personally | prefer these comments to 4D-style
comments, not only because I'm a longtime C++ programmer, but also because they are
much more visible than tiny little backticks.

In addition to line comments, Active4D supports block comments. Unlike line comments,
block comments may be embedded within a line or may span multiple lines.

Block comments begin with the character sequence “/*” and end with the character
sequence “*/". For those of you who know other languages, this is the standard syntax for
block comments in C/C++, Java, CSS, etc.

Active4D also supports line continuation comments. Line continuation comments are
indicated by “\\" and are the same as normal comments, except that they logically join
the line on which they occur with the following line, allowing you to break a single line of
code into multiple lines.

Chapter7 Interpreter 79

Active4D v6.4

Here are some commenting examples:

/*
This is a multi-line comment that will be rather lengthy.
By using block comments | can format it easily and it is
easier to read.

*/

“A plain old 4D-style single-line comment.
“1t"s kind of hard to see the stupid backtick.

// A C++-style single-line comment, much more visible
writebr(*hello™) // Also can be used at the end of a line
MyLibraryMethod($inFoo; $inBar) -> Text
$inFoo Longint A foo

$inBar Longint A bar
RESULT Text A foobar

writebr(*'Block comments can even be " + /* wow! */ "embedded!')

/*
writebr(*'Using block comments...™)
writebr('is a quick and easy way...")
writebr(*'to comment out a block of code'™)
*/
// Using line continuation comments
for ($i; \\ Can have comment text
$start; \\ Useful for splitting up long parameter lists
$end \\
)
writebr($i)
end for
Identifiers

Identifiers in Active4D follow the same stated rules as in 4D in terms of length and valid
characters, with the following exceptions:

= The general rules for valid characters are the same, but the specific rules for valid
Unicode characters can be found here:
http://java.sun.com/j2se/1.3/docs/api/java/lang/Character.html#isJavaldentifierStart(char).

* The maximum length for local variables, Active4D method names and library names is
255 characters.

= For backwards compatibility, table names may begin with a digit.

Active4D maintains its own local variables which are indicated by a leading dollar sign, as
in 4D. You can also access existing 4D process and interprocess variables (using “<>", not
the Macintosh diamond character), as well as any fields in the database. Last but not

80 Chapter7 Interpreter

Active4D v6.4

least, all 4D 2004 and v11 named constants are available. If a 4D 2004 named constant
was renamed in v11, both the old and new names are available.

Custom Named Constants

Active4D no longer has access to custom named constants you have defined. However,
you can easily convert your custom constants to an Active4D library that will give you
access to them. Please see the document “convert_constants.pdf” for more information.

Data Types

Active4D can operate on all 4D data types except for 2D arrays. Data types may be
implicitly converted according to the same rules 4D uses, or explicitly converted using
commands such as String and Num.

Compiler Declarations

All compiler declarations are supported, and may be used for local, process, and
interprocess variables. For more information on declaring process and interprocess
variables, see “Process/Interprocess Variables” below.

Active4D extends the 4D compiler declaration syntax by allowing you to use any valid
scalar (non-array) expression, including dereferenced pointers and collection items. The
collection item need not exist, in which case it will be created.

By predeclaring local variables with compiler declarations, you can achieve better type
safety in your code.

For example:

c_longint($long)
$long = 7
$long := 13.27

/*

Without the compiler declaration, $long would become

a real = 13.27. Because it was declared a longint, its value
is now 13.

*/

$long := "foobar™ “generates an incompatible argument error

Active4D imitates 4D’s interpreted behavior exactly in regards to variables that have
been declared in compiler declarations. Once a variable has had its type fixed by a
compiler declaration there are two ways it can be changed:

= With another compiler declaration. If the new type is not assignment-compatible with
the old type, the variable will be set to a null value. Otherwise a type conversion is
done.

= By passing it as a parameter to a command that sets the parameter value inline, such
as GET PICTURE PROPERTIES.

Chapter7 Interpreter 81

Active4D v6.4

Process/Interprocess Variables

You may use compiler declarations to create process or interprocess variables on the fly,
even in a compiled database. However, if your database is compiled, you may not change
the type (or string width) of an existing process or interprocess variable.

Warning: Although you may create and reference process/interprocess variables
within Active4D, you may not pass a pointer to those variables to 4D in a compiled
database.

In addition to using compiler declarations, process and interprocess variables can be
created on the fly through assignment, just as local variables are. For example, this works
fine, even in a compiled database:

foobar =7
get field properties(->[foo]bar; fieldType)

Of course, you should have a compelling reason to use process or interprocess variables
instead of local variables. Basically, there are two main reasons for using process or
interprocess variables in Active4D:

® You need to pass an array to a 4D method.

* You are using the execute in 4d command to execute 4D code, and the code needs to
receive or return values.

If 4D is running in Unicode mode, there are no restrictions on process/interprocess

variable usage. If 4D is running in compatibility mode, the following rules apply:

" Text variables/arrays are read write, whether they are declared in 4D or in Active4D.
= String variables/arrays appear to Active4D as text variables/arrays.

= If you declare a process/interprocess string variable/array in 4D, it is read only within
Active4D.

= |f you declare a process/interprocess string variable/array in Active4D, it is read write
within both Active4D and 4D.

Array Support

All array types except 2D arrays are fully supported in Active4D. This includes picture and
pointer arrays. You may declare and use arrays in Active4D just as you would in 4D. In
most cases you should use local arrays, unless there is a compelling need to use process
or interprocess arrays.

Note: Active4D’s array support is dramatically expanded beyond that provided by
4D. You should take the time to carefully read the command section “Arrays” on
page 141.

82

Chapter7 Interpreter

Active4D v6.4

Pointer Support

Active4D supports pointers to process and interprocess variables, tables, and fields. You
may create and dereference pointers to any of these entities within Active4D.

Unlike 4D, you may not create a pointer to a local variable. However, Active4D allows you
to pass local variables by reference to its own methods, which is effectively the same as
using a pointer (but easier). For information on pass by reference, see Chapter 8,
“Methods.”

Extended Boolean Expressions

Active4D supports an extended form of boolean expressions that allows for a much
more concise coding style. In Active4D, any data type can be treated as a boolean
expression according to the following rules:

String/Text True if Length() # 0
Longint/Real Trueif #0

Date True if # 100/00/00!

Time True if # 700:00:00?

BLOB True if BLOB size() # 0
Picture True if Picture size() # 0
Pointer True if Not(Nil())

Array True if Size of array() # 0

This allows you to write code like this:

if ($text)

write($text)
else

write("Text is empty')
end if

array longint($longs; *; 7; 27)
write(choose($longs; ""Have values'; "Empty array'))

Note: Extended boolean expressions can only be used with commands and
keywords that take a boolean expression, not the logical operators & and |.

Literals

Active4D recognizes string, number date and time literals in all the standard formats,
including scientific notation. Note that numeric literals may contain your locale-specific

Chapter7 Interpreter 83

Active4D v6.4

grouping separators. For example, the number 1 million can be typed as“1,000,000” in
the US and “1.000.000” in Germany.

Note: Time literals must use '?' as the delimiter.

String Literals
Like 4D, all strings literals support backslash-prefixed embedded control characters:

Backslash combination Resolves to

\n Char(Line feed)

\r Char(Carriage return)
\t Char(Tab)

\" Char(Double quote)
\' Char(Quote)

\\ \

If you have not yet gotten used to using backslashed characters, you should definitely
get used to using them instead of the equivalent Char(X) expression.

Here is an example of using backslashes in a literal, with the equivalent Char(X) code.

You decide which is easier to write and read.

write("'This is line 1.\r\"It"s cool!\", you say.")

Output:
This is line 1.
"It"s cool!", you say.-

// Pre-4D 2003 code to do the same

"This is line 1."+Char(13)+Char(34)+"1t"s cool!"+Char(34) \\
+", you say."

However, there is a better way to embed double-quotes in a string literal. Active4D also
supports string literals surrounded by single quotes, within which double-quotes are
just another character. So the example above becomes:

write("This is line 1.\r"It"s cool!", you say.")
String Interpolation
How many times have you had to write a line of code like this:

writeln("Name: " + [contacts]name + " (" + $formattedPhone + *)"

84

Chapter7 Interpreter

Active4D v6.4

We are used to writing code like this, so it may seem normal. But the problem is that all of
the + operators obscure the actual format of the string you are trying to write. Wouldn't
it be nice if you could do something like this:

writeIn("Name: [contacts]name ($formattedPhone)™)

Now it is very clear what the final string will look like. The good news is that you can do
exactly what is shown above by using single quotes instead of double quotes to delimit
the string.

There is an additional property of single-quote delimited strings that adds a very
powerful feature. This features is called string interpolation. Basically, what string
interpolation means is that the string is parsed for embedded values and those values
are replaced within the string. The types of embedded values recognized are:

= Variable references: Local variable names, followed by one or more array or
collection indexes, may be directly embedded within a string.

= Built-in collections: References to values in the _form, _query, _request, globals and
session collections.

= Field references: Full [table]field references. If the field name contains spaces, it must
be treated as an expression.

= Arbitrary expressions: Arbitrary executable expressions.

Note: Interpolated strings may not contain nested indexes, such as:

session{Skeys{Si}}

To understand the power of this feature, we need to see some examples. First, here is a
simple embedding of a variable within an interpolated string:

$name := "Mr. Phelps"”

$msg := "Good evening $name. Your mission...-"
// $msg contains ""Good evening Mr. Phelps. Your mission..."

write("$name is a swell guy.")
// output: "Mr. Phelps is a swell guy."

If we want to reference a form variable or query parameter, use this style:

write("Thank you for registering, _form{"f_name"}.")
write("The id to edit is _query{"id"}.")

To reference a field, use this style:

write("Thank you, [Contacts]Firstname!*®)

Chapter7 Interpreter 85

Active4D v6.4

Okay, that was simple enough. What if we have an array? No problem:

<%

array string(80; $names; 0)
array longint($ages; 0)

// set arrays somehow

%>

<table>
<tr>
<td>Name</td><td>Age</td>
</tr>
<%
for ($i; 1; size of array($names))
writeln("<tr>\n<td>$names{$i}</td><td>$ages{$i}</td>\n</tr>")
end for
%>
</table>

Note in the example above that we referenced a longint. All types that can be converted
to text are automatically converted. If you try to embed a variable expression that is not
convertible to text, it will generate an error.

What if we want to embed a collection reference? Again, no problem:

$info := new collection('name™; "Dave'; "age'"; 27)
array string(31; $info{"children™}; 0)
set array($info{ children™}; "Jody"; "Buffy™)

writebr("Name: $info{"name"}, age: $info{age"}")

for ($i; 1; size of array($info{ children"})
writebr("Child: $info{children"}{$i}")
end for

write("First letter of name is "S$info{"name"}[[1]1"")

Basically, you can embed any valid variable reference, with an optional character
reference at the end.

What happens if the variable or field name or _form/_query/_request reference is
followed or preceded by valid identifier characters? How do we distinguish between the
embedded reference and the surrounding text? In a case like this you have to enclose
the expression in backticks ('), like this:

$verb := "sleep"
write("Are you $verbing?T) // error: unknown variable $verbing
write("Are you “$verb ing?") // outputs "Are you sleeping?"

86 Chapter7 Interpreter

Active4D v6.4

In actual fact, anything enclosed in " " is evaluated as an Active4D expression, as if you
were assigning the result of the expression to a variable. This allows you to embed
arbitrary expressions, like this:

write("It is “current time~ on “string(current date; long) .")

You can use anything in the expression, including method calls, but the expression must
return a result or an error will be generated.

If you need to use one of the reserved characters within an interpolated string, simply
prefix it with a backslash to prevent it from being interpolated, like this:

$amount := 100
write("You owe me \$$amount.")
// output is "You owe me $100."

Heredoc Strings

Active4D also allows you to define strings literals that span multiple lines. Such string
literals are known as heredoc strings. A regular heredoc string begins and end with the
character sequence """ (three double quotes). An interpolated heredoc string begins and
ends with the character sequence "'(three single quotes), and is interpolated as
described above for interpolated strings.

As with interpolated strings, the big advantage of heredoc strings is clarity: in your code
you can see multi-line strings as they will appear in the final output.

Here is an example:

$cell = ="-

[Contacts]Firstname [Contacts]Lastname

[Contacts]Address

[Contacts]City, [Contacts]State [Contacts]Zip
"""
writeln($cell)

// output will be something like this:
Homer Simpson

123 Main St.

Springfield, MO 12345

Heredoc allows you to do complex multiline formatting in a very natural style, with all of
the power of interpolated strings if you so desire.

Date Literals

Date literal parsing is more rigid than in 4D. Dates must contain three parts consisting of
digits, separated by a forward slash, space, dot or dash.

Chapter7 Interpreter 87

Active4D v6.4

Time Literals

Time literals may use spaces as separators in addition to colons, and each part of the
time (hours/minutes/seconds) may contain a single digit.

User-defined Constants

In addition to supporting 4D named constants, Active4D allows you to define named
constants at runtime using the define command. For more information on the define
command, see “define” on page 242.

Typing of Values

Typing of local variables in Active4D follows the same rules as 4D. If a local variable has
not been declared with a compiler directive, it is variant: its type changes on the fly
according to the type of value assigned to it. Once it has been declared within a compiler
declaration, it follows the rules outlined in “Compiler Declarations” above.

On the other hand, 4D variables and fields are always considered invariant. You cannot
assign a value to them that would change their type.

For all variables and fields, Active4D will generate an error and abort execution if a
referenced variable or field is undefined.

Operators

Active4D implements all of 4D’s operators (with the exception of some picture
operators), including array indexing and character references.

Active4D operators have the same restrictions on the data types they will accept as 4D
does. Active4D will abort with an error if an attempt is made to divide or modulo by zero.

Unary/Assignment Operators
Active4D adds many unary and assignment operators (borrowed from other languages)
which make writing code faster and easier to read. Here are the new operators:

++ prefix and postfix increment

- prefix and postfix decrement

n= super assign

+= add and assign

-= subtract and assign

*= multiply and assign

%= modulo divide and assign
/= divide and assign

\= integer divide and assign
A= exponentiate and assign

88

Chapter7 Interpreter

Active4D v6.4

|= bitwise inclusive OR and assign

&= bitwise AND and assign
<<= bitwise shift left and assign
>>= bitwise shift right and assign

Here are some examples of their usage:

$i =3 // 1 think $i=3 now

$j = ++$i1 // increments $i before the assignment, $j=4

$k = $i++ // increments $i after the assignment, $k=4, $i=5
$i *= 3 // multiplies $i by 3 and assigns, $i=15

$i += 3 // adds 3 to $i and assigns, $i=18

$1 >>= 1 // bit shifts $i one bit and assigns, $i=9
Any expression:

<assignable> <op>= <value>
is equivalent to:

<assignable> := <assignable> <op> <value>

Any of these operators will work with array elements. So, for example, you can increment
the fifth element of an array by using the ++ operator:

$myArray{5}++
++$myArray{5}

Super Assign

Active4D adds a new operator called “super assign’, represented by “::=". Super assign is
like the normal := operator but can only be used to assign to variables or collection
items, and completely replaces the original variable’s value with a copy of the value to
the right of the operator. This allows you to copy arrays by assigning to a variable
directly.

For example,

array text($array; *;
$copy ::= $array

one' o utwou)

is equivalent to:

array text($array; *; "one'; "two')
copy array($array; $copy)

Chapter7 Interpreter 89

Active4D v6.4

The advantage of using super assign is that it allows you to write generic code that
copies values without special-casing for arrays.

In and Not In Operators
Active4D adds two comparison operators that make looking for a value in a sequence
much easier and consistent across all sequence types, where a sequence can be a
collection, an array, or a string.

~ in

I~ not in, opposite of ~
In general, every time you say to yourself, “Is this value (not) in that sequence,” you can

use the ~ and !~ operators. The examples below demonstrate how to do in matching
using the ~ operator and the equivalent code using PO4D (Plain Old 4D):

if ($name ~ $contactNames) // using ~
if (find in array($contactNames; $name) > 0) // P04D

if ($sub ~ $text) // using ~
ifT (position($sub; $text) > 0) // PO4D

if ("b_cancel”™ ~ $attributes) // using ~
if (collection has($attributes; "b_cancel'™)) // P04D

Regular Expression Operators

Active4D also adds two comparison operators (borrowed from Perl) that make regular
expression matching an integral part of the language:

=~ regular expression match

#~ regular expression non-match, opposite of =~

Using these operators is exactly equivalent to using the regex match command:

// this...
ifT ($name =~ ""/(Dave|John|Bill)/")
// ...is the same as this

ifT (regex match(*'/(Dave]John|Bill)/"; $name))

// and this...
it (not($name =~ "/(Dave|John|Bill)/™))
// ...is the same as this

it ($name #~ "/(Davel]John|Bill)/™)

For more information on regular expression matching, see “regex match” on page 281.

90

Chapter7 Interpreter

Active4D v6.4

String Format Operators

As was discussed above, Active4D adds string interpolation as a simple way to embed
placeholder values and expressions within a string which are replaced at runtime.

Active4D offers two other powerful alternatives for interpolating strings, using two
special string formatting operators: %% and %.

The %% operator takes a format string on the left. The format string specifies the number
and type of the format arguments that are to the right of the %% operator. If there is
more than one format argument, they must be enclosed in parentheses and separated
by semicolons. At runtime the format arguments are converted and inserted into the
format string according to the syntax of the format string.

For more information, see “%% (formatting operator)” on page 364.

The % operator has three meanings in Active4D:

= Ifitis used as a comparator within a database query, it means to perform a keyword
search, just as it does in 4D.

= Ifitis preceded by a number, it means modulo division, just as it does in 4D.
= Ifitis preceded by a text expression, it follows the same syntax as the %% operator.

For more information, see “% (formatting operator)” on page 363.

Picture Operators

Active4D supports horizontal and vertical concatenation for pictures. Thus the operators
that may be use with pictures are:

+ horizontally concatenate

/ vertically concatenate

+= horizontally concatenate and assign
/= vertically concatenate and assign

Pointer Dereference Operator

The pointer dereference operator (->) works as usual when applied to a pointer. When
applied to a collection reference, it allows you to treat the collection as a kind of object
and call methods for that object. For more information, see “Creating a Poor Man's Class”
on page 124.

+ Operator

The + operator has been enhanced in Active4D to auto-convert arguments to text if the
argument one of the arguments is text.

For example:

$s = "I was here at " + current time + "™ on " + current date

Chapter7 Interpreter 91

Active4D v6.4

Notice there is no need to explicitly convert Current date and Current time to strings.

The argument to the left of the + will also be converted to text if the argument to the
right is. For example, this will work:

$s := current date + + current time + ": 1 was here"

The following value types will be auto-converted:

Type Format

Longint 4D default

Real 4D default

Date 4D default

Time 4D default

Boolean “True” or “False”

Pointer ->[table]
->[table]field
->variable

Character Reference Operator [[]]

The character reference operator has been enhanced in Active4D to allow you to specify
a negative number. In that case the number represents the Nth character from the end of
the text. So Stext[[-1]] will return the last character of Stext, Stext[[-2]] will return the
second to last character, and so on.

For example:

$text := "ActivedD"

$c := $text[[-1]] // $c = "D"
$c = $text[[-2]] 7/ $c = 4"

Indexing Operator {}
Active4D extends the syntax of array indexing in two convenient ways.
First, there is a super easy way to add elements to an array. If you use an empty index

with an array, a new element is appended to the array and the index is set to the newly
appended element.

This allows you to add items to an array in a very simple way, like this:
array longint($longs; 0)

$longs{} := 7 // same as append to array($longs; 7)
$longs{} := 13 // same as append to array($longs; 13)

// $longs now contains 2 elements, 7 and 13

92

Chapter7 Interpreter

Active4D v6.4

This syntax works anywhere you can use an array element, not just as the target of an
assignment. For example, you can do things like this:

array longint($types; 0)
$table := table(->[vendors])

for ($field; 1; count fields($table))
get field properties($table; $field; $types{})
end for

// $types is now Filled with the [vendors] field types

The second extension to the array indexing syntax is the addition of negative indexes. By
using a negative index, you index array elements from the end of the array, with -1 being
the last element and -Size of array being the first element.

For example, to reference the last element of an array, you can simply do this:

$myArray{-1} := 7

// old way, which one is easier?
$myArray{size of array($myArray)} := 7

Boolean Operator |

The boolean | operator may be used with text. If the operand on the left is empty, the
expression resolves to the operand on the right, else to the operand on the left. This is
useful for avoiding the common idiom:

if (Battributes{'nm"} = ")

$foo := "Some default value"
else

$foo := $attributes{ 'nm"}
end if

// using choose
$foo := choose($attributes{ 'nm"} # "*; $attributes{'nm"}; \\
"Some default value'™)

The above code can now be replaced with the much clearer and more concise:

$foo := $attributes{'nm"} | ""Some default text"

Control Structures

All of 4D’s control structures and flow of control keywords are supported, with four
notable additions: for each/end for each, break, return, exit and continue. If you are
familiar with other languages that use these keywords, they work exactly as they do in
those languages. If are aren’t familiar with those languages, here’s how they work.

Chapter7 Interpreter 93

Active4D v6.4

for each/end for each

This looping control structure is the easiest way to iterate over a sequence of values,
which includes collections, strings, arrays, and selections. For more information, see “for
each/end for each” on page 245.

break

If you are within any kind of loop (For, for each, While, Repeat), the break keyword
(used on a line by itself) will transfer execution to the first line of code after the end of
the loop. The loop variable used by a For loop will not be changed. If you use break
outside of a loop it will generate an error.

return

This keyword (used on a line by itself) transfers execution to the first line of code after
the current code block. If you are within an Active4D method, execution will continue at
the first line of code after the line that called the method. If you are within an included
file, execution continues after the include statement that included that file.

return can also take a parenthesized expression to return as the result of the method.

continue
If you are within any kind of loop (For, for each, While, Repeat), the continue keyword
(used on a line by itself) will transfer execution directly to the top of the loop.

* The loop variable in a For loop will be incremented according to the For clause.

= The next item will be fetched in a for each loop.

If you use continue outside of a loop it will generate an error.

exit

This keyword, used on a line by itself, immediately aborts all execution without
generating an error. This is primarily useful for debugging, when you want to dump the
internal state before a certain point and then stop. This keyword is also useful if you have
detected an error condition from which you cannot recover and you want to
immediately stop execution.

94

Chapter7 Interpreter

Active4D v6.4

Examples

Here are some examples of how to use the new keywords:

// Using break to terminate an infinite loop
$1 =0

while(true) // You could never do this in 4D!
if (++3i > 10)
// The closest loop, in this case the while loop,
// will be exited
break
end if

write($i) // This will NOT be executed once break is executed
end while

// Here"s the Active4D way of breaking out of a for loop

for ($i; 1; size of array($names))
if ($names{$i} = "g@")
break
end if

// This will not get executed after break is executed
writebr($names{$i})
end for

// Here"s the 4D way

for ($i; 1; size of array($names))
it ($names{$i} = "g@")

$i := size of array($names)+1
else
writebr($names{$i})
end if
end for

// Using continue in a for loop

for ($i; 1; size of array($names))
it ($names{$i} = "s@")
continue // Immediately goes to next iteration of loop
end if

writebr($names{$i})

// Do lots of other stuff here.

// The effect of continue above is to skip this
end for

Chapter7 Interpreter 95

Active4D v6.4

Working with Paths

In the course of programming a web site with Active4D, you will often need to specify file
path. If you have done any work with paths in 4D, you know what a pain it can be,
especially when dealing with multiple platforms.

URL-Style (Posix) Paths

All commands that take a path in Active4D — including Active4D’s implementation of
standard commands like — can take a URL-style (Posix) path, which uses’/" as the
directory separator. This allows you to program in a platform-neutral way, without
having to worry about the native directory separator.

Absolute vs. Relative Paths

A path can be absolute or relative. What that means depends on the command using the
path. Standard 4D document commands and Active4D’s own commands treat paths
differently.

= 4D document commands: As with 4D, in Active4D absolute paths are relative to the
computer, allowing you to access any volume mounted on the host machine
(including network volumes). Remember, however, that by default Active4D restricts
document command access to the web root directory. You must use the “safe doc dirs”
option in Active4D.ini to gain access to directories outside the web root directory. For
more information, see “The “safe doc dirs” Config Option” on page 51.

As with 4D, relative paths are relative to the default directory (see “The Default
Directory” on page 42).

= Active4D commands: Active4D commands are designed for use within the context
of a web page. Thus their “world,” so to speak, is limited to the web root directory.

Absolute paths used with Active4D commands are relative to the web root directory.
Thus if the root directory is:

/Users/tom/db/web

the path

/accounting/default.a4d

is actually the path
/Users/tom/db/web/accounting/default.a4d

Relative paths used with Active4D commands are relative to the directory of the
currently executing file.

Path Utilities

Active4D provides a many utility commands for working with paths. For example, if you
need to use a 4D document command on a file within the web root directory, the get
root command returns the full path to the current root. In addition, there are commands
to extract the filename from a path, the extension from a filename, and the directory

96

Chapter7 Interpreter

Active4D v6.4

from a path. If you need to join path segments together, you can (and should) use the
join paths command.

For more on these commands, see “System Documents” on page 387.

Path Limits

The host operating system imposes a maximum length on paths and components of a
path.

On macOS the maximum length of a single component of a path (file or folder name) is
255 bytes. The maximum length of a path is 1024 bytes. Note that these limits are in
bytes, not Unicode characters, and that paths are encoded in UTF-8. Non-ASClI
characters in a path will take 2-4 bytes each, reducing the maximum number of Unicode
characters accordingly.

On Windows the maximum length of a single component of a path (file or folder name) is
255 Unicode characters. The maximum length of a path is 260 Unicode characters.

You must ensure that your path lengths are within these limits, or Active4D will not be
able to find your files.

Including Other Files

One of the most powerful features of Active4D is its ability to include other files during
execution. To include a file, you use the include command, passing a relative or absolute
URL-style path. Since include is an Active4D command, absolute paths are relative to the
root, and relative paths are relative to the currently executing file.

If found, the included file is interpreted as if it were part of the source file. The scope of
the included file is whatever the scope was where the include command appeared.

This means that any local variables declared before the include are available in the scope
of the include file’s code, and any local variables declared in the include file are available
to the source file when the include file is finished executing.

Included files may in turn include other files, ad infinitum (or until stack space or memory
runs out).

Note: You may also use the include into command, which allows you to include a
file and place the output into a variable.

Uses of Included Files

There are many uses of included files. Some common ones are:

= Factoring out common page elements, such as headers and footers. When the
included file is modified, all pages that include it automatically update.

= Separating functional sections of a page into separate files. This allows you to create a
page design that consists of an overall framework, within which you “plug in” various
pieces. By using includes, you can edit the pieces separately without affecting the

Chapter7 Interpreter 97

Active4D v6.4

overall design. This technique is analogous to splitting a large method into several
smaller methods.

= Conditionally building a page. You may put an include statement within an
If/Else/End if or Case/End case construct to conditionally include various files. This
allows you to use the same page to display different output based on one or more
criteria.

= Using include into to build an HTML page to send via email.

Including Only Once

You can also include files using the require command. The require command works like
include, but it guarantees that any given file will only be executed once via require
within a single execution of the interpreter.

The require command is primarily useful for creating files of global constants, variables
and methods that only need to be loaded once per Active4D session. All files that
reference these globals can require the globals file and you don't have to worry about
the overhead of executing the file or the problem of defining named constants twice,
which is an error.

Calling 4D Methods

Although you can call 4D methods within Active4D, this ties you to the database
structure, which is exactly what Active4D is designed to avoid. If possible, you should
define and use methods within Active4D. For more information on defining methods in
Active4D, see Chapter 8,“Methods.”

Nonetheless, should you need to, you can call any 4D method within Active4D using the
exact same syntax you would within 4D.

Parameter Passing

When calling a 4D method from Active4D, you pass parameters just as you would within
4D. Strings are converted to Text and Longints are converted to Reals before being
passed. You may return any type of value from the method.

Warning: If you are passing textual parameters to a 4D method from Active4D, the
parameter in 4D must be declared C_TEXT. If you are passing numeric parameters,
they must be declared C_REAL. Otherwise a runtime error may occur in a compiled
database.

Active4D has no way of matching parameters passed to a 4D method with the actual
parameters declared in that method. It is up to you to make absolutely sure that the
number and type of parameters declared in the 4D method are compatible with what
you pass to it. If the 4D method expects some parameters to be optional, you may of
course not pass those.

In an interpreted database, if the method parameters are not assignment-compatible,
4D will initialize the parameter to a null value. In a compiled database, however, if the

98

Chapter7 Interpreter

Active4D v6.4

parameter types do not match exactly, a runtime error will be generated, which will
effectively bring your application to a halt in a very unfriendly way. You do not want this
to happen.

Indirect Method Calls (aka Poor Man's method pointers)

In addition to calling 4D methods as you would within 4D, by directly referencing the
method name, you can also indirectly call a method by name using the call 4d method
command.

The syntax of this command is as follows:
call 4d method(inMethodName {;inParaml {;inParamN}})

The method name may be any valid expression that returns text. This powerful feature
allows you to dynamically determine which of several methods you call, as long as their
parameter lists are compatible. This is (sort of) the equivalent of a method pointer in
other programming languages.

As with ordinary method calls, the method called by call 4d method may return a value.

If the 4D method returns a value, you may ignore it if you have no use for it. You need not
assign it to a dummy variable as you would in 4D. On the other hand, if the 4D method
returns no value, attempting to use the result of such a method will result in an error.

Collections

Active4D adds a new data type to the language: collections. A collection is a group of
key/value pairs which are stored in memory. The keys are strings (with a maximum length
of 2GB) and the values may be any 4D data type, including arrays. The key/value pair is
also referred to as an item.

In classic programming terms, a collection is also known as an associative array, a
dictionary, a symbol table or a map. In 4D terms, you can conceptually think of a
collection as two parallel arrays, with keys being in one array and the values in the other.
Of course, you can't do this in 4D because 4D arrays can only contain a single type, and a
collection value may be of any type.

Active4D provides a full suite of commands for creating your own collections. In
addition, Active4D uses collections to store HTTP headers, query parameters, form
variables, cookies, global variables, and sessions.

For more information on the collection commands, see “Collections” on page 153.

Note: In previous versions of Active4D, collection keys were kept in alphabetical
order, although officially no order was guaranteed. In v6 the keys are kept in no
predictable order, so if you have code that relies on alphabetical keys, you will have to
get the collection keys, sort them, and then use the sorted keys to access the
collection items.

Chapter7 Interpreter 99

Active4D v6.4

Collection Handles
Collections are referred to by a Longint handle, much like an ObjectTools object handle
or a 4D hierarchical list handle.

Active4D maintains an internal list of user-created collections. All collection commands
that take a collection handle check the handle against this list and generate an error if
the handle is not valid. Thus you are prevented from crashing the server by passing in a
bogus handle.

Local vs. Global Collections

Collections can be either local or global. A local collection is automatically deleted when
a script finishes executing. A global collection remains in memory throughout the life of
the server, or until it is specifically deleted.

Local collections are like local variables — you use them for temporary storage within a
single script. You should always use a local variable to store a local collection handle.

Any time you want a collection to outlive the current script execution, you must use a
global collection.

Note: Once you create a global collection, it is your responsibility to delete it when it
is no longer needed.

Using Collections

Collections come in two basic varieties: read-only and read-write. You can perform the
following operations with read-only collections:

= Get a collection value given a key. If the value is an array, you may retrieve an element
of the array directly. Key matching is case-insensitive.

= Get all keys into a 4D array.
" Get all values into a 4D array if it is known they are all of the same type.
= Get the count of key/value pairs in the collection.

Read-write collections add the following operations:

= Seta collection value given a key. If the value is an array, you may set an element of the
array directly.

= Delete a collection item given a key. If the key contains a wildcard, all matching items
are deleted.

In addition to these basic operations, some of the specialized collections defined by
Active4D provide other operations as well. These operations are covered in the relevant
command reference sections.

100

Chapter7 Interpreter

Active4D v6.4

Referencing Collection Values

Active4D extends the syntax of the {} indexing operators to allow indexing a collection
by keys. The syntax of this way of indexing is as follows:

collectionRef{key}

where collection is either a collection handle or collection iterator, and key is a text
expression. If an item in the collection exists with the given key, the result of this
expression is the item’s value, and it may be treated in all respects as a variable of that
type. If no item exists in the collection with the given key, the result of the expression is
an empty string.

Because the result of the expression is treated as the value it resolves to, you can use
collections as a natural part of the language. For example:

// Set a counter in our session
session{"counter”} = 0

// Now increment the counter
++session{"'counter'}

// Store a form variable in the session
session{"username"} := _form{"f_username'"}

// Embed an array in a collection
$c := new collection
array text($c{"people™}; *; "Tom"™, "Dick', "Harry')

for ($i; 1; size of array($c{' people'}))
writebr("Hi $c{"people"}{$i}")
end for

$c{"'people"}{} := "Louise"

Embedded Collections

You can embed collections in collections (by storing their handles) to any depth and
reference their items by adding more indexes, like this:

$foo := $c{"levell"}{"level2"}{"level3"}{"the_key"}

You may safely embed global collections within a local collection, because the global
collections will outlive the local collection in which they are embedded. On the other
hand, you must embed only global collections within other global collections to ensure
the embedded collection is valid throughout the lifetime of the containing collection.

Chapter7 Interpreter 101

Active4D v6.4

Element Referencing

If when referencing a collection array element, you use the form:
collectionRef{key}{index}

If the item is in fact an array, you may use any value from 0..size of array for the index. If
the item is scalar (not an array), you may still use the index form above, but the index
must evaluate to 1.

This form allows you to reference a collection item with the same syntax whether or not
it is an array. This feature is mainly designed for use with multiple-choice form lists,
which may result in a scalar value (if only item is selected) or an array value (if multiple
items are selected).

Iterating Over a Collection

Very often you may need to iterate over every item in a collection. There are two ways to
do soin Active4D.

The first (and easiest) way to iterate over a collection is to use the for each/end for each
loop control structure. For more information on for each, see “Iterators” on page 214.

The second way to iterate over a collection is through an iterator. Every collection
provides a command which returns an iterator for the collection. You use this iterator to
traverse the items in the collection.

In addition, some collections allow you to get an iterator for a specific item given the
item’s key. If no item with the given key exists, you are given an empty iterator. An empty
iterator is a special iterator that has the following properties:

= The iterator itself (a Longint) is zero

= is an iterator will return False

= get item key will return an empty string

= get item value will return an empty string
= get item type will return Is Undefined (5)

You can identify an empty iterator either by testing equal to zero, by calling
is an iterator, by testing for an empty key, or by testing the item type.

For more information on iterators, see “Iterators” on page 214.

HTTP Data Access

When Active4D is used as the web server, the interpreter has full access to both the HTTP
request and the response data. This data is critical when developing high-powered web
sites. The commands necessary to access this information are covered in Chapter 11,
“Command Reference!”

102

Chapter7 Interpreter

Active4D v6.4

Request Data

As was discussed in Chapter 5,“HTTP Server,” an HTTP request consists of several headers
and an optional body, in addition to the requested URL itself.

The data encapsulated in an HTTP request includes:

= Query string parameters
* Form variables

= Cookies

= HTTP headers

= Uploaded files

In addition, information about the host environment is passed in to Active4D.

It is important to note that all of this data is encoded is some way or another. Without
Active4D, to extract any meaningful information you would have to:

1 Understand the detailed HTTP specification and format for each type of data.

2 Write the code to parse and extract the data, making sure to follow the rules you
learned in Step 1.

3 URL-decode the data which, according to the HTTP specification, should be URL-
encoded.

4 Convert the URL-decoded data to Unicode.
5 Figure out where and how to store the data in a meaningful way.
6 Write many methods to access that data in a simple way.

If you have never gone through this process, here’s a little tip: the time it takes to do Step
1 alone will cost you more than the price of Active4D!

Fortunately Active4D does all of the above for you. You never have to deal with the
particulars of the HTTP specification, which allows you to focus on the problem at hand
— building a great web site.

_query and _form Collections

The primary way in which you “pass” parameters from one page to another in a web site
is through form variables and query string parameters. Active4D places those
parameters in easy-to-access collections.

For example, if the user posts a form which contains a field called “f_name” and you want
to access the contents of that field, you can simply use:

_form{"*f_name"}
Likewise, to access a query string parameter called “recnum’, you could use:

_queryq{"'recnum"}

Chapter7 Interpreter 103

Active4D v6.4

Testing Form Buttons

If a non-image submit button is clicked on a form, the browser posts the button’s form
name and value. Buttons which appear on a form but are not clicked are not included in
the posted form data.

Frequently you need to test a posted form to see which button was clicked. For example,
your form may have “Search”, “Previous” and “Next” buttons. Because non-existent
collection items are returned as empty strings, you can quickly test for which button was
clicked by checking for empty strings. For example, your code would look something like
this:

case of
c(form{""f_search™} # ")
// Do the search
:(_form{""f_previous"} # ")
// Go to the previous group of records
c(Cform{"f_next"} # ")
// Go to the next group of records
end case

Response Data

You control the response body indirectly with the write command and its peers. In
addition, Active4D gives you dedicated commands for setting the response headers.

The data encapsulated in an HTTP response includes:

= Cache control
= Character set
= Content type
= Cookies

= Expires date

= Other headers

Some HTTP response headers are simple in their format. Others require a specific format
which you must follow. As with the request headers, without Active4D you would have
to know the HTTP specification for each format. For those headers that require special
formatting, Active4D gives you simple commands that relieve you of having to know the
HTTP specification.

Working with Character Sets

Internally Active4D (like 4D) uses Unicode exclusively. Text comes into Active4D from
several sources, each of which may be in a different character set (or “charset”):

* Executable source files: These may be in any charset, but if you are working with a
non-Asian language, it is recommended you use UTF-8.

= Database: 4D uses Unicode internally and expects text to be in this charset.

104

Chapter7 Interpreter

Active4D v6.4

= URL query strings: Query strings are URL-encoded UTF-8.

* Posted form data: Form data is URL-encoded in the charset of the page in which the
form appears.

* Files read programmatically: Text files may be in any charset. It is up to you to know
which one.

In each case, text must be converted to Unicode.
Text can go out from Active4D to several destinations:

= Web browser: Text sent to the browser via the write commands should be in the
target HTML charset, usually UTF-8. In addition, you may need to HTML-encode
reserved characters such as ‘<’

= Database: 4D expects Unicode.
* Files written programmatically: You can use whatever charset you want.

Clearly, it would be a real pain — not to mention error-prone — if you had to remember
to do all of the character set conversions yourself. Fortunately, Active4D allows you to
configure the various charsets and then takes care of most of these conversions for you.

Internally Active4D uses Unicode, since that is what 4D expects and because it allows
Active4D to work with any character set on Earth. The character sets you configure
determine which charset Active4D converts from on input and which charset it converts
to on output.

Platform Character Set

The platform charset determines what charset Active4D converts from when reading
executable source files, which may contain non-ASClI characters both in HTML and in
Active4D string literals.

For example, if you are using a programmer’s editor to write your embedded scripts,
identifiers and string literals would most likely be in UTF-8. On the other hand, if you are
writing your scripts with Dreamweaver, string literals would be in the charset of the page
you are creating.

You can set the platform charset with the “platform charset” config option in
Active4D.ini. You may also use the set platform charset command. For more
information on the “platform charset” option, see the comments in Active4D.ini.

Warning: If your source files contain non-ASCll characters, it is essential that they all
are encoded in the same character set, and that character set is configured as the
“platform charset” in Active4D.ini. Otherwise those non-ASCII characters will be
incorrectly converted to Unicode when the source file is read by Active4D.

Chapter7 Interpreter 105

Active4D v6.4

On a Japanese language system, the default platform charset is “shift_jis” On a Chinese
language system, the default platform charset is “gb2312" For all other systems, the
default is “utf-8”

Note: In previous versions of Active4D, the default platform charset for non-
Japanese/Chinese systems was “mac” on macOS and “windows-1252" on Windows. If
your source files are not in UTF-8 (which they should be!) and you did not set a
platform charset in Active4D.ini, you will have to set the platform charset now.

Output Character Set

Before returning to 4D, Active4D must convert its response buffer to a BLOB. If the
response buffer is text, it must be converted from Unicode to the charset that will be sent
to the browser. The output charset determines what charset Active4D converts the
response buffer to from Unicode.

You can set the output charset with the “output charset” config option in Active4D.ini.
The possible options are the same as for the platform character set. You may also use the
set output charset command.

The default output charset on Japanese language systems is “shift_jis" The default
output charset on Chinese language systems is “gb2312". The default output charset on
all other systems is “utf-8"

Note: In previous versions of Active4D, the default platform charset for non-
Japanese/Chinese systems, the default output charset was “iso-8859-1". If your
output is not in UTF-8 (which it should be!) and you did not set an output charset in
Active4D.ini, you will have to set the output charset now.

Output Encoding

The output encoding determines how Active4D converts special characters to HTML
character entities when text is written to the response buffer. Output encoding is
performed before the output character set conversion, since the encoding tables are
based on Unicode.

You can set the output encoding with the “output encoding” config option in
Active4D.ini. You specify one or more bit flags to indicate which characters to encode.
More than one flag can be specified by separating them by‘+’ and any number of spaces.
The bit flags are “none”, “quotes’, “tags’, “ampersand’, “extended”, “html” and “all”

(without the quotes). Note that “extended” and “html” are synonymous.

You may also use the set output encoding command at runtime. For more information
on output encoding, see “set output encoding” on page 305.

The default output encoding on Japanese or Chinese language systems is “none”. The
default output encoding on all other systems is “html".

Text is HTML encoded according to the following rules:

= |f a character is ASCII, has a named entity, and the current encoding mode asks for that
entity to be encoded, it is encoded.

106 Chapter7 Interpreter

Active4D v6.4

= |f a character is non-ASCll, the output charset is ISO-8859-1 or ISO-8859-15, the mode
is “extended” or “all’, and the character has a named entity, it is encoded.

= Otherwise the character is passed through as is.

HTTP Request Decoding
When parsing an HTTP request, the headers are left as is. This is not a problem, since all
headers except cookies will be in US ASCIl and the character set is not an issue.

Query string parameters are automatically URL decoded and converted from UTF-8 to
Unicode.

Posted form variables are automatically URL decoded and converted from the output
character set to Unicode.

Informing the Browser of Your Output Character Set

You should always put the following tag in the header of HTML pages returned to a
browser:

<meta http-equiv=""Content-Type" content="text/html;charset=utf-8"/>

The charset name at the end should match the charset name you use in the “output
charset” config option. In the example above the output charset is “utf-8".

This is critical for two reasons:

* The browser must know how to interpret non-ASClI characters in the page in order to
correctly display them.

* When a form is posted, the browser encodes the form data in the character set of the
page in which the form appears. There is unfortunately no mechanism within HTTP to
communicate the character set of posted form data to the server. So Active4D must
assume that the posted data is encoded in the output character set. Therefore it is
critical that you use a Content-Type meta tag that matches your output character set.

Working with Files

Active4D cannot know the source platform of a file or its charset. It's up to you to know
the charset used by a file, then convert to the appropriate character set when saving to
the database or writing to the browser.

Error Handling

Active4D goes to considerable lengths to catch errors and display meaningful error
messages. If any errors occur during the execution of an Active4D program, execution is
immediately aborted and the error handler takes over.

For complete information on error handling within Active4D, see Chapter 14, “Error
Handling”

Chapter7 Interpreter 107

Active4D v6.4

Script Timeout

Despite our best intentions, sometimes our scripts may do bad things like going into
infinite loops or waiting an inordinate amount of time for a shared resource.

Every script is given a set amount of time to execute. Before executing each line,
Active4D checks to see if the timeout has been reached, and if so it generates an error
and aborts execution.

You may set the script timeout with the “script timeout” config option in Active4D.ini.
The value set with this option is the minimum script timeout in seconds and is the default
value for all subsequent script executions.

The actual timeout can be set higher within Active4D with the set script timeout
command. This command will affect the next execution of Active4D, not the one in
which the command is used, and in no case can it be set lower than the minimum value
set in Active4D.ini.

108

Chapter7 Interpreter

CHAPTER 8

Methods

As you build your web site with Active4D, you will undoubtedly come across chunks of
code that can be reused in many different contexts, just as you would reuse code in 4D.
Fortunately, Active4D has a powerful system for defining its own methods.

Defining Methods

The simplest way to define a method in Active4D is to declare it inline with the rest of
your code, then reference it sometime later in the flow of execution.

Inline methods “live” only as long as the current invocation of Active4D. This means that
you incur a small performance penalty each time the method is used, because it has to
be parsed and stored in temporary memory before it can be used.

In general, you will only want to use inline methods during testing and debugging,
because there is a much better way of defining and using methods: libraries. Libraries
have many advantages over inline methods and allow you to group many methods
together into one logical unit. They are covered completely in the next chapter,
“Libraries”.

Method Declaration

Whether a method is defined inline or in a library, the syntax for declaring a method is
the same:

method "<name>" {({&}%argl{=expression}
{. . -{&}%argN{=expressionN}})}
<statements>
end method

This may look complex, but it is actually quite simple. Keep reading.

Method Name

The method name must be a double-quoted literal string which follows the rules for 4D
method names in terms of allowable characters. The maximum length of an Active4D
method name is 255 characters. The double-quotes are necessary to allow you to
include spaces as part of the method name, and to differentiate the method name from
the method keyword.

Chapter8 Methods 109

Active4D v6.4

Here is a simple Active4D method definition:

method *sayHello™
write(""Hello world!')
end method

Method Parameter Declaration

If a method takes parameters, the parameter list must follow the method name enclosed
in parentheses. Unlike 4D, where method parameters are numbered, Active4D method
parameters are declared by name, with each parameter becoming a local variable with
that name within the body of the method. Parameter names must begin with‘$'and
follow the rules for local variable names.

method “"multiplyValues”($invaluel; $invValue2)
return ($invaluel * $invValue2)
end method

Note that there is currently no facility in Active4D for passing a variable number of
parameters. You can simulate this technique by:

= Passing a reference to an array and accessing the elements of the array
= Passing a collection and accessing collection items by name
= Using default parameters, which are covered in the next section

Most of the time default parameters provide the best solution, so you should try to use
them wherever possible.

Method Parameters

Parameters to Active4D methods differ from 4D method parameters in several important
ways.

Parameter Type

There is no typing of parameters, as they are simply local variables with a variant type.
This means you can pass values of different types in the same parameter, as long as the
use of the parameter in the method would not cause any type incompatibilities. If you
want to ensure a parameter is of a particular type, you would have to test its type within
the method using the Type command.

110

Chapter8 Methods

Active4D v6.4

Here is an example of how you can take advantage of the variant parameter typing:

method “writeMany”($inValue; $inHowMany)
for ($i; 1; $inHowMany)
writebr($invalue)
end for
end method

writeMany("*Hello world!*; 3)
writeMany(7.13; 2)

// The output:
Hello world!
Hello world!
Hello world!
7.13

7.13

Scope

Parameters passed to an Active4D method become a local variable within the scope of
the method. Thus, like local variables in 4D, they have no existence outside of the
method body.

method *“paramTest($inParam)
$inParam:="bar" // The global $inParam is still "foo"
writebr($inParam)

end method

$inParam:="foo"
writebr($inParam)
paramTest($inParam)
writebr($inParam)

// The output:
foo
bar
foo

Likewise, local variables defined outside of an Active4D method cannot ordinarily be
referenced within the method.

method *"localTest™
write($local) // This generates an “unknown identifier® error
end method

$local := "foobar"
localTest

Chapter8 Methods 111

Active4D v6.4

Referencing “Global” Local Variables

Justasin 4D, itis best to pass whatever values a method needs as parameters. But what if
you want to change the value of a local variable which was declared outside of a
method? There are two ways to accomplish this: pass by reference and the global
keyword.

Pass by reference allows you to effectively pass a pointer to a local variable. This is the
preferred way of modifying locals external to the method, and is covered below. But at
times it is preferable to reference an external local variable directly. For example, you
may need to reference or modify many external variables within a method, and it would
be too cumbersome to pass many parameters.

In these cases you may use the global keyword to declare a list of local variables that you
want to make accessible to the method, as in this example:

method "‘writeNames"
global ($names)

for($i;1;size of array($names))
writebr($names{$i})
end for
end method

array string(80;$ names; 0)
set array($names; "Tom"; "Dick™; "Harry')
writeNames

Note that the global keyword means just what it says: it looks for the named variables in
the global scope. If the variable you want to reference was declared within another
method, you must use global before declaring or first assigning that variable, which
forces it into the global scope, like this:

method "‘outer"

global ($fo0)
$foo := "bar™
inner

end method

method "inner"

global ($fo0)

write($foo) // writes "bar"”
end method

Pass by Reference

Normally, parameters passed into Active4D methods are passed by value. In other words,
the expression passed into the given parameter is evaluated and the constant value
resulting from the expression is assigned to the parameter.

In addition to pass by value, Active4D also allows you to pass by reference. This powerful
feature is activated by prefixing a parameter in the method argument list with an
ampersand (&).

112

Chapter8 Methods

Active4D v6.4

Reference parameters are essentially pointers to the entity that was passed into them.
You can pass 4D pointers into Active4D methods, but there are two important ways in
which reference parameters are unlike 4D pointers:

* You need not explicitly dereference the parameter to access the underlying value
* You can pass local variables by reference

Any entity that is assignable — including variables, fields, array elements, collection
items and character references — may be passed by reference. You can even pass a
character reference to an array element by reference!

Here is some examples of passing by reference:

method “paramTest”($inByValue; &$ioByReference)
++$inByValue
++$ioByReference

end method

$byvalue = 7
$byReference = 7
paramTest($byValue; $byReference)

// At this point $byVvalue still = 7, but $byReference = 8

method *“showArray' (&$inArray)
for ($i;1;size of array($inArray))
writebr($inArray{$i})
end for
end method

array longint($longs; 0)
set array($longs; 7; 13; 27)
showArray($longs)

array text($names;0)
set array($names; "Tom'; "Dick'; "Harry')
showArray($names)

As you can see, the combination of 4D pointer support (mainly for tables and fields) and
pass by reference allows you to write highly generic, reusable code within Active4D.

Default Parameters

In 4D, method parameters are numbered. Thus it is easy to pass a variable number of
parameters. In Active4D, parameters are named, so there is another technique for
passing variable number of named parameters. This technique is called default
parameters and is another feature of Active4D borrowed from other languages.

To create a default parameter, append the parameter name with ‘="and any expression
which is valid at the point of method declaration. The expression is evaluated once when
the method is first parsed, and the expression’s value is stored with the method
parameter. Within a default parameter expression, you can reference variables, methods,
named constants, etc., as long as they are valid at the point of declaration.

Chapter8 Methods 113

Active4D v6.4

Here is an example:

method “showArray"(&$inArray; $inDelimiter="
\n")
writeIn(Join array($inArray; $inDelimiter))

end method
showArray ($myArray) // each element is on a separate line
showArray($myArray;*, ") // elements are comma-delimited

In the first call to ShowArray, the SinDelimiter parameter is not passed, so Active4D uses
its default value of “
\n". In the second call to ShowArray, the SinDelimiter parameter
was passed, so the passed value is used.

This is how you would have accomplished the same thing in 4D:

C_POINTER($1)
C_STRING(255;$2)

IT (Count parameters < 2)
$2:="
\n""
End if

“And so on

Returning Values

To return a value from a method, use the return keyword, like this:

method "concatStrings”($inFirst; $inSecond)
return ($inFirst + $inSecond)
end method

The return keyword can also be used without a value, but if you return a value the
expression must be enclosed in parentheses. Whether or not you return a value, the
return keyword will immediately exit the method, no matter where in the method it
occurs. This allows you to quickly exit a method when a termination condition is reached,
much as the break keyword allows you to immediately exit a loop. It turns out this is
extremely useful, as it saves you from having to set some kind of “success” flag which you
test after the loop.

114

Chapter8 Methods

Active4D v6.4

Here is an example:

method "findFirstOver”(&inArray; $inCompare)
for ($i; 1; size of array($inArray))
iT ($inArray{$i} > $inCompare)
return ($i) // The method terminates and returns $i
end if
end for

// We only get here if the loop completes without a match
return (-1)
end method

Chapter8 Methods 115

Active4D v6.4

116 Chapter8 Methods

CHAPTER 9

Libraries

It is common for programmers to continually build up their own set of utility methods
which they can call upon when needed. In 4D, these methods can be grouped together
either by a name prefix or by placing them in a component.

In Active4D, you can group methods together into a named logical unit called a library.
The library in effect serves as both the component and the name prefix.

Library Search Path
Active4D looks for libraries using the following search path:

= <Database folder>/Active4D (Standalone/Server)

= <User home>/Library/Application Support/4D/com.aparajita/Active4D/lib
(macQS)

<Disk>:\Users\<user>\AppData\Roaming\4D\com.aparajita\Active4D\lib
(Windows 7 or Vista)

<Disk>:\Documents and Settings\<user>\Application Data\4D\com.aparajita\lib
(Windows XP)

/Library/Application Support/4D/com.aparajita/Active4D/lib
(macOs)

<Disk>:\ProgramData\4D\com.aparajita\Active4D\lib
(Windows 7 or Vista)

<Disk>:\Documents and Settings\All Users\Application
Data\4D\com.aparajita\Active4D\lib
(Windows XP)

Active4D.bundle/Contents/Resources/lib

Note: Active4D will follow aliases and symbol links on macOS and shortcuts on
Windows.

Because Active4D will follow the entire search path, you can structure your libraries in a
hierarchy, from the most specific to the most general, by placing them at various points
in the search path.

In addition, you can specify a list of library folders to search in the config file. For more
information, see the documentation for the “lib dirs” setting in the sample Active4D.ini
config file.

Chapter9 Libraries 117

Active4D v6.4

Library Definition

Libraries are special files that can only contain the following entities:
* import keyword

* define keyword

® library keyword

* end library keyword

* Method definitions

= Comments

Any methods within a library file must be enclosed by a library/end library pair. The
library keyword must be followed by a literal string which gives the name of the library.
The library name must match the name of the library’s definition file, minus the file
extension. Libraries may not be nested.

Note: The names “Active4D” and “global” are reserved and may not be used as
library names.

Here is an example library file called “mylib.a4l":

library "mylib"
define(kMyConstant; 7)

method “myMethod" ($inMyParam)
writebr($inMyParam)
end method

method "myConcat"($inTextl; $inText2)
return ($inTextl + $inText2)
end method

end library

Importing Libraries

To use the methods in a library, you must first import it. Importing can happen in several

ways:

= Implictly during startup if the library is a circuit library. For more information on circuit
libraries, see “Circuit libraries and initializers” on page 550.

= By using the full library.method syntax.

= By using the import command.

The import command takes a library name as its argument — not a path, but simply the
library name with no filename extension. The import process does the following:

118

Chapter9 Libraries

Active4D v6.4

1 Checks to see if the named library is already loaded into memory. If it has been
nothing more is done.

2 Ifthelibrary is not in memory, the library search path is followed to find a file called
<lib>.<ext>, where <lib> is the library name in a full <library>.<method> call or the
library name passed to the import command, and <ext> is the currently configured
library extension. For information on the library search path, see “Library Search
Path” on page 117.

3 Ifthelibrary file is found, it is parsed. Active4D strips out all comments and empty
lines, storing only the body of each method along with information about the
method parameters. In addition, if any constants are defined in the library, they are
stored as well.

4 Ifthelibrary is parsed successfully, Active4D looks for a method in the library called
“__load__" If it exists, it is executed.

5 If no errors occurred up to this point, the library name is added to a list of imported
libraries.

6 If any of the above steps fails, an error is generated and execution is aborted, unless
* is passed as a second parameter to the import command, in which case a Boolean
is returned to indicate the success of the import.

If you read the above steps closely, you will notice the following advantages that libraries
have over inline methods:

= Libraries are only loaded and parsed once during the life of the server (unless you
modify or explicitly unload them). Inline methods are loaded and parsed every time
their page is executed.

= Comments within an inline method’s page must be parsed every time. Comments and
empty lines in a library are not stored. Thus you may liberally comment library
methods with no performance penalty.

* The methods in a library are scoped to the library’s name, whereas inline methods are
global in scope. See the next section for more on this.

Import Configuration

Active4D follows a standard search path when attempting to locate a library during
import. If you wish to put your libraries in a directory other than one in the standard
search path, you may add the directory to the “lib dirs” path list in Active4D.ini.

By default the “lib dirs” path list is empty.

When importing a library, by default Active4D appends “a4l” to the library name and
searches for a file with that name. If you wish to use a different extension for libraries, you
may change it by setting the “lib extension” option in Active4D.ini. The extension must
be a dot followed by no more than five alphanumeric characters.

Import Errors

When parsing a library, if Active4D encounters a error in the syntax of the methods
definitions, it generates an error message with the location and type of syntax error. If
the library is imported as part of an executable request, a standard Active4D error

Chapter9 Libraries 119

Active4D v6.4

message is generated. If the library is being reloaded asynchronously during a refresh,
the error message is logged.

Automatic Re-lmport

Active4D periodically checks to see if the source file for each imported library has been
modified. The interval between checks is set with the “refresh interval” option in
Active4D.ini. If a library’s source file has been modified, it is re-imported automatically, so
there is no need to quit and restart 4D to have the changes take effect.

Note: Once a library is imported you cannot move its source file to another location
without explicitly flushing the library or restarting the Active4D server.

Library Namespace

Methods and constants defined in a library are stored in memory under the library’s
name. The library name then becomes a namespace that encapsulates all of the methods
defined within it. This allows you to define method names without worrying whether
another developer has chosen to use the same method name. As long as they are in
libraries with different names, you can access each method separately.

Name Resolution

When Active4D encounters a non-4D method name, it first searches all of the imported
libraries for a method with that name. If there is more than one match, an error is
generated and execution is aborted. If there is one and only one match that method is
executed.

If two or more libraries are imported that have a method with the same name, you must
disambiguate the method name by prepending the library name and a dot before the
method name. Otherwise Active4D will stop and tell you that there is an ambiguous
reference to a local method.

For example, suppose you have these two libraries:

library "foo"
method *"‘doSomething™
return ("'Hello from foo')
end method
end library

library "bar"
method "doSomething"
return ("'Hello from bar')
end method
end library

120

Chapter9 Libraries

Active4D v6.4

To call the two “doSomething” methods, you must do the following:

writebr(foo.doSomething) “Output is "Hello from foo"
writebr(bar.doSomething) “Output is "Hello from bar™

Library scope

Methods and constants defined within a library may be referenced anywhere within that
library without using the library.entity syntax. In fact, all entity names within a library
take precedence over names external to the library.

This rule leads to the following type of problem:

method *showArray' (&$inArray)
“Do something here
end method

“Imagine the following is within a separate library file
library "myUtils"

method *"showArray' (&$inArray)
Do something here
end method

method *showArrayAndSomethingElse" (&$SinArray, $inSomethingElse)
showArray($inArray) “This will call myUtils.showArray()
write($inSomethingElse)

end method

end library

In this example, the library method showArrayAndSomethingElse calls the method
showArray. Because showArray is defined within the library, that version of the method
takes precedence over the inline showArray method defined outside the library.

The “global” library

In the example above, what if you wanted to reference the inline showArray method
within the library? Fortunately there is a way.

All methods that are defined inling, i.e. in global scope, are placed in a special library
called “global” which is implicitly imported. The global library exists only as long as the
current execution of the interpreter, and cannot be flushed programmatically. Any
attempt to import a library with the name “global” will result in an error, as that name is
reserved.

To reference a global method or constant within a library, you can (and probably should)
use the form global.method or global.constant. This will ensure that the global version
of the entity will be referenced.

Chapter9 Libraries 121

Active4D v6.4

Going back to the example above, to ensure the method
showArrayAndSomethingElse calls the global method showArray, you would write it
like this:

method *showArrayAndSomethingElse” (&$inArray, $inSomethingElse)
global .showArray($inArray) ~Calls the inline showArray()
write($inSomethingElse)

end method

Private methods

If a library method becomes overly long and complex, you may wish to split it up into
several smaller methods. Or there may be several methods within a library that share
common code and you want to factor the common code into a separate method.
However, you don’t want these helper methods to be publicly accessible outside the
library as they have no use by themselves.

You can make a method private to its library by prefixing the method name with an
underscore(”_"). Any attempt to call such a method from outside its library will result in
an error.

For an example of this technique, you can examine the newFromX RowSet library
methods, which use several private helper methods.

Library-private collections

In addition to private methods, libraries also are provided with a private collection in
which to store library-private data. This collection is created automatically when a library
is loaded during import and is cleared when a library is unloaded.

Note: Because the library-private collection is in effect global in scope, if you want to
store another collection within it, it must be a global collection, and you must be sure
to clear that collection in the library’s __unload__ method.

The library-private collection is accessed through the keyword self, which returns a
handle to the collection. The self keyword may only be used within a library method.
Attempting to use it outside of a library method will generate an error. For examples of
how to use self, see “Library Initialization/Deinitialization”.

Because library-private collections cannot be accessed from outside the library, you may
want to provide a debugging method like the following to view self:

method *dumpData’
add.debug.dump collection(self; \\
current library name + ": self"; \\
true)
end method

122 Chapter9 Libraries

Active4D v6.4

Library Initialization/Deinitialization

There are two special methods you may define within your libraries: __load__ and
__unload__. If present, the __load__ method is executed when a library is loaded
during import. If present, the __unload__ method is executed when a library is
unloaded during a flush (either from a direct command or as part of a refresh).

In conjunction with the self collection, these methods allow you to turn libraries into
completely self-contained components.

For example, it is very common for a database to have lists of options that need to be
presented as HTML lists on a page. In many cases these lists are static, or they come from
the database but change very infrequently. In such cases you can cache the pre-built
HTML option lists in a library that provides methods to return the option lists.

Here is what such a library might look like:

// Menus library for ORM project
library "orm.menus"

method *_load__ ™
_loadAll
end method

method " _loadAll™
_loadStates
_loadCountries
_loadStatuses
end method

method "_loadStates"
self{"states"} := "
array string(2; $codes; 0)
array string(31; $names; 0)
split string(ad4d.web.kUS_UnsortedStateCodes; ';'"; $codes)
split string(ad4d.web.kUS_SortedStateNames; *;"; $names)

for ($i; 1; size of array($codes))
$opt := "<option value="$codes{$i} '>$names{$i}</option>\n~
self{"states"} += $opt
end for
end method

// and so on for the other load methods

method "getStateMenu™ ($inCode)
$value := "value="$inCode""
return (replace string(self{ states"}; $value; \\
$value + " selected™))
end method

Note the use of a private _loadAll method, which actually does the loading. The reason
for providing such a method is to enable the site administrator to reload the library’s

Chapter9 Libraries 123

Active4D v6.4

cached data through the web by executing a library method from a web page. For
example, we could add the following method to the above library:

method "'reload"
_loadAll
end method

Because we factored the loading logic into _loadAll, neither __load__ nor reload will
have to change if the loading logic changes.

Storing collections in library-private data

When storing collections in the library-private self collection, special care has to be
taken, because self is private to the library but persistent in its lifetime. Therefore global
collections must be stored in the self collection.

For example, let us assume that orm.menus._loadStatuses in the library example above
fills a collection with contact status information. To implement this we would have to
make the following changes:

method *_unload__ "
_unlload
end method

method "reload"
_unload
_loadAll

end method

method " loadStatuses™
self{"status"} := new global collection
all records([status])
distinct values([status]type; $types)

for ($i; 1; size of array($types))
$type := $types{$i}
query([status]; [status]type = $type)
selection to array([status]code; self{' status"}{$type})
end for
end method

method " _unload"
clear collection(self{" status'"})
end method

The most important change is the call to _unload in the __unload__ and reload
methods, which ensures the global collection self{"status"} is cleared.

Creating a Poor Man’s Class

Libraries also allow you to create a class-like structure that can be used to make
collections that act sort of like traditional objects. These “objects” act like objects

124

Chapter9 Libraries

Active4D v6.4

because they encapsulate private data, and you can call methods on these objects with
an object-oriented style syntax.

To create a Poor Man'’s Class, follow these steps:

1
2

7

Create a library (we will use “Foo” in this example) that will act as the class.

Make one or more constructor methods (newFoo, newFooFromBar, etc.). In the
process of construction you create a collection which becomes the "object".

Make sure the collection has an item called "__class__" whose name matches the
library name. It is best to use the current library name command for this.

If you want the object’s data to be private — which you should, as good object-
oriented design dictates you should force data access to go through methods —
prefix the key names with an underscore, which prevents them from being accessed
outside of the object’s library/class. So, for example, if the newFromBar constructor
took a bar parameter, you would store it like this:

$object{" bar"} := $inBar

Return the collection handle to the caller from the constructor, that is the object
reference.

To define object methods, define methods with a first parameter called Sself, which
will receive the object reference (which is actually a collection handle). For example:

method "setBar"($self; $inBar)
$self{"'_bar"} := $inBar

end method

method "getBar" ($self)

return ($self{"_bar"})
end method

Given an object reference, you can call a method on that object using the
dereference operator (this syntax is taken from C++/PHP), like this:

$foo := Foo.newFromBar(*'foobar™)
wr i te($foo->getBar)
$foo->setBar(*'barfoo™)

When Active4D sees ->, it transforms:
Sobject->method(params)
internally into:

Sobject{"__class__"1.method(Sobject; Sparams)

Chapter9 Libraries 125

Active4D v6.4

So here is our complete Foo class:

library "Foo"

method "‘new'
return Cinit(""))
end method

method "newFromBar" ($inBar)
return (Cinit($inBar))
end method

method *_init"($inBar)
$object := new collection(’"__class_ '"; current library name;\\
" _bar'™; $inBar)
return ($object)
end method

method “setBar"($self; $inBar)
$self{" bar"} := $inBar
end method

method *‘getBar' ($self)
return ($self{" _bar"})
end method

end library

Limitations

There is a reason these are called “Poor Man'’s Classes”. Real classes have inheritance, real
constructors, destructors, and so on. In traditional terms, this technique is actually object-
based programming, not object-oriented programming. Someday in the future we will
have real classes and objects in Active4D, but for now this technique is quite sufficient to
implement many object-oriented techniques into your applications.

For good examples of Poor Man'’s Classes, take a look at the source code for RowSets and
Breadcrumbs, both of which use this technique extensively.

126 Chapter9 Libraries

CHAPTER 10

Event Handlers

In the course of executing a script, there are well-defined points at which a developer
would like have some control.

Active4D recognizes special event handler methods which are executed before and after
various “events.” To be activated, these event handler methods must be defined in a
special library called “Active4D.<lib>", which must reside in an Active4D directory. The
“<lib>" extension must be whatever you have configured the library extension to be in
the Active4D.ini file. By default the library extension is “.a4l".

As with the config files, you may have multiple copies of the Active4D library in different
directories in the search path. An Active4D library at the beginning of the search path
will override one later in the search path.

Event Handler Methods

The event handler methods are outlined below. In addition to these, you may define and
call other methods within the Active4D library just as you would with any library.

Note: You need not define an event handler if you are not going to use it.

Each handler is executed within a certain context which determines what data is
accessible within the handler. For example, handlers that execute within the context of
an HTTP request have access to all HTTP request and response collections which
Active4D creates.

In order of execution (from startup to shutdown), the event handler methods are:

On Application Start

This handler is executed when 4D first starts up or after the Active4D server has been
restarted. This handler is analogous to the On Startup database method in 4D.

The only Active4D collection you have access to in this handler is the globals collection.
In addition, you can reliably read the following variables:

Variable Description

<>A4D_HostAddr IP address of host on which Active4D is running

<>A4D_HostPort Port on which web server is listening

Chapter 10 Event Handlers 127

Active4D v6.4

Variable Description

<>A4D_HostType Type of TCP/IP host (“4D" “NTK")

<>A4D_ClientlsWebServer True if serving on 4D Remote

On Request

This handler is executed just before the Active4D HTTP server handles a request, before
Active4D parses the request URL.

The handler is passed the path portion of the URL. The _query collection (or _form
collection if “parameter mode” is set to “form variables” in Active4D.ini) is populated with
the contents of the request’s query (if any), and is set to read-write mode so that you can
directly modify the query.

Within the handler, there are several actions you can take:

= Leave the URL unchanged: If you do not return any value or return an empty string,
the URL is left unchanged.

= Change the URL: If you wish to change the URL, you may do so by returning a non-
empty string. The URL must be non-URL encoded Unicode.

= Modify the query: If you wish to modify the query, you may directly modify the
contents of the built in _query collection (or_form collection if “parameter mode” is set
to “form variables” in Active4D.ini).

* Reject the request: You may refuse the request altogether by calling set response
status with a status other than 200 (OK), such as 404 (Not Found) or 303 (See Other). If
you set the response status to something other than 200, you do not need to return a
result.

= Redirect: You may redirect to another URL by setting a response of 303 (See Other) or
301 (Moved Permanently) and setting a“Location” response header with the full target
URL (including query), which should be url encoded UTF-8. If you do a redirect in this
way, you do not need to return a result.

128 Chapter 10 Event Handlers

Active4D v6.4

Here is what an On Request handler might look like:

// We want to change "/products/show?i1d=13"
// into "/index.ad4d?action=show; id=13"

method "On Request' ($inURL)
// The URL is in the form /<circuit>/[<action>][?<query>].
// 1T there is a dot in the filename, assume it is a
// non-executable resource, and return the url as is.
$circuit := directory of($inURL; *)
$action := Filename of ($inURL)

if ("." 1~ $action)

// If the url has only a circuit name with no trailing slash,
// $circuit will be empty and $action has the circuit name.
// In that case call the main action on the circuit.

if (length($circuit) = 0)
it (length($action) > 0)

$circuit := $action
$action = "main"
end if
else
$circuit := substring($circuit; 2)

if (length($action) = 0)
$action = "main"
end if
end if

if (length($circuit) > 0)
_query{fusebox.conf.fuseaction} := "S$circuit.$action”
end if

return ("'/index.a4d"™)
end if
end method

The request info, request cookies, response headers and response cookies collections are
accessible within this handler. This allows you to check things like the host, set cookies,
etc.

On Authenticate

When Active4D determines that the current request is in a protected realm, if this event
handler is defined it is invoked before the On Session Start and On Execute Start event
handlers.

Chapter 10 Event Handlers 129

Active4D v6.4

Here is what a sample On Authenticate handler might look like:

method *On Authenticate"
if (auth user = ")
authenticate
else
query([security];[security]realm = current realm;*)
query([security];&;[security]username = auth user;*)
query([security];&;[security]password = auth password)

case of
: (records in selection([security]) = 0)
authenticate
: (not(identical strings([security]password; \\
auth password)))

authenticate
end case
end if
end method

In this example we are using a table that defines all of the users and passwords for each
realm. If we find a match, we check the passwords to make sure the capitalization is
exactly the same. If there is no match, we authenticate again.

Be sure to pass along an authentication failure message with the authenticate
command, either by writing directly to the response buffer, by including another file, or
by utilizing the standard HTTP error handling mechanism as described in “HTTP Error
Handling” on page 63. When the authenticate command returns, the HTTP status code
is 401.

Within this handler you may access all of the Active4D collections.

On Session Start

This handler is executed when a new user (one with no current session) makes a
successful HTTP request (one with a result code of 200 OK), before the On Execute Start
handler.

Note: Whether or not you set any session items in On Session Start, if this event
handler is defined a new session will always be created for each new visitor to your
site. Therefore you should only define this method if your intention is to track each
new visitor through a session.

For example, here is an On Session Start handler that initializes three items in a session:

method "On Session Start"
session{""'start"} = 1
session{"'recsPerPage"} := 10
session{"'sortAscending"} := true
end method

130 Chapter 10 Event Handlers

Active4D v6.4

The first time a user makes a request from your site, these three session items will be set.
For more information on sessions, see “Sessions” on page 343.

If you want to initialize new sessions only when a certain event occurs, such as a
successful user login, do not use this handler. Rather, initialize your session at the point at
which you determine one is needed.

You can use the requested url command to determine which part of your web site was
accessed, thus determining how to initialize the session. You may also use the redirect
command to force all new sessions to go to a login page, for example.

For the redirect trick to work, if you are using session cookies the user must have cookies
on, otherwise you will end up in an endless loop. To prevent this, in the redirect page you
must check for the presence of the session cookie, and if it is not there you must then
redirect to a static HTML page (not an executable page!) which tells the user they must
turn cookies on.

Within this handler you may access all of the Active4D collections.

On Execute Start

This handler is executed before Active4D begins execution. Typical uses for this handler
would include dumping some debugging information, or initializing timing information.

Because this handler is executed before the requested file is parsed, any HTML you write
to the response buffer will appear before the opening <htm/> tag. It is possible that some
browsers may not like this, although both Internet Explorer and Netscape seem to
handle it without problems.

Within this handler you may access all of the Active4D collections.

On Execute End

This handler is executed after Active4D completes execution, unless the redirect
command was called.

Within this handler you may access all of the Active4D collections.

On Session End

This handler is executed when a session goes to heaven (if it has been good), either
because it timed out, it was expired with the abandon session command, the Active4D
server has been restarted, or because the server is shutting down.

Note: On Session End is not invoked if you are using a custom session handler. For
more information, see “Session Handlers” on page 348.

Typically you would use this handler to clean up data that was stored during the course
of the user’s session. For example, if the user uploaded a file and you stored the path to
the file in the session, when the session times out you would use this handler to delete
the file.

Chapter 10 Event Handlers 131

Active4D v6.4

Because this handler is executed asynchronously at idle time, the only Active4D
collection you have access to is the globals collection, as there is no request context.
However, the about-to-be-purged session is made current and you can access all of its
data one last time before kissing it goodbye.

There are a couple of important points to note in regards to this handler:

* If you wish to identify a session persistently, always use session internal id, as the
result of session id is undefined in this handler.

* There is no deterministic way of knowing when this handler will run. The only thing
you know for sure is that it will run sometime after a session expires.

= If multiple sessions have expired when a session purge cycle begins, this handler will
be run once for each session. However, there is no deterministic way of knowing the
order in which the sessions will be handled.

On Application End

This handler is executed just before the server shuts down, either when 4D is shutdown
or when the Active4D server is restarted. This handler is analogous to the On Exit
database method in 4D.

The only Active4D collection you have access to in this handler is the globals collection.

Modifying the Active4D Library

Because the Active4D library has event handlers that are run only at application start and
application shutdown, it is not automatically reloaded when it is modified.

If you want to change the methods in the Active4D library while 4D is running, delegate
the Active4D methods to another library. For example, you can create another library
called”_active4d.a4l’, move your event handling code there, and do this in Active4D.a4l:

method "On Request" ($inURL)
return (_active4d.onRequest($inURL))
end method

method *"On Authenticate"
_activedd.onAuthenticate
end method

// and so on

This technique allows you to make modifications to the event handling code without
affecting the Active4D library itself. Because the“_active4d” library is a normal library,
when you modify the code in that library, the library will automatically be reloaded.

132

Chapter 10 Event Handlers

CHAPTER 11

Command Reference

Active4D implements over 460 commands that provide unparalleled power and
simplicity to web site programming. Of these commands, over 170 are 4D commands.
The remaining 300 commands are specific to Active4D.

4D Commands

Following is a list of the 4D commands implemented by Active4D. Unless indicated by
the formats noted below, they take the same parameters and work exactly as they do in
4D.

= Commands in bold have been enhanced by Active4D.
= Commands in italics have a limitation relative to the 4D v11+ version.

Any commands which were added or extended in 4D v11+ are implemented in their
extended form in Active4D.

Note: Unlike 4D, the 4D commands used by Active4D are always in English. If you are
using a foreign language version of 4D, please be aware that you will have to use
English commands and named constants in Active4D.

Using a Default Table

You cannot use a default table in Active4D. All commands that may take a table in 4D
must be given one in Active4D.

Chapter 11 Command Reference 133

Active4D v6.4

4D Commands Supported by Active4D

Abs

Add to date
ADDTO SET

ALL RECORDS
Append document
APPEND TO ARRAY
ARRAY BLOB
ARRAY BOOLEAN
ARRAY DATE
ARRAY INTEGER
ARRAY LONGINT
ARRAY PICTURE
ARRAY POINTER
ARRAY REAL
ARRAY STRING
ARRAY TEXT
ARRAY TIME

Ascii

AUTOMATIC RELATIONS
Average

Before selection
BLOB size

BLOB TO DOCUMENT
BLOB to longint
BLOB to text
C_BLOB
C_BOOLEAN
C_DATE
C_LONGINT
C_PICTURE
C_POINTER

C_REAL

C_STRING

C_TEXT

C_TIME

CANCEL TRANSACTION
Char

Character code
CLEAR NAMED SELECTION
CLEAR SEMAPHORE
CLEAR SET

CLEAR VARIABLE
CLOSE DOCUMENT

Command name

COPY ARRAY

COPY DOCUMENT
COPY NAMED SELECTION
COPY SET

Count fields

Count in array

Count tables

Create document
CREATE EMPTY SET
CREATE FOLDER
CREATE RECORD
CREATE SELECTION FROM ARRAY
CREATE SET

CREATE SET FROM ARRAY
Current date

Current method name
Current process
Current time

CUT NAMED SELECTION
Date

Day number

Day of

Dec

DELAY PROCESS
DELETE DOCUMENT
DELETE ELEMENT
DELETE FOLDER
DELETE FROM ARRAY
DELETE RECORD
DELETE SELECTION
Delete string
DIFFERENCE

DISTINCT VALUES
DOCUMENT LIST
DOCUMENT TO BLOB
End selection
EXECUTE

False

Field

Field name

Find in array

Find in field

Find index key

FIRST RECORD
FOLDERLIST

Get character code
Get document position
Get document size
GET FIELD PROPERTIES
Get indexed string
Get last field number
Get last table number
GET PICTURE FROM LIBRARY
Get pointer

GOTO RECORD

GOTO SELECTED RECORD
INSERT ELEMENT
INSERT IN ARRAY
Insert string

Int

INTERSECTION

Is field number valid
Isin set

Is table number valid
ISO to Mac (deprecated)
LAST RECORD

Length

LIST TO ARRAY

LOAD RECORD

Locked

LONGINT TO BLOB
Lowercase

Max

Milliseconds

Min

Month of

MOVE DOCUMENT
NEXT RECORD

Nil

Not

Num

ONE RECORD SELECT
Open document
ORDER BY

ORDER BY FORMULA

134 Chapter 11

Command Reference

4D Commands Supported by Active4D (cont.)

PICTURE PROPERTIES
Picture size

Position

PREVIOUS RECORD
QUERY

QUERY BY FORMULA
QUERY SELECTION
QUERY SELECTION BY FORMULA
QUERY SELECTION WITH ARRAY
QUERY WITH ARRAY
Random

READ ONLY

Read only state

READ PICTURE FILE

READ WRITE

RECEIVE PACKET

Record number

Records in selection
Records in set

Records in table

REDUCE SELECTION

RELATE MANY

RELATE MANY SELECTION
RELATE ONE

RELATE ONE SELECTION
REMOVE FROM SET

Replace string

Resolve path

RESOLVE POINTER

Round

SAVE RECORD

SCAN INDEX

Selected record number
SELECTION RANGE TO ARRAY
SELECTION TO ARRAY
Semaphore

SEND PACKET

Sequence number

SET AUTOMATIC RELATIONS
SET BLOB SIZE

SET DEFAULT CENTURY

SET DOCUMENT POSITION
SET QUERY DESTINATION

SET QUERY LIMIT

Size of array

SLEEP

SORT ARRAY

START TRANSACTION
String

STRING LIST TO ARRAY
Structure file
Substring

Sum

Table

Table name

Test path name

Test semaphore
TEXTTO BLOB
Tickcount

Time

Time string

Trunc

True

Type

Undefined

UNION

UNLOAD RECORD
Uppercase

USE NAMED SELECTION
USE SET

VALIDATE TRANSACTION
WRITE PICTURE FILE
Year of

Active4D v6.4

Chapter 11

Command Reference

135

Active4D v6.4

Active4D Commands

Active4D implements almost 300 of its own commands. Most are focused on web
programming. Some are additions to the 4D language that we have always wanted. The
bottom line is this: if you learn these new commands, you will be far more productive. So
please take the time to learn them!

136 Chapter 11 Command Reference

Active4dD Commands

_form

_query

_request

abandon response cookie
abandon session
add datetime to json
add element

add function to json
add rowset to json
add selection to json
add to json

add to timestamp
append to array
auth password

auth type

auth user
authenticate

auto relate

base64 decode
base64 encode

blob to collection
blob to session
blowfish decrypt
blowfish encrypt
buffer size (deprecated)
build query string
call 4d method

call method
capitalize

cell

choose

clear array

clear buffer (deprecated)
clear collection

clear response buffer
collection

collection has
collection to blob
compare strings
concat
configuration

copy collection

copy upload

count collection items
count form variables
count globals

count query params
count request cookies
count request infos
count response cookies
count response headers
count session items
count uploads
current file

current library name
current line number
current path

current platform
current realm

day of year

deep clear collection
deep copy collection
default directory
define

defined

delete collection item
delete global

delete response cookie
delete response header
delete session item
directory exists
directory of

directory separator
enclose

end json array

end json object

end save output
execute in 4d
extension of

file exists

filename of

fill array

first not of

first of

form variables

form variables has

Active4D v6.4

format string

full requested url

get auto relations

get cache control

get call chain

get collection

get collection array

get collection array size
get collection item

get collection item count
get collection keys

get content charset

get content type

get current script timeout
get error page

get error status

get expires

get expires date

get field numbers

get field pointer

get form variable

get form variable choices
get form variable count
get form variables

get global

get global array

get global array size
get global item

get global keys

get http error page
getitem array

getitem key

get item type

get item value

get library list

get license info

get local

get log level

get output charset

get output encoding
get platform charset
get query param

get query param choices

Chapter 11

Command Reference

137

Active4D v6.4

Active4dD Commands (cont.)

get query param count
get query params

get request cookie

get request cookies

get request info

get request infos

get request value

get response buffer

get response cookie

get response cookie domain
get response cookie expires
get response cookie path
get response cookies

get response header

get response headers
get response status

get root

get script timeout

get session

get session array

get session array size

get session item

get session names

get session stats

get session timeout

get throw code

get throw message

get time remaining

get timestamp datetime
get upload content type
get upload encoding

get upload extension
get upload remote filename
get upload size

get utc delta

get version

global

globals

globals has

hide session field

html encode
identical strings

import

in error

include

include into
insert into array
interpolate string
is a collection

is an iterator

is array

join array

join paths

json encode

json to text

last not of

last of

left trim

library list

load collection
local datetime to utc
local time to utc
local variables
lock globals

log message
longint to time
mac to html

max of

md5 sum

merge collections
method exists
min of

more items
multisort arrays
multisort named arrays
native to url path
new collection
new global collection
new json

new local collection
next item

nil pointer

param text
parameter mode
parse json

query params

query params has
random between
redirect

regex callback replace
regex find in array
regex find all in array
regex match

regex match all
regex quote pattern
regex replace

regex split

request cookies
request info
request query
requested url
require

resize array
response buffer size
response cookies
response headers
right trim

save collection

save output

save upload to field
session

session has

session id

session internal id
session local
session query
session to blob

set array

set cache control
set collection

set collection array
set content charset (deprecated)
set content type

set current script timeout
set error page

set expires

set expires date

set global

set global array

138 Chapter 11

Command Reference

Active4dD Commands (cont.)

set http error page
set local

set log level

set output charset
set output encoding
set platform charset
set response buffer
set response cookie
set response cookie domain
set response cookie expires
set response cookie path
set response header
set response status
set script timeout

set session

set session array

set session timeout
slice string

split path

split string

start json array

start json object
throw

time to longint
timestamp
timestamp date
timestamp day
timestamp difference
timestamp hour
timestamp millisecond
timestamp minute
timestamp month
timestamp second
timestamp string
timestamp time
timestamp year

trim

type descriptor
unlock globals
upload to blob

url decode

url decode path

url decode query

url encode

url encode path
url encode query
url to native path
utc to local datetime
utc to local time
variable name
week of year
write

write blob

write gif

write jpeg

write jpg

write json

write jsonp

write raw

write to console
writebr

writeln

writep

Active4D v6.4

Chapter 11

Command Reference

139

Active4D v6.4

Command Syntax

The commands in this chapter are listed with the same basic format that the 4D
documentation uses, with a few small differences:

= Commands unique to Active4D are all lowercase to distinguish them from 4D
commands which have been implemented by Active4D.

= Parameters have a prefix to indicate what happens to them within the body of the
method. The prefix “in” means the value of the parameter is read but not written. The
prefix “io” means the value is both read and written. The prefix “out” means the value is
written, replacing any existing value.

Unicode and Charsets

Because Unicode is used throughout Active4D, there are times when a command needs
to convert text to or from Unicode. In those cases an inCharset parameter is provided,
which should be a valid IANA character set name (or alias). For a list of IANA character set
names and aliases, see:

http://demo.icu-project.org/icu-bin/convexp?s=IANA&s=ALL

140 Chapter 11 Command Reference

Arrays Active4D v6.4

Arrays

Active4D adds several commands and an extended syntax which make working with
arrays much easier. It will pay many times over for you to learn and use these commands.

Chapter 11 Command Reference 141

Active4D v6.4 Arrays

{} (@ppending index) version 4.0

<array>{}

Discussion

Active4D adds a new syntax for appending elements to an array. If you use an empty
index with an array, a new element is appended to the array and the index is set to the
newly appended element.

This allows you to add items to an array in a very simple way, like this:
array longint($longs; 0)

$longs{} := 7 // same as append to array($longs; 7)
$longs{} := 13 // same as append to array($longs; 13)

// $longs now contains 2 elements, 7 and 13

{-<index>} (from end index) version 4.5

<array>{-<index>}

Discussion
Active4D adds a new syntax for referencing elements relative to the end of an array.

By using a negative index, you index array elements from the end of the array, with -1
being the last element and -Size of array being the first element.

For example, to reference the last element of an array, you can simply do this:

$myArray{-1} := 7

// old way, which one is easier?
$myArray{size of array($myArray)} := 7

142 Chapter 11 Command Reference

Arrays Actived4D v6.4
add element version 1
add element(ioArray {; inHowMany})
Parameter Type Description
ioArray Array — The array to which you want to
append elements
inHowMany Number — How many elements to append
Discussion

append to array

This command appends one or more empty elements to ioArray. If inHowMany is
omitted, one element is appended to the end of ioArray. The element appended to the
array is initialized to the default value for the array’s type. This command is essentially
shorthand for the following standard 4D statement:

insert element($ioArray; size of array($ioArray) + 1; $inHowMany)

version 1 (modified v2)

append to array(ioArray; inValue {; inValueN})

Parameter Type Description

ioArray Array — The array to which you want to
append elements

inValue <any> — Elements to append

Discussion

This command appends one or more values to the existing contents of ioArray. If a value
is not assignment compatible with ioArray, an error is generated and execution is
aborted.

Unlike the 4D version of this command, in Active4D you can append multiple values at
once, like this:

append to array($array; 'one'; "two"; "three')

Note: If you want to unconditionally set the contents of an array when it is declared,
it is easier to use the extended array declaration syntax. If you want to reset the
contents of an array after it has been created, as opposed to appending, you might
want to use the set array command.

Chapter 11 Command Reference 143

Active4D v6.4

Arrays

4D version 3

ARRAY <type> version 1 (modified v6.1r6)
ARRAY <type>({inStringWidth; } outArray; *; inValue {; inValueN3})
Parameter Type Description
inStringWidth Number — Width for fixed string elements
outArray Array — The array to be created/resized
* * — Indicates inline value setting
inValue <any> — Elements to set
Discussion
This command allows you to declare or resize an array and define its elements in one
statement.
If type is a STRING or TEXT, the values are automatically converted to the appropriate
type with the default string conversion. For all other types, if a value is not assignment
compatible with type, an error is generated and execution is aborted.
Note: As with 4D in Unicode mode, ARRAY STRING actually creates ARRAY TEXT.
If you are running Active4D in 4D v14 or later, the ARRAY BLOB and ARRAY TIME
commands may be used to create BLOB and Time arrays. Except where noted, you may
use an element of a BLOB or Time array anywhere a command is documented as taking
or returning a BLOB or Time.
Note: If you attempt to use these commands with an earlier version of 4D, an error is
generated and execution is aborted.
Examples
// 4D way
array text($items; 3)
$items{1} := "one"
$items{2} := string(current date)
$items{3} := string(?07:27:13?)
// easier Actived4D way
array text($items; 0)
set array($items; "one'; string(104/13/641); string(?07:27:137?))
// easier way
array text($items; *; "one'; 104/13/641; ?07;27;13?)
144 Chapter 11 Command Reference

Arrays

clear array

Active4D v6.4

version 2

COPY ARRAY

clear array(ioArray {; ...ioArrayN3})

Parameter Type Description
ioArray Array — Array to clear
Discussion

This command resizes one or more arrays to zero elements.

(modified 4D) version 3
version 4.0

COPY ARRAY(inSourceArray; ioDestArray {; inStart; inEnd})

Parameter Type Description

inSourceArray Array — Array from which to copy
ioDestArray Array — Array to receive copied elements
inStart Number — Starting element to copy

inEnd Number — Ending element to copy
Discussion

If inStart and inEnd are not passed, this command works exactly like it does in 4D.

If inStart and inEnd are passed, ioDestArray will receive a copy of that subrange of
elements.

If inStart is zero, elements are copied starting at the zero element of ioDestArray,
otherwise elements are copied starting at the first element of ioDestArray.

Chapter 11 Command Reference 145

Active4D v6.4

Count in array

Arrays

(modified 4D) v5

fill array

Count in array(inArray; inValue {; inStart}) - Number

Parameter Type Description

inArray Array — Array to search

inValue Array — Value to search for

inStart Number — Element at which to start searching
Result Number < Occurrences of inValue

Discussion

This command differs from the 4D version of this command in that you can pass inStart
to specify where to start searching for inValue.

If inStart is not passed, it defaults to 1. If inStart is less than zero, it is pinned to zero. If it is
greater than the size of inArray, the result will be zero.

version 4.0

fill array(ioArray; inStart {; inEnd {; inStep {; inArrayStart}}})

Parameter Type Description

ioArray Longint/Real array =~ — The array tofill

inStart Number — Starting number in sequence or size of
sequence

inEnd Number — Ending number in sequence

inStep Number — Difference between steps in sequence

inArrayStart Number — Where to start filling array

Discussion

This command fills an array with a sequence of values. In its simplest form, you can just
pass an array and an integral number. In that case the array will be filled with a sequence
of values from 1 to inStart inclusive, starting at element 1 of ioArray.

If ioArray does not exist when this command is called, it is created as a Real array.

If both inStart and inEnd are passed, the sequence will start at inStart and increment by 1
until Abs(step) > Abs(inEnd). If inStep is passed, the sequence will start at inStart and
increment by inStep until Abs(step) > Abs(inEnd). All of these parameters may be non-
integral.

If inArrayStart is passed, the sequence begins at that element. If inArrayStart > Size of
array(ioArray), the array is extended accordingly.

146

Chapter 11 Command Reference

Arrays Active4D v6.4

Examples

// Till an array with numbers 1-100
fill array($array; 100)

// Fill an array with numbers 10 to -10
fill array($array; 10; -10; -1)

// Till an array with numbers from 1 to 2.5 by .5
fill array($array; 1; 1; 2.5; .5)

insert into array version 4.0

insert into array(ioArray; inWhere; inValue {; inValueN3})

Parameter Type Description

ioArray Array — Array into which to insert

inWhere Number — Element before which values are
inserted

inValue..inValueN <any> — Values toinsert

Discussion

This command inserts one or more values into the existing contents of ioArray. The first
inserted value will be element inWhere. If inWhere > Size of array(ioArray), the values are
appended.

If a value is not assignment compatible with ioArray, an error is generated and execution
is aborted.

Chapter 11 Command Reference 147

Active4D v6.4 Arrays
is array version 2
is array(inType) — Boolean
Parameter Type Description
inType Longint — Thetype to test
Result Boolean < Trueif given type is an array type
Discussion
This command returns true if the given variable type is an array type. It is shorthand for
the following test:
// 4D way
$isArray := ((type($var) >= Array 2D) & \\
(type($var) <= Boolean array))
// Active4D way
$isArray := is array(type($var))
join array version 2
join array(inArray; inSeparator {; inStart {; inPrefixNum {; inQuoteText}}}) — Text
Parameter Type Description
inArray Array — Thearray to join
inSeparator Text — The text to insert between elements
inStart Number — The element to begin joining from
inPrefixNum Boolean — True to prefix the element number
inQuoteText Boolean — True to quote-enclose elements of
Text or String arrays
Result Text < Concatenation of array elements
Discussion
This command joins the elements of inArray together into a single string. Non-textual
array elements are automatically converted to text.
If inStart is not specified, it defaults to 1.
If inPrefixNum is not specified, it defaults to False. If it is specified and True, each element
is prefix by “{#} ", where # is the element number.
If inQuoteText is not specified, it defaults to False. If it is specified and True, elements of
text or string arrays are surrounded by double quotes.
148 Chapter 11 Command Reference

Arrays Active4D v6.4

Here are some examples:

array longint($longs;0)
set array($longs; 7; 13; 27)
writebr(join array($longs; ", "))

array text($nums;0)
set array($nums; "one'; "two'; ""three™)
writebr(join array($nums; "
"; 1; true; true))

// Here is the output in the browser

7, 13, 27
{1} "one"
{2} "two™
{3} "three™

This command is especially useful for writing the contents of an array to the Active4D
debugging console. Use this form:

write to console(join array($array; "\r'; 1; true; true))

multisort arrays version 3.0

multisort arrays(inArray1; inDirection {; ...inArrayN; inDirectionN})

Parameter Type Description
inArray Array — Thearray to sort
inDirection <>=or Text — The sort direction
Discussion

This command performs a multilevel sort on the elements of inArray1 through inArrayN.
The direction of the sort for each array is specified by the the inDirection argument
following the array:

Character Direction

> Ascending

< Descending

= Don't care, follow array to left

You may sort any array type except for picture arrays and pointer arrays. The arrays may
be local, process, or interprocess variables.

The sort direction may be one of the operators ‘>, '<’ and ‘=, or may be any text
expression which resolves to one of those characters. This allows you to
programmatically set the direction of the sort.

Chapter 11 Command Reference 149

Active4D v6.4 Arrays

multisort named arrays version 3.0

multisort named arrays(inArrayName1; inDirection1 {; ...inArrayNameN; inDirectionN})

Parameter Type Description

inArrayName Text — The name of an array to sort
inDirection <>=or Text — The sort direction
Discussion

This command is identical to multisort arrays, except that instead of passing direct array
references, you pass text expressions which resolve to the names of arrays. This allows
you to programmatically determine both the order and direction of the sort.

The arrays names should begin with ‘$’ to indicate a local array, ‘<>’ to indicate an
interprocess array, and no prefix to indicate a process array.

resize array version 3.0

resize array(ioArray; inSize)

Parameter Type Description

ioArray Array <> The name of an array to sort
inSize Number — The new size of the array
Discussion

This command resizes ioArray to the given size. If inSize is less than zero, the array will be
resized to zero.

(modified 4D) version 2
SELECTION/SELECTION RANGE TO ARRAY modified version 4.0

SELECTION TO ARRAY
SELECTION RANGE TO ARRAY

Discussion

These commands have been enhanced in that the array arguments may be any valid
array reference, including collection items which do not yet exist. This allows you to load
data directly into collections (including built in collections like session), like this:

selection to array([ingredients]id; session{"ids"}; \\
[ingredients]name; session{"names™}; \\
[vendors]name; session{"vendors'})

150 Chapter 11 Command Reference

Arrays Active4D v6.4

set array version 2

set array(ioArray; inValue {; inValueN})

Parameter Type Description

ioArray Array — The array which you want to set to the
given elements

inValue <any> — Elements to set

Discussion

This command replaces the existing contents of ioArray with one or more values. If a
value is not assignment compatible with ioArray, an error is generated and execution is
aborted.

This command is the fastest way to initialize an array to a known set of values. For
example:

array longint($primes;0)
set array($primes; 2; 3; 5; 7; 11; 13)

Chapter 11 Command Reference 151

Active4D v6.4

BLOBS

BLOBS

The BLOB commands supported by Active4D function exactly as they do in 4D. Active4D
adds two named constants for use with the LONGINT TO BLOB and BLOB to longint

commandes:

* Intel byte ordering: This is the equivalent of the 4D named constant PC byte ordering.

= PPC byte ordering: This is the equivalent of the 4D named constant Macintosh byte
ordering.
You should prefer the Active4D equivalents over the 4D constants because they avoid

the confusion arising from the fact that all new Macintoshes have used so-called “PC
byte ordering” for several years, ever since the move to Intel processors.

152

Chapter 11 Command Reference

Collections Active4D v6.4

Collections

The collection commands allow you to create, manipulate, examine and destroy your
own local (temporary) or global (persistent) collections within your scripts.

For more information on collections, see “Collections” on page 99.

Note: Many of the collection commands are no longer necessary as they have been
replaced with the extended indexing syntax, which is much easier to use. They have
been retained for backwards compatibility. For more information, see “Referencing
Collection Values” on page 101.

Note: In previous versions of Active4D, collection keys were kept in alphabetical
order, although officially no order was guaranteed. In v6 the keys are kept in no
predictable order, so if you have code that relies on alphabetical keys, you will have to
get the collection keys, sort them, and then use the sorted keys to access the
collection items.

Chapter 11 Command Reference 153

Active4D v6.4

collection

Collections

version 2

new collection

collection(inHandle) — Longint

Parameter Type Description
inHandle Longint — Collection handle
Result Longint <« Iterator reference
Discussion

Given a collection, this command returns an iterator to the first item in the collection.

For more information on iterators, see “Iterators” on page 214.

version 2
modified version 3.0

new collection{(* {; inKey; inValue {; inKeyN; inValueN}})} - Longint

Parameter Type Description

* * — Pass to create a global collection
inKey Text — ltem key

inValue <any> — Itemvalue

Result Longint < Collection handle

Discussion

This command creates a new local or global collection and returns a handle to the
collection. You then use this handle with the other collection commands.

If no * is passed, this command is exactly equivalent to new local collection. If * is
passed, this command is exactly equivalent to new global collection.

You may also initialize the collection with key/value pairs by passing pairs of parameters.
If an array is passed as the value, it is stored in its entirety in the item.

For example, this code would create a local collection and initialize it with two items:

$person := new collection('name™; [People]Name; \\
"age'; [People]Age)

154

Chapter 11 Command Reference

Collections Active4D v6.4

new local collection version 2

new local collection{(inKey; inValue {; inKeyN; inValueN})} — Longint

Parameter Type Description
iinKey Text — ltem key

inValue <any> — Itemvalue

Result Longint < Collection handle

Discussion

This command creates a new local collection and returns a handle to the collection. You
then use this handle with the other collection commands. This command is exactly
equivalent to new collection.

A collection created with this command is automatically cleared by Active4D when the

script finishes execution.

Warning: You should always assign a local collection handle to a local variable or
local collection item in the same scope.

version 2
new global collection modified version 3.0

new global collection{(inKey; inValue {; inKeyN; inValueN})} - Longint

Parameter Type Description
inKey Text — Item key

inValue <any> — Itemvalue

Result Longint < Collection handle

Discussion

This command creates a new global collection and returns a handle to the collection.
You then use this handle with the other collection commands. This command is exactly
equivalent to new collection(*).

A collection created with this command remains in memory until the server shuts down

or until it is deleted with clear collection or deep clear collection.

Warning: Be sure to store the handle in a place where you can retrieve it later, such
as in the globals collection.

Chapter 11 Command Reference 155

Active4D v6.4 Collections

version 3.0
collection to blob modified v5.0

collection to blob(inRef {; ioBlob}) — BLOB | <none>

Parameter Type Description

inRef Longint — Collection handle or iterator
ioBlob BLOB <> BLOB to append data to
Result BLOB <« Serialized collection data
Discussion

This command serializes the data in the collection referenced by inRef. If ioBlob is passed,
the serialized data is appended to ioBlob and nothing is returned. If ioBlob is not passed,
the serialized data is returned as a new BLOB. In either case, you can store the BLOB
somewhere for later restoral via blob to collection.

To recursively serialize a collection, use the library method a4d.utils.collectionToBlob.

Warning: Do not attempt to serialize a v6 collection and then load it with a previous
version of Active4D.

Note: If the collection contains BLOB or Time arrays, it must be deserialized in 4D v14
or later. Attempting to deserialize in earlier versions will generate an error.

version 3.0
blob to collection modified v5.0

blob to collection(inBLOB {; ioOffset }{; *}) — Longint

Parameter Type Description

inBLOB BLOB — BLOB with serialized collection data
ioOffset Number <> Offset within BLOB to get data

* * — Create a global collection

Result Longint < Collection handle

Discussion

This command creates a new collection from the serialized collection data contained in
inBLOB. If ioOffset is passed, the serialized data must begin at that byte offset within
inBLOB. After the collection is successfully deserialized, ioOffset will point to the first byte
beyond the serialized data.

If inBLOB was not created with collection to blob, an error will be generated and
execution will be aborted.

156 Chapter 11 Command Reference

Collections

save collection

Active4D v6.4

If the optional * parameter is given, the new collection is a global collection, otherwise
the collection is local and will be cleared when the current script is finished executing..

Note: Active4D v6 will deserialize collections serialized with previous versions.

version 4.0

load collection

save collection(inRef; inPath)

Parameter Type Description

inRef Longint — Collection handle or iterator
inPath Text — File path

Discussion

This command directly saves a serialized collection. It is effectively the same as:

$blob := collection to blob($inRef)
blob to document($inPath; $blob)

See collection to blob for notes and warnings about serializing a collection.

version 4.0

load collection(inPath) — Longint

Parameter Type Description
inPath Text — File path

Result Longint < Collection handle
Discussion

This command directly loads a serialized collection. It is effectively the same as:

document to blob($inPath; $blob)
$collection := blob to collection($blob)

Note: Active4D v6 will deserialize collections serialized with previous versions.

Chapter 11 Command Reference 157

Active4D v6.4

Collections

version 3.0

copy collection modified version 4.0
copy collection(inRef {; *}) — Longint
Parameter Type Description
inRef Longint — Collection handle or iterator
* * — Create a global collection
Result Longint < Collection handle
Discussion

This command makes a shallow copy of the collection referenced by inRef and returns a
handle to the copy. You can then use this handle with the other collection commands.

If the optional * parameter is given, the new collection is a global collection, otherwise
the collection is local and will be cleared when the current script is finished executing.

Because this command makes a shallow copy of inRef, collection references embedded
within inRef will not be copied, and the original will still be referred to in the copy.

To make a deep (recursive) copy, use the deep copy collection command.

deep copy collection version 4.0

deep copy collection(inRef {; *}) » Longint

Parameter Type Description

inRef Longint — Collection handle or iterator
* * — Create a global collection
Result Longint < Collection handle
Discussion

This command makes a deep (recursive) copy of the collection referenced by inRef and
returns a handle to the copy. You can then use this handle with the other collection
commands.

If the optional * parameter is given, the new collection is a global collection, otherwise
the collection is local and will be cleared when the current script is finished executing.

When copying inRef, the following recursive algorithm is followed:
1 Ashallow copy of the inRef is made.
2 The type of each item in the copy is checked.

3 Iftheitemisalongintandis a collection handle, the value is replaced with the result
of a deep copy of that collection.

158

Chapter 11 Command Reference

Collections Active4D v6.4

4 Iftheitemis a Longint Array, each element of the array is checked to seeif itis a
collection, and if so the element is replaced with the result of a deep copy of that
collection.

Warning: Circular collection references encountered by this command will cause
Active4D (and 4D) to die a horrible death.

merge collections version 3.0

merge collections(inRef1; inRef2 {...inRefN} {; *}) — Longint

Parameter Type Description

inRef Longint — Collection handle or iterator
* * — Create a global collection
Result Longint <« Collection handle
Discussion

This command merges all of the collections referenced by inRef1...inRefN and returns a
handle to the merged collection. You can then use this handle with the other collection
commands.

The merged collection is the union of all of the items in referenced collections. Because
the collections are merged from left to right, if items two or more collections have the
same key, the items in the collections to the right will overwrite those to the left.

If the optional * parameter is given, the new collection is a global collection, otherwise
the collection is local and will be cleared when the current script is finished executing.

Example

// We want a merge of form variables and query params
c_longint($attributes)
$attributes := merge collections(form variables; query params)

Chapter 11 Command Reference 159

Active4D v6.4

clear collection

Collections

version 2

clear collection(inHandle)

Parameter Type Description
inHandle Longint — Collection handle
Discussion

This command deletes the collection and all of its items. After using this command,
inHandle is no longer a valid collection handle.

Note: You may use this command on local collections, but there is usually not much
point as local collections are automatically cleared when script execution ends.

deep clear collection version 4.0

deep clear collection(inHandle)

Parameter Type Description
inHandle Longint — Collection handle
Discussion

This command deletes the collection and all of its items. After using this command,
inHandle is no longer a valid collection handle.

Note: You may use this command on local collections, but there is usually not much
point as local collections are automatically cleared when script execution ends.

When clearing inHandle, the following recursive algorithm is followed:

1 The type of each item is checked.

2 Iftheitemis aLongint and is a collection handle, a deep clear of that collection is
performed.

3 Iftheitem is a Longint Array, each element of the array is checked to see if it is a
collection, and if so a deep clear of that collection is performed.

Warning: Circular collection references encountered by this command will cause
Active4D to die horribly.

160

Chapter 11 Command Reference

Collections Active4D v6.4

version 2
get collection modified version 4.0

get collection(inRef; inKey {; inindex}) — <any>

Parameter Type Description

inRef Longint — Collection handle or iterator
inKey Text — Key of collection item to retrieve
inindex Longint — Index of array element to retrieve
Result <any> < Value of collection item or ""
Discussion

This command searches the collection specified by inRef for the item with the key inKey.

If the item is found and inindex is not specified, the item'’s value is returned. If the item
value is an array, an empty string is returned.

If the item is found and an index is specified, the given array element is returned. If the
index is out of range, an error is generated and execution is aborted.

If the item is not found, an empty string is returned.

Note: This command has been superceded by the simpler syntax:

collectionRef{inKey} or collectionRef{inKeyHinIndex}

version 2
get collection array modified version 4.0

get collection array(inRef; inKey; outArray)

Parameter Type Description

inRef Longint — Collection handle or iterator
inKey Text — Key of collection item to retrieve
outArray Array < Receives the array

Discussion

This command searches the collection specified by inRef for the item with the key inKey.
If outArray is not an array, an error is generated and execution is aborted.

If the item is found and its value is an array, outArray receives a copy. If outArray has not
yet been defined, it is created with the same type as the source array.

If the item is found and its value is not an array, an error is generated and execution is
aborted.

Chapter 11 Command Reference 161

Active4D v6.4 Collections

If the item is not found, outArray is resized to zero. If outArray has not yet been defined, it
is created as a text array.

Note: This command has been superceded by the simpler syntax:

collectionRef{inKey}

If the resulting value is an array, it may be used with all of the array commands such
as append to array and DELETE ELEMENT.

version 2
get collection array size modified version 4.0

get collection array size(inRef; inKey) — Longint

Parameter Type Description

inRef Longint — Collection handle or iterator
inKey Text — Key of collection item to check
Result Longint < Size of array

Discussion

This command searches the collection specified by inRef for the item with the key inKey.
If the item is found and its value is an array, the size of the array is returned.

If the item is found and its value is not an array, an error is generated and execution is
aborted.

If the item is not found, zero is returned.

Note: This command has been superceded by the simpler syntax:

Size of array(collectionRef{inKey})

162 Chapter 11 Command Reference

Collections Active4D v6.4

version 2
get collection item modified version 4.0

get collection item(inRef; inKey) — Longint

Parameter Type Description

inRef Longint — Collection handle or iterator
inKey Text — Key of collection item to retrieve
Result Longint <« Iterator for collection
Discussion

This command searches the collection specified by inRef for the item with the key inKey.
If the item is found, an iterator reference for the item is returned.

If the item is not found, an empty iterator is returned. For information on empty iterators,
see “Iterating Over a Collection” on page 102.

get collection item count version 4.0

get collection item count(inRef; inKey) — Longint

Parameter Type Description

inRef Longint — Collection handle or iterator
inKey Text — Key of form variable to check
Result Longint < Size of array

Discussion

This command searches the collection specified by inRef for the item with the key inKey.
If the item is found and contains an array, the size of the array is returned.
If the item is found and its value is not an array, 1 is returned.

If the item is not found, zero is returned.

Chapter 11 Command Reference 163

Active4D v6.4 Collections
version 2
get collection keys modified version 4.0
get collection keys(inRef; outKeys)
Parameter Type Description
inRef Longint — Collection handle or iterator
outKeys String/Text Array < Receives the collection keys
Discussion

set collection

This command fills outKeys with all of the keys in the collection. If outKeys has not yet
been defined, it is created as a string array.

If outKeys is defined but is not a string or text array, an error is generated an execution is
aborted.

version 2

set collection(inHandle; inKey; inValue {; inKeyN; inValueN | inIndex})

Parameter Type Description

inHandle Longint — Collection handle

inKey Text — Key of collection item to store
inValue <any> — Value to set for the given item
inindex Longint — Index of array element to set
Discussion

This command searches the collection specified by inHandle for the item with the key
inKey.

If the item is found and its value is not an array, you may pass more than one key/value
pair to set multiple items at once. If the item is found and its value is an array, you may
pass an index to set an element of the array.

If the item is found and an index is not specified, the item’s value is replaced with inValue.

If the item is found, its value is an array, and an index is specified, the given array element
is set. If the index is out of range or the type of inValue is not assignment-compatible
with the array, an error is generated and execution is aborted.

If the item is not found and an index is not specified, a new item is added to the
collection with the given keys and values.

If the item is not found and an index is specified, an error is generated and execution is
aborted.

164

Chapter 11 Command Reference

Collections Active4D v6.4

Here is an example of set collection using multiple items:

$c := new collection
set collection($c; "name'; "Aparajita’™; "age'; 40)
// Collection now contains two items

Note: This command has been superceded by the simpler syntax:

collectionRef{inKey} := inValue or collectionRef{inKeyHinIndex} := inValue

set collection array version 2

set collection array(inHandle; inKey; inArray)

Parameter Type Description

inHandle Longint — Collection handle

inKey Text — Key of collection item to store
inArray Array — Array to set for the given item
Discussion

This command searches the collection specified by inHandle for the item with the key
inKey.

If inArray is not an array, an error is generated and execution is aborted.
If the item is found, its value is replaced with inArray.
If the item is not found, a new item is added to the collection with the given key and

array.

Note: This command has been superceded by the simpler syntax:

collectionRef{inKey} := inArray

Chapter 11 Command Reference 165

Active4D v6.4

is a collection

Collections

version 2
modified version 4.0

collection has

is a collection(inRef) — Boolean

Parameter Type Description

inRef <any> — Potential collection handle or iterator
Result Boolean < TrueifiinRefis a collection handle
Discussion

This command tests a value to ensure it is a collection handle. Although Active4D tests
the validity of collection handles in commands that take one, if the handle is not valid an
error is generated and execution is aborted.

If you are unsure if a value is a collection handle and you don’t want your script to be
prematurely aborted, you should use this command to test the value before passing it to
a collection command.

If the value is not a Longint, this command returns False.

version 2
modified version 4.0

collection has(inRef; inKey {; *}) = Boolean

Parameter Type Description

inRef Longint — Collection handle or iterator
inKey Text — Key of collection item to test
* * — Perform wildcard search
Result Boolean < Trueifkey s in collection
Discussion

This command searches the collection specified by inRef for the item with the key inKey.
If * is passed, inKey may contain 4D wildcard characters and they will be honored in the
search.

If the item is found, True is returned, otherwise False.

166

Chapter 11 Command Reference

Collections Active4D v6.4

If a collection value might be a non-text type, it is not sufficient to get its value and
check for an empty string being returned. In such cases you should always use this
command to test for the existence of a collection item, as shown here:

$c := new local collection

it (Sc{'test"} # ")
// This would break if "test" existed and was a number
end if

// The correct way
iT (collection has($c; "test™))
$test := $c{'test"}

else
$test := "this is a test”
$c{"test"} := $test
end if
version 2
count collection items modified version 4.0
count collection items(inRef) — Longint
Parameter Type Description
inRef Longint — Collection handle or iterator
Result Longint < Number of items in collection
Discussion

This command returns the number of items in the collection specified by inRef.

delete collection item version 2

delete collection item(inHandle; inKey)

Parameter Type Description

inHandle Longint — Collection handle

inKey Text — Key of collection item to delete
Discussion

This command searches the collection specified by inHandle for the item with the key
inKey. To delete more than one item, you may use a wildcard in the key. All items that
match will be removed from the collection.

Chapter 11 Command Reference 167

Active4D v6.4 Cryptography

Cryptography

Active4D provides a few simple commands for doing basic encryption/decryption and
hashing of text, in case you need to make aspects of your site more secure.

Each of the cryptography commands has a corresponding plugin command accessible
from 4D, so that you can share encrypted data between 4D and Active4D.

The details of the various cryptographic algorithms employed are beyond the scope of
this document. There is a wealth of information on cryptography online.

168 Chapter 11 Command Reference

Cryptography Active4D v6.4
version 4.0

base64 decode modified v5

base64 decode(inText {; inCharset {; * | inURLSafe}}) — Text | BLOB

base64 decode(inBlobData) — BLOB

Parameter Type Description

inText Text — Base64 encoded text

inCharset Text — Charset of decoded text

* * — Use URL safe mode

inURLSafe Boolean — True to use URL safe mode

Result Text | BLOB « Original data

inBlobData BLOB — Base64 encoded data

Result BLOB < Original data

Discussion

This command decodes text that was encoded with base 64 encoding (such as the
base64 encode command).

If passed text and no charset, base64 decode returns a BLOB.

If passed text and a charset, base64 decode decodes the text, converts from the given
charset to Unicode, and returns Unicode text.

If * is passed or inURLSafe is passed and is True, text is assumed to be in a URL safe form of
base 64 encoding where'+" and‘/’ are replaced with’-"and‘_’ and the “=" padding at the
end is stripped. If you do URL safe decoding, be sure the text was encoded in a URL safe

form.

When text is passed, whitespace (carriage return, linefeed, space, tab) in the text is
ignored. If the text contains invalid base64 characters, an empty string is returned.

If passed a BLOB, base64 decode returns a BLOB, because there is no guarantee that the
decoded data contains valid Unicode.

Chapter 11 Command Reference 169

Active4D v6.4

Cryptography

version 4.0

base64 encode modified v5
base64 encode(inText {; inCharset {; * | inURLSafe}}) — Text
base64 encode(inBlobData) — Text
Parameter Type Description
inText Text — Original text
inCharset Text — Charset of encoded text
* * — Use URL safe mode
inURLSafe Boolean — True to use URL safe mode
Result Text < Encoded text
inBlobData BLOB — Original data
Result Text < Encoded data
Discussion
This command encodes arbitrary bytes of binary data as a base 64 number which is
represented by a letter or symbol in the 7-bit ASCII character set. The 7-bit ASCIl nature
of this text makes it easy to use in a URL, store in a database text field, etc., because it will
never be changed due to character set conversions.
This command is primarily designed to be used in conjunction with blowfish encrypt,
which returns 8-bit ASCII.
Because Unicode is a multibyte character set and base 64 is byte-oriented, Unicode text
must be converted to a byte-oriented character set before it is encoded.
By default, Unicode text passed to base64 encode is converted to Mac Roman for
backwards compatibility. You can specify another character set (such as UTF-8) by
passing the inCharset parameter, which should be a valid IANA charset name. If the name
is empty, it defaults to Mac Roman. If the name is not valid, an error is generated and
execution is aborted.

Note: The charset you choose should be byte-oriented (e.g. UTF-8), not multibyte
(e.g. UTF-16).

If *is passed or inURLSafe is passed and is True, a URL safe form of base 64 encoding is
created where'+" and /' are replaced with -’ and’_" and the “=" padding at the end is
stripped. If you create URL safe encoding, be sure to do URL safe decoding as well.
base64 encode can take a BLOB as the first parameter, in which case the bytes of the
blob are encoded directly and no charset is necessary.

170 Chapter 11 Command Reference

Cryptography Active4D v6.4

Example
$id := string(session{" user.id"})
$enc := blowfish encrypt($id; "test"; "test"; "utf-8")

$qry := build query string(""; "u"; base64 encode($enc))

version 4.0
blowfish decrypt modified v5

blowfish decrypt(inBlob; inPassphrase {; inlV {; inCharset {; *}}}) — Text | <none>

Parameter Type Description

inBlob BLOB — Encrypted data to decrypt
inPassphrase Text — Key used to encrypt data
inlV Text — IV used to encrypt data
inCharset Text — Charset of encrypted text
* * — Decryptin place

Result Text | <none> < Encrypted text
Discussion

This command decrypts data that was encrypted with the Blowfish symmetric block
cipher (such as the blowfish encrypt command). The passphrase and initialization
vector (inlV) must be the same as those that were used to encrypt the text.

If * is not passed, the decrypted BLOB is converted to Unicode text. If inCharset is not
passed in, the decrypted data is converted from Mac Roman for backwards compatibility.
You can specify another character set (such as UTF-8) by passing inCharset, which should
be a valid IANA charset name. If the name is empty, it defaults to Mac Roman. If the name
is not valid, an error is generated and execution is aborted.

Note: The charset you choose should be byte-oriented (e.g. UTF-8), not multibyte
(e.g. UTF-16).

If * is passed, the data is decrypted in place and nothing is returned.

Chapter 11 Command Reference 171

Active4D v6.4 Cryptography

version 4.0
blowfish encrypt modified v5

blowfish encrypt(inText; inPassphrase {; inlV {; inCharset}}) — BLOB
blowfish encrypt(inBLOB; inPassphrase {; inlV {; inCharset {; *}}}) - BLOB | <none>

Parameter Type Description

inText Text — Textto encrypt
inPassphrase Text — Key to encrypt/decrypt text
inlV Text — Seed text for encryption
inCharset Text — Character set to convert to
Result BLOB < Encrypted data

inBLOB BLOB — Datato encrypt
inPassphrase Text — Key to encrypt/decrypt data
inlV Text — Seed text for encryption
inCharset Text — Character set to convert to
* * — Encryptin place

Result BLOB < Encrypted data

Discussion

This command encrypts inText or inBLOB with the Blowfish symmetric block cipher.

Blowfish encryption and decryption in Active4D use a variable length key between 1 and
56 bytes and an eight-byte IV, or initialization vector. After conversion to the target
character set, both the key and IV are truncated to the maximum length or padded with
spaces to the minimum length.

Text to be encrypted is converted from Unicode to the target character set, then padded
with PKCS#5 padding to an even multiple of eight bytes before encryption. If you are
encrypting and decrypting within Active4D, you don't need to know this, but if you are
sharing encrypted data with other software, you need to know the encryption format.

inPassphrase is the key with which you encrypt and decrypt the text. It must be non-
empty.

In addition, you may supply an initialization vector, or seed text, in the inlV parameter.
The initialization vector (V) is used as the seed text which the encryption algorithm uses.
You may leave it empty if you wish.

By default, the text, passphrase and IV are converted to Mac Roman for backwards
compatibility. You can specify another character set (such as UTF-8) by passing the
inCharset parameter, which should be a valid IANA charset name. If the name is empty, it
defaults to Mac Roman. If the name is not valid, an error is generated and execution is
aborted.

Note: The charset you choose should be byte-oriented (e.g. UTF-8), not multibyte
(e.g. UTF-16).

172 Chapter 11 Command Reference

Cryptography Active4D v6.4

Typically the IV is used to add a bit of randomness to the encrypted text, to make it
harder for potential crackers to determine the passphrase. Because the IV must be
known in order to decrypt, it is usually added to the encrypted text and then retrieved
when the text is decrypted.

For example, you could do something like this:

// encryption

$enc := blowfish encrypt(string(milliseconds); "ivpass™; ")

$iv := substring(base64 encode($enc); 1; 8)

$enc := blowfish encrypt(*'Some text™; '"secret pass'; $iv; "utf-8")
$encText := $iv + base64 encode($enc)

$queryValue := url encode query($encText)

// decryption

$encText := _query{"q"} // already url decoded by Active4D
$iv = substring($encText; 1; 8) // separate 1V

$encText := susbstring($encText; 9)

$encText := base64 decode($encText; "utf-8")

$text := blowfish decrypt($encText; *secret pass'; $iv)

Like | said, you could do something like the above if you are paranoid or are operating in
an environment where your data is so valuable that it is worth it for someone who has
both significant knowledge of cryptographic algorithms and significant computing
resources to attempt to crack your encryption.

In other words, for the vast majority of us, it is quite sufficient to use either no IV or the
same |V all of the time.

If you pass a BLOB as the first parameter and do not pass *, an encrypted BLOB is
returned. If you pass a BLOB and *, the BLOB is encrypted in place and nothing is
returned.

Note: blowfish encrypt always encrypts to a BLOB in Active4D v6 because
encryption actually creates a bunch of numbers which cannot reliably be converted
to valid Unicode text.

Chapter 11 Command Reference 173

Active4D v6.4 Cryptography

version 4.0
md5 sum modified v5

md5 sum(inData {; inCharset}) — Text
md5 sum(inData) — Text

Parameter Type Description

inText Text — Original data
inCharset Text — Charset to convert to
Result Text < MDS5 hash

inData BLOB — Original data

Result Text < MDS5 hash
Discussion

This command performs an MD5 hash of inData, which results in a 128-bit (16-byte)
checksum that is returned as a 32-byte hexidecimal number.

MD?5 is a one-way algorithm designed to uniquely identify a sequence of bits in a secure
manner. You cannot reconstruct the original data from the resulting MD5 checksum.

If inData is text and inCharset is not passed, the text is converted to Mac Roman for
compatibility with Active4D v4.x. If inCharset is passed and is empty, it defaults to Mac
Roman. Otherwise it should be a valid IANA character set name or alias. If the name is
invalid, an error is generated and execution is aborted.

For a complete list of valid character set names, see:
http://demo.icu-project.org/icu-bin/convexp?s=IANA&s=ALL

You may also pass a BLOB to this command to calculate a hash on arbitrary data.

174 Chapter 11 Command Reference

Database

Active4D v6.4

Database

Active4D adds a few database commands which make it easier to dynamically get
pointers to tables and fields.

Trigger Errors

If your database uses triggers which return your own error numbers (-15000 to -32000),
those errors are available from Active4D for the following triggers:

* On saving new record
* On saving an existing record
= On deleting a record

If a trigger error is returned from a command that invokes one of those triggers (SAVE
RECORD, DELETE RECORD and DELETE SELECTION), you can access the error number
in the variable A4D_Error. You may also check the value of the OK variable to see if the
command executed successfully.

For example, the following code save a record and then checks for a trigger error,

warning the user if something went wrong.

save record([people])

iT (AAD_Error # 0)
writebr(""An error occurred saving the record: " + A4D_Error)
end if

Chapter 11 Command Reference 175

Active4D v6.4 Database

version 1
Field name modified v4.0

Field name(inFieldPtr {; *} | inTableNum; inFieldNum {; *}) — Text

Parameter Type Description

inFieldPtr Pointer — Field pointer
inTableNum Number — Number of field's table
inFieldNum Number — Field’s number

* * — Return full [table]field ref
Result Text < Field name

Discussion

Active4D enhances the 4D version of the Field name command with an extra option. If *
is passed as the last parameter, the full [table]field reference will be returned.

get field numbers version 1

get field numbers(inReference; outTableNum; outFieldNum)

Parameter Type Description

inReference Text — Table or field reference as text
outTableNum Longint < Receives the table number
outFieldNum Longint < Receives the field number
Discussion

This command resolves a table or field reference in the form“[table]” or “[table]field” into
the corresponding table and field numbers. It allows you to dynamically build a table or
field reference as a string and then resolve it.

If inReference is not a valid table or field reference, both outTableNum and outFieldNum
will be zero.

If the reference is valid but only a table is passed, outFieldNum will be zero.

176 Chapter 11 Command Reference

Database

Active4D v6.4

get field pointer version 1
get field pointer(inTable; inField | inReference) — Pointer
Parameter Type Description
inTable Number | Pointer — Table number of pointer
inField Text — Field name (no table)
inReference Text — Table or field reference as text
Result Pointer < Pointer to table or field
Discussion

QUERY

The first form of this command takes two parameters. The first parameter is a table
number or pointer, and the second is a field name (without a table name). If inField is a
valid field name within the table referenced by inTable, a pointer to the field is returned,
otherwise a nil pointer is returned.

The second form of this command takes one parameter, which is a table or field
reference in the form “[table]” or “[table]field”. If inReference is a valid table or field
reference, a pointer to that table or field is returned. If inReference is not valid, a nil
pointer is returned.

version 1
modified v2, v6.1r2

QUERY(inTable; {; inConjunction}; inField; inComparator; inValue {; *})

Parameter Type Description

inTable [table] — Main table on which to query
inConjunction Logical | Text — Conjunction with previous line
inField [table]field — Field on which to query
inComparator Operator | Text — How to compare field with value
inValue <any> — Value to compare against field
Discussion

Active4D supports 4D’s extended QUERY syntax with its own extension:

= inConjunction may be used on the first line of a built query, but it ignored.

= jnConjunction may be any unary expression that resolves to “&, “|" or “#". This is an
extension that 4D does not support.

®* inConjunction may be omitted in multi-line queries, and it will default to &.

= inComparator and inValue may be separate arguments.

Chapter 11 Command Reference 177

Active4D v6.4

Database

= inComparator may be any expression that resolves to a valid value compator (“=",“#’,

" "unu

u< ' <= ' > ' >:u Or”%”).

QUERY BY FORMULA

version 1
modified v5

QUERY BY FORMULA({*; } inTable; <expression>)

Parameter
*

inTable
expression

Discussion

Type

*

[table]
Boolean

VRN

Description

Execute within 4D’s context
Main table on which to query
Boolean expression

If *is not passed, this command differs from the 4D version of QUERY BY FORMULA in
that expression is evaluated by Active4D and must be valid Active4D code. This allows
you to call Active4D methods and use local variables in the expression, as well as

reference collections like _form, _query, etc.

If * is passed, this command is executed on the server within 4D’s context, which means
it may execute faster, but you will have no access to Active4D’s variables, collections and

methods.

QUERY SELECTION

version 1
modified v2, v6.1r2

QUERY SELECTION(inTable; {; inConjunction}; inField; inComparator; inValue {; *})

Parameter
inTable
inConjunction
inField
inComparator
inValue

Discussion

Type

[table]

Logical | Text
[table]field
Operator | Text
<any>

See the discussion of QUERY.

Ll

Description

Main table on which to query
Conjunction with previous line
Field on which to query

How to compare field with value
Value to compare against field

178 Chapter 11

Command Reference

Database

Active4D v6.4

version 4.0

QUERY SELECTION BY FORMULA modified v5
QUERY SELECTION BY FORMULA({*; } inTable; <expression>)
Parameter Type Description
* * — Execute within 4D’s context
inTable [table] — Main table on which to query
expression Boolean — Boolean expression
Discussion

See the discussion of QUERY BY FORMULA.

SET QUERY DESTINATION version 1

Table name

SET QUERY DESTINATION(inDestination {; inValue})

Discussion
This command differs from the 4D version if inDestination is Into variable:

= Local variables are not allowed.

= The process or interprocess variable specified must already be defined, but you can
define them yourself with a compiler declaration within Active4D.

version 1
modified v4.0

Table name(inTableNum {; *} | inTablePtr {; *}) — Text

Parameter Type Description
inTableNum Number — Table number
inTablePtr Pointer — Pointer to table

* * — Return [tablename]
Result Text < Field name
Discussion

Active4D enhances the 4D version of the Table name command with an extra option. If *

is passed as the last parameter, the table name will be returned enclosed by square
brackets ([]).

Chapter 11 Command Reference 179

Active4D v6.4 Database

180 Chapter 11 Command Reference

Date and Time Active4D v6.4

Date and Time

UTC Commands

In an internet-based application, your users may be anywhere in the world. It is
important to be able to keep track of various times in a consistent way.

Coordinated Universal Time, otherwise known as UTC or GMT, is an international
standard for coordinating times from different time zones. By storing your dates and
times in UTC, you can be sure that date and time comparisons are accurate.

Active4D provides a suite of commands that allow you to easily convert between local
time and UTC. These conversions are based on the system settings for the current time
zone and whether or not your location within the time zone uses Daylight Savings Time.

Chapter 11 Command Reference 181

Active4D v6.4

Date and Time

Date v5 (modified 4D)
Date(inYear; inMonth; inDay) — Date
Parameter Type Description
inYear Number — Year of date
inMonth Number — Month of date
inDay Number — Day of date
Result Date <« Full date
Discussion
The 4D Date command has been extended to allow you to construct a date from a year,
month and day. This allows you to quickly create a date without having to play tricks like
constructing a string and then parsing it, or using the idiom:
// old way, obscures your intention
$date := add to date(!00/00/00!; S$year; $month; S$day)
// new way, much clearer
$date := date($year; $month; $day)
day of year version 2
day of year(inDate) — Number
Parameter Type Description
inDate Date — Adate
Result Number < Day number within the date’s year
Discussion
This command returns the serial day number within the year represented by inDate. For
example:
$day := day of year(101/01/01!) // $day =1
$day := day of year(112/31/01!) // $day = 365
182 Chapter 11 Command Reference

Date and Time Active4D v6.4

version 2
get utc delta modified v5
get utc delta(outHours; outMinutes)
get utc delta - Number
Parameter Type Description
outHours Number variable < Hour difference between local/UTC
time
outMinutes Number variable < Minute difference between local/UTC
time
Result Number < Minute difference between local/UTC
time
Discussion

In the first form of this command, it returns the number of hours and minutes that would
have to be subtracted from the local time to get a UTC time. Note that local times west of
Greenwich Mean Time will result in negative outHours. Subtracting this negative number
results in adding that many hours to the local time.

In the second formof this command, you pass no parameters and it returns the number
of minutes that would have to be subtracted from the local time to get a UTC time. In
other words, it is the equivalent of:

get utc delta($hours; $minutes)
$minutes += $hours * 60

local datetime to utc version 2

local datetime to utc(ioDate; ioTime)

Parameter Type Description
ioDate Date variable <> Date to convert
ioTime Time variable < Time to convert
Discussion

This command converts ioDate and ioTime from a date and time in the local time zone to
UTC.

Chapter 11 Command Reference 183

Active4D v6.4

Date and Time

local time to utc version 2

local time to utc(inTime) — Time

Parameter Type Description
inTime Time — Atime

Result Time < Converted time
Discussion

This command converts inTime from a time in the local time zone to UTC. The UTC time is
normalized to fall in the range 00:00:00 to 23:59:59.

The UTC date may be before or after the local date. If you need the date as well, use the
local datetime to utc command.

utc to local datetime version 2

utc to local time

utc to local datetime(ioDate; ioTime)

Parameter Type Description
ioDate Date variable <> Date to convert
ioTime Time variable <> Time to convert
Discussion

This command converts ioDate and ioTime from a date and time in UTC to the local time
Zone.

version 2

utc to local time(inTime) — Time

Parameter Type Description
inTime Time — Atime

Result Time < Converted time
Discussion

This command converts inTime from a time in UTC to a time in the local time zone. The
local time is normalized to fall in the range 00:00:00 to 23:59:59.

The local date may be before or after the UTC date. If you need the date as well, use the
utc to local datetime command.

184

Chapter 11 Command Reference

Date and Time Active4D v6.4

week of year version 2

week of year(inDate) - Number

Parameter Type Description

inDate Date — Adate

Result Number < Week number within the date’s year
Discussion

This command returns the serial week number within the year represented by inDate. For

example:
$week := week of year(101/01/01!) // $week =1
$week := week of year(112/31/01!) // $week = 53

Note: The week number for dates in the first week of the year may actually be 53. For
more information, see the “"WEEK_OF_YEAR”" note at:

http://userguide.icu-project.org/datetime/calendar#TOC-Disambiguation

Chapter 11 Command Reference 185

Active4D v6.4

Debugging

Debugging

No development environment would be complete without debugging tools. Although
Active4D does not yet have an interactive debugger, it provides a number of debugging
tools that allow you quickly and easily view what is going on “inside” your scripts.

Most of the debugging tools are actually part of the standard libraries and 4D shell code
distributed with Active4D. The commands in this section are for the most part low level
commands used by the debugging tools.

For more information on Active4D’s debugging tools, see Chapter 13, “Debugging’”

186

Chapter 11 Command Reference

Debugging Active4D v6.4

current library name version 4.0

current library name — Text

Parameter Type Description
Result Text < Library name
Discussion

This command returns the name of the library in which execution is taking place at the
time this command is called. If this command is executed outside of a library method, an
empty string is returned.

current line number version 2

current line number — Number

Parameter Type Description
Result Number < Line number
Discussion

This command returns the line number of the currently executing method. If the
command is not executed within a method, the line number is the line number of the
source file in which the command appears. If the command is executed within a method,
the line number returned is the line number within the body of the method, not
including the method declaration.

current method name version 2

current method name{(*)} — Text

Parameter Type Description

* * — Show full method descriptor
Result Text < Method descriptor
Discussion

This command has two forms. If the * is not passed, the name of the current method is

returned. If you are currently executing outside of an Active4D method, an empty string
is returned.

If the * is passed in, a full descriptor of the current execution context is returned as
follows:

Chapter 11 Command Reference 187

Active4D v6.4

get call chain

Debugging

File Full URL-style path to the file
Inline method Method "<method>"
Library method Method "<lib.method>"<argument list>

version 3

get call chain(outChain)

Parameter Type Description
outChain Text Array < Receives the call chain
Discussion

This command returns the names of all of the methods in the call chain from the point at
which it is executed.

outChain must be a local variable, but it need not be defined before calling this
command.

The chain is represented with the currently executing method in element 1, followed by
the caller in element 2, and so on. The names are in the form library.method, except for
the top level execution scope, which is called “main”. For inline methods (not declared in
a library), the library name will be “global”.

The values in the outChain array are suitable for passing to the local variables
command.

library list version 4.0
library list(outList)
Parameter Type Description
outlList Text Array < Receives the list of imported libraries
Discussion
This command returns the names of all of the libraries that have been imported. If outList
does not exist or is not a Text array, it will created as or converted into a Text array.

188 Chapter 11 Command Reference

Debugging Active4D v6.4

write to console version 2

write to console(inValue {; inFormat})

Parameter Type Description

inValue <any> — Value to write to the response buffer
inFormat Text | Number — Format to use when converting to text
Discussion

This command is functionally equivalent to the write command, but instead of

appending its output to the response buffer, it appends its output to the Active4D
debugging console.

For more information on the Active4D debugging console, see “Using the Debugging
Console” on page 606.

Chapter 11 Command Reference 189

Active4D v6.4 Error Handling
Error Handling
Bad things happen to good people. When things do go wrong, Active4D is there to help
you find out why.
The commands in this section control the various aspects of error handling in Active4D,
which is discussed in Chapter 14, “Error Handling.” It is recommended that you read that
chapter before reading the command descriptions in this section.

190 Chapter 11 Command Reference

Error Handling Active4D v6.4
get error page version 1
get error page — Text
Parameter Type Description
Result Text < Root-relative path to error page
Discussion

This command returns the root-relative error page path for the currently executing
script. The default error page is specified by the “error page” option in Active4D.ini.

get error status version 1
get error status — Number
Parameter Type Description
Result Number < The status that triggered an error
Discussion

Within the context of an error handler, this command returns the response status that
triggered the handler. For example, if an execution error occurs and there is a custom
error handler, within the handler the response status will be 200 (OK), but get error
status will return 500 (Internal Server Error).

If executed outside of an error handler, this command will always return zero.

Chapter 11 Command Reference 191

Active4D v6.4

Error Handling

get http error page v6.0

get log level

get http error page — Text

Parameter Type Description
Result Text < Root-relative path to HTTP error page
Discussion

This command returns the root-relative http error page path. The default http error page
is specified by the “http error page” option in Active4D.ini.

version 1

get log level - Number

Parameter Type Description
Result Number < The current log level
Discussion

This command returns the current log level, which determines which errors or messages
are logged.

in error version 1
in error — Boolean
Parameter Type Description
Result Boolean < True if executing an error page
Discussion
This command returns True if an error page is currently being executed, False if not.

192 Chapter 11 Command Reference

Error Handling

Active4D v6.4

version 1
log message modified v6.4r1
log message(inMessage {; inlsError})
Parameter Type Description
inMessage <Any> — Message to append to the log file
inlsError Boolean — True to mark as an error message
Discussion

This command converts inMessage to a string and then sends it to the Active4D log file if
the A4D Log User Messages flag is set in the current log level. Whereas log messages
generated by Active4D are marked with “Active4D:” after the date and time, log
messages generated by this command are marked by “DB:". This allows you to easily filter
the log entries by their source.

Because this command has no effect if the A4D Log User Messages flag is not set, you can
set the flag during development and use this command to write debugging messages,
then turn off the flag during production to eliminate the debug messages.

If inlsError is passed and is True, the message will be flagged in the log as an error.

set error page version 1
set error page(inPath)
Parameter Type Description
inPath Text — Root-relative path to error page
Discussion

After executing this command, any Active4D errors that occur will cause the given script
to be executed. To use the default error page as specified by the “error page” option in
Active4D.ini, pass an empty string.

The path given should be a URL-style root-relative path. A leading’/’ is ignored. In
addition, the path must contain no native directory separators and no directory
movement (/../).

The path is not validated when this command is executed, but rather when Active4D
attempts to load the given error page. Thus it is up to you to ensure that inPath is valid.

Chapter 11 Command Reference 193

Active4D v6.4 Error Handling

set http error page v6.0

set http error page(inPath)

Parameter Type Description
inPath Text — Root-relative path to HTTP error page
Discussion

After executing this command, any HTTP errors that occur will cause the given script to
be executed. To use the default HTTP error page as specified by the “http error page”
option in Active4D.ini, pass an empty string.

The path given should be a URL-style root-relative path. A leading’/’ is ignored. In
addition, the path must contain no native directory separators and no directory
movement (/../).

The path is not validated when this command is executed, but rather when Active4D
attempts to load the given error page. Thus it is up to you to ensure that inPath is valid.

Note: This command operates on a global basis and will affect all subsequent
requests.

set log level version 1

set log level(inLevel)

Parameter Type Description
inLevel Number — Set of bit flags
Discussion

This command sets the current log level, which determines which errors or messages are
logged.

194 Chapter 11 Command Reference

File Uploads

Active4D v6.4

File Uploads

The HTTP specification allows for binary objects to be included as part of a posted form,
and the HTML specification implements this by providing an input field of type “file".
When such a field is placed on a form, the browser shows a “Browse” button, enabling
the user to select a file for uploading.

When the form is posted, the form’s fields and the file’s contents are specially encoded
and sent to the server. Active4D transparently handles the decoding of this type of
request for you.

How File Upload Works

When a user posts a form with an uploaded file, before code execution starts Active4D
saves the file to a directory called “Active4D uploads” in the default directory (see “The
Default Directory” on page 42). Note that for security reasons, you may not reference the
file directly in that directory.

If the size of the uploaded file would exceed the maximum request size specified by the
“max request size” option in Active4D.ini, the uploaded file is not saved and Active4D
returns the status 413 Request Entity Too Large.

The uploaded file is given the name <sequence><extension>, where <sequence> is a
number starting from 1 which is incremented each time a file is uploaded, and
<extension> is the file extension (if any) of the upload filename as it was on the client’s
machine. If a file already exists in the “Active4D uploads” directory with the proposed
name, Active4D increments the sequence number and tries again until the name is
unique.

Referencing File Uploads

Within your code, you reference uploaded files by the name of the file field on the form
that was posted. For example, if your HTML form contains this field definition:

<input type="file" name="upload" />
you would reference the uploaded file like this:
$size := get upload size(upload™)

Every file upload command takes a reference as the first parameter.

Given an upload reference, you can find out information about the file, copy it from the
upload directory to another directory, or save it to the database. If you pass a reference
to a non-existent upload to an upload command, OK is set to zero and A4D_Error is set to
-43 (File Not Found).

Chapter 11 Command Reference 195

Active4D v6.4

File Uploads

The Importance of Filename Extensions
It is important that you know the type of a file. For example, if you are requesting a
graphic, you want to ensure that a graphic file is uploaded, not a text file.

Most browsers rely on filename extensions to determine the type of a file before
uploading it. The presence and accuracy of this extension is critical. Thus you should
encourage your users to upload files only with proper extensions.

If you want you can check the extension of the upload and reject the upload if it is
incorrect or missing.

Upload Auto-Deletion

If an error occurs during script execution, you may lose track of uploads from the current
request. To prevent the accumulation of orphaned uploads, uploads are automatically
deleted from the “Active4D uploads” directory when the current script finishes
executing, even if there was an error.

If want to retain a copy of the upload, before the script finishes executing, you must use
on of the following:

* copy upload to copy the upload out of the “Active4D uploads” directory
= upload to blob to copy the upload to a blob

= save upload to field to save the upload to a database field

copy upload version 2
copy upload(inReference; inDestPath)
Parameter Type Description
inReference Text — Name of file field on form
inDestPath Text — Directory and filename of destination
Discussion
This command copies the referenced upload to the directory and filename given by the
native or URL-style path inDestPath. If inDestPath is absolute, it is considered a full path. If
inDestPath is relative, it is relative to the default directory.
If a file already exists with the same path, it is overwritten. If the copy succeeds, OK is set
to 1. Otherwise OK is set to zero and A4D_Error contains the error code.
As with all document commands, inDestPath must be within either the web root
directory or a directory in the “safe doc dirs” path list in Active4D.ini. For information on
document paths, see “Document Paths” on page 387. For more information on the “safe
doc dirs” path list, see “Misusing Document Commands” on page 51.

196 Chapter 11 Command Reference

File Uploads Active4D v6.4

count uploads version 2

count uploads — Number

Parameter Type Description
Result Number < Number of files uploaded
Discussion

This command returns how many files were actually uploaded in the current request.

Even though a file field may be on a form, the user may post the form without uploading
afile.

get upload content type version 2

get upload content type(inReference) — Text

Parameter Type Description

inReference Text — Name of file field on form
Result Text < MIME type of file
Discussion

This command returns the MIME type of the given upload, which is determined by its
filename extension. For example, if the uploaded file was called “logo.gif”, this command
will return “image/gif".

If no such upload exists, an empty string is returned.

get upload encoding version 2

get upload encoding(inReference) — Text

Parameter Type Description

inReference Text — Name of file field on form
Result Text < Transfer encoding of file
Discussion

This command returns the transfer encoding of the given upload, if it was provided by
the client browser (which is usually not the case).

If a transfer encoding was not provided or no such upload exists, an empty string is
returned.

Chapter 11 Command Reference 197

Active4D v6.4 File Uploads

get upload extension version 2

get upload extension(inReference) — Text

Parameter Type Description

inReference Text — Name of file field on form
Result Text < Filename extension of file
Discussion

This command returns the filename extension (including the dot) of the given upload.

If the upload has no extension or there is no such upload, an empty string is returned.

get upload remote filename version 2

get upload remote filename(inReference) — Text

Parameter Type Description

inReference Text — Name of file field on form
Result Text < Filename of file
Discussion

This command returns the filename of the given upload as it exists on the client’s
machine.

If no such upload exists, an empty string is returned.

Note: Some browsers return the full path to the remote file, some just return the

filename. You can use the filename of command to be sure you have only the
filename.

198 Chapter 11 Command Reference

File Uploads Active4D v6.4

get upload size version 2

get upload size(inReference) — Number

Parameter Type Description

inReference Text — Name of file field on form
Result Number < Sizein bytes of file
Discussion

This command returns the size in bytes of the given upload.

If no such upload exists, -1 is returned. You can use this to test whether the given file was
actually uploaded.

save upload to field version 2

save upload to field(inReference; inFieldRef | inFieldPtr)

Parameter Type Description

inReference Text — Name of file field on form

inFieldRef [table]field — Fullfield reference of destination
inFieldPtr Field pointer — Pointer to destination field
Discussion

This command saves the given upload to the field identified either by a field reference or
by a field pointer.

If the given upload does not exist, the destination field is not a BLOB field, or if the save
fails in any way, OK is set to zero. If the save succeeds, OKis set to 1.

Note: Beginning with v6.0r10, you can assign the result of upload to blob directly to
the field, although that will result in an extra copy of the file’s contents in memory.

Chapter 11 Command Reference 199

Active4D v6.4 File Uploads

upload to blob v6.0r10

upload to blob(inReference)

Parameter Type Description

inReference Text — Name of file field on form
Result BLOB < Contents of file in a BLOB
Discussion

This command returns the contents of the given upload as a BLOB.

If the given upload does not exist or memory for the BLOB cannot be allocated, OK is set
to zero and an empty BLOB is returned. Otherwise, OK is set to 1.

Note: Beginning with v6.0r10, you can assign the result this method directly to a
field instead of using save upload to field, although doing so will result in an extra
copy of the file’s contents in memory.

200 Chapter 11 Command Reference

Form Variables

Active4D v6.4

Form Variables

When a form is posted, Active4D puts the form variable names and their associated
values into a collection. You can access this collection in your scripts. The form variables
collection is read-only, and follows the same pattern as all read-only collections.

When Form Variables Are Query Params (and vice versa)

If the configuration option “parameter mode” is set to “query params” in Active4D.ini,
form variables will not go into the form variables collection, but into the query params
collection. Likewise, if the “parameter mode” option is set to “form variables”, query
parameters will go into the form variables collection.

Posting JSON Data

Normally, item values in the form variables collection are either text or text arrays.
However, if a form is posted with the Content-Type “application/json’, and the “parse json
request” configuration option is true, and the “parameter mode” configuration option is
not set to “query params’, Active4D parses the form data (in the same way as the parse
jsoncommand) and places the result in the form variables collection with the key
“_json_" If the “parse json request” configuration option is false, the JSON data is
considered raw data.

Posting Raw Data

Normally, item values in the form variables collection are either text or text arrays.
However, if a form is posted which contains raw data (such as XML) and no form
variables, and the “parameter mode” configuration option is not set to “query params’,
Active4D creates a single BLOB item in the form variables collection with the key
"_data_"

Multiple-choice Form Fields

When a multiple-choice list is placed on a form and the user selects more than one item
in the list, one form variable for each selected item is sent as part of the posted form. In
such cases, Active4D creates a text array to hold the selected items, the key of which is
the choice list's form name.

Chapter 11 Command Reference 201

Active4D v6.4 Form Variables

_form version 3.0

_form — Longint

Parameter Type Description
Result Longint < Iterator reference
Discussion

This command is an alias for the form variables command.

form variables version 2

form variables — Longint

Parameter Type Description
Result Longint < Iterator reference
Discussion

This command returns an iterator to the first item in the form variables collection.

For more information on iterators, see “Iterators” on page 214.

form variables has version 2

form variables has(inKey {; *}) — Boolean

Parameter Type Description

inKey Text — Key of item to test

* * — Perform wildcard search
Result Boolean < Trueifkey s in collection
Discussion

This command searches the form variables collection for the item with the key inKey. If *
is passed, inKey may contain 4D wildcard characters and they will be honored in the
search.

If the item is found, True is returned, otherwise False.

202 Chapter 11 Command Reference

Form Variables Active4D v6.4

get form variable version 2

get form variable(inKey {; inIndex}) — Text | BLOB

Parameter Type Description

inKey Text — Key of form variable to retrieve

inlndex Longint — Index of multiple-choice list value to
retrieve

Result Text | BLOB < Value of form variable or ™"

Discussion

This command searches the form variable collection for the item with the key inKey.

If the item is found and an index is not specified, the item'’s value is returned. If the item
value is an array of multiple choices, the first multiple-choice value is returned. Note that
this behavior is different than using the syntax:

$value := form{"multiple_choice_field"} // Returns longint

When using the collection indexing syntax, a reference to an array with no index returns
the array itself, which when assigned results in the current element of the array, which is
alongint.

If the item is found and an index is specified, the given multiple choice value is returned.
If the index is out of range, an error is generated and execution is aborted.

If the item is not found, an empty string is returned.

Note: For scalar values this command has been superceded by the simpler syntax:

_form{inKey} or _form{inKey}inIndex}

get form variable choices version 2

get form variable choices(inKey; outArray)

Parameter Type Description

inKey Text — Key of form variable to retrieve
outArray String/Text Array < Receives the array of choices
Discussion

This command searches the form variables collection for the item with the key inKey.

If outArray is defined but is not a string or text array, an error is generated and execution
is aborted. If outArray was not defined, it is created as a text array.

Chapter 11 Command Reference 203

Active4D v6.4

Form Variables

If the item is found and has multiple-choice values in an array, outArray is set to a copy of
the multiple-choice values.

If the item is found and its value is not an array of multiple-choice values, outArray is set
to a single element containing the form variable value.

If the item is not found, outArray is resized to zero elements.

Note: This command is not really necessary, as you can directly refer to a multiple-
choice array with the syntax:

_form{inKey}

For more information see “Referencing Collection Values” on page 101.

get form variable count version 2

get form variable count(inKey) — Longint

Parameter Type Description

inKey Text — Key of form variable to check
Result Longint < Size of array

Discussion

You use this command to check how many values were selected in a multiple-choice list
on a form.

This command searches the form variables collection for the item with the key inKey.

If the item is found and has multiple-choice values in an array, the size of the array is
returned.

If the item is found and its value is not an array of multiple-choice values, 1 is returned.

If the item is not found, zero is returned.

204

Chapter 11 Command Reference

Form Variables Active4D v6.4

get form variables version 2

get form variables(outKeys {; outValues})
get form variables{(*; inKeyFilter)} — Text

Parameter Type Description

outKeys String/Text Array < Receives the collection keys
outValues String/Text Array < Receives the collection values

* — Indicates a filter is being used
inKeyFilter Text — Keys are matched against this
Result Text < Concatenation of keys and values
Discussion

This command has two forms. The first form fills outKeys and outValues with all of the
keys and values in the form variables collection. If a value is a multiple-choice array, the
first element of the array is put into the outValues array.

If outKeys was not defined, it is created as a string array. If outValues was not defined, it is
created as a text array.

If outKeys is defined but is not a string or text array, an error is generated an execution is
aborted.

The second form of the command returns a concatenation of the form variables in the
form “key1=valuel;key2=value2’, suitable for use as a query string. If a form variable is a
multiple-choice array, all of the array values are included in the concatenation.

The keys and values are converted to UTF-8 and URL encoded.

You may optionally pass in a string which will be matched against items whose key
matches the string. Wildcards are allowed in the filter string. To include items that match
the filter, prefix it with '+’ To exclude items that match the filter, prefix it with -. If there is
no prefix, it is assumed to be an inclusion filter.

count form variables version 2

count form variables — Longint

Parameter Type Description
Result Longint < Number of items in collection
Discussion

This command returns the number of items in the form variables collection.

Chapter 11 Command Reference 205

Active4D v6.4

Globals

Globals

In the course of programming a web site, you may need to store application-wide
information. Because each HTTP request is handled in a separate process, this means you
must have storage that is accessible across processes.

You could define interprocess variables in 4D and access them in Active4D. However, this
means you must modify the database if you need more interprocess variables in your
web site. The whole premise of Active4D is to insulate the database from changes to
your web site, so this is not the optimal solution.

Active4D provides a special global collection which can be accessed in any Active4D
script. By using this collection, you no longer need to use 4D interprocess variables.

Locking and Unlocking the Globals

Because the global collection is accessible to any executing process, you must ensure
that only one process at a time can change it, just as you would with an interprocess
array in 4D.

In 4D you would accomplish this with a global semaphore. Active4D provides a custom
lock specifically for the global collection. If you are setting more than one global
collection item, you should surround the code with the commands lock globals and
unlock globals.

Here is an example that would appear in the On Application Start and On Session Start
methods in the Active4D library:

method "On Application Start"
// We don’t need to lock globals here
// because it happens at startup
set global(*last visit'”; ?00:00:007?)
set global("'visitors'™; 0)

end method

method "On Session Start"
lock globals // Make sure we have exclusive access
set global(*"last visit”; current time)
set global("visitors'™; get global(*'visitors™) + 1)
unllock globals // Let other processes have access
set session("'visit start'; current time)

end method

method ""On Session End"
set global("visitors'™; get global(*'visitors™) - 1)
end method

Note that in the On Session End method, the globals are not being locked. Active4D
automatically locks the globals within the set global command, so for a single set
global call it is not necessary to lock the globals.

206

Chapter 11 Command Reference

Globals

Active4D v6.4

In general, you should lock the globals only when necessary and for as few lines of code
as possible. While they are locked, any other processes that try to access the globals will
be suspended. If this happens often enough it can have an adverse effect on the
performance of your web site.

Note: To prevent a potential deadlock condition, Active4D releases the globals lock
at the end of script execution and at the end of the following special methods:

On Application Start, On Application End, On Session Start, On Session End

Chapter 11 Command Reference 207

Active4D v6.4 Globals
globals version 2
globals — Longint
Parameter Type Description
Result Longint < Iterator reference
Discussion
This command returns an iterator to the first item in the global collection.
For more information on iterators, see “Iterators” on page 214.
globals has version 2
globals has(inKey) — Boolean
Parameter Type Description
inKey Text — Key of item to test
Result Boolean < Trueif key is in collection
Discussion
This command searches the globals collection for the item with the key inKey. If the item
is found, True is returned, otherwise False.
get global version 2
get global(inKey {; inindex}) — <any>
Parameter Type Description
inKey Text — Key of global value to retrieve
inIndex Longint — Index of array element to retrieve
Result <any> < Value of global or ™
Discussion
This command searches the globals collection for the item with the key inKey.
If the item is found and inIndex is not specified, the item’s value is returned. If the item
value is an array, an empty string is returned.
If the item is found and an index is specified, the given array element is returned. If the
index is out of range, an error is generated and execution is aborted.
208 Chapter 11 Command Reference

Globals Active4D v6.4
If the item is not found, an empty string is returned.

Note: For scalar values this command has been superceded by the simpler syntax:

globals{inKey} or globals{inKey}{inIndex}

get global array version 2

get global array(inKey; outArray)

Parameter Type Description

inKey Text — Key of global item to retrieve
outArray Array < Receives the array
Discussion

This command searches the global collection for the item with the key inKey.
If outArray is not an array, an error is generated and execution is aborted.

If the item is found and its value is an array, outArray receives a copy. If outArray has not
yet been defined, it is created with the same type as the source array.

If the item is found and its value is not an array, an error is generated and execution is
aborted.

If the item is not found, outArray is resized to zero. If outArray has not yet been defined, it
is created as a text array.

Note: There is no longer any need to copy a globals array just to manipulate it. You
should use the simpler syntax:

globals{inKey}

The resulting value may be used with all of the array commands such as append to
array and DELETE ELEMENT.

Chapter 11 Command Reference 209

Active4D v6.4 Globals

get global array size version 2

get global array size(inKey) — Longint

Parameter Type Description

inKey Text — Key of global item to retrieve
Result Longint < Size of array

Discussion

This command searches the global collection for the item with the key inKey.
If the item is found and its value is an array, the size of the array is returned.

If the item is found and its value is not an array, an error is generated and execution is
aborted.

If the item is not found, zero is returned.

Note: This command has been superceded by the simpler syntax:

Size of array(globals{inKey})

get global item version 2

get global item(inKey) — Longint

Parameter Type Description

inKey Text — Key of collection item to retrieve
Result Longint < lterator for collection

Discussion

This command searches the global collection for the item with the key inKey.
If the item is found, an iterator reference for the item is returned.

If the item is not found, an empty iterator is returned. For information on empty iterators,
see “Iterating Over a Collection” on page 102.

210 Chapter 11 Command Reference

Globals Active4D v6.4
get global keys version 2
get global keys(outKeys)
Parameter Type Description
outKeys String/Text Array < Receives the collection keys
Discussion

set global

This command fills outKeys with all of the keys in the global collection. If outKeys has not
yet been defined, it is created as a string array.

If outKeys is defined but is not a string or text array, an error is generated an execution is
aborted.

version 2

set global(inKey; inValue {; inKeyN; inValueN | inindex})

Parameter Type Description

inKey Text — Key of collection item to store
inValue <any> — Value to set for the given item
inIndex Longint — Index of array element to set
Discussion

This command searches the global collection for the item with the key inKey.

If the item is found and its value is not an array, you may pass more than one key/value
pairs to set multiple items at once. If the item is found and its value is an array, you may
pass an index to set an element of the array.

If the item is found and an index is not specified, the item’s value is replaced with inValue.

If the item is found, its value is an array, and an index is specified, the given array element
is set. If the index is out of range or the type of inValue is not assignment-compatible
with the array, an error is generated and execution is aborted.

If the item is not found and an index is not specified, a new item is added to the
collection with the given keys and values.

If the item is not found and an index is specified, an error is generated and execution is
aborted.

Note: For scalar values this command has been superceded by the simpler syntax:

globals{inKey} := inValue or globals{inKeyHinIlndex} := inValue

Chapter 11 Command Reference 211

Active4D v6.4 Globals

set global array version 2

set global array(inKey; inArray)

Parameter Type Description

inKey Text — Key of collection item to set
inArray Array — Array to set for the given item
Discussion

This command searches the global collection for the item with the key inKey.

If inArray is not an array, an error is generated and execution is aborted.

If the item is found, its value is replaced with inArray.

If the item is not found, a new item is added to the collection with the given key and

array.

Note: This command has been superceded by the simpler syntax:

globals{inKey} := inArray

count globals version 2

count globals — Longint

Parameter Type Description
Result Longint < Number of items in collection
Discussion

This command returns the number of items in the global collection.

212 Chapter 11 Command Reference

Globals Active4D v6.4
delete global version 2
delete global(inKey)
Parameter Type Description
inKey Text — Key of global item to delete
Discussion
This command searches the global collection for the item with the key inKey. To delete
more than one item, you may use a wildcard in the key. All items that match will be
removed from the collection.
lock globals version 2
lock globals
Discussion
This command locks the global collection such that no other processes may access it.
This is the equivalent of using an interprocess semaphore in 4D.
For information on globals locking, see “Locking and Unlocking the Globals” on
page 206.
unlock globals version 2

unlock globals

Discussion

This command unlocks the global collection so that other processes may access it. This is
the equivalent of using an interprocess semaphore in 4D.

For information on globals locking, see “Locking and Unlocking the Globals” on
page 206.

Chapter 11 Command Reference 213

Active4D v6.4

Iterators

Iterators

As with arrays, it is frequently useful or necessary to iterate over the contents of a
collection. With arrays this is easy; you just use a For loop and index into the array to
access a specific element.

Collections, on the other hand, are not necessarily stored in such a way that a numeric
index can efficiently be used to access a particular item. Thus it is necessary to provide
another mechanism, known as iteration. Iteration means that you start at the
“beginning” of a collection and advance one item at a time towards the “end” of the
collection. At each step the key and value of the current item can be retrieved. This
process is known as iterating over a collection.

Using for each

There are two ways of iterating over a collection in Active4D. The easiest and most direct
way is to use the for each/end for each looping control structure. The basic method of
using for each looks like this:

for each(form variables; $key; $value)
writebr("$key=$value™)
end for each

In the example above, the collection being iterated over is the form variables collection.
Within each pass through the loop, Skey is set to the key of the current item, and Svalue is
set to the value of the current item. If the item’s value is an array, Svalue receives a copy of
the array.

Note: In previous versions of Active4D, collection keys were kept in alphabetical
order, although officially no order was guaranteed. In v6 the keys are kept in no
predictable order, so if you have code that relies on alphabetical keys, you will have to
get the collection keys, sort them, and then use the sorted keys to access the
collection items.

Using Iterators

An iterator is represented by a Longint and can be thought of as a special kind of pointer.
When an iterator is first created, it points at the firstitem in a collection. Given an iterator,
you can retrieve the key or value of the item it points to and advance to the next item. Of
course, you need to know when you have reached the end of the collection, so iterators
also provide a way of telling if there are more items left.

214

Chapter 11 Command Reference

Iterators Active4D v6.4

The basic template for iterating over a collection looks like this:

$it = <get an iterator command>

while (more items($it))
$key := get item key($it)
$value := get item value($it)
next item($it)

end while

Pretty simple. You can also test the type of an item’s value in case it might be an array,
and get the item’s array if it is.

Iterator Validity

Active4D tests the validity of the iterator passed to each of the iterator commands. If the
iterator is not valid, an error is generated and execution is aborted. Thus you do not have
to worry about crashing the server because of a bad iterator.

All iterators become invalid when execution of a script ends.
Warning: If you delete or add an item in a collection, any iterators for that collection

will no longer be valid. Thus you should not attempt to delete or add items while
iterating over a collection.

Chapter 11 Command Reference 215

Active4D v6.4 [terators

for each/end for each version 3.0

for each(inCollectionRef; outKey {; outValue})

Parameter Type Description
inCollectionRef Longint — Collection handle or iterator
outKey <any> < Receives the item key
outValue <any> < Receives the item value
Discussion

For a full discussion of for each/end for each, see “for each/end for each” on page 245.

more items version 2

more items(inlterator) — Boolean

Parameter Type Description

inlterator Longint — lterator

Result Boolean < True if more items in collection
Discussion

This command returns True if there are more items in the collection to be iterated.

next item version 2

next item(iolterator)

Parameter Type Description
iolterator Longint — lterator
Discussion

This command advances the iterator to the next item in the collection.

216 Chapter 11 Command Reference

Iterators

get item key

Active4D v6.4

version 2

get item value

get item key(inlterator) — Text

Parameter Type
inlterator Longint
Result Text
Discussion

Description
— Iterator
< Key of current item

This command returns the key of the item currently pointed to by the iterator.

version 2

get item type

get item value(inlterator) — <any>

Parameter Type
inlterator Longint
Result <any>
Discussion

Description
— lterator
< Value of current item

This command returns the value of the item currently pointed to by the iterator. If the
value is an array, the current value of the array is returned.

version 2

get item type(inlterator) - Longint

Parameter Type
inlterator Longint
Result Longint
Discussion

Description
— lterator
< Type of current item

This command returns the type of the item currently pointed to by the iterator.

Chapter 11 Command Reference

217

Active4D v6.4

get item array

Iterators

version 2

is an iterator

get item array(inlterator; outArray)

Parameter Type Description

inlterator Longint — lterator

outArray Array < Receives a copy of item’s array
Discussion

This command returns the array value of the item currently pointed to by the iterator.

If the iterator is not currently pointing at an item with an array value, an error is
generated and execution is aborted.

version 2

is an iterator(inlterator) — Boolean

Parameter Type Description
inlterator <any> — lIterator

Result Boolean < True if a valid iterator
Discussion

This command returns True if inlterator is a valid iterator reference. If the value is not a
Longint, this command returns False.

218

Chapter 11 Command Reference

JSON

Active4D v6.4

JSON

If you are using an AJAX-based Javascript library in your web sites, at some point it is
likely you will need to create JSON (see json.org) formatted data within Active4D.

Active4D provides a full set of commands for easily creating properly formatted JSON
data from all of the data types Active4D supports, including collections. In addition,
there are commands for quickly adding a selection of records or a RowSet to JSON data.

Note: The functionality of the a4d.json library has been replaced by native JSON
commands, which are much faster (up to 50x) and more powerful. For backwards
compability, the a4d.json library has been retained, but is now just a thin wrapper
around the built in JSON commands, resulting in much greater speed.

It is recommended that you convert any a4d.json-based code to use the built in
commands, as the a4d.json library will be deprecated in a future version.

Using the commands

The JSON commands have two primary interfaces: a high level interface and a low level
interface. Most of the time you will use the high level interface to create, populate and
output a JSON “object”. The high level command names begin with “add’, “start” or “end”.
If you need more control over the format of the JSON data, you can use the low level
“json encode” command.

UTF-8 and Ajax
When using Ajax requests, posted data is encoded as UTF-8 and UTF-8 encoded data is
expected in return.

Active4D handles this transparently. When Active4D detects an Ajax request, it
automatically decodes posted UTF-8 data into Unicode. If you use the JSON commands
to return data to an Ajax request, the data is automatically encoded as UTF-8.

Chapter 11 Command Reference 219

Active4D v6.4 JSON
new json v6.1
new json{(inWrap)} — Object
Parameter Type Description
inWrap Boolean — True to wrap the JSON data within an
enclosing object
Result JSON Object < Object to be used with other JSON
commands
Discussion

add to json

This command creates a new JSON “object” that can be used with other commands in
this library to add JSON-formatted data. JSON objects are automatically cleared at the
end of the current request.

If inWrap is not passed, it defaults to True. If inWrap is True, when json to text or write
json is called the output will be wrapped within an enclosing object ({}).

v6.1

add to json(ioJSON; inKey; inValue {; *; inFilter}{; inKeyN; inValueN {; *; inFilterN}})

Parameter Type Description

ioJSON JSON object — Object to add data to
inKey Text — Key for data item
inValue <any> — Datatoadd

inFilter Text — Filter for collections

Discussion

This command adds data to a JSON object. You may add an unlimited number of
key/value pairs with a single call. All Active4D data types may be used, including arrays
and collections.

If inKey is not an empty string, a new keyed item is added to the object. If inKey is empty,
data is added without a key. Ordinarily you would only add data without a key if you are
dynamically building an array using the start json array and end json array commands.

The data in inValue is converted to JSON format according to its type:

String/Text Encoded string, double-quoted
Number Number
Date Date in IETF “Mon Day, Year” format

220

Chapter 11 Command Reference

JSON

Active4D v6.4

Boolean true or false

Array Encoded according to element type
Collection Encoded as a subobject

JSON object Added as a subobject

Other null

If inValue is a collection and it is followed by * and inFilter, inFilter is used to filter the
contents of inValue. For more information, see “json encode” on page 234.

The array types supported by add to json are those whose scalar elements types are
supported. If an element of longint array is a collection handle, the collection is encoded.
Arrays of an unsupported type will be added as an empty JSON array.

Examples

To understand how this command works, let’s look at some examples to see the resulting
output. First let’s look at the output from the basic data types:

$json 1= new json

add to json($json; "name'; "Sri Chinmoy'; "age'; 76; \\
"birthdate™; 108/27/19311; "Bengali'; true; \\
“time'; ?07:13:277?)

write json($json)

// The output is:
{"name":"Sri Chinmoy","age":76,"birthdate":"Aug 27, 1931",
"Bengali':true,"time":null}

Notice that the “time” item returned a value of null, because time is not a supported type
in JSON. Also notice how we could add multiple key/value pairs at once.

Now let’s look at what happens if we add a collection and an array to a JSON object.

$json 1= new json
$info := new collection('age™; 76; "birthdate"™; 108/27/19311; \\
"Bengali'; true; "time"; ?207:13:277?)
array text($siblings; *; "Chitta"™; "Mantu'; \\
“"Hriday'; "Lily"; "Arpita'; "Ahana'™)
add to json("info"; $info; "siblings'; $siblings)
$json->write

// The output is:

{"name™":"'Sri Chinmoy","info":{"age":76,"birthdate'":"Aug 27,
1931","Bengali":true,"time":null}, " "siblings":["Chitta", "Mantu",
“"Hriday","Lily","Arpita"”, " Ahana"]}

As you can see, the items in a collection are added as a subobject with the given key. The
values in a collection are added with the add command.

Chapter 11 Command Reference 221

Active4D v6.4 JSON

Finally, let’s look at an example of adding a value with no key.

array text($siblings; *; "Chitta"; "Mantu™; \\
“"Hriday'; "Lily"; "Arpita"; "Ahana')

$json := new json
add to json($json; name'; "Sri Chinmoy™)
start json array($json; "siblings™)

for each($siblings; $name)
add to json($json; "''; $name)
end for each

end json array($json)
write json($json)

// The output is:

{"name":"Sri Chinmoy","siblings":["Chitta", " Mantu","Hriday",
“"Lily","Arpita","Ahana"]}

add datetime to json v6.1

add datetime to json(ioJSON; inKey; inDate; inTime; inTimezone)

Parameter Type Description

ioJSON JSON object — Object to add data to

inKey Text — Key for data item

inDate Date — Date portion of datetime
inTime Time — Time portion of datetime
inTimezone Number — Timezone portion of datetime
Discussion

This command adds an IETF format datetime item to a JSON object. Such an item can be
turned into a Javascript Date object by passing the item string to the Date constructor.

If inKey is not an empty string, a new keyed item is added to the object. If inKey is empty,
a datetime item is added without a key. Ordinarily you would only add a datetime
without a key if you are dynamically building an array using the start json array and end
json array commands.

inTimezone should be in the timezone indicated in the inTimeZone parameter. inTimezone
should be minute offset from GMT.

222 Chapter 11 Command Reference

JSON Active4D v6.4

Example

$json 1= new json

// add a datetime in EST (GMT-5)

add datetime to json($json; "DA™; 102/17/1980!; ?20:31:07?; \\
-5 * 60)

write json($json)

// The output is:
{"DA":"Feb 17, 1980 20:31:07 GMT-0500""}

// Javascript on the client, JSON is in a variable called json
var da = new Date(json.DA)

add function to json v6.1

add function to json(ioJSON; inName; inBody)

Parameter Type Description

ioJSON JSON object — Object to add data to
inName Text — Function name
inBody Text — Function body
Discussion

This command adds an item to ioJSON with the key inName and a value of inBody as is,
unquoted and unencoded. This is useful when you need to add a function (such as a
handler or callback) to your JSON data.

Example

$json = new json

add function to json($json; "renderer™; \\

""" function(value, metadata, record) {
return record.data.title + " " + value;

Chapter 11 Command Reference 223

Active4D v6.4

JSON

add rowset to json V6.1

add rowset to json(ioJSON; inRowSet {; inCountKey {; inDataKey {; inMap
{;inFirst { inLimit}}}})

Parameter Type Description

ioJSON JSON object — Object to add data to

inRowSet RowSet — RowSet from which to get data
inCountKey Text — Key for row count item

inDataKey Text — Key for row data item

inMap Text — JSON name to RowSet column map
inFirst Number — Index of first row to add

inLimit Number — Maximum number of rows to add
Discussion

This command adds rows from inRowSet to the JSON object ioJSON. If you have a RowSet
and you want to use it for generating JSON data, this command is the fastest and easiest
way to do so. If the RowSet is selection-based and is not being used for other purposes,
in most cases you will want to use add selection to json instead of this command.

The RowSet’s rows are added as an array of objects, with each object containing one
item for each column of data. The column data is converted as if were passed to the add
to json command. If inDataKey is passed and is non-empty, the array will have the key
inDataKey.

If inCountKey is passed and is non-empty, an item will be added to ioJSON whose key is
inCountKey and whose value is the number of rows in inRowSet.

Note: The number of rows returned with inCountKey is the result of calling
SinRowsSet->rowCount, not SinRowSet->sourceRowCount.

If inMap is not passed or is empty, all of the columns in inRowSet will be added to the row
array. If inMap is passed and is non-empty, it must be a semicolon-delimited list of
mappings from RowSet column names to JSON key names. If the RowSet column name
will be used as is, it is sufficient to use just the column name. If you want to rename a
RowSet column, then the mapping should be a <JSON key>:<RowSet column> pair. This
allows you to specify a subset of the RowSet columns for inclusion in the JSON data,
and/or to rename the RowSet columns.

If inFirst is passed and is >= 1, it specifies the one-based index of the first row from
inRowSet that will be added to self. If inLimit is passed and is >= 0, it specifies the
maximum number of rows from inRowSet that will be added to self. Together, inFirst and

224

Chapter 11 Command Reference

JSON

Active4D v6.4

inLimit make it easy to specify a subset of rows, which is typically the case when paging
through a large RowSet.

Note: Depending on the Ajax toolkit you are using, it is likely that the start index for
a page of data will be zero-based. It is up to you to add 1 to make it one-based before
using the value for inFirst.

Examples

Let’s look at a few examples to illustrate the typical use of the various options. First, we'll
create a RowSet and then add it a JSON object.

// Assume we have a selection of 3 [employee] records
$map = v
name: “concat(
id: [employee]id;

birthdate: [employee]birthdate "

; [employee]first; [employee]last)“;

$rs := RowSet.newFromSelection(->[employee]; $map)
$json 1= new json
add rowset to json($json; $rs; ‘‘count™; "rows')

write json($json)

// The output 1is:

{"count”:3,"rows":[{"name”:"Tiny Tim","id":31,"birthdate":""Apr
12, 1932"},{"name'":"James Taylor™","id":27,"birthdate":"Mar 12,
1948"},{""name" :""Pat Metheny","i1d":13,"birthdate":"Aug 12,
1954} 1%

Now let’s add the rest of the parameters to see the effect. This time we want to eliminate
the id column from the JSON data, and we want to rename the RowSet birthdate column
to the JSON key dob. In addition, we are receiving the starting index in a query parameter
called “start” whose value is “2", and the number of rows to return in a query parameter
called “size” whose value is“1".

// RowSet setup is the same as the example above

// Use ""name" column as is, rename "birthdate'" to "dob"
$jmap := "name;dob:birthdate"

// 1T “start” query param is not passed, default to 0",
// convert it to one-based number
$first := num($attributes{ start”} | "0") + 1

// If "size" query param is not passed, default to "20"

$limit := num($attributes{" size"} | "20™)

$json 1= new json

add rowset to json($json; $rs; "count'; "rows'; $jmap; \\
$first; $limit)

write json($json)

// The output 1is:
{count”:3,"rows": [{"'name :"Pat Metheny",'dob™:"Aug 12, 1954"}]1}

Chapter 11 Command Reference 225

Active4D v6.4

JSON

Note that the count item still returns 3, because the number of rows in the RowSet is still
3, even though there is only one row in the rows array. The reason for this is because
when you are showing paging information for a RowSet, you usually want to display
something like “Displaying records <start>-<end> of <total>", so you always need the
total number of rows in the source dataset.

add selection to json v6.1

add selection to json(ioJSON; inTable {; inCountKey {; inDataKey {; inMap
{ inFirst {; inLimit}})

Parameter Type Description

ioJSON JSON object — Object to add data to

inTable Table — Main table from which to get data
inCountKey Text — Key for row count item

inDataKey Text — Key for row data item

inMap Collection — JSON name to value map

inFirst Number — Index of first row to add

inLimit Number — Maximum number of rows to add
Discussion

This command adds record data from the current selection of inTable to the JSON object
i0JSON. If you have a selection of records and you want to use it for generating JSON
data, this command is the fastest and easiest way to do so.

This command operates in two modes:

= selection mode: IfinFirst # -1, the selection’s records are output as an array of objects,
with each object containing one item for each field.

inFirst specifies the one-based index of the first record in the current selection of
inTable that will be added to self. If inLimit is passed and is >= 0, it specifies the
maximum number of records from the current selection of inTable that will be added
to self. Together, inFirst and inLimit make it easy to specify a subset of records, which is
typically the case when paging through a large selection.

Note: Depending on the Ajax toolkit you are using, it is likely that the start index for
a page of data will be zero-based. It is up to you to add 1 to make it one-based before
using the value for inFirst.

= current record mode: If inFirst =-1, only the current record of the selection is output
as a single object (not within an array) with one item for each field.

The field data is converted as if were passed to the add to json command. If inDataKey is
passed and is non-empty, the record data will have the key inDataKey.

If inCountKey is passed and is non-empty, an item will be added to ioJSON whose key is
inCountKey and whose value is the number of records in the current selection of inTable.

226

Chapter 11 Command Reference

JSON

Active4D v6.4

If inMap is not passed or is empty, all of the fields in inTable will be added to the record
array, with the field name being the JSON column key. If inMap is passed and is non-zero,
it must be a collection which maps JSON column keys to column values. The keys in
inMap are used as the JSON column keys. The values may be one of three types:

= Table pointer: If the value is a table pointer, the current record number for inTable is
output as a JSON number.

= Field pointer: If the value is a field pointer, the value of the field is output as if it were
passed to the add to json command. Fields from tables other than inTable may be
used if there is a many to one relation (it need not be automatic) between inTable and
the foreign field's table. If any foreign fields are used in inMap, RELATE ONE(SinTable->)
is executed before each record is output to ensure related data is available.

= Text: If the value is text, it must be an expression than returns a value (although using
return is not necessary). The resulting value is output as if it were passed to the add to
json command. If you want the result to appended verbatim, without being JSON
encoded, prefix the expression with “@”". If you want to evaluate the expression in 4D
instead of Active4D, prefix the expression (after “@”) with “!".

If inMap contains an item whose key is “a4d.json.callback’, then the value should be a
text block of code to execute after each record of inTable is loaded. The code does not
have to return a value. If you want the code to be executed in 4D instead of Active4D,
prefix it with “I". Code executed in Active4D may consist of multiple statements
separated by carriage returns. Code executed in 4D may only be one line.

Examples

Let’s look at a few examples to illustrate the typical use of the various options. First, we'll
create a selection of records and then add it a JSON object.

// [employee] table

// id Longint

// firstname Alpha20

// lastname Alpha20

// company_id Longint, relate one with [company]id

// dob Date

query([employee]; [employee]contact_id = $attributes{"id"})
$json 1= new json

add selection to json($json; [employee]; *count™; "rows™)
write json($json)

// The output 1is:
{"count”:3,"rows":[{"id":31,"Firstname":"Tiny","lastname™ :"Tim",
company_i1d":101,"dob™:""Apr 12, 1932"},{"id":27,
“firstname':"James", " lastname™:"Taylor", "company_id":107,
"dob":"Mar 12, 1948"%},{"id":13,"firstname'":"Pat",
"lastname':""Metheny","company_id":107,"dob":"Aug 12, 1954"}]1}

Notice how all of the fields were automatically included in the JSON output. Now let’s
add the rest of the parameters to see the effect.

To make the output more useful, we would like to do the following:

* Include the record number of the [employee] table

Chapter 11 Command Reference 227

Active4D v6.4 JSON

* Concatenate the first name and last name into a single name column
= Return the company name instead of its id

= Rename“dob” to “birthdate”

Note: For an example of how to use the inFirst and inLimit parameters, see the
documentation for “add rowset to json” on page 224.

We accomplish this by creating a map and passing it to add selection to json:

// Selection setup is the same as the example above
$map := new collection

// output record number

$map{“‘recnum"} := ->[employee]
// output concatenation of firstname + * ' + lastname
$map{“'name"} := "concat(\" \"; [employee]firstname;

[employee] lastname)"™

// output foreign related one field
$map{‘‘company"} := ->[company]name

// rename a field
$map{“birthdate"} := ->[employee]dob

// use a callback

$map{"'ad4d.json.callback™} := \\

“query([family]; [family]employee_ id = [employee]id)\r"™ + \\
"query([family]; &; [family]type = 1)" // type 1 is child

$map{"'num_children”} := "records in selection([family])"
$json 1= new json
add selection to json($json; [employee]; "count™; "rows™; $map)

write json($json)

// The output is:

{"count":3,"rows": [{"'recnum':207," " name":"Tiny Tim",
company':"Tulips, Inc.","birthdate™:"Apr 12, 1932",
“num_children”:0},{" "recnum”:331, " name* :""James Taylor™,
company':"Gorilla Corp.","birthdate™:"Mar 12, 1948",
“"num_children":2}, {"recnum":713,"name":""Pat Metheny",
"'company'':"The Way Up","birthdate':"Aug 12, 1954",
"num_children”:1}]}

Finally, suppose we have vendors and products they sell, and we want one JSON object
for each vendor which contains an array of objects for each product. We could manually
build the data using start json array/start json object and end json object/end json

228 Chapter 11 Command Reference

JSON

Active4D v6.4

array. But there is a faster and easier way, using a nested JSON object return by a
method that is executed with every vendor record.

// Define a method that will output an array of products
// for the current vendor.

method "vendorProducts"
relate many([vendors]id) // get related products

$json := new json(false) // don’t wrap result in an object
$map := new collection(\\
"id"; ->[products]id; "name"; ->[products]name; \\
“price": ->[products]price)
add selection to json($json; [products]; "*; '"'*; $map)
return (json to text($json))
end method

// Now encode the vendors

all records([vendors])

$json = new json

$map := new collection(\\
“1d"; ->[vendors]id; *name'; ->[vendors]name; \\
"products”: "@vendorProducts'™)

// Note we prefixed the method name with "@" so the result
// will not be encoded as a string but appended verbatim.

add selection to json($json; [vendors]; "count™; "rows™; $map)
write json($json)

// Output:

{"count":2,"rows":[{"1d":100, "name":""Spacely Sprockets",
“products™: [{"id":7,"name":""Widget 100","price™:13.99},
{"i1d":13, " name" :""Sprocket™ ,"price":7.5}]},{"1d"":103,
"name':""Cogswell Cogs","products™:[{"id":31,""name":"Flange
X", "price":27.5},{"id":47," name" :""Cog"",""price":3.99}1}1}

Chapter 11 Command Reference 229

Active4D v6.4 JSON

start json array v6.1

start json array(ioJSON {; inKey})

Parameter Type Description

ioJSON JSON object — Object to add data to
inKey Text — Key for array item
Discussion

This command adds an array start marker to a JSON object. Ordinarily you would only
call this command if you are dynamically building an array using the start json array
and end json array commands instead of using the add to json command.

Warning: To ensure valid JSON data, be sure to balance a call to this command with
a call to end json array.

If inKey is not passed or is an empty string, the array start marker is preceded by an item
key.

Example

array text($siblings; *; "Chitta"; "Mantu™; \\
“"Hriday'; "Lily"; "Arpita"; "Ahana’™)

$json 1= new json
start json array($json; "siblings™)

for each($siblings; $name)
add to json($json; "''; $name)
end for each

end json array($json)
write json($json)

// The output is:
{"siblings":["Chitta",""Mantu","Hriday", "Lily","Arpita",Ahana"]}

230 Chapter 11 Command Reference

JSON Active4D v6.4

end json array V6.1
end json array(ioJSON)
Parameter Type Description
ioJSON JSON object — Object to add data to
Discussion

This command adds an array end marker to a JSON object. Ordinarily you would only call
this command if you are dynamically building an array using the start json array and
end json array commands instead of using the add to json command.

Warning: To ensure valid JSON data, be sure to balance a call to this command with
a previous call to start json array.

Example
See “start json array” on page 230.

start json object v6.1

start json object(ioJSON {; inKey?})

Parameter Type Description

ioJSON JSON object — Object to add data to
inKey Text — Key for subobject
Discussion

This command adds an object start marker to a JSON object. Ordinarily you would only
call this command if you are dynamically building an object using the start json object
and end json object commands instead of using the add to json command.

Warning: To ensure valid JSON data, be sure to balance a call to this command with
a call to end json object.

Chapter 11 Command Reference 231

Active4D v6.4

end json object

JSON

If inKey is not passed or is an empty string, the object start marker is preceded by an item

key.

Example

$json 1= new json
start json array($json; “employees'™)

for each([employee])
start json object($json)
add to json($json; "name'; [employee]name); \\
age'; [employee]age)
end json object($json)
end for each

end json array($json)
write json($json)

// The output is:

{"employees": [{""name":"Tom","age'" :31},{""name™:""Dick",""age' :27},

{"name":"Harry","age":42}1}

v6.1

end json object(ioJSON)

Parameter Type Description

ioJSON JSON object — Object to add data to
Discussion

This command adds an object end marker to a JSON object. Ordinarily you would only

call this command if you are dynamically building an object using the start json object

and end json object commands instead of using the add to json command.

Warning: To ensure valid JSON data, be sure to balance a call to this command with

a previous call to start json object.

Example
See “start json object” on page 231.

232

Chapter 11 Command Reference

JSON

Active4D v6.4
json to text v6.1
json to text(inJSON) — Text
Parameter Type Description
inJSON JSON object — Object from which to get JSON data
Result Text < JSON-formatted data
Discussion

This command returns the data that has been added to inJSON as JSON-formatted text.

Usually you will not need to call this command directly, since you will want to write the

reult of this command to the response buffer, and the write json command does that for
you.

Warning: If you do decide to write JSON data to the response buffer yourself

(instead of using write json), be sure to use the write raw command to prevent any
HTML encoding.

write json v6.1
write json(inJSON; inSetContentType)
Parameter Type Description
inJSON JSON object — Object from which to write JSON data
inSetContentType Boolean — True to set the content type
Discussion

This command writes the data that has been added to self as JSON-formatted text to the
response buffer. This is the primary command you will use to return JSON data to a client.

If inSetContentType is not passed or is True, the content type of the response is set to
“application/json”.

Chapter 11 Command Reference 233

Active4D v6.4

write jsonp

JSON

v6.1

json encode

write jsonp(inJSON)

Parameter Type Description

inJSON JSON object — Object from which to write JSON data
inCallback String — Callback expected by JSONP request
inSetContentType Boolean — True to set the content type

Discussion

This command writes the data that has been added to inJSON as JSON-formatted text to
the response buffer, wrapped in a call to the function inCallback. This is the primary
command you will use to return JSON data to a client that is using the JSONP protocol.

If inSetContentType is not passed or is True, the content type of the response is set to
“application/json”.

Example
Assume your front end makes a JSONP request with the following URL:

/enrol Iments/list?cb=CPJSONPConnectionCal Ibacks.cal lback32626
You build the JSON response and then return it like this:

$json 1= new json

// add data to $json

$callback := $attributes{'cb”} // assuming fusebox
write jsonp($json; S$callback)

v6.1

json encode(inValue {; inFilter}) — Text

Parameter Type Description

inValue <any> — Data to JSON encode
inFilter Text — Filter for collections
Result Text < Encoded value
Discussion

This low level command encodes data into JSON format. All Active4D data types may be
used, including arrays and collections. Usually you would not use this command directly,
but use the high level add to json command instead.

234

Chapter 11 Command Reference

JSON

Active4D v6.4

When encoding a collection, this command encodes the data in inValue as a JSON object,
with each key/value pair in the collection becoming a key/value pair in the JSON object.
If the value has no corresponding JSON type, the value null is returned.

If inFilter is passed and is non-empty, it is used as a matching expression to determine
which items from inCollection are encoded. The rules for the filter expression are as
follows:

If the filter begins with "#', it performs an exclusion, i.e. all items that match the filter
are excluded.

Otherwise only items that match the filter are included.

If the first character after the optional “#” and the last character is "/" it is considered a
regular expression pattern and regex matching is done.

Otherwise simple string comparison is performed.

Examples

Let's take a look at some simple filters to see how they affect the output of this
command.

$c := new collection(*"foo™; 7; "bar'"™; 104/13/1964!; "baz'; false)

// simple string matching
$enc := json encode($c; "foo')
// $enc = {"'foo":7}

// simple string matching with wildcard
$enc := json encode($c; "b@")
// $enc = {""bar":"Apr 13, 1964","baz":false}

// exclusion matching, simple string
$enc := json encode($c; "#bar'™)
// $enc = {"foo":7,"baz":false}

// exclusion matching, simple string with wildcard
$enc := json encode($c; "'#b@'")
// $enc = {"foo":7}

// regex matching
$enc := json encode($c; "/foo|bar/'™)
// $enc = {"foo":7,"bar":"Apr 13, 1964"}

// exclusion matching, regex
$enc := json encode($c; "#/foo|bar/™)
// $enc = {"baz":false}

Chapter 11 Command Reference 235

Active4D v6.4 JSON
parse json v6.0r2
parse json(inJSON {; inDateKeys {; inThrowOnError}}) — <any>
Parameter Type Description
inJSON Text — Textto parse
inDateKeys Text — Regular expression to match keys for
date conversion
inThrowOnError Boolean — True to throw on malformed JSON
Result <any> < Parsed JSON data
Discussion
This method parses JSON text into its corresponding Active4D value.
All valid JSON types and syntaxes are supported, with the exception that array elements
must all be of the same type. JSON types map to Active4D types as follows:
JSON type Active4D type
object collection
array array
string text
number real
true/false boolean
null nil pointer
Note that JSON has no native representation for dates. To convert textual
representations of dates into 4D dates, pass a delimited regular expression in inDateKeys.
JSON strings or string arrays whose keys match the regular expression will be considered
for conversion. Conversion occurs if the string value matches one of the following
patterns:
Mmm d, yyyy IETF date format. Mmm is a 3-letter English month
abbreviation.
yyyy-mm-dd ISO Date format
yyyy-mm-ddThh:mm:ss
Also note that all collections created from JSON objects will be local.
Note: Because this command may return an array, you should always use the super
assign operator (::=) to assign the result of this command.
236 Chapter 11 Command Reference

JSON Active4D v6.4

If inThrowOneError is True (the default), malformed JSON will throw an error. Otherwise it
will skip the item and continue if it can recover. If it cannot recover, an error will be
thrown.

Example

// Given the JSON data:
{"name™:""Sara",""birthdate":"Dec 10, 1931"}

// When parsing, we can convert "birthdate" to a 4D date:
$data := parse json($json; "/~birthdate$/'; true)

Chapter 11 Command Reference 237

Active4D v6.4 Language

Language

Active4D supports every major feature of the 4D language. In addition, it extends the
language to make code writing more efficient.

You should especially learn to use the choose command, as it is tremendously useful.

238 Chapter 11 Command Reference

Language

call 4d method

Active4D v6.4

version 1

call method

call 4d method(inMethodName {;inParam1 {...;inParamN}}) - <any>

Parameter Type Description
inMethodName Text — Name of method to call
inParam1..N <any> — Method parameters
Result <any> < Value returned by method
Discussion

This command executes the given 4D method, passing any parameters which follow the
method name. It is critical that the parameters you pass are compatible with the
parameter declaration in the 4D method. If the method returns a value, it may be
ignored.

Note: The primary purpose of this command is to allow indirect method calls. Under
normal circumstances this command is unnecessary, as you can call 4D methods
directly with the same syntax as you would in 4D.

If inMethodName does not specify an existing 4D method, an error is generated and
execution is aborted.

For more on the purpose and use of this command, see “Indirect Method Calls (aka Poor
Man's method pointers)” on page 99.

version 1

call method(inMethodName {;inParam1 {...;inParamN}}) —» <any>

Parameter Type Description
inMethodName Text — Name of method to call
inParam1..N <any> — Method parameters
Result <any> < Value returned by method
Discussion

This command executes the given Active4D method, passing any parameters which
follow the method name. If the method returns a value, it may be ignored.

Note: The primary purpose of this command is to allow indirect method calls. Under
normal circumstances this command is unnecessary, as you can call Active4D
methods directly with the same syntax as you would a 4D method.

Chapter 11 Command Reference 239

Active4D v6.4

Language

You may specify a library method by using the library.method syntax, just as you would if
you were directly calling the method. If inMethodName does not specify an existing
Active4D method, an error is generated and execution is aborted.

Normal rules for parameter passing to Active4D methods apply to this command. For
more information on calling Active4D methods, see Chapter 8,“Methods.”

choose version 2

choose(inCondition; trueExpression; falseExpression) — <any>

Parameter Type Description

inCondition Boolean — Determines which expression to
evaluate

trueExpression <any> — Expression to evaluate if inCondition is
True

falseExpression <any> — Expression to evaluate if inCondition is
False

Result <any> < trueExpression or falseExpression

Discussion

This command evaluates the Boolean expression inCondition. If the expression evaluates

to True, the command evaluates and returns the result of trueExpression. If the expression

evaluates to False, the command evaluates and returns the result of falseExpression.

This command is basically a way of performing an inline If/Else/End if. Used properly, it

can greatly streamline your code.

For example, suppose you are building a table with a list of records. If a table cell has no

data at all, some browsers will not display the cell as empty, but rather as non-existent. To

prevent this, you insert a non-breaking space () in the cell.

240 Chapter 11 Command Reference

Language Active4D v6.4

Without the use of choose, your code would look something like this:

<table>
<%
for ($i; 1; records in selection([contacts]))
goto selected record([contacts]; $i)
%>

<tr>
<td>
<%
if (length([contacts]name) = 0)
write(*' ')
else
write([contacts]name)
end iIf
% =
</td>
</tr>
<% end for %>
</table>

Using choose, the If/Else/End if block becomes this:

<% =choose(length([contacts]name) = 0; " '; [contacts]name)
%>

Note that we have streamlined even further by using the = operator as a synonym for
write. For more information on this use of =, see “Response Buffer” on page 300.

Here's another example where choose comes in handy: setting radio buttons. To set a
radio button in HTML, you must add the word “checked” to the radio button’s tag.
Ordinarily, this would require a separate test for each radio button declaration, like this:

<input type="radio” name="f_radio” value="1"

<% if ([contact]rating = 1)
write(''checked™)
end if
%>
/>Good

<input type="radio" name="f_radio" value="2"
<% if ([contact]rating = 2)
write(''checked™)
end if
%>
/>Better

<input type="radio” name="f_radio" value="3"
<% if ([contact]rating = 3)
write(*'checked™)
end if
%>
/>Best

Chapter 11 Command Reference 241

Active4D v6.4 Language

Yuck. This would probably lead you to write a library method something like this:

method “makeRadio™($inName; $invValue; $inChecked)
write("<input type="radio” name="$inName™ value ="inValue"")

if ($inChecked)
write("" checked')
end if

write(" />")
end method

This is better in one sense, but worse in another; because you have embedded the radio
button HTML in a method, you lose the ability to view and edit the checkbox in an HTML
editor. Remember, the whole point of Active4D is to embed your code in HTML, not the
other way around.

Using choose, you can have the best of both worlds, like this:

<input type="radio" name="f_radio" value="1"

<Y%=choose([contact]rating = 1; 'checked"; ")%> />Good

<input type="radio" name="f_radio" value="1"
<%=choose([contact]rating = 2; "checked"; """)%> />Better

<input type="radio" name="f_radio" value="1"
<Y%=choose([contact]rating = 2; "checked"; "")%> />Best

define version 1

define(inName; inValue)

Parameter Type Description

inName Identifier — A name for the constant

inValue <any> — The value to assign to the constant
Discussion

This keyword defines a new named constant. The name must conform to the rules for 4D
process variables. The value can be any valid expression.

Named constants have scope, like local variables. Constants defined outside of a library
are global in scope, and may be accessed anywhere, including within the body of
methods.

Constants defined within libraries are scoped to the library, like library methods. Library
constants are accessible to all methods in the library without using the library name.
Outside of the library, library constants are accessible by using <library>.<constant>
notation, where <library> is the library name and <constant> is the constant name, or

242 Chapter 11 Command Reference

Language

Active4D v6.4

simply by using <constant> if its name does not clash with any other name in the current
scope.

If used within a library definition, the define command must appear after between the
library and end library keywords, but outside of any method definitions. It is an error to
define a constant within the body of a method.

If a library constant referred to within a library method has the same name as a global
constant, the library constant is used. However, if you refer to a constant outside of a
library method that is defined in more than one imported library, or defined in an
imported library and the global scope, an error is generated because Active4D cannot
disambiguate the constant reference.

Thus, if a global constant has the same name as an imported library constant, it will no
longer be accessible.

The define command is useful anywhere you would normally want to use a named
constant within 4D, but you have not created one. For example, suppose you have a
Longint field called [Sales_Leads]Rating which classifies a sales lead according to the
following values:

Value Description

1 Cold

2 Warm

3 Hot

4 Nuclear

If you have not defined 4DK# named constants for these values, it would be nice to refer
to them by names instead of numbers. You could create a file called “constants.a4d”
which contained the following code:

<%
define(kSaleslLead_Cold; 1)
define(kSalesLead_Warm; 2)
define(kSalesLead_Hot; 3)
define(kSalesLead Nuclear; 4)
%>

Within several scripts you need to use those constants. You cannot use include, because
it is an error to define the same constant more than once. This is where require comes
in. By using require before the code that uses the constants, like this:

<%
require(‘'constants.a4d")
query([sales_leads];[sales_leads]rating = kSalesLead Nuclear)
// and so on

%>

you can ensure they are defined without worrying about whether or not they have
already been defined within the current script execution.

Chapter 11 Command Reference 243

Active4D v6.4

EXECUTE

Language

version 2 (enhanced 4D)

execute in 4d

EXECUTE(inText {; *}) — <any>

Parameter Type Description

inText Text — Text to execute

* * — Execute as embedded code
Result <any> < Optional return value
Discussion

This command can be used like the standard EXECUTE command in 4D, which is limited
to executing a single line of code.

Active4D extends the EXECUTE command to allow execute of an entire block of code,
including control structures like loops and If/Else/End if. This allows you to use
techniques such as storing scripts in the database to prevent manipulation by the end
user, like this:

query([scripts];[scripts]name="query customer by name')
execute([scripts]text)

Active4D also extends EXECUTE by allowing you to return a value using the return
keyword within the executed text, like this:

$text :
$size :

“"return (size of array(%s))" % $arrayName
execute($text)

If the option * argument is passed, inText is treated as HTML with embedded Active4D
code instead of raw Active4D code. Effectively this is the same as an include, but the
code to include is passed directly into the command.

version 4.0

execute in 4d(inText {; *})

Parameter Type Description
inText Text — Text to execute
* * — Expect aresult
Discussion

This command executes inCode within 4D, and is subject to all of the restrictions of 4D's
EXECUTE command.

244

Chapter 11 Command Reference

Language

Active4D v6.4

If *is passed, the result of the executed code can be returned as the result of the
command. If there is an error in the parsing or execution of inCode, Active4D throws a
syntax error.

In conjunction with the ability to create process/interprocess variables within Active4D,
this command relieves you of the need to write wrapper 4D methods to implement
commands that are not supported natively within Active4D.

For example, let’s assume you need to use 4D’s Square root command. Instead of

writing a method to call the command, you can do this:

$num = 7
$root := execute in 4d('Square root(%d)" % ($num); *)

for each/end for each version 3.0

for each(inCollection; outKey {; outValue})

(
for each(inArray; outValue {; outindex})
for each(inText; outCharacter {; outindex})
for each(inTable {; outindex})
Parameter Type Description
inCollectionRef Longint — Collection handle or iterator
outKey <any> < Receives the item key
outValue <any> < Receives the item value
OR
inArray Array — Array to iterate over
outValue <any> < Receives the current array element
outlndex Number < Receives the current array index
OR
inText Text — Text to iterator over
outCharacter <any> < Receives the current character
outlndex Number < Receives the current character index
OR
inTable Table — Table toiterator over
outlndex Number < Receives the selected record index
Discussion

This control structure is a generalized sequence iterator, where a sequence is defined as a
sequence of values, including collections, arrays, strings and selections. Depending on
the sequence which is passed as the first argument, for each takes different arguments.

Each for each must be balanced with a corresponding end for each.

Chapter 11 Command Reference 245

Active4D v6.4

Language

Collections

If a collection reference is passed as the first argument, for each iterates over the items in
the collection. In the body of the loop, outKey contains the key of the current collection
item, and outValue (if passed) contains a copy of the current collection item’s value. If the
item value is an array, outValue receives a copy of the array.

Example

for each(form variables; $key; $value)
writebr($key + =" + $value
end for each

$c := new collection
$c{"'name"} := "Dave"
$c{"age"} = 31

for each($c; $key)
writebr("$key=$c{$key}")
end for each

Arrays

If an array is passed as the first argument, for each iterates over the elements in the array.
In the body of the loop, outValue contains the current array element, and outindex (if
passed) contains the index of the element.

Example

for each($myArray; $value; $i)
writebr("$i: $value*)
end for each

// above code is equivalent to:
for($i; 1; size of array($myArray))
writebr("$i: $myArray{$i}")

end for

Strings

If text is passed as the first argument, for each iterates over the characters in the text. In
the body of the loop, outCharacter contains the current character, and outindex (if
passed) contains the index of the character.

246

Chapter 11 Command Reference

Language

Get pointer

Active4D v6.4

Example

$s = "foo"

for each($s; $char; $i)
writebr("[[$i]]: $char™)
end for each

// above code is equivalent to:
for($i; 1; length($s))

writebr("[[$1]1]1: $s[[$il1]1°)
end for

Selections

If a table reference is passed as the first argument, for each iterates over the records in
the current selection of the table. In the body of the loop, outindex (if passed) contains
the selected record index.

Example

for each([contacts]; $i)
writebr("$i. [contacts]fullname®)
end for each

// above code is equivalent to:
first record([contacts])

while(not(end selection([contacts])))
writebr("%d. %s' % (selected record number([contacts]); \\
[contacts]ful Iname))
end while

version 1
modified v5

Get pointer(inName) — Pointer

Parameter Type Description
inName Text — Name of variable
Result Pointer <« Pointer to variable
Discussion

This command functions exactly like the Get pointer command in 4D, with the addition
that you may use “<>" with an interprocess variable name on macOS.

Chapter 11 Command Reference 247

Active4D v6.4 Language
get throw code v6.0
get throw code — Longint
Parameter Type Description
Result Longint < Error code used in throw command
Discussion
This command returns the error code passed to the most recent throw command.
If no error code was passed to throw or this command is not executed within an error
handler (in error is True), it returns zero.
get throw message v6.0
get throw message — Text
Parameter Type Description
Result Text < Error message used in throw
command
Discussion
This command returns the error message passed to the most recent throw command.
If no error message was passed to throw or this command is not executed within an
error handler (in error is True), it returns an empty string.
global version 1
global(localVar {; localVarN} | *)
Parameter Type Description
localVar | * Local Variable | * — Local variable to bring into current
scope, or all locals
Discussion
When you call an Active4D method, the method has its own local variables in a separate
scope, just as in 4D.
If you want to access or modify local variables outside of the method, ordinarily you
would pass the variables to the method as by-value or by-reference parameters.
248 Chapter 11 Command Reference

Language

import

Active4D v6.4

However, there are times when it is necessary to have direct access to local variables
outside of the method.

The action of this command depends on where it is used and whether or not the named
variables already exist.

* [If this command is used in the global scope, it does nothing.

= If this command is used within a method and localVar exists in the global scope, it will
be accessible within the scope of the method.

= |f this command is used within a method and localVar does not exist in the global
scope, if it is defined within the method it will be in the global scope.

= |f this command is used within a method and you pass * instead of one or more
variable names, all locals in the global scope will be accessible within the method and
all locals defined within the method will be in the global scope.

Variables created with set local are also affected by the use of this command.

In general you should avoid using the form global(*), because you are likely to create
variables in the global scope unintentionally.

Example

In this example, the variable $foo is defined in the global scope before calling the
method foobar. Because Sfoo is declared as global within foobar, it is accessible within
that method. Because Sbar is declared global before being defined, it is then accessible
in the global scope outside of foobar, but not until after foobar executes.

method *‘foobar"
global ($foo; $bar)
writebr($foo)

end method

$foo := "foo"
foobar
writebr($bar) // this works because it is global

version 1
modified version 4.0

import(inLibName {; *}) { — Boolean }

Parameter Type Description

inLibName Text — Name of library to load
Result Boolean < True if successfully imported
Discussion

This command loads an Active4D library. For a full discussion of library importing, see
“Importing Libraries” on page 118.

Chapter 11 Command Reference 249

Active4D v6.4

include

Language

If the optional * is passed, no error is generated if the library is not successfully imported,
and a Boolean value is returned to indicate the success of the import. This allows you to
attempt to import optional libraries.

version 1

include into

include(inPath)

Parameter Type Description
inPath Text — Path of file to include
Discussion

This command includes the file specified by inPath. The path may be absolute or relative.
An absolute path will be relative to the web root directory, a relative path will be relative
to the currently executing file.

To include a file outside of the web root, you must either create an alias within the web
root to the include file or the directory in which the include file lives, or use relative
motion within the include path. Here are some examples:

// Here we are using relative motion in the include path.

// Note that ".inc" does NOT have to be registered as an

// executable extension, because the include command doesn®t
// check that.

include("/../includes/foobar.inc™)

// Here we have created an alias called "includes' within the
// web root which points to a directory outside the web root.
include(*/includes/foobar.inc')

For more information on includes, see “Including Other Files” on page 97.

version 2

include into(inPath; outBuffer)

Parameter Type Description

inPath Text — Path of file to include

outBuffer Text/BLOB < Temporarily becomes the response
buffer

Discussion

This command is identical to the include command, but it temporarily makes outBuffer
the response buffer for the duration of the include (and any nested includes). This is

250

Chapter 11 Command Reference

Language

longint to time

Active4D v6.4

extremely useful when you want to create dynamic output that will go somewhere other
than the browser.

For example, if you want to generate an invoice and email it to a client, you could do the
following:

1 Create a nicely formatted HTML invoice, embedding Active4D code to fill in the
details of the invoice.

2 Useinclude into to dynamically generate the invoice and place the result in a text
variable.

3 Call a4d.utils.sendMail to email the generated invoice as the email body.

outBuffer may be a scalar (non-array) variable, an element of a string or text array, or a
reference to a collection item. If not, an error is generated and execution is aborted.

If an error occurs in the code of the included file (or any nested includes), outBuffer is left
untouched and the error message is placed in the normal response buffer for display in
the browser.

version 1

longint to time(inLong) — Time

Parameter Type Description

inLong Longint — Value to convert to a time
Result Time < Converted value
Discussion

This command converts a Longint value into a Time value.

Unless you use a compiler declaration, Active4D’s variables are variant in their type. To
assign a Longint to a variant variable as a Time you must use this command. This is
specially useful when you are storing Times in a Longint array and you want to retrieve
the elements as Times.

Note: You could also use C_TIME to fix a variable’s type to Time and assign a Longint
to it. This would do type conversion for you.

Chapter 11 Command Reference 251

Active4D v6.4 Language

method exists version 4.0

method exists(inMethodName {; outLibName}) — Boolean

Parameter Type Description
inMethodName Text — Name of method to check
outLibName Text < Name of method’s library
Result Boolean < True if method exists
Discussion

This command determines if the method with the name inMethodName exists. If
inMethodName is a fully qualified library.method name, the library is imported if
necessary and then that library is checked for the given method name.

If inMethodName is not fully qualified, only the currently imported libraries are checked
for the given method name.

If outLibName is passed in, it receives the name of the library in which the method is
found, or an empty string if the method is not found. If inMethodName is the name of an
inline method, outLibName will be “global”.

nil pointer version 4.0

nil pointer — Pointer

Parameter Type Description
Result Pointer < Anil pointer
Discussion

This command returns a nil pointer (big surprise). It is designed to be used in those cases
where you want to specifically pass a nil pointer to a method, instead of using the
standard trick:

// old way
c_pointer($nil)
doSomething($nil)

// new way
doSomething(nil pointer)

With this command your intention is clearer.

252 Chapter 11 Command Reference

Language Active4D v6.4
version 1
redirect modified v5
redirect(inURL {; inlsPermanent})
Parameter Type Description
inURL Text — Destination URL
inlsPermament Boolean — True to generate 301 status
Discussion
This command issues a true HTTP redirect to the specified URL, generating the necessary
response status, headers and content based on the HTTP version of the client.
inURL may be a full URL to an external server (beginning with “http://”), an absolute path,
or a relative path. Absolute paths are considered to be relative to the web root. Relative
paths are relative to the file which contains the redirect command.
If inlsPermanent is passed and is True, a 301 Moved Permanently status is returned to the
browser instead of 303 See Other.
As soon as redirect is executed, the script immediately stops execution and returns
control to the shell. Thus redirect will be the last command within a flow of execution.
require version 1

require(inPath)

Parameter Type Description
inPath Text — Path of file to include
Discussion

This command is identical to the include command, but if the given file has already been
loaded with the require command within the current script execution, it will not be
loaded again.

The primary use for this command is to create a file of defined constants which you want
to reference throughout your pages. For an example of this usage, see “define” on
page 242.

Chapter 11 Command Reference 253

Active4D v6.4 Language

version 1

RESOLVE POINTER modified v5

RESOLVE POINTER(inPointer; outName; outTableNum; outFieldNum)

Parameter Type Description

inPointer Pointer — Pointer to resolve

outName Text < Receives referent name

outTableNum Number < Receives table number/array index

outFieldNum Number < Receives field number

Discussion

This command performs the same function as the RESOLVE POINTER command in 4D.
Unlike 4D however, if inPointer points to an interprocess variable, outName will always be
prefixed with “<>", even on macOS.

sleep version 1

sleep(inTicks)

Parameter Type Description
inTicks Number — Ticks to delay
Discussion

This command is equivalent to:
delay process(current process; $inTicks)

The difference is that it will actually delay, whereas the equivalent 4D code, when
executed from a web process, will do nothing.

254 Chapter 11 Command Reference

Language

throw

Active4D v6.4

version 3.0
modified v6.0

throw(inMessage | inCode {; inMessage})

Parameter Type Description
inMessage Text — Error message
inCode Longint — Error code
Discussion

This command generates an Active4D runtime error with the given error code and
message, which will trigger the normal error handling mechanism and execute an error
page if one has been set.

The first parameter may be either a code or a message. If it is a code, then a message may
be passed in the second parameter.

Within an error handler, the code and message passed to throw can be retrieved with
get throw code and get throw message.

time to longint version 1
time to longint(inTime) — Longint
Parameter Type Description
inTime Time — Value to convert to a Longint
Result Longint < Converted value
Discussion

This command converts a Time value into a Longint value.

Unless you use a compiler declaration, Active4D’s variables are variant in their type. To
assign a Time to a variant variable as a Longint you must use this command. This is
specially useful when you are storing Times in a Longint array and you want to set the
elements as Times.

Note: You could also use C_LONGINT to fix a variable’s type to Longint and assign a
Time to it. This would do type conversion for you.

Chapter 11 Command Reference 255

Active4D v6.4 Math

Math

Active4D adds several utility commands that solve simple but common math problems
with a minimum of code.

256 Chapter 11 Command Reference

Math Active4D v6.4
max of version 1

max of(inValue1; inValue2) — Number

Parameter Type Description

inValue1 Number — Number to compare

inValue2 Number — Number to compare

Result Number < Greater of the two values

Discussion

This command compares inValue to inValue2. The greater of the two values is returned.
min of version 1

min of(inValue1; inValue2) - Number

Parameter Type
inValue1 Number
inValue2 Number
Result Number
Discussion

Tl

Description

Number to compare
Number to compare
Lesser of the two values

This command compares inValuel to inValue2. The lesser of the two values is returned.

random between

version 1 (modified v2)

random between(inMin; inMax) — Number

Parameter Type
inMin Number
inMax Number
Result Number
Discussion

Tl

Description
Minimum number to return
Maximum number to return

Random number between inMin and
inMax inclusive

This command returns a random number between inMin and inMax inclusive. If inMin >
inMax the result is undefined. Both inMin and inMax may be numbers in the full range of

a 4D Real.

Chapter 11

Command Reference

257

Active4D v6.4 ObjectTools

ObjectTools

Active4D allows you to convert ObjectTools objects to Active4D collections and vice
versa. In addition, you can clear an ObjectTools object within Active4D.

Note: ObjectTools support in Active4D requires ObjectTools v4.0 or later.

258 Chapter 11 Command Reference

ObjectTools Active4D v6.4

clear object v6.0

clear object(inObject)

Parameter Type Description
inObject Number — ObjectTools handle
Discussion

This command is the equivalent of the OT Clear command in ObjectTools. After using
this command the object can no longer be used by ObjectTools.

collection to object v6.0

collection to object(inCollection) — Longint

Parameter Type Description

inCollection Longint — Collection to convert
Result Longint < ObjectTools object handle
Discussion

This command converts the collection inCollection to a new ObjectTools object and
returns the handle to the object. You may then use the object handle with any
ObjectTools command.

Embedded collections within inCollection (whether in longints or longint arrays) are
recursively converted to embedded objects.

object to collection v6.0

object to collection(inObject) — Longint

Parameter Type Description
inObject Longint — Object to convert
Result Longint < Collection handle
Discussion

This command converts the object inObject to a new Active4D collection and returns the
handle to the collection. Embedded objects within inObject are recursively converted to
embedded collections within the collection.

Chapter 11 Command Reference 259

Active4D v6.4

Pictures

Pictures

Active4D allows you to read, manipulate, convert and write pictures to disk and to the
response buffer. Using this capability, you can programmatically create and serve
graphics on the fly.

The following 4D picture commands are supported in Active4D:

Picture size

PICTURE PROPERTIES

READ PICTURE FILE

WRITE PICTURE FILE

GET PICTURE FROM LIBRARY

As with all document commands, READ PICTURE FILE and WRITE PICTURE FILE have
their paths checked against the list of safe document directories.

In addition to these commands, you may also use the following operators on pictures:

+ horizontal concatenation

/ vertical concatenation

+= horizontally concatenate and assign
/= vertically concatenate and assign

Here’s an example of using the picture operators:

get picture from library(2000; $pict)

$pict := $pict + $pict

get picture from library(2001; $pict)

$pict += $pict // this is equivalent to the assignment above

Using the image.a4d Script

In addition to the image commands and operators, there is a standard script file called
image.a4d which you can use to load images dynamically, as well as to generate
thumbnails from images. For documentation on this script, see below.

260

Chapter 11 Command Reference

Pictures Active4D v6.4

version 4.0
image.a4d (script file) modified v5

image.a4d

This is not actually a command, but rather a script file that acts like a method. It is
designed to be “called” by making it the image source in an HTML tag. You pass
parameters to the script through the query string.

This script can dynamically load images from four different sources:
= Picture library

* Database

* Disk file

= Active4D method call

* 4D method call

In addition, you may request that the image be turned into a thumbnail of a given size,
and you may request the image in PNG, JPEG or GIF format. These two features are
controlled by two optional query string parameters:

Parameter Description

size Desired pixel width/height
width Desired pixel width

height Desired pixel height
format “png” , “jpg” or “gif”

If size, width or height is passed, the image will be scaled proportionally to the given size.
If format is passed, the default format will be overridden and the image will be returned
in the requested format.

Loading from the 4D picture library
To load an image from the 4D picture library, pass the following query parameter:

Parameter Description
id Numeric id or name of picture

If this query parameter is passed, the picture with the given numeric id (if the first
character is a digit) or name will be returned if it exists. By default the picture will be
converted to PNG.

Chapter 11 Command Reference 261

Active4D v6.4

Pictures

Loading from the database via query

To load an image from a database field via a query, pass the following query parameters:

Parameter Description

img_field Full [table]field reference to image field
gry_field Field name of field to query

gry_value Value to query gry_field for

If these three query parameters are passed, a query is done on gry_field for gry_value,
and if one or more records results, the value of img_field from the first record is used. The
field referenced by gry_field must be either Alpha or Longint (it's supposed to be an id
field). By default the picture will be converted to JPEG.

Loading from the database via record number

To load an image from a database field via a record number, pass the following query
parameters:

Parameter Description
img_field Full [table]field reference to image field
recnum Record number of record to use

If these two query parameters are passed, the record with the given number is loaded,
and if such a record exists, the value of img_field is used. By default the picture will be
converted to JPEG.

Loading from a file

To load an image from a disk file, pass the following query parameter:

Parameter Description
file Web root-relative URL path

If this query parameter is passed, the image at the given location will be returned. By
default the image will take the format of the original, depending on the filename
extension. If the filename extension is not “png” or “gif", it defaults to JPEG format.

This use of image.a4d is primarily useful if you want to create a thumbnail, because
otherwise it would be much more efficient to reference the image directly.

Loading from an Active4D method call

To load an image via an Active4D method call, pass the following query parameters:

Parameter Description
method Name of an Active4D method to call
param Optional parameters to pass to the method

262

Chapter 11 Command Reference

Pictures

Active4D v6.4

If the “method” query parameter is passed, the Active4D method with the given name
will be called. The method should have the following signature:

method "getlmage” ($inParams; &$ioFormat)
// Get a picture into $pict. You can optionally
// set the format by setting $ioFormat.
return ($pict)

end method

Of course you may change “getlmage” to whatever you like. If you need to pass multiple
parameters to the method, you can pack them together with concat (do not use”;” as
the separator, use a character such as“|"),and then unpack them with slice string or

split string in the method.

Loading from a 4D method call
To load an image via a 4D method call, pass the following query parameters:

Parameter Description
method4d Name of a 4D method to call
param Optional parameters to pass to the method

If the “method4d” query parameter is passed, the 4D method with the given name will
be called. The method should have the following signature:

“getlmage($inParams)
C_TEXT($1)
C_PICTURE($0)

“Get a picture somehow, assign to $0

Of course the name of the method may be whatever you like. If you need to pass
multiple parameters to the method, you can pack them together with concat and then
unpack them in the 4D method.

Examples

Get a picture from the picture library in JPEG format:

Chapter 11 Command Reference 263

Active4D v6.4 Pictures

Get an image from a table via a query, making a thumbnail 48 pixels in size:

<%

$qry := build query string(C™"; "img_field"; "[images]image™; \\
tgry_field™; "id"; \\
"qry_value'; 100; \\
"size'; 48)

%>

<img src="/image.ad4d<%=$qry%>" alt=""image" />

Get an image from a table via a record number:

<%

$qry := build query string(""; “img_field"; "[images]image”; \\
“recnum'; 27)

%>

<img src="/image.a4d<%=$qry%>" alt=""image" />
Get an image from a file, making a thumbnail 128 pixels in size:

<% $qry := build query string('"; "file"; "img/myimage.jpg"; \\
“size'"; 128)

%>

<img src="/image.ad4d<%=$qry%> alt="image" />

Get an image from a method call, passing the value 100:

<% $qry := build query string('’; "method"; "img.getimage™; \\
“param™; 100)
<img src="/image.a4d<%=$qry%>" alt=""image" />

version 2
write gif modified v4.0

write gif(inPicture {; inWidth {; inHeight}})

Parameter Type Description

inPicture Picture — Picture to convert to GIF format
inWidth Number — Pixel width or scaling percentage
inHeight Number — Pixel height or scaling percentage
Discussion

This command does the following:

= Scales inPicture according to inWidth/inHeight if passed

= Converts inPicture into a GIF graphic

264 Chapter 11 Command Reference

Pictures

write jpeg

Active4D v6.4

= Replaces the current contents of the response buffer with the graphic
= Sets the content type of the response to “image/gif”

If inWidth is nonzero and inHeight is zero or is omitted, the height will be scaled
proportionally to inWidth. If inWidth is zero and inHeight is nonzero, the width will be
scaled proportionally to inHeight.

If inWidth or inHeight is a positive number, it is treated as an absolute pixel size. If inWidth
or inHeight or negative, they are treated as scaling factors, where .5=50%, 2=200%, etc.

Note: 4D’s GIF conversion routines are optimized for pictures with 256 colors or less.
Pictures with more colors will be converted with noticeable banding and dithering
artifacts.

version 2
modified v5

write jpeg(inPicture {; inWidth {; inHeight}})

Parameter Type Description

inPicture Picture — Picture to convert to JPEG format
inWidth Number — Pixel width or scaling percentage
inHeight Number — Pixel height or scaling percentage
Discussion

This command does the following:

= Scales inPicture according to inWidth/inHeight if passed

= Converts inPicture into a JPEG graphic

= Replace the current contents of the response buffer with the graphic
= Set the content type of the response to “image/jpeg”

If inWidth is nonzero and inHeight is zero or is omitted, the height will be scaled
proportionally to inWidth. If inWidth is zero and inHeight is nonzero, the width will be
scaled proportionally to inHeight.

If inWidth or inHeight is a positive number, it is treated as an absolute pixel size. If inWidth
or inHeight or negative, they are treated as scaling factors, where .5=50%, 2=200%, etc.

Note: As of v5,4D’s built in picture conversion is being used to convert to JPEG, and
the result is lower quality than what Active4D v4.x produced. PNG is recommended
as the picture format for images that are not photographs.

Chapter 11 Command Reference 265

Active4D v6.4 Pictures

version 2
write jpg modified v5

write jpg(inPicture {; inWidth {; inHeight}})

Parameter Type Description

inPicture Picture — Picture to convert to JPEG format

inWidth Number — Pixel width or scaling percentage

inHeight Number — Pixel height or scaling percentage
Discussion

This command is a synonym for write jpeg.

version 4.0
write png modified v5

write png(inPicture {; inWidth {; inHeight}})

Parameter Type Description

inPicture Picture — Picture to convert to PNG format
inWidth Number — Pixel width or scaling percentage
inHeight Number — Pixel height or scaling percentage
Discussion

This command does the following:

= Scales inPicture according to inWidth/inHeight if passed

= Converts inPicture into a PNG graphic

= Replace the current contents of the response buffer with the graphic
= Set the content type of the response to “image/png”

If the original image within inPicture was a PNG image with an alpha channel, the alpha
channel is preserved in the output of this command.

If inWidth is nonzero and inHeight is zero or is omitted, the height will be scaled
proportionally to inWidth. If inWidth is zero and inHeight is nonzero, the width will be
scaled proportionally to inHeight.

If inWidth or inHeight is a positive number, it is treated as an absolute pixel size. If inWidth
or inHeight are negative, they are treated as scaling factors, where .5=50%, 2=200%, etc.

266 Chapter 11 Command Reference

Queries Active4D v6.4

Queries

Active4D implements the extended (but undocumented) syntax of the QUERY, QUERY
SELECTION and ORDER BY commands.

Chapter 11 Command Reference 267

Active4D v6.4 Queries

QUERY/QUERY SELECTION version 2
QUERY/QUERY SELECTION(inTable; inConjunction; inField; inComparator; inValue {;*})
Parameter Type Description
inTable Table — Table on which to query
inConjunction Literal string - " "&"or"#"
inField Field — Field on which to query
inComparator Literal string — =N =" S or ="
inValue <any> — Value to compare against field
* — To defer query
Discussion

The extended syntax of these commands puts the field, comparator and value into
separate parameters. To dynamically build a query statement, you can build the
statement as a string and then pass the string to the EXECUTE command.

ORDER BY version 2

ORDER BY

Discussion
Active4D supports “built” sorts using multiple ORDER BY statements, in the same way
that a built query can be executed. To build a sort, add a * parameter at the end of the

statement. This will defer the sort until an ORDER BY statement is executed without a
final * parameter.

As with built queries, once a deferred ORDER BY statement has been executed, the sort
may be executed with the following syntax:

order by([MyTable])

268 Chapter 11 Command Reference

Queries Active4D v6.4

version 2
ORDER BY FORMULA modified v6.0r8

ORDER BY FORMULA({*;} inTable {; inExpression {; > or <}}{; inExpression2 ; > or<2;...;
inExpressionN ; > or <N}

Discussion
If the initial * parameter is not passed, ORDER BY FORMULA executes within 4D’s
context:

= |t executes on the Server, even if initiated from a Remote.

* You only have access to 4D’s execution context — process/interprocess variables, 4D
methods, etc. You do not have access to Active4D’s context — local variables, built in
collections, libraries, etc.

If the initial * parameter is passed, ORDER BY FORMULA executes within Active4D'’s
context:

= [t executes on the Server if initiated from Server, on Remote if initiated from a Remote.
On Remote, this means that potentially every record in the selection will have to be
loaded from the Server.

= You have full access to Active4D’s context — local variables, built in collections,
libraries, etc.

Examples

// Execute in 4D’s context
order by formula([contacts]; length([contacts]last _name))

// Execute in Active4D’s context so we can access the hashName

// method in our textUtils library.

order by formula(*; [contacts]; \\
textUtils._nameHash([contacts]last_name; [contacts]first_name))

Chapter 11 Command Reference 269

Active4D v6.4

Query Params

Query Params

When a URL is requested which has a query string, Active4D puts the query parameter
names and their associated values into a collection. You can access this collection in your
scripts.

Note: If the “parameter mode” configuration option is set to “form variables’, query
parameters will not go into the query params collection, but into the form variables
collection. Likewise, if the “parameter mode” option is set to “query params’, form
variables will go into the query params collection.

The query params collection is read-only, and follows the same pattern as all read-only
collections.

Query Params Items

Normally, item values in the query params collection are either text or text arrays.
However, if a form is posted which contains raw data (such as XML) and no form
variables, and the “parameter mode” configuration option is set to “query params”,
Active4D creates a single BLOB item in the query params collection with the key”_data_".

Duplicate Query Parameters

If several query parameters have the same name, Active4D creates a text array to hold
the values of the duplicate items, the key of which is the query parameter name.

Also, if the “parameter mode” configuration option is set to “query params”, multiple-
choice form lists will end up in the query params collection. For more information on the
ramifications of this, see “Multiple-choice Form Fields” on page 201.

270

Chapter 11 Command Reference

Query Params Active4D v6.4

_query version 3.0

_query — Longint

Parameter Type Description
Result Longint < Iterator reference
Discussion

This command is an alias for the query params command.

query params version 2

query params — Longint

Parameter Type Description
Result Longint < Iterator reference
Discussion

This command returns an iterator to the first item in the query params collection.

For more information on iterators, see “Iterators” on page 214.

query params has version 2

query params has(inKey {; *}) — Boolean

Parameter Type Description

inKey Text — Key of item to test

* * — Perform wildcard search
Result Boolean < Trueifkey s in collection
Discussion

This command searches the query params collection for the item with the key inKey. If *
is passed, inKey may contain 4D wildcard characters and they will be honored in the
search.

If the item is found, True is returned, otherwise False.

Chapter 11 Command Reference 271

Active4D v6.4 Query Params

version 2
get query param modified v5

get query param(inKey {; inIndex}) — Text | BLOB

Parameter Type Description

inKey Text — Key of query param to retrieve

inlndex Longint — Index of multiple-choice list value to
retrieve

Result Text | BLOB < Value of query param or ™"

Discussion

This command searches the query param collection for the item with the key inKey.

If the item is found and an index is not specified, the item'’s value is returned. If the item
value is an array of multiple choices, the first multiple-choice value is returned. Note that
this behavior is different than using the syntax:

$value := _query{"multiple_choice_value"} // Returns longint

When using the collection indexing syntax, a reference to an array with no index returns
the array itself, which when assigned results in the current element of the array, which is
alongint.

If the item is found and an index is specified, the given multiple choice value is returned.
If the index is out of range, an error is generated and execution is aborted.

If the item is not found, an empty string is returned.

Note: The query param value is URL decoded and converted from UTF-8, so you do
not need to perform any decoding.

get query param choices version 2

get query param choices(inKey; outArray)

Parameter Type Description

inKey Text — Key of query param to retrieve
outArray String/Text Array < Receives the array of choices
Discussion

This command searches the query params collection for the item with the key inKey.

272 Chapter 11 Command Reference

Query Params Active4D v6.4

If outArray is defined but is not a string or text array, an error is generated and execution
is aborted. If outArray was not defined, it is created as a text array.

If the item is found and has multiple-choice values in an array, outArray is set to a copy of
the multiple-choice values.

If the item is found and its value is not an array of multiple-choice values, outArray is set
to a single element containing the query param value.

If the item is not found, outArray is resized to zero elements.

get query param count version 2

get query param count(inKey) — Longint

Parameter Type Description

inKey Text — Key of query param to check
Result Longint < Size of array

Discussion

You use this command to check how many values were selected in a multiple-choice list
on aform.

This command searches the query params collection for the item with the key inKey.

If the item is found and has multiple-choice values in an array, the size of the array is
returned.

If the item is found and its value is not an array of multiple-choice values, 1 is returned.

If the item is not found, zero is returned.

Chapter 11 Command Reference 273

Active4D v6.4 Query Params

version 2
get query params modified v5

get query params(outKeys {; outValues})
get query params{(*; inKeyFilter)} — Text

Parameter Type Description

outKeys String/Text Array < Receives the collection keys
outValues String/Text Array < Receives the collection values

* — Indicates a filter is being used
inKeyFilter Text — Keys are matched against this
Result Text < Concatenation of keys and values
Discussion

This command has two forms. The first form fills outKeys and outValues with all of the
keys and values in the query params collection.

If outKeys was not defined, it is created as a string array. If outValues was not defined, it is
created as a text array.

If outKeys is defined but is not a string or text array, an error is generated an execution is
aborted.

The second form of the command returns a concatenation of the form variables in the
form “key1=valuel;key2=value2’, suitable for use as a query string. If a form variable is a
multiple-choice array, all of the array values are included in the concatenation.

The keys and values are converted to UTF-8 and URL encoded.

You may optionally pass in a string which will be matched against items whose key
matches the string. Wildcards are allowed in the filter string. To include items that match
the filter, prefix it with '+’ To exclude items that match the filter, prefix it with -. If there is
no prefix, it is assumed to be an inclusion filter.

Note: The keys and values are URL decoded and converted from UTF-8 to Unicode,
so you do not need to perform any decoding.

274 Chapter 11 Command Reference

Query Params Active4D v6.4

count query params version 2

count query params — Longint

Parameter Type Description
Result Longint < Number of items in collection
Discussion

This command returns the number of items in the query params collection.

build query string version 3.0

build query string({*;} inQuery; inName; inValue {...; inNameN; inValueN}) — Text

Parameter Type Description

* * — If passed, don't suppress empty values
inQuery Text — Existing query string to build on
inName Text — Query param name

inValue <any> — Query param value

Result Text < New query string

Discussion

This command is extremely useful for building a query string to add to a URL. It adds the
given name/value pairs to inQuery, automatically converting the keys and values to UTF-
8 and then URL encoding.

As of HTML 4.0, the recommended practice for delimiting query parameters is to use a
semicolon, not an ampersand (&). Accordingly this is what build query string does.

If inQuery is empty, the result will begin with “?" If inQuery starts with “-"; it can be
followed by one or more of the following switches:

= “e"” - External reference mode: Use this mode if you are passing a query string to a
non-Active4D server that may not understand semicolons as query parameter
delimiters. If this switch is set, by default query parameters will be delimited with
"&" as required by HTML 4+ for URLs embedded in HTML. If you are building a query
string for use in an external redirect, be sure to set the “r” switch as well.

= “¢” - Redirect mode: This switch has no effect unless the “e” switch is set as well, in
which case the query parameter separator will be "&" instead of "&".

= “y” - URL encoded mode: It is assumed the query parameter names and values are
already URL encoded, so no encoding is done.

= “p” - No-prefix mode: No leading “?” or query parameter delimiter will be added.
This switch overrides the “a” switch.

Chapter 11 Command Reference 275

Active4D v6.4 Query Params

= “a"” - Append mode: Whether or not inQuery is empty (not including the switches), it
will be considered non-empty. Use this switch to append the results of this command to
an existing query string.

Note: You do not need to use the “a” switch when creating a query to pass to
fusebox.makeURL or fusebox.handleError.

un

If text follows the switches, there should be another“-” between the switches and the

text.

If there are no switches set and inQuery is not empty, the name/value pairs will be
appended to inQuery.

If the * parameter is not passed, name/value pairs with an empty value will be skipped. If
the * parameter is passed, all name/value pairs will be appended to the query string.

Examples

$query := build query string(""; \\
"rec'"; record number([employees]); \\
“action'; _form{"f_action"})
// $query = "?rec=123;action=edit"”
redirect(“edit_emp.ad4d” + $query)

// using the e and r switches

$query := build query string('-e'"; "foo"; 7; "bar"; 13)

// $query = "?foo=7&bar=13"

$query := build query string('"-er"; "foo"; 7; "bar"; 13)

// $query = "?foo=7&bar=13"

$barValue := url encode query(''this is a test'")

$query := build query string("-u"; "foo"™; 7; "bar™; $barVvalue)
// $query = "?foo=7;bar=this+is+a+test"”

$query := build query string('-p"; "foo"; 7; "bar'; 13)
// $query = "foo=7;bar=13"
redirect(*'foobar.a4d?" + $query)

$query := build query string(''-a"; "foo"; 7; "bar'; 13)
// $query = '"";foo=7;bar=13"
redirect(fusebox.makeURL(**foobar.main™; $query))

276 Chapter 11 Command Reference

Regular Expressions

Active4D v6.4

Regular Expressions

Active4D implements a powerful suite of regular expression commands that allow you
to perform complex searches and manipulations on text.

Regular expressions are in fact a compact programming language, and as such allow you
to perform text manipulations that would take many lines of code to implement.

Pattern Syntax
Regular expressions follow the ICU syntax, which is described here:

http://userguide.icu-project.org/strings/regexp

Regular expressions in Active4D fully support Unicode.

Note: Versions of Active4D previous to v5 used the PCRE library for regular
expression matching. Although the pattern syntax of PCRE and ICU and very similar,
there are some differences, so you should carefully check your regular expression
patterns if you are upgrading from v3/v4.x to v6.

Regular expression patterns must be enclosed in delimiters, for example a forward slash
(/). Any non-alphanumeric Unicode character in the Basic Multilingual Plane (other than
backslash) can be used as the delimiter. If the delimiter character is used in the
expression itself, it needs to be escaped by a backslash.

The ending delimiter may be followed by various modifiers that affect the matching. The
pattern modifiers are discussed in detail here (see “Flag Options”):

http://userguide.icu-project.org/strings/regexp#TOC-Flag-Options

For examples of the pattern syntax, see the example code for the commands in this
chapter.

Using Regular Expressions

Entire books can be (and have been) written about regular expressions. It is not within
the scope of this document to give any kind of tutorial on their usage. A web search will
turn up lots of resources for learning all of the amazing uses of regular expressions.

Chapter 11 Command Reference 277

Active4D v6.4 Regular Expressions

regex callback replace version 3.0

regex callback replace(inPattern; inSubject; inCallback; outResults {; inLimit})

Parameter Type Description

inPattern Text | — Search pattern(s)
String/Text Array

inSubject Text/BLOB | — Subject(s) to search
String/Text Array

inCallback Text — Name of method to call

outResults Text | — Receives the replaced text
String/Text Array

inLimit Number — Limit on number of matches

Discussion

This command is almost identical to regex replace, except that instead of replacement
parameter, you specify the name of a callback method that will be called once for each
match.

The method must be an Active4D method which takes a single reference array
parameter. The array will contain the matched elements in the subject string, with the
entire matched string in element zero and captured subpatterns in subsequent
elements. The callback should return the entire replacement string.

Note: Internally this command creates a local array called
$__a4d_regex_callback_array__, which is passed to the callback method. Be sure not
to give any of your local variables this name.

278 Chapter 11 Command Reference

Regular Expressions Active4D v6.4

Example
Let’s say you want to add one year to a bunch of dates.

method "addOneYear" (&$inArray)
c_longint($year; $month; $day)
$month := num($inArray{l1})
$day = num($inArray{2})
$year = num($inArray{3})
$date := add to date(!00/00/00!; $year + 1; $month; $day)
return (string($date; MM DD YYYY Forced))
end method

/*
The pattern looks for the digit O or 1,
followed by any digit,
followed by a forward slash,
followed by the digits 0-3,
followed by any digit,
followed by a forward slash,
followed by four digits.
*/
$pattern := | ([OLI\d)/([O-3]\d)/(\d{4P|"
array text($dates; 0)
set array($dates; "08/27/2003"; ''03/30/2003')
regex callback replace($pattern; $dates; ""AddOneYear™; $results)
writebr(join array($results; "
\n"))

// Output 1is:

08/27/2004
03/30/2004

regex find all in array version 3.0

regex find all in array(inArray; inPattern; outindexes {; inStartindex}) — Longint

Parameter Type Description

inArray String/Text Array — Array to search

inPattern Text — What to match in the array
outindexes Longint Array < Receives the match indexes
inStartindex Longint — Where to start searching

Result Longint < Index of first matching element
Discussion

This command searches inArray for the all elements that match the pattern inPattern. The
index of the first matching element is returned, or -1 if no elements match the pattern.
The indexes of all matching elements are put in the array outindexes.

outMatches does not have to be defined before using this command.

Chapter 11 Command Reference 279

Active4D v6.4 Regular Expressions

Example

// Find all elements that start with "foo" or end with "bar™
array text($array; 0)

set array($array; "one foo'; "two bar'; "fool'; "bart')
$index := regex find all in array($array; "/~foo|bar$/"; \\
$matches)

writebr(Join array($matches; "
\n"))
// Output is:

2
3

regex find in array version 3.0

regex find in array(inArray; inPattern {; inStartindex}) — Longint

Parameter Type Description

inArray String/Text Array — Array to search

inPattern Text — What to match in the array
inStartindex Longint — Where to start searching

Result Longint < Index of first matching element
Discussion

This

command searches inArray for the first element that matches the pattern inPattern. The
index of the first matching element is returned, or -1 if no elements match the pattern.

Example

// Find the first element that starts with "foo"
// or ends with "bar™
array text($array; 0)

set array($array; "one foo'; "two bar'; "fool'; "bart')
$index := regex find in array($array; "/~foo|bar$/'™)
writebr($index)

// Output 1is:
2

280 Chapter 11 Command Reference

Regular Expressions

regex match

Active4D v6.4

version 3.0
modified v5

regex match(inPattern; inSubject {; outMatches}) — Boolean

Parameter Type Description

inPattern Text — What to match in the subject
inSubject Text/BLOB — The text to search

outMatches String/Text Array < Receives the matches

Result Boolean < True if any matches were found
Discussion

This command searches inSubject for the first match to the regular expression given in
inPattern. If a matches are found, True is returned, otherwise False.

If inSubject is a BLOB, it is assumed to be in the format UTF8 Text without length.

If outMatches is provided, it is filled with the results of the search. SoutMatches{0} will
contain the text that matched the full pattern, SoutMatches{1} will contain the text that
matched the first captured parenthesized subpattern, and so on.

If outMatches is a local variable (or collection item) and was not defined, it is created as a
text array.

Example
Splitting a URL into constituent parts:

/*
The following pattern will split a URL Into six parts:
1) "http://" if present
2) hostname
3) "/4dcgi™ if present
4) resource path
5) "?" at start of query string if present
6) query string if present

*/
$pattern = "|Nhttp://)?([N/]1+) (Z4dcgD)?([M?]HD) D)2 S |1
$url := "http://www.myserver.com/4dcgi/index.a4d?foo=bar"

$found := regex match($pattern; $url; $matches)
writebr(Join array($matches; "
\n"; 0))

// Output 1is:

http://www.myserver .com/4dcgi/index.add?foo=bar
http://

WWW . myserver ..com

/4dcgi

/index.a4d

?

foo=bar

Chapter 11 Command Reference 281

Active4D v6.4

regex match all

Regular Expressions

Notice in the above example that Smatches{0} contains the full URL, because that is what
matched the full pattern.

version 3.0

regex match all(inPattern; inSubject; outMatches) — Longint

Parameter Type Description

inPattern Text — What to match in the subject
inSubject Text/BLOB — Thetext to search
outMatches Collection < Receives the matches

Result Longint < The number of matches made
Discussion

This command searches inSubject for the all matches to the regular expression given in
inPattern. After the first match, subsequent matches are made starting from the end of
the previous match. The number of matches made is returned.

If inSubject is a BLOB, it is assumed to be in the format UTF8 Text without length.

outMatches is filled with the results of the search. The collection will contain one item for
each match, with the keys named from “00001” to the number of matches made.

Note: Obviously because of the naming scheme you are limited to 99,999 matches.

The contents of each collection item is an array which contains what a call to

regex match would return, i.e. SoutMatches{Skey}{0} will contain the text that matched
the full pattern, SoutMatches{Skey}{1} will contain the text that matched the first
captured parenthesized subpattern, and so on.

Example
Find matching HTML tags:

$pattern = "|(<(D\WIH)[*>1*>)) (<ANA\\2>) |
$html := "example: <p>this is a test</p>"
regex match all($pattern; $html; $matches)

for each($matches; $key)
$html := join array($matches{$key}; ", "; 0; false; true)
writebr($html; "**; A4D Encoding All)

end for each

// Output is:
"example: ", "", "b", "example: ", "'"
"<p>this Is a test</p>", "<p>", "p", "this is a test", "</p>"

282

Chapter 11 Command Reference

Regular Expressions Active4D v6.4

regex quote pattern version 3.0

regex quote pattern(inPattern {; inDelimiter}) — Text

Parameter Type Description

inString Text — Textto quote

inDelimiter Char — Additional character to quote
Result Text < Quoted text

Discussion

This command puts a backslash in front of every character in inString that is part of the
regular expression syntax. This is useful if you have a dynamically generated string that
you need to match in some text and the string may contain special regex characters.

If inDelimiter is specified, it will also be escaped. This is useful for escaping the delimiter
that is used in your regex patterns, such as“/".

The special regular expression characters are:

N+ F2LATS (D)L= <>

Example
Let’s say you are going to do a regex match on a string entered by the user in the form
field“f_find" You would need to do something like this:

selection to array([Contacts]Last; $lastNames)
$pattern := /" + regex quote pattern(_form{"f _find"}; /") + "/i"
$index := regex find in array($lastNames; $pattern)

Chapter 11 Command Reference 283

Active4D v6.4

Regular Expressions

version 3.0

regex replace modified v5

regex replace(inPattern; inSubject; inReplacement; outResult {; inLimit})

Parameter Type Description

inPattern Text | — Search pattern(s)
String/Text Array

inSubject Text/BLOB | — Source text to search
String/Text Array

inReplacement Text | — Replacement text
String/Text Array

outResult Text/BLOB | — Receives replaced text
String/Text Array

inLimit Number — Limit on number of matches

Discussion

This command searches inSubject for matches to inPattern and replaces them with
inReplacement. If inLimit is specified, only inLimit matches will be replaced. If inLimit is
omitted or is <=0, all matches are replaced.

If matches are found, the new subject(s) will be returned in outResult, otherwise the
subject(s) will be returned unchanged. inSubject and outResult may be the same variable.

If inSubject is a BLOB, then outResult must also be a BLOB, and they are both assumed to
be in the format UTF8 Text without length. Note that outResult may not be an element of a
BLOB array.

Every parameter to regex replace (except inLimit) can be an array.

If inSubject is an array, the search and replace is performed on every element of inSubject,
and outResult will be an array with the same number of elements.

If inPattern and inReplacement are arrays, then regex replace walks through the arrays in
parallel and uses the corresponding elements to do a search and replace on inSubject. If
inReplacement has fewer elements than inPattern, an empty string is used for the
remaining replacement values.

If inPattern is an array and inReplacement is a string, regex replace searches inSubject for
each pattern and replaces with the replacement string.

If inPattern is a string and inReplacement is an array, it is an error, as this does not make
sense.

Replacement Syntax
The real power in regex replace lies in the replacement syntax. In addition to
referencing matched strings, you may also manipulate the case of the result.

In the case of the \N notation, \0 returns the entire matched pattern, \7 returns the first
captured subpattern, and so on. Thus \0 and & are equivalent.

284

Chapter 11 Command Reference

Regular Expressions

Active4D v6.4

\N Returns the Nth captured subpattern
\{N} Returns the Nth captured subpattern
\<pattern> Returns the named subpattern

& Returns the entired matched pattern
\U Starts an uppercase run

\L Starts a lowercase run

\E Ends an uppercase or lowercase run
\u Uppercases the next letter

\l (lowercase L) Lowercases the next letter

If you are using the \N notation and it is directly followed by a number, you must use the
\{N} form to separate the pattern number from the number that follows. For example, if
you want to replace a match with the first captured subpattern followed by the number
1, you must do it this way:

\{1}1
If your replacement pattern contains the character ‘& and you do not intend it to be

replaced with the entire matched pattern, it must be preceeded with a backslash.

The \U and \L markers begin a case-changing run. Every character between these
markers and either a \E marker or the end of the replacement has its case changed
accordingly. Pattern and subpattern substitutions are done before case changes so you
can change the case of matched patterns.

For example, the replacement text:

\U&\E \L\1\E
would uppercase the entire matched pattern and lowercase the first captured
subpattern.
The \u and \I markers are similar, but they change the case of the next character only. So
the replacement syntax:

\u& \I\1

would uppercase the first character of the entire matched pattern and lowercase the first
character of the first matched subpattern.

The /e Pattern Option

If the search pattern included the /e option, after all replacements are done, the
replacement text is executed as Active4D code and the result is used as the replacement
text.

Chapter 11 Command Reference 285

Active4D v6.4

Regular Expressions

For example, this replacement text would return the first two characters of the entire
matched pattern:

return (substring(""\U&\E"; 1; 2))
If the entire matched pattern is “John Doe’, this expression would first resolve to:
return (substring(*"JOHN DOE"™; 1; 2))

Then this text would be executed, which would return “JO” as the replacement text.

Note a few important things in this example:

= You must use return to return the value to regex replace
= When using a match pattern in an expression, be sure to enclose it in double quotes.

= When you specify the replacement text, it is usually enclosed in double quotes, so you
must escape double quotes within the replacement text like this:

$replace := "return (substring(\"\U&\E\"; 1; 2))"

Because the replacement text is executed as Active4D code within the context of the
current execution, you may do anything you wish, including:

= Use any supported commands.
= Call Active4D and 4D methods.

= Access any local variables that were available within the scope of the regex replace
command.

= Access any of the built-in collections such as form variables and query params.

= Execute more than one line of code by separating the lines by “\r’, as long as the last
line executes a return statement.

Examples
This example uses the /e pattern modifier to lowercase HTML tags in the subject:

$pattern = "/(<\/?2) \w+) ([">]*>)/e"

$replace := "return (\'\1\" + lowercase(\'"\2\") + \'\3\')"
regex replace($pattern; "test"; S$replace; $result)
writebr($result; ""; A4D Encoding All)

// Output is:
test

286

Chapter 11 Command Reference

Regular Expressions

regex split

Active4D v6.4

This example replaces all occurrences of “foo” at the beginning of the subject with “bar”,
and replaces all occurrences of “bar” at the end of the subject with “foobar”:

array text($patterns; 0)
set array($patterns; "/~foo(\w*)/"; "/Q\w*)bar$/™)
array text($subjects; 0)
set array($subjects; "foo is bar'; "fool"s gold"; \\
"raise the bar'; "rebar')
array text($replacements; 0)
set array($replacements; "bar™; "foobar™)
regex replace($patterns; $subjects; $replacements; S$results)
writebr(join array($results; "
\n"))

// Output is:
bar is foobar
bar®s gold

raise the foobar
foobar

// using named subpatterns

$pattern := "/(?P<area>\d{3})-?(?P<exch>\d{3})-?(?P<num>\d{4})/"
$replace := "(\<area>) \<exch>-\<num>"

regex replace($pattern; ""5551234567"; $replace; $result)

// $result = "(555) 123-4567"

version 3.0

regex split(inPattern; inSubject; outResults {; inLimit {; inFlags}}) — Number

Parameter Type Description

inPattern Text — Delimiter pattern

inSubject Text/BLOB — Source text to split
outResults String/Text Array — Receives split strings

inLimit Number — Limit on number of matches
inFlags Number — Controls behavior of split
Result Number < Number of split strings
Discussion

This command is similar to the split string command, but inSubject is split along the
boundaries matched by inPattern.

If inLimit is specified, then only substrings up to inLimit are returned, and if inLimitis <=0,
it actually means “no limit”, which is useful when you want to pass inFlags as well.

inFlags can be any combination of the following flags, which may be combined with
bitwise | operator:

Chapter 11 Command Reference 287

Active4D v6.4 Regular Expressions

A4D Regex Split No Empty Only non-empty pieces will be returned

A4D Regex Split Capture Delims Parenthesized expressions in the delimiter
pattern will be captured and returned

Example
This example will split a string into its characters:

$str = "string"
regex split(*"//"; $str; $chars; 0; A4D Regex Split No Empty)
writebr(join array($chars; /™))

// Output is:
s/t/r/i/n/g

288 Chapter 11 Command Reference

Request Cookies

Active4D v6.4

Request Cookies

Active4D puts client cookies and their associated values into a collection. You can access
this collection in your scripts.

The keys in the request cookies collection are text. The official specification for cookie
keys says that they must be all ASCII with no whitespace; however, in practice this may
not be the case, so Active4D performs the following transforms on cookie keys to make
them compliant:

= The text is URL decoded to UTF-8. For example, “%20"” becomes a space.

"o A

= Diacriticals are removed. For example, “cOte” becomes “cote”.

Non-ASClI Latin characters are transformed to ASCIl equivalents. For example, “”
becomes “ae”.

= The text is converted to ASCII. All non-ASClII characters are converted to“?"

* Whitespace is replaced with“_".

" A

For example, the cookie key “cote aegis¥” is transformed to “cote_aegis?”. Note that the
transforms are only done when the cookie is received; the sender’s cookie remains
unaffected.

The values in the request cookies collection are all text. Note that no character set
conversions are done on this text other than URL decoding to UTF-8; it is considered
opaque by Active4D. It is up to you to properly encode cookie values when you set them.

The request cookies collection is read-only, and follows the same pattern as all read-only
collections.

Chapter 11 Command Reference 289

Active4D v6.4 Request Cookies

request cookies version 2

request cookies — Longint

Parameter Type Description
Result Longint < Iterator reference
Discussion

This command returns an iterator to the first item in the request cookies collection.

For more information on iterators, see “Iterators” on page 214.

version 2
get request cookie modified v5
get request cookie(inKey) — Text
Parameter Type Description
inKey Text — Key of request cookie to retrieve
Result Text < Value of request cookie or ™"
Discussion

This command searches the request cookie collection for the item with the key inKey.
If the item is found, the item’s value is returned.
If the item is not found, an empty string is returned.

Note: The cookie value is URL decoded and converted from UTF-8 to Unicode, so
you do not need to perform any decoding.

290 Chapter 11 Command Reference

Request Cookies Active4D v6.4

version 2
get request cookies modified v5
get request cookies(outKeys {; outValues})
Parameter Type Description
outKeys String/Text Array < Receives the collection keys
outValues String/Text Array < Receives the collection values
Discussion

This command fills outKeys and outValues with all of the keys and values in the request
cookies collection.

If outKeys was not defined, it is created as a string array. If outValues was not defined, it is
created as a text array.

If outKeys is defined but is not a string or text array, an error is generated an execution is
aborted.

Note: The cookie keys and values are URL decoded and converted from UTF-8 to
Unicode, so you do not need to perform any decoding.

count request cookies version 2

count request cookies — Longint

Parameter Type Description
Result Longint < Number of items in collection
Discussion

This command returns the number of items in the request infos collection.

Chapter 11 Command Reference 291

Active4D v6.4

Request Info

Request Info

Every time Active4D receives an HTTP request, a number of headers are passed as part of
the request, such as the content length and user agent identifier.

Some of this information is commonly used, such as cookies, and is placed in specialized
collections for easy access. All of the headers are put in the request info collection, which
is accessible from your scripts. For more information on HTTP headers, see RFC 2616 at
http://www.w3.org/Protocols/.

Request Info Collection Items

In addition to all of the HTTP headers, all of the information put into the request info
array (see “A4D Execute <type> request” on page 66) is also put into the request info
collection. The request info array elements appear in the request info collection as the
following items:

Key Value

*ajax “1"if an XMLHttpRequest is made, “0” otherwise
*doctype “doctype” option from Active4D.ini, either “html” or “xhtml”
*host Hostname used in request without port

*host address As setin 4D

*host port As set in 4D, usually “80” for HTTP or “443" for SSL
*http version “1.0" or”1.1"

*remote address As setin 4D

*request method The method used in the request (“GET", “POST", etc.)
*secure As set in 4D, should be “1” for secure, “0” if not
*virtual host Virtual host configured in VirtualHosts.ini

The request info collection is read-only, and follows the same pattern as all read-only
collections. All of the values in the request info collection are text.

292

Chapter 11 Command Reference

Request Info Active4D v6.4

request info version 2

request info — Longint

Parameter Type Description
Result Longint < Iterator reference
Discussion

This command returns an iterator to the first item in the request info collection.

For more information on iterators, see “Iterators” on page 214.

get request info sversion 2

get request info(inKey) — Text

Parameter Type Description

inKey Text — Key of request info to retrieve
Result Text < Value of request info or ™"
Discussion

This command searches the request info collection for the item with the key inKey.
If the item is found, the item’s value is returned.

If the item is not found, an empty string is returned.

get request infos version 2

get request infos(outKeys {; outValues})

Parameter Type Description

outKeys String/Text Array < Receives the collection keys
outValues String/Text Array < Receives the collection values
Discussion

This command fills outKeys and outValues with all of the keys and values in the request
infos collection.

If outKeys was not defined, it is created as a string array. If outValues was not defined, it is
created as a text array.

Chapter 11 Command Reference 293

Active4D v6.4 Request Info

If outKeys is defined but is not a string or text array, an error is generated an execution is
aborted.

count request infos version 2

count request cookies — Longint

Parameter Type Description
Result Longint < Number of items in collection
Discussion

This command returns the number of items in the request cookies collection.

294 Chapter 11 Command Reference

Request Value Active4D v6.4

Request Value

Occasionally you may not know which collection a value is in or you don't care which
collection it is in, you just know that it was part of the request. In such cases you can use

this command.

Chapter 11 Command Reference 295

Active4D v6.4 Request Value

get request value version 2

get request value(inKey) — <any>

Parameter Type Description

inKey Text — Key of item to retrieve
Result <any> < Value of itemor ™
Discussion

This command searches these collections in order: query params, form variables, request
cookies, request info.

If the item is found, the item’s value is returned.

If the item is not found, an empty string is returned.

296 Chapter 11 Command Reference

Resources Active4D v6.4

Resources

Active4D enhances the Get indexed string and STRING LIST TO ARRAY commands to
allow you to work with other resource types (such as 4DK#) that are in STR# format..

Chapter 11 Command Reference 297

Active4D v6.4 Resources

(modified 4D) version 6
Get indexed string modified v4.5

Get indexed string({*; inResType; } inResID; inIndex) — Text

Parameter Type Description

* * — Indicates a resource type is passed
inResType Text — Four-character resource type
inResID Number — ID of resource

inIndex Number — Index of string to get

Result Text < Requested string

Discussion

This command works just like the 4D version of the command, but it also allows you to
retrieve strings from resources such as 4DK# which are in STR# format.

$s := get indexed string(*; "4DK*"; 10; 1)

// $s now contains something like "January:1:L".
// We want only the name.

$s := slice string($s; ":')

298 Chapter 11 Command Reference

Resources Active4D v6.4

(modified 4D) version 6
STRING LISTTO ARRAY modified v4.5

STRING LIST TO ARRAY({*; inResType; } inResID; outStrings)

Parameter Type Description

* * — Indicates a resource type is passed
inResType Text — Four-character resource type
inResID Number — ID of resource

outStrings String/Text Array < Allstrings in resource

Discussion

This command works just like the 4D version of the command, but it also allows you to
retrieve strings from resources such as 4DK# which are in STR# format.

array string(15; $list; 0)
string list to array(*; "4DK*"; 10; $list)

// $s now contains strings like "January:1:L".
// We want only the name.

for ($i; 1; size of array($list))
$list{$i} := slice string($list{$i}; ":")
end for

Chapter 11 Command Reference 299

Active4D v6.4

Response Buffer

Response Buffer

When you want to return data to the client, you do so by appending text to the response
buffer. This buffer becomes the body of the HTTP response.

The commands in this section allow you to write text and graphics to the response
buffer, to get information about the size of the response buffer, and to control the
character set conversion and encoding performed on text written to the response buffer.

300

Chapter 11 Command Reference

Response Buffer

Active4D v6.4

version 2

buffer size deprecated v5

buffer size — Longint

Parameter Type Description

Result Longint < Byte size of response buffer

Discussion

This command has been replaced by response buffer size and is no longer supported.
response buffer size version 3.0

clear buffer

response buffer size — Longint

Parameter Type Description
Result Longint < Byte size of response buffer
Discussion

This command returns the current size of the response buffer in bytes.

version 2
deprecated v5

clear buffer

Discussion
This command has been replaced by clear response buffer and is no longer supported.

clear response buffer version 3.0

clear response buffer

Discussion
This command completely clears the contents of the response buffer. Ordinarily you
would have no need to use this command.

Chapter 11 Command Reference 301

Active4D v6.4 Response Buffer

version 3.0
get response buffer modified v5

get response buffer(outBuffer)

Parameter Type Description
outBuffer Text or BLOB < Contents of response buffer
Discussion

This command returns the current contents of the response buffer in outBuffer.

If get response buffer is used with a BLOB, the BLOB receives UTF-8 encoded text, as if
you had executed TEXT TO BLOB(buffer; outBlob; UTF8 Text without length).

Note: Because execution isimmediately terminated when binary data is written to
the response buffer (e.g. with write gif), it is guaranteed that the result of this
command will be text.

version 3.0
set response buffer modified v5

set response buffer(inValue; inContentType)

Parameter Type Description

inValue Text or BLOB — Value to write to the response buffer
inContentType Text — Type of inValue’s contents
Discussion

This command works the same as write blob but replaces the contents of the response
buffer for text types instead of appending.

If set response buffer is used with a BLOB, the BLOB is assumed to contain text stored in
the format UTF8 Text without length.

It is designed for use in post-processing the response in the On Execute End event
handler. For example, you could use get response buffer to get the response,

regex replace to process the buffer, and then set response buffer to use the processed
buffer.

302 Chapter 11 Command Reference

Response Buffer

save output

Active4D v6.4

version 3.0

save output(outBuffer)

Parameter Type Description
outBuffer <variant> — Value that receives output
Discussion

This command sets outBuffer as the response buffer. All output that would normally end
up going back to the browser (i.e. HTML and the output of the various write commands)
will instead be appended to outBuffer. outBuffer must be either a variant value (such as a
local variable or collection item) or an element of a string/text array.

Calls to save output must be balanced with a call to end save output, and the balancing
call to end save output must be within the same scope as the corresponding call to
save output.

You may nest calls to save output. This allows you to construct complex nested output,
like this:

writebr("'---> level 1)
save output($buffer)
writebr(*'---> level 2")
save output($buffer)
writebr('---> level 3")
writebr('<--- level 3")
end save output
write($buffer)
writebr(*'<--- level 2")
end save output
write($buffer)
writebr('<--- level 1)

The output from the code above is:

--—> level 1
--—> level 2
--—> level 3
<--- level 3
<-—- level 2
<-—- level 1

At each level, we save the output to Sbuffer, then write it once we have restored the
buffer.

Note: Outputis not available in outBuffer until after end save output is executed.

Chapter 11 Command Reference 303

Active4D v6.4 Response Buffer

end save output version 3.0

end save output

Discussion

This command restores the output buffer that was current before the most recent call to
save output and places the contents of the current output buffer into the target value
specified in save output.

For more information, see “save output” on page 303.

version 2
set output charset modified v5
set output charset(inCharset)
Parameter Type Description
inCharset Number | Text — Character set constant or name
Discussion

This command determines what character set conversion, if any, Active4D applies to text
written to the response buffer in the current request. This conversion is applied after
output character set encoding.

You may either pass one of the character set constants below or an IANA character set
name. The output character set constants supported by Active4D are:

UTF-8 A4D Charset UTF8
Macintosh Roman A4D Charset None
Macintosh Roman A4D Charset Mac
Windows Latin A4D Charset Win
ISO-8859-1 (Latin1) A4D Charset ISO Latin1

If you pass a name, it must be a valid IANA character set name. If the name is empty;, it
will default to “mac”. If it is invalid an error will be generated and execution will abort.

304 Chapter 11 Command Reference

Response Buffer Active4D v6.4

For more information on the output charset, see “Working with Character Sets” on
page 104.

Note: For compatibility with previous versions, A4D Charset None is now effectively
the same as A4D Charset Mac, because Unicode always has to be converted to a
different encoding before being sent to the browser.

version 2
get output charset modified v5

get output charset — Text

Parameter Type Description
Result Text < Character set name
Discussion

This command returns the name of the current output character set, which determines
the character set to convert to when the response buffer is sent to the browser.

The name returned by this command is the internal, canonical name used by ICU, and
thus may not be the same name you used either in Active4D.ini or with the set output
charset command. For a complete list of charset names, see:

http://demo.icu-project.org/icu-bin/convexp?s=IANA&s=ALL

For more information on the output charset, see “Working with Character Sets” on
page 104.

set output encoding version 2

set output encoding(inEncoding)

Parameter Type Description

inEncoding Number — How to encode special characters
written to the response buffer

Discussion

This command determines what HTML character encoding, if any, Active4D applies to
text written to the response buffer in the current request. This encoding is applied before
output character set conversion.

The inEncoding parameter is a set of bit flags which specify the characters to encode.
Each bit flag has a named constants defined. The constants (and their values) are:

Chapter 11 Command Reference 305

Active4D v6.4

Response Buffer

= A4D Encoding None (0): No encoding is performed. You are responsible for manually
encoding reserved characters, either by using the equivalent character entities directly
or by using the html encode command.

= A4D Encoding Quotes (1) : Single and double quotes are encoded.
= A4D Encoding Tags (2) : The characters’<’and'>" are encoded.
* A4D Encoding Ampersand (4): The ampersand character (‘&) is encoded.

* A4D Encoding Extended (8) : All characters with an ASCll value >= 127 (non-
breaking space and international characters) are encoded.

* A4D Encoding HTML (8) : A synonym for A4D Encoding Extended. This is the default.

* A4D Encoding All (65535) : All characters that have HTML character entities defined
are encoded.

The default for Chinese and Japanese language systems is A4D Encoding None. The
default for all other systems is A4D Encoding HTML, which encodes only non-breaking
space and international characters. This allows you to use the write command to create
HTML tags, while converting international characters.

For example, the following statement:

<% write('<td>Quelle bétise!l</td><td> </td>") %>
Would result in this output:

<td>Quelle bêtisel</td><td> </td>

You can change the default output encoding with the “output encoding” option in
Active4D.ini. For more information on output encoding, see “Output Encoding” on
page 106.

get output encoding version 2

get output encoding — Number

Parameter Type Description
Result Number < Setof bitflags
Discussion

This command returns the current set of bit flags which determine which characters to
encode when writing to the response buffer. For more information on output encoding,
see “Output Encoding” on page 106.

306

Chapter 11 Command Reference

Response Buffer

write

Active4D v6.4

version 1
modified v5

write blob

write(inValue {; inFormat {; inOutputEncoding}})

Parameter Type Description

inValue <any> — Value to write to the response buffer
inFormat Text | Number — Format to use when converting to text
inOutputEncoding Number — Character encoding of HTML special
characters and

Discussion

This command works like the String command, but after converting inValue to text it
appends the converted text to the response buffer. This is the primary method of
generating dynamic HTML within Active4D code.

If you pass a Boolean value without a format, it will automatically output “True” or
“False”, depending on the value passed in.

If a BLOB is passed to the write command, it is assumed to be text. You can specify the
text format within the BLOB by passing the relevant constant (such as UTF8 Text without
length) in the inFormat parameter. If no format is passed, the text format is assumed to be
UTF8 Text without length.

If inOutputEncoding is passed, the text being written will be encoded according to the
encoding style specified. This is a more convenient way of specifying a special encoding
than bracketing a call to write with calls to set output encoding. You may pass * as a
shortcut for A4D Encoding All. For more information on the value of this parameter, see
“set output encoding” on page 305.

version 2
modified version v5

write blob(inBlob; inContentType {; * | inCharset})

Parameter Type Description

inBlob BLOB — BLOB to write to the response buffer
inContentType Text — Type of inBlob’s contents

* * — If passed, forces binary type
inCharset Text — Character set of BLOB text
Discussion

This command does the following:

Chapter 11 Command Reference 307

Active4D v6.4

Response Buffer

Completely replaces the contents of the response buffer with the contents of inBlob if *
is passed or if the content type does not begin with “text/".

Sets the content type of the response based on inContentType, which may be either a
MIME type or a file extension. If inContentType is a file extension (with or without
leading dot), the corresponding MIME type is looked up from ExtensionMap.ini.

In either case, if the MIME type is not recognized, an error is generated and execution is
aborted.

Stops execution of the script if the MIME type is binary, i.e. if *is passed or if the type
does not begin with “text/".

If inContentType begins with “text/’, it is assumed that the entire BLOB contains text
stored in the format Mac Text without length or UTF8 Text without length.

If inContentType begins with “text/” and * is not passed, inCharset can be an IANA
character set name which indicates the charset of inBlob’s text. If inCharset is not
passed, it defaults to UTF-8.

This command is designed to allow you to return binary data which you have created
outside of Active4D. For example, you may create a JPEG thumbnail on the fly which you
want to return as the response.

query([pictures];[pictures]name = $f name)
$blob := MyCreateThumbnail([pictures]pict)
write blob($blob; "image/jpeg™)

Previous to Active4D v5, write blob could also be used to write text greater than 32K in
length.This is still possible in v6, but completely unnecessary, as string and text variables
in v6 are capable of holding up to 2GB of text.

Note: Itis up to you to ensure that inContentType matches the actual content type of
inBlob.

308

Chapter 11 Command Reference

Response Buffer Active4D v6.4

writebr version 1

writebr(inValue {; inFormat {; inOutputEncoding}})

Parameter Type Description

inValue <any> — Value to write to the response buffer

inFormat Text | Number — Format to use when converting to text

inOutputEncoding Number — Character encoding of HTML special
characters

Discussion

This command is a convenience routine for writing a value followed by an HTML line
break and a line ending for the current platform (CR on Mac, CRLF on Windows). It is
exactly equivalent to the following code:

write($invalue + "
" + $lineEnding; $inFormat)

writeln version 1

writeln(inValue {; inFormat {; inOutputEncoding}})

Parameter Type Description

inValue <any> — Value to write to the response buffer

inFormat Text | Number — Format to use when converting to text

inOutputEncoding Number — Character encoding of HTML special
characters

Discussion

This command is a convenience routine for writing a value followed by a line ending for
the current platform (CR on Mac, CRLF on Windows). It is exactly equivalent to the
following code:

write($invalue + $lineEnding; $inFormat)

Chapter 11 Command Reference 309

Active4D v6.4

writep

Response Buffer

version 1

write raw

writep(inValue {; inFormat {; inOutputEncoding}})

Parameter Type Description

inValue <any> — Value to write to the response buffer

inFormat Text | Number — Format to use when converting to text
%

inOutputEncoding Number Character encoding of HTML special
characters

Discussion

This command is a convenience routine for writing a value followed by an HTML
paragraph break and a line ending for the current platform (CR on Mac, CRLF on
Windows). It is exactly equivalent to the following code:

write($invalue + "<p>" + $lineEnding; $inFormat)

Note: This command is not recommended, because it uses a form of HTML that is no
longer compliant with current HTML standards.

version 2

write raw(inValue {; inFormat})

Parameter Type Description
inValue <any> — Value to write to the response buffer
inFormat Text | Number — Format to use when converting to text

Discussion

This command is equivalent to the write command, but it temporarily disables the
current output encoding, thus the output encoding parameter is not available.

For example, if the current output encoding is A4D Encoding All, using the command
write("'This is bold")

would not work as expected, because the output encoding would convert the HTML
tags into HTML character entities, resulting in the following output: This would appear in

&It;b>This is bold

the browser as the literal string passed in, not as bold text as intended.

310

Chapter 11 Command Reference

Response Buffer

Active4D v6.4

One could get the current output encoding, temporarily turn it off, then restore it, but
that would quickly become cumbersome. By simply replacing write with write raw in
the statement above, this problem can be quickly and easily avoided.

version 2
modified v6.0r4

=inExpression {; inFormat}

Parameter Type
inExpression <any>
inFormat <any>
Discussion

Description

Expression to append to the response
buffer

Format to use with inExpression

The = operator, followed by an expression, may be used at the beginning of the first line
of an Active4D code block as a synonym for the write command. When used in this
manner, the code block will exit after the first line of code executes.

Like the write command, the = operator will automatically convert the expression to text
(using a format if you supply one); you do not have to explicitly use the String command

where the write command would not require it.

This operator is very handy when using small Active4D code blocks embedded in a

bunch of HTML. For example:

It is now <%= current time; hh mm am pm %> on <%=current date%>

Chapter 11 Command Reference

311

Active4D v6.4

Response Cookies

Response Cookies

Active4D allows you to send cookies to the client browser. A cookie is basically a name
and associated value which is stored on the client’s machine. Cookies allow you to retain
persistent information about a user across requests and sessions.

You send cookies to the client browser by adding them to the response cookies
collection. This collection is read-write, and follows the same pattern as all read-write
collections. All of the values in the response cookies collection are text and are
considered opaque by Active4D. It is up to you to do any necessary URL encoding or
character set conversion.

Cookie Fields

In addition to a name and a value, cookies can optionally have other attributes, including
domain, path, and expires. The complete Netscape cookie specification can be found at:

http://developer.netscape.com/docs/manuals/js/client/jsref/cookies.htm

The only cookie attribute you will usually be concerned with is expires. If this attribute is
not specified, a cookie expires when the browser is closed. To create a cookie that is
retained across browser sessions, you must set the expires attribute to some date in the
future. Active4D provides commands to do this.

312

Chapter 11 Command Reference

Response Cookies Active4D v6.4

response cookies version 2

response cookies — Longint

Parameter Type Description
Result Longint < Iterator reference
Discussion

This command returns an iterator to the first item in the response cookies collection.

For more information on iterators, see “Iterators” on page 214.

version 2
getresponse cookie modified v5
get response cookie(inName) — Text
Parameter Type Description
inName Text — Name of response cookie to retrieve
Result Text < Value of response cookie or ™"
Discussion

This command searches the response cookie collection for the item with the name
inName.

If the item is found, the item’s value is returned.
If the item is not found, an empty string is returned.

Note: The cookie name and value are URL decoded and converted from UTF-8 to
Unicode, so you do not need to perform any decoding.

Chapter 11 Command Reference 313

Active4D v6.4

Response Cookies

version 2
get response cookies modified v5
get response cookies(outNames {; outValues})
Parameter Type Description
outNames Text Array < Receives the cookie names
outValues Text Array < Receives the cookie values/attributes

Discussion

This command fills outNames and outValues with all of the names and values/attributes
in the response cookies collection. Note that cookie attributes are stored along with the
cookie value, as outlined in the Netscape cookie specification.

If outNames was not defined, it is created as a Text array. If outValues was not defined, it is
created as a Text array.

If outNames is defined but is not a Text array, an error is generated an execution is
aborted.

Note: The cookie names and values are URL decoded and converted from UTF-8 to
Unicode, so you do not need to perform any decoding.

version 2

set response cookie modified v6.1

set response cookie(inName; inValue {; inExpires {; inDomain {; inPath {; inSecure
{; inHttpONnly}}1})

Parameter Type Description

inName Text — Name of cookie to set

inValue <any> — Valueto set

inExpires Date/Timestamp — Expiration date/time of cookie
inDomain Text — Cookie domain

inPath Text — Cookie path

inSecure Boolean — True to set Secure attribute
inHttpOnly Boolean — True to set HttpOnly attribute
Discussion

This command sets a response cookie with the given attributes. inValue may be of any
type; it is converted to text automatically. Because cookies must have a non-empty
value, if the value is an empty string, it defaults to “null”.

If the cookie already exists, its value and attributes are reset to those given.

314

Chapter 11 Command Reference

Response Cookies Active4D v6.4

If the item is not found, a new response cookie is added with the given name, value and
attributes.

Note: Both inName and inValue are converted to UTF-8 and URL encoded, so you do
not need to perform any encoding.

If inExpires is a date, the cookie will expire at the current time on that date. If inExpires is
text which is a properly formatted timestamp, the cookie will expire at the date and time
given in the timestamp. If inExpires is an empty string, it is ignored.

If inPath is not given or is empty, it defaults to “/".

If inSecure is True and the current request is secure (https), the Secure attribute of the
cookie will be set.

If inHttpOnly is True, the HttpOnly attribute of the cookie will be set.

For more information on the Secure and HttpOnly attributes, see
http://en.wikipedia.org/wiki/Http_cookies#Secure_and_HttpOnly.

set response cookie domain version 2

set response cookie domain(inName; inDomain)

Parameter Type Description

inName Text — Name of cookie to set
inDomain Text — Cookie domain
Discussion

This command sets the domain of the cookie with the given name.

You must create the cookie with set response cookie before using this command. If no
cookie exists with the given name, an error is generated and execution is aborted.

Chapter 11 Command Reference 315

Active4D v6.4 Response Cookies

get response cookie domain version 2

get response cookie domain(inName) — Text

Parameter Type Description

inName Text — Name of cookie to retrieve
Result Text < Domain of cookie
Discussion

This command returns the current domain of the cookie with the name inName. If no
such cookie exists or the domain has not been set, an empty string is returned.

set response cookie expires version 2

set response cookie expires(inName; inDate)

Parameter Type Description

inName Text — Name of cookie to set
inDate Date — Expiration date of cookie
Discussion

This command sets the expires date of the cookie with the name inName.

You must create the cookie with set response cookie before using this command. If no
cookie exists with the given name, an error is generated and execution is aborted.

get response cookie expires version 2

get response cookie expires(inName) — Date

Parameter Type Description

inName Text — Name of cookie to retrieve
Result Date < Expiration date of cookie
Discussion

This command returns the current expires date of the cookie with the name inName. If
no such cookie exists or the expires date has not been set, a null date is returned.

316 Chapter 11 Command Reference

Response Cookies Active4D v6.4

set response cookie http only v6.1

set response cookie http only(inName; inHttpOnly)

Parameter Type Description

inName Text — Name of cookie to set
inHttpOnly Boolean — True to set HttpOnly attribute
Discussion

This command sets the HttpOnly attribute of the cookie with the given name.

You must create the cookie with set response cookie before using this command. If no
cookie exists with the given name, an error is generated and execution is aborted.

get response cookie http only v6.1

get response cookie http only(inName) — Boolean

Parameter Type Description

inName Text — Name of cookie to retrieve
Result Boolean < HttpOnly attribute of cookie
Discussion

This command returns whether the HttpOnly attribute has been set for the cookie with
the name inName. If no such cookie exists or the attribute has not been set, False is
returned.

set response cookie path version 2

set response cookie path(inName; inPath)

Parameter Type Description

inName Text — Name of cookie to set
inPath Text — Cookie path
Discussion

This command sets the path of the cookie with the given name.

You must create a cookie with set response cookie before using this command. If no
cookie exists with the given name, an error is generated and execution is aborted.

Chapter 11 Command Reference 317

Active4D v6.4 Response Cookies

get response cookie path version 2

get response cookie path(inName) — Text

Parameter Type Description

inName Text — Name of cookie to retrieve
Result Text < Path of cookie

Discussion

This command returns the current path of the cookie with the name inName. If no such
cookie exists or the path has not been set, an empty string is returned.

set response cookie secure v6.1

set response cookie secure(inName; inSecure)

Parameter Type Description

inName Text — Name of cookie to set
inSecure Boolean — True to set Secure attribute
Discussion

This command sets the Secure attribute of the cookie with the given name, but only if
the current request is a secure (https) request.

You must create the cookie with set response cookie before using this command. If no
cookie exists with the given name, an error is generated and execution is aborted.

get response cookie secure v6.1

get response cookie secure(inName) — Boolean

Parameter Type Description

inName Text — Name of cookie to retrieve
Result Boolean <« Secure attribute of cookie
Discussion

This command returns whether the Secure attribute has been set for the cookie with the
name inName. If no such cookie exists or the attribute has not been set, False is returned.

318 Chapter 11 Command Reference

Response Cookies Active4D v6.4

count response cookies version 2

count response cookies — Longint

Parameter Type Description
Result Longint < Number of items in collection
Discussion

This command returns the number of items in the response cookies collection.

delete response cookie version 2

delete response cookie(inName)

Parameter Type Description
inName Text — Name of cookie to delete
Discussion

This command searches the response cookies collection for the item with the name
inName. To delete more than one item, you may use a wildcard in the name. All items
that match will be removed from the collection, not from the client.

abandon response cookie version 2

abandon response cookie(inName {; inDomain {; inPath}})

Parameter Type Description

inName Text — Name of cookie to abandon
inDomain Text — Cookie domain

inPath Text — Cookie path

Discussion

To delete a cookie from the client browser, you actually need to send a cookie with an
expires date of 100/00/00!. This command is a convenience routine which does that for
you.

If you change the expires attribute to something other than 100/00/00! after calling this
command, the cookie will not be deleted from the client browser.

If the cookie to be abandoned was set with a domain and/or path, you must provide the
same domain and/or path to successfully abandon it.

Chapter 11 Command Reference 319

Active4D v6.4 Response Headers

Response Headers

Active4D takes care of setting all of the response headers required by the HTTP protocol.
In addition, it provides commands for setting various response properties that get
turned into response headers (see “Response Properties” on page 324).

If you need to set your own custom headers, you can do so by putting them in the
response header collection.

The response headers collection is read-write, and follows the same pattern as all read-
write collections. All of the values in the response headers collection are text and are
considered opaque by Active4D. It is up to you to do any necessary URL encoding or
character set conversion.

320 Chapter 11 Command Reference

Response Headers Active4D v6.4

response headers version 2

response headers — Longint

Parameter Type Description
Result Longint < Iterator reference
Discussion

This command returns an iterator to the first item in the response headers collection.

For more information on iterators, see “Iterators” on page 214.

get response header version 2

get response header(inName) — Text

Parameter Type Description

inName Text — Name of response header to retrieve
Result Text < Value of response header or "
Discussion

This command searches the response header collection for the item with the name
inName.

If the item is found, the item'’s value is returned.

If the item is not found, an empty string is returned.

get response headers version 2

get response headers(outNames {; outValues})

Parameter Type Description

outNames String/Text Array < Receives the header names
outValues String/Text Array < Receives the header values
Discussion

This command fills outNames and outValues with all of the names and values in the
response headers collection.

If outNames was not defined, it is created as a string array. If outValues was not defined, it
is created as a text array.

Chapter 11 Command Reference 321

Active4D v6.4 Response Headers

If outNames is defined but is not a string or text array, an error is generated an execution
is aborted.

set response header version 2

set response header(inName; inValue)

Parameter Type Description

inName Text — Name of header to set
inValue <any> — Valueto set
Discussion

This command searches the response headers collection for the item with the name
inName. inValue may be of any type; it is converted to text automatically.

If the item is found, its value is set to inValue.

If the item is not found, a new item is added to the collection with the given name and
value.

count response headers version 2

count response headers — Longint

Parameter Type Description
Result Longint < Number of items in collection
Discussion

This command returns the number of items in the response headers collection.

322 Chapter 11 Command Reference

Response Headers Active4D v6.4

delete response header version 2

delete response header(inName)

Parameter Type Description
inName Text — Name of header to delete
Discussion

This command searches the response headers collection for the item with the name
inName. To delete more than one item, you may use a wildcard in the name. All items
that match will be removed from the collection.

Chapter 11 Command Reference 323

Active4D v6.4 Response Properties

Response Properties

Most of the standard HTTP response headers generated by Active4D can be controlled
through the commands in this group.

324 Chapter 11 Command Reference

Response Properties

Active4D v6.4

get cache control version 2

get cache control — Text

Parameter Type Description
Result Text < Current cache control setting
Discussion

This command returns the cache-control header setting.

set cache control version 2

get expires

set cache control(inOption)

Parameter Type Description
inOption Text — Cache control directive
Discussion

This command controls the “cache-control” response header. The default value for the
cache-control response header is set by the “cache control” configuration option in
Active4D.ini.

The value of inOption should conform to the HTTP caching protocol as outlined in RFC
2616. Since HTTP 1.0 clients do not recognize the cache-control header, if inOption is “no-
cache’, Active4D also sends a“pragma: no-cache” header and an “expires” header with a
time of now.

version 2

get expires — Longint

Parameter Type Description
Result Longint < Minutes till expiration
Discussion

This command returns the minutes until the response should expire.

Chapter 11 Command Reference 325

Active4D v6.4

set expires

Response Properties

version 2

get expires date

set expires(inMinutes)

Parameter Type Description
inMinutes Longint — Minutes till expiration
Discussion

This command controls the “expires” response header, which is used by HTTP clients to
control caching of web pages. The default value for the expires response header is set by
the “expires” configuration option in Active4D.ini.

inMinutes is the number of minutes before the response should expire. A value of zero
forces the response to expire immediately. A negative value will cause this value to be
ignored by Active4D. Positive values are clipped to one year (in minutes).

version 2

set expires date

get expires date(outDate {; outTime})

Parameter Type Description
outDate Date < Expiration date
outTime Time < Expiration time
Discussion

This command returns the date and time at which the response should expire.

version 2

set expires date(inDate {; inTime})

Parameter Type Description
inDate Date — Expiration date
inTime Time — Expiration time
Discussion

As an alternative to setting the number of minutes till expiration, you may also specify
the exact date and time at which the response should expire. The date/time specified is
clipped to one year from now.

326

Chapter 11 Command Reference

Response Properties Active4D v6.4

get content type version 2

get content type — Text

Parameter Type Description
Result Text < MIME type of response
Discussion

This command returns the current MIME type of the response.

set content type version 2

set content type(inType)

Parameter Type Description

inType Text — MIME type of response

Discussion

This command sets the “Content-Type” header of the response, which should be a valid
MIME type.

The default content type is “text/html". Ordinarily you would have no need to change
this, unless for example you are sending a plain text file, in which case you would set the
content type to “text/plain”

version 2
get content charset deprecated v5

get content charset — Text

Parameter Type Description
Result Text < Charset name
Discussion

This command is deprecated and is now an alias for the get output charset command.

Chapter 11 Command Reference 327

Active4D v6.4

Response Properties

version 2

set content charset deprecated v5

set content charset(inCharset)

Parameter Type Description
inCharset Text | Number — Charset name
Discussion

This command is deprecated and is now an alias for the set output charset command.

get response status v6.0

get response status — Longint

Parameter Type Description
Result Longint < HTTP status
Discussion

This command returns the current HTTP status. Ordinarily the status is 200 (OK), unless
you have changed it with the set response status command.

Within the context of an error handler, the response status is set to 200 (OK). If an error

handler needs to get the response status that triggered it, use the get error status
command.

set response status version 2

set response status(inStatus)

Parameter Type Description
inStatus Number — HTTP status code
Discussion

This command changes the status code that will be returned with the response. Named
constants for the most common status codes can be found in Appendix B.

328

Chapter 11 Command Reference

Script Environment Active4D v6.4

Script Environment

There are several configuration options that apply to Active4D’s scripting environment
as a whole. Many of those options can be changed at runtime with the commands in this
section.

This section also contains utility commands for getting information about the host
environment.

Chapter 11 Command Reference 329

Active4D v6.4 Script Environment

_request version 4.0

_request — Longint

Parameter Type Description
Result Longint < Request collection iterator
Discussion

This command returns an iterator to a special built in collection which is automatically
created with each executable request and then is automatically cleared at the end of the
request.

If you need to store data that is accessible globally, but only within a given request — as
opposed to the globals collection, which is global to all requests — the _request
collection is the perfect place to store that data.

full requested url version 4.0

full requested url — Text

Parameter Type Description
Result Text < Full path plus any query
Discussion

This command returns everything after the hostnamef{:port} that was part of the
requested URL.

current platform version 2

current platform — Number

Parameter Type Description
Result Number < Current platform code
Discussion

This command returns a number representing the platform under which Active4D is
running. The number will either be 2 or 3, which can be tested with the named constants
Power Macintosh and Windows respectively.

330 Chapter 11 Command Reference

Script Environment

get license info

Active4D v6.4

In case you hadn’t noticed, this is a convenient replacement for the standard 4D
incantation:

C_LONGINT($platform)
PLATFORM PROPERTIES($platform)
$0:=$platform

version 2

get license info(outUserName; outCompany; outLicenseType; outLicenseVersion;
outServerlP; outExpirationDate; outPlatform {; outKeyFilePath})

Parameter Type Description

outUserName Text < Thelicensed user

outCompany Text < Thelicensed company

outLicenseType Longint < Thetype of license

outlicenseVersion Text < Active4D version licensed for

outServerlP Text < IP address for a regular deployment
license, empty otherwise

outExpirationDate Date < Date a deployment license expires

outPlatform Longint < Always 3 (Mac and Windows)

outKeyFilePath Text < Full path to key file

Discussion

This command returns license information from the key file of the machine on which
Active4D is running. The license types are as follows:

Type License

0 Trial

1 Developer

2 Deployment
3 OEM

4 Special

5 Expired

If no key file is found, outLicenseType is O (Trial) and outExpirationDate is 00/00/00.
If outLicenseType is 3 (OEM), outExpirationDate is 00/00/00.

If outKeyFilePath is passed in, it receives the full URL path to the key file if it was found
during startup.

Chapter 11 Command Reference 331

Active4D v6.4 Script Environment

get time remaining version 2

get time remaining — Longint

Parameter Type Description

Result Real < Seconds till license timeout
Discussion

This command returns the number of seconds remaining until the current license times
out.

If the license provides unlimited time, zero is returned. If the license has already timed
out, -1 is returned.

version 1
get version modified v5

get version — Text

Parameter Type Description
Result Text < Current Active4D version
Discussion
This command returns the following information about the instance of Active4D that is
running:
Item Values
version Active4D 6.XrXX
architecture Macintosh/Intel, Windows/x86
build type debug, release

For example, the 6.0r1 release version of Active4D running on macOS would display the
following version string:

Actived4D 6.0rl [Macintosh/Intel, release]

Note: The network layer, 4D host and build flags are no longer returned in v5+.
These values can now be found in the Active4D log file, along with complete 4D and
system information.

332 Chapter 11 Command Reference

Script Environment

Active4D v6.4

configuration v6.0
configuration — Iterator
Parameter Type Description
Result Iterator <« Configuration info collection
Discussion
This command returns an iterator to a read-only collection that contains the complete
set of configuration information read from Active4D.ini, VirtualHosts.ini, Realms.ini, and
ExtensionMap.ini.
The items of the collection are:
Item Contents
cors Array of collections, one for each entry in Cors.ini
extension map Collection, key = extension, value = mime type
options Collection, key = option name, value = option value
realms Collection, key = realm name, value = match string
virtual hosts Array of collections, one for each virtual host entry in
VirtualHosts.ini
So, for example, if you want to retrieve the current set of virtual hosts, you would use this:
configuration{"virtual hosts"}
To dump the configuration to a web page, the easiest way is to use the a4d.debug.dump
configuration method.
parameter mode version 2

parameter mode — Text

Parameter Type Description
Result Text < Current parameter mode setting
Discussion

This command returns the current setting of the “parameter mode” option in
Active4D.ini, which will be either “none’, “form variables” or “query params”.

Chapter 11 Command Reference 333

Active4D v6.4

Script Environment

request query version 4.0
request query — Text
Parameter Type Description
Result Text < Query string
Discussion
This command returns the query string portion of the requested URL, if any (without the
leading “?").
version 2
set platform charset modified v5
set platform charset(inCharset)
Parameter Type Description
inCharset Number | Text — Charset to use when converting
executable source files
Discussion
This command sets the character set from which executable source files are converted to
Unicode in the current request.
You may either pass one of the character set constants below or an IANA character set
name. The output character set constants supported by Active4D are:
Character Set Constant
UTF-8 A4D Charset UTF8
Macintosh Roman A4D Charset Mac
Windows Latin A4D Charset Win
ISO-8859-1 (Latin1) A4D Charset ISO Latin1
Shift_JIS A4D Charset Shift_JIS
GB2312 A4D Charset GB2312
If you pass a name, it must be a valid IANA character set name. If the name is empty, it
will default to “mac”. If it is invalid an error will be generated and execution will abort.
For more information on the platform charset, see “Working with Character Sets” on
page 104.
334 Chapter 11 Command Reference

Script Environment Active4D v6.4

version 2
get platform charset modified v5
get platform charset — Text
Parameter Type Description
Result Text < Name of the charset from which

executable source files are converted

Discussion

This command returns the current platform charset, which determines how Active4D
converts executable source files to Unicode.

The name returned by this command is the internal, canonical name used by ICU, and
thus may not be the same name you used either in Active4D.ini or with the set platform
charset command. For a complete list of charset names, see:

http://demo.icu-project.org/icu-bin/convexp?s=IANA&s=ALL

For more information on the platform charset, see “Working with Character Sets” on
page 104.

set script timeout version 2

set script timeout(inSeconds)

Parameter Type Description
inSeconds Longint — Seconds script may run
Discussion

You use the script timeout to ensure that an errant script doesn't go into an infinite loop
and tie up server resources indefinitely. Active4D checks the timeout before executing
each line of code. If the script has been running more than <script timeout> seconds, an
error is generated and execution is aborted.

This command sets the script timeout for the next execution of Active4D, not the one in
which the command is used. In no case can the timeout be set lower than the “script
timeout” setting in Active4D.ini.

Chapter 11 Command Reference 335

Active4D v6.4 Script Environment

get script timeout version 2

get script timeout — Longint

Parameter Type Description
Result Longint < Seconds script may run
Discussion

This command returns the script timeout in seconds.

set current script timeout version 2

set current script timeout(inSeconds)

Parameter Type Description
inSeconds Longint — Seconds current script may run
Discussion

You use the script timeout to ensure that an errant script doesn’'t go into an infinite loop
and tie up server resources indefinitely. Active4D checks the timeout before executing
each line of code. If the script has been running more than <script timeout> seconds, an
error is generated and execution is aborted.

This command sets the script timeout only for the current execution of Active4D. In no
case can the timeout be set lower than the “script timeout” setting in Active4D.ini or the
most recent execution of the script timeout command.

get current script timeout version 2

get current script timeout — Longint

Parameter Type Description
Result Longint < Seconds script may run
Discussion

This command returns the timeout of the currently executing script in seconds.

336 Chapter 11 Command Reference

Selecting Records

Active4D v6.4

Selecting Records

The commands in this section are enhanced versions of the standard 4D selection
navigation commands. These commands are:

ALL RECORDS

FIRST RECORD

LAST RECORD

NEXT RECORD

PREVIOUS RECORD
GOTO RECORD

GOTO SELECTED RECORD

In addition to these commands, the SELECTION TO ARRAY and SELECTION RANGE TO
ARRAY commands have been similarly enhanced. They are discussed in
“SELECTION/SELECTION RANGE TO ARRAY” on page 150.

Loading Related Records

Each of the above commands has been enhanced to allow related records to be
automatically loaded — after the record is selected — as if you had implicitly called the
RELATE ONE or RELATE MANY commands. This feature will work only with automatic
relations. More importantly, this feature is implemented directly by 4D, so it is very fast.

Note: The loading of related records spoken of here is distinct from the effects of the
AUTOMATIC RELATIONS command, which only affects queries and order bys.

Configuring Related Record Auto-loading
There are three ways in which related records may be auto-loaded:

= Globally: Active4D.ini has a pair of settings called “auto relate one” and “auto relate
many”. These settings determine the default behavior for the commands listed above.
If you do not specify a value for these settings, the default is False. Setting them to True
causes related one or related many records to be loaded whenever one of the
commands above is executed, unless you override that behavior through one of the
two techniques outlined below.

= Per execution: There is a new command, auto relate(inRelateOne; inRelateMany),
which sets auto-relating of records in the currently executing script. Whatever values
you pass to this command will override the global setting from that point to the end of
the script’s execution.

* Per command: Each of the commands listed above adds two optional boolean
parameters, inRelateOne and inRelateMany. Specifying a value for these parameters
overrides both the global default and the default for the currently executing script, if it
was set by the auto relate command.

Chapter 11 Command Reference 337

Active4D v6.4

Selecting Records

Compatibility with Active4D 2.0.x

Active4D 2.0.x always loaded related one and related many records for each of the
commands above. Not only was this behavior in contradiction to standard 4D behavior, it
could have adversely affected performance.

Beginning with version 3.0, the default behavior is the same as 4D’s behavior: related one
and related many records are not loaded when using the commands above. You must be
sure that your code takes this into account.

Warning: Itis quite possible that scripts in version 2.0.x relied on the undocumented
behavior of the commands above and referenced values in related tables without
using RELATE ONE or RELATE MANY. If such is the case, they must either add
RELATE ONE or RELATE MANY commands or use one of the three techniques
outlined above to automatically load related records.

Examples

Let’s say you are looping through a selection of [ingredients] records and you want to
display [vendoriname, which is related by a many to one relation from the
[ingredientsjvendor_id field to the [vendors]id field.

Here's how you would ordinarily do it in Active4D:

for ($i; 1; records in selection([ingredients]))
goto selected record([ingredients]; $i)
relate one([ingredients])
writebr([ingredients]name +
end for

comes from " + [vendors]name)

If the global “auto relate one” setting is not set or is set to False, and you do not use the
auto relate command, and you do not use the optional flags in the GOTO SELECTED
RECORD command, this is how you must do it.

Now let’s assume you want the convenience of always loading the related one records
for all tables in your database. In that case you would change Active4D.ini:
auto relate one = true

By doing this, the code above could be written without using RELATE ONE:

for ($i; 1; records in selection([ingredients]))
goto selected record([ingredients]; $i)
writebr([ingredients]name + " comes from " + [vendors]name)
end for

Then you realize that there are many tables for which you don’t want to load the related
one record, so you change the “auto relate one” setting in Active4D.ini to be False. This

338

Chapter 11 Command Reference

Selecting Records Active4D v6.4

leaves you with two ways of loading the related [vendor] records without using RELATE
ONE:

auto relate(true; false)
// From this point on auto-load related one

for ($i; 1; records in selection([ingredients]))
goto selected record([ingredients]; $i)
writebr([ingredients]name + * comes from " + [vendors]name)

end for

for ($i; 1; Records in selection([ingredients]))
// passing extra argument
goto selected record([ingredients]; $i; true)
writebr([ingredients]name + " comes from " + [vendors]name)

end for

As you can see, there are many different ways to accomplish what you want. Itis all a
matter of how much control vs. convenience you want.

Here's one thing to watch out for:

auto relate(true)
query([ingredients]; [ingredients]name = "b@')
// First record is loaded but no auto relate happens

while(not(end selection([ingredients])))
writebr([ingredients]name + " comes from " + [vendors]name)

end while

In this example, the first record in the selection resulting from the query would not have
the related one record from [vendors] loaded, because no selection navigation
commands were executed. To make this work correctly you would have to do this:

auto relate(true)
query([ingredients]; [ingredients]name = "b@")
first record([ingredients])

Chapter 11 Command Reference 339

Active4D v6.4

auto relate

Selecting Records

version 3.0

auto relate(inRelateOne {; inRelateMany})

Parameter Type Description

inRelateOne Boolean — Sets auto-load of related one records
inRelateMany Boolean — Sets auto-load of related many records
Discussion

This command sets the auto-loading of related one and related many records for the
currently executing script. The settings specified here will override whatever the “auto
relate one” and “auto relate many” settings are in Active4D.ini. The settings in this
command will in turn be overridden by the extra parameters passed to the selection
navigation commands as outlined below.

For a complete discussion of auto-loading of related records, see “Configuring Related
Record Auto-loading” on page 337.

version 3.0

ALL RECORDS, FIRST/LAST/NEXT/PREVIOUS RECORD modified v5

ALL RECORDS([inTable] {; inRelateOne {; inRelateMany}})
FIRST RECORD([inTable] {; inRelateOne {; inRelateMany}})
LAST RECORD([inTable] {; inRelateOne {; inRelateMany}})
NEXT RECORD([inTable] {; inRelateOne {; inRelateMany}})
PREVIOUS RECORD([inTable] {; inRelateOne {; inRelateMany}})

Parameter Type Description

inTable Table — Table on which to act

inRelateOne Boolean — Auto-load related one
records

inRelateMany Boolean — Auto-load related many
records

Discussion

These commands act on the current record of inTable exactly as they do in 4D. In
addition, if inRelateOne and/or inRelateMany are passed, they do the following:

* inRelateOne: After the current record in inTable has been changed, if this parameter
evaluates to True, the related one record is loaded for each many to one relation in
inTable. The relations must be automatic for this to work.

If this parameter evaluates to False, the related one records will not be loaded. If this
parameter is not passed, the behavior is specified by the auto relate command or the
"auto relate one” setting in Active4D.ini.

340

Chapter 11 Command Reference

Selecting Records

Active4D v6.4

* inRelateMany: The same as inRelateOne, but this controls the loading of related

many records. If not passed the default behavior is specified by the auto relate command
or the “auto relate many” setting in Active4D.ini.

get auto relations version 3.0

GOTO RECORD

get auto relations(outRelateOne; outRelateMany)

Parameter Type Description

outRelateOne Boolean < Auto-loading of related one records
outRelateMany Boolean < Auto-loading of related many records
Discussion

This command gets the current state of auto-loading of related one and related many
records for the currently executing script.

For a complete discussion of auto-loading of related records, see the command “auto
relate” on page 340 and “Configuring Related Record Auto-loading” on page 337.

(modified 4D) version 3.0

GOTO RECORD([inTable]; inRecordNum {; inRelateOne {; inRelateMany}})

Parameter Type Description

inTable Table — Table on which to act
inRecordNum Number — Number of record to load
inRelateOne Boolean — Auto-load related one records
inRelateMany Boolean — Auto-load related many records
Discussion

This command acts on the current selection and current record of inTable exactly as it
does in 4D. In addition, the inRelateOne and inRelateMany parameters act as they do in
the FIRST RECORD command, as described above.

Chapter 11 Command Reference 341

Active4D v6.4 Selecting Records

GOTO SELECTED RECORD (modified 4D) version 3.0
GOTO SELECTED RECORD([inTable]; inOffset {; inRelateOne {; inRelateMany}})
Parameter Type Description
inTable Table — Table on which to act
inOffset Number — Offset within selection to make

current

inRelateOne Boolean — Auto-load related one records
inRelateMany Boolean — Auto-load related many records
Discussion

This command acts on the current record of inTable exactly as it does in 4D. In addition,
the inRelateOne and inRelateMany parameters act as they do in the FIRST RECORD
command, as described above.

342 Chapter 11 Command Reference

Sessions

Active4D v6.4

Sessions

In 4D, between the time you start a process and the time the process dies, you can
maintain the state of the process by using process variables.

The HTTP protocol, on the other hand, is completely stateless. Between the time a client
requests one page and another, the HTTP protocol provides no way of maintaining
persistent state information about the client.

Client-side cookies are one way of storing persistent information, but they are
cumbersome and inefficient for storing much more than a few pieces of information.
Thus the need arises for providing a persistent state mechanism.

The solution which is widely accepted by web scripting environments is called a session.
A session is a read-write collection which is maintained on the server and can be used to
store and retrieve any number of values pertaining to a client’s state, much as you would
use process variables. Active4D transparently does all the work of creating and
maintaining sessions.

If you have never programmed for the web before, you will quickly discover that good
session support is worth its weight in gold. If you have already programmed for the web,
you know that good session support is very difficult — meaning very expensive — to
implement. If you ask anyone who has ever tried to implement session support
themselves, they will tell you that Active4D’s session support alone makes it worth the
price!

Active4D’s session implementation follows the session architecture used in industry-
leading web scripting engines such as PHP, JSP, and ASP. This relieves you of the
considerable burden of implementing world-class session support yourself.

Session Lifetime

Active4D maintains a client’s session data for the lifetime of the session. The lifetime of a
session is defined by two factors:

= Your scripts may specifically use the abandon session command to expire a session.
Typically you would do this when a client logs out of your system.

= |f you do not specifically abandon the session, the session’s lifetime is defined by its
timeout, which is the maximum amount of time between requests that a session will
stay alive.

A session is still valid in code that is executed within the request in which it is abandoned
or expires, however any changes made to the session will be lost. In subsequent requests
the session’s id is no longer valid.

What happens to a session after it is abandoned or expires depends on which session
handler is in use. For more information on session handlers, see “Session Handlers” on
page 348.

* Built-in (memory): An abandoned or expired session is not immediately deleted
from memory. Its time remaining is set to zero so that it will be deleted in the next cycle
of the session purger.

Chapter 11 Command Reference 343

Active4D v6.4

Sessions

= Custom: At the end of the request, the “delete” method is called if it is defined, and
that method should delete the session’s storage. Expired sessions should be deleted in
the “purge” method if it is defined.

A background process periodically checks all sessions to see if they have timed out and
purges those that have. If you are using the built-in memory-based session handler, the
On Session End event handler is called for each session that is about to be purged.
Within the context of that handler, the about-to-be-purged session is current and you
can access all of its data.

Note: If you are using a custom session handler, On Session End is not called.

By default the timeout for a session is 10 minutes. This means that if a user logs in to your
site, does some operations, and then leaves your site without logging out, their session
will remain in memory for an additional 10 minutes before being deleted by the session
purger.

Session ID

When a client visits your web site, Active4D looks for a cookie called
“ACTIVE4D_SESSIONID” If the cookie is not there, Active4D assumes this is the first time
the client has visited your site since they launched their browser.

Active4D then generates a new internal session ID and public session ID. Since you only
work with the public session ID, it is simply called the session ID. Internal and public
session IDs have the following characteristics:

* Internal session IDs are 32-bit unsigned longints.
= Public session IDs are 16-character strings.

* If you are using the built-in memory-based session handler, each time 4D is started, a
random internal session ID starting value is selected. Then for each Active4D session
that is created, the internal session ID is incremented.

= If you are using a custom session handler, the handler is responsible for generating
unique internal session IDs.

* The 32-bit internal session ID is mixed with random data and encrypted to generate a
16-character cookie string.

* The encryption key is randomly selected each time the 4D is restarted.

The client never sees the internal session ID, only the encrypted session ID, unless you
specifically include the internal ID on your page with the session internal id command.

Note: For your internal use, you should always use the internal session id.

Session Events

When Active4D generates a new session ID, it checks to see if an On Session Start event
handler has been defined in the Active4D library. If such an event handler is defined, it is
executed.

344

Chapter 11 Command Reference

Sessions

Active4D v6.4

If you are using the built-in memory-based session handler, when the session is deleted
Active4D executes the On Session End event handler if one exists. For more information
on event handlers, see Chapter 10, “Event Handlers.”

When Active4D Sends Session Cookies

Even though Active4D generates a session ID when a client accesses your site, it does not
create the session in memory or send a session cookie to the client unless when one of
the following happens:

* The On Session Start event handler is defined (it need not set any session data)

= A script sets some session data using a set session command or by assigning a value
to a session item

= A script uses the session command without referencing an item

Note: If the session cookie secure configuration option is true and the request is not
secure, the session cookie will not be sent even if one of the above conditions is met.

If one of these conditions is not met, the next time that client browser accesses the
server, a new session ID will be generated because there will be no session cookie.

On the other hand, if the On Session Start event handler is defined or a session item is
set, Active4D will send a cookie called “ACTIVE4D_SESSIONID” (by default) back to the
client. The cookie’s value is the 16-character session ID.

Each subsequent request by that browser — until the client restarts the browser — will
include the session cookie with the session ID. Active4D decrypts the session ID into the
internal session ID and restores the corresponding session collection. All of the data
stored in the session during previous requests is then available to the current script.

The session cookie sent by Active4D does not have an expiration. Cookies with no
expiration are deleted when the browser closes, so a session is only valid as long as the
originating browser remains open.

Note: Active4D uses session cookies by default. You may disable session cookies
(and session management as well) through the config options in Active4D.ini. For
more information, see “Session Configuration” on page 347.

Cookieless Sessions

If you decide to forgo cookies as a means of storing the session ID, it is your responsibility
to ensure that the session ID is always passed from one page to another, either through a
hidden form field or through a query string parameter. If you fail to do so, you will lose
track of the session.

Active4D automatically creates a local variable which contains the session ID. The name
of this variable is “sid” by default; you can change it with the “session var name” option in
Active4D.ini.

Chapter 11 Command Reference 345

Active4D v6.4

Sessions

If Active4D is configured to use session cookies and it cannot find the cookie, or if it is
configured not to use cookies, it automatically looks for the session variable either in the
query params or in the form variables and then retrieves the session ID from the contents
of that variable.

When you want to pass the session ID as a hidden field, use the hide session field
command. To pass the session ID in a query string, use the session query command to
get a properly formatted query parameter.

Memory Caching of Sessions

By default, Active4D caches sessions in memory. Sessions use a minimum of 260 bytes of
memory per item. Thus if you have on average a session with 20 items, that means you
will use somewhere in the neighborhood of 5K. If you expect to have 100 sessions alive
at any given time, that means the session cache will occupy 500K of memory. This will
give you a rule of thumb in terms of how much memory usage to allocate for.

Because of the amount of memory sessions use, you should use sessions judiciously in
your application if you are not using a custom session handler. You would not want to
store huge numbers of items in a session, nor store huge amounts of text in a session
item. If this is necessary, consider either caching sessions in the database or storing some
info in the database and some in the session.

Session Timeout and Memory Usage

If you are not using a custom session handler, the maximum amount of memory sessions
will use in your web site can be expressed with the formula

M=VxTxS

where M is the total memory usage, V is the number of unique visitors per minute, T is
the session timeout, and S is the average memory usage per session.

So, for example, if you have a session timeout of 10 minutes, 10 unique visitors per
minute, and an average of 5K per session, your maximum memory usage will be 500K.

You can use this formula to tune the session timeout. Remember that the whole purpose
of sessions is to provide continuity in the user’s state while using your site. Therefore you
typically do not want the timeout to be less than 5 minutes, as the user will lose their
session if they stop to get a cup of coffee! On the other hand, you don't want the session
timeout to be too high because you will unnecessarily be wasting server memory. At
some point you have to assume the user has stopped using your site.

Monitoring Memory Usage

Active4D provides a 4D-based session monitor that displays the total memory usage for
all sessions. Using this during a typical load on your server can help you to tune your
timeout and the amount of memory your give to your server.

346

Chapter 11 Command Reference

Sessions

Active4D v6.4

For more information on the session monitor, see “The Session Monitor” on page 604.

Note: If you are using a custom session handler, the session monitor will show any
sessions.

Session Configuration

Active4D lets you configure every aspect of session management through options in
Active4D.ini.

session handler
If set, a custom session handler will be used instead of the built-in memory-based
session handler. For more information, see “Session Handlers” on page 348.

session cookie domain
HTTP cookies have a domain associated with them. The browser uses the domain and
path to determine whether to send a cookie to the server.

You may set the default session domain with this option. Ordinarily you would have no
need to do so.

The default value for this option is to have no domain.

session cookie name

This option determines the name of the cookie which Active4D looks for to find a session
ID when the user makes a request. It must contain only alphanumeric characters or
underscores with no spaces.

The default value for this option is “ACTIVE4D_SESSIONID".

session cookie path
HTTP cookies have a virtual path associated with them. The browser uses the domain
and path to determine whether to send a cookie to the server.

You may set the default session path with this option. Ordinarily you would have no
need to do so.

The default value for this option is to have no path.

session cookie secure
If you want session cookies to be sent only when the request is secure (https), set this
option to true.

The default value for this option is false.

session purge interval

This option determines the minimum time in seconds between attempts to purge
expired sessions. In actual fact the interval may be something greater, since Active4D
waits for all requests to finish before purging. Valid values for this option are between 5
and 60 inclusive.

The default value for this option is 10.

Chapter 11 Command Reference 347

Active4D v6.4

Sessions

session timeout

The length of time in minutes that a session can live without any user interaction. Values
less than 1 will be ignored. The session timeout can be changed at runtime with the set
session timeout command. To set the timeout to a value less than one minute, use a
fraction. For example, a value of 0.5 would be 30 seconds.

The default value for this option is 10.

session var name

The name of the local variable to automatically set to the current session ID (with or
without the leading ‘$’). It must contain only alphanumeric characters or underscores
with no spaces.

The default value for this option is “sid".

use session cookies

This option determines whether Active4D should store session IDs in cookies or look for
the session variable. Setting this option to “true” or “yes” will turn cookies on, “false” or
“no” will turn them off.

The default value for this option is “true”.

use sessions
This option is a global switch for session management. If you are using sessions for your
application, specify “true” or “yes". If you do not need session management at all, specify
“false” or“no”.

The default value for this option is “true”.

Session Handlers

By default, all sessions are kept in server memory. This is fast and convenient, but if you
are using multiple servers with a load balancer, you will need to keep the sessions in
globally accessible persistent storage, such as the database. The easiest way to do so is to
install the database session handler Active4D provides. For information on how to install
it, see “Installing the Predefined Session Handler” on page 35.

A session handler is either a group of 4D methods with a common name prefix, or an
Active4D library. Session handlers contain the following methods:

* nextld: Returns the nextinternal id for new sessions.

= read: Returns session data from persistent storage given an id and expire time.
= write: Writes session data to persistent storage.

= delete: Deletes persistent storage for a session given an id.

= purge: Deletes all sessions in persistent storage which expired before a given time.

Of these methods, nextld, read, and write are mandatory. If one or more of them are not
defined, the session handler is considered invalid and session support is turned off. The
delete and purge methods are optional in case you wish to implement your own
garbage collection mechanism.

348

Chapter 11 Command Reference

Sessions Active4D v6.4

For more information on session handler methods, see “SessionHandler” on page 594.

A custom session handler is activated by setting the “session handler” configuration
option. To use 4D methods for the session handler methods, specify the base name of
the 4D methods in the “session handler” configuration option. For example, if you
specify “sessionHandler” (without the quotes), Active4D will check for the following
methods:

sessionHandlerNextld
sessionHandlerRead
sessionHandlerWrite
sessionHandlerDelete
sessionHandlerPurge

To use an Active4D library as the session handler, specify the library name (without
extension) in the “session handler” configuration option, prefixed with “*”. For example, if
you specify “*sessionHandler” (without the quotes), Active4D will attempt to load the
“sessionHandler” library and then check the library for the following methods:

nextld
read
write
delete

purge

Note: For either type of session handler, case is ignored both in the configuration
option and in the method names.

Active4D does not check the session handler methods until all of your configuration
options have been read. This ensures in particular that the “lib dirs” option is active when
searching for a session handler library, which enables you to put it in one of the “lib dirs”
directories.

Chapter 11 Command Reference 349

Active4D v6.4

session

Sessions

version 2
modified v6.0

session — Longint

Parameter Type Description
Result Longint < Iterator reference
Discussion

This command returns an iterator to the first item in the current session.

Note: If used by itself without referencing an item, this command will create a
session if one does not exist.

For more information on iterators, see “Iterators” on page 214.

version 3.0

session to blob modified v5.0
session to blob{(ioBlob)} — BLOB | <none>
Parameter Type Description
ioBlob BLOB <> BLOB to append data to
Result BLOB < Serialized session data
Discussion

This command serializes the data in the current session. If ioBlob is passed, the serialized
data is appended to ioBlob and nothing is returned. If ioBlob is not passed, the serialized
data is returned as a new BLOB. In either case, you can store the BLOB somewhere for
later restoral via blob to session.

For an example of how to serialize and deserialize a session with embedded collections,
see “collection to blob” on page 156.

350

Chapter 11 Command Reference

Sessions

Active4D v6.4

version 3.0

blob to session modified v5.0
blob to session(inBLOB {; ioOffset})
Parameter Type Description
inBLOB BLOB — BLOB with serialized collection data
ioOffset Number <> Offset within BLOB to get data
Discussion

get session

This command sets the current session from the serialized collection data contained in
inBLOB. If ioOffset is passed, the serialized data must begin at that byte offset within
inBLOB. After the session is successfully deserialized, ioOffset will point to the first byte
beyond the serialized data.

If inBLOB was not created with session to blob, an error will be generated and execution
will be aborted.

Note that this command will run the On Session End event handler on the old session,
but the On Session Start event handler will not be run for the restored session, since
you don't want to initialize it. Depending on what you do in On Session Start, you may
have to factor out some code into a separate method and then call that method both
from On Session Start and after calling blob to session.

For an example of how to serialize and deserialize a session with embedded collections,
see “collection to blob” on page 156.

version 2

get session(inKey {; inlndex}) — <any>

Parameter Type Description

inKey Text — Key of session item to retrieve
inlndex Number — Array element to retrieve
Result <any> < Value of session item or "
Discussion

This command searches the current session for the item with the key inKey.

If the item is found and inIndex is not specified, the item’s value is returned. If the item
value is an array, an empty string is returned.

If the item is found and an index is specified, the given array element is returned. If the
index is out of range, an error is generated and execution is aborted.

Chapter 11 Command Reference 351

Active4D v6.4 Sessions

If the item is not found, an empty string is returned.

Note: This command has been superceded by the simpler syntax:

sessionf{inKey} or session{inKey}HinIndex}

get session array version 2

get session array(inKey; outArray)

Parameter Type Description

inKey Text — Key of session item to retrieve
outArray Array < Receives the array
Discussion

This command searches the current session for the item with the key inKey.
If outArray is not an array, an error is generated and execution is aborted.

If the item is found and its value is an array, outArray receives a copy. If outArray has not
yet been defined, it is created with the same type as the source array.

If the item is found and its value is not an array, an error is generated and execution is
aborted.

If the item is not found, outArray is resized to zero. If outArray has not yet been defined, it
is created as a text array.

Note: Because you can reference arrays directly with the syntax session{"key"}, you
may apply any array commands directly to the array within the session. Thus there is
no longer any need for this command. It is kept only for backward compatibility.

get session array size version 2

get session array size(inKey) — Longint

Parameter Type Description

inKey Text — Key of session item to check
Result Longint < Size of array

Discussion

This command searches the current session for the item with the key inKey.

If the item is found and its value is an array, the size of the array is returned.

352 Chapter 11 Command Reference

Sessions Active4D v6.4

If the item is found and its value is not an array, an error is generated and execution is
aborted.

If the item is not found, zero is returned.

Note: This command has been superceded by the simpler syntax:

size of array(session{inKey})

get session item version 2

get session item(inKey) — Longint

Parameter Type Description

inKey Text — Key of session item to retrieve
Result Longint < Iterator for session

Discussion

This command searches the current session for the item with the key inKey.
If the item is found, an iterator reference for the item is returned.

If the item is not found, an empty iterator is returned. For information on empty iterators,
see “|terating Over a Collection” on page 102.

get session keys version 2

get session keys(outKeys)

Parameter Type Description
outKeys String/Text Array < Receives the session keys
Discussion

This command fills outKeys with all of the keys in the session. If outKeys has not yet been
defined, it is created as a string array.

If outKeys is defined but is not a string or text array, an error is generated an execution is
aborted.

Chapter 11 Command Reference 353

Active4D v6.4 Sessions

set session version 2

set session(inKey; inValue {; inKeyN; inValueN | inIndex})

Parameter Type Description

inKey Text — Key of session item to store
inValue <any> — Value to set for the given item
inindex Longint — Index of array element to set
Discussion

This command searches the current session for the item with the key inKey.

If the item is found and its value is not an array, you may pass more than one key/value
pair to set multiple items at once. If the item is found and its value is an array, you may
pass an index to set an element of the array.

If the item is found and an index is not specified, the item’s value is replaced with inValue.

If the item is found, its value is an array, and an index is specified, the given array element
is set. If the index is out of range or the type of inValue is not assignment-compatible
with the array, an error is generated and execution is aborted.

If the item is not found and an index is not specified, a new item is added to the session
with the given keys and values.

If the item is not found and an index is specified, an error is generated and execution is
aborted.

Note: This command has been superceded by the simpler syntax:

session{inKey} :=inValue or session{inKey}{inIndex} :=inValue
Here is an example of set session using multiple items:

set session('name'; "Aparajita’™; "age'"; 40)
// session now contains two items

354 Chapter 11 Command Reference

Sessions Active4D v6.4

set session array version 2

set session array(inKey; inArray)

Parameter Type Description

inKey Text — Key of session item to store
inArray Array — Array to set for the given item
Discussion

This command searches the current session for the item with the key inKey.
If inArray is not an array, an error is generated and execution is aborted.
If the item is found, its value is replaced with inArray.

If the item is not found, a new item is added to the session with the given key and array.

Note: You may directly declare an array within a session using the syntax:
array <type>(session{"key"})

However, before using this syntax you must make sure to either:

= Assign a value to a session item

= Use the session command by itself

= Use one of the set session commands

session has version 2

session has(inKey {; *}) — Boolean

Parameter Type Description

inKey Text — Key of session item to test
* * — Perform wildcard search
Result Boolean < Trueif keyis in session
Discussion

This command searches the current session for the item with the key inKey. If * is passed,
inKey may contain 4D wildcard characters and they will be honored in the search.

If the item is found, True is returned, otherwise False.

Chapter 11 Command Reference 355

Active4D v6.4

Sessions

Because a session value can be of any type, it is not sufficient to use session{item} and
check for an empty string being returned. You should always use this command to test
for the existence of a session item, as shown here:

iT (session{"test"} # ')
// The test above would break if the item "test" existed
// and was a number

end if

// The correct way
iT (session has("test™))

$test := session{'test"}
else
session{'"test"} := "this is a test"
end if
count session items version 2

count session items — Longint

Parameter Type Description
Result Longint < Number of items in session
Discussion

This command returns the number of items in the current session.

delete session item version 2

delete session item(inKey)

Parameter Type Description
inKey Text — Key of session item to delete
Discussion

This command searches the current session for the item with the key inKey. To delete
more than one item, you may use a wildcard in the key. All items that match will be
removed from the session.

356

Chapter 11 Command Reference

Sessions

Active4D v6.4

abandon session version 2

abandon session

Discussion

This command marks the current session to be expired when the current script finishes
executing. After this command is executed, any changes made to the session are
effectively lost.

An abandoned session is not removed from memory and the On Session End handler is
not run until the next session purge cycle.

session id version 2
session id — Text
Parameter Type Description
Result Text < Encrypted public session ID
Discussion

session internal

This command returns the 16-character encrypted public session ID, not the internal
session ID.

id version 2

session internal id — Longint

Parameter Type Description
Result Longint < Internal session ID
Discussion

Active4D never directly uses the internal session ID. This command is here primarily
because the Active4D Session Monitor (see “The Session Monitor” on page 604) displays
internal session IDs. By using this command you can identify which session is active for a
given browser and then view it in the Session Monitor.

Chapter 11 Command Reference 357

Active4D v6.4 Sessions
session local version 2
session local — Text
Parameter Type Description
Result Text < Name of the session local variable
Discussion

This command returns the name of the session ID local variable set by the “session var
name” option in Active4D.ini.

session query version 2
session query — Text
Parameter Type Description
Result Text <« String suitable for using in a query
string
Discussion

This command is a convenience routine that returns the equivalent of:
session local + "=" + session id

If you are using cookie-based sessions, you would ordinarily have no use for this
command. But if you are not using cookie-based sessions, it is your responsibility to pass
the session ID in every form and every link.

This command makes it easy to generate the correct query string parameter when
building your links.

358

Chapter 11 Command Reference

Sessions Active4D v6.4

hide session field version 2

hide session field

Discussion
This command is a convenience routine that performs the equivalent of:

write("'<input type="hidden"™ name=\"%1%\"" §1d=\""%1%\""
value=\"%2%\" />" % (session local; session id))

If you are using cookie-based sessions, you would ordinarily have no use for this
command. But if you are not using cookie-based sessions, it is your responsibility to pass
the session ID in every form and every link.

This command makes it easy to generate the correct hidden field within a form.

Note: Make sure this command is called inside a form, otherwise it will have no
effect.

set session timeout version 2

set session timeout(inMinutes)

Parameter Type Description

inMinutes Real — Maximum time to live between
requests

Discussion

This command sets the timeout of the current session in minutes. You can pass a fraction
to set the timeout to less than one minute. For example, a value of 0.5 means 30 seconds.

Chapter 11 Command Reference 359

Active4D v6.4 Sessions

get session timeout version 2

get session timeout — Real

Parameter Type Description

Result Real < Maximum time to live between
requests

Discussion

This command returns the timeout of the current session in minutes.

get session stats version 3.0

get session stats(outlDs; outTimeouts; outRemainTimes; outSizes)

Parameter Type Description

outlDs Longint Array < Receives internal session IDs
outTimeouts Real Array < Receives session timeouts in minutes
outRemainTimes Longint Array < Receives seconds remaining till

sessions timeout

outSizes Longint Array < Receives the memory used by the
sessions in bytes

Discussion

This command retrieves information about all current sessions. You can use this
information to create an interactive web-based monitor of all current sessions.

The arrays need not have been declared before calling this command, as they will be
created on the fly with the specified type. If the array does exist, its type will be changed
to the specified type.

Sessions which have expired but have not yet been purged will be returned with a

remaining time of zero.

Note: This command is used by the a4d.debug library method dump session stats.
For more on this method, see “dump session stats” on page 444.

360 Chapter 11 Command Reference

Strings

Active4D v6.4

Strings

Many, many new and incredibly useful string utilities have been added in Active4D.
Learn them and you will save enormous amounts of time. Many of the most important
additions to string handling are not in the form of commands but in the form of
enhancements to the language. These are covered in the “Interpreter” chapter .

URL Encoding/Decoding

Internet standards dictate that URLs passed to web servers contain only a certain subset
of the US-ASCII character set. All other characters are to be encoded in the form %NN,
where NN is the hexidecimal value of the character in the US-ASCII character set.

Active4D automatically decodes the standard HTTP request elements such as header
names, form variables, query string parameters, etc., and converts them from UTF-8 to
Unicode. However, there are some request elements, such as cookie values, that are
considered opaque and are not decoded.

Active4D provides a set of commands that facilitate the encoding and decoding of such
opaque data:

url decode

url decode path
url decode query
url encode

url encode path
url encode query

The “query” commands differ from the “path” commands in that:

= The“path” commands pass through more characters unencoded (such as‘/’) and
convert spaces to and from %20.

= The“query” commands encode everything but -_.~!*() and convert spaces to and
from'+.

You should use the “path” commands on the path portion of a URL, and the “query”

commands on the query string portion of a URL.

When encoding, Unicode text is converted to UTF-8 and then encoded.

String Commands and Unicode

Internally Unicode text is stored using 16-bit (2-byte) code units. A single Unicode code
point (what we would usually call a character) may require two code units (four bytes).
However, almost all modern languages are in the Unicode Basic Multilingual Plane (or
BMP), which can be represented by a single 16-bit code unit. When referring to strings in
Active4D (and in 4D v11+), all indexes, lengths, etc. are in terms of 16-bit code units.
Since any language you are likely to use will be in 16-bit code units, you should not have
to worry about a character index falling in the middle of a 32-bit code point.

Chapter 11 Command Reference 361

Active4D v6.4 Strings

If the preceding paragraph made no sense to you, don't worry. It is unlikely you will ever
have to understand what it means.

362 Chapter 11 Command Reference

Strings Active4D v6.4
version 4.0
% (formatting operator) modified v5

<format> % (arg1 {; ... argN}) — Text

Parameter Type Description
format Text — Format string
arg1..N <any> — Format arguments
Operator result Text < Formatted text
Discussion

This operator takes a format string and applies one or more arguments to it. The format
string can be any mixture of literal text and formatting directives which indicate the
format and type of the argument that it applies to.

Note: A BLOB argument is treated as raw text stored as UTF8 Text without length.

Note that parameter numbers are one-based with the % operator.

The full syntax of the format string is beyond the scope of this document. You can read
its documentation here:

http://www.boost.org/libs/format/doc/format.html#syntax

Example

// $cart is a RowSet
$i =1
$format = "%1%. %2% $%3$P4.2F"

while ($cart->next)

$item = $cart->getRow

writebr($format % ($i++; $item{"desc"}; Sitem{ price"}))
end while

// output

1. Acme Jet-pack $123.45
2. Spacely sprocket $27.95
3. Cogswell cog $7.99

There are many, many online examples of how to use this type of formatting. Just enter
“printf examples” or “printf tutorial” into your favorite search engine.

Note: In general the %% operator should be preferred over % because it works
directly with Unicode, whereas the % operator has to convert all arguments to UTF-8,
perform the formatting, then convert the result back to Unicode.

Chapter 11 Command Reference 363

Active4D v6.4 Strings

v5
%% (formatting operator) modified v6.0r10

<format> %% (argO {; ... argN}) — Text

Parameter Type Description
format Text — Format string
arg0...N <any> — Format arguments
Operator result Text < Formatted text
Discussion

This operator takes a format string and applies one or more arguments to it. The format
string can be any mixture of literal text and formatting directives which indicate the
format and type of the argument that it applies to.

Note: A BLOB argument is treated as raw text stored as UTF8 Text without length.

Active4D uses Internet Components for Unicode (ICU) to do formatting. There are many
options available; ICU formatting is extremely powerful. The full syntax of the format
string is beyond the scope of this document. To find out more, read the “Detailed
Description” section of this page:

http://icu-project.org/apiref/icu4c/classMessageFormat.html

Active4D supports longints, doubles, strings, times, booleans, dates and collections as
format values.

Booleans are converted to the number 1 or 0, which is useful with choice formats.

Using a collection as a format value allows you to refer to a collection value by name in
the format string, where the name is one of the collection key. You may freely mix
positional format values (non-collections) and named format values (collections) in the
format value list. See the example below for an idea of how this works.

Format placeholders without any type specifier (such as “{0}" or “{name”}) convert their
values by effectively using the String command. Thus the formatting will follow 4D’s
default formatting, which is locale aware. Format placeholders with a type specifier (such
as“{0,number}” or “{birthdate,date,long}”) are converted using the default formatting of
the ICU locale, which is set to the system locale. Note that ICU’s locale formatting may
not match 4D s formatting exactly.

With the %% operator, unlike with the % operator, parameter numbers are zero-based.
The format string command is the equivalent of the %% operator in command form.
Note: In general the %% operator should be preferred over % because it works

directly with Unicode, whereas the % operator has to convert all arguments to UTF-8,
perform the formatting, then convert the result back to Unicode.

364 Chapter 11 Command Reference

Strings

capitalize

Active4D v6.4

Example

// o is the ICU format character for the localized currency symbol
$format := "{0}. {desc} {price, number, o###0.00}{2}"
$1 =1

// $cart is a RowSet with “desc” and “price” items.
// getRow() returns a collection with the current row’s values.
$row := $cart->getRow

while ($cart->next)
$special := choose($i = 2; " Special!'; ")
writebr($format %% ($i++; $row; $special))
// note that $special is used in the format as argument 2
end while

// output

1. Acme Jet-pack $123.45

2. Spacely sprocket $27.95 Special!
3. Cogswell cog $7.99

version 3.0

capitalize(inText {; *}) — Text

Parameter Type Description

inText Text — Text to capitalize

* * — Affect first letter only
Result Text <« Capitalized text
Discussion

This command capitalizes the first letter of each word it finds in inText. Word boundaries
are defined by punctuation, control characters and whitespace, excluding single quotes
(they are treated as apostrophes) and underscores.

If * is not passed in, letters after the first letter are lowercased. If * is passed in, they are

skipped. This allows you to maintain capitalization of words like “ID".

write(capitalize("THIS 1S ALL CAPS'™))
// output is "This Is All Caps"

write(capitalize("'name, ID"; *))
// output is "Name, ID"

Chapter 11 Command Reference 365

Active4D v6.4 Strings

cell version 3.0

cell(inValue) — Text

Parameter Type Description

inValue <any> — Value to convert to text
Result Text < Converted value or“ ”
Discussion

Because some browsers (notably Navigator 4.x) do not properly draw cells if they have
no contents, it is best to fill empty cells with non-breaking spaces. You can use the cell
command to quickly and easily take care of this without having to check for empty
contents yourself.

This command attempts to convert inValue to text according to the rules used by the
String command. If inValue can successfully be converted to text, the length of the
resulting text is checked.

If the length is zero, the command returns the HTML non-breaking space for the current
output charset, suitable for placing in the cell of an HTML table.

366 Chapter 11 Command Reference

Strings Active4D v6.4

If the length is non-zero, the converted text is returned.

Example

<tr>
<td><% =cell([People]Fax) %></td>
</tr>

Note: This command is not necessary in modern browsers. The same effect can be
achieved at a global level by putting the following style declaration in your main style
sheet:

table: { border-collapse: collapse }
td, th: { empty-cells: show }

compare strings version 2

compare strings(inSource; inCompare) — Longint

Parameter Type Description

inSource Text — Text to compare with
inCompare Text — Text to compare against
Result Longint < Relative result of comparison
Discussion

This command performs a bitwise comparison of the bytes in two strings. If inSource is
bitwise greater than inCompare, a positive number is returned. If inSource and inCompare
are bitwise equal, zero is returned. If inSource is bitwise less than inCompare, a negative
number is returned.

Chapter 11 Command Reference 367

Active4D v6.4

concat

Strings

version 2

Delete string

concat(inDelimiter; inString1; inString2 {; ...inStringN}) — Text

Parameter Type Description

inDelimiter Text — Text to put between strings
inString1 Text — Firststring

inString2 Text — Second string

Result Text < Concatenation of all strings
Discussion

This command concatenates two or more strings together, placing inDelimiter between
them. If a string is empty, no delimiter is inserted.

This is basically a convenience routine that makes it easy to build full names, addresses,
etc. without inserting extra spaces.

For example:

writebr("[** + concat(" *; "John™; *J."; "Smith™) +

"1
writebr("['* + concat(* **; "John™; "*; "Smith™) + "]')

// output
[John J. Smith]
[John Smith]

version 1
modified version 4.0

Delete string(inString; inFirstChar {; inNumChars}) — Text

Parameter Type Description

inString Text — String from which to delete
inFirstChar Number — Position of first character to delete
inNumChars Number — Number of characters to delete
Result Text < Remaining string

Discussion

The Active4D version of the Delete string command differs from 4D’s version in that you
can pass a negative number for inFirstChar and inNumChars, which is converted to the
index of the Nth Unicode code unit from the end of inString.

When a negative number is passed for inNumChars, note that it signifies an index relative
to the end of the string, not a number of characters relative to inFirstChar.

368

Chapter 11 Command Reference

Strings

enclose

Active4D v6.4

Examples

// Using negative number for inFirstChar
$sub := Delete string(''foobar.a4d"; -4; MAXTEXTLEN)
// $sub = "foobar™

// Using negative number for inNumChars

// -2 means to delete through the 2nd to last char
$sub := Delete string(‘'12345"; 2; -2)

// $sub = 15"

version 2

enclose(inValue {; inEnclosures}) — Text

Parameter Type Description

inValue <any> — Value to enclose

inEnclosures Text — Characters to use for enclosure
Result Text < Enclosed text

Discussion

This command is a convenience for the common case when a value (usually a string)
needs to be enclosed in some characters, such as double quotes.

The command first attempts to convert inValue to text according to the default
formatting for its type. If inValue is not of a type that can be converted to text, an error is
generated and execution is aborted.

If inEnclosures is not specified, the opening and closing enclosure characters default to
double quotes (Char(34)).

If inEnclosures is specified and is a single character, the opening enclosure character is set
to that character. The closing enclosure character is set according to the following table:

Opening enclosure Closing enclosure

()
[]
{ }

< >

Any other character opening enclosure

If inEnclosures is specified and is more than one character, the opening enclosure
character is set to the first character and the closing enclosure character is set to the
second character.

Some examples:

Chapter 11 Command Reference 369

Active4D v6.4 Strings

enclose("test") "test"
enclose(13) "13"
enclose("test"; "(") (test)
enclose("test"; "*") *test®
enclose("test"; "&;") &test;
version 2
first not of modified v5

first not of(inSource; inMatchChars {; *}) - Longint

Parameter Type Description

inSource Text — Text to search

inMatchChars Text — Characters to search for

* * — Perform a bitwise search

Result Longint <« Position of first matching character
Discussion

This command searches inSource for the first character that does not match any of the
characters in inMatchChars and returns its position. If no match is found, zero is returned.

If *is not passed, the search is case and diacritical-insensitive (the backwards-compatible
default). However, unlike the Position command, composed characters like “B” will not
be matched with non-composed equivalents like “ss"

If * is passed, the comparison is a strict bitwise comparison, which means case and
diacriticals are significant.

370 Chapter 11 Command Reference

Strings

first of

Active4D v6.4

version 2
modified v5

format string

first of(inSource; inMatchChars {; *}) — Longint

Parameter Type Description

inSource Text — Text to search

inMatchChars Text — Characters to search for

* * — Perform a bitwise search

Result Longint < Position of first matching character
Discussion

This command searches inSource for the first character that matches any of the
characters in inMatchChars and returns its position. If no match is found, zero is returned.

If * is not passed, the search is case and diacritical-insensitive (the backwards-compatible
default). However, unlike the Position command, composed characters like “B” will not
be matched with non-composed equivalents like “ss”.

If *is passed, the comparison is a strict bitwise comparison, which means case and
diacriticals are significant.

v5

format string(inFormat; inArg0 {; ... argN}) — Text

Parameter Type Description
inFormat Text — Format string
inArg0..inArgN <any> — Format arguments
Result Text < Formatted text
Discussion

This command is the equivalent of:
inFormat %% (inArg0 {; inArgl {; inArgN}})

For more information, see “%% (formatting operator)” on page 364.

Chapter 11 Command Reference 371

Active4D v6.4

identical strings

Strings

version 2

Insert string

identical strings(inString1; inString2) — Boolean

Parameter Type Description

inString1 Text — Text to compare

inString2 Text — Text to compare

Result Boolean < True if completely identical
Discussion

This command does a strict case- and diacritical-sensitive comparison of the two strings
and returns True if they are identical. This is very useful when comparing passwords.

v5 (enhanced 4D)

Insert string(inSource; inWhat; inWhere) — Text

Parameter Type Description

inSource Text — String in which to insert
inWhat Text — String toinsert

inWhere Number — Position at which to insert
Result Text < New string

Discussion

The Active4D version of the Insert string command differs from 4D’s version in that you
can pass a negative number for inWhere, which is converted to the index of the Nth
Unicode code unit from the end of inSource.

For example, to insert 4 characters from the end of a string, you could use:

$s := insert string(foobar.a4d”; ".0"; -4)
// $s = "foobar.0.a4d"

372

Chapter 11 Command Reference

Strings

Active4D v6.4

interpolate string version 4.0

last not of

interpolate string(inString) — Text

Parameter Type Description
inString Text — Text to interpolate
Result Text < Interpolated text
Discussion

This command interpolates inString according the rules for string interpolation as
documented in “String Interpolation” on page 84.

Ordinarily you don’t need to use this command, because you can implicitly interpolate
strings by using string literals with single-quotes. However, if you are dynamically
building a string without string literals which you want to interpolate, you can use this
command to do so.

version 2
modified v5

last not of(inSource; inMatchChars {; *}) — Longint

Parameter Type Description

inSource Text — Text to search

inMatchChars Text — Characters to search for

* * — Perform a bitwise search

Result Longint < Position of first matching character
Discussion

This command searches inSource for the last character that does not match any of the
characters in inMatchChars and returns its position. If no match is found, zero is returned.

If *is not passed, the search is case and diacritical-insensitive (the backwards-compatible
default). However, unlike the Position command, composed characters like “B” will not
be matched with non-composed equivalents like “ss"

If * is passed, the comparison is a strict bitwise comparison, which means case and
diacriticals are significant.

Chapter 11 Command Reference 373

Active4D v6.4 Strings

version 2
last of modified v5

last of(inSource; inMatchChars {; *}) — Longint

Parameter Type Description

inSource Text — Text to search

inMatchChars Text — Characters to search for

* * — Perform a bitwise search

Result Longint < Position of first matching character
Discussion

This command searches inSource for the last character that matches any of the
characters in inMatchChars and returns its position. If no match is found, zero is returned.

If * is not passed, the search is case and diacritical-insensitive (the backwards-compatible
default). However, unlike the Position command, composed characters like “B” will not
be matched with non-composed equivalents like “ss”.

If *is passed, the comparison is a strict bitwise comparison, which means case and
diacriticals are significant.

left trim version 2

left trim(inString) — Text

Parameter Type Description
inString Text — Texttotrim
Result Text <« Trimmed text
Discussion

This command trims control characters and whitespace from the beginning of inString
and returns the result.

374 Chapter 11 Command Reference

Strings

html encode

Active4D v6.4

v5

mac to html

html encode(inString {; inMode}) — Text

Parameter Type Description
inString Text — Textto convert
inMode Longint — How to convert
Result Text < Converted text
Discussion

This command encodes HTML special characters (like "&") to ISO HTML character entities
(like “&”), according to inMode and the current output charset.

If inMode is not passed in, the conversion mode defaults to A4D Encoding HTML.
If inMode is an asterisk, the conversion mode is A4D Encoding All.

Otherwise you may pass a set of bit flags as you would to the set output encoding
command. For more information on output encoding, see “set output encoding” on
page 305.

Note: html encode will only convert non-ASClI characters if the output charset is
ISO-8859-1 or ISO-8859-15.

version 1
deprecated v5

mac to html(inString {; inMode}) — Text

Parameter Type Description
inString Text — Text to convert
inMode Longint — How to convert
Result Text < Converted text
Discussion

This command has been deprecated in favor of the renamed command html encode. It
has been kept for backwards compatibility, but will be removed in a future version.

Chapter 11 Command Reference 375

Active4D v6.4

Strings

version 4.5

mac to utf8 deprecated v5
mac to utf8(inText) — Text
Parameter Type Description
inString Text — Text
Result Text < Original text
Discussion
As of v5, this command is deprecated and does nothing, since all text within Active4D is
Unicode. It has been kept for backwards compatibility, but will be removed in a future
version.
param text version 2
param text({*; inDelimiters} inSource; inReplaceParam {; ...inReplaceParamN}) — Text
Parameter Type Description
* * — Indicates delimiters passed
inDelimiters Text — Delimiters for parsing inSource
inSource Text — Textto parse
inReplaceParam <any> — Replacement parameter
Result Text < Transmogrified text
Discussion
This little beauty is in actuality a powerful little string processor with an embedded
language.
At the simplest level, param text can be used to do multiple string replacements in one
shot. All parameter placeholders indicated by “AN" in the source text are replaced with
the corresponding replacement parameters, where N is the relative number of the
replacement parameter. Replacement parameters are automatically converted to text.
For example:
// Current record of [Contacts] has Firstname="Buffalo",
// Lastname="Bill"
write(param text(“'Hello, ~1 ~2! How are you?'; \\
[Contacts]Firstname; \\
[Contacts]Lastname))
// output
Hello Buffalo Bill! How are you?
376 Chapter 11 Command Reference

Strings

Active4D v6.4

In addition to simple parameter replacement, you can specify alternate subsections of
the source string to be used depending on the value of the replacement parameters.

Alternate subsections are marked in the form:
<delim>N<delim>T1<delim>T2<delim>

where <delim> is a delimiter character, N is a parameter number (one-based), T7 is the
first choice, and T2 is the second choice. The delimiter characters are taken from the first
two characters of inDelimiters. The default delimiters string is “#|", which is used if
inDelimiters is less than two characters.

Three passes are made over the source string.

= First the delimiter inDelimiters[[1]] is used, and if the value of parameter N evaluates to
zero, T1 is used, else T2 is used. A parameter is considered zero if it contains only
numeric characters and converts to the number zero, or if its length = 0.

* The second pass uses the delimiter inDelimiters[[2]], and if the value of parameter N
evaluatesto 1, T1 is used, else T2 is used.

= Finally, any occurrence of AN, where N is a replacement parameter number, is replaced
with the corresponding replacement parameter.

Subsections with the same delimiter may not be nested.

The point of all this is to allow you to encode linguistic rules in your strings, rather than in
your code. For example, here is a common problem:

$recs := records in selection([contact])

case of
:($recs = 0)
$msg := "There are no contacts available."
:($recs = 1)
$msg := "There is 1 contact available."
else
$msg:= "There are
end case

+ string($recs) + "contacts available"

Multiply this by a hundred messages, and you can see why no one bothers to be
grammatically correct with such messages.

Using param text, you can easily handle such a situation like this:

$recs := records in selection([contacts])
$msg := "There |1l]is|are| #1#no# 1# ~2|1]|s| available."
$msg := param text($msg; "#|"; $recs; "contact’™)

// This code does the same as the case statement above.

Okay, now we need to decode the source string.

Chapter 11 Command Reference 377

Active4D v6.4 Strings

m
)
‘
o
2

Description

There literal text

| start a singular/non-singular selector

1 use replacement parameter #1, Srecs, as the selector

lis|are| insert“is” if Srecs evaluates to 1, “are” otherwise

start a zero/non-zero selector

1 use replacement parameter #1, $recs, as the selector

#no#A14# insert“no” if Srecs evaluates to zero, replacement parameter #1

(Srecs) if not

A2 insert replacement parameter #2, “contact”

| start a singular/non-singular selector

1 use replacement parameter #1, $recs, as the selector

[|s| do nothing if $recs evaluates to 1, insert “s” otherwise

It takes some getting used to, but once you master this mini-language you can eliminate
a lot of code by programming your strings!

Note: One useful technique is to use a boolean flag as a selector between alternate
text. Simply pass a replacement parameter of String(Num($myBool)) and use a
zero/non-zero selector.

version 2 (enhanced 4D)
Position modified v5

Position(inFind; inSource {; inStart {; { *; } { outLengthFound {; * }}}}) —» Longint

Parameter Type Description

inFind Text — Text to search for

inSource Text — Text in which to search
inStart Longint — Starting position for search
* * — Searchin reverse
outLengthFound Longint — Length of matched text

* * — Use bitwise comparison
Result Longint < Position of first match
Discussion

Active4D extends this 4D command by allowing you to do a reverse search.

If inStart is not passed, it defaults to 1. If inStart is passed and is positive, the search starts
at inSourcel[inStartl]. If inStart is passed and is negative, the search starts inStart

378 Chapter 11 Command Reference

Strings

right trim

Active4D v6.4

characters from the end of inSource, so inStart of -1 would mean to start searching from
the last character of inSource.

If a reverse search is performed, inStart defaults to the end of inSource if it is not passed.
Reverse searches begin at inSource[[inStart]] and proceed towards inSource[[1]]. Note
that when searching in reverse, the start position marks the end of the portion of
inSource that is searched. In other words, it is as if you are looking for the last occurrence
of inFind within Substring(inSource; 1; inStart).

outLengthFound and the final * have the same function as the last two parameters of the
Position command in 4D.

Example
$source := ""testl23test"
$pos := position(""test'; $source)

// forward search, $pos = 1

$pos := position(""test'; $source; *)
// reverse search from end, $pos = 8

$pos := position("test'; $source; 2)

// forward search starting at 2nd char, $pos = 8
$pos := position(“test'; $source; 7; *)

// reverse search starting at 7th char, $pos = 1

$pos := position(test'; $source; -2)
// forward search starting at 2nd char from end, $pos = 0

$pos := position(test'; $source; -1; *)
// reverse search starting at 1st char from end, $pos = 8
$pos := position(test'; $source; -5; *)
// reverse search starting at 5th char from end, $pos = 1
version 2

right trim(inString) — Text

Parameter Type Description
inString Text — Texttotrim
Result Text <« Trimmed text
Discussion

This command trims control characters and whitespace from the end of inString and
returns the result.

Chapter 11 Command Reference 379

Active4D v6.4 Strings

version 4.0
slice string modified v5

slice string(inString; inDelimiter {; outRemainder {; *}}) — Text

Parameter Type Description
inString Text — Texttoslice
inDelimiter Text — Where to slice
outRemainder Text <« Text after delimiter

* * — Bitwise matching
Result Text < Text before delimiter
Discussion

This command slices a string into two parts that are separated by delimiter. If inDelimiter
is found in inString, the text before the delimiter is returned. If outRemainder is passed, it
is set to the text after the delimiter.

If * is passed, delimiter matching is bitwise (case and diacritical sensitive). Otherwise the
default (backward-compatible) behavior is to ignore case and diacriticals, and composed
characters will be matched. For example, if the delimiter is “ae’, the composed character
“a" will be matched.

If inDelimiter is not found, inString is returned whole and outRemainder is set to an empty
string if it is passed.

380 Chapter 11 Command Reference

Strings

split string

Active4D v6.4

version 2
modified v5

split string(inSource; inPattern; outArray {inPatternlsChars
{; inCaseSensitive {; inLimit}}}) - Longint

Parameter Type Description

inSource Text — Text to split

inPattern Text — Provides splitting boundaries

outArray String/Text Array — Receives chunks of inSource

inPatternlsChars Boolean — Trueif inPattern should be treated as
an array of characters to match

inCaseSensitive Boolean — How to match inPattern

inLimit Number — Total number of splits that may be
created

Result Longint < Number of splits made

Discussion

This command splits inSource into chunks and puts the chunks into outArray, according
to the string inPattern.

If inPatternlsChars is True (the default if not passed), the command splits the source string
at any of the characters in inPattern. Pattern characters at the beginning and end of the
source are stripped out, and empty elements are ignored.

If inPatternisChars is False, the command splits the source string at any occurrence of the
entire pattern. Empty elements anywhere in the source are maintained.

Case-sensitivity of pattern matching is set by inCaseSensitive. If not passed, matching is
case sensitive by default. If inPatternisChars is False and inCaseSensitive is False, split
string will match composed characters. For example, if the pattern is “ae”, the composed
character “a&” will be matched.

inLimit limits the number of chunks that are created. Once the limit is reached, one more
chunk is created with the rest of the string, whether or not it contains the pattern.

Chapter 11 Command Reference 381

Active4D v6.4 Strings

This command is especially useful for splitting formatted text such as tab-delimited

strings.
$source := "This is a test”
split string($source; " '; $chunks)

// $chunks now contains 4 elements: "This"™, "is', "a'", "test"

split string($source; " '; $chunks; true; true; 2)
// $chunks now contains 2 elements: "This', "is a test"

split stringC'1]13]"; "|"; $params)
// $params contains 2 elements: "1, "3"

split stringC'1]3]"; "|'; $params)
// $params contains 4 elements: "1', ", "3", ""

version 1 (enhanced 4D)
String modified v5

String(inValue {; inFormat}) — Text

Parameter Type Description

inValue <any> — Value to write to the response buffer
inFormat Text | Number — Format to use when converting to text
Result Text < Converted value

Discussion

The Active4D version of the String command differs from 4D’s version in that:

= If you pass a Boolean value with a format, it will be converted to 1 or 0, which allows
you to use formats like “Yes;;No".

= If a BLOB is passed in, it is assumed to be text. You can specify the text format within
the BLOB by passing the relevant constant (such as UTF8 Text without length) in the
inFormat parameter. If no format is passed, the text format is assumed to be UTF8 Text
without length.

382 Chapter 11 Command Reference

Strings

Active4D v6.4

Substring version 1 (enhanced 4D)

Subtring(inString; inFirstChar {; inNumChars}) — Text
Parameter Type Description
inString Text — String from which to get substring
inFirstChar Number — Position of first character of substring
inNumChars Number — Size of substring
Result Text < Substring
Discussion
The Active4D version of the Substring command differs from 4D’s version in that you
can pass a negative number for inFirstChar and inNumChars, which is converted to the
index of the Nth Unicode code unit from the end of inString.
When a negative number is passed for inNumChars, note that it signifies an index relative
to the end of the string, not a number of characters relative to inFirstChar.
Examples

// Using negative number for inFirstChar

$sub := substring(‘''foobar.a4d"; -3)

// $sub = "a4d"

// Using negative number for inNumChars

// -2 means to extract through the 2nd to last char

$sub := substring(‘'12345"; 2; -2)

// $sub = 234"

trim version 2

trim(inString) — Text

Parameter Type Description
inString Text — Texttotrim
Result Text <« Trimmed text
Discussion

This command trims control characters and whitespace from the beginning and end of
inString and returns the result.

Chapter 11 Command Reference 383

Active4D v6.4

Strings

url decode version 2

url decode(inString) — Text

Parameter Type Description

inString Text — Text to decode

Result Text < Decoded text

Discussion

This command is a synonym for url decode query.
url decode path version 2

url decode path(inString) — Text

Parameter Type
inString Text
Result Text
Discussion

Description
— Text to decode
< Decoded text

This command decodes a URL-encoded string as a URL-encoded path. For more
information on URL encoding and decoding, see “URL Encoding/Decoding” on page 361.

url decode query

version 2

url decode query(inString) — Text

Parameter Type
inString Text
Result Text
Discussion

Description
— Text to decode
< Decoded text

This command decodes a URL-encoded string as a URL-encoded query string. For more
information on URL encoding and decoding, see “URL Encoding/Decoding” on page 361.

384

Chapter 11 Command Reference

Strings Active4D v6.4

url encode version 2

url encode(inString) — Text

Parameter Type Description
inString Text — Text to encode
Result Text < Encoded text
Discussion

This command is a synonym for url encode query.

url encode path version 2

url encode path(inString) — Text

Parameter Type Description
inString Text — Text to encode
Result Text < Encoded text
Discussion

This command encodes inString into a URL-encoded path. For more information on URL
encoding and decoding, see “URL Encoding/Decoding” on page 361.

url encode query version 2

url encode query(inString) — Text

Parameter Type Description
inString Text — Textto encode
Result Text < Encoded text
Discussion

This command encodes inString into a URL-encoded query parameter name or value. For
more information on URL encoding and decoding, see “URL Encoding/Decoding” on
page 361.

Chapter 11 Command Reference 385

Active4D v6.4 Strings

version 4.5

utf8 to mac deprecated v5

utf8 to mac(inString) — Text

Parameter Type Description
inString Text — Textto convert
Result Text < Converted text
Discussion

This command is deprecated and does nothing, since all text is Unicode within Active4D.
It has been kept for backward compatibility, but will be removed in a future version.

386 Chapter 11 Command Reference

System Documents

Active4D v6.4

System Documents

Active4D implements the most important document commands from 4D. In addition, it
adds many new commands for manipulating files and directories and working with URL-
style paths.

Document Paths

As in 4D, a path passed to a document command may be full or partial, also known as
absolute and relative. In addition, the path may be native or URL-style.

If a path is native, it is considered a full path if it begins with a drive name and ends with
either a directory name (for commands that take a directory) or a filename (for
commands that take a filename). If the path is URL-style, it is considered a full path if it
begins with /.

If a path is native, it is considered a partial path if it does not begin with a drive name. If a
path is URL-style, it is considered a partial path if it does not begin with /.

A partial path is relative to the default directory (see “The Default Directory” on page 42).

The last element of a full or partial path, whether a directory or filename, may be an alias
(also known as a “shortcut” on Windows). Directories within a path may not be aliases.

Document Command Enhancements

There are several important enhancements to document commands that Active4D
implements:

= For security reasons, all paths are checked to ensure they are either within the web
root directory or within one of the directories specified by the “safe doc dirs” option in
Active4D.ini. Aliases are resolved prior to checking.

If you want to use document commands on files outside of the root directory, you
must add the directory path to the “safe doc dirs” path list in Active4D.ini. For
information on Active4D.ini, see Chapter 3, “Configuration.”

* You may pass a URL-style path (using /' as the directory separator) instead of a native
path. If no’/"is in a path, it is assumed to be a native path.

= To ensure proper functioning of your scripts, Active4D closes all documents that have
been opened with document commands when the script finishes executing. This
prevents the situation where a script error leaves a file open and thus prevents other
scripts from writing to the file.

Affected Commands

The document commands affected by the enhancements mentioned above are:

The file upload command copy upload is also affected by these enhancements. See
“copy upload” on page 196 for more information.

Chapter 11 Command Reference 387

Active4D v6.4

System Documents

Append document FOLDER LIST

COPY DOCUMENT MOVE DOCUMENT
Create document Open document
DELETE DOCUMENT READ PICTURE FILE
DELETE FOLDER Test path name
DOCUMENT LIST WRITE PICTURE FILE

Error Codes

All document-related commands set the Error variable to zero on success and an error
code on failure. OK is set for commands that perform an operation and do not return an
error code.

If a document command returns an error number -70001 or lowetr, it is a standard C
library error code and not a Macintosh error code. The actual C error code is:

abs(error) - 70000

So, for example, -70001 is 1,-70002 is 2, etc. C library error codes can be found here:

http://www.virtsync.com/c-error-codes-include-errno

Working With Large Files

Active4D’s document commands can work with files larger than 2GB. However, since text
and BLOBs are limited to 2GB in length, you cannot read or write more than 2GB at a
time.

388

Chapter 11 Command Reference

System Documents Active4D v6.4

(modified 4D) version 2
Append document modified v5

Append document(inPath {; inType}) — DocRef

Discussion
The Active4D version of this command differs from the 4D version in that:

= Passing an empty string for inPath will do nothing other than set OK to zero.

* inType is ignored. The filename extension must be part of inPath.

Warning: Active4D maintains its own list of open documents, and the document
references returned by this command in Active4D are not interchangeable with the
document references returned by document commands within 4D methods.

(modified 4D) version 2
Create document modified v5

Create document(inPath {; inType}) - DocRef

Discussion
The Active4D version of this command differs from the 4D version in that:

* Passing an empty string for inPath will do nothing other than set OK to zero.

* inType is ignored. The filename extension must be part of inPath.

Warning: Active4D maintains its own list of open documents, and the document
references returned by this command in Active4D are not interchangeable with the
document references returned by document commands within 4D methods.

Chapter 11 Command Reference 389

Active4D v6.4

System Documents

current file version 2
current file — Text
Parameter Type Description
Result Text < Filename of currently executing script
Discussion

current path

This command returns the filename of the currently executing script. It is exactly
equivalent to filename of(current path).

version 2
modified version 4.0

current path {({inWantLibraryPath}{*})} — Text

Parameter Type Description

inWantLibraryPath Boolean — Return path to library

* * — Return web root-relative path
Result Text <« Path of currently executing script
Discussion

This command returns the path of the currently executing script in URL format. Unlike
requested url, if this command is executed within an include file, the path of the include
file is returned.

If executed within a library, the path to the library is returned, unless inWantLibraryPath is
passed and is False, in which case the path to the nearest script file in the source stack (if
any) is returned.

Note: If this command is executed within a library and inWantLibraryPath is not
passed or is passed and is True, the * option is not supported.

If executed within a text block, the path to the nearest script file in the source stack (if
any) is returned.

If the * is passed, the path returned is an absolute web root-relative path.

Example

Let us assume we are using the default web root, “web’, whose path is the following (as
returned by get root:

/HD/WebApps/MyApp/web/

390

Chapter 11 Command Reference

System Documents Active4D v6.4

If a script called “act_mailReminder.a4d” within the “login” directory within the web root
executes current path. The result will be:
/HD/WebApps/MyApp/web/login/act_mailReminder.a4d

If the same script executes current path(¥), the result will be:

/login/act_mailReminder.a4d

default directory version 2

default directory{(*)} — Text

Parameter Type Description

* * — Use URL format for path
Result Text < Path to“default” directory
Discussion

This command returns a full path to the “default” directory. For information on the
default directory, see “The Default Directory” on page 42.

If the * is not passed, a native path is returned with a native directory separator at the
end. Passing * returns the path in URL format with /" at the end.

DELETE FOLDER version 2
DELETE FOLDER(inPath {; *})
Parameter Type Description
inPath Text — Path of folder to delete

— Recursively delete contents

Discussion

If * is not passed, this command works exactly as its 4D counterpart does, in that only
empty directories may be deleted. If * is passed, this command recursively deletes the
directory and all of its contents.

Warning: Using the DELETE FOLDER command in recursive mode is of course
extremely dangerous. Be absolutely sure you know what you are deleting before
using the recursive mode of this command.

Chapter 11 Command Reference 391

Active4D v6.4

directory exists

System Documents

version 4.0

directory of

directory exists(inPath) — Boolean

Parameter Type Description

inPath Text — URL or native path

Result Boolean < Trueifis an existing directory
Discussion

This command is the equivalent of:
test path name(inPath) = Is a directory

In other words, it will return True if the entity described by inPath exists and is a directory.

version 2

directory of(inPath {; *}) — Text

Parameter Type Description

inPath Text — URL or native path

* * — Suppress trailing separator
Result Text < Directory portion of given path
Discussion

This command returns the directory portion of the given path with a trailing directory
separator, unless * is passed, in which case the trailing separator is suppressed.

If inPath contains a forward slash ('/’), it is assumed to be a URL-style path.

directory separator version 2

directory separator — Text

Parameter Type Description
Result Text < Native directory separator
Discussion

This command returns the native directory separator for the currently running platform,

un

which is“:” on Macintosh and “\” on Windows.

392

Chapter 11 Command Reference

System Documents

Active4D v6.4

extension of version 2
extension of(inPath) — Text
Parameter Type Description
inPath Text — URL or native path
Result Text < Filename extension of given path
Discussion

file exists

This command returns the filename extension, including the dot, of the given path. If the
path ends in a directory, an empty string is returned.

version 4.0

filename of

file exists(inPath) — Boolean

Parameter Type Description

inPath Text — URL or native path
Result Boolean < Trueifis an existing file
Discussion

This command is the equivalent of:
test path name(inPath) = Is a document

In other words, it will return True if the entity described by inPath exists and is a file.

version 2
modified v5

filename of(inPath {; *}) — Text

Parameter Type Description

inPath Text — URL or native path

* * — Strip extension

Result Text < Filename portion of given path
Discussion

This command returns the filename portion of the given path. If inPath contains a
forward slash ('/), it is assumed to be a URL-style path.

Chapter 11 Command Reference 393

Active4D v6.4 System Documents

If *is passed, the returned filename is stripped of its extension.

version 1
get root modified v5

get root({inVirtualHost}) — Text

Parameter Type Description
inVirtualHost Text — Virtual host name
Result Text < Full path of web root
Discussion

This command returns a full URL-style path to the web root directory, with a trailing /.

If you have defined virtual hosts in VirtualHosts.ini and inVirtualHost is not passed, get
root will return the mapped web root of the current virtual host.

If inVirtualHost is passed and such a named virtual host exists in the virtual host table, the
web root directory of that virtual host is returned. If no such named virtual host exists,
the current web root directory is returned.

This command is especially useful when building a path for use with the document

commands, as in:

$path := join paths(get root; "templates/invoice.txt™)
$docRef := open document($path)

join paths version 4.0

join paths({*; } inPathSegment1 {; ...inPathSegmentN}) — Text

Parameter Type Description
* * Force result to native path

inPathSegmentN Text — Path to convert
Result Text < Joined path
Discussion

This command concatenates one or more path segments together intelligently. If any
path segment is an absolute path, all previous segments are thrown away, and joining
continues. The return value is the concatenation of the segments, with exactly one
directory separator inserted between segments.

If the optional * is not passed, the resulting path is in URL (Unix) format. If it is passed, the
resulting path is in native format.

394 Chapter 11 Command Reference

System Documents Active4D v6.4

This command is designed to relieve of the burden of checking whether or not directory
path segments have a trailing directory separator, as in this example:

$docName := "2005-08-27 .txt"
open document(join paths(get root; 'news"™; $docName))

// result of join paths:
/HD/Users/Homer/Documents/site/web/news/2005-08-27 . txt

(modified 4D) version 2
MOVE DOCUMENT modified v5

MOVE DOCUMENT(inSourePath; inDestPath {; *})

Parameter Type Description

inSourcePath Text — Path to existing document/folder
inDestPath Text — Destination path

* * — Force move

Discussion

The Active4D version of this command differs from the 4D version in that:

= If the optional * parameter is passed, the move is forced, even if a document exists at
the destination path.

= Folders may be renamed in addition to documents.

native to url path version 2

native to url path(inPath) — Text

Parameter Type Description

inPath Text — Native path to convert
Result Text < Full path of web root
Discussion

This command converts a native path for URL-style path to a native path for the currently
running platform.

Chapter 11 Command Reference 395

Active4D v6.4 System Documents

(modified 4D) version 2
Open document modified v6.3r1

Open document(inPath {; inType} {; inMode}) — DocRef

Discussion
The Active4D version of this command differs from the 4D version in that:

= Passing an empty string for inPath will do nothing other than set OK to zero.

* inType is ignored. The filename extension must be part of inPath.

As of v5, the Open document command now conforms more closely to 4D’s behavior. In
particular, an exclusive write lock is acquired on files opened in read/write or write mode.
If no open mode is passed and a file is already open for writing, the file will be opened in
read-only mode.

As of v6.2r1, inType may be omitted as in 4D.

Warning: Active4D maintains its own list of open documents, and the document
references returned by this command in Active4D are not interchangeable with the
document references returned by document commands within 4D methods.

RECEIVE PACKET (modified 4D) version 2

RECEIVE PACKET(inDocRef; inPacket; inStopChar | inNumChars)

Discussion
This command differs from the 4D version in that it may only be used with documents,
thus the document reference is required.

396 Chapter 11 Command Reference

System Documents

requested url

Active4D v6.4

version 2

resolve path

requested url{(*)} — Text

Parameter Type Description

* * — Pass to return physical path
Result Text < Virtual or physical path
Discussion

This command returns the path to the script that was requested in the current execution.
If * is not passed, the root-relative virtual path (including /4DCGlI) is returned. If * is
passed, the full physical path to the requested script is returned in URL format.

writebr(requested url) // virtual
writebr(requested url(*)) // physical

// output using 4D as network layer

/4DCGI1/test.a4d
/Supreme/Users/aparajit/Development/Active4D/web/test.add

v5

resolve path(inPath {; *}) — Text

Parameter Type Description
inPath Text — Path to resolve

* * — Return native path
Result Text < Absolute path
Discussion

This command resolves relative paths, directory movement and aliases or shortcuts in

inPath and returns an absolute full path. The path does not actually have to exist to be
resolved.

If *is not passed, the returned path is in URL (Posix) format. If * is passed, the returned
path is in native 4D format (HFS on macOS).

If an error occurs while resolving the path, Error will contain an appropriate error code.

Chapter 11 Command Reference 397

Active4D v6.4

System Documents

SEND PACKET (modified 4D) version 2
SEND PACKET(inDocRef; inPacket)
Discussion
This command differs from the 4D version in that it may only be used with documents,
thus the document reference is required.

SET DOCUMENT POSITION (modified 4D) version 2
SET DOCUMENT POSITION(inDocRef; inOffset {; inAnchor})
Discussion
Named constants have been provided for the inAnchor: Position from start, Position from
end, and Position from current.

split path v5
split path(inPath; outDirectory; outFilename {; *}) — Text
Parameter Type Description
inPath Text — Path to split
outDirectory Text < Directory portion of inPath
outFilename Text < Filename portion of inPath
* * — Suppress directory separator
Discussion
This command converts splits a path. outDirectory receives the directory portion of the
path and outFilename receives the filename portion of the path.
If inPath has no directory separators, outDirectory will be empty and outFilename will
contain inPath.
If inPath ends with a directory separator, outFilename will be empty.
If * is not passed and inPath has more than one path component, outDirectory will have a
trailing directory separator. If * is passed, the trailing directory separator in outDirectory is
suppressed.

398 Chapter 11 Command Reference

System Documents Active4D v6.4

url to native path version 2

url to native path(inPath) — Text

Parameter Type Description

inPath Text — URL-style path to convert
Result Text < Full path of web root
Discussion

This command converts a URL-style path to a native path for the currently running
platform.

Chapter 11 Command Reference 399

Active4D v6.4

Timestamps

Timestamps

A common practice is database design is to define a timestamp field as part of each table.
Timestamps are often used to mark creation date/time, modification date/time, etc.

Timestamp Format

A timestamp combines a date and time together into one Alpha field with a width of 17
characters. The format of a timestamp is as follows:

YYYYMMDDhhhmmssttt

YYYY = 4-digit year

MM = 2-digit month

DD = 2-digit day

hh = 2-digit hour (0-23)

mm = 2-digit minute

ss = 2-digit second

ttt = 3-digit thousandths of a second (milliseconds)

By using this format, only one field can be used to store both the date and time. More
importantly, a timestamp is formatted such that records can be sorted and compared by
the timestamp, since the elements of the timestamp progress from most significant to
least significant.

Note: Itis up to you to properly define the timestamp fields in your database.

Timestamp Time

To ensure consistency in timestamps, timestamps dates and times are converted from
the local time zone to Coordinated Universal Time, also known as UTC or GMT.

When working with timestamps, you always deal with the local time zone. All timestamp
commands which create a timestamp expect a local date and time, and all timestamp
commands that return a portion of the timestamp return a local date and/or time.

Timestamp Normalization

Timestamps are always kept in a normalized state — the date and time always contain
valid numbers. If a timestamp is created with a date or time where an element of the
date or time is beyond the valid range for that element, the extra is factored into the next
most significant element. If that element is then beyond the valid range, the process
continues until all elements are normalized.

For example, suppose you create a timestamp with the time 07:59:121. In this case, 121
seconds would be factored into the minutes, leaving us with two extra minutes and one
second. The two extra minutes would then get factored into the hour, leaving us with
one extra hour and one minute. So the normalized time would be 08:01:01.

400

Chapter 11 Command Reference

Timestamps

Active4D v6.4

Normalization allows you to do things like creating a timestamp which represents the
270th day of the year, like this:

$ts = timestamp(!01/270/011)
// $ts = ""20010927050000000"

Using Timestamps with Optimistic Locking

In multiuser databases such as those served on the web, timestamps are especially
valuable in solving the problem of record contention. For example, imagine this
scenario:

1 User A begins editing a record.

2 User B begins editing the same record.
3 User B saves the changes to the record.
4 User A saves the changes to the record.

This is a situation you want to prevent, because User A's changes will destroy the
changes User B made — changes which could very well be critical. In fact, once User B
saves the changes, User A’s copy of the data is essentially incorrect.

In a Client/Server database, you typically solve this problem by locking a record as soon
as the user begins editing it. This is known as pessimistic locking, which leads to this
scenario:

User A begins editing a record, locking that record to others.

User B attempts to edit the same record, is told to wait until User A is finished.

1
2
3 User A saves the changes and releases the lock.
4 User Bis allowed to edit the record.

5

User B saves the changes to the record.

This technique is not without its problems. What if User A goes to lunch in the middle of
editing the record? What if User B just wants to view the record without changing it?
These problems can and have been solved in various ways, but the solutions are often
cumbersome.

Another approach which solves these problems is called optimistic locking. Here's how it
works:

1 User A begins editing a record. The modification timestamp of the record is saved in
the user’s session for later comparison.

2 User B begins editing the same record. The modification timestamp of the record is
saved in the user’s session for later comparison.

3 User B attempts to save the changes to the record. Since the timestamp of the
record matches the saved timestamp, the save is allowed and the timestamp is
updated to the modification time.

4 User A attempts saves the changes to the record. Because the saved timestamp does
not match the record’s actual timestamp, the save is not allowed and the user is
asked to try editing the record again.

Chapter 11 Command Reference 401

Active4D v6.4

Timestamps

This methodology is known as optimistic locking because it assumes that in the majority

of cases there will not be a conflict — which is indeed the case in the majority of
applications.

If you are writing a multiuser web application, you should definitely consider using
timestamps and optimistic locking.

402 Chapter 11 Command Reference

Timestamps

timestamp

Active4D v6.4

version 2

timestamp — Text
timestamp(inDate {; inTime}) — Text
timestamp(inYear; inMonth; inDay;
inHour; inMinute; inSecond; inMilliseconds) — Text

Parameter Type Description
inDate Date — Local date
inTime Time — Local time
inYear Number — Local year
inMonth Number — Local month
inDay Number — Local day
inHour Number — Local hour
inMinute Number — Local minute
inSeconds Number — Seconds
inMilliseconds Number — Milliseconds
Result Text < Timestamp
Discussion

This command has three forms. The first form has no parameters and returns a
timestamp for the current date and time.

The second form takes a 4D date and time in the local time zone and creates a timestamp
from those values. If inTime is not passed, it is assumed to be midnight in the local time
zone (00:00:00).

The third form specifies the exact values for each element of the timestamp. The values
are in the local time zone.

The result of each form is a 17-character string containing the given date and time,
normalized to valid values and converted from the local time zone to UTC.

Chapter 11 Command Reference 403

Active4D v6.4 Timestamps

add to timestamp version 2

add to timestamp(inTimestamp; inYears {; inMonths {; inDays
{; inHours {; inMinutes {; inSeconds {; inMilliseconds}}}}}}) — Text

Parameter Type Description
inYear Number — Local year
inMonth Number — Local month
inDay Number — Local day
inHour Number — Local hour
inMinute Number — Local minute
inSeconds Number — Seconds
inMilliseconds Number — Milliseconds
Result Text < Timestamp
Discussion

This command adds the specified number of date or time elements to inTimestamp and
returns the result. Any of the values passed in may be negative.

For example, to get a timestamp from 30 days ago, you would use this code:
$monthAgo := add to timestamp(timestamp; 0; 0; -30)

If inTimestamp is not 17 characters, all of which are digits, an error is generated and
execution is aborted.

timestamp difference version 4.0

timestamp difference(inTimestamp1; inTimestamp2) — Real

Parameter Type Description
inTimestamp'1 Text — Atimestamp
inTimestamp?2 Text — Atimestamp

Result Real < Difference in seconds
Discussion

This command subtracts inTimestamp2 from inTimestamp1 and returns the difference
between them in seconds.

404 Chapter 11 Command Reference

Timestamps Active4D v6.4

timestamp string version 2

timestamp string(inTimestamp) — Text

Parameter Type Description
inTimestamp Text — Atimestamp

Result Text < Formatted timestamp
Discussion

This command formats inTimestamp as a local date and time in the form:
YYYY-MM-DD hh:mm:ss.ttt

To format a timestamp in another way, use the other timestamp commands to extract
the timestamp elements and format them as necessary.

If inTimestamp is not 17 characters, all of which are digits, an error is generated and
execution is aborted.

timestamp date version 2

timestamp date(inTimestamp) — Date

Parameter Type Description

inTimestamp Text — Atimestamp

Result Date < Date of the timestamp

Discussion

This command returns the date of the given timestamp, converted from UTC to the local
time zone.

If inTimestamp is not 17 characters, all of which are digits, an error is generated and
execution is aborted.

Chapter 11 Command Reference 405

Active4D v6.4 Timestamps

timestamp time version 2

timestamp time(inTimestamp) — Time

Parameter Type Description
inTimestamp Text — Atimestamp

Result Time < Time of the timestamp
Discussion

This command returns the time of the given timestamp, converted from UTC to the local
time zone.

If inTimestamp is not 17 characters, all of which are digits, an error is generated and
execution is aborted.

get timestamp datetime version 2

get timestamp datetime(inTimestamp; outDate; outTime)

Parameter Type Description
inTimestamp Text — Atimestamp
outDate Date variable < Local date of timestamp
outTime Time variable < Local time of timestamp

Discussion

This command returns the date and time of the given timestamp, converted from UTC to
the local time zone.

If inTimestamp is not 17 characters, all of which are digits, an error is generated and
execution is aborted.

406 Chapter 11 Command Reference

Timestamps

timestamp year

Active4D v6.4

version 2

timestamp year(inTimestamp) — Number

Parameter Type Description
inTimestamp Text — Atimestamp

Result Number < Year of the timestamp
Discussion

This command returns the year of the given timestamp, converted from UTC to the local
time zone.

If inTimestamp is not 17 characters, all of which are digits, an error is generated and
execution is aborted.

timestamp month version 2

timestamp day

timestamp month(inTimestamp) — Number

Parameter Type Description
inTimestamp Text — Atimestamp

Result Number < Month of the timestamp
Discussion

This command returns the month of the given timestamp, converted from UTC to the
local time zone.

If inTimestamp is not 17 characters, all of which are digits, an error is generated and
execution is aborted.

version 2

timestamp day(inTimestamp) — Number

Parameter Type Description
inTimestamp Text — Atimestamp

Result Number < Day of the timestamp
Discussion

This command returns the day of the month of the given timestamp, converted from
UTC to the local time zone.

Chapter 11 Command Reference 407

Active4D v6.4 Timestamps

If inTimestamp is not 17 characters, all of which are digits, an error is generated and
execution is aborted.

timestamp hour version 2

timestamp hour(inTimestamp) — Number

Parameter Type Description

inTimestamp Text — Atimestamp

Result Number < Hour of the timestamp

Discussion

This command returns the hour of the given timestamp, converted from UTC to the local
time zone.

If inTimestamp is not 17 characters, all of which are digits, an error is generated and
execution is aborted.

timestamp minute version 2

timestamp minute(inTimestamp) — Number

Parameter Type Description
inTimestamp Text — Atimestamp

Result Number < Minute of the timestamp
Discussion

This command returns the minute of the given timestamp, converted from UTC to the
local time zone.

If inTimestamp is not 17 characters, all of which are digits, an error is generated and
execution is aborted.

408 Chapter 11 Command Reference

Timestamps Active4D v6.4

timestamp second version 2

timestamp second(inTimestamp) — Number

Parameter Type Description
inTimestamp Text — Atimestamp

Result Number < Second of the timestamp
Discussion

This command returns the second of the given timestamp.

If inTimestamp is not 17 characters, all of which are digits, an error is generated and
execution is aborted.

timestamp millisecond version 2

timestamp millisecond(inTimestamp) — Number

Parameter Type Description

inTimestamp Text — Atimestamp

Result Number < Millisecond of the timestamp
Discussion

This command returns the millisecond of the given timestamp.

If inTimestamp is not 17 characters, all of which are digits, an error is generated and
execution is aborted.

Chapter 11 Command Reference 409

Active4D v6.4

User Authentication

User Authentication

User authentication requires a coordinated effort between the Realms.ini config file
(which defines your security realms), the On Authenticate event handler (which must be
defined to handle authentication), and the commands in this section.

For information on Realms.ini, see “Realms.ini” on page 47. For information on the On
Authenticate event handler, see “On Authenticate” on page 129.

410

Chapter 11 Command Reference

User Authentication

Active4D v6.4

auth password version 2
auth password — Text
Parameter Type Description
Result Text < Password of authenticated user
Discussion

This command returns the password of the authenticated user for the current realm, if
any.

auth type version 2
auth type — Text
Parameter Type Description
Result Text < Type of authentication used
Discussion
This command returns the type of authentication used. Currently the only
authentication type supported is “Basic”

auth user version 2
auth user — Text
Parameter Type Description
Result Text < Username of authenticated user
Discussion

This command returns the username of the authenticated user for the current realm, if
any. If current realm returns a non-empty string and auth user returns an empty string,
you know that the user has not yet been authenticated.

Chapter 11 Command Reference 411

Active4D v6.4

authenticate

User Authentication

version 2

current realm

authenticate{(inRealm)}

Parameter Type Description
inRealm Text — Realm to pass to browser
Discussion

This command generates the proper response status and headers to prompt a user
authentication dialog on the client browser. If inRealm is not passed, the current realm as
defined in Realms.ini is automatically passed to the client browser, otherwise inRealm is
used.

Browsers cache the username and password for a given realm until the browser is closed.
This is a potential security risk if the user leaves a publicly accessible browser open. In
addition, if the user logs out or is inactive for a long period without closing the browser,
you may decide that the user must be reauthenticated.

Some old browsers (most notably IE4) may not display an authentication dialog if passed
arealm that has already been authenticated. You can force the browser to authenticate a
user by changing the realm to some unique name, for example by appending the
Tickcount. After the user enters his or her credentials, current realm will still return the
original unadulterated realm name, since it is looked up in Realms.ini.

version 2

current realm — Text

Parameter Type Description
Result Text < Name of current realm
Discussion

This command returns the name of the current realm, if any. The realm is determined by
the Realms.ini config file.

412

Chapter 11 Command Reference

Variables Active4D v6.4

Variables

Active4D provides a number of commands that extend what you can do with and to
local variables in your scripts.

Many of these commands were created for use with Active4D’s debugging tools.

Chapter 11 Command Reference 413

Active4D v6.4

Variables

defined version 1 (modified v2)
defined(inVariable | *; inVarName) — Boolean
Parameter Type Description
inVariable Variable — Actual variable to test
* * — Check by name
inVarName Text — Name of variable to test
Result Boolean < True if defined in current scope
Discussion
This command tests the existence of a variable. You may either pass a variable reference
directly, or you may pass * followed by a variable name. Local variable names being
tested should begin with ‘S’
This command tests whether or not a local variable has been assigned a value yet, and
thus has been defined.

get local version 2
get local(inName) — <any>
Parameter Type Description
inName Text — Name of local variable to lookup
Result <any> < Value of given local variable
Discussion
Given a local variable name (including the leading‘$’), this command returns the
variable’s value if it is both defined in the current scope and not an array, or an empty
string if not.

414 Chapter 11 Command Reference

Variables

local variables

Active4D v6.4

version 2
modified version 3

set local

local variables{(inScope)} — Iterator

Parameter Type Description

inScope Text — Name of library.method for which to
retrieve local variables

Result Iterator <« |terator to local variable collection

Discussion

This command returns an iterator which you can use to iterate over the local variables in
either the current scope, if inScope is not passed, or in a named scope, if inScope is
passed.

If inScope is passed, it must be in the form library.method, except for the top level scope,
which must be called “main”.

The keys of the collection referenced by the iterator are the variables names and the
values are the variable values, which can be of any type.

version 2
modified v6.0

set local(inName; inValue {; *})

Parameter Type Description

inName Text — Name of variable to set

inValue <any> — Value to set for the given variable
* * — If passed, arrays are copied
Discussion

This command searches the local variables in the current scope for the variable with the
name inName, which should include the leading ‘$"

If the variable is found, the variable’s value is replaced with inValue. Otherwise a new
local variable is created with the given name.

If the value is an array and * is not passed, the current value of the array is used as the
value. If * is passed, the entire array is copied.

Chapter 11 Command Reference 415

Active4D v6.4 Variables

type descriptor version 2

type descriptor(inVariable) — Text

Parameter Type Description

inVariable Variable — Actual variable reference

Result Text <« Textual description of variable’s type
Discussion

This command returns a textual description of the variable’s type, exactly as it would
appear in the 4D debugger.

undefined version 2

undefined(inVariable | *; inVarName) — Boolean

Parameter Type Description

inVariable Variable — Actual variable to test

* * — Check by name

inVarName Text — Name of variable to test

Result Boolean < Trueif undefined in current scope
Discussion

This command is exactly equivalent to not(defined(inVariable)).

416 Chapter 11 Command Reference

Variables Active4D v6.4

variable name version 2

variable name(inVariable) — Text

Parameter Type Description

inVariable Variable — Actual variable to get name of
Result Text < Name of the variable
Discussion

Given an actual variable reference, this command returns the name of variable, or the
name of the referent if passed a method reference parameter.

method "test"(&$inReferenceParam)
$local := 13
writebr(variable name($local))

write(variable name($inReferenceParam))
end method

$foo = 7
test($foo) // output is "$local
%$foo"

If inVariable is not defined, an error is generated and execution is aborted.

Chapter 11 Command Reference 417

Active4D v6.4

Plugin Commands

Plugin Commands

In addition to the execute plugin commands used to invoke Active4D, Active4D provides

a number of utility plugin commands:
A4D Abandon session
A4D Base64 decode
A4D Base64 encode
A4D Blowfish decrypt
A4D Blowfish encrypt
A4D FLUSH LIBRARY
A4D GET LICENSE INFO
A4D Get root

A4D GET SESSION DATA
A4D GET SESSION STATS
A4D Get time remaining
A4D Get version

A4D Import library

A4D MD5 sum

A4D Native to URL path
A4D RESTART SERVER
A4D SET ROOT

A4D STRIP 4D TAGS

A4D URL decode path
A4D URL decode query
A4D URL encode path
A4D URL encode query
A4D URL to native path

418

Chapter 11 Command Reference

Plugin Commands Active4D v6.4

A4D Abandon session v6.3

A4D Abandon session(inSessionID) — Number

Parameter Type Description
inSessionID Number — Session internal ID
Discussion

This command is the equivalent of the Active4D abandon session command, but allows
you to abandon any session given its internal id.

If the session is abandoned successfully, zero is returned. If there is an error, 1 is returned
and an error message is logged to the Active4D log.

A4D Base64 decode version 4.0

A4D Base64 decode(inData {; inCharset}) — Text

Parameter Type Description

inData Text — Base64 encoded text
inCharset Text — Charset to convert from
Result Text < Original data
Discussion

This command is the equivalent of the Active4D base64 decode command.

A4D Base64 encode version 4.0

A4D Base64 encode(inData {; inCharset}) — Text

Parameter Type Description

inData Text — Original data
inCharset Text — Charset to convert to
Result Text < Encoded text
Discussion

This command is the equivalent of the Active4D base64 encode command.

Chapter 11 Command Reference 419

Active4D v6.4

Plugin Commands

A4D Blowfish decrypt version 4.0
A4D Blowfish decrypt(inBlobData; inPassphrase {; inlV {; inCharset}}) — Text
Parameter Type Description
inBlobData BLOB — Encrypted data
inPassphrase Text — Key used to encrypt data
inlV Text — Seed text used to encrypt data
inCharset Text — Charset to convert from
Result Text < Decrypted text
Discussion

This command is the equivalent of the Active4D command blowfish decrypt.

version 4.0

A4D Blowfish encrypt modified v5

A4D Blowfish encrypt(inText; inPassphrase {; inlV {; inCharset}}) — BLOB

Parameter Type Description

inText Text — Textto encrypt

inPassphrase Text — Key used to encrypt text

inlvV Text — Seed text used for encryption
inCharset Text — Character set to convert to
Result BLOB < Encrypted data

Discussion

This command is the equivalent of the Active4D command blowfish encrypt.

version 1
A4D FLUSH LIBRARY modified v5
A4D FLUSH LIBRARY(inLibName)
Parameter Type Description
inLibName Text — The name of the library to flush
Discussion

This command purges the specified library from memory. The next import of the
specified library will reload the library.

420

Chapter 11 Command Reference

Plugin Commands

Active4D v6.4

If inLibName is“*", all libraries are flushed from memory. If inLibName “@”, all libraries
except the Active4D library are flushed from memory.

When you call A4D FLUSH LIBRARY, the library is not flushed immediately, because
libraries cannot be flushed until all Active4D interpreters stop executing. Rather, a
request to flush the given library is passed to the housekeeper process. The next time the
housekeeper runs, it will wait for all interpreters to stop executing, then it will flush the
library (or libraries).

Because of this behavior, if A4D FLUSH LIBRARY is called again before the previous flush
request is fulfilled, the second flush request will replace the first one. Ordinarily this
should not be a problem, since you should not need to call A4D FLUSH LIBRARY at all.

If inLibName is "*" or "Active4D’, the Active4D library will be flushed and immediately
reloaded, but the On Application Start event handler will not be run again. You have to
execute A4D RESTART SERVER to accomplish that.

In general, you should not flush the Active4D library. If you are developing the event
handlers in the Active4D library, you should create an auxiliary library (e.g. _active4D.a4l)
and pass the Active4D event handler calls to that library. When you modify the auxiliary
library, it will be reloaded and the Active4D library will remain unaffected.

Ordinarily you would have no need to use this command. If the “auto refresh libs” option
is on in Active4D.ini, libraries are flushed and reloaded automatically when they are
modified. If the “auto refresh libs” option is off, you must use this command to flush the
library in order to reload it.

A4D Get IP address v5

A4D Get IP address — Text

Parameter Type Description
Result Text < [P address of host
Discussion

This command returns the first IP address on the first ethernet interface on the host
machine.

Chapter 11 Command Reference 421

Active4D v6.4

Plugin Commands

A4D Get MAC address V>
A4D Get MAC address — Text
Parameter Type Description
Result Text < MACaddress of host
Discussion

This command returns the MAC (Media Access Control) address of the first network
interface on the host machine.

A4D Get root version 1
A4D Get root — Text
Parameter Type Description
Result Text < Full path to the web root folder
Discussion
This command is the equivalent of the Active4D get root command.

A4D GET SESSION DATA version 2
A4D GET SESSION DATA(inSessionID; outKeys; outTypes; outValues)
Parameter Type Description
inSessionlD Longint — Internal session ID to query
outKeys String/Text Array < Receives the item keys
outTypes String/Text Array < Receives the item types
outValues Text Array < Receives the item values
Discussion
This command retrieves information about all of the items in the session with the
internal session ID inSessionID (as returned by the command session internal id). This
command is used by the Active4D Session Monitor dialog.
If the arrays are not of the correct type, OK is set to zero and the arrays are left untouched.
If there is no current session or the session ID is invalid, the arrays are emptied and OKis
set to zero.

422 Chapter 11 Command Reference

Plugin Commands Active4D v6.4

The value of an item is represented in textual form. Picture and BLOB items are returned
as the size of the item in bytes. Arrays are returned as a CR-delimited list of items, as
would be returned by the command join array(Sarray; "\r"; 0; true; true).

A4D GET SESSION STATS version 2
A4D GET SESSION STATS(outIDs; outTimeouts; outRemainTimes; outSizes)
Parameter Type Description
outlDs Longint Array < Receives internal session IDs
outTimeouts Real Array < Receives session timeouts in minutes
outRemainTimes Longint Array < Receives seconds remaining till

sessions timeout

outSizes Longint Array < Receives the memory used by the
sessions in bytes

Discussion

This command retrieves information about all current sessions. This command is used by
the Active4D Session Monitor dialog.

If any of the arrays are not of the type specified, they are all sized to zero and OKis set to
zero. If the command succeeds, OKis set to 1.

Sessions which have expired but have not yet been purged (zombies) are returned with a
remaining time of zero.

Chapter 11 Command Reference 423

Active4D v6.4 Plugin Commands

A4D GET LICENSE INFO version 2

A4D GET LICENSE INFO(outUserName; outCompany; outLicenseType; outLicenseVersion;
outServerlP; outExpirationDate; outPlatform {; outKeyFilePath})

Parameter Type Description

outUserName Text < Thelicensed user

outCompany Text < Thelicensed company
outlLicenseType Longint < Thetype of license
outlicenseVersion Text < Active4D version licensed for
outServerlP Text < IP address for a regular deployment

license, empty otherwise

outExpirationDate Date < Date a deployment license expires
outPlatform Longint < Always 3 (Mac and Windows)
outKeyFilePath Text « Full path to key file

Discussion

This command is the equivalent of the Active4D command get license info.

A4D Get MAC address version 4.5

A4D Get MAC address — Text

Parameter Type Description
Result Text < MAC address
Discussion

This command returns the MAC address (ethernet ID) of the first network interface on
the host machine.

A4D Get time remaining version 2

A4D Get time remaining — Longint

Parameter Type Description
Result Real < Seconds till license timeout
Discussion

This command is the equivalent of the Active4D command get time remaining.

424 Chapter 11 Command Reference

Plugin Commands Active4D v6.4

A4D Get version version 1

A4D Get version — Text

Parameter Type Description
Result Text < Current version of Active4D
Discussion

This command returns a string describing the current version of Active4D.

A4D Import library version 2

A4D Import library(inLibName; outErrorMessage) — Longint

Parameter Type Description

inLibName Text — The name of the library to import

outErrorMessage Text < Contains any parsing errors that may
occur

Result Longint < HTTP status code

Discussion
This command is the equivalent of the Active4D import command.

If a parsing error occurs during the loading of the library, a status of 500 (Internal server
error) will be returned, and outErrorMessage will contain information on the error.

If the library loads successfully, a status of 200 (OK) will be returned and outErrorMessage

will be empty.

A4D LOG MESSAGE version 2
A4D LOG MESSAGE(inMessage {; inlsError})
Parameter Type Description
inMessage Text — Message to append to the log file
inlsError Boolean — True to mark as an error message
Discussion

This command is the equivalent of the Active4D log message command.

Chapter 11 Command Reference 425

Active4D v6.4

Plugin Commands

A4D MD5 version 2
A4D MD5(inData {; inCharset}) — Text
Parameter Type Description
inData Text — The data to checksum
inCharset Text — Charset to convert to
Result Text < 32-character hex checksum
Discussion
This command is the equivalent of the Active4D md5 sum command.
A4D Native to URL path version 2
A4D Native to URL path(inPath) — Text
Parameter Type Description
inPath Text — Pathin native format
Result Text < Same path in URL format
Discussion
This command is the equivalent of the Active4D command native to url path.
A4D RESTART SERVER version 2
A4D RESTART SERVER
Discussion
This command restarts the Active4D HTTP server, flushing all libraries, abandoning all
sessions, and reloading all configuration files.
426 Chapter 11 Command Reference

Plugin Commands Active4D v6.4
A4D Set HTTP body callback v5
A4D Set HTTP body callback(inMethod) — Number
Parameter Type Description
inMethod Text — Name of callback method
Result Number < 1if method is found
Discussion

A4D SET ROOT

When called via On Web Connection, if Active4D receives a POST or PUT request, it calls a
callback method to retrieve the body of the request. This command sets the method that
Active4D calls.

Note: The callback method must be in the host database, not in a component.

If the callback method is found, 1 is returned. Otherwise zero is returned.

The callback method should have the following code:

C_BLOB($0)
GET HTTP BODY($0)

version 2
A4D SET ROOT(inPath)
Parameter Type Description
inPath Text — Path to web root
Discussion

This command sets the web root directory. inPath may be an absolute or relative path in
either native or URL (Unix) format. If it is a relative path, it is relative to the default 4D
directory. For information on the default directory, see “The Default Directory” on

page 42.

The path may also use any of the directory tokens available to paths in Active4D.ini. For
more information on the directory tokens, see “Path Format” on page 43.

If inPath is a valid path, OKis set to 1. If it is not valid, OK is set to zero.

Chapter 11 Command Reference 427

Active4D v6.4

Plugin Commands

version 3.0

A4D STRIP 4D TAGS deprecated v5
A4D STRIP 4D TAGS(ioBLOB)
Parameter Type Description
ioBLOB BLOB <> BLOB to strip
Discussion

This command is deprecated and does nothing. It was only necessary with 4D 2003.

A4D URL decode path version 2
A4D URL decode path(inText) — Text
Parameter Type Description
inText Text — Text to decode
Result Text < Decoded text
Discussion

This command is the equivalent of the Active4D command url decode path.

A4D URL decode query version 2
A4D URL decode query(inText) — Text
Parameter Type Description
inText Text — Text to decode
Result Text < Decoded text
Discussion

This command is the equivalent of the Active4D command url decode query.

428

Chapter 11 Command Reference

Plugin Commands Active4D v6.4

A4D URL encode path version 2
A4D URL encode path(inText) — Text
Parameter Type Description
inText Text — Textto encode
Result Text < Encoded text
Discussion

This command is the equivalent of the Active4D command url encode path, but it does
not use the inUseAmpEntity parameter.

A4D URL encode query version 2
A4D URL encode query(inText) — Text
Parameter Type Description
inText Text — Text to encode
Result Text < Encoded text
Discussion

This command is the equivalent of the Active4D command url encode query.

A4D URL to native path version 2

A4D URL to native path(inPath) — Text

Parameter Type Description

inPath Text — Pathin URL format

Result Text < Same path in native format
Discussion

This command is the equivalent of the Active4D command url to native path.

Chapter 11 Command Reference 429

Active4D v6.4 Plugin Commands

430 Chapter 11 Command Reference

CHAPTER 12

Standard Libraries

Active4D extends its native command set by including a number of standard libraries
that provide you which additional power and flexibility when creating your websites.

The standard libraries may be placed in any Active4D folder in the library search path.
Currently, the standard libraries are:

= add.console
= a4d.debug

= a4d.json

" a4dd.lists

" add.utils

" a4d.web

* Batch

= Breadcrumbs
= fusebox

= fusebox.conf
* fusebox.head
* RowsSet

= SessionHandler

Using the Standard Libraries

To use a library, you can either import it and then call its methods or reference its
constants, or simply use the full library.method syntax, in which case the library is
implicitly imported if necessary.

The methods in these libraries are designed to make common programming tasks much

easier. It will pay many times over for you to learn and use them.

Note: The SessionHandler library is imported automatically if you configure it as the
“session handler” option in Active4D.ini.

Chapter 12 Standard Libraries 431

Active4D v6.4

a4d.console

a4d.console

This library is composed of methods that dump various data structures and internal
information to the Active4D debug console. For more information on the debug console,
see “The Active4D Debugging Console” on page 606.

Ordinarily you will want to use the methods in a4d.debug to dump debugging
information, as the formatting is considerably easier to read than what is output by the
methods in a4d.console.

However, there are times when you cannot dump information to a web page via the
methods in a4d.debug. For example, there may be an execution error that is preventing
the page from displaying. In such cases you can replace the method you would normally
use in a4d.debug, such as dump collection, with the same method in a4d.console.

432

Chapter 12 Standard Libraries

a4d.console Active4D v6.4
clear v6.0
clear
Discussion
This method clears the debug console.
version 4.0
dump array modified v6.1r6

dump array(inArray {; inDisplaylnline {; inName {; inDisplayCollections {; inShowType
{; inShowZeroElement {; inBlobTextFormat}}}}})

Parameter Type Description

inArray Array — Array todump

inDisplaylnline Boolean — IfTrue, array is displayed on one line
inName Text — Name shown in header of dump
inDisplayCollections Boolean — If True collection handles may be

displayed as collections

inShowType Boolean — True to show type of items in
collections

inShowZeroElement Boolean — IfTrue, show the zero element

inBlobTextFormat Number — Format of text in BLOBs

Discussion

This method writes the contents of the given array to the debug console. The name of
the array referred to by inArray and its type is displayed in the header. If inName is passed
in, that is used instead of the source array name.

If inDisplaylnline is passed and is True, the current element of the array is displayed,
followed by the elements of the array on one line, separated by commas.

Otherwise the element number and element value are displayed in two columns. If the
array is a String or Text array, the element values are surrounded by double quotes. If the
array is a Longint or Real array and inDisplayCollections is passed and is True, array
elements that are valid collection handles will be displayed as collections by calling
dump collection. If inShowType is True, the collection items will be displayed with their

type.
If inShowZeroElement is False (the default), the zero element of the array is not displayed.

If the array is a BLOB array and contains text, you may pass the format of the text within
the BLOB (e.g. UTF8 text without length) in inBlobTextFormat. If inBlobTextFormat is passed
and is >= 0, the content of each element is displayed as text. Otherwise the number of
bytes in each element of the array is displayed.

Chapter 12 Standard Libraries 433

Active4D v6.4 a4d.console

version 4.0
dump collection modified v6.1r6

dump collection(inCollection; { inName {; inShowType {; inFilter {; inBlobTextFormat}}}})

Parameter Type Description

inCollection Collection | Iterator — Iterator or handle of collection to
dump

inName Text — Display name of collection

inShowType Boolean — True to display types of values

inFilter Text — Regexp to filter the results

inBlobTextFormat ~ Number — Format of text in BLOBs

Discussion

This method dumps the contens of the given collection to the debug console. The key
and value of every item in the collection are displayed, and if inShowType is provided and
is True, the value type is displayed after the key.

If inName is passed, it is displayed in the header. If it is not passed, the name of the
variable passed as inCollection is displayed in the header.

If an item value is an array, the array is displayed as if dump array(Sarray; False; ""; True) is
called.

If inFilter is passed and the first character is “-", the rest of inFilter is used as a regular
expression and matching items are hidden. Otherwise only items matching the regular
expression in inFilter are displayed.

If an item of the collection is a BLOB or BLOB array and contains text, you may pass the
format of the text within the BLOB (e.g. UTF8 text without length) in inBlobTextFormat. If
inBlobTextFormat is passed and is >= 0, the content of each BLOB is displayed as text.
Otherwise the number of bytes in each BLOB is displayed.

Warning: If an item of a collection is itself a collection reference, this method is
called recursively to display its contents. So if you have any circular collection
references infinite recursion and a crash will result.

434 Chapter 12 Standard Libraries

a4d.console Active4D v6.4

version 4.0
dump form variables modified v6.0

dump form variables{(inFilter)}

Parameter Type Description
inFilter Text — Regexp to filter the results
Discussion
This method calls the dump collection method, passing an iterator to the form variables
collection.
dump license info version 4.5

dump license info

Discussion

This method creates a formatted dump of the relevant license information contained in
your current key file, as well as the full path to the key file.

version 2
dump query params modified v6.0
dump query params{(inFilter)}
Parameter Type Description
inFilter Text — Regexp to filter the results
Discussion

This method calls the dump collection method, passing an iterator to the query params
collection.

Chapter 12 Standard Libraries 435

Actived4D v6.4 a4d.console
version 2
dump request info modified v6.0

dump request info{(inFilter)}

Parameter Type Description
inFilter Text — Regexp to filter the results
Discussion

This method calls the dump collection method, passing an iterator to the request info
collection.

version 2
dump session modified v6.1r6
dump session{(inFilter {; inBlobTextFormat})}
Parameter Type Description
inFilter Text — Regexp to filter the results
inBlobTextFormat ~ Number — Format of text in BLOB arrays
Discussion

This method calls the dump collection method, passing an iterator to the current
session.

436

Chapter 12 Standard Libraries

a4d.debug Active4D v6.4

a4d.debug

This library is composed of methods that create a nicely formatted HTML dump of
various data structures and internal information, suitable for viewing in a web page.

Ordinarily you will want to use the methods in a4d.debug to dump debugging
information, as the formatting is considerably easier to read than what is output by the
methods in a4d.console.

However, there are times when you cannot dump information to a web page via the
methods in a4d.debug. For example, there may be an execution error that is preventing
the page from displaying. In such cases you can replace the method you would normally
use in a4d.debug, such as dump collection, with the same method in a4d.console.

Chapter 12 Standard Libraries 437

Active4D v6.4 a4d.debug

version 4.0
dump array modified v6.1r6

dump array(inArray {; inDisplaylnline {; inName {; inDisplayCollections {; inShowType
{; inShowZeroElement {; inBlobTextFormat}}}}})

Parameter Type Description

inArray Array — Array todump

inDisplaylnline Boolean — IfTrue, array is displayed on one line
inName Text — Name shown in header of dump
inDisplayCollections Boolean — IfTrue collection handles may be

displayed as collections

inShowType Boolean — True to show type of items in
collections

inShowZeroElement Boolean — IfTrue, show the zero element

inBlobTextFormat Number — Format of text in BLOBs

Discussion
This method writes the contents of the given array to the response buffer.

un

If inName is passed and is not“-", it is displayed in the header. If it is “-", the header is not
displayed at all. If it is not passed, the name and type of the variable passed in inArray is
displayed in the header.

If inDisplaylnline is passed and is True, the current element of the array is displayed,
followed by the elements of the array on one line, separated by commas.

Otherwise the element number and element value are displayed in two columns. If the
array is a String or Text array, the element values are surrounded by double quotes. If the
array is a Longint or Real array and inDisplayCollections is passed and is True, array
elements that are valid collection handles will be displayed as collections by calling
dump collection. If inShowType is True, the collection items will be displayed with their

type.
If inShowZeroElement is False (the default), the zero element of the array is not displayed.

If the array is a BLOB array and contains text, you may pass the format of the text within
the BLOB (e.g. UTF8 text without length) in inBlobTextFormat. If inBlobTextFormat is passed
and is >= 0, the content of each element is displayed as text. Otherwise the number of
bytes in each element of the array is displayed.

438 Chapter 12 Standard Libraries

a4d.debug Active4D v6.4

version 2

dump collection modified v6.1r6

dump collection(inCollection; { inName {; inShowType {; inInlineArrays {; inFilter {;

inBlobTextFormat}}}}})
Parameter Type Description
inCollection Collection | Iterator — Iterator or handle of collection to
dump

inName Text — Display name of collection

inShowType Boolean — True to display types of values

inInlineArrays Boolean — True to display arrays inline

inFilter Text — Regexp tofilter the results

inBlobTextFormat ~ Number — Format of text in BLOBs

Discussion

This method writes a formatted dump of the given collection to the response buffer. The
key and value of every item in the collection are displayed in two columns, and if
inShowType is provided and is True, a third column displays the value type.

If inName is passed and is not“-", it is displayed in the header. If it is “-", the header is not
displayed at all. If it is not passed, the name of the variable passed as inCollection is
displayed in the header.

If an item value is an array, the display depends on the value of ininlineArrays. If
ininlineArrays is not passed or is True, the current element of the array is displayed,
followed by a comma-delimited list of the array elements, with text or string arrays
having their elements surrounded by quotes. If ininlineArrays is False, arrays are displayed
as if dump array(Sarray; False; ""; True) is called.

If inFilter is passed and the first character is “-", the rest of inFilter is used as a regular
expression and matching items are hidden. Otherwise only items matching the regular
expression in inFilter are displayed.

If an item of the collection is a BLOB or BLOB array and contains text, you may pass the
format of the text within the BLOB (e.g. UTF8 text without length) in inBlobTextFormat. If
inBlobTextFormat is passed and is >= 0, the content of each BLOB is displayed as text.
Otherwise the number of bytes in each BLOB is displayed.

Warning: If an item of a collection is itself a collection reference, this method is
called recursively to display its contents. So if you have any circular collection
references infinite recursion and a crash will result.

Chapter 12 Standard Libraries 439

Active4D v6.4

a4d.debug
dump configuration version 2
dump configuration{(inWhich)}
Parameter Type Description
inWhich Text — Type of configuration to dump
Discussion

This method dumps the contents of the entire built in configuration collection, or if
inWhich is passed, only that particular configuration item.

For a list of configuration items, see “configuration” on page 333.

dump form variables version 2

dump form variables{(inFilter)}

Parameter Type Description
inFilter Text — Regexp to filter the results
Discussion

This method calls the dump collection method, passing an iterator to the form variables
collection.

This is the preferred method of inspecting the form variables posted to a page.

version 3

dump license info modified version 4.0

dump license info

Discussion

This method creates a formatted dump of the relevant license information contained in
your current key file, as well as the full path to the key file.

440 Chapter 12 Standard Libraries

a4d.debug Active4D v6.4

version 3
dump locals modified v6.1r6
dump locals{(inDumpChain {; inFilter {; inBlobTextFormat})}
Parameter Type Description
inDumpChain Boolean/Text — Determines which scopes should be
dumped
inFilter Boolean/Text — Filters the output
inBlobTextFormat Number — Format of text in BLOBs
Discussion

This command creates a formatted dump of the current local variables.

If inDumpChain is not passed or is False (the default), dump locals only displays the local
variables for the current scope. If inDumpChain is passed and is True, all scopes in the call
chain are dumped in succession, starting with the innermost scope and proceeding
towards the top level scope. If inDumpChain is passed and is text, only the scope
matching that name is dumped. If no matching scopes are found, all scopes are dumped.

If inFilter is not passed or is False (the default), dump locals does not display the fusebox
core and its variables. If inFilter is passed and is True, all of the fusebox internals will be
displayed. If inFilter is passed and is text, it is used as a regular expression to filter which
locals are displayed. If inFilter begins with “-’, any locals whose name matches the regular
expression following the “-" are excluded. If inFilter begins with any other character, only
those locals whose name matches the regular expression are displayed.

If a local variable is a BLOB or BLOB array and contains text, you may pass the format of
the text within the BLOB (e.g. UTF8 text without length) in inBlobTextFormat. If
inBlobTextFormat is passed and is >= 0, the contents of each BLOB is displayed as text.
Otherwise the number of bytes in each BLOB is displayed.

This command is especially useful for getting a quick snapshot of the local variable state
at a given point in the script execution.

version 2
dump query params modified v6.0
dump query params{(inFilter)}
Parameter Type Description
inFilter Text — Regexp to filter the results
Discussion

This method calls the dump collection method, passing an iterator to the query params
collection.

Chapter 12 Standard Libraries 441

Active4D v6.4

dump request

a4d.debug

This is the preferred method of inspecting the query string in the request URL.

version 2
modified v6.0

dump request{(inFilter)}

Parameter Type Description
inFilter Text — Regexp tofilter the results
Discussion

This method calls dump query params, dump form variables, dump request info, and
dump session.

version 2

dump request info modified v6.0

dump request info{(inFilter)}

Parameter Type Description
inFilter Text — Regexp tofilter the results
Discussion

This method calls the dump collection method, passing an iterator to the request info
collection.

This is the preferred method of inspecting the HTTP headers sent to a page.

dump selection version 4.0
dump selection(inTable {; inFields})
Parameter Type Description
inTable Pointer — Pointer to table to dump
inFields Text — Field list
Discussion

This method does a nicely formatted dump of the current selection of inTable. The
current record within the selection is hilighted.

442

Chapter 12 Standard Libraries

a4d.debug

dump session

Active4D v6.4

If inFields is not passed, all fields in the table are displayed.

If inFields is passed, it should be a semicolon delimited list of fields to display. Whitespace
around the field name is ignored. If a field is in inTable, you do not need to specify the
table name. You may also include fields from related one tables, in which case you must
include the table name. If the field name is “#” (or “[table]#” for a related table), the
current record number for the table will be displayed.

You may also specify a format for a field by putting a format expression after the field
name, separated by a colon. For BLOB fields that contain text, the format expression
should be one of the format constants (a number or a named constant) you would use
with BLOB to text. For other fields, the format expression is what you would pass to the
String command to format the field’s value. For numeric types, use a format string
(without quotes). For date and time fields, you may use a number or a 4D named
constant such as“HH MM SS”.

Note: Because semicolon is used as the field delimiter, you may not use semicolons
in the field format.

Examples
The following code will display all fields for the [ingredients] table:

a4d.debug-dump selection(->[ingredients])

The following code will display the id, name, and price fields from [ingredients], as well as
the related one [vendorslname field. In addition, the price field will be formatted with
the format string “$#4##.00":

$fields := "id;name;price:$###.00; [vendors]name"
add.debug.dump selection(->[ingredients]; $fields)

version 2
modified v6.0

dump session{(inInlineArrays {; inFilter {; inBlobTextFormat}})}

Parameter Type Description

inlnlineArrays Boolean — True to display arrays inline
inFilter Text — Regexp tofilter the results
inBlobTextFormat Number — Format of text in BLOBs

Discussion

This method calls the dump collection method, passing an iterator to the current
session.

This is the preferred method of inspecting session values.

Chapter 12 Standard Libraries 443

Active4D v6.4 a4d.debug
dump session stats version 3
dump session stats {(inSortBy {; inDir})}
Parameter Type Description
inSortBy Text — Column to sort by
inDir Text — ">"tosort ascending, '<' descending
Discussion

This method creates a formatted dump of all current sessions, displaying the following
information, one row for each session:

Column Description

ID Session internal id

Timeout Session timeout

Time Remaining Time before session expires, zero means expired
Size Total bytes of memory used by session

The rows may be sorted by passing in one of the column names in inSortBy. If no name or
an invalid name is passed in, the rows will be sorted by the time remaining. The sort
direction is determined by inDir. If inDir is not passed or is not valid, the rows will be
sorted in ascending order.

Sessions which have expired but have not yet been purged (zombies) will be displayed
with a time remaining of “00:00:00"

444

Chapter 12 Standard Libraries

a4d.json

Active4D v6.4

a4d.json

If you are using an AJAX-based Javascript library in your web sites, at some point it is
likely you will need to create JSON (see json.org) formatted data within Active4D.

Active4D provides a full set of commands for easily creating properly formatted JSON
data from all of the data types Active4D supports, including collections. In addition,
there are commands for quickly adding a selection of records or a RowSet to JSON data.

Note: The functionality of the a4d.json library has been replaced by the native JSON
commands, which are much faster (up to 50x) and more powerful. For backwards
compability, the a4d.json library has been retained, but is now just a thin wrapper
around the built in JSON commands, resulting in much greater speed.

It is recommended that you convert any a4d.json-based code to use the built in
commands, as this library will be deprecated in a future version.

Using the library

The a4d.json library has two primary interfaces: a high level interface and a low level
interface. Most of the time you will use the high level interface to create, populate and
output a JSON “object”. Most of the high level methods names begin with “add” If you
need more control over the format of the JSON data, you can use the low level methods,
whose names begin with “encode”.

UTF-8 and Ajax
When using Ajax requests, posted data is encoded as UTF-8 and UTF-8 encoded data is
expected in return.

Active4D handles this transparently. When Active4D detects an Ajax request, it
automatically decodes posted UTF-8 data into Unicode. If you use the a4d.json library to
return data to an Ajax request, the data is automatically encoded as UTF-8.

Chapter 12 Standard Libraries 445

Active4D v6.4

add.json

new version 4.5
new{(inWrap)} — Object
Parameter Type Description
inWrap Boolean — True to wrap the JSON data within an
enclosing object
Result JSON Object < JSON object to be used with other
methods in this library
Discussion
This method creates a new JSON “object” to which data can be added.
Note: This method has been deprecated in favor of the native new json command.
add version 4.5
add(self; inKey; inValue {; inFilter}) — Object
Parameter Type Description
self JSON object — Object to add data to
inKey Text — Key for data item
inValue <any> — Datatoadd
inFilter Text — Filter for collections
Result JSON object « self
Discussion
This method adds data to a JSON object.
Note: This method has been deprecated in favor of the native add to json
command.
If inKey is not an empty string, a new keyed item is added to the object. If inKey is empty,
data is added without a key. Ordinarily you would only add data without a key if you are
dynamically building an array using the startArray and endArray methods.
The data in inValue is converted to JSON format according to its type:
Value type Result
String/Text Encoded string, double-quoted
Number Number
Date Date in IETF “Mon Day, Year” format
446 Chapter 12 Standard Libraries

a4d.json

Active4D v6.4

Boolean true or false

Collection Encoded as a subobject
JSON object Added as a subobject
Other null

If inFilter is passed and inValue is a collection, it is used to filter the contents of inValue.
For more information, see “encodeCollection” on page 464.

Like all of the a4d.json methods, this method returns self, which allows you to chain
several calls together on one line.

Examples

To understand how this method works, let’s look at some examples to see the resulting
output. First let’s look at the output from the basic data types:

$json := a4dd.json.new

$json->add(*'name’; *Sri Chinmoy')->add(‘'age’; 76)
$json->add(*'birthdate'; 108/27/1931!')->add('Bengali’; true)
$json->add(*"time'; ?07:13:277?)

$json->write

// The output is:
{"name":"Sri Chinmoy","age":76,"birthdate":"Aug 27, 1931",
"Bengali':true,"time":null}

Notice that the “time” item returned a value of null, because time is not a supported type
in JSON. Also notice how we could chain multiple calls to add together.

Note: If you are confused by the -> notation in the above example, see “Creating a
Poor Man’s Class” on page 124.

Now let’s look at what happens if we add a collection to a JSON object.

$json := a4d.json.new
$json->add(*'name™; "'Sri Chinmoy')
$info := new collection(age™; 76; "birthdate™; 108/27/19311; \\
"Bengali'; true; "time"; ?07:13:277?)

array text($info{ siblings"}; *; "Chitta™; "Mantu™; \\

“"Hriday'; "Lily"; "Arpita'; "Ahana')
$json->add('info"; $info)
$json->write

// The output is:

{"name":"Sri Chinmoy","info":{"age":76,"birthdate':"Aug 27,
1931","Bengali':true,"time":null,"siblings":["'Chitta", "Mantu",
“"Hriday","Lily","Arpita","Ahana']}}

Chapter 12 Standard Libraries 447

Active4D v6.4 a4d.json

As you can see, the items in a collection are added as a subobject with the given key. The
values in a collection are added with the add method, unless a value is an array, in which
case it is added using the addArray method.

Next let’s look at what happens if we add an existing JSON object to another JSON

object.

$json := a4d.json.new
$json->add(*'name™; "'Sri Chinmoy')
$info := a4d.json.new

$info->add(*'age™; 76)
$info->add(*'birthdate’; 108/27/1931!)
$info->add('Bengali''; true)
$info->add(*"time™; ?07:13:277?)
$json->add("'info’; $info)
$json->write

// The output is:
{"name":"Sri Chinmoy","info":{"age":76,"birthdate":"Aug 27,
1931","Bengali™:true,"time":nul 1}}

Finally let’s look at an example of adding a value with no key.

array text($siblings; *; "Chitta"™; "Mantu™; \\
“"Hriday"; "Lily"; "Arpita"; "Ahana')

$json := a4d.json.new
$json->add(*'name™; "'Sri Chinmoy')
$json->startArray(“'siblings'™)

for each($siblings; $name)
$json->add(*"*'; $name)
end for each

$json->endArray
$json->write

// The output 1is:
{"name":"Sri Chinmoy","siblings”:["Chitta", " Mantu","Hriday",
“Lily”,"Arpita™,"Ahana™]}

448 Chapter 12 Standard Libraries

a4d.json

addArray

Active4D v6.4

version 4.5

addArray(self; inKey; inArray) — Object

Parameter Type Description

self JSON object — Object to add data to
inKey Text — Key for data item
inArray Array — Array to add

Result JSON Object « self

Discussion

This method adds array data to a JSON object.

Note: This method has been deprecated in favor of the native add to json
command.

If inKey is not an empty string, a new keyed item is added to the object. If inKey is empty,
data is added without a key. Ordinarily you would only add data without a key if you are
dynamically building an array using the startArray and endArray methods.

The elements of inArray are converted to JSON format according to the array type:

Value type Result

ARRAY STRING/TEXT Encoded string, double-quoted
ARRAY INTEGER/LONGINT/REAL Number

ARRAY DATE Date in IETF “Mon Day, Year” format
ARRAY BOOLEAN true or false

Like all of the a4d.json methods, this method returns self, which allows you to chain
several calls together on one line.

Note: For array types other than those listed above, this method will return an
empty JSON array.

Chapter 12 Standard Libraries 449

Active4D v6.4

add.json

Examples

array string(27; $names; *; "Tom"; "Dick™; "Harry')
array longint($ages; *; 13; 27; 31)

array picture($picts; 3)

$json := add.json.new

$json->addArray(“'names'; $names)->addArray(‘'ages’; $ages)
$json->addArray('oops'; $picts)

$json->write

// Output
{"names":["Tom","Dick","Harry'],""ages":[13,27,31],"oops": [1}

Note that the picture array was encoded as an empty JSON array since pictures are not a
supported data type.

addDateTime version 4.5
addDateTime(self; inKey; inDate; inTime; inTimezone) — Object
Parameter Type Description
self JSON object — Object to add data to
inKey Text — Key for data item
inDate Date — Date portion of datetime
inTime Time — Time portion of datetime
inTimezone Number — Timezone portion of datetime
Result JSON Object « self
Discussion
This method adds an IETF format datetime item to a JSON object. Such an item can be
turned into a Javascript Date object by passing the item string to the Date constructor.

Note: This method has been deprecated in favor of the native add datetime to json
command.

If inKey is not an empty string, a new keyed item is added to the object. If inKey is empty,
a datetime item is added without a key. Ordinarily you would only add a datetime
without a key if you are dynamically building an array using the startArray and
endArray methods.
inTimezone should be in the timezone indicated in the inTimeZone parameter. inTimezone
should be minute offset from GMT.

450 Chapter 12 Standard Libraries

a4d.json

addFunction

Active4D v6.4

Like all of the a4d.json methods, this method returns self, which allows you to chain
several calls together on one line.

Example

$json := a4dd.json.new

// add a datetime in EST (GMT-5)

$json->addDateTime(""'DA™; 102/17/1980!; ?20:31:07?; -5 * 60)
$json->write

// The output 1is:
{"DA":"Feb 17, 1980 20:31:07 GMT-0500""}

// Javascript on the client, JSON is in a variable called json
var da = new Date(json.DA)

version 4.5

addFunction(self; inName; inBody) — Object

Parameter Type Description

self JSON object — Object to add data to
inName Text — Function name
inBody Text — Function body
Result JSON Object « self

Discussion

This method adds an item to self with the key inName and a value of inBody as is,
unquoted and unencoded. This is useful when you need to add a function (such as a
handler or callback) to your JSON data.

Note: This method has been deprecated in favor of the native add function to json
command.

Like all of the a4d.json methods, this method returns self, which allows you to chain
several calls together on one line.

Chapter 12 Standard Libraries 451

Active4D v6.4 a4d.json

Example

$json := a4dd.json.new

$json->addFunction('renderer™; \\

""" function(value, metadata, record) {
return record.data.title + " " + value;

S

addRowSet version 4.5

addRowSet(self; inRowSet {; inCountKey {; inDataKey {; inMap
{; inFirst {; inLimit}}}}}) — Object

Parameter Type Description

self JSON object — Object to add data to

inRowSet RowSet — RowSet from which to get data
inCountKey Text — Key for row count item

inDataKey Text — Key for row data item

inMap Text — JSON name to RowSet column map
inFirst Number — Index of first row to add

inLimit Number — Maximum number of rows to add
Result JSON Object « self

Discussion

This method adds rows from inRowSet to the JSON object self. If you have a RowSet and
you want to use it for generating JSON data, this method is the fastest and easiest way to
do so. If the RowSet is selection-based and is not being used for other purposes, in most
cases you will want to use addSelection instead of this method.

Note: This method has been deprecated in favor of the native add rowset to json
command.

The RowSet's rows are added as an array of objects, with each object containing one
item for each column of data. The column data is converted as if were passed to the add
method. If inDataKey is passed and is non-empty, the array will have the key inDataKey.

If inCountKey is passed and is non-empty, an item will be added to self whose key is

inCountKey and whose value is the number of rows in inRowSet.

Note: The number of rows returned with inCountKey is the result of calling
SinRowSet->rowCount, not SinRowSet->sourceRowCount.

452 Chapter 12 Standard Libraries

a4d.json Active4D v6.4

If inMap is not passed or is empty, all of the columns in inRowSet will be added to the row
array. If inMap is passed and is non-empty, it must be a semicolon-delimited list of
mappings from RowSet column names to JSON key names. If the RowSet column name
will be used as is, it is sufficient to use just the column name. If you want to rename a
RowSet column, then the mapping should be a <JSON key>:<RowSet column> pair. This
allows you to specify a subset of the RowSet columns for inclusion in the JSON data,
and/or to rename the RowSet columns.

If inFirst is passed and is >= 1, it specifies the one-based index of the first row from
inRowSet that will be added to self. If inLimit is passed and is >= 0, it specifies the
maximum number of rows from inRowSet that will be added to self. Together, inFirst and
inLimit make it easy to specify a subset of rows, which is typically the case when paging
through a large RowsSet.

Note: Depending on the Ajax toolkit you are using, it is likely that the start index for
a page of data will be zero-based. It is up to you to add 1 to make it one-based before
using the value for inFirst.

Like all of the a4d.json methods, this method returns self, which allows you to chain
several calls together on one line.

Examples

Let’s look at a few examples to illustrate the typical use of the various options. First, we'll
create a RowSet and then add it a JSON object.

// Assume we have a selection of 3 [employee] records
$map = "

name: “concat(™ "; [employee]fTirst; [employee]last)“;
id: [employee]id;

birthdate: [employee]birthdate' """

$rs := RowSet.newFromSelection(->[employee]; $map)
$json := a4d.json.new

$json->addRowSet($rs; "count™; "‘rows™)

$json->write

// The output is:

{"count":3,"rows":[{"name" :"Tiny Tim","id":31,"birthdate":"Apr
12, 1932"},{"name":"James Taylor™,"id":27,"birthdate":""Mar 12,
1948"},{"name™ :""Pat Metheny","1d:13,"birthdate™:""Aug 12,
1954"}]1}

Now let’s add the rest of the parameters to see the effect. This time we want to eliminate
the id column from the JSON data, and we want to rename the RowSet birthdate column
to the JSON key dob. In addition, we are receiving the starting index in a query parameter

Chapter 12 Standard Libraries 453

Active4D v6.4 a4d.json

called “start” whose value is “2", and the number of rows to return in a query parameter
called “size” whose value is“1".

// RowSet setup is the same as the example above

// Use ""name" column as is, rename "birthdate"” to "dob"
$jmap := "name;dob:birthdate"

// If "start” query param is not passed, default to "0,
// convert it to one-based number
$first := num($attributes{"start”} | "0") + 1

// 1T "size" query param is not passed, default to "20"
$limit := num($attributes{"size"} | "20")

$json := add.json.new

$json->addRowSet($rs; ‘‘count'™; "rows'; $jmap; $Ffirst; $limit)
$json->write

// The output is:
{"count":3,"rows": [{"'name" :""Pat Metheny","dob":"Aug 12, 1954"}]1}

Note that the count item still returns 3, because the number of rows in the RowSet is still
3, even though there is only one row in the rows array. The reason for this is because
when you are showing paging information for a RowSet, you usually want to display
something like “Displaying records <start>-<end> of <total>", so you always need the
total number of rows in the source dataset.

454 Chapter 12 Standard Libraries

a4d.json Active4D v6.4
version 4.5

addSelection modified v6.1

addSelection(self; inTable {; inCountKey {; inDataKey {; inMap

{; inFirst {; inLimit}}}}}) — Object

Parameter Type Description

self JSON object — Object to add data to

inTable Table pointer — Main table from which to get data

inCountKey Text — Key for row count item

inDataKey Text — Key for row data item

inMap Collection — JSON name to value map

inFirst Number — Index of first row to add

inLimit Number — Maximum number of rows to add

Result JSON Object « self

Discussion

This method adds record data from the current selection of inTable to the JSON object
self. If you have a selection of records and you want to use it for generating JSON data,
this method is the fastest and easiest way to do so.

Note: This method has been deprecated in favor of the native add selection to json
command.

This method operates in two modes:

= selection mode: If inFirst # -1, the selection’s records are output as an array of objects,
with each object containing one item for each field.

inFirst specifies the one-based index of the first record in the current selection of
inTable that will be added to self. If inLimit is passed and is >= 0, it specifies the
maximum number of records from the current selection of inTable that will be added
to self. Together, inFirst and inLimit make it easy to specify a subset of records, which is
typically the case when paging through a large selection.

Note: Depending on the Ajax toolkit you are using, it is likely that the start index for
a page of data will be zero-based. It is up to you to add 1 to make it one-based before
using the value for inFirst.

= current record mode: If inFirst =-1, only the current record of the selection is output
as a single object (not within an array) with one item for each field.

The field data is converted as if were passed to the add method. If inDataKey is passed
and is non-empty, the record data will have the key inDataKey.

If inCountKey is passed and is non-empty, an item will be added to self whose key is
inCountKey and whose value is the number of records in the current selection of inTable.

Chapter 12 Standard Libraries 455

Active4D v6.4 a4d.json

If inMap is not passed or is empty, all of the fields in inTable will be added to the record
array, with the field name being the JSON column key. If inMap is passed and is non-zero,
it must be a collection which maps JSON column keys to column values. The keys in
inMap are used as the JSON column keys. The values may be one of three types:

= Table pointer: If the value is a table pointer, the current record number for inTable is
output as a JSON number.

= Field pointer: If the value is a field pointer, the value of the field is output as if it were
passed to the add method. Fields from tables other than inTable may be used if there is
a many to one relation (it need not be automatic) between inTable and the foreign
field's table. If any foreign fields are used in inMap, RELATE ONE(SinTable->) is
executed before each record is output to ensure related data is available.

= Text: If the value is text, it must be an expression than returns a value (although using
return is not necessary). The resulting value is output as if it were passed to the add
command. If you want the result to appended verbatim, without being JSON encoded,
prefix the expression with “@". If you want to evaluate the expression in 4D instead of
Active4D, prefix the expression (after “@") with “!".

If inMap contains an item whose key is “a4d.json.callback’, then the value should be a
text block of code to execute after each record of inTable is loaded. The code does not
have to return a value. If you want the code to be executed in 4D instead of Active4D,
prefix it with “I". Code executed in Active4D may consist of multiple statements
separated by carriage returns. Code executed in 4D may only be one line.

Like all of the a4d.json methods, this method returns self, which allows you to chain
several calls together on one line.

Examples

Let's look at a few examples to illustrate the typical use of the various options. First, we'll
create a selection of records and then add it a JSON object.

// [employee] table

// id Longint

// firstname Alpha20

// lastname Alpha20

// company_id Longint, relate one with [company]id

// dob Date
query([employee]; [employee]contact_id = $attributes{"id"})
$json := a4d.json.new

$json->addSelection(->[employee]; "count™; "rows')
$json->write

// The output is:
{"count":3,"rows":[{"id":31,"Firstname":"Tiny"," lastname" :"Tim",
“company_id":101,"dob™:"Apr 12, 1932"%},{"id":27,
“firstname™:""James","lastname™:"Taylor™", "company_id'":107,
“dob:""Mar 12, 1948"},{"id":13,"firstname’:""Pat",
"lastname':""Metheny","company_id":107,"dob™:"Aug 12, 1954"}]1}

Notice how all of the fields were automatically included in the JSON output. Now let’s
add the rest of the parameters to see the effect.

456 Chapter 12 Standard Libraries

a4d.json Active4D v6.4

To make the output more useful, we would like to do the following:

* Include the record number of the [employee] table
= Concatenate the first name and last name into a single name column
= Return the company name instead of its id

= Rename “dob” to “birthdate”

Note: Foran example of how to use the inFirst and inLimit parameters, see the
documentation for “addRowSet” on page 452.

We accomplish this by creating a map and passing it to addSelection:

// Selection setup is the same as the example above
$map := new collection

// output record number

$map{“‘recnum"} := ->[employee]
// output concatenation of firstname + "™ " + lastname
$map{"*name"} := "concat(\" \'"'; [employee]firstname;

[employee] lastname)*

// output foreign related one field
$map{*‘company''} := ->[company]name

// rename a field
$map{"'birthdate"} := ->[employee]dob

// use a callback

$map{‘add. json.callback™} := \\

"query([family]; [family]employee_id = [employee]id)\r" + \\
"query([family]; &; [family]type = 1) // type 1 is child

$map{"'num_children”} := "records in selection([family])"

$json := add.json.new
$json->addSelection(->[employee]; 'count™; "rows'; $map)
$json->write

// The output is:
{"count":3,"rows":[{"'recnum:207,"name":"Tiny Tim",
"company':"Tulips, Inc.","birthdate":"Apr 12, 1932",
"num_children":0},{" "recnum:331," " name" :"James Taylor",
"company':"Gorilla Corp.","birthdate":""Mar 12, 1948",
“num_children”:2}, {"recnum:713,"name":""Pat Metheny",
‘company':""The Way Up™,"birthdate™:""Aug 12, 1954",
“"num_children":1}]}

Chapter 12 Standard Libraries 457

Active4D v6.4 a4d.json

startArray version 4.5

startArray(self; inKey) — Object

Parameter Type Description

self JSON object — Object to add data to
inKey Text — Key for array item
Result JSON object <« self

Discussion

This method adds an array start marker to a JSON object.

Note: This method has been deprecated in favor of the native start json array
command.

Ordinarily you would only call this method if you are dynamically building an array using
the startArray and endArray methods instead of using the addArray method.

Warning: To ensure valid JSON data, be sure to balance a call to this method with a
call to endArray.
If inKey is not an empty string, the array start marker is preceded by an item key.

Like all of the a4d.json methods, this method returns self, which allows you to chain
several calls together on one line.

Example

array text($siblings; *; "Chitta"; "Mantu™; \\
“"Hriday"; "Lily"; "Arpita"; "Ahana'™)

$json := a4dd.json.new
$json->startArray(‘'siblings'™)

for each($siblings; $name)
$json->add(""""; $name)
end for each

$json->endArray
$json->write

// The output 1is:
{"siblings”:["Chitta",Mantu","Hriday", "Lily","Arpita”,Ahana']}

458 Chapter 12 Standard Libraries

a4d.json Active4D v6.4
endArray version 4.5
endArray(self) — Object
Parameter Type Description
self JSON object — Object to add data to
Result JSON object « self
Discussion
This method adds an array end marker to a JSON object.
Note: This method has been deprecated in favor of the native end json array
command.
Ordinarily you would only call this method if you are dynamically building an array using
the startArray and endArray methods instead of using the addArray method.
Warning: To ensure valid JSON data, be sure to balance a call to this method with a
previous call to startArray.
Like all of the a4d.json methods, this method returns self, which allows you to chain
several calls together on one line.
Example
See “startArray” on page 458.
startObject version 4.5

startObject(self; inKey) — Object

Parameter Type

self JSON object
inKey Text

Result JSON object
Discussion

Tl

Description

Object to add data to
Key for subobject
self

This method adds an object start marker to a JSON object.

Note: This method has been deprecated in favor of the native start json object

command.

Chapter 12 Standard Libraries

459

Active4D v6.4

add.json

Ordinarily you would only call this method if you are dynamically building an object

using the startObject and endObject methods instead of using the add method.

Warning: To ensure valid JSON data, be sure to balance a call to this method with a
call to endObject.

If inKey is not an empty string, the object start marker is preceded by an item key.

Like all of the a4d.json methods, this method returns self, which allows you to chain
several calls together on one line.

Example

$json := a4dd.json.new
$json->startArray(“'employees')

for each([employee])
$json->startObject
$json->add("'name™; [employee]name)
$json->add(*'age"; [employee]age)
$json->endObject

end for each

$json->endArray
$json->write

// The output is:
{"employees": [{"name":"Tom","age'" :31},{""name" :""Dick",""age' :27},
{"name":"Harry" ,"age" :42}]1}

endObject version 4.5
endObject(self) — Object
Parameter Type Description
self JSON object — Object to add data to
Result JSON object <« self
Discussion
This method adds an object end marker to a JSON object.
Note: This method has been deprecated in favor of the native end json object
command.
460 Chapter 12 Standard Libraries

a4d.json

toJSON

Active4D v6.4

Ordinarily you would only call this method if you are dynamically building an object
using the startObject and endObject methods instead of using the add method.

Warning: To ensure valid JSON data, be sure to balance a call to this method with a
previous call to startObject.

Like all of the a4d.json methods, this method returns self, which allows you to chain
several calls together on one line.

Example
See “startObject” on page 459.

version 4.5

toJSON(self) — Text

Parameter Type Description

self JSON object — Object from which to get JSON data
Result Text < JSON-formatted data

Discussion

This method returns the data that has been added to self as JSON-formatted text.

Note: This method has been deprecated in favor of the native json to text
command.

Usually you will not need to call this method directly, since you will want to write the
reult of this method to the response buffer, and the a4d.json.write method does that for
you.

Warning: If you do decide to write JSON data to the response buffer yourself
(instead of using a4d.json.write), be sure to use the write raw command to prevent
any HTML encoding.

Chapter 12 Standard Libraries 461

Active4D v6.4

add.json

write version 4.5
write(self; inSetContentType)
Parameter Type Description
self JSON object — Object from which to write JSON data
inSetContentType Boolean — True to set the content type
Discussion
This method writes the data that has been added to self as JSON-formatted text to the
response buffer. This is the primary method you will use to return JSON data to a client.
Note: This method has been deprecated in favor of the native write json command.
If inSetContentType is not passed or is True, the content type of the response is set to
“application/json”.
writep version 4.5
writep(self)
Parameter Type Description
self JSON object — Object from which to write JSON data
inCallback String — Callback expected by JSONP request
inSetContentType Boolean — True to set the content type
Discussion
This method writes the data that has been added to self as JSON-formatted text to the
response buffer, wrapped in a call to the function inCallback. This is the primary method
you will use to return JSON data to a client that is using the JSONP protocol.
Note: This method has been deprecated in favor of the native write jsonp
command.
If inSetContentType is not passed or is True, the content type of the response is set to
“application/json”.
Example
Assume your front end makes a JSONP request with the following URL:
/enrol Iments/1ist?cb=CPJSONPConnectionCal lbacks.cal Iback32626
462 Chapter 12 Standard Libraries

a4d.json

Active4D v6.4

You build the JSON response and then return it like this:

$json := a4dd.json.new

// add data to $json

$callback := $attributes{"cb"} // assuming fusebox
$json->writep($callback)

encode version 4.5
encode(inValue {; inFilter}) — Text
Parameter Type Description
inValue <any scalarvalue> — Value to encode
inFilter Text — Filters collection items
Result Text < Encoded JSON data
Discussion
This method encodes a scalar (non-array) value for use in a JSON object. Ordinarily you
would have no need to call this method directly, as it is used internally by the various
add methods.
Note: This method has been deprecated in favor of the native json encode
command.
Depending on the type of inValue, one of the more specific encode<type> methods will
be called.
encodeArray version 4.5

encodeArray(inArray) — Text

Parameter Type Description
inArray Array — Array to encode
Result Text < Encoded JSON data
Discussion

This method encodes the items in inArray as a JSON array for use in a JSON object. Each
item in the array is encoded by calling the appropriate encoder for the array type. If the

Chapter 12 Standard Libraries 463

Active4D v6.4

encodeBoolean

add.json

array type has no encoder, an empty array (“[1") is returned. For a list of the supported
array types, see “addArray” on page 449.

Note: This method has been deprecated in favor of the native json encode
command.

Ordinarily you would have no need to call this method directly, as it is used internally by
the various add methods.

version 4.5

encodeBoolean(inBool) — Text

Parameter Type Description

inBool Boolean — Value to encode
Result Text < Encoded JSON data
Discussion

This method encodes a boolean value for use in a JSON object. Ordinarily you would
have no need to call this method directly, as it is used internally by the various add
methods.

Note: This method has been deprecated in favor of the native json encode
command.

The value returned will be either “true” or “false”.

encodeCollection version 4.5

encodeCollection(inCollection {; inFilter}) — Text

Parameter Type Description
inCollection Collection — Collection to encode
inFilter Text — Filters collection items
Result Text < Encoded JSON data
Discussion

This method encodes the data in inCollection as a subobject for use in a JSON object.
Each key of the collection is encoded by calling encodeString, and each value is

464

Chapter 12 Standard Libraries

a4d.json Active4D v6.4

encoded by calling the appropriate encoder for its type. If the type has no encoder, the
value “null” is returned.

Note: This method has been deprecated in favor of the native json encode
command.

Ordinarily you would have no need to call this method directly, as it is used internally by
the various add methods.

If inFilter is passed and is non-empty, it is used as a matching expression to determine
which items from inCollection are encoded. The rules for the filter expression are as
follows:

= If the filter begins with "#', it performs an exclusion, i.e. all items that match the filter
are excluded.

= Otherwise only items that match the filter are included.

= If the first character after the optional “#” is /", it is considered a regular expression
pattern and regex matching is done.

= QOtherwise simple string comparison is performed.

Examples
Let’s take a look at some simple filters to see how they affect the output of this method.

$c := new collection("foo™; 7; "bar™; 104/13/1964!; "baz'; false)

// simple string matching
$enc := add.json.encodeCollection($c; “foo™)
// $enc = {"foo":7}

// simple string matching with wildcard
$enc := add.json.encodeCollection($c; "b@™)
// $enc = {"bar”:"Apr 13, 1964","baz":false}

// exclusion matching, simple string
$enc := a4dd.json.encodeCollection($c; "#bar'™)
// $enc = {"foo":7,"baz":false}

// exclusion matching, simple string with wildcard
$enc := a4d.json.encodeCollection($c; "#b@')
// $enc = {"foo":7}

// regex matching
$enc := add.json.encodeCollection($c; "/foo|bar/™)
// $enc = {"foo":7,"bar”:"Apr 13, 1964"}

// exclusion matching, regex
$enc := a4d.json.encodeCollection($c; "#/foo|bar/™)
// $enc = {"baz":false}

Chapter 12 Standard Libraries 465

Active4D v6.4

add.json

encodeDate version 4.5
encodeDate(inDate) — Text
Parameter Type Description
inDate Date — Value to encode
Result Text < Encoded JSON data
Discussion
This method encodes a date value for use in a JSON object. Ordinarily you would have no
need to call this method directly, as it is used internally by the various add methods.
Note: This method has been deprecated in favor of the native json encode
command.
The value returned will be in IETF Mon, Day Year format. For more information on date
formatting, see “add” on page 446.
encodeString version 4.5
encodeString(inString) — Text
Parameter Type Description
inString Text — Value to encode
Result Text < Encoded JSON data
Discussion
This method encodes a string or text value for use in a JSON object. Ordinarily you would
have no need to call this method directly, as it is used internally by the various add
methods.
Note: This method has been deprecated in favor of the native json encode
command.
The value returned is converted to UTF-8, surrounded with double quotes, and any non-
printable characters are encoded according to JSON rules.
466 Chapter 12 Standard Libraries

a4d.json

parse

Active4D v6.4

v6.0r2
modified v6.1

parse(inJSON {; inWantGlobalCollections {; inThrowOnError {; inDateKeys}}}) — <any>

Parameter Type Description

inJSON Text — Textto parse

inWantGlobalCollections Boolean — True to create global collections

inThrowOnError Boolean — True to throw on malformed JSON

inDateKeys Text — Regular expression to match keys for
date conversion

Result <any> < Parsed JSON data

Discussion

This method parses JSON text into its corresponding Active4D value.
Note: This method has been deprecated in favor of the native parse json command.

All valid JSON types and syntaxes are supported, with the exception that array elements
must all be of the same type. JSON types map to Active4D types as follows:

JSON type Active4D type

object collection
array array
string text
number real
true/false boolean
null nil pointer

Note that JSON has no native representation for dates. To convert textual
representations of dates into 4D dates, pass a delimited regular expression in inDateKeys.
JSON strings or string arrays whose keys match the regular expression will be considered
for conversion. Conversion occurs if the value matches one of the following patterns:

Pattern Comments

Mmm d, yyyy IETF date format. Mmm is a 3-letter English month
abbreviation.

yyyy-mm-dd ISO Date format
yyyy-mm-ddThh:mm:ss

If inWantGlobalCollections is False (the default), all collections created from JSON objects
will be local. If True, all collections will be global.

Chapter 12 Standard Libraries 467

Active4D v6.4 a4d.json

If inThrowOnError is True (the default), malformed JSON will throw an error.

Note: Because this method may return an array, you should always use the super
assign operator (::=) to assign the result of this method.

convertJSONDates v6.0r2

convertJSONDates(inObject {; inKeys}) — <any>

Parameter Type Description

inObject <any> — Data to convert

inKeys Text — Collection keys to consider for
conversion

Result <any> <« Converted data

Discussion

This method recursively traverses an object and converts text that looks like dates into

4D dates.

Note: This method has been deprecated in favor of the native parse json command,
passing inKeys to the command.

Text will be converted if it matches one of the following patterns:

Pattern Comments

Mmm d, yyyy Format used by this library to convert 4D dates to JSON.
Mmm is a 3-letter English month abbreviation.

yyyy-mm-dd ISO Date format
yyyy-mm-ddThh:mm:ss

Valid types for inObject are text, text array, longint array, and collection. Longint arrays
are traversed, and if an element is a collection, this method will be called recursively with
that collection.

For text arrays, if all of the elements of the array can be converted to dates, an array of the
converted dates is returned. Otherwise the original text array is returned.

If inKeys is non-empty, it should be a delimited regular expression. When traversing
collections, only collection keys which match will be considered for conversion. This
allows for more efficient conversion with large collections, and also allows you to shield
items from erroneous conversion.

468 Chapter 12 Standard Libraries

a4d.json Active4D v6.4

The type of object returned depends on the type of inObject. Converted text arrays will
be returned as date arrays, and converted text will be returned as a date. Otherwise the
original object is returned.

Note: Because this method may return an array, you should always use the super
assign operator (::=) to assign the result of this method.

Chapter 12 Standard Libraries 469

Active4D v6.4 a4d.lists
a4d.lists
Lists are a way of putting multiple values into a single string, delimited by some
character. This is very handy for some types of problems. For example, a URL can be
treated as a list of path elements delimited by "/". Or the string "one,two,three" can be
treated as a list of three elements. Or you can encode a list of values in a list and store it in
a database text field.
Note the following attributes of lists:
* Empty elements are ignored, so “one, three” would be a list of two elements, “one” and
“three’”.
= Delimiters at the beginning and end of the list are ignored, so “/one/two/three/”
would be a list of three elements.
= If the delimiter passed to a method contains more than one character, then any
character in the delimiter can delimit the list elements, but only the first character in
the delimiter will be used if the method adds an element to the list.
= List elements are numbered beginning at 1.
= The default delimiter for all list methods is“"
470 Chapter 12 Standard Libraries

a4d.lists Active4D v6.4
append version 3
append(inList; inValue {; inDelim}) — Text
Parameter Type Description
inList Text — Delimited list
inValue <any> — Value to append
inDelim Text — List delimiter
Result Text < Modified list
Discussion
This method appends a value to a list. The value can be of any type that can be
converted to text with the String command (which includes String and Text).
If inDelim is not passed, it defaults to*)"
arrayTolList version 3

arrayTolList(inArray {; inDelim}) — Text

Parameter Type
inArray Array
inDelim Text
Result Text
Discussion

This method converts inArray into a delimited list. If inDelim is not passed, it defaults to .

Tl

Description

Array to convert

List delimiter

inArray as a delimited list

un

Note: You can easily accomplish the same thing with the join array command.

Chapter 12 Standard Libraries

471

Active4D v6.4 a4d.lists
changeDelims version 3
changeDelims(inList; inNewDelim {; inDelim}) — Text
Parameter Type Description
inList Text — Delimited list
inNewDelim Text — New delimiter to use
inDelim Text — List delimiter
Result Text < Modified list
Discussion
This method changes the delimiters in a list and returns a modified copy. If inDelim is not
passed, it defaults to*.
Note: You can accomplish the same thing with replace string.
contains version 3
contains(inList; inSubstr {; inDelim}) — Boolean
Parameter Type Description
inList Text — Delimited list
inSubstr Text — Text to match
inDelim Text — List delimiter
Result Boolean < Trueif an element matches
Discussion
This method returns True if any element in the list contains a substring, doing a case- and
diacritical-sensitive match.
If inDelim is not passed, it defaults to*"
472 Chapter 12 Standard Libraries

a4d.lists Active4D v6.4
containsNoCase version 3
containsNoCase(inList; inSubstr {; inDelim}) — Boolean
Parameter Type Description
inList Text — Delimited list
inSubstr Text — Text to match
inDelim Text — List delimiter
Result Boolean < True if an element matches
Discussion
This method returns True if any element in the list contains a substring, doing a case- and
diacritical-insensitive match.
If inDelim is not passed, it defaults to*"
deleteAt version 3
deleteAt(inList; inIndex {; inDelim}) — Text
Parameter Type Description
inList Text — Delimited list
inindex Number — Element to delete
inDelim Text — List delimiter
Result Text < Modified list
Discussion
This method deletes an element from a list. If inDelim is not passed, it defaults to*".
find version 3

find(inList; inMatch {; inDelim}) — Number

Parameter Type Description

inList Text — Delimited list

inMatch Text — Text to match

inDelim Text — List delimiter

Result Number < Index of first matching element

Discussion

This method returns the index of the first element of inList that exactly matches inMatch,
doing a case- and diacritical-sensitive match. If no element matches, zero is returned.

Chapter 12 Standard Libraries 473

Active4D v6.4 a4d lists
If inDelim is not passed, it defaults to*"
findNoCase version 3
findNoCase(inList; inMatch {; inDelim}) — Number
Parameter Type Description
inList Text — Delimited list
inMatch Text — Text to match
inDelim Text — List delimiter
Result Number < Index of first matching element
Discussion
This method returns the index of the first element of inList that matches inMatch, doing a
case- and diacritical-insensitive match. If no element matches, zero is returned.
If inDelim is not passed, it defaults to*)"
first version 3
first(inList {; inDelim}) — Text
Parameter Type Description
inList Text — Delimited list
inDelim Text — List delimiter
Result Text < First element of list
Discussion
This method returns the first element from a list, or an empty string if the list is empty. If
inDelim is not passed, it defaults to /"
getAt version 3
getAt(inList; inIndex {; inDelim}) — Text
Parameter Type Description
inList Text — Delimited list
inIndex Number — Element to get
inDelim Text — List delimiter
Result Text < Requested element of list
Discussion
This method returns an indexed element from a list, or an empty string if the list is empty
or inIndex is out of range.
474 Chapter 12 Standard Libraries

a4d.lists Active4D v6.4
If inDelim is not passed, it defaults to*"

insertAt version 3
insertAt(inList; inIndex; inValue {; inDelim}) — Text
Parameter Type Description
inList Text — Delimited list
inindex Number — Where to insert
inValue <any> — Valuetoinsert
inDelim Text — List delimiter
Result Text < Modified list
Discussion
This method inserts an element into a list and returns a modified copy. The value can be
of any type that can be converted to text with the String command (which includes
String and Text). If inIndex < 1, the element is prepended. If inIndex > a4d.lists.len(inList),
the element as appended.
If inDelim is not passed, it defaults to*"

last version 3

last(inList {; inDelim}) — Text

Parameter Type Description

inList Text — Delimited list
inDelim Text — List delimiter
Result Text < Last element of list
Discussion

This method returns the last element from a list, or an empty string if the list is empty. If

un

inDelim is not passed, it defaults to*".

Chapter 12 Standard Libraries 475

Active4D v6.4 a4d.lists
len version 3
len(inList {; inDelim}) = Number
Parameter Type Description
inList Text — Delimited list
inDelim Text — List delimiter
Result Number < Number of elements in list
Discussion
This method returns the number of element in a list. If inDelim is not passed, it defaults to
listToArray version 3
listToArray(inList; outArray {; inDelim})
Parameter Type Description
inList Text — Delimited list
outArray Array < Array to set
inDelim Text — List delimiter
Discussion
This method converts a delimited list into an array. If inDelim is not passed, it defaults to
Note: You can accomplish the same thing with split string.
prepend version 3
prepend(inList; inindex; inValue {; inDelim}) — Text
Parameter Type Description
inList Text — Delimited list
inValue <any> — Valuetoinsert
inDelim Text — List delimiter
Result Text < Modified list
Discussion
This method inserts an element at the beginning of a list and returns a modified copy.
The value can be of any type that can be converted to text with the String command
(which includes String and Text). If inIndex < 1, the element is prepended. If inIndex >
add.lists.len(inList), the element as appended.
476 Chapter 12 Standard Libraries

a4d.lists Active4D v6.4
If inDelim is not passed, it defaults to*"
qualify version 3
qualify(inList; inQualifier{; inDelim {; inCharAll}}) — Text
Parameter Type Description
inList Text — Delimited list
inQualifier Text — String to enclose with
inDelim Text — List delimiter
inCharAll Text — “char” or"all”
Result Text < New list
Discussion
This method encloses the elements of inList with inQualifer (e.g. double quotes).
If inCharAllis “char”, the element will be skipped if it contains any digits. A modified copy
of the list is returned.
If inDelim is not passed, it defaults to*"
rest version 3

rest(inList {; inDelim}) — Text

Parameter Type Description
inList Text — Delimited list
inDelim Text — List delimiter
Result Text < New list
Discussion

This method returns a copy of list starting from the second element. If inList has less than
two elements, an empty string is returned.

un

If inDelim is not passed, it defaults to*)"

Chapter 12 Standard Libraries 477

Active4D v6.4 a4d.lists
setAt version 3
setAt(inList; inIndex; inValue {; inDelim}) — Text
Parameter Type Description
inList Text — Delimited list
inindex Number — Element to set
inValue <any> — Valuetoinsert
inDelim Text — List delimiter
Result Text <« Modified list
Discussion
This method sets an element of a list and returns a modified copy. The value can be of
any type that can be converted to text with the String command (which includes String
and Text). If inindex is out of range, nothing happens.
If inDelim is not passed, it defaults to*)"
sort version 3
sort(inList {; inSortType {; inSortOrder {; inDelim}}}) —> Text
Parameter Type Description
inList Text — Delimited list
inSortType Text — Not used, pass™
inSortOrder Text - ">"or"<"
inDelim Text — List delimiter
Result Text <« Modified list
Discussion
This method sorts the elements of a list and returns a modified copy.
If inSortOrder is “>", the elements are sorted in ascending order. If it is “<”, they are sorted
in descending order.
If inDelim is not passed, it defaults to*"
478 Chapter 12 Standard Libraries

a4d.lists Active4D v6.4
valueCount version 3
valueCount(inList; inValue {; inDelim}) = Number
Parameter Type Description
inList Text — Delimited list
inValue <any> — Value to match
inDelim Text — List delimiter
Result Number < Count of matching elements
Discussion
This method counts how many elements of inList match inValue, doing a case- and
diacritical-sensitive match.
If inDelim is not passed, it defaults to*"
valueCountNoCase version 3
valueCountNoCase(inList; inValue {; inDelim}) — Number
Parameter Type Description
inList Text — Delimited list
inValue <any> — Value to match
inDelim Text — List delimiter
Result Number < Count of matching elements
Discussion
This method counts how many elements of inList match inValue, doing a case- and
diacritical-insensitive match.
If inDelim is not passed, it defaults to*"
valuelList version 3

valuelList(inField {; inDelim}) — Text

Parameter Type Description

inField Field pointer — Field from which to get values
inDelim Text — List delimiter

Result Text < New list

Discussion

This method returns a delimited list whose values are taken from the field pointed to by
inField, one element for each record in the current selection of inField's table. inField's

Chapter 12 Standard Libraries 479

Active4D v6.4 a4d.lists

type must be convertible to text with the String command (which includes Alpha and
Text fields).

The selected record is not changed by this method.

un

If inDelim is not passed, it defaults to*)"

480 Chapter 12 Standard Libraries

a4d.utils Active4D v6.4

a4dd.utils

This library is composed of various utility methods that do not generate HTML for output
to a page.

Chapter 12 Standard Libraries 481

Active4D v6.4 a4d.utils

applyToSelection version 4.5

applyToSelection(inTable; inStatement {; inTimeoutURL {; inTimeout}}) — Boolean

Parameter Type Description

inTable Table pointer — Table to delete records from
inStatement Text — Code for APPLY TO SELECTION
inTimeoutURL Text — URL of page to redirect to on timeout
inTimeout Number — Seconds to wait until timeout

Result Boolean < Trueif successfully applied
Discussion

When using APPLY TO SELECTION in a multiuser database, it is of course important to
ensure the entire selection is operated on, since some records may be locked.

This method repeatedly tries to call APPLY TO SELECTION (using execute in 4d) for the
table pointed to by inTable, until either no locked records remain or inTimeout seconds
have elapsed. If no locked records remain, the method returns True. If the timeout is
reached, the method returns False and the set “LockedSet” will contain the locked
records.

If inTimeout is not passed, it defaults to 2. If the timeout is reached and inTimeoutURL is
passed and is not empty, a redirect is performed to that URL.

articleFor version 3

articleFor(inNoun {; inBritishEnglish}) — Text

Parameter Type Description

inNoun Text — Noun to get article for

inVowelH Boolean — True to consider “h"” a vowel sound
Result Text <~ "a"or“an”

Discussion

When generating messages in English, it is considered good form to use the proper

un

article (“a” or”an”) with noun phrases.

482 Chapter 12 Standard Libraries

a4d.utils

Active4D v6.4

If you need to generate a message with dynamically generated noun phrases, this
method will return the proper article. If inVowelH is True, “h” will be considered a vowel
sound as well.

Example

method “‘whatAml*($inKind)
return ("You\"re "a4dd.utils.articleFor($inKind)~ $inKind")
end method

writebr(whatAml (*'real peach'™)) // -> You"re a real peach
writebr(whatAml (*"idiot™)) // -> You"re an idiot

blobToCollection v5.0

blobToCollection(inBlob; ioOffset; inGlobal) — Collection

Parameter Type Description

inBlob BLOB — BLOB data saved with collectionToBlob
ioOffset Number <> Offset within inBlob to retrieve data
inGlobal Boolean — Trueto create a global collection
Result Collection < Deserialized collection

Discussion

This method recursively deserializes a collection serialized with
add.utils.collectionToBlob. On entry, ioOffset should point to the byte offset within
inBlob at which the serialized collection data is stored (typically zero). On exit, ioOffset
points to the first byte beyond the serialized collection data.

If inGlobal is True, the collection returned is a global collection, otherwise it is a local
collection.

blobToSession v5.0
blobToSession(inBlob; ioOffset)
Parameter Type Description
inBlob BLOB — BLOB data saved with collectionToBlob
ioOffset Number <> Offset within inBlob to retrieve data
Discussion

This method is similar to the blob to session command, but it recursively deserializes a
session serialized with a4d.utils.sessionToBlob. On entry, ioOffset should point to the

Chapter 12 Standard Libraries 483

Active4D v6.4

a4d.utils

byte offset within inBlob at which the serialized session data is stored (typically zero). On
exit, ioOffset points to the first byte beyond the serialized session data.

The deserialized session replaces the current session. For information on how this affects
the current session, see “blob to session” on page 351.

camelCaseText version 4.0
camelCaseText(inText {; inExceptions}) — Text
Parameter Type Description
inText Text — Text to transform
inExceptions Text — List of words to ignore
Result Text <« Transformed text
Discussion
This method changes the case of the words in inText so that the first character of the
word is uppercase and the remaining letters are lowercase. Words that appear in the
space-separated list inExceptions are completely lowercased. If inExceptions is not passed
it defaults to the word list“a at on in by"

write(add.utils.camelCaseText(*"this is a test™))
// output -> This is a Test

chopText version 4.0
chopText(inText) — Text
Parameter Type Description
inText Text — Text to chop into chunks
Result Text < Chopped text
Discussion
This method chops inText into 80-character chunks separated by the string“"+"". The
primary purpose of this method is to prepare text for use with the command execute in
4d. When calling that command, the equivalent of a 4D EXECUTE is performed. Since 4D
limits the total length of a single literal string to 80 characters, this method ensures that
the entire text passed to execute in 4d is executed.

484 Chapter 12 Standard Libraries

a4d.utils Active4D v6.4

Example

$sql := "select trans.tran_key,splits.split_key,trans.amount as
camount, splits.amount from trans,splits where trans.id =
splits.tran_id and split_key = \"$invnum\"~

$cmd = "PgSQL Select(%d;"%s')" % ($connection; $sql)

$rowset:= execute in 4d(a4d.utils.chopText($cmd); *)

collectionToBlob v5.0

collectionToBlob(inCollection; ioBlob)

Parameter Type Description
inCollection Collection — Collection to serialize
ioBlob BLOB <> BLOB to serialize to
Discussion

This method recursively serializes a collection and appends the serialized data to ioBlob.
Numeric items or elements of numeric arrays are checked for validity as collection
handles, and if they are valid the collections they point to are serialized.

Example

$c := new collection("first'”; "Tom™; "last'; ""Bombadil')
$c{""company"} := new collection(*'name'"; "Acme Corp.")
array longint($c{" company"}{"emps"}; 0)

$emp := new collection('name™; '"'Sam Gamgee'; "age''; 47)
$c{""company" }{ "emps"H3} = $emp

$emp := new collection('name™; "Frodo Baggins'; "age™; 53)

$c{""company" }{""emps"H3} = $emp
c_blob($blob)
add.utils.collectionToBlob($c; $blob)
// save $blob somewhere

// in another script
$offset := 0
$c := add.utils.blobToCollection($blob; $offset; false)

Note: If you serialize with this method, be sure to deserialize with
a4d.utils.blobToCollection.

Chapter 12 Standard Libraries 485

Active4D v6.4 a4d.utils

cud version 4.5

cud(cudAction; cudTable; cudProcessor {; attributes {; cudTimestampField {;
cudTimestamp}}}) — Text

Parameter Type Description

cudAction Text — Action to perform

cudTable Table pointer — Table to operate on

cudProcessor Text — Table-specific processing code
attributes Collection — Values to pass to cudProcessor
cudTimestampField Field pointer — Pointer to field holding a timestamp
cudTimestamp Text — Current record’s timestamp

Result Text < Status of action

Discussion

This method is a generalized processor for the most common operations on single
records: creates, updates and deletes (hence the name “cud”). You supply a table-specific
processing script and cud does the rest.

There are four actions you can pass in cudAction:

create Create a new record

update Update an existing record

update* Update a record if it exists, create a new record if not
delete Delete an existing record

cudTable is a pointer to the table on which you wish to perform the operation. cud takes
care of setting and restoring the read write state of the table.

If cudProcessor begins with “/, it is taken to be a web root-relative path to an executable
script and is executed using include. Otherwise it is taken to be the name of an Active4D
method (local or library) to execute.

attributes is a collection containing values you wish to pass on to cudProcessor. Under
fusebox, typically this would be the Sattributes collection itself.

If you are using timestamps to perform optimistic locking (see “Using Timestamps with
Optimistic Locking” on page 401), you can have cud do the timestamp checking when
updating or deleting records. If cudTimestampfField is non-nil and cudTimestamp is non-
empty, the current value of the field pointed to by cudTimestampField will be compared
to cudTimestamp.

cud returns a status which identifies the outcome of the operation. The built-in statuses
returned by cud are:

You may also define your own status values in cudProcessor. The only status that cud
really pays attention to is “success”; any status other than that is considered failure.

486 Chapter 12 Standard Libraries

a4d.utils

Active4D v6.4

success The operation completed successfully
missing The record could not be found
conflict Timestamp checking is being used and the timestamps do not
match
locked The record could not be unlocked
Phases

"

For each action, there are several possible phases: “query”, “update’, “delete”, “post” and
“cleanup”. During each phase cudProcessor is executed, which gives you a chance to
customize cud's behavior accordingly. The details of each phase are covered below in the
description of each action’s flow of control.

Custom processors
Your custom processor needs to know the current state and return a status indicating
success or failure.

In the case of an include-based cudProcessor, cud communicates its current state via
local variables. In addition to the parameters passed to cud itself (which appear as local
variables and should be considered read only), there are two additional variables:

= $cudPhase: This is set to the current phase of the requested action, and should be
considered read only. You use this variable to determine what to do in your processor.

= ScudResult: This is set to the current status of the requested action, and may be
changed by your processor. You may abort the action before the “post” phase by
setting this variable to a value other than “success”.

In the case of a method-based cudProcessor, your method should be declared with the
following signature:

method "myProccesor™($inAction; $inPhase; $inTable; $attributes;
$inTimestampField; $inTimestamp)

The method should return a text status. You may abort the action before the “post”
phase by returning a value other than “success”.

If you want to maintain state in your cudProcessor between phases, it is recommended
that you use the _request collection (see “_request” on page 330).

Now we have seen all of the elements that go into making cud work. At this point it will
be useful to examine the flow of control of each action in more detail.

Create action
The “create” action has four phases, in the following order:

= query: Usually you will ignore this phase with the “create” action, since you don’t
need to find an existing record in cudTable. But there may be cases where, for example,

Chapter 12 Standard Libraries 487

Active4D v6.4

a4d.utils

the creation of a record in cudTable is dependent on some value, either in a variable or
in another table.

In such cases you would check for the dependent value, and if the test fails you would
set the status to “missing’, or whatever error message you wish to use.

In this phase the read/write state of cudTable is whatever it was when cud was called
(which is usually read only).

= update: If the status is still “success” after the “query” phase, the “update” phase is
executed after CREATE RECORD is called and just before the newly created record is
saved. In this phase cudTable will be read write and you must set cudTable’s fields to the
appropriate values, typically retrieved from Sattributes in a fusebox application, or
from _query or _form in non-fusebox applications.

If you want to use a transaction, you should start the transaction in this phase.

If you want to abort the record creation, set the status to something other than
“success”.

= post: If the status is still “success” after the “update” phase, the “post” phase is
executed just after the new created record is saved. In this phase you would typ