
ADOBE® BRIDGE CS5

JAVASCRIPT REFERENCE

 2010 Adobe Systems Incorporated. All rights reserved.

Adobe® Creative Suite 5: Adobe Bridge JavaScript Reference for Windows® and Macintosh®.

If this guide is distributed with software that includes an end user agreement, this guide, as well as the software
described in it, is furnished under license and may be used or copied only in accordance with the terms of such license.
Except as permitted by any such license, no part of this guide may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, electronic, mechanical, recording, or otherwise, without the prior written
permission of Adobe Systems Incorporated. Please note that the content in this guide is protected under copyright law
even if it is not distributed with software that includes an end user license agreement.

The content of this guide is furnished for informational use only, is subject to change without notice, and should not be
construed as a commitment by Adobe Systems Incorporated. Adobe Systems Incorporated assumes no responsibility or
liability for any errors or inaccuracies that may appear in the informational content contained in this guide.

Please remember that existing artwork or images that you may want to include in your project may be protected under
copyright law. The unauthorized incorporation of such material into your new work could be a violation of the rights of
the copyright owner. Please be sure to obtain any permission required from the copyright owner.

Any references to company names in sample templates are for demonstration purposes only and are not intended to
refer to any actual organization.

Adobe, the Adobe logo, Illustrator, Photoshop, InDesign, and Drive are either registered trademarks or trademarks of
Adobe Systems Incorporated in the United States and/or other countries.

Microsoft and Windows are either registered trademarks or trademarks of Microsoft Corporation in the United States
and/or other countries. Apple, Mac, Mac OS, and Macintosh are trademarks of Apple Computer, Incorporated, registered
in the United States and other countries. Sun and Java are trademarks or registered trademarks of Sun Microsystems,
Incorporated in the United States and other countries. UNIX is a registered trademark of The Open Group in the US and
other countries.

Adobe Systems Incorporated, 345 Park Avenue, San Jose, California 95110, USA. Notice to U.S. Government End Users.
The Software and Documentation are “Commercial Items,” as that term is defined at 48 C.F.R. §2.101, consisting of
“Commercial Computer Software” and “Commercial Computer Software Documentation,” as such terms are used in 48
C.F.R. §12.212 or 48 C.F.R. §227.7202, as applicable. Consistent with 48 C.F.R. §12.212 or 48 C.F.R. §§227.7202-1 through
227.7202-4, as applicable, the Commercial Computer Software and Commercial Computer Software Documentation are
being licensed to U.S. Government end users (a) only as Commercial Items and (b) with only those rights as are granted
to all other end users pursuant to the terms and conditions herein. Unpublished-rights reserved under the copyright
laws of the United States. Adobe Systems Incorporated, 345 Park Avenue, San Jose, CA 95110-2704, USA. For U.S.
Government End Users, Adobe agrees to comply with all applicable equal opportunity laws including, if appropriate, the
provisions of Executive Order 11246, as amended, Section 402 of the Vietnam Era Veterans Readjustment Assistance Act
of 1974 (38 USC 4212), and Section 503 of the Rehabilitation Act of 1973, as amended, and the regulations at 41 CFR
Parts 60-1 through 60-60, 60-250, and 60-741. The affirmative action clause and regulations contained in the preceding
sentence shall be incorporated by reference.

 3

Contents

Welcome . 7
About this book . 7

Who should read this book . 7
What is in this book . 7
Document conventions . 8

Typographical conventions . 8
JavaScript conventions . 8

Where to go for more information . 8

1 Adobe Bridge DOM Object Reference . 10
App Object . 12

App properties . 12
App functions . 15

BitmapData Object . 22
BitmapData object constructors . 22
BitmapData properties . 23
BitmapData functions . 24

Color Object . 27
Color object constructor . 27
Color properties . 27
Color functions . 27

Document Object . 28
Document object constructor . 28
Document properties . 28
Document functions . 37

Event Object . 42
Event properties . 42
Event object types . 43

App events . 43
Document events . 44
Thumbnail events . 45
PreferencesDialog events . 46

Favorites Object . 48
Favorites properties . 48
Favorites functions . 48

IconListPanelette Object . 51
IconListPanelette constructor . 51
IconListPanelette properties . 51

InspectorPanel Object . 52
InspectorPanel constructor . 52
InspectorPanel properties . 52
InspectorPanel functions . 53

MenuElement Object . 54

Contents 4

MenuElement class functions . 54
MenuElement properties . 55
Adobe Bridge menu and command identifiers . 57

Top-level menu identifiers . 57
Menu bar submenu and command identifiers . 58
Toolbar menus and commands . 63
Context and flyout submenus and commands . 65

Metadata Object . 72
Metadata properties . 73
Metadata functions . 74

NavBar Object . 75
NavBar properties . 75
NavBar functions . 76
Panelette Base Class . 77
Panelette class properties . 77
Panelette markup elements . 78

Preferences Object . 79
Preferences properties . 79
Preferences functions . 84

PreferencesDialog Object . 85
PreferencesDialog functions . 85

TabbedPalette Object . 87
TabbedPalette constructor . 87
TabbedPalette properties . 88
TabbedPalette object methods . 89

TextPanelette Object . 90
TextPanelette constructor . 90
TextPanelette properties . 90

Thumbnail Object . 91
Thumbnail object constructor . 91

Multiple references to the same node . 92
Thumbnail properties . 93
Thumbnail functions . 96

ThumbnailPanelette Object . 100
ThumbnailPanelette constructor . 100
ThumbnailPanelette properties . 100

2 Node-Handling Extension Object Reference . 101
Badge Object . 103

Badge properties . 103

CacheData Object . 104
CacheData properties . 104

CacheElement Object . 105
CacheElement properties . 105
CacheElement functions . 105

ExtensionHandler Object . 106
ExtensionHandler object constructor . 106
ExtensionHandler properties . 107

Contents 5

ExtensionHandler methods . 107
Immediate handler operations . 108
Long-running handler operations . 109

ExtensionModel Object . 113
ExtensionModel constructor . 113
ExtensionModel properties . 113
ExtensionModel methods . 114

Immediate model operations . 114
Long-running model operations . 119

FilterDescription Object . 121
FilterDescription constructor . 121
FilterDescription properties . 121

Infoset Object . 123
Infoset object constructor . 123
Infoset properties . 123
Infoset functions . 124
Core infosets . 125

InfosetMemberDescription Object . 131
InfosetMemberDescription constructor . 131
InfosetMemberDescription properties . 131

ModalOperator Object . 132
ModalOperator constructor . 132

Operand Object . 133
Operand object constructor . 133
Operand properties . 133

Operator Class . 134
Operator common properties . 134
Operator functions . 137

ProgressOperator Object . 140
ProgressOperator constructor . 140

Rank Object . 141
Rank object constructor . 141
Rank properties . 141

Scope Object . 142
Scope object constructor . 142
Scope properties . 142

SearchCondition Object . 143
SearchCondition object constructor . 143
SearchCondition properties . 143

SearchCriteria Object . 144
SearchCriteria object constructor . 144
SearchCriteria properties . 144

SearchDefinition Object . 146
SearchDefinition object constructor . 146
SearchDefinition properties . 146

SearchDetails Object . 147
SearchDetails object constructor . 147

Contents 6

SearchDetails properties . 147

SearchSpecification Object . 148
SearchSpecification object constructor . 148
SearchSpecification properties . 148

SortCriterion Object . 150
SortCriterion object constructor . 150
SortCriterion properties . 150

3 External Communication Tools . 152
Loading the Web Access library . 152

FtpConnection object . 152
Using File objects with the FtpConnection object . 152
Synchronous and asynchronous operation . 153
FtpConnection object reference . 154

FtpConnection object constructor . 154
FtpConnection object properties . 154
FtpConnection object functions . 159

HttpConnection object . 163
Requests and responses . 163
Asynchronous operations . 164
Authentication . 164
HttpConnection object reference . 165

HttpConnection object constructor . 165
HttpConnection object properties . 165
HttpConnection object functions . 169

Index . 170

 7

Welcome

Welcome to the Adobe Bridge CS5 JavaScript Reference. This book describes the JavaScript scripting API that
allows you to manipulate and extend Adobe® Bridge.

About this book
This book provides complete reference information for the JavaScript objects, properties, and functions
defined by Adobe Bridge. For conceptual information and examples, see the companion document, the
Adobe Bridge JavaScript Guide.

Who should read this book

This book is for developers who want to call Adobe Bridge functionality from scripts, extend the
capabilities of Adobe Bridge using JavaScript, and use scripts to communicate between Adobe Bridge and
other applications. It assumes a general familiarity with the following:

➤ JavaScript

➤ Adobe Bridge

➤ Any other Adobe Bridge applications you are using, such as Adobe Illustrator® CS5, Adobe Photoshop®
CS5, or Adobe InDesign® CS5. The scripting API details for each application are included with the
scripting documentation for that product.

What is in this book

This book provides detailed reference information about the JavaScript objects that Adobe Bridge
provides.

This book contains the following chapters:

➤ Chapter 1, “Adobe Bridge DOM Object Reference,” provides a complete API reference for the objects,
properties, and functions defined in the Adobe Bridge document object model, which any script can
use to program Adobe Bridge functionality and interactions with users.

➤ Chapter 2, “Node-Handling Extension Object Reference,” provides a complete API reference for the
objects, properties, and functions that allow a product or plug-in developer to extend Adobe Bridge
functionality, in order to provide compatibility with another product or plug-in.

➤ Chapter 3, “External Communication Tools,” provides a complete API reference for the Web Access
library, which supplies tools for communicating with other computers or the Internet using standard
protocols FTP and HTTP.

The Adobe Bridge scripter also has access to a various utilities and tools that are part of ExtendScript, the
Adobe extended implementation of JavaScript. These are described separately, in the JavaScript Tools
Guide.

Welcome About this book 8

Document conventions

Typographical conventions

NOTE: Notes highlight important points that deserve extra attention.

JavaScript conventions

This reference does not list properties and methods provided by the JavaScript language itself. For
example, it is common for JavaScript objects to provide a toString() method, and many of the objects
the SDK supplies implement this method. However, this book does not describe such methods unless they
differ from the standard JavaScript implementation.

Similarly, because most objects provided by the SDK have a name property, the reference does not list name
properties explicitly.

Where to go for more information

The Adobe Bridge Software Developer’s Kit (SDK) contains the JavaScript documentation and code
samples. The SDK is available for download from Adobe Developer Center,
http://www.adobe.com/devnet/. You can install the SDK in a folder with a name and location of your
choice, referred to here as sdkInstall. The SDK contains:

Monospaced font Literal values and code, such as JavaScript code, HTML code, filenames, and
pathnames.

Italics Variables or placeholders in code. For example, in name="myName", the text
myName represents a value you are expected to supply, such as name="Fred".
Also indicates the first occurrence of a new term.

Blue underlined text A hyperlink you can click to go to a related section in this book or to a URL in
your web browser.

Sans-serif bold font The names of Adobe Bridge UI elements (menus, menu items, and buttons).

The > symbol is used as shorthand notation for navigating to menu items. For
example, Edit > Cut refers to the Cut item in the Edit menu.

sdkInstall/docs/ Adobe Bridge JavaScript documents in PDF format, including:

➤ This manual

➤ The Adobe Bridge JavaScript Guide, which provides an overview of
conceptual information and details of scripting techniques.

sdkInstall/sdksamples/ A set of code samples that illustrate Adobe Bridge scripting concepts and
techniques.

The sections in this manual that discuss particular concepts list the code
samples that demonstrate the related techniques.

http://www.adobe.com/devnet/

Welcome About this book 9

This book does not describe the JavaScript language. For documentation of the JavaScript language or
descriptions of how to use it, see publicly available web resources or any of numerous works on this
subject, including the following:

➤ The public JavaScript standards organization web site: www.ecma-international.org

➤ JavaScript: The Definitive Guide, 4th Edition; Flanagan, D.; O’Reilly 2001; ISBN 0-596-00048-0

➤ JavaScript Programmer’s Reference; Wootton, C.; Wrox 2001; ISBN 1-861004-59-1

➤ JavaScript Bible. 5th Edition; Goodman, D. and Morrison, M.; John Wiley and Sons1998; ISBN
0-7645-57432

http://www.ecma-international.org

 10

1 Adobe Bridge DOM Object Reference

This document provides a complete reference for the objects of the Adobe Bridge document object model
(DOM). An overview of the objects and usage details are provided in the Adobe Bridge JavaScript Guide.

This chapter presents the primary objects. Additional objects are available to advanced developers who
wish to extend the node-handling capability of Adobe Bridge by defined their own node types; these
objects are described in Chapter 2, “Node-Handling Extension Object Reference."

In addition to these Adobe Bridge-specific objects, an API common to most JavaScript-enabled Adobe
applications is supplied by ExtendScript, the Adobe extended implementation of JavaScript. These tools
are described in detail in the JavaScript Tools Guide. The tools include:

➤ ScriptUI objects that provide user-interface capability.

➤ The ExtendScript File and Folder objects that provide portable access to the file system.

➤ An interapplication messaging framework that provides the ability to communicate among scriptable
applications using JavaScript.

➤ ExtendScript utilities, including tools for debugging, for localization, and for specifying and working
with measurement values.

Object
summary

The objects are presented alphabetically. For each object, complete syntax details are provided for the
constructor, properties, and functions.

App Object Global information about the Adobe Bridge application.

BitmapData Object Represents an image as a matrix of pixels.

Color Object An RGB color description.

Document Object An Adobe Bridge browser window.

Event Object A user-interaction event.

Favorites Object Two arrays of the thumbnails shown in the Standard and User sections
of the Favorites palette.

IconListPanelette Object A member sub-panel in an Inspector panel that displays two or three
columns.

InspectorPanel Object An object-inspection panel in the tabbed palettes.

MenuElement Object Access to the Adobe Bridge menus and commands.

Metadata Object Access to file metadata through a thumbnail.

NavBar Object A configurable navigation bar that can display user-interface controls.

Panelette Base Class A base class for sub-panels in an Inspector panel.

Preferences Object Access to application preferences.

PreferencesDialog Object Access to the Preferences dialog.

CHAPTER 1: Adobe Bridge DOM Object Reference 11

TabbedPalette Object A tabbed panel in the Adobe Bridge browser window.

TextPanelette Object A member sub-panel in an Inspector panel that displays text.

Thumbnail Object A navigable node representing a file, folder, or web page.

ThumbnailPanelette Object A member sub-panel in an Inspector panel that displays thumbnails.

CHAPTER 1: Adobe Bridge DOM Object Reference App Object 12

App Object
The App object represents the Adobe Bridge application. A singleton instance is created on startup; access
it using the app global variable.

There is only one App object; multiple browser windows are represented by instances of Document, and
can be accessed with the app.document or app.documents properties.

App properties

defaultFilterCriteria Array of Filter
Description

A collection of the default FilterDescription
Objects used to populate the Filter palette. Read
only.

defaultSortCriteria Array of
SortCriterion

A collection of the default SortCriterion Objects
used to sort the contents of container nodes. Read
only.

Default list is:

Filename
Document type
Date created
Date file modified
File size
Dimensions
Resolution
Color profile
Label
Rating
Keywords

displayDialogs String The policy for the display of modal dialogs.
Read/write. One of:

all (default)-- Modal dialogs should always
be displayed.
none—Modal dialog should never be
displayed.
error—Only dialogs that report an error to
the user should be displayed.

document Document The active (top-most) Document Object,
representing the active browser window.
Read/write.

During an open or create event, this value still
contains the previous Document object, while the
new Document object is passed to the event
handler.

documents Array of
Document

A collection of Document Objects representing
the set of all open browser windows. Read/write.

CHAPTER 1: Adobe Bridge DOM Object Reference App Object 13

eventHandlers Array of
EventHandler

A collection of event handlers installed by scripts.
Add an event handler to this array to register it
with Adobe Bridge. Registered handler functions
are called when any user-interaction event is
triggered. Read/write.

Each event handler is specified by a JavaScript
object with one property, the handler function
name:

{ handler: fnName}

The handler function takes one argument, an
Event Object, and returns a result object
{handled: boolean}.

➤ When true, the event has been completely
handled and Adobe Bridge does not look for
more handlers or call the default handler.

➤ When false (or when the handler returns
undefined), Adobe Bridge continues to call
registered handlers, or if there are no more,
calls the default handler.

extensions Array of
ExtensionHandler

A collection of ExtensionHandler Objects
representing registered node-handling
extensions. Read only. Use registerExtension() and
unregisterExtension() to modify the list.

favorites Favorites The top-level object for the navigation hierarchy
displayed in the Favorites palette. This Favorites
Object contains two arrays of Thumbnail Objects,
for the nodes shown in the two sections. Read
only.

folderRoots Array of String The list of Bridge URI strings for the root nodes of
the Folders pane. Read only.

Extension developers can modify the list with
addCustomRoot().

inspectorPanels Array of
InspectorPanel

The collection of script-defined InspectorPanel
Objects that define Inspector panels for new
Document Objects (browser windows). The list is
in display order.

Read only. Use registerInspectorPanel() and
unregisterInspectorPanel() to modify the list.

language String The display name of the language for the current
locale, as configured by the operating system. This
is the name as it appears in the Preferences dialog.
Read only.

CHAPTER 1: Adobe Bridge DOM Object Reference App Object 14

lastSender String The application specifier for the application that
has most recently sent an interapplication
message to Adobe Bridge.

locale String The Adobe locale code for the current locale, as
configured by the operating system. Read only.

An Adobe locale code consists of a 2-letter
ISO-639 language code and an optional 2-letter
ISO 3166 country code separated by an
underscore. Case is significant. For example,
en_US, en_UK, ja_JP, de_DE, fr_FR.

name String The application specifier for this application,
"bridge". Read only.

pendingJobs Number The number of background tasks that Adobe
Bridge has left to process. Background tasks are
started for asynchronous operations, such as
metadata extraction from thumbnails, or
exporting the cache with app.buildFolderCache().
When all tasks have been started, this value is 0.
Read only.

NOTE: The 0 value does not mean that all jobs have
completed. The application might still be building
the cache after no more jobs are pending. To
determine if the cache is complete, monitor the
cache size to see when it stops growing or simply
check if isProcessingJob() returns false.

preferences Preferences The Preferences Object, which provides access to
the user preferences shown in the Preferences
dialog (invoked from the Edit > Preferences
command). Read only.

synchronousMode Boolean When true, Adobe Bridge attempts to ensure that
all Thumbnail properties are valid before
returning their values. This is particularly
important when accessing or setting metadata.

Scripts (other than node handlers) typically need
to set synchronous mode to true. Default is
false, for performance reasons. The value of
false is automatically restored when a script has
completed.

standardFavorites Favorites This Favorites object contains an array of
Thumbnail objects for the nodes shown in the
Standard section of the Favorites palette.

userFavorites Favorites This Favorites object contains an array of
Thumbnail objects for the nodes shown in the
User section of the Favorites palette.

CHAPTER 1: Adobe Bridge DOM Object Reference App Object 15

App functions

version String The version number of the Adobe Bridge
application. Read only.

watchDirInterval Number The duration in seconds between checks for folder
consistency (checking whether files have been
added or removed).

workspaces Array of Object The list of all available workspaces, both default
and user- or script-defined. Each workspace is a
JavaScript object with two properties, id and
name, specifying the unique identifier and the
localized display name; see Document.workspace.
Read only.

acquirePhysicalFiles()
app.acquirePhysicalFiles
(thumbnails)

For each specified thumbnail, if it refers to a resource that
does not have a local copy (such as the files referenced by
AdobeDrive nodes), downloads the resource.

NOTE: For efficiency, make one call for all files to be
processed, rather than calling repeatedly.

Returns true on success.

thumbnails An array of Thumbnail Objects.

addCollectionMember()
app.addCollection
(collection, member)

Adds a member thumbnail, or set of member thumbnails,
to a collection.

Returns undefined.

collection The Thumbnail Object for the collection node, as returned by
app.createCollection().

member A Thumbnail Object or array of Thumbnail Objects to be added to the
collection.

addCredits()
app.addCredits (title, content)

Appends a text string to the Credits area of the Adobe
Bridge About box.

Returns undefined.

title The unique identifying name of this addition.

content The localizable text string.

addCustomRoot()
app.addCustomRoot (uri)

Appends a custom URI to the list of root nodes in
app.folderRoots, which appear in the Folders pane. Used
by script-defined node handlers.

Returns true on success.

uri The Bridge URI string.

CHAPTER 1: Adobe Bridge DOM Object Reference App Object 16

addLegalNotice()
app.addLegalNotice
(title, content)

Appends a text string to the Legal Notice area of the Adobe
Bridge About box.

Returns undefined.

title The unique identifying name of this addition.

content The localizable text string.

beep()
app.beep ()

Calls on the operating system to emit a short audio tone.

Returns undefined.

bringToFront()
app.bringToFront ()

Gives Adobe Bridge the operating system application
focus, and brings the current browser window to the front
in the windowing system.

Returns undefined.

buildFolderCache()
app.buildFolderCache
(path[, recurse, quality,
buildFullSize]

Forces Adobe Bridge to create thumbnail images for the
specified folder. These are stored in a cache file in the
folder to which they apply.

Returns undefined.

path The folder. An ExtendScript Folder object, Thumbnail Object for a folder, or
Bridge URI path string. If this specifies a file, the cache is built for the
containing folder.

recurse Optional in Adobe Bridge 1.0, not used in Adobe Bridge 2.0. Boolean. Cache
building is always recursive; pass true.

quality Optional. String. Whether to create low or high quality thumbnail images.
One of the strings "quick" (the default) or "highQuality".

buildFullSize Optional. Boolean. Whether to export full-size images to cache folder. This
matches what happens when users select "Generate 100% previews" in the
Bridge window.

cancelTask()
app.cancelTask (taskId)

Cancels a task that has been scheduled using
scheduleTask().

Returns undefined.

taskId The task ID number, as returned from app.scheduleTask().

createCollection()
app.createCollection (name)

Creates a new, named collection node.

Returns the Thumbnail Object for the new node. Use this
to access the collection programmatically.

name The name of the new collection. If a collection with this name already exists,
a unique name is generated using this string.

deleteCollection()
app.deleteCollection (collection)

Deletes a collection node.

Returns true on success.

CHAPTER 1: Adobe Bridge DOM Object Reference App Object 17

collection The Thumbnail Object for the collection node, as returned by
app.createCollection().

enqueueOperation()
app.enqueueOperation(operator)

Enqueues a long-running node-handling operation for
execution at an appropriate time.

Returns undefined.

operator The Operator Class instance that encapsulates the operation, returned by an
ExtensionModel Object method.

exportKeywordsToFile()
app.exportKeywordsToFile
(keywordsFile)

Exports the keywords in the Keywords palette to a file. This
is the same as choosing Export from the flyout menu in the
Keywords palette.

Returns undefined.

keywordsFile The file, specified as a path string or ExtendScript File object.

getCollectionMembers()
app.getCollectionMembers
(collection)

Retrieves the collection members for a collection node.

Returns an array of Thumbnail Objects for the collection
members.

collection The Thumbnail Object for the collection node, as returned by
app.createCollection().

getCollections()
app.getCollections ()

Retrieves all collection nodes, as created with
createCollection().

Returns an array of Thumbnail Objects for the collection
nodes.

hide()
app.hide ()

Hides or minimizes all Adobe Bridge browser windows.

➤ In Mac OS, performs the platform-specific hide
gesture.

➤ In Windows, does the equivalent of
app.document.minimize().

Returns undefined.

importKeywordsFromFile()
app.exportKeywordsFromFile
(keywordsFile[, importType])

Imports the keywords from a file into the Keywords palette.
This is the same as choosing Import from the flyout menu
in the Keywords palette.

Returns undefined.

keywordsFile The file, specified as a path string or ExtendScript File object.

importType Optional. How to handle existing keywords in the palette. One of these
strings:

clearExistingKeywords—Replace existing keywords in the palette.
mergeWithExistingKeywords (default)—Merge the imported
keywords with any existing keywords in the palette.

CHAPTER 1: Adobe Bridge DOM Object Reference App Object 18

isCollectionMember()
app.isCollectionMember
(collection, member)

Reports whether a given thumbnail is a member of a given
collection.

Returns true if the thumbnail is a member.

collection The Thumbnail Object for the collection node, as returned by
app.createCollection().

member The Thumbnail Object for the node to be tested.

isProcessingJob()
app.isProcessingJob ()

Whether Adobe Bridge is processing any task.

Returns false if all the jobs are finished.

makeSearch()
app.makeSearch
(scope, searchSpec)

Adobe Bridge passes the search specification to execute a
search and returns a Thumbnail Object which represents a
search-result container node. Users can access the
children property of the Thumbnail Object to get all
matched nodes.

scope A Thumbnail Object for the target container node.

searchSpec A SearchSpecification Object used to generate this search result.

openUrl()
app.openUrl (url)

Opens a page in the platform’s default web browser.

Returns undefined.

url The URL for the page to open.

operationChanged()
app.operationChanged (operator)

Notifies Adobe Bridge of an update to the processing
status or progress of a long-running background operation
implemented by a ProgressOperator Object.

Adobe Bridge queries the object to find the current status
and update the UI as appropriate.

Returns undefined.

operator The Operator Class instance that encapsulates the operation, returned by an
ExtensionModel Object method.

purgeAllCaches()
app.purgeAllCaches ()

Purges the thumbnail caches for all folders. See also
buildFolderCache() and purgeFolderCache().

Returns undefined.

purgeFolderCache()
app.purgeFolderCache
([path])

Purges the thumbnail caches for the specified folder. See
also buildFolderCache() and purgeAllCaches().

Returns undefined.

path Optional. The folder to purge. An ExtendScript Folder object, Thumbnail
Object for a folder, or Bridge URI path string. If this specifies a file, the cache
is purged for the containing folder. If not supplied, purges all folder caches.

CHAPTER 1: Adobe Bridge DOM Object Reference App Object 19

quit()
app.quit ()

Shuts down the Adobe Bridge application. All browser
windows are closed.

Returns undefined.

registerExtension()
app.registerExtension (handler)

Adds a script-defined node-handling extension to the
application’s list of available handlers.

Returns true on success, false if there is an existing
extension with the same name.

handler The ExtensionHandler Object.

registerInfoset()
app.registerInfoset
(handler, infoset)

Declares a new node-data information set, associating it
with a node-handling extension. Sets can be associated
with multiple handlers. All handlers must support the core
sets. Registering a set makes the defined properties
available to node display code.

Returns true on success.

handler The ExtensionHandler Object.

infoset The Infoset Object.

registerInspectorPanel()
app.registerInspectorPanel (panel)

Registers a script-defined Inspector panel, adding it to
app.inspectorPanels. This panel appears in the Inspector
palette unless the selected thumbnail explicitly disallows
it.

Returns undefined.

panel The InspectorPanel Object.

registerPrefix()
app.registerPrefix
(prefix, handler)

Associates a URI prefix string with a node-handling
extension. The prefix identifies a node type managed by
the handler. Handlers can register multiple prefixes.

Returns true on success.

prefix The prefix string, which must contain only ASCII characters.

handler The ExtensionHandler Object.

removeCollectionMember()
app.removeCollectionMember
(collection, member)

Removes one or more member thumbnails from a
collection.

Returns undefined.

collection The Thumbnail Object for the collection node, as returned by
app.createCollection().

member The Thumbnail Object or array of Thumbnail Objects for the member or
members to be removed.

CHAPTER 1: Adobe Bridge DOM Object Reference App Object 20

removeCredits()
app.removeCredits (title)

Removes a text string from the Credits area of the Adobe
Bridge About box. The string must have been previously
added with addCredits().

Returns undefined.

title The unique identifying name of the addition to remove.

removeLegalNotice()
app.removeLegalNotice (title)

Removes a text string from the Legal Notice area of the
Adobe Bridge About box. The string must have been
previously added with addLegalNotice().

Returns undefined.

title The unique identifying name of the addition to remove.

renameCollection()
app.renameCollection
(collection, name)

Renames a collection.

Returns true on success.

collection The Thumbnail Object for the collection node, as returned by
app.createCollection().

name The new name of the collection. If a collection with this name already exists,
a unique name is generated using this string.

runSlideshow()
app.runSlideshow
(sources)

Loads a set of files or thumbnails as a slideshow, using the
Preference options currently set for Adobe Bridge.

Returns undefined.

sources An array of Thumbnail Objects or file path strings.

scheduleTask()
app.scheduleTask
(script, delay[, repeat])

Executes a script after a specified delay. The script can be
executed repeatedly, stopping when it returns undefined,
or when you cancel the task using cancelTask().

Returns the task ID number, which can be used to cancel
the scheduled task.

See the Adobe Bridge JavaScript Guide and Adobe Bridge
SDK for examples.

script A string containing the script to be run.

NOTE: If this script needs to load another script, do not use the JavaScript
eval() function; instead use the ExtendScript $.evalFile() function. See
the JavaScript Tools Guide.

delay A number of milliseconds to wait before executing the script. If 0, waits the
default number of milliseconds, which is 10.

repeat Optional. When true, execute the script repeatedly after each elapsed delay.
Stops when a script execution returns undefined, or when this task is
cancelled by calling app.cancelTask(). Default is false, which means
execute the script only once.

CHAPTER 1: Adobe Bridge DOM Object Reference App Object 21

system()
app.system (commandLine)

Issues the argument to the operating system, as if it were
entered on the command line in a shell. Control does not
return to Adobe Bridge until this function returns.

Returns undefined.

commandLine The command to pass to the operating system.

unregisterExtension()
app.unregisterExtension (handler)

Removes a node-handling extension, previously registered
with registerExtension(), from the application’s global list.

Returns true on success.

handler The ExtensionHandler Object.

unregisterInfoset()
app.unregisterInfoset
(handler, infoset)

Removes the association between an extension and an
information set, previously established with
registerInfoset().

Returns true on success.

handler The ExtensionHandler Object.

infoset The Infoset Object.

unregisterInspectorPanel()
app.unregisterInspectorPanel
(panel)

Removes a script-defined Inspector panel from the global
list in app.inspectorPanels.

Returns undefined.

panel The InspectorPanel Object.

unregisterPrefix()
app.registerInfoset (prefix)

Removes a node URI prefix from the list of prefixes that the
associated node-handling extension manages.

Returns true on success.

prefix The prefix string.

CHAPTER 1: Adobe Bridge DOM Object Reference BitmapData Object 22

BitmapData Object
Represents an image as a matrix of pixels, described by four channels: red, green, blue, and an “alpha”
channel that represents the opacity of the pixel. Each channel stores a number between 0 and 255. For the
color channels, 0 means an absence of that color and 255 means the maximum amount of that color. For
the alpha channel, 0 means the pixel is completely transparent and 255 means it is completely opaque.

This object allows direct manipulation of the pixels in memory. They are assumed to be stored in
row-major order, with consecutive bytes for red, green, blue, and alpha channel. Each row may have some
padding at the end, and the total width of a row, in bytes, is represented by rowBytes.

The maximum width and maximum height of a BitmapData object is 8192 pixels.

BitmapData object constructors

There are three forms for the constructor:

new BitmapData (width, height, transparent*, fillColor*)
new BitmapData (file[, preserveColorProfile])
new BitmapData (width, height, transparent, rowBytes, data)

Arguments for the first form:

Argument for the second form:

width Number Image width in pixels.

height Number Image height in pixels.

transparent Boolean Optional, true to support per-pixel transparency. Default is true.

fillColor Color Optional, the fill color. Can be the object, or any of the valid constructors of a
Color object; for example, the string “#FF4450” or the integer 0xFF4450.
Default is Black.

file String or File The path or File object for an image file.

preserveColorProfile Boolean Optional. True to preserve the embedded color profile,
if any. If none is present, or if not supplied, embeds the
default sRGB profile.

NOTE: ACR cannot be used with a preserved
embedded profile; it returns all images with an sRGB
profile which would conflict with the desired color
profile behavior. If you choose to preserve the
embedded profile, the standard JPEG or TIFF libraries
are used, even if the thumbnail preference "Use ACR
for JPEG and TIFF" is set.

CHAPTER 1: Adobe Bridge DOM Object Reference BitmapData Object 23

Arguments for the third form:

BitmapData properties

width Number Image width in pixels.

height Number Image height in pixels.

transparent Boolean True to support per-pixel transparency.

rowBytes Number The length in bytes of a row of pixels in the supplied data.

data Number or
Array of
Number

The memory address of an ARGB pixel buffer, a 32-bit integer or an
array of two 32-bit integers.

checksum Number A 32-bit Adler checksum of the image data: use to compare two object
to see if they represent the same image. Read only.

height Number Image height in pixels. Read only.

pointer Number A pointer to the buffer storing the matrix of pixels. Read only.

rectangle Array of
Number

The rectangle that defines the size of the bitmap image, in the format
[0, 0, w, h]. Origin is top left. Read only.

rowBytes Number The length in bytes of a row of pixels.

This provides the offset from a given pixel to the pixel immediately
below it, allowing for padding at the end of each line. Because a pixel is
typically represented by 4 bytes, the value is usually around 4 times
bigger than the width in pixels.

Typically, rows are padded to multiples of 4, sometimes 16. For
example, if a bitmap is 3 pixels wide, width is 3, and rowBytes could be
12 or 16.

Read only.

transparent Boolean True if the bitmap image supports per-pixel transparency. Read only.

width Number Image width in pixels. Read only.

CHAPTER 1: Adobe Bridge DOM Object Reference BitmapData Object 24

BitmapData functions

clone()
bitmapDataObj.clone ()

Duplicates this object, creating a new object with an exact
copy of the contained bitmap.

Returns the BitmapData object.

dispose()
bitmapDataObj.dispose ()

Explicitly frees the memory used to store pixel data for this
object. If not called, the JavaScript garbage collector
eventually frees the memory when there are no references
remaining.

Returns undefined.

exportTo()
bitmapDataObj.exportTo
(path[, jpegQuality])

Writes the image data to a file in JPEG format.

Returns undefined.

NOTE: If you create a JPG file with this method in a folder
that is already displayed in the browser window, for certain
file systems the browser may not update the display. In this
case, the script should call verifyExternalChanges() for any
currently displayed thumbnail, to ensure that the browser
updates to display the generated file.

path An ExtendScript File object for the target file. Creates the file if it does not
exist, or overwrites an existing file. It is recommended that the file name have
an extension of ".jpg".

jpegQuality Optional. The quality of the image. A number in the range [0..100] where 100 is
the highest quality image and largest file size, and lower values indicate more
compression, lossier image, and smaller file size. Default is 60 (equivalent to
Photoshop quality 7).

getPixel()
bitmapDataObj.getPixel
(x, y)

Retrieves the color data for a specific pixel from the image. If
the transparent property for this object is true, the returned
color number is pre-multiplied.

Returns an integer that represents the ARGB pixel value.
This can be used to create a Color Object.

x, y The pixel coordinates relative to this bitmap’s origin, the top left.

getPixel32()
bitmapDataObj.getPixel32
(x, y)

Retrieves the color data for a specific pixel from the image,
including its alpha channel.

Returns an integer that represents the ARGB pixel value.
This can be used to create a Color Object.

x, y The pixel coordinates relative to this bitmap’s origin, the top left.

CHAPTER 1: Adobe Bridge DOM Object Reference BitmapData Object 25

loadFromJpegStream()
bitmapDataObj.loadFromJpegStream
(data, dataSize)

Loads the JPEG stream at a memory address into this object,
replacing the previous content. The object is resized, if
necessary.

Returns undefined.

data The address of the data stream, a 32-bit value or an array of two elements
containing the low word and high word of a 64-bit address.

dataSize The length of the data buffer in bytes.

loadFromPngStream()
bitmapDataObj.loadFromPngStream
(data, dataSize)

Loads the PNG stream at a memory address into this object,
replacing the previous content. The object is resized, if
necessary.

Returns undefined.

data The address of the data stream, a 32-bit value or an array of two elements
containing the low word and high word of a 64-bit address.

dataSize The length of the buffer in bytes.

resize()
bitmapDataObj.resize
(dimension[, quality])

Resizes the bitmap to the specified dimensions. The target
dimensions must be smaller than the largest of the current
bitmap dimensions.

Returns a new BitmapData object whose sides are no
greater than the specified dimensions, or undefined if the
object already satisfies this condition.

dimension The desired edge size, in pixels, of the resized image. The resized image is
obtained by scaling down the source image to fit into a square with sides that
are this number of pixels.

quality Optional. The algorithm to use in scaling the image. One of these strings:

bilinear (default)—Lower quality, but faster scaling.
bicubic—Higher quality, but slower scaling.
bicubicSharper—Slowest, but best quality.

rotate()
bitmapDataObj.rotate (angle)

Rotates the bitmap by the specified multiple of 90 degrees.

Returns a new BitmapData object containing the rotated
image.

angle The rotation angle in degrees. Positive values rotate clockwise, negative values
rotate counterclockwise. Allowed values are -90, 0, 90, 180, 270.

setPixel()
bitmapDataObj.setPixel
(x, y, color)

Sets the color data for a specific pixel from the image. The
alpha channel is set to 255 (fully opaque).

Returns undefined.

x, y The pixel coordinates relative to this bitmap’s origin, the top left.

color A Color Object, or an integer that represents the RGB pixel value, or a
predefined color name string.

CHAPTER 1: Adobe Bridge DOM Object Reference BitmapData Object 26

setPixel32()
bitmapDataObj.setPixel32
(x, y, color)

Sets the color data for a specific pixel from the image,
including its alpha channel.

Returns undefined.

x, y The pixel coordinates relative to this bitmap’s origin, the top left.

color A Color Object, or an integer that represents the RGB pixel value, or a
predefined color name string.

CHAPTER 1: Adobe Bridge DOM Object Reference Color Object 27

Color Object
This object represents a pixel in the sRGB color space, with an optional alpha channel for opacity.

Color object constructor

To create a new object, use the new operator:

new Color (red, green, blue[, alpha]);

Parameters set corresponding properties.

new Color (colorValue);

new Color (name);

Color properties

Color functions

colorValue The color expressed as a 32-bit ARGB value.

name A W3C CSS standard color name string, one of:

aqua, black, blue, fuchsia, gray,
green, lime, maroon, navy, olive,
purple, red, silver, teal, white, yellow

Alpha channel value is set to 255, fully opaque.

If the string is not a recognized color name, returns an object for opaque black.

alpha Number [0..255] Optional. Degree of opacity when the color is composited. An integer
in the range [0..255]. If not specified, default is 255, fully opaque.

blue Number [0..255] Blue component value.

green Number [0..255] Green component value.

number Number The color expressed as a 32-bit ARGB value.

red Number [0..255] Red component value.

toString()
obj.toString ()

Retrieves the hexadecimal value of this color, including the alpha channel.

Returns a text string, such as "#FF00FF00" for fully-opaque green.

CHAPTER 1: Adobe Bridge DOM Object Reference Document Object 28

Document Object
Represents an Adobe Bridge browser window. The user can create multiple browser windows by selecting
the File > New Window command. For each browser window, there is one Document instance.

➤ Access the object for the active browser window using app.document.

➤ Access an array of objects for all open browser windows in app.documents.

For a discussion of how the parts of the browser window map to JavaScript objects, see the Adobe Bridge
JavaScript Guide.

Document object constructor

To create a new object, use the new operator. The argument specifies the file or page to be selected and
displayed in the new window.

new Document (osPath | thumb | file | folder)

Document properties

osPath String The path or URL for the file or page.

thumb Thumbnail The Thumbnail Object for the file or page.

file File The File object for the selected file.

folder Folder The Folder object for the selected folder.

additionalMetadata Array of String Identifies up to four lines of additional metadata to
display for thumbnails in the Content pane.
Overrides the values set in the Additional
Thumbnail Metatdata drop-down lists and
checkboxes in the Thumbnails page of the
Preferences dialog, and any value set in
Preferences.extraMetadata, but does not change
the preference values.

Read/write. The first value in the array sets the first
line of additional metadata, the second value sets
the second line, and so on.

Allowed values are:

author
bit-depth
color-mode
color-profile
copyright
date-created
date-modified
description
dimensions

CHAPTER 1: Adobe Bridge DOM Object Reference Document Object 29

document-creator
document-kind
exposure
file-size
focal-length
keywords
label
opening-application

An array value of undefined turns off the display of
metadata for that line.

allowDrags Boolean When true (the default), drag-and-drop of
thumbnails is allowed in this browser window. When
false, thumbnails cannot be dragged within or from
this browser window.

browserMode String The browser window mode, corresponding to the UI
button on the upper right, "Switch to compact
mode". Value can be full or compact. Ultra-compact
mode has no scripting equivalent. Read/write.

context Thumbnail The Thumbnail Object a user has right-clicked to
invoke a context menu. Otherwise undefined. Read
only.

displayInspectorView Boolean When true, this browser window displays the
Inspector palette, showing the panels listed in
app.inspectorPanels. When false, the Inspector is
not shown. Read/write.

groupedSelections Array of Array
of Thumbnail

A list of selections in the current Content page,
where each member is an array containing a single
selected Thumbnail Object, or an array of Thumbnail
Objects that make up a selected stack. See
Document.stacks.

Read only.

height Number The height of the browser window in pixels. Legal
values are positive integers. Read/write.

The window is resized only within the limits of the
minimum and maximum size allowed by the screen
resolution.

hwnd Number In Windows only, a platform-specific handle to the
window for this browser.

id Number A unique identifier for the browser window, valid for
the life of the window. It is possible for more than
one Document object to reference the same window.
Read only.

CHAPTER 1: Adobe Bridge DOM Object Reference Document Object 30

document-creator
document-kind
exposure
file-size
focal-length
keywords
label
opening-application

An array value of undefined turns off the display of
metadata for that line.

allowDrags Boolean When true (the default), drag-and-drop of
thumbnails is allowed in this browser window. When
false, thumbnails cannot be dragged within or from
this browser window.

browserMode String The browser window mode, corresponding to the UI
button on the upper right, "Switch to compact
mode". Value can be full or compact. Ultra-compact
mode has no scripting equivalent. Read/write.

context Thumbnail The Thumbnail Object a user has right-clicked to
invoke a context menu. Otherwise undefined. Read
only.

displayInspectorView Boolean When true, this browser window displays the
Inspector palette, showing the panels listed in
app.inspectorPanels. When false, the Inspector is
not shown. Read/write.

groupedSelections Array of Array
of Thumbnail

A list of selections in the current Content page,
where each member is an array containing a single
selected Thumbnail Object, or an array of Thumbnail
Objects that make up a selected stack. See
Document.stacks.

Read only.

height Number The height of the browser window in pixels. Legal
values are positive integers. Read/write.

The window is resized only within the limits of the
minimum and maximum size allowed by the screen
resolution.

hwnd Number In Windows only, a platform-specific handle to the
window for this browser.

id Number A unique identifier for the browser window, valid for
the life of the window. It is possible for more than
one Document object to reference the same window.
Read only.

CHAPTER 1: Adobe Bridge DOM Object Reference Document Object 31

jsFuncs Object DEPRECATED. Do not use.

A JavaScript object containing the function
definitions for one or more callbacks, in the form:

{ fnName1: function([args])
{ fn1_definition },
fnName2: function([args])
{ fn2_definition }
...

}

These functions are available to the code in an HTML
page displayed in the Content pane, which can
invoke them using the call function. They run in
Adobe Bridge’s ExtendScript engine, and can use
Adobe Bridge DOM objects. Read/write.

maximized Boolean When true, this browser window is in the zoomed or
maximized state. Read only.

minimized Boolean When true, this browser window is in the collapsed
or minimized state. Read only.

NOTE: In Mac OS, a window can be in the zoomed
state, and still be minimized. If both maximized and
minimized are true, call the document’s restore()
method to un-zoom the window.

navbars NavBar Contains the predefined NavBar Objects for the
configurable navigation bars.

➤ To access the navigation bars that can be shown
when the Content pane displays files and folders,
use navbars.filesystem.top and
navbars.filesystem.bottom.

Both of the two bars can be configured to display
ScriptUI controls, and are hidden by default.

noItems String Text to be displayed in the Content pane when the
selected thumbnail is for an empty folder. The
default is "No Items to Display". Read/write.

owner String The Adobe Bridge-enabled application that created
or first activated this browser window, if it was not
Adobe Bridge. An application specifier, such as
illustrator or photoshop.

For details of application specifier format, see the
JavaScript Tools Guide.

palettes Array of
TabbedPalette

A collection of TabbedPalette Objects for all default
and script-defined display palettes available to this
browser, regardless of their visibility status. Read
only.

CHAPTER 1: Adobe Bridge DOM Object Reference Document Object 32

position Object The position of this browser window on the screen.
An object with two properties, x and y, whose value
is the point of the screen coordinates, the screen
coordinates are relative to the upper-left corner of
the main display. Read/write.

presentationMode String The presentation mode of the Content pane. The
value is always "browser" in CS5. In support of this,
setPresentationMode() and presentationPath now
support the "browser" mode only.

presentationPath String The path to the content displayed in the Content
pane. A Bridge URI, which is a valid filesystem path
that Adobe Bridge can interpret. This property no
longer supports URL. To display an HTML page, use a
TabbedPalette Object.

selectionLength
selectionsLength

Number The number of currently selected thumbnails in the
Content pane.

selections Array of
Thumbnail

The Thumbnail Objects for all currently selected files
in the Content pane of this document. Read only.
Change the selections using the Document Object’s
select(), selectAll(), deselect() and deselectAll()
methods. A script should wait until the loaded event
has occurred before making calls to document
selection methods.

Use getSelection() to limit the request to visible
thumbnails, or those for files of a given type. Use
groupedSelections to include thumbnails that are in
selected stacks.

TIP: Accessing this value is a time-intensive
operation. To improve performance, access it outside
loops:

var sel = document.selections;
for (var i = 0; i < sel.length; i++)
process(sel[i]);
Also, use selectionLength when possible, rather than
checking the length of this array:

if (document.selectionLength > 0)

showThumbnailName Boolean When true, thumbnail names are displayed in the
Content pane. This overrides the ShowName
preference value. Read/write.

CHAPTER 1: Adobe Bridge DOM Object Reference Document Object 33

sorts Array of
Objects

How the thumbnails in the Content pane are sorted.
References a SortCriterion Object using an array
containing one JavaScript object with three
properties:

{ type, name, reverse }

➤ The type value corresponds to the type property
of a SortCriterion Object. It is read-only, and is
ignored when setting this value.

Allowed values are:

string
date
number
dimensions
resolution
colorProfile
user

➤ The name value corresponds to the name
property of a SortCriterion Object, and identifies
the object that defines the sorting criterion.

Allowed values are:

user
name
date-created
date-modified
label
rating
file-size
document-kind
keywords
dimensions
resolution
color-profile

➤ The reverse value is true if the thumbnails are
sorted in reverse order in the given category.

To set the value, create an array that contains an
object with name and reverse properties. For
example, to sort in reverse by creation date:

var mySortObj = {};
mySortObj.name = "date-created";
mySortObj.reverse = true;
var mySortsArray = [];
mySortsArray.push(mySortObj);
app.document.sorts = mySortsArray;

CHAPTER 1: Adobe Bridge DOM Object Reference Document Object 34

stacks Array of Array
of Thumbnail

A list of current thumbnail stacks in the Content
pane of this document. Each stack is an object with
the following properties and functions:

➤ thumbnails—An array in which each item is an
array of Thumbnail Objects.

➤ properties—Read/write. An array in which a user
can add and retrieve customized properties for
the stack. Those properties can stored into the
cache file by calling flushStackProperties().

➤ isValid ()—Function. If the stack already exists
and is valid, the function returns true, otherwise
it returns false.

status String The text displayed in the document’s status line at
the bottom of the Content pane. Read/write.

thumbnail Thumbnail The Thumbnail Object for the node currently
selected in the Folders or Favorites palette.
Read/write. Setting this value navigates to and
selects the corresponding node in the Folders pane.
The contents of this node are displayed in the
Content pane.

NOTE: The document.thumbnail.children array is
not populated until the loaded event has occurred
for the document.

thumbnailViewMode String The view mode of the Content pane, as selected by
the View menu. Read/write. One of:

thumbnails
details
list

visible Boolean When true, the browser window is expanded, as
opposed to being minimized or collapsed.
Read/write. Setting this to true is the same as calling
Document.normalize(). Setting it to false collapses
the window.

CHAPTER 1: Adobe Bridge DOM Object Reference Document Object 35

visibleThumbnails Array of
Thumbnail

Read only. An array of Thumbnail Objects that are
currently shown in the Content pane. The array is
ordered according to the current sort order, and
contains only thumbnails whose visible property is
true.

TIP: Accessing this value is a time-intensive
operation. To improve performance, access it outside
loops:

 var sel = document.visibleThumbnails;
 for (var i = 0; i < sel.length; i++)
 process(sel[i]);
Also, use selectionLength when possible, rather than
checking the length of this array:

 if (document.visibleThumbnailsLength > 0)

visibleThumbnailsLength Number Read only. The number of thumbnails in the
visibleThumbnails array.

visitUrl Function DEPRECATED. Do not use.

A callback function that is called when the Content
pane is about to open a URL. Allows the script to
approve or redirect the browser. The function takes
the URL as an argument, and should return an object
with these properties:

result—When false, Adobe Bridge does not
open the new URL. When true, it opens the
passed URL or a different URL as provided in this
object.

CHAPTER 1: Adobe Bridge DOM Object Reference Document Object 36

url—When present, a URL string that replaces
the passed URL.
toHistory—When false, the passed or
provided URL is not added to the browser’s
history list. Default is true.

For example, this confirms a link with the user:

var myFn = function(url) {
 if(Window.confirm("Proceed to " +
 url + " ?"))
 return {result:true};
 else
 return {result:false};
 }
app.document.visitUrl = myFn;
This example replaces a link to an unwanted page
with an application-specific help page:

var helpPageFn= function(url) {
 if(url == "unwanted_page")
 return {result:true,
 url:"my_help_page",
 toHistory:false};
 else
 return {result:true};
 }
app.document.visitUrl = helpPageFn;
Within the context of this function, the implicit this
variable references this Document Object. For
example:

var myFilter = function(url) {
 Window.alert(this.thumbnail.displayPath);
 return {result:true, url:url};
}
NOTE: This function is also called when the Content
pane switches from a web page view to a filesystem
view. In this case, the URL passed to the function is
"about:blank".

width Number The width of the browser window in pixels. Legal
values are positive integers. Read/write.

The window is resized only within the limits of the
minimum and maximum size allowed by the screen
resolution.

CHAPTER 1: Adobe Bridge DOM Object Reference Document Object 37

Document functions

workspace Object Retrieves the most recently set workspace, a
JavaScript object with two properties, id and name,
whose string values are the unique identifier and
display name of the workspace. A user-defined
workspace may have been renamed by the user
since being set by a script.

Read-only. Set with Document.setWorkspace(). The
current workspace can also be set by user action.
Value is undefined for a new document before any
workspace has been explicitly set.

Bridge CS5 uses the XML encoding method instead
of the URL encoding method. If users copy an old
workspace file from CS4 to CS5, and the workspace
name contains non-ASCII characters, Bridge CS5 will
not translate it. This will cause an issue where the
workspace name is not the name which the user
saved before. To resolve this problem, users can
simply save a new workspace name in Bridge CS5.

bringToFront()
docObj.bringToFront ()

Makes this browser window the topmost active window in
the windowing system. Makes Bridge exit stealth mode if it is
in that mode.

Returns undefined.

center()
docObj.center ()

Centers this browser window on the screen. If there is more
than one monitor, centers the window on the monitor where
most of the window resides.

Returns undefined.

chooseMenuItem()
docObj.chooseMenuItem(menuId)

Executes an Adobe Bridge-defined or script-defined menu
command programatically. This is the equivalent to the user
selecting the command interactively.

Returns undefined.

menuID The unique identifier for the command to execute; see MenuElement Object.
Predefined identifiers for Adobe Bridge commands are listed in ‘Adobe Bridge
menu and command identifiers’ on page 57. If the ID is for a menu or submenu,
the function does nothing.

close()
docObj.close ()

Closes this browser window.

Returns undefined.

CHAPTER 1: Adobe Bridge DOM Object Reference Document Object 38

deselect()
docObj.deselect(thumbnail)

If the specified thumbnail is a child of this document and is
selected, removes it from the selections array and deselects
it in the browser window.

Returns true if the thumbnail was deselected.

A script should wait until the loaded event has occurred
before making calls to document selection methods.

thumbnail The Thumbnail Object for the node to deselect.

deselectAll()
docObj.deselectAll ()

Removes all members from the selections array and
deselects all thumbnails in the browser window.

Returns undefined.

A script should wait until the loaded event has occurred
before making calls to document selection methods.

execJS()
docObj.execJS (script)

DEPRECATED. Do not use.

Executes a JavaScript function that is defined within the
HTML page displayed in the Content pane when a thumbnail
with displayMode=web is selected. If the page that defines
the function is not currently displayed, causes a run-time
error.

NOTE: Do not call this method from a jsFuncs callback
function. This attempts to re-enter the JavaScript engine,
which is not allowed, and causes Adobe Bridge to hang. A
callback can, instead, schedule a task using
app.scheduleTask(), and call execJS from the function
associated with the task.

Returns the result of the executed JavaScript function, which
must be a Boolean, Number, or String, or null.

script A string containing a script to execute. This typically contains the name and
arguments of the JavaScript function to execute, but can have multiple
statements, including variable declarations, assignments and so on.

flushStackProperties()
docObj.flushStackProperties ()

Stores stack properties into the cache file.

Returns undefined.

getSelection()
docObj.getSelection([filter])

Collects selected thumbnails for files of a given type, if any
are selected. If no matching thumbnails are selected, collects
matching thumbnails that are currently visible in the
Content pane. See examples in Bridge SDK samples
SnpSaveAsJPEG.jsx and SnpRotateImage.jsx.

Returns an Array of Thumbnail Object.

filter Optional. A String containing a comma-delimited list of file extensions to match,
or the wildcard character "*" to match all file extensions. "*" is the default.

CHAPTER 1: Adobe Bridge DOM Object Reference Document Object 39

maximize()
docObj.maximize ()

Maximizes or zooms this browser window.

Returns undefined.

minimize()
docObj.minimize ()

Minimizes or docks this browser window.

Returns undefined.

normalize()
docObj.normalize ()

Centers this browser window on the screen, and sets the
height and width to 80% of the screen height and width.

Returns undefined.

print()
docObj.print ()

DEPRECATED. Do not use.

Prints the page shown in the Content pane, if it shows a web
page.

Returns true on success.

refresh()
docObj.refresh ()

Refreshes the display of this browser window.

Returns undefined.

resetToDefaultWorkspace()
docObj.resetToDefaultWorkspace ()

Restores the default configuration of the tabbed palettes in
this browser window. The equivalent of choosing Window >
Workspace > Reset.

This works only when browserMode is full. If browserMode
is compact, it does nothing.

Returns undefined.

restore()
docObj.restore ()

Restores this browser window after it has been minimized. In
Windows, makes it user-sizeable. In Mac OS, returns it to the
user-configured size.

Returns undefined.

reveal()
docObj.reveal(thumbnail)

Causes the Content pane (not the Folders or Favorites
palette) to show the specified thumbnail, scrolling the
display if necessary to make it visible. Does not select the
Thumbnail.

Returns undefined.

thumbnail The Thumbnail Object for the node to scroll to.

select()

docObj.select(thumbnail)

If the specified thumbnail is a child of this document and is
not selected, adds it to the selections array and selects it in
the Content pane. This is the same as selecting the icon in
the Content pane with CONTROL-click.

Returns true if the thumbnail was selected.

A script should wait until the loaded event has occurred
before making calls to document selection methods.

thumbnail The Thumbnail Object for the node to select.

CHAPTER 1: Adobe Bridge DOM Object Reference Document Object 40

selectAll()
docObj.selectAll ()

Adds all child Thumbnail Objects of the current thumbnail
(document.thumbnail) to the selections array, and selects
them in the Content pane. This is the same as typing
CONTROL-a (in Windows) or CMD-a (in Mac OS) in the Content
pane.

Returns undefined.

A script should wait until the loaded event has occurred
before making calls to document selection methods.

setPresentationMode()
docObj.setPresentationMode
(mode, [path])

Sets the presentation mode of the Content pane, and
optionally the path to the current content to display. The
mode determines how the presentationPath value is
interpreted.

CAUTION : In CS5, only the browser mode is supported.
Setting the presentation mode to anything else will cause
the presentationPath property to not work properly. To
display an HTML page, use the TabbedPalette Object.

Returns undefined.

mode String. The new display mode. In CS5, must be browser, otherwise the
presentationPath property will not work correctly.

path Optional. The path string, a Bridge URI.

setWorkspace()
docObj.setWorkspace(workspaceId)

Sets the browser configuration to a predefined or
user-defined workspace.

The current workspace can also be set by user action. A
user-defined workspace may have been renamed by the
user since being set by a script. If an invalid ID is assigned,
the workspace is not changed.

If a script-defined tabbed palette is visible when the user or a
script creates a workspace, the workspace references that
palette by its unique identifier. If a workspace references a
script-defined tabbed palette, the palette must be created
before the workspace is applied. Otherwise, the palette does
not appear.

NOTE: This works only when browserMode is full. If
browserMode is compact, it does nothing.

Returns true on success.

workspaceId The unique, identifying name string for the new workspace. If it is the same as
the name of the current workspace, the function does nothing.

CHAPTER 1: Adobe Bridge DOM Object Reference Document Object 41

Identifiers of predefined workspaces are:

default
lightTable
navigator
metadata
horizontalFilmstrip
verticalFilmstrip

CHAPTER 1: Adobe Bridge DOM Object Reference Event Object 42

Event Object
Represents a user-interaction event, such as clicking a thumbnail. Adobe Bridge creates an event object
whenever one of the triggering events occurs, and passes it to any event handlers that you have registered
with the App Object’s eventHandlers property. The only way to access an event object is as the argument
to such an event-handling function. See the Adobe Bridge JavaScript Guide for details of how to define and
register these functions.

The object with which the user interacted to generate the event is called the target object of that event.
Different target object types are associated with different types of events, as listed in Event object types.

Event defines no functions.

Event properties

appPath String When the type is openWith, the platform-specific path to the
selected opening application. Otherwise undefined. Read only.

document Document When the target object is a Thumbnail Object, the Document
Object for the browser window in which the event occurred.
Otherwise undefined. Read only.

favorites Favorites When location is favorites, the Favorites Object for the pane
in which the event occurred. Otherwise undefined. Read only.

isContext Boolean When the target object is a Thumbnail Object, and the type is
selectionsChanged or selectionsChanging, this value is true if the
event was generated by a right-click (the gesture that normally
brings up a context menu). Otherwise false.

location String The location at which the event occurred. This value helps to
distinguish events of the same type than can be triggered in
different ways. One of:

app—The target object is the App Object and the event was
generated for an interaction with the operating system.
document—The target object is a Thumbnail Object and the
event was generated for an interaction in the Folders pane, or
the target object is a Document Object and the event was
generated for an interaction with the windowing
environment.
favorites—The target object is a Thumbnail Object and the
event was generated for an interaction in the Favorites
palette.
prefs—The target object is the PreferencesDialog Object
and the event was generated in the Preferences dialog.

web—The target object is a Document Object and the event
was generated for an interaction with the Internet. In this
case, event.url contains the URL of the page.

Read only.

CHAPTER 1: Adobe Bridge DOM Object Reference Event Object 43

Event object types

Events of different types are triggered for different target objects. All types are described here according to
the target object.

App events

When an application event occurs, the event object has the following property values:

➤ The target, eventObj.object, is the App Object.

➤ The location, eventObj.location, is the string app.

➤ The type, eventObj.type, is one of these event types:

object Thumbnail,
Document, App,
PreferencesDialog

The target object of the event; that is, the object that generated
the event. Read/write.

section String When location is favorites, one of:

standard—The target object is a predefined member of the
favorites array.
user—The target object is a user-added member of the
favorites array.

Otherwise undefined. Read only.

type String The type of action that triggered the event. Different types of
events that are supported for each type of target object; see Event
object types. Read only.

uri String The Bridge URI of a node that was affected by the event.

url String When location is web, the URL of the web page. Read only.

close Generated when the Adobe Bridge application has received a request to terminate, but
has not yet started the process. If the handler returns a handled value of true in the
result object, the termination is cancelled. To query the user, you can set this with the
return value of Window.confirm. For example:

return { handled: Window.confirm("Really quit?") };

destroy Generated when the Adobe Bridge application terminates. Occurs when the user exits
from Adobe Bridge by selecting the File > Exit command, when the user closes the final
open document, or when a script calls the App Object’s quit() function.

The handler cannot override the default shutdown behavior, but it can take additional
actions before the shutdown completes.

CHAPTER 1: Adobe Bridge DOM Object Reference Event Object 44

Document events

You cannot define event handlers that override the default behavior of Document events. You can,
however, write an event handler to take additional actions prior to the event. Such a handler could return a
handled value of true in the result object, to prevent the default behavior, but this is not recommended.

When a document event occurs, the event object has the following property values:

➤ The target, eventObj.object, is a Document Object.

➤ The location, eventObj.location, can be app, web, or document, depending on the type.

➤ The type, eventObj.type, is one of these event types:

create Location is app. Generated when a new document is created. Occurs when
the user selects the File > New Window command, or when a script creates
a new document with a constructor call.

The new Document Object is passed to the event handler, but
app.document still contains the previous Document object.

deselect Location is document. Generated when the OS window focus is removed
from the browser window.

destroy Location is app. Generated when a browser window is closed. Occurs when
the user selects the File > Close Window command in the UI, when a script
closes a browser window using the Document Object’s close () method,
or when Adobe Bridge closes a browser window because the application is
terminated.

loaded Location is app. Generated when the Content pane has finished its first
iteration through the files to be displayed.

The Document.thumbnail.children array is not populated until some
time after this event has occurred for the document. A script should delay
making calls to document selection methods such as select() and
deselect().

open Location is document. Generated when the browser gets the input focus.

The new Document Object is passed to the event handler, but
app.document still contains the previous Document object.

selectionsChanged Location is document. Generated just after the selection is changed in the
UI, as a result of script or user action. The document selections list reflects
the post-selection state.

selectionsChanging Location is document. Generated just before the selection is changed in the
UI, as a result of script or user action. The document selections list reflects
the pre-selection state.

CHAPTER 1: Adobe Bridge DOM Object Reference Event Object 45

Thumbnail events

When a thumbnail event occurs, the event object has the following property values:

➤ The target, eventObj.object, is a Thumbnail Object.

➤ The location, eventObj.location, is document for an interaction with the Folders or Content pane, or
favorites for an interaction with the Favorites palette.

➣ If location is favorites, the favorites property contains the Favorites Object and the section
property reflects whether the target thumbnail is a predefined or user-defined member of the
favorites array.

➤ The eventObj.document property contains the Document Object for the browser window in which
the event occurred.

➤ The type, eventObj.type, is one of these event types:

workspacesPreLoad Location is document. Generated just before workspaces are loaded from
disk into a new Document Object. If your script-created TabbedPalette
Object is intended to be part of a workspace, you should create it in
handling this event.

workspacesPostLoad Location is document. Generated just after workspaces have been loaded
from disk into a new Document Object.

add Location is favorites. Generated when the user adds a new node to the
Favorites palette.

hover Location is document. Generated when the cursor hovers over a thumbnail.
Your handler can override the text displayed in the tooltip box. Return the
text to be displayed in the result object property tipText.

modify Location is favorites. Generated when the user modifies new node to the
Favorites palette by adding a subnode to it.

move Location is favorites. Generated when the user changes the position of a
node in the Favorites palette.

CHAPTER 1: Adobe Bridge DOM Object Reference Event Object 46

PreferencesDialog events

You cannot override the default behavior of a Preferences dialog event. You can, however, write an event
handler to take additional actions prior to the default action, such as adding a panel that reflects your own
preferences, and interpreting the results from that panel.

When an Preferences dialog event occurs, the event object has the following property values:

➤ The target, eventObj.object, is the PreferencesDialog Object

➤ The location, eventObj.location, is the string prefs.

➤ The type, eventObj.type, is one of these event types:

open Location is document. Generated when a file thumbnail in the Content pane is
opened with an application other than Adobe Bridge. Occurs when the user
successfully opens a thumbnail with the File > Open command, or by
double-clicking, or when a script calls the Thumbnail Object’s open method.

Also generated when a folder thumbnail is opened in the Content pane,
which opens that folder in an Adobe Bridge browser window. If this opens a
new browser window, app.document contains the Document object for the
browser in which the thumbnail was clicked, and the new browser that will
display the contents is passed to the event handler.

By default, Bridge determines which application is used to open a thumbnail
based on the file type and Preferences settings. If you want to change this
behavior, it is best to try to affect as few file types as possible while still
accomplishing the goal of your script. If you do want to override this behavior
for all file types, it is better to provide a context menu item rather than
overriding the double-click behavior. In the latter case, users will lose the
ability to use the Preferences settings through your script.

openWith Location is document. Generated when a user makes a selection of
thumbnails in the Content pane, then selects an application from the Open
With submenu of the File or context menu. The object provides a
platform-specific path string to the selected application.

preview Location is document. Generated when an image thumbnail in the Content
pane is selected. The handler can return an object in which the result value
is an array containing text captions to display under the image in the Preview
pane. For example:

{ handled: true, result: ["my image", "new preview caption"] }

The preview caption can be modified this way for images displayed in
filmstrip view as well.

remove Location is favorites. Generated when the user removes a node from the
Favorites palette.

cancel Generated when the user clicks Cancel in the Preferences dialog.

create Generated when the user invokes the Preferences dialog.

CHAPTER 1: Adobe Bridge DOM Object Reference Event Object 47

destroy Generated when the user closes the Preferences dialog using the window frame’s close
button.

disabled Generated when the user disables a startup script using the Startup Scripts page of the
Preferences dialog. The event handler receives an additional argument, the script name,
and can remove any Favorites nodes added by a node-handling extension associated with
the script.

Also generated when the user disables a node in the Standard section of the Favorites
palette. In this case, the event object’s uri property contains the URI of the node.

enabled Generated when the user enables a startup script using the Startup Scripts page of the
Preferences dialog. The event handler receives an additional argument, the script name,
and can add any Favorites nodes needed by a node-handling extension associated with
the script.

Also generated when the user enables a node in the Standard section of the Favorites
palette. In this case, the event object’s uri property contains the URI of the node.

ok Generated when the user clicks OK in the Preferences dialog.

CHAPTER 1: Adobe Bridge DOM Object Reference Favorites Object 48

Favorites Object
Represents the navigation nodes that appear in the Favorites palette in the Adobe Bridge browser. The
Favorites object contains two arrays of Thumbnail Objects; one for the top, or standard section, which
contains a predefined set of nodes, and one for the bottom, or user section, where the user can choose
which nodes to display.

While the Folders palette shows the full navigation hierarchy, with all folders and subfolders that Adobe
Bridge can access, the Favorites palette shows only certain top-level folders and one level of subfolders.
Subfolders in the Favorites palette can be, but are not necessarily, children of the Thumbnail for the
parent node.

Access the Favorites object through the App Object’s favorites, standardFavorites, or
userFavorites properties:

currentFavorites = app.favorites
currentStandardFavorites = app.standardFavorites
currentUserFavorites = app.userFavorites

Favorites properties

Favorites functions

length Number The number of Thumbnail Objects in the current section of the Favorites
palette.

section String Sets the section of the Favorites palette for the next node operations in the
immediate scope. The value does not persist. One of:

standard—The top section of the Favorites palette containing
predefined nodes.

user (default)—The bottom section of the Favorites palette containing
user-selected nodes.

add()
favoritesObj.add (thumbnail)

Appends a new node into the current section of the favorites
array, and updates the Favorites palette to show the new node
at the root level.

Returns true on success. If the referenced node is already in
the array, returns false and does not change the array.

thumbnail The Thumbnail Object for the node to add.

addChild()
favoritesObj.addChild
(parentNode, subNode)

Inserts a new subnode into the current section of the favorites
array, and updates the Favorites palette to show the new node
below its parent when the parent is selected.

Returns true on success. If the specified parent node is not in
favorites array, returns false and does not add the subnode.

parentNode The Thumbnail Object for the parent node. Must be a root node in the favorites
array.

CHAPTER 1: Adobe Bridge DOM Object Reference Favorites Object 49

subNode The Thumbnail Object for the subnode. This node can be, but does not need not
to be a child of the parent Thumbnail. It is not added to the parent’s children
array.

associateWorkspace()
favoritesObj.associateWorkspace
(thumbnail, workspace)

Associates a named workspace with a thumbnail in the
standard section of the Favorites palette. When the user clicks
this thumbnail, this workspace becomes current.

Returns true on success. If the thumbnail is in the user section,
or is not in the Favorites palette, returns false and does
nothing.

thumbnail The Thumbnail Object.

workspace The workspace name. See Document.workspace.

clearAll()
favoritesObj.clearAll ()

Deletes all the nodes from the current section of the favorites
array and updates the Favorites palette.

Returns undefined.

contains()
favoritesObj.contains(uri)

Reports whether the list of favorites currently contains a
specific node, either in the standard or user sections.

Returns true if the node is in the current favorites list, false
otherwise.

uri The Bridge URI string for the node.

disable()
favoritesObj.disable(uri)

Disables a node from the standard section, removing it from
display in the browser, but leaving it as an unchecked option in
the General page of the Preferences dialog.

Returns undefined.

uri The Bridge URI string for the node.

enable()
favoritesObj.enable(uri)

Enables a node from the standard section, displaying it in the
browser, and checking the corresponding option in the General
page of the Preferences dialog.

Returns undefined.

uri The Bridge URI string for the node.

getChildren()
favoritesObj.getChildren (uri)

Retrieves the subnodes of a node in the Standard section of the
Favorites palette. The node can be in either the enabled or
disabled state.

In this context, children means subnodes added with
Favorites.addChild(), rather then Thumbnail children.

Returns an array of URI strings for the child nodes, or
undefined if the node is not in the Standard section or not in
the Favorites palette.

uri The Bridge URI string for the parent node.

CHAPTER 1: Adobe Bridge DOM Object Reference Favorites Object 50

insert()
favoritesObj.insert
(thumbnail [, index])

Inserts a new node into the current section of the favorites
array, and updates the Favorites palette to show the new node
at the root level.

Returns true on success. If the referenced node is already in
the array, returns false and does not change the array.

thumbnail The Thumbnail Object for the node to insert.

index Optional. A 0-based index into the existing node array at which to insert the new
node, or an object reference for a node in the existing node array. The node is
inserted before this existing node. If the value is beyond the end, is not in the
existing node array, or is not supplied, the new node is appended to the end of
the array.

remove()
favoritesObj.remove(thumbnail)

Removes the specified script-defined node from the favorites
array and updates the Favorites palette. Scripts cannot access
predefined nodes.

Returns true on success.

thumbnail The Thumbnail Object for the node to remove.

CHAPTER 1: Adobe Bridge DOM Object Reference IconListPanelette Object 51

IconListPanelette Object
An instantiable subclass of the Panelette Base Class, representing a member sub-panel of a InspectorPanel
Object that displays two columns. The left column contains an icon, and the right column contains text.
The text can be static, or can be obtained dynamically from the associated thumbnail at display time. See
Panelette markup elements.

IconListPanelette constructor

To create a new object, use the new operator. The name and titleMarkup parameters set the
corresponding properties inherited from the Panelette Base Class.

This version can be used when all display data is known in advance:

new IconListPanelette(name, titleMarkup, rows);

This version provides the ability to obtain data dynamically at display time.

new IconListPanelette(name, titleMarkup, rows, columnText);

IconListPanelette properties

rows A collection of two-member arrays describing the rows to display in the panelette. Sets
the rows property.

rows The icons shown in the first column. An array of Thumbnail Objects or a string
containing panelette markup that obtains a set of thumbnails at display time.

columnText A corresponding array of strings, where each member is a line of text with which to
label the corresponding thumbnail. The text strings can contain Panelette markup
elements to access dynamic data.

rows Array of
Array of
2-member
Array

A collection of two-member arrays describing the rows to display in the
panelette. Each member of the member arrays corresponds to a column.

➤ The first member of each member array specifies the icon displayed in
the first column, as a Thumbnail Object or a 16x16 pixel JPG, PNG, or
system icon.

➤ The second member, displayed in the second column, is a string that
can contain markup elements to access dynamic data. See Panelette
markup elements.

Read only.

CHAPTER 1: Adobe Bridge DOM Object Reference InspectorPanel Object 52

InspectorPanel Object
Represents an object-inspection panel, a special type of tabbed palette that displays contextual
information for a selected thumbnail.

Your script defines what kind of related information to display, and how to display it. The panel serves as a
frame and parent for subpanels that actually display the information. Subpanels are represented by
members of the Panelette Base Class contained in this parent panel.

➤ Register a inspection panel that you create to make it available to Adobe Bridge, using the app
method registerInspectorPanel().

➤ To turn the display of registered inspection panels on or off in a particular browser window, set
displayInspectorView in the Document Object.

InspectorPanel constructor

To create a new object, use the new operator:

new InspectorPanel(title, displayTitle*, visible*, wide*, sortPosition*);

Parameters set the corresponding properties.

InspectorPanel properties

displayInInspector Boolean When true, this panel is displayed when
Document.displayInspectorView is true, if the
hidePanelForThumbnail callback returns true or is not
implemented.

When false, this panel is never displayed, and is also
hidden in the Inspector page of the Preferences dialog.

displayTitle String Optional. The localized title string to display in the
panel’s tab header. The string can include values
derived dynamically at display time, using Panelette
markup elements.

Read only, supplied on creation. Supplying this value
allows you to use the same panel object with different
titles for different node types. If this value is not
supplied, the title value is displayed.

flyoutMenuId String The unique menu identifier of a script-defined flyout
menu for this panel. See MenuElement Object. Read
only.

hidePanelForThumbnail Function Optional. A script-defined function that takes a
Thumbnail Object as a parameter and returns true if
the thumbnail allows this panel to be displayed. Called
on the focus thumbnail when the Inspector is
displayed. Read/write.

CHAPTER 1: Adobe Bridge DOM Object Reference InspectorPanel Object 53

InspectorPanel functions

minimized Boolean When true, the panel is minimized or iconified.

panelettes Array of
Panelette

A collection of panelettes contained in this panel, in
display order. Read only; use registerPanelette() and
unregisterPanelette() to manage the list. Contains
instances of the type-specific panelette subclasses:

IconListPanelette Object
TextPanelette Object
ThumbnailPanelette Object

sortPosition Number The preferred default position of this tabbed panel in
the Inspector, relative to other panels. In the range
[1..100]. Panels with lower values are above and to the
left. Read/write.

title String A unique identifying name for this panel. If no
displayTitle is specified, this is shown in the top header
bar. Read/write.

visible Boolean When true, the majority of this panel is visible on the
screen. When false, the panel is minimized or
iconified, or most of it is positioned off the screen. Read
only.

wide Boolean When true, this panel occupies the entire available
horizontal space. When false, the default, the panel
occupies one third of available space. Read/write.

registerPanelette()
panelObj.registerPanelette
(panelette)

Registers a script-defined panelette as a member of this panel,
adding it to panelettes list.

Returns true on success, false if the panelette is already
registered or the operation fails.

panelette An instance of one of the type-specific panelette subclasses:

IconListPanelette Object
TextPanelette Object
ThumbnailPanelette Object

unregisterPanelette()
panelObj.unregisterPanelette
(panelette)

Removes a member panelette from this panel.

Returns undefined.

panelette The panelette instance.

CHAPTER 1: Adobe Bridge DOM Object Reference MenuElement Object 54

MenuElement Object
The MenuElement object is used to represent the application menu bar, menus and submenus, and
individual items or commands. Adobe Bridge creates MenuElement instances for each of the existing
menu elements, and you can create additional instances to extend the existing menus.

A script can execute a menu command using app.document.chooseMenuItem().

Existing menu elements that can be extended have predefined identifiers, listed in ‘Adobe Bridge menu
and command identifiers’ on page 57. Not all existing menu elements can be extended. You can only add
a new menu or command before or after an existing menu or command, which you must specify using the
predefined unique identifier.

Use the Menu.create() static function to create new menu items, rather than the new operator. This
function behaves correctly if a menu item with the same name already exists.

MenuElement class functions

The MenuElement class defines these static functions that you can use to extend and work with existing
menu elements.

create()
MenuElement.create
(type, text,
location[, id]);

Adds a new menu to the menu bar, a new submenu to an existing
menu, or a new command to an existing menu or submenu.

Returns the new MenuElement object.

type The type of menu element, one of:

menu—a menu or submenu
command—a menu item

text The localizable string that is displayed as the label text. Script-created menu and
menu commands cannot have keyboard shortcuts or icons.

location A string describing the location of the new menu element, with respect to existing
menu elements. If the relative element is not found, the new element is appended to
the Tools menu.

The location specifier can take one of the following forms:

before identifier—Create the new element before the given menu element.
after identifier—Create the new element before the given menu element.
at the end of identifier—Append the new element to the given menu.
The identifier must be for a menu, not a command item.
at the beginning of identifier—Create the new element as the first item
in the given menu. The identifier must be for a menu, not a command item.

To insert a separator before or after the new element, specify a dash (-) at the
beginning or end of the location string. For example, this value draws separators
before and after the new element, which is added after the Find submenu in the Edit
menu:

-after /bridge/edit/find-

A string that does not conform to these rules causes a run-time error.

CHAPTER 1: Adobe Bridge DOM Object Reference MenuElement Object 55

MenuElement properties

id The unique identifier for this element. Optional.

➤ If the ID of an existing menu or submenu is supplied, the call returns that
MenuElement object.

➤ If the ID of an existing command is supplied, the call causes a JavaScript error.

➤ If not supplied, the call generates a numeric value, which can be found in the id
property of the returned menu object.

find()
MenuElement.find (id)

Retrieves a menu element using its unique identifier.

Returns the MenuElement object for the specified menu or menu
item, or null if no such element is found.

id String. The unique identifier for the menu element to find.

Example
This example checks to see whether a specific menu item already exists to avoid an error if the script is
executed a second time.

var menu = MenuElement.find ('myMenuId');
if (menu = null) //element does not yet exist
// add menu element

remove()
MenuElement.remove (id)

Removes a script-defined menu or menu item.

Returns undefined.

id String. The unique identifier for the menu element to remove.

altDown Boolean When true, the ALT modifier key was pressed when the item was
selected. Read only.

canBeChecked Boolean When true, the menu item is a bi-state item that can be checked.
Otherwise, the menu item cannot be checked. Read only.

checked Boolean When true, the command is selected. A check mark appears next to
the label. When false, the item is not selected, and no check mark is
shown. Read/write.

cmdDown Boolean When true, the COMMAND modifier key was pressed when the item was
selected. Read only.

ctrlDown Boolean When true, the CONTROL modifier key was pressed when the item was
selected. Read only.

enabled Boolean When true, the menu or command is selectable. When false, it is
grayed out and cannot be selected. Read/write.

id String A unique identifier. Read only. Identifiers take the form:

/app/menu/submenu/command

They are not localized, and are case sensitive.

CHAPTER 1: Adobe Bridge DOM Object Reference MenuElement Object 56

onDisplay Function The callback function that is called when the application is about to
display this menu or menu item. The function takes no arguments, and
returns nothing. It can change the enabled and checked properties
according to the state of the application.

TIP: This is called frequently and affects performance. Avoid
time-intensive processing, such as checking metadata, or iteration over
an entire, large selection. Use Document.selectionLength to check the
size of the selection before accessing it.

If an item is enabled incorrectly, you can handle the incorrect cases in
the onSelect function, which is called far less often.

optionDown Boolean When true, the OPTION modifier key was pressed when the item was
selected. Read only.

onSelect Function The callback function that is called when the user selects the menu or
menu item. The function takes no arguments, and returns nothing. It
implements the behavior of a menu item.

The callback can check this object’s properties to respond to the
following modifier keys:

if (this.ShiftDown)
// Shift key pressed

if (this.altDown)
// Alt key pressed

if (this.ctrlDown)
// Control key pressed

if (this.cmdDown)
// Command key pressed

if (this.optionDown)
// Option key pressed

shiftDown Boolean When true, the SHIFT modifier key was pressed when the item was
selected. Read only.

text String The displayed label text, a localizable string. Read only.

type String The type of menu element, one of:

menu—A menu or submenu
command—A menu item

Read only.

CHAPTER 1: Adobe Bridge DOM Object Reference MenuElement Object 57

Adobe Bridge menu and command identifiers

These unique identifiers are predefined for Adobe Bridge menus that can be extended.

NOTE: Some menus and commands are dynamically created, and cannot be located with
MenuElement.find() unless they are visible. You can, however, use the menu and command IDs at any time
to extend the menus.

The menu/command-identifier mapping is organized as follows:

➤ Top-level menu identifiers: Top-level menus in the menu bar, tool bar, context menus and flyout
menus.

➣ Menu bar submenu and command identifiers: Items that appear in menu-bar menus.

➣ Toolbar menus and commands: Items that appear in menus that drop down from toolbar icons.

➣ Context and flyout submenus and commands: Items that appear in context and flyout menus.

Top-level menu identifiers

These tables list unique identifiers for the top-level menus in the menu bar, tool bar, context menus and
flyout menus.

Menubar menus Menu ID

Bridge (Mac OS only) (not available)

File File

Edit Edit

View View

Stacks submenu/Stack

Label Labels

Tools Tools

Window Window

Help Help

Toolbar menus Menu ID

Refine iddmenu/RefineTask

Output iddmenu/Menu/OutputTask

(Other toolbar menus not available to scripts)

Context menus Menu ID

Content pane thumbnail/background context Thumbnail

Favorites thumbnail context Bridge/ContextMenu/Favorites

CHAPTER 1: Adobe Bridge DOM Object Reference MenuElement Object 58

Menu bar submenu and command identifiers

These tables list unique identifiers for submenus and commands in the top-level menus that appear in the
menu bar.

When a command opens a submenu, there is a command identifier for the item itself, which can be used
to position commands in the parent menu, and a menu identifier for the submenu, as well as identifiers for
the individual commands in the submenu.

Bridge menu items (Mac OS only)

File menu submenus and commands

Preview thumbnail context PreviewContextMenu

Palette context (commands not available to scripts) Bridge/BrowserTabDocMenu/BrowserTabDock

Collections context Bridge/ContextMenu/Collection

(Other context menus not available to scripts)

Flyout menus Menu ID

Main window in compact mode Bridge/CompactFlyoutMenu

(Flyout menus and commands generally not available to scripts)

Bridge commands Menu ID

 About Bridge mondo/command/about

Preferences Prefs

Quit Bridge mondo/command/quit

File submenus Menu ID

Open With > submenu/OpenWith

Open Recent > submenu/OpenRecent

Move to > submenu/MoveTo

Copy to > submenu/CopyTo

Place > submenu/Place

File commands Menu ID

New Window mondo/command/new

New Folder NewFolder

Open Open

Open With > OpenWith

CHAPTER 1: Adobe Bridge DOM Object Reference MenuElement Object 59

Edit menu submenus and commands

Open With > [installed application] (not available)

Open Recent > item/OpenRecent

Open Recent > [recent files} (not available)

Open Recent > Clear Menu ClearOpenRecentList

Open in Camera Raw... OpenInCameraRaw

Close Window mondo/command/close

Delete/Move to Trash MoveToTrash

Eject Eject

Return to... ReturnToApplication

Reveal in Explorer/Finder Reveal

Reveal in Bridge RevealInBridge

Get Photos From Camera... (not available)

Move to > MoveTo

Move to > [recent folders} (not available)

Move to > Choose Folder MoveToChooseFolder

Copy to > CopyTo

Copy to > [recent folders} (not available)

Copy to > Choose Folder CopyToChooseFolder

Place > item/Place

Add To Favorites AddToFavorites

File Info... FileInfo

Hide HideBridge

Exit mondo/command/quit

Edit submenus Menu ID

Develop Settings > submenu/CameraRaw

Edit commands Menu ID

Undo
Redo

mondo/command/undoRedo

Cut mondo/command/cut

Copy mondo/command/copy

CHAPTER 1: Adobe Bridge DOM Object Reference MenuElement Object 60

View menu commands

Paste mondo/command/paste

Duplicate Duplicate

Select All mondo/command/selectAll

Deselect All mondo/command/selectNone

Invert Selection InvertSelection

Find... Search

Develop Settings > ApplyCameraRaw

Develop Settings > Camera Raw Defaults CRDefault

Develop Settings > Previous Conversion CRPrevious

Develop Settings > Copy Settings CRCopy

Develop Settings > Paste Settings CRPaste

Develop Settings > Clear Settings CRClear

Rotate 180o Rotate180

Rotate 90o Clockwise Rotate90CW

Rotate 90o Counterclockwise Rotate90CCW

Creative Suite Color Settings... SharedSettings

Camera Raw Preferences... CrPreferences

Preferences... Prefs

View submenus Menu ID

Sort > submenu/Sort

View commands Menu ID

Full Screen Preview FullScreenPreview

Slideshow SlideShow

Slideshow Options... SlideShowOptions

Review Mode ReviewMode

Compact Mode ToggleCompactMode

As Thumbnails View/Thumbnail

As Details View/Details

As List (not available)

Show Thumbnail Only ShowThumbnailOnly

CHAPTER 1: Adobe Bridge DOM Object Reference MenuElement Object 61

Stacks menu commands

Label menu commands

Grid Lock GridLock

Show Reject Files ShowReject

Show Hidden Files ShowHidden

Show Folders ShowFolders

Show Items from Subfolder FlatView

Sort > Sort

Sort > Ascending Order Ascending

Sort > [items] submenu/Sort

Sort > Manually SortManually

Refresh Refresh

Stacks submenus Menu ID

Frame Rate > submenu/StackFrameRate

Stacks commands Menu ID

Group as Stack StackGroup

Ungroup from Stack StackUngroup

Open/Close Stack ToggleStackStateOpen
ToggleStackStateClose

Promote to Top of Stack PromoteToTopOfStack

Expand All Stacks ExpandAllStacks

Collapse All Stacks CollapseAllStacks

Frame Rate > (not available as command)

Frame Rate > [rates] (not available)

Label commands Menu ID

Rating (not available)

No Rating NoDot

Reject Reject

* OneDot

** TwoDots

CHAPTER 1: Adobe Bridge DOM Object Reference MenuElement Object 62

Tools menu commands

*** ThreeDots

**** FourDots

***** FiveDots

Decrease Rating RemoveDot

Increase Rating AddDot

Label (not available)

No Label NoLabel

Select Red

Second Yellow

Approved Green

Review Blue

ToDo Purple

Tools submenus Menu ID

Edit Metadata Template > submenu/EditMetadata

Append Metadata > submenu/AppendMetadata

Replace Metadata > submenu/ReplaceMetadata

Cache > submenu/Cache

Tools commands Menu ID

Batch Rename... BatchRename

Create Metadata Template... CreateMetaTemplate

Edit Metadata Template > item/EditMetadata

[templates] (not available)

Append Metadata > item/AppendMetadataTemplate

[templates] (not available)

Replace Metadata > item/ReplaceMetadataTemplate

[templates] (not available)

Cache > item/Cache

Cache > Build and Export Cache... BuildSubCaches

Cache > Purge Cache for Folder [this folder] PurgeCache

CHAPTER 1: Adobe Bridge DOM Object Reference MenuElement Object 63

Window menu commands

Help menu commands

Toolbar menus and commands

These tables list unique identifiers for submenus and commands that appear in the menus that drop down
from toolbar icons.

Reveal recent files commands

Window submenus Menu ID

Workspace > submenu/Workspace

Window commands Menu ID

New Synchronized Window NewSynchronizedWindow

Workspace > (not available as command)

Workspace > Reset Workspace ResetCurrentWorkspace

Workspace > New Workspace SaveWorkspace

Workspace > Delete Workspace DeleteWorkspace

Workspace >Reset Standard Workspace ResetWorkspace

Workspace > [predefined workspaces] (not available)

[individual panels] (not available)

Path Bar PathBar

Minimize Minimize

[current folder] (not available)

Help commands Menu ID

Adobe Bridge Help... mondo/command/help

Adobe Bridge Support Center... SupportCenter

Manage Extensions... ManageExtensions

Updates... Updates

Adobe Product Improvement Plan... AdobePIP

About Bridge... mondo/command/about

Reveal-recent command Menu ID

CHAPTER 1: Adobe Bridge DOM Object Reference MenuElement Object 64

Refine commands

Output commands

Workspace commands

Search commands

Thumbnail and preview options commands

Clear Recent Files ClearOpenRecentList

Clear Recent Folders ClearRecentFolders

Refine command Menu ID

Review Mode ReviewMode

Batch Rename (not available)

File Info (not available)

Submenus/command Menu ID

Output to Web or PDF (not available)

Submenus/command Menu ID

Reset Workspace (not available)

New Workspace (not available)

Delete Workspace (not available)

Reset Standard Workspaces (not available)

Submenus/command Menu ID

Bridge Search: Current Folder (not available)

Clear Recent Search Menu (not available)

Submenus/command Menu ID

Prefer Embedded (Faster) (not available)

High Quality On Demand (not available)

Always High Quality (not available)

Generate 100% Previews (not available)

CHAPTER 1: Adobe Bridge DOM Object Reference MenuElement Object 65

Filter by ratings commands

Sort commands

Open recent file commands

Context and flyout submenus and commands

These tables list unique identifiers for submenus and commands that appear in context menus and flyout
menus.

Thumbnail context menu submenus

Submenus/command Menu ID

Clear Filter (not available

Show Rejected Items Only RejectStars

Show Unrated Items Only NoStars

Show n Stars (not available)

Show Labeled Items Only ShowLabeled

Show Unlabeled Items Only ShowUnlabeled

Submenus/command Menu ID

By [items] (not available)

Manually (not available)

Submenus/command Menu ID

Clear Menu ClearOpenRecentList

Thumbnail context in Folders submenus Menu ID

Sort > submenu/Sort

Thumbnail context in Content pane:
submenus Menu ID

Open With > submenu/OpenWith

Move to > submenu/MoveTo

Copy to > submenu/CopyTo

Label > submenu/Label

CHAPTER 1: Adobe Bridge DOM Object Reference MenuElement Object 66

Thumbnail context menu commands

Sort > submenu/Sort

Stack > Stacks

Thumbnail context in Favorites
commands Menu ID

Remove from Favorites Bridge/ContextMenu/Keyword/Delete

Reveal in Explorer/Finder Bridge/ContextMenu/Keyword/Reveal

Thumbnail context in Folders
commands Menu ID

Open Thumbnail/Open

Open in New Window Bridge/ContextMenu/Folders/NewWindow

Cut Bridge/ContextMenu/Folders/Cut

Copy Bridge/ContextMenu/Folders/Copy

New Folder Bridge/ContextMenu/Folders/NewFolder

Sort > (not available as command)

Sort > [commands] (not available)

Reveal in Explorer/Finder Bridge/ContextMenu/Folders/Reveal

Add to Favorites Bridge/ContextMenu/Folders/AddToFavorites

Remove from Favorites Bridge/ContextMenu/Folders/RemoveFromFavorites

Delete Bridge/ContextMenu/Folders/Delete

Rename Bridge/ContextMenu/Folders/Rename

Thumbnail context in Content pane:
commands Menu ID

Open Thumbnail/Open

(files) Open With > (not available as command)

Open With > [installed application] (not available)

(folders) Open in New Window Thumbnail/NewWindow

Purge Cache for Selection PurgeCacheForSelected

Cut Thumbnail/Cut

Copy Thumbnail/Copy

Paste Thumbnail/Paste

CHAPTER 1: Adobe Bridge DOM Object Reference MenuElement Object 67

Delete Thumbnail/Delete

Move to > (not available as command)

Move to > [recent folders} (not available)

Move to > Choose Folder MoveToChooseFolder

Copy to > (not available as command)

Copy to > [recent folders} (not available)

Copy to > Choose Folder CopyToChooseFolder

(JavaScript files) Install Thumbnail/InstallScript

Reveal in Explorer/Finder Thumbnail/RevealLocation

Reveal in Bridge Thumbnail/RevealInBridge

Add to Favorites
Remove from Favorites

Thumbnail/ToggleAsFavorite

Rename Thumbnail/Rename

(files) Batch Rename... Thumbnail/BatchRename

(image files) Generate High Quality
Thumbnail

MakeHighQualityThumbnail

(image files) Generate Quick Thumbnail MakeQuickThumbnail

(files) Lock Item Thumbnail/LockFile

(files) Unlock Item Thumbnail/UnlockFile

(image files) File Info... Thumbnail/FileInfo

Label > submenu/Label

Label > No Label NoLabel

Label > Select Red

Label > Second Yellow

Label > Approved Green

Label > Review Blue

Label > ToDo Purple

New Folder Thumbnail/NewFolder

Sort > (not available as command)

Sort > Ascending Order Ascending

Sort > By Filename SortFileName

Sort > By Document Type SortFileType

Sort > By Date created SortDateCreated

CHAPTER 1: Adobe Bridge DOM Object Reference MenuElement Object 68

Sort > By Date file modified SortDateModified

Sort > By File size SortFileSize

Sort > By Dimensions SortDimensions

Sort > By Resolution SortResolution

Sort > By Color profile SortColorProfile

Sort > By Copyright SortCopyright

Sort > By Keywords SortKeywords

Sort > By Label SortByLabel

Sort > By Rating SortRating

Sort > Manually SortManually

(multi-select) Stack > Stacks

Stack > Frame Rate > submenu/StackFrameRate

Stack > Frame Rate > [rates] (not available)

Stack > Enable Onion Skin StackEnableOnionSkin

Stack > Disable Onion Skin StackDisableOnionSkin

Stack > Ungroup from Stack Stacks/Ungroup

Stack > Group as Stack Stacks/Group

Remove From Collection Thumbnail/RemoveFromArbitraryCollection

Thumbnail context menu in Preview
pane: additional commands for image
files Menu ID

No Rating NoDot

Reject Reject

* OneDot

** TwoDots

*** ThreeDots

**** FourDots

***** FiveDots

No Label NoLabel

Select Red

Second Yellow

Approved Green

CHAPTER 1: Adobe Bridge DOM Object Reference MenuElement Object 69

Collections context menu commands

Keywords context and flyout menu commands

Review Blue

ToDo Purple

Rotate 90o Clockwise Rotate90CW

Rotate 90o Counterclockwise Rotate90CCW

Open Open

Collections context menu commands Menu ID

New Smart Collection Bridge/ContextMenu/Collection/NewSmartKey

New Collection Bridge/ContextMenu/Collection/NewArbitraryKey

Rename Bridge/ContextMenu/Collection/Rename

Delete Bridge/ContextMenu/Collection/Delete

Add to Favorites Bridge/ContextMenu/Collection/Edit

Keywords context menu commands Menu ID

New Keyword Bridge/ContextMenu/Keyword/NewKey

New Sub Keyword Bridge/ContextMenu/Keyword/NewSubKey

Rename Bridge/ContextMenu/Keyword/Rename

Delete Bridge/ContextMenu/Keyword/DeleteNode

Exclude Bridge/ContextMenu/Keyword/Exclude

Include Bridge/ContextMenu/Keyword/Include

Expand All Bridge/ContextMenu/Keyword/ExpandNode

Collapse All Bridge/ContextMenu/Keyword/CollapseNode

Find... Bridge/ContextMenu/Keyword/Search

Keywords flyout menu: additional
commands Menu ID

Remove Keywords Bridge/ContextMenu/Keyword/Delete

Import...
Clear and Import...
Export...

(not available)

CHAPTER 1: Adobe Bridge DOM Object Reference MenuElement Object 70

Compact-mode flyout menu commands

Keywords search menu commands Menu ID

Contains
Equals
Starts With

(not available)

Submenus Menu ID

Label > submenu/Label

View > (not available)

Commands Menu ID

New Window mondo/command/new

New Folder NewFolder

Open Open

Open With (not available)

Open in Camera Raw OpenInCameraRaw

Reveal in Explorer/Finder Reveal

Label > submenu/Label

Label > No Label NoLabel

Label > Select Red

Label > Second Yellow

Label > Approved Green

Label > Review Blue

Label > ToDo Purple

Compact Window Always On Top (not available)

View > (not available)

View > Full Mode (not available)

View > Sort > (not available)

View > Sort > Ascending Order Ascending

View > Sort > By Filename SortFileName

View > Sort > By Document Type SortFileType

View > Sort > By Date created SortDateCreated

CHAPTER 1: Adobe Bridge DOM Object Reference MenuElement Object 71

View > Sort > By Date file modified SortDateModified

View > Sort > By File size SortFileSize

View > Sort > By Dimensions SortDimensions

View > Sort > By Resolution SortResolution

View > Sort > By Color profile SortColorProfile

View > Sort > By Copyright SortCopyright

View > Sort > By Keywords SortKeywords

View > Sort > By Label SortByLabel

View > Sort > By Rating SortRating

View > Sort > Manually SortManually

View > Refresh Refresh

View > Show Thumbnails Only ShowThumbnailsOnly

View > Grid Lock GridLock

View > Show Hidden Files ShowHidden

Path Bar PathBar

Exit Bridge mondo/command/quit

CHAPTER 1: Adobe Bridge DOM Object Reference Metadata Object 72

Metadata Object
Allows you to access the Extensible Metadata Platform (XMP) metadata associated with the file node of a
Thumbnail Object. This is embedded metadata associated with the file, such a copyright owner, author, or
camera settings.

Metadata is organized into schemas that group related types of metadata; for example the XMP Rights
Management Schema groups metadata associated with ownership and rights, such as copyright and
owner. The metadata properties found in a specific schema are accessed via the namespace of the schema
and the property name of the metadata item. For example, the namespace of the XMP Rights Management
Schema is http://www.adobe.com/xap/1.0/rights, and the copyright property name is Copyright.

For more information about XMP metadata, see the XMP Specification at Adobe Developer Center,
http://www.adobe.com/devnet/.

Access the Metadata object for a file-type thumbnail through the Thumbnail Object’s metadata property:

var t = new Thumbnail (File ("/C/mydir/myfile"));
var mdata = t.metadata

When a script needs to access the metadata through the Thumbnail object, it is important to make sure
that the returned object contains the most current data. To ensure this, your script should set
app.synchronousMode to true before attempting to retrieve or set values through
Thumbnail.metadata, or else use Thumbnail.synchronousMetadata. Keep in mind, however, that
metadata access is a time-intensive operation. Do not do it unnecessarily, or as part of operations that
occur very frequently, such as a MenuItem.onDisplay callback function.

The Metadata object does not support multi-valued properties.

Example
code

The sample code distributed with the Adobe Bridge SDK includes these code examples that specifically
demonstrate the use of this object:

Thumbnail metadata access

SnpInspectMetadata.jsx Shows how to acquire metadata.

SnpModifyMetadata.jsx Shows how to alter metadata on a selected file.

http://www.adobe.com/devnet/

CHAPTER 1: Adobe Bridge DOM Object Reference Metadata Object 73

Metadata properties

namespace String The current XMP namespace, used to search for XMP properties.
Default is the root namespace. Read/write. Assigning a new
namespace creates that namespace in the XMP metadata.

To access values in a specific schema, the namespace for that
schema must be set before referencing the properties in the
schema.

xmpPropertyName String Get or set a simple XMP property value for a thumbnail by
specifying it as a property of that thumbnail’s metadata object.
Properties are accessed in the current namespace. Read/write.

New simple metadata properties are created and added to the
current namespace when a script references a new property
name. You can add properties only to currently defined
namespaces, not to the root namespace. Property names are case
sensitive.

If no metadata is defined for a thumbnail, and you attempt to
access a property through the Thumbnail.metadata property,
the value undefined is returned. Note that this differs from the
behavior in Adobe Bridge CS2, where an exception was thrown in
this case.

NOTE: For metadata properties that are known date formats, the
corresponding Metadata object property contains an ISO-8601
date string. These include:

xmp/DateCreated
xmp/DateModified
xmp/MetadataDate
photoshop/OriginDateCreated
tiff/DateTime
exif/DateTimeOriginal
exif/ExifDateTimeDigitized
exif/GPS_TimeStamp
exif/GPSDateStamp

CHAPTER 1: Adobe Bridge DOM Object Reference Metadata Object 74

Metadata functions

applyMetadataTemplate()
metadataObj.applyMetadataTemplate
(templateName, modType)

Adds metadata properties to this object that were saved to
an XMP template from the FileInfo dialog.

Returns undefined.

templateName String, The name of the XMP template. Templates are stored for each user in:

➤ (Windows) %APPDATA%/Adobe/XMP/Metadata Templates/

➤ (Mac OS)
/Users/username/Library/Application Support/Adobe/XMP/
Metadata Templates/

modType The modification type, one of:

append—Adds to the metadata any property that is in the template but
not in the source. If a property in the template already exists in the source,
its value is not changed, unless it is an array. For an array, adds members
that are in the template but not in the source. If an array member already
exists in the source, the value is not changed.

replace—Adds to the metadata all properties and values that are in the
template. If a property in the template already exists in the source, its
value is changed to the template value.

read()
metadataObj.read
(namespace, property)

Retrieves and returns the string value of a metadata
property in the specified namespace.

Returns the string value, or an empty string if the specified
property does not exist.

namespace String. The XMP namespace.

property String. The property name. To access a multivalue (complex) property, use an
XPath to the individual value. For example:

var text = md.read("http://purl.org/dc/elements/1.1/",
"rights/*[1]");

serialize()
metadataObj.serialize ()

Serializes the XMP packet into a string.

Returns the string containing the serialized metadata.

CHAPTER 1: Adobe Bridge DOM Object Reference NavBar Object 75

NavBar Object
Represents a configurable navigation bar, one of which can be displayed at the top of the browser window
(below the application navigation bar), and one at the bottom (above the status bar). You do not create
new NavBar objects. Instead, you access the existing objects through the Document Object’ s properties:

topbarF = app.document.navbars.filesystem.top
btmbarF = app.document.navbars.filesystem.bottom

The bars in navbars.filesystem can be shown when the Content pane displays files and folders.

The navigation bars are hidden by default. You can show and hide them by setting the NavBar object’s
visible property.

Your script can configure a navigation bar to contain user-interface controls such as push buttons, radio
buttons, edit fields, list boxes, and so on. The NavBar objects are initially empty. You can add ScriptUI
controls.

NavBar properties

height Number The height of the navigation bar in pixels. Default is 40. Read/write.

id String A unique identifier that can be used by a node-handling extension to identify
a bar that it manages during configuration operations. The extension is
responsible for supplying and interpreting this value. See ExtensionHandler
Object.

Default values (used by the default node-handler) are topFilesystemNavbar,
bottomFilesystemNavbar, topWebNavbar, and bottomWebNavbar.

jsFuncs Object DEPRECATED. Do not use.

A JavaScript object that defines a set of callback functions that access the
Adobe Bridge DOM, but can be called from within an HTML page displayed in
this navigation bar. Used only when type is html. Read/write.

Each property in the object is a callback function name, and the value is the
function declaration:

{
fnName1: function([args]) { fn1_definition },
fnName2: function([args]) { fn2_definition }
}

The HTML page displayed by this bar can access the Adobe Bridge DOM by
invoking one of these callbacks, using the JavaScript function call. For
example, suppose jsFuncs has the value:

{myFn: function(x) { return x > app.document.topNavBar.height }}

A script on the displayed HTML page can invoke this function as follows:

var toobig = call("myFn", 55);

CHAPTER 1: Adobe Bridge DOM Object Reference NavBar Object 76

NavBar functions

onResize Function For a bar that displays ScriptUI, you can provide this callback function to resize
the component elements automatically when the bar is resized by the user.
For details, see the JavaScript Tools Guide.

type String The type of user-interface controls displayed in the navigation bar. Read/write.
One of:

scriptui: Display the ScriptUI controls added with this object’s add()
method.

visible Boolean Controls whether the bar is shown. If true, the navigation bar is visible.
Default is false. Read/write.

add()
navBarObj.add (type
[, bounds, text,
{ creation_props> }]);

Creates and returns a new ScriptUI control or container object
and adds it to the children of this navigation bar.

Returns the new object, or null if unable to create the object.

type The control type. See the JavaScript Tools Guide.

bounds Optional. A bounds specification that describes the size and position of the
new control or container, relative to its parent. See Bounds object for
specification formats.

If supplied, the method creates a new Bounds object which is assigned to the
new control object’s bounds property.

text Optional. A string containing the initial text to be displayed in the control as
the title, label, or contents, depending on the control type. If supplied, this
value is assigned to the new object’s text property.

creation_props Optional. The properties of this JavaScript object specify creation
parameters, which are specific to each object type. See the JavaScript Tools
Guide.

CHAPTER 1: Adobe Bridge DOM Object Reference NavBar Object 77

Panelette Base Class

A base class for the subpanel types that can be contained in the panelettes property of a InspectorPanel
Object:

➤ IconListPanelette Object

➤ TextPanelette Object

➤ ThumbnailPanelette Object

The base class is not instantiable. Use the new operator with the subclasses to create subpanel objects.

Panelette class properties

execJS()
navBarObj.execJS (script)

DEPRECATED. Do not use.

Executes a JavaScript function that is defined within the HTML
page displayed in the navigation bar when type is html. If the
page that defines the function is not currently displayed,
causes a run-time error.

NOTE: Do not call this method from a NavBar callback function
defined in jsFuncs. This attempts to re-enter the JavaScript
engine, which is not allowed, and causes Adobe Bridge to
hang. A callback can, instead, schedule a task using
app.scheduleTask(), and call execJS from the function
associated with the task.

Returns the result of the executed JavaScript function, which
must be a Boolean, Number, or String, or null.

script A string containing a script to execute. This typically contains the name and
arguments of the JavaScript function to execute, but can have multiple
statements, including variable declarations, assignments and so on.

print()
navBarObj.print ()

DEPRECATED. Do not use.

Prints the HTML page displayed in the navigation bar when
type is html. Does nothing if the HTML is not yet loaded when
the call is made, or if type is scriptui.

Returns true on success.

name String The unique, identifying name of this subpanel. Read/write.

titleMarkup String Optional. Localizable text shown in the subpanel header bar. Can
include Panelette markup elements. If not supplied, the name string
appears as the header. Read/write.

CHAPTER 1: Adobe Bridge DOM Object Reference NavBar Object 78

Panelette markup elements

You can specify dynamic or calculated string content to be displayed in the subpanels, or in the title string
of the panel (InspectorPanel.displayTitle) or subpanel tabs (Panelette.titleMarkup). To specify
these special string values, you use panelette markup elements.

Markup elements are enclosed by double brackets. They can indicate:

➤ Dynamic text: Dynamic text values are retrieved from the thumbnail’s associated node data. To insert
a dynamic value retrieved from node data, use a markup element that identifies the
ExtensionHandler, Infoset, and member element:

[[extensionName.infosetName.elementName]]

➤ JavaScript: Values can be retrieved or calculated at display time using JavaScript. To specify a
dynamically calculated value, embed JavaScript within the content string, using this tag:

[[javascript:code]]

A function in this context is not allowed to block; if it takes more than 10 milliseconds, the display
string is converted to an error string.

Within the context of the markup tag, you can refer to the currently selected Thumbnail object using a
special variable inspectorThumbnail. This is useful for accessing embedded file metadata. For
example:

[[javascript:"Name: " + inspectorThumbnail.name]]
[[javascript:"Author: " + inspectorThumbnail.metadata.author]]

For additional examples, see the Adobe Bridge JavaScript Guide and SDK code-snippet examples.

CHAPTER 1: Adobe Bridge DOM Object Reference Preferences Object 79

Preferences Object
Allows access to the Adobe Bridge application preferences, as viewed in and controlled by Preferences
dialog (invoked by the Edit > Preferences command).

➤ Some existing preferences can be set or read by setting or retrieving the associated property value.
Not all existing preferences are available in the scripting environment. Those that are available are
listed below. Preference values do not take effect until the Adobe Bridge application is restarted.

➤ You can set certain preference values for the current session only. That is, the changes take effect
immediately, but do not persist across sessions. The next time the Adobe Bridge application is
restarted, the global preference value is used.

➤ A script can create a new preference by simply referencing a new property name in this object. New
preferences must be of the type String, Number, or Boolean. Composite types (such as Rect and Point)
are retrieved as String objects.

Access the Preferences object through the App Object’s preferences property:

var prefs = app.preferences;

Preferences properties

The following current-view properties allow you to set these styles for a specific Content pane view. They
do not change the related global preference, and the changes do not persist beyond the current view:

extraMetadata Array of
String

An array of up to four values, where each value identifies a metadata
property to be displayed beneath a thumbnail icon. Read/write.

Setting this property is the same as setting the preferences associated
with the Additional Thumbnail Metatdata drop-down lists and
checkboxes in the Thumbnail page of the Preferences dialog, except
that the setting does not persist beyond the current view.

The first value in the array sets the first line of additional metadata, the
second value sets the second line, and so on. Allowed values are:

author
bit-depth
color-mode
color-profile
copyright
date-created
date-modified
description
dimensions
document-creator
document-kind
exposure
file-size
focal-length
keywords
label
opening-application

CHAPTER 1: Adobe Bridge DOM Object Reference Preferences Object 80

The following properties allow access to existing application preferences. Preference values do not take
effect until the Adobe Bridge application is restarted:

An array value of undefined turns off the display of metadata for that
line.

showName Boolean When true, the names of thumbnails are displayed beneath the icon
in this view. When false, they are not. Read/write. (This is overridden
by the document’s showThumbnailName value.)

AccentColor String In the General page of the Preferences dialog, the
preference associated with the AccentColor menu.
Read/write. One of:

System
Crystal
Obsidian
Sapphire
Lapis Lazuli
Amber
Ruby
Emerald

AutoExportCaches Boolean In the Cache page of the Preferences dialog, the
preference associated with Cache choices, true when
Automatically Export Caches to Folders When
Possible is selected. Default false. Read/write.

CacheDirectory String or
Folder

In the Cache page of the Preferences dialog, the
preference associated with the Cache Location. The
location of the centralized cache. A folder path,
specified as a string or ExtendScript Folder object.
Read/write.

Favorites Array of
String

In the General page of the Preferences dialog, the
preference associated with Favorite Items choices. A
collection of Bridge URI strings for checked nodes,
which are displayed in the Favorites palette.

FavoritesDisplayNames Array of
String

A collection of localized display names for the nodes
displayed in the Favorites palette, where each
member corresponds to URI member of the Favorites
array.

FileSize Number In the Thumbnails page of the Preferences dialog, the
preference associated with Do not process files
larger than: nnn MB. Default 1000. Read/write.

HideEmptyFields Boolean In the Metadata page of the Preferences dialog, the
preference associated with the Hide Empty Fields
checkbox, true when checked. Default true.
Read/write.

CHAPTER 1: Adobe Bridge DOM Object Reference Preferences Object 81

HideUnknownOpeners Boolean In the File Type Associations page of the Preferences
dialog, the preference associated with the Hide
Undefined File Associations checkbox, true when
checked. Default false. Read/write.

ImageBackdrop Number In the General page of the Preferences dialog, the
preference associated with the Image Backdrop slide
bar. Read/write. Sets background of the Content
pane.The background color is set in the range of 0 -
255, where 0 is black, and 255 is white. Default 186.

Keyboard String In the Advanced page of the Preferences dialog, the
preference associated with Keyboard. Read/write,
takes effect on restart.

Label1
Label2
Label3
Label4
Label5

String In the Labels page of the Preferences dialog, the
preferences associated with the label colors and their
keyboard shortcuts. These preferences control the
choices that appear in the Label menu in the menu
bar and in the right-click context menu for image
thumbnails. Read/write.

The preference value is any string. For example, if you
associate the red flag with the string Urgent, the
string Urgent appears in Label menu (in place of the
default string Red), in the tooltip for the labeled
thumbnail, and in a labeled thumbnail’s label value.
The thumbnail is displayed with a red highlight frame.

The labeling feature is only available for those
thumbnails associated with image files.

By default, no labels are set. Labels can be set
interactively by choosing from the Label menu or
programmatically by setting the Thumbnail.label
value to any string. If that string is not one of the
preferences, it is associated with a white highlight
frame.

LabelCtrlKey Boolean In the Labels page of the Preferences dialog, the
preference associated with the Require the Control
Key to Apply Labels and Ratings checkbox, true
when checked. Default true. Read/write, takes effect
on restart.

Language String In the Advanced page of the Preferences dialog, the
preference associated with Language. Read/write.

MRUCount Number In the General page of the Preferences dialog, the
preference associated with Number of Recent Items
to Display. Read/write.

MRUFolders Array of
String

The set of absolute path strings for recently-visited
folders, displayed when the MRUCount is greater than
0. Read/write.

CHAPTER 1: Adobe Bridge DOM Object Reference Preferences Object 82

PermittedStartupScripts Array of
String

In the Startup Scripts the Preferences dialog, the
script names associated with selected script
checkboxes. This is the set of scripts that load
automatically on startup. Read/write.

PreferencePanel Number The panel to be displayed when the Preferences
dialog is invoked. A zero-based index of the panel, in
the order in which they appear in the dialog.
Read/write.

ShowCameraRawInterface Boolean In the General page of the Preferences dialog, the
preference associated with the Double-Click Edits
Camera Raw Settings in Bridge checkbox, true
when checked. Default false. Read/write.

ShowName Boolean When true, the names of thumbnails are displayed
beneath the icon. When false, they are not.
Read/write.

ShowPlacard Boolean In the Metadata page of the Preferences dialog, the
preference associated with the Show Metadata
Placard checkbox, true when checked. Default is
true. Read/write.

ShowSecondLineMetadata
ShowThirdLineMetadata
ShowFourthLineMetadata
ShowFifthLineMetadata

Boolean In the Thumbnails page of the Preferences dialog, the
preference associated with the first, second, third, and
fourth checkboxes under Additional Lines of
Thumbnail Metadata, true when checked.
Read/write.

ShowTooltips Boolean In the Thumbnails page of the Preferences dialog, the
preference associated with Show Tooltips, true
when checked. Default is false. Read/write.

StackFrameRate Number In the Playback page of the Preferences dialog, the
preference associated with Stack Playback
Framerate. Read/write. One of:

23.976
24.00
25.00
29.97
30.00
50.00
59.94
60.00

StartupScriptsShouldLoad Boolean In the Startup Scripts the Preferences dialog, setting
to true is the equivalent of clicking Enable All,
setting to false is the equivalent of clicking Disable
All. Read/write.

CHAPTER 1: Adobe Bridge DOM Object Reference Preferences Object 83

ThumbnailQuality String Options for thumbnail quality and preview
generation. Read/write. One of:

draft—Prefer Embedded (Faster)
proof—Always High Quality
drafttoproof—High Quality On Demand

UIBrightness Number In the General page of the Preferences dialog, the
preference associated with the User Interface
Brightness slide bar. Sets background of all parts of
the browser window except the Content pane.
Read/write. The background color is set in the range
of [0..255], where 0 is black, and 255 is white.

UseSoftwareRendering Boolean In the Advanced page of the Preferences dialog, the
preference associated with the Use Software
Rendering checkbox, true when checked.
Read/write, takes effect on restart.

When true, hardware acceleration is disabled for the
Preview panel and slideshows. Default is false.

anyPropertyName Number,
String, or
Boolean

A script-defined preference. Read/write.

This example creates a new preference named mypref
by assigning a value to a property of that name, then
accesses the value by reading the property.

app.preferences.mypref = "sample value";
Window.alert("New preference mypref = " +

app.preferences.mypref);
To add your script-defined preference to the
Preferences dialog, use the PreferencesDialog
Object’s addPanel() function.

NOTE: The script must implement default values and
initialization of any private setting stored in the
Adobe Bridge preferences.

CHAPTER 1: Adobe Bridge DOM Object Reference Preferences Object 84

Preferences functions

clear()
prefObj.clear
([name[, name2...]])

Removes script-created keys and values from the Adobe
Bridge preferences, or resets preferences.

➤ If one or more preference names is passed, each is
removed. If you try to access the property for a preference
that has been removed, the property returns undefined.

➤ If no preference names are passed, removes all
script-defined preferences, and resets all Adobe Bridge
application preferences to their default values.

Returns undefined.

name Optional. One or more names of preferences to remove.

resetFileAssociations()
prefObj.resetFileAssociations ()

Resets file type associations to their default values.
Corresponds to the Reset to Default Associations button in
the File Type Associations page of the Preferences dialog.

resetWarningDialogs()
prefObj.resetWarningDialogs ()

Resets "Do not show again" settings to false for all warning
dialogs. Corresponds to the Reset button in the General page
of the Preferences dialog.

CHAPTER 1: Adobe Bridge DOM Object Reference PreferencesDialog Object 85

PreferencesDialog Object
Provides access to the Adobe Bridge Preferences dialog, allowing you to add a panel to the dialog with
your own ScriptUI controls that access and set any application preferences that you have defined by
adding properties to the Preferences Object.

You can only access this object as the target of an event. The object is returned in the object property of an
Event Object that results from an event in a Preferences dialog. See PreferencesDialog events.

The Preferences dialog is modal, which means that no other Adobe Bridge events can occur until the user
dismisses it with the OK or Cancel button, or closes it with the window-frame icon.

➤ For the OK button, the dialog generates an ok event. Your handler can collect the values from the
controls in your panel, and modify the property values in the Preferences object accordingly.

➤ For the Cancel button, the dialog generates a cancel event, and for the window-close gesture, it
generates a destroy event. Your handler can, for example, clean up structures you created for the
window.

The class defines no properties.

PreferencesDialog functions

addPanel()
prefObj.addPanel (name)

Creates and returns a ScriptUI Window object to be used as a new
page in the Preferences dialog. You can add ScriptUI controls to
the window to allow users to access and set preferences that you
provide.

Returns the new Window object.

name The name of the new page, used as the title of the new Window object.

Example
This example adds a page to the Preferences dialog that contains a single checkbox, which controls the
boolean preference named myPref.

function doPrefs(dialog) {
var panel = dialog.addPanel("My Preferences");
var aBox = panel.add('checkbox', [50, 50, 200, 100], "My Pref",

{ alignment:['center','top'] });
aBox.onClick = function() { app.preferences.myPref = aBox.value; };

}

var myHandler = function(event) {
if (event.type == "create" && event.location == "prefs") {

doPrefs(event.object);
 }

return { handled: false };
};

app.eventHandlers.push({ handler: myHandler });

CHAPTER 1: Adobe Bridge DOM Object Reference PreferencesDialog Object 86

close()
prefObj.close (isOK)

Closes the Preferences dialog.

Returns undefined.

isOK Pass true to simulate the user clicking OK to close the dialog, false for Cancel.

CHAPTER 1: Adobe Bridge DOM Object Reference TabbedPalette Object 87

TabbedPalette Object
Allows a script to define and add a tabbed palette to a browser window. A script-defined palette is
displayed in addition to the default palettes such as Favorites, Folders, Preview, Filter, Keywords, and
Metadata. A script-defined palette can display a user interface defined in ScriptUI, or it can display HTML.

You can add a palette to an existing browser window at any time (as long as the identifier is unique), and
you can use the create document event to add your palette to new browser windows on creation.

The name of a script-defined palette is automatically added to all relevant menus. You can specify where
the palette goes, or move it programmatically. When it is shown, however, it can be dragged and dropped
like the default palettes, and scripts cannot query the current position.

You can show and hide individual palettes using this object’s properties. A list of all defined palettes for a
browser, including default palettes, is available in app.document.palettes.

If a script-defined tabbed palette is visible when the user or a script creates a workspace, the workspace
references that palette by its unique identifier. If a workspace references a script-defined tabbed palette,
the palette must be created before the workspace is applied. Otherwise, the palette does not appear.

TabbedPalette constructor

To create a new object, use the new operator:

new TabbedPalette (document, title, id, type, *paletteColumn, *paletteRow)

new TabbedPalette (document, title, id, type, *url, *paletteColumn,
*paletteRow)

document The browser window to which to add the palette.

title The localizable title string that appears in the tab.

id The unique identifying string for the palette.

type The type of palette. One of:

script—A ScriptUI window
web—A browser view

url Optional. When type is web, the web page URL to display. Default is the empty
string, in which case the displayed palette is blank until the url property is set.

paletteColumn Optional. The horizontal location of the palette in the browser. A string or
number, one of:

left, 0—The leftmost column (the default)
center, 1—The middle column
right, 2—The rightmost column

CHAPTER 1: Adobe Bridge DOM Object Reference TabbedPalette Object 88

Example: #target bridge
// create browser palette
var webPalette = new TabbedPalette(app.document, "myWebPalette",

"myWebID", "web", "http://www.adobe.com");

// create ScriptUI palette
var scriptPalette = new TabbedPalette(app.document, "myScriptPalette",

"myScripID", "script");
scriptPalette.content.add('statictext', [15,15,105,35],

'Display this text in my tab.');

TabbedPalette properties

paletteRow Optional. The vertical location of the palette in the browser. Can be a number,
or one of these strings:

top—The topmost row (index 0, the default)
middle—The middle row (or close to the middle, if there are an even

number)
bottom—The bottommost row

If a number, it is the 0-based index of the row, where 0 is the topmost row. If the
index is out of range, the palette is placed in the closest existing row.

The number of rows can vary according to the current workspace
configuration. This function cannot create new rows.

content Object When type is script, the ScriptUI Group object to display.

➤ Use this object’s add() method to add UI elements to the palette.

➤ You can provide an onResize callback method for the Group object,
which will be used to resize the contained elements when the user
resizes the palette.

For details of these methods and ScriptUI usage, see the JavaScript Tools
Guide.

id String A non-localized unique identifier for the palette. The identifiers for the
built-in palettes are:

favoritesTab
foldersTab
filterTab
metadataTab
keywordsTab
contentTab
cinemaPreviewTab
inspectorTab

title String The localized title string to display in the palette’s tab header. The string
can include values derived dynamically at display time, using Panelette
markup elements.

CHAPTER 1: Adobe Bridge DOM Object Reference TabbedPalette Object 89

TabbedPalette object methods

type String The type of palette. One of:

script—A ScriptUI window
web—A browser view

url String When type is web, the path to the page to display.

visible Boolean When true, this palette is visible, when false it is hidden. Read/write.

setLocation()
tabObj.setLocation
(paletteColumn[, paletteRow])

Moves this palette to a specific docking location in the browser.

Returns undefined.

paletteColumn The horizontal location of the palette in the browser. A string, one of:

left—The leftmost column
center—The middle column
right—The rightmost column

paletteRow Optional. The vertical location of the palette in the browser. The number of rows
can vary according to the current workspace configuration. This function cannot
create new rows.

A string or number, one of:

top—The topmost row (the default)
middle—The middle row (or close to the middle, if there are an even
number)
bottom—The bottommost row

Can be a number, the 0-based index of the row, where 0 is the topmost row. If the
index is out of range, the palette is placed in the closest existing row.

remove()
tabObj.remove ()

Removes this palette from the list of available palettes and
destroys it.

Returns undefined.

CHAPTER 1: Adobe Bridge DOM Object Reference TextPanelette Object 90

TextPanelette Object
An instantiable subclass of the Panelette Base Class, representing a member subpanel of an
InspectorPanel Object that displays textual information about a set of thumbnails. It differs from the
ThumbnailPanelette Object in that it does not display the thumbnail icon, only the related text.

The text can be static, or can be obtained dynamically from the associated thumbnail at display time. See
Panelette markup elements.

TextPanelette constructor

To create a new object, use the new operator:

new TextPanelette(name, titleMarkup, thumbnails, keyValuePairs);

Parameters set the corresponding properties. The name and titleMarkup properties are inherited from
the Panelette Base Class.

TextPanelette properties

keyValuePairs Array of 2-element
Array

A set of two-element arrays in the format [key, value].
The array corresponds to the thumbnails array, each pair
describing the text for the corresponding thumbnail.

The key is shown on the left of each field in bold, and the
value on the right in plain text.

The fields contains string literals combined with Panelette
markup elements, which specify the text to be displayed.

thumbnails Array of Thumbnail
or String

An array of Thumbnail Objects or node URI strings for which
to display descriptive text; or the special markup [[this]]
to indicate the currently selected thumbnail in the Content
pane.

CHAPTER 1: Adobe Bridge DOM Object Reference Thumbnail Object 91

Thumbnail Object
Represents a reference to a node in the browser navigation hierarchy. Thumbnail objects can represent:

➤ Files and folders in the local file system.

➤ URLs

➤ Navigation nodes of types defined by an ExtensionHandler Object.

A thumbnail’s applicable node handler determines how nodes are displayed when that thumbnail is
selected. The Content pane can show thumbnail icons or a local or remote web page.

CAUTION: When a script accesses the properties of a Thumbnail object, some properties of the object may
not be immediately available. To ensure the object contains current data, set app.synchronousMode to
true before accessing properties.

Thumbnail object constructor

Adobe Bridge automatically creates Thumbnail objects for files and folders in the local file system and for
the default and interactively added contents of the Favorites palette.

To create a Thumbnail object with a script for use in the Favorites palette, use the new operator:

new Thumbnail (node[, name]);

Examples of thumbnail creation

// references a folder

node The node specifier. One of the following:

➤ An ExtendScript File or Folder object for a file or folder that exists on the local file
system. If the referenced file or folder does not exist, causes a run-time error. This
object becomes the value of the new object’s spec property.

➤ A Thumbnail object. This creates a new Thumbnail object that references the same
node. See Multiple references to the same node.

➤ A string containing a fully qualified Bridge URI (uniform resource identifier). To be a
fully qualified Bridge URI, the path should include a prefix that identifies the node type
and its associated the node handler; the default is bridge: for the default node
handler.

A path to a local or remote file, folder, or page, which becomes the value of the new object’s
path property.

name Optional. A localizable string to use as the display name for the thumbnail icon in the
browser window. For script-defined node types, the node-handling extension must be
registered before the thumbnail is created for the name to take effect.

If not supplied, the display name defaults to the path or spec value.

CAUTION: For a Thumbnail object associated with an ExtendScript File or Folder object,
using the name argument renames the folder or file on disk.

CHAPTER 1: Adobe Bridge DOM Object Reference Thumbnail Object 92

var myLocation = new Thumbnail(Folder("/C/myFolder"));
// a second reference to the same node
var newLocation = new Thumbnail(myLocation);
// references a file, and renames the file on disk
var myFile = new Thumbnail(File("/C/myFolder/file.txt"), "myfile.txt");
// references a URL
var myURL = new Thumbnail ("http://www.adobe.com");

Multiple references to the same node

Multiple Thumbnail objects can refer to the same node. In JavaScript terminology, two such objects are
equal, but not identical. That is, if you declare two Thumbnail objects that point to the same file, the
JavaScript equality operator "==" returns true, but the identity operator "===" returns false. Any values
that are assigned (not predefined) in one of the objects are not reflected in the other.

This example creates two Thumbnail objects that reference the same node, and shows that an arbitrary
property defined on one cannot be referenced on the other.

var t1 = new Thumbnail(File("/C/Temp/afile.txt");

var t2 = new Thumbnail(File("/C/Temp/afile.txt");

t1 == t2; // returns true

t1 === t2; // returns false

t1.newNote = "a note for the thumbnail";

alert(t2.newNote); // t2.newNote is undefined

For a thumbnail that references a file, however, you can assign arbitrary data to the Thumbnail.metadata
object, which can be referenced from either object.

var t1 = new Thumbnail(File("/C/myFolder/myfile.txt"));

var t2 = new Thumbnail(File("/C/myFolder/myfile.txt"));

t1.newProperty = "arbitrary value";

var val = t2.newProperty; // result is undefined.

//properties created directly in thumbnail are not shared

var md = t1.metadata;

md.namespace = "http://ns.adobe.com/photoshop/1.0/";

md.SpecialNotes = "Special notes for this file.";

// You can access SpecialNotes from either Thumbnail object

t2.metadata.namespace = "http://ns.adobe.com/photoshop/1.0/";

alert("Special Notes: ", t2.metadata.SpecialNotes);

The spec values of the two thumbnail objects reference different File objects, and so are not equal.
However, the two File objects reference the same file, as shown by inspecting the string value:

t1.spec == t2.spec; //returns false

CHAPTER 1: Adobe Bridge DOM Object Reference Thumbnail Object 93

t1.spec.toString() == t2.spec.toString(); // returns true

Thumbnail properties

extensionName ExtensionModel A model object for the node-handling extension that
applies to this thumbnail is accessible through a
property with the same name as the
ExtensionHandler Object name.

Adobe Bridge instantiates the ExtensionModel
Object when it creates the Thumbnail object in order
to display the node.

aliasType String If the value of type is alias, the kind of target this
thumbnail represents, one of:

file
folder

Otherwise undefined.

children Array of
Thumbnail

An array of Thumbnail objects for the children of this
container node. When this object references a folder,
the children are the thumbnails that reference the
contents of the folder. By default, when the
thumbnail is selected in a navigation pane, its
children are shown in the Content pane. Read only.

NOTE: This array is not populated until the loaded
event has occurred for the document.

The list of children is cached on the first reference so
that subsequent references do not result in further
disk access. To ensure that the list is up to date (for
example after you have performed operations that
may have resulted in children being deleted, added,
or renamed) call the refresh() method to make sure
the list is updated on the next access. You do not
need to refresh if you changed the content or
properties of a child thumbnail.

container Boolean When true, the node is a container; that is, it can
have child nodes (regardless of whether it currently
has any children). Only container nodes can appear
in the Folders and Favorites palettes.

Folder and web-browser thumbnails are containers;
a node-handling extension can define other
container node types.

Read only.

CHAPTER 1: Adobe Bridge DOM Object Reference Thumbnail Object 94

core Object Provides access to the core node-data sets defined
by the default node handler. Contains a set of Infoset
Objects.

Refer to core node attributes through the name of
the core Infoset Object and
InfosetMemberDescription Object. For example,
myThumbSize = myThumb.core.immediate.size

creationDate Date Date the referenced file or folder was created, if it can
be determined. Read only.

exists Boolean When true, the resource for this file or folder node
exists on the local disk.

Node-handling extensions can define other criteria
for whether a node exists.

extensions Array of
ExtensionHandler

All of the ExtensionHandler Objects that could
handle this node; the last one in the list is the one
that does handle it.

hasMetadata Boolean When true, this thumbnail is associated with a file
that contains embedded metadata. Otherwise
false.

hidden Boolean When true, this thumbnail is hidden. When false
(the default), it is shown. Read only.

iconPath String The path to the operating-system icon image file for
this node, when it represents a web page.

label String The label string for this thumbnail. Can be one of the
predefined label strings (as seen in the Label menu)
to apply one of the standard color tags. Any string
that does not match a predefined label is displayed
with the default white color tag. Removing the label
string removes the color tag as well. Read/write.

lastModifiedDate Date Date the referenced file or folder was last modified, if
it can be determined. Read only.

location String Whether the thumbnail is associated with a local
file-system object or an Adobe Drive® node (which
can have both a local and remote replica). One of:

local
unknown
AdobeDriveExtension

locked Boolean When true, this node represents a read-only file in
Windows, or a file that has been locked in the Finder
in Mac OS.

CHAPTER 1: Adobe Bridge DOM Object Reference Thumbnail Object 95

metadata Metadata The Metadata Object associated with this thumbnail,
if any. Otherwise undefined. Read only.

Some properties of this Metadata object may not be
immediately available. To ensure the object contains
current data, set app.synchronousMode to true, or
use Thumbnail.synchronousMetadata.

If no metadata is defined for a thumbnail, and you
attempt to access a metadata property through this
property, the value undefined is returned. Note that
this differs from the behavior in Adobe Bridge CS2,
where an exception was thrown in this case.

mimeType String The referenced file’s MIME type, if it can be
determined; otherwise, the empty string. Read only.

model ExtensionModel The ExtensionModel Object associated with this
node. Read-only.

name String The label displayed for the thumbnail. Read/write.
Default is the path value.

parent Thumbnail The Thumbnail object for the parent node of this
thumbnail. The value is undefined for thumbnails
added to the root level of app.favorites. This
object is in the children array of its parent.
Read-only.

path String A Bridge URI containing the path or URL for the
referenced node. Set when the object is created,
using the first argument to the Thumbnail object
constructor. Read only.

rating Number The rating value for this thumbnail, in the range
[-1..5]. A negative value signifies a rejection. If set to a
value that is out of range, the rating is set to 0.
Read/write.

Applies to all thumbnails regardless of whether they
support embedded metadata.

rotation Number This thumbnail’s rotation, one of:

0: No rotation
90: Rotated 90 degrees clockwise
-90: Rotated 90 degrees counterclockwise
180: Rotated 180 degrees

All other values are ignored. Read/write.

CHAPTER 1: Adobe Bridge DOM Object Reference Thumbnail Object 96

Thumbnail functions

Additional functions can be defined for the Thumbnail object by a node-handling extension; see
ExtensionHandler.methods.

spec File, Folder An ExtendScript File or Folder object for this
thumbnail’s referenced node. Set when the object is
created, using the first argument to the Thumbnail
object constructor. If the thumbnail does not
reference a file or folder, the value is undefined.
Read only.

synchronousMetadata Metadata Waits for confirmation of a valid value to return the
Metadata Object associated with this thumbnail, if
any. Otherwise undefined. Read only.

If app.synchronousMode is true, this is the same as
Thumbnail.metadata.

type String The type of node this thumbnail references. One of:

file
folder
alias
package
application (an executable file)
other

uri String The full Bridge URI (unique resource identifier) for
this thumbnail. This is the path string preceded by a
registered node-type identifying prefix such as "vc:".
Read only.

copyTo()
thumbnailObj.copyTo (path)

Creates a new Thumbnail Object that references the
same node as this one, and adds it to the target
thumbnail’s children list. Each call to this function is
added to the Undo stack.

Returns true on success.

path The parent node of the new copy. A File or Folder object, a Thumbnail
Object, or a Bridge URI string.

CHAPTER 1: Adobe Bridge DOM Object Reference Thumbnail Object 97

moveTo()
thumbnailObj.moveTo (path)

Removes this thumbnail from its current parent, and
adds it to the target thumbnail’s children list. Each
call to this function is added to the Undo stack.

Returns true on success.

NOTE: If the thumbnail refers to an existing file or
folder, this moves the referenced file or folder on disk.

var thumbnail =
 new Thumbnail(File.openDialog("Source?"));
var target = new
Thumbnail(Folder.selectDialog("Target?"));
if (thumbnail.moveTo(target)) {
 Window.alert("move succeeded");
}
else Window.alert("move failed");

path The new parent node. A File or Folder object, a Thumbnail Object, or a
Bridge URI string.

open()
thumbnailObj.open ()

Launches the file referenced by this thumbnail in the
appropriate application (such as Photoshop for JPEG
files). This is the same as choosing Open from the File
or context menu, or double-clicking the thumbnail
icon in the Content pane.

If this thumbnail references a JSX file, runs the script in
its target application, or, if no target is specified, in the
ExtendScript Toolkit. See the JavaScript Tools Guide.

If this thumbnail references a folder, navigates to that
folder in the Folders pane—that is, sets
document.thumbnail to this thumbnail.

Returns true on success.

openWith()
thumbnailObj.openWith (appPath)

Launches the file referenced by this thumbnail in the
specified application.

Returns true on success.

appPath A platform-specific path string to the application, as returned in appPath
property of the openWith event object when a user makes a selection of
thumbnails in the Content pane, then selects an application from the Open
With submenu of the File or context menu.

CHAPTER 1: Adobe Bridge DOM Object Reference Thumbnail Object 98

refresh()
thumbnailObj.refresh ([infosetName])

Refreshes an associated information set or sets to
reflect the current state of this node’s referenced file or
folder.

For container thumbnails, marks the Thumbnail object
so that the next access to the children property
causes a disk access to update the cached list of
children.

➤ For non-container thumbnails, returns true if the
node has changed since the last access.

➤ For container thumbnails, returns true if the node
has been renamed since the last access.

infosetName Optional. An array of Infoset Object names, or the string all (the default),
which refreshes all information sets associated with this thumbnail.

registerInterest()
thumbnailObj.registerInterest
(callback)

Registers a callback function that is executed
whenever a node-data value in this thumbnail
changes.

Returns undefined.

callback A developer-defined function that conforms to the following prototype:

function interestCallback (thumb, message)

thumb—This Thumbnail object.
message—A string, the name of the Infoset Object whose update
triggered the call.

remove()
thumbnailObj.remove ()

Deletes this Thumbnail object, and also deletes the file
or folder associated with the thumbnail from the disk.

Returns undefined.

resolve()
thumbnailObj.resolve ()

If the value of type is alias, retrieves a Thumbnail
object for the target of the alias.

➤ If the alias can be resolved, returns the Thumbnail
object for the target.

➤ If the alias cannot be resolved, returns undefined.

➤ If the type is not alias, returns this Thumbnail
object.

NOTE: Adobe Bridge does not support symbolic links
(that is, links created in Mac OS or Unix with -s).

revealInSystemBrowser()
thumbnailObj.revealInSystemBrowser ()

Opens the platform-specific native file browser,
displaying and selecting the file or folder for this
thumbnail.

Returns undefined.

CHAPTER 1: Adobe Bridge DOM Object Reference Thumbnail Object 99

unregisterInterest()
thumbnailObj.registerInterest
(callback)

Removes a callback function from the list of callbacks
registered for this thumbnail.

Returns undefined.

callback A developer-defined function, previously registered with registerInterest().

verifyExternalChanges()
thumbnailObj.verifyExternalChanges()

Re-enumerates the children of a container node. Has
no effect if the node is not a container.

Returns undefined.

CHAPTER 1: Adobe Bridge DOM Object Reference ThumbnailPanelette Object 100

ThumbnailPanelette Object
An instantiable subclass of the Panelette Base Class, representing a member subpanel of a InspectorPanel
Object that displays resizeable thumbnail icons, with corresponding text labels for each thumbnail. The
text can be specified with literal strings, derived from data in various ways, or calculated using JavaScript;
see Panelette markup elements.

The displayed thumbnails are mouse-sensitive. A single click makes a thumbnail the inspection focus for
the Inspector, and reveals or navigates to that thumbnail in the Content pane.

ThumbnailPanelette constructor

To create a new object, use the new operator:

new ThumbnailPanelette(name, titleMarkup, thumbnails, keyValuePairs,
textPosition*);

Parameters set the corresponding properties. The name and titleMarkup properties are inherited from
the Panelette Base Class.

ThumbnailPanelette properties

keyValuePairs Array of Array of
2-element Array

A collection corresponding to the thumbnails array, where
each member contains a set of two-element arrays, each of
which specifies a text field for the corresponding thumbnail.
Field arrays are in the format [key, value]. The key is shown on
the left of each field in bold, and the value on the right in
plain text.

The key and value fields containing string literals combined
with Panelette markup elements, which specify the text to be
displayed with the thumbnail icons. Read/write.

textPosition String Optional. The placement of the displayed text in the
horizontal presentation mode. Read/write.

One of:

below—(Default) Displays text below the thumbnail icon.
right—Displays text to the right of the thumbnail icon.

thumbnails String or Array of
Thumbnail

An array of Thumbnail Objects to be displayed in this
subpanel, or a string containing panelette markup that
obtains a set of thumbnails at display time. Read only.

 101

2 Node-Handling Extension Object Reference

This chapter presents objects that are available to product or plug-in developers who wish to extend the
node-handling capability of Adobe Bridge. This object model allows advanced developers to integrate a
product or plug-in with Adobe Bridge by defining new node types.

Object
summary

The objects are presented alphabetically. For each object, complete syntax details are provided for the
constructor, properties, and functions.

Badge Object Represents a status icon associated with a node in the Content pane.

CacheData Object Tracks the current cache status of node data in an Infoset Object.

CacheElement Object Encapsulates all node-handling data and the node handler for a
Thumbnail Object.

ExtensionHandler Object Defines an extension to the Adobe Bridge node-handling model.

ExtensionModel Object Provides a framework for developer-implemented node-handling
methods for a specific node.

FilterDescription Object Encapsulates a filtering criterion for handled nodes.

Infoset Object Encapsulates private node data associated with a node-handling
extension, as defined by an ExtensionHandler Object.

Adobe Bridge defines Core infosets, which script-defined handlers
must support.

InfosetMemberDescription
Object

Describes a data member of an Infoset Object. Corresponds to a
developer-defined property of the Thumbnail Object for a handled
node.

ModalOperator Object An independent node-handling operation with its own user interface.

Operand Object Utility class for searches in handled nodes.

Operator Class A base class for lengthy or complex node-handling operations.

ProgressOperator Object A lengthy node-handling operation that can report its progress and be
interrupted or canceled.

Rank Object Utility class for searches in handled nodes.

Scope Object Utility class for searches in handled nodes.

SearchCondition Object Defines a specific condition that must be met for a handled node to
match a search. Returned from a selection in the Find dialog.

SearchCriteria Object Defines one possible search criterion for a search among handled
nodes. Passed to Adobe Bridge to populate the Find dialog.

SearchDefinition Object Defines a set of search criteria for a search among handled nodes.
Passed to Adobe Bridge to populate the Find dialog.

CHAPTER 2: Node-Handling Extension Object Reference 102

SearchDetails Object Utility class for searches in handled nodes.

SearchSpecification Object Defines a specific search among handled nodes. Returned from a
selection in the Find dialog.

SortCriterion Object Defines a sorting criterion property for handled node.

CHAPTER 2: Node-Handling Extension Object Reference Badge Object 103

Badge Object
Represents a status icon that can be displayed with a node in the Content pane. A node can be associated
with up to four badge icons, specified in the badges member of the badges core node-data set. See ‘Core
infosets’ on page 125.

Badge properties

badge BitmapData The BitmapData Object that defines the icon image.

toolTip String A string that is shown when the mouse hovers over the badge icon (in the
details view).

CHAPTER 2: Node-Handling Extension Object Reference CacheData Object 104

CacheData Object
This object associates a cache status with each Infoset Object in a CacheElement Object. The status
determines whether the data needs to be refreshed.

Your ExtensionModel Object method for refreshInfoset() should update the cache status for each data set
it updates, including core data sets:

myModel.refreshInfoset = function(infosetName) {

// retrieve the cache

thisCache = this.privateData.cacheElement;

// update the cache status for core data

if(infosetName == “immediate”) {

thisCache.immediate.cacheData.status = “good”;

}

...

Adobe Bridge does not check any data value until the cache status is set.

CacheData properties

cookie String Opaque storage to aid extensions in discovering the cache status. The
string contains data in an extension-defined format. Read/write.

status String The cache status for a member of the associated information set, or of the
set itself. Read/write. One of:

good (known valid data)
bad (was good at one point, but not now)
unknown
inProgress (status is inProgress after a refresh has been requested
but before the data is confirmed as good)
invalid (status is invalid if the ExtensionModel Object no longer
exists)

CHAPTER 2: Node-Handling Extension Object Reference CacheElement Object 105

CacheElement Object
This object associates a Thumbnail Object with the ExtensionModel Object that handles the node and that
defines additional node data. The cache collects all currently defined node data.

This object actually contains the ExtensionModel Object that is created for the thumbnail, as well as the
associated Infoset Objects. Each Infoset Object in the cache is associated with a CacheData Object object
that contains its cache status.

When Adobe Bridge needs to display a handled node, it instantiates this object. It creates the
ExtensionModel Object using the handler’s makeModel() method, and stores it in the CacheElement. It
then passes the CacheElement object to the node handler’s model method registerInterest().

Your implementation of the registerInterest() method must store the cache object (typically in the
model object’s privateData property) so that the model’s refreshInfoset() method can use it to
update the data. For example, to store the reference to the containing CacheElement in the model (and
remove the reference when the node is no longer displayed):

// associate this node with the node data cache

myModel.registerInterest = function(cacheElement) {

 this.privateData.cacheElement = cacheElement;

 }

// dissociate this node from the node data cache

myModel.unregisterInterest = function() {

 this.privateData.cacheElement = undefined;

 }

Your model methods can access the cache element, and through it all Adobe Bridge-defined and
script-defined thumbnail properties:

thisCache = this.privateData.cacheElement;
myProp = thisCache.myInfoset.myInfosetMember;

CacheElement properties

CacheElement functions

infosetNames Infoset Every node data set associated with this cache is accessible through
a property with the same name as the Infoset Object name. Read
only.

path String The path of the asset associated with this object. Read only.

doAuthentication()
obj.doAuthentication ()

Calls the authenticate() method defined in the
ExtensionHandler Object associated with this element.

Returns undefined.

CHAPTER 2: Node-Handling Extension Object Reference ExtensionHandler Object 106

ExtensionHandler Object
This object defines the properties and methods needed to extend the Adobe Bridge node model. It does
not implement any of the methods; you must implement them to define you own node type and handler.
Your ExtensionHandler must implement all of the methods that are applicable to its node model.

➤ Register a script-defined extension handler with app.registerExtension(). You can access the global list
of all registered extensions through app.extensions.

➤ Your node-handling extension defines a node type. Your node types are identified by a Bridge URI
prefix. You must associates your handler with at least one prefix, using app.registerPrefix().

When it needs to display a node of a type that is managed by this handler, Adobe Bridge uses the handler’s
makeModel() method to create an instance of ExtensionModel Object, and associates it with the
Thumbnail Object that it creates for the node, through a CacheElement Object.

Your model implementation allows you to create and update a set of script-defined properties in the
Thumbnail Objects for your nodes. The Thumbnail Object has a property with the same name as the
ExtensionHandler that manages it, which allows scripts to access the node data defined by the handler.
Data managed by each model is kept in Infoset Objects. Each Infoset Object member corresponds to one
Thumbnail property. To access a script-defined property value in a Thumbnail Object, use this format:

Thumbnail.handlerName.infosetName.memberName

Extensions must support Core infosets defined by Adobe Bridge, but can also add new properties. In order
to define you own thumbnail properties for nodes of the type you define, define and register an Infoset
Object using app.registerInfoset().

NOTE: This object is designed to extend the node-handling behavior of Adobe Bridge itself, not the
scripting functionality. The full range of methods are not available to scripts from the user-level Thumbnail
Object.

Code
examples

The sample code distributed with the Adobe Bridge SDK includes these code examples that demonstrate
how to define node-handling extensions:

ExtensionHandler object constructor

To create a new object, use the new operator:

new ExtensionHandler(name)

Node-handling extension examples in sdkInstall/sdksamples/

BasicExtensionHandler.jsx Shows how to create a basic node-handler, defining a minimal set of
handler and model methods.

name String The name of this extension. Must be a valid JavaScript identifier (containing no
colons or special characters, and beginning with a lowercase letter).

CHAPTER 2: Node-Handling Extension Object Reference ExtensionHandler Object 107

ExtensionHandler properties

ExtensionHandler methods

Your ExtensionHandler instance must implement all of the methods described here. Handler methods
can be immediate or long-running:

➤ Immediate handler operations simply perform an operation and return when it is done. These
functions must not take a significant amount of time; if they are slow, they will negatively affect Adobe
Bridge browsing performance.

➤ Long-running handler operations create and return Operator objects to perform time-intensive
file-system operations that block the main thread. Adobe Bridge view code or your display code
passes the object to app.enqueueOperation() to initiate the action when appropriate.

infosets Array of
Infoset

A collection of Infoset Objects defining node data managed by this
handler, reflected in handler-defined Thumbnail Object properties.

Read only. Modify with app.registerInfoset()and
app.unregisterInfoset().

methods Object New methods that are defined on Thumbnail Objects that are
managed by this handler. Each object property is a function
definition; for example:

ext.methods.fnName = function(arg1, arg2){body}

Each method can be accessed at run time through
Thumbnail.fnName().

name String The unique identifying name of this node-handling extension. Must
be a valid JavaScript identifier (containing no colons or special
characters, and beginning with a lowercase letter).

Read only.

prefixes Array of
String

A collection of lexical prefixes for Bridge URIs, which identify node
types for which this handler supplies a model.

Read only. Modify with app.registerPrefix()and
app.unregisterPrefix().

CHAPTER 2: Node-Handling Extension Object Reference ExtensionHandler Object 108

Immediate handler operations

getBridgeURIForPath()
obj.getBridgeURIForPath (path)

Convert a path string to a canonical Bridge URI, that is, one
that includes the node-type identifying prefix. If the path is
already in the form of a canonical Bridge URI, the method
should simply return it. If the path cannot be parsed into a
Bridge URI, the method should return undefined.

Return the Bridge URI string for the path, or undefined if the
path cannot be parsed.

path A string containing a node path.

getBridgeURIForSearch()
obj.getBridgeURIForSearch
(scope, specification)

Execute an extension-defined search among Adobe Bridge
nodes of an extension-defined node type.

The Find dialog calls this method in response to a click on
Find, if the dialog has been invoked for a node handled by
this extension, or for a container that contains a handled
node type.

Your method can store the parameters such that they can
be retrieved by the ExtensionModel.getSearchDetails()
method for the returned container node, or that method can
recreate the specification and target by some other means.

Return the search result, a Bridge URI for a container node
that contains the matching nodes.

scope A Thumbnail Object for the target node, which was selected when the
user invoked the Find dialog. Your search can be extended or limited by
the handler-defined scope given in the search specification.

specification The SearchSpecification Object that defines how to perform the search.

The Find dialog creates this object from the user’s choices, which can
include choices added by your handler’s SearchDefinition Object.

CHAPTER 2: Node-Handling Extension Object Reference ExtensionHandler Object 109

Long-running handler operations

Implement these functions to create instances of the Operator Class which can perform the desired
operation, and if needed, provide Adobe Bridge with information about the status and progress.

Each function creates and returns a ModalOperator Object or ProgressOperator Object which can perform
the operation in a separate thread, and, if needed, provide Adobe Bridge with information about the status
of the background operation. Adobe Bridge calls app.enqueueOperation() to initiate the action when
appropriate. This in turn calls the start() method defined for the returned Operator object.

getSidecars()
obj.getSidecars (masters,
possibleExtensions, result)

Retrieve existing sidecar files for a set of nodes. A sidecar file
is a file used to store information related to another file,
called the master file. A sidecar has the same base file name
as its master file, but a different extension. It can contain
metadata (typically XMP), a rendition of the master file (such
as a thumbnail version), or represent some status
information of the master file (such as whether it is in use or
locked).

The handler should spawn a thread to perform the
operation and return immediately. The thread should search
for matching sidecar files in the same container as each
master file, and set result.masterAndSidecars to an Array
of JavaScript objects in the format

{ master : Thumbnail,
sidecars : Array of Thumbnail }

This array must correspond to the original masters array,
setting the sidecars element to undefined or an empty
Array, [], if no sidecar files are found for a master file.

masters Array of Thumbnail Object. The set of nodes, children of a single parent
node handled by this extension, for which to find sidecar files.

possibleExtensions Array of String. A list of file extensions that are considered sidecars.

result A JavaScript object containing the result, set by the spawned thread.

makeModel()
obj.MakeModel (path)

Create a model instance that implements node handling.
Adobe Bridge calls this each time it needs to display a
handled node.

Return the new ExtensionModel Object.

path A string containing the path for the node to be displayed.

CHAPTER 2: Node-Handling Extension Object Reference ExtensionHandler Object 110

acquirePhysicalFiles()
obj.acquirePhysicalFiles
(sources, timeoutInMs,
showUi, message,
recursionOption)

Create and return an operator that acquires actual file data for a
set of placeholder nodes.

Return a ModalOperator Object or ProgressOperator Object.

sources An Array of Thumbnail Object for the set of nodes to operate on.

timeoutInMs Optional. A number of microseconds after which to abort the operation.
Default is 0, meaning no timeout.

showUi Optional. Whether to show a user interface during the operation, one of
allowUi (the default) or suppressUi.

message Optional. A display string that describes this operation.

recursionOption Optional. Whether to perform the operation recursively in children of the
source nodes, one of doNotRecurse (the default) or recurse.

duplicate()
obj.duplicate
(sources, timeoutInMs,
showUi, message)

Create and return an operator that duplicates a set of nodes
that are handled by this handler.

Return a ModalOperator Object or ProgressOperator Object.

sources An Array of Thumbnail Object for the set of nodes to operate on.

timeoutInMs Optional. A number of microseconds after which to abort the operation.
Default is 0, meaning no timeout.

showUi Optional. Whether to show a user interface during the operation, one of
allowUi (the default) or suppressUi.

message Optional. A display string that describes this operation.

moveToTrash()
obj.moveToTrash
(sources, timeoutInMs,
showUi, message)

Create and return an operator that deletes a set of nodes,
marking the associated files for deletion on disc by moving
them to the system trash or recycle bin.

Return a ModalOperator Object or ProgressOperator Object.

sources An Array of Thumbnail Object for the set of nodes to operate on.

timeoutInMs Optional. A number of microseconds after which to abort the operation.
Default is 0, meaning no timeout.

showUi Optional. Whether to show a user interface during the operation, one of
allowUi (the default) or suppressUi.

message Optional. A display string that describes this operation.

rotate()
obj.rotate (targets,
rotation, timeoutInMs,
showUi, message)

Create and return an operator that sets the rotation setting in
metadata for a set of thumbnails to the same value for all. This
does not rotate the image bits.

Return a ModalOperator Object or ProgressOperator Object.

targets An Array of Thumbnail Object, the set of target thumbnails.

CHAPTER 2: Node-Handling Extension Object Reference ExtensionHandler Object 111

rotation A Number, the rotation angle in degrees. Positive values rotate clockwise,
negative values rotate counterclockwise. Allowed values are -90, 0, 90, 180,
270.

timeoutInMs Optional. A number of microseconds after which to abort the operation.
Default is 0, meaning no timeout.

showUi Optional. Whether to show a user interface during the operation, one of
allowUi (the default) or suppressUi.

message Optional. A display string that describes this operation.

setLabels()
obj.setLabels (targets,
labels, timeoutInMs,
showUi, message)

Create and return an operator that sets the labels for a set of
thumbnails.

Return a ModalOperator Object or ProgressOperator Object.

targets An Array of Thumbnail Object, the set of target thumbnails.

labels An Array of Strings, the set of label values corresponding to the target
thumbnails. See Thumbnail.label.

timeoutInMs Optional. A number of microseconds after which to abort the operation.
Default is 0, meaning no timeout.

showUi Optional. Whether to show a user interface during the operation, one of
allowUi (the default) or suppressUi.

message Optional. A display string that describes this operation.

setRatings()
obj.setRatings (targets,
ratings, timeoutInMs,
showUi, message)

Create and return an operator that sets the ratings for a set of
thumbnails.

Return a ModalOperator Object or ProgressOperator Object.

targets An Array of Thumbnail Object, the set of target thumbnails.

ratings An Array of Numbers, the set of rating values corresponding to the target
thumbnails.

timeoutInMs Optional. A number of microseconds after which to abort the operation.
Default is 0, meaning no timeout.

showUi Optional. Whether to show a user interface during the operation, one of
allowUi (the default) or suppressUi.

message Optional. A display string that describes this operation.

setXmp()
obj.setXmp (targets,
xmpPackets, timeoutInMs,
showUi, message)

Create and return an operator that embeds XMP file metadata
packets in a set of files.

Return a ModalOperator Object or ProgressOperator Object.

targets An Array of Strings, the set of file paths.

xmpPackets An Array of Strings, the set of XMP packets corresponding to the target files.

timeoutInMs Optional. A number of microseconds after which to abort the operation.
Default is 0, meaning no timeout.

CHAPTER 2: Node-Handling Extension Object Reference ExtensionHandler Object 112

showUi Optional. Whether to show a user interface during the operation, one of
allowUi (the default) or suppressUi.

message Optional. A display string that describes this operation.

CHAPTER 2: Node-Handling Extension Object Reference ExtensionModel Object 113

ExtensionModel Object
Supports the basic framework for Adobe Bridge node-handling extensions by tracking the connection
between your display model and the file or page sources. To implement an extension, you must define the
methods that handle nodes, as described here.

When Adobe Bridge needs to display a handled node, it uses the makeModel() method defined in the
ExtensionHandler Object to instantiate this object. It then creates a CacheElement Object to contain the
model object and associate it with the new Thumbnail Object that it creates for the node.

The ExtensionModel that your handler creates implements the actual node-handling methods that
perform operations on a selected thumbnail for your node types. For details of how to implement a
node-handling model, see the Adobe Bridge JavaScript Guide and the code example in the SDK,
sdkInstall/sdksamples/BasicExtensionHandler.jsx.

The model can define private data needed for node handling, accessible through additional properties for
the Thumbnail Object. Data managed by a model is kept in Infoset Objects. Each data member
corresponds to one script-defined Thumbnail property. To access a script-defined property value in a
Thumbnail Object, use this format:

Thumbnail.handlerName.infosetName.memberName

ExtensionModel constructor

Your makeModel() method uses the new operator to create an object:

new ExtensionModel(path)

ExtensionModel properties

path String The absolute path or fully-qualified URL for the source file or page to be displayed.
Adobe Bridge passes the path to makeModel() when it is creating a new Thumbnail
Object for a handled node.

privateData String Stores private data associated with your node-handling model. Typically,
you use it to store the parent CacheElement Object, which is passed to
your model’s registerInterest() method. This in turn provides access to each
Infoset Object that contains data managed by this model.

This is the only way to store private data in this object. If you assign a value
such as model.myProp=7, it will not be available in the context of model
functions. Within a model function, this.myProp will be undefined. You
can, however, assign a value to model.privateData.myProp and access it
through the this object.

CHAPTER 2: Node-Handling Extension Object Reference ExtensionModel Object 114

ExtensionModel methods

Your ExtensionModel instance must implement the methods marked as required. Model methods can be
immediate or long-running:

➤ Immediate model operations simply perform an operation and return when it is done. These functions
must not take a significant amount of time; if they are slow, they will negatively affect Adobe Bridge
browsing performance.

➤ Long-running model operations create and return Operator objects to perform time-intensive
file-system operations that block the main thread. Adobe Bridge view code or your display code
passes the object to app.enqueueOperation() to initiate the action when appropriate.

Immediate model operations

addToDrag()
obj. addToDrag
(pointerToOsDragObject)

Add this model object to the platform-specific drag object.

Return true on success.

pointerToOsDragObject A pointer to the platform-specific drag object.

authenticate()
obj.authenticate ()

Required. Handle any required authentication for this node.

Return undefined.

cancelRefresh()
obj. cancelRefresh (infosetName)

Cancel a background refresh task started by a call to refreshInfoset().

Return undefined.

infosetName The name of the Infoset Object.

createNewContainer()
obj.createNewContainer (name)

Create a new container node in this container node. If this node is not a
container, do nothing.

Return the URI string for the new folder, or the Thumbnail Object for
the new container node.

name Optional. The name string of the new container node. Default is "New Folder" in
Windows, "untitled folder" in Mac OS.

doLosslessRotate()
obj.doLosslessRotate (oriantation)

Rotate this node without changing image data.

Return true if the operation can be performed on this node, false if it
cannot.

orientation The rotation angle in degrees. Positive values rotate clockwise, negative values rotate
counterclockwise. Allowed values are -90, 0, 90, 180, 270.

exists()
obj.exists ()

Required. Report whether this node is valid according to this model.

Return true if this node is valid, false otherwise.

getCacheStatus()
obj. getCacheStatus (infoset, cookie)

Required. Report the cache status of a node-data set for this node. See
CacheElement Object and CacheData Object.

Return the cache status string.

CHAPTER 2: Node-Handling Extension Object Reference ExtensionModel Object 115

infosetName The name of the Infoset Object.

cookie A string buffer in which to return the cache status, one of:

bad
inProgress
good
unknown

getDisplayName()
obj.getDisplayName ()

Retrieve a localized display name for this node.

Return the display string.

getFilterCriteria()
obj. getFilterCriteria ()

Create the full set of filter criteria that can be applied to this container
node. These filters appear in the Filter palette when Adobe Bridge
displays the contents of this container.

Return an array of FilterDescription Objects for the complete set of
filters with which to populate the Filter palette.

getParent()
obj.getParent ()

Retrieve the parent node of this node.

Return the Bridge URI string for the parent node.

getPhysicalFileName()
obj.getPhysicalFileName ()

Retrieve the full file name for this node, including extensions.

Return the file name string.

getSearchDefinition()
obj.getSearchDefinition ()

Create a search definition with which to populate the Find dialog
when it is invoked for this container node.

Return the SearchDefinition Object.

getSearchDetails()
obj.getSearchDetails ()

Retrieve or recreate the search specification and target node that were
used to create this search-result container node, when it was created
by the ExtensionHandler.getBridgeURIForSearch() method.

Return a SearchDetails Object.

getSortCriteria()
obj.getSortCriteria ()

Create the full set of sorting criteria for member nodes of this container
node. Can construct an entirely new list of criteria, or retrieve the
default set from app.defaultSortCriteria and modify or append criteria,
or return the set unchanged.

Return an array of SortCriterion Objects.

getUserSortOrder()
obj.getSortCriteria ()

Retrieve the opaque XML code representing a user-defined sorting
order for container nodes managed by this model, as previously saved
by the setUserSortOrder() method.

The browser uses the returned value to sort the displayed nodes of this
container node (if it returns true for supportsUserSortOrder()).

Return a string containing the XML code.

CHAPTER 2: Node-Handling Extension Object Reference ExtensionModel Object 116

initialize()
obj.initialize ()

Required, a constructor for this model instance. Initialize the model for
this node. Create any necessary support data structures and store
them in this object.

Adobe Bridge calls this after creating the object with the handler’s
makeModel() method, whenever it needs to display a handled node.

Return undefined.

lock()
obj.lock ()

Make the file associated with this node read-only.

➤ In Windows, modify the read-only file attribute.

➤ In Mac OS, modify the Finder “lock” attribute.

Return false.

needAuthentication()
obj.needAuthentication ()

Report whether this node requires authentication.

Return true if the node requires authentication, false otherwise.

refreshInfoset()
obj. refreshInfoset (infoset,
priority, cost, pageNumber)

Required. Start a background task with the specified priority and
processing cost, to update the data in a node-data set for this node.
Adobe Bridge calls a model’s refresh method when it needs data from a
particular Infoset for a particular view or operation.

Within this method, access each data element in the stored data cache,
using this format (assuming you have stored the cache reference in the
privateData property):

this.privateData.cacheElement.setName.memberName

➤ The operation should set appropriate core data set values, such as
item and itemContent capabilities, to reflect which optional
model methods are supported by this handler. See Core infosets.

➤ If the node is a container, the operation must add its child nodes to
the core children data set, using Infoset.addChild().

➤ The operation must set the cache status of the updated node-data
set. See CacheData Object.

Return undefined.

infosetName The name of the Infoset Object.

priority Optional. The priority to assign this background task, one of low (first-in, first-out
queue), normal (last-in, first-out stack), or high (first-in, first-out). High priority is used
for currently selected nodes.

cost Optional. The desired processing cost for this background task, one of:

lowCostEvenIfFail
guaranteedLow
lowCostEvenIfLowQuality
unlimited

pageNumber Optional. The current page number for nodes that represent multi-page documents;
for other node types, it is ignored. Default is 0.

CHAPTER 2: Node-Handling Extension Object Reference ExtensionModel Object 117

registerInterest()
obj. registerInterest (cacheElement)

Required. Notify this model object of the cache that contains the
model itself and all its associated data. Your implementation must
store the cache object, and use it to access the node data. Typically,
you store it in this model’s privateData property.

Adobe Bridge instantiates the CacheElement Object and passes it to
this method whenever it displays a handled node.

Return undefined.

cacheElement The name of the CacheElement Object.

registerStructuralInterest()
obj. registerStructuralInterest
(cacheElement)

Notifies Adobe Bridge that the cache should be updated when
changes occur in children of the displayed node.

Return undefined.

cacheElement The name of the CacheElement Object.

setName()
obj. setName (newName)

Set the file name of this node. Change the base name and extension,
but not the path name.

Return the new URI string for the node.

newName The new name string.

setUserSortOrder()
obj. setName (inXML)

When the user sorts the children of this container node, the browser
passes an opaque string of XML code to this function that represents
the user sort order (if this container returns true for
supportsLosslessRotate()).

The model is responsible for saving it such that it can be retrieved by
getUserSortOrder().

Return true on success.

inXML A string containing the XML code.

supportsLosslessRotate()
obj.supportsLosslessRotate ()

Report whether this model supports rotation of an image node
without changing pixel data.

Return true if the model supplies the doLosslessRotate() method.

supportsUserSortOrder()
obj.supportsUserSortOrder ()

Report whether this model supports user sorting of displayed child
nodes.

Return true if this is a container node, and the model supplies
getUserSortOrder() and setUserSortOrder() methods.

CHAPTER 2: Node-Handling Extension Object Reference ExtensionModel Object 118

terminate()
obj.terminate ()

Required, a destructor for the model instance.

➤ A complex node-handling extension can use this to clean up
private data created by the initialization and entirely managed by
the extension.

➤ A purely script-based node-handling extension should simply
return without attempting to clean up JavaScript data, which is
normally handled by the JavaScript garbage collector.

Return undefined.

unlock()
obj.unlock ()

Make the file associated with this node read-write.

➤ In Windows, modify the read-only file attribute.

➤ In Mac OS, modify the Finder “lock” attribute.

Return false.

unregisterInterest()
obj. unregisterInterest
(cacheElement)

Required. Remove the association between this model and the cache
element that contains it. Your implementation must remove the stored
reference to the cache object, typically in the model’s privateData
property.

Return undefined.

cacheElement The name of the CacheElement Object.

unregisterStructuralInterest()
obj. unregisterStructuralInterest()

Removes the instruction to update the associated cache when
changes occur in children of a displayed node.

Return undefined.

verifyExternalChanges()
obj.verifyExternalChanges ()

Called when the user attempts to view data in this model’s children
core Infoset, and its cache status is good. Typically occurs when an
Adobe Bridge view regains focus after a period of inactivity. The model
can decide whether to force a refresh or not.

Return undefined.

wouldAcceptDrop()
obj. wouldAcceptDrop
(type, sources, osDragRef)

Report whether this node can accept a drop of a specific set of nodes
in a drag-and-drop operation of a particular type.

Return false if the drop would not be accepted by this node, or one of
the action type strings ("copy" or "move") if the drop of all of the
sources would be accepted.

type A string specifying the type of drop requested, one of:

copy
move

sources An array of path strings for the nodes being dragged.

osDragRef A pointer to a platform-specific drag structure containing the source nodes.

CHAPTER 2: Node-Handling Extension Object Reference ExtensionModel Object 119

Long-running model operations

Implement these functions to create instances of the Operator Class which can perform the desired
operation, and if needed, provide Adobe Bridge with information about the status and progress.

Each function creates and returns a ModalOperator Object or ProgressOperator Object which can perform
the operation in a separate thread, and, if needed, provide Adobe Bridge with information about the status
of the background operation. Adobe Bridge calls app.enqueueOperation() to initiate the action when
appropriate. This in turn calls the start() method defined for the returned Operator object.

copyFrom()
obj.copyFrom
(sources, timeoutInMs,
showUi, message,
newNames)

Create and return an operator that copies a set of nodes into this
container, allowing rename.

If this node is not a container, the operator should do nothing.

Return a ModalOperator Object or ProgressOperator Object.

sources An Array of Thumbnail Object for the set of nodes to operate on.

timeoutInMs Optional. A number of microseconds after which to abort the operation. Default is
0, meaning no timeout.

showUi Optional. Whether to show a user interface during the operation, one of showUi
(the default) or suppressUi.

message Optional. A display string that describes this operation.

newNames Optional. An array of strings the same size as the sources array with new names to
assign to the copies.

eject()
obj.eject
(path, timeoutInMs,
showUi, message)

Create and return an operator that unmounts a path.

Return a ModalOperator Object or ProgressOperator Object.

path The path string.

timeoutInMs Optional. A number of microseconds after which to abort the operation. Default is
0, meaning no timeout.

showUi Optional. Whether to show a user interface during the operation, one of showUi
(the default) or suppressUi.

message Optional. A display string that describes this operation.

moveFrom()
obj.moveFrom
(sources, timeoutInMs,
showUi, message,
newNames)

Create and return an operator that moves a set of nodes into this
container, allowing rename.

If this node is not a container, the operator should do nothing.

Return a ModalOperator Object or ProgressOperator Object.

sources An Array of Thumbnail Object for the set of nodes to operate on.

timeoutInMs Optional. A number of microseconds after which to abort the operation. Default is
0, meaning no timeout.

CHAPTER 2: Node-Handling Extension Object Reference ExtensionModel Object 120

showUi Optional. Whether to show a user interface during the operation, one of showUi
(the default) or suppressUi.

message Optional. A display string that describes this operation.

newNames Optional. An array of strings the same size as the sources array with new names to
assign to the moved nodes.

resolveLink()
obj.resolveLink (sources,
timeoutInMs, showUi,
message)

Create and return an operator that resolves the link path for a set of
nodes, associating each node directly with its link target.

NOTE: Adobe Bridge CS5 does not support symbolic links (symlinks)
in Mac OS.

Return a ModalOperator Object or ProgressOperator Object.

sources An Array of Thumbnail Object for the set of nodes to operate on.

timeoutInMs Optional. A number of microseconds after which to abort the operation. Default is
0, meaning no timeout.

showUi Optional. Whether to show a user interface during the operation, one of showUi
(the default) or suppressUi.

message Optional. A display string that describes this operation.

CHAPTER 2: Node-Handling Extension Object Reference FilterDescription Object 121

FilterDescription Object
This object provides programmatic control and customization of the Filter palette, which allows the user
to organize and filter the display of thumbnails in the Content pane.

Filters are applied to children of a container node when Adobe Bridge needs to display that container’s
contents in the Content pane, or display a list of children in a menu. A filter description identifies a
metadata property (from embedded XMP metadata) or a node property (from a node-handler-defined
Infoset Object) to display in the Filter palette.

The Filter palette displays each filter property, with a line under each property for each value it finds for
that property in any child node. The filter description can provide a narrower list of allowed values to
display for an XMP property, if the property has a closed value list.

When the user selects a filter, a child node is displayed only if it contains the selected filter property and
value.

The list of filter objects that Adobe Bridge uses by default to populate the Filter palette is kept in
app.defaultFilterCriteria. When displaying a handled container node, Adobe Bridge builds the list of filters
by calling the developer-defined getFilterCriteria() method of the node’s ExtensionModel Object. Your
implementation of this method can create these filter objects, and use them to replace, modify, or add to
the default list.

FilterDescription constructor

To create a new object, use the new operator:

new FilterDescription (name, displayName, filterType,
xmpNamespace, xmpProperty, closedValueList*);

new FilterDescription (name, displayName, filterType,
infosetMember, closedValueList*);

Parameters set the corresponding properties.

FilterDescription properties

closedValueList Array of
String

The set of allowed values for the XMP property, if it has a closed
value list. In this case, the Filter palette does not count nodes that
have no value for the property. You can cause it to do so by adding
the empty string to this list.

Empty for properties with open value types. In this case, the Filter
palette displays all values found in nodes in the current scope.

displayName String Optional. A localized name for this filter, shown in the heading line
for this filter in the Filter palette. If not supplied, the name value is
used.

CHAPTER 2: Node-Handling Extension Object Reference FilterDescription Object 122

filterType String The data type of filter-property value, used in sorting the list of
values. String comparisons are case-insensitive. One of:

date
dimensions
label
number
orientation
rating
string
stringList

infosetMember String The name of the node property to use as a filter, as defined in the
InfosetMemberDescription Object.

NOTE: The filter property must be either an XMP metadata property
or an Infoset Object node-data property; if both are defined, the
XMP property takes precedence and the node-data property is
ignored.

isExclusive Boolean When true, only one of the filter values can be set at a time.
Selecting one value in the Filter palette automatically deselects
other values.

name String The unique identifying name of the filter. If there is no
displayName, this is shown in the heading line for this filter in the
Filter palette.

xmpNamespace String The namespace of the XMP property used as a filter.

xmpProperty String The key name of the XMP property used as a filter.

CHAPTER 2: Node-Handling Extension Object Reference Infoset Object 123

Infoset Object
This object represents application-defined or script-defined data for Adobe Bridge nodes.

➤ For a script-defined node-handling extension, you can register an Infoset object that defines a
related set of script-defined Thumbnail Object properties for handled nodes.

➤ Adobe Bridge-defined Infoset objects and their members are listed in ‘Core infosets’ on page 125.

To declare the properties, create the Infoset object and associate it with your ExtensionHandler Object
using app.registerInfoset(). The Infoset object is added to the list in the ExtensionHandler infosets
property.

An Infoset is a named set of data elements. Each member element has a name and type, defined by a
InfosetMemberDescription Object. Each member name becomes a property of the containing Infoset,
and you can access the data value, of the corresponding type, through that property.

To access a script-defined property value in a Thumbnail Object, use this format:

ThumbnailObject.handlerName.infosetName.memberName

For example, to access a color value in myInfo in thumbnail t1, where the myInfo set is managed by
myExtension, use:

t1.myExtension.myInfo.color.

Infoset object constructor

Create the object with the new operator:

new Infoset (name, description)

Parameters set the corresponding properties (name sets infosetName).

Infoset properties

cacheData CacheData The CacheData Object containing cache status
for this set in the CacheElement Object that
collects all node data for this node.

The status reflects whether any associated values
have changed such that the set needs to be
refreshed. Read/write.

description Array of
InfosetMemberDescription

The InfosetMemberDescription Objects
containing the member names and data types of
data values contained in this set. Read/write.

extension String The name of the ExtensionHandler Object that
manages this data. Available after this set has
been registered with app.registerInfoset(). Read
only.

CHAPTER 2: Node-Handling Extension Object Reference Infoset Object 124

Infoset functions

memberValueName memberValueType The InfosetMemberDescription.name of each
member is a property of the set. The property
provides access to the data value, of the type
specified by the corresponding
InfosetMemberDescription Object.

Read only.

infosetName String The name of this set. Must be a valid JavaScript
identifier. This becomes a property of the
ExtensionModel Object for the managing
extension. Read/write.

addChild()
obj.addChild
(path, model, containerHint)

Adds a child node to the core data set children. (See Core
infosets.) Use this in the model’s refreshInfoset() method to add
any children of a handled container node. For example:

myModel.refreshInfoset = function(infosetName) {
 if(infosetName == “children”) {
 this.privateData.cacheElement.children.addChild (
 “bridge:myNode:myChildNodeSource.ext”);
 }
}

path The Bridge URI (path and file name) of the child node.

model Optional. An ExtensionModel Object that manages the new child. Can be undefined (the
default).

containerHint Optional. Whether the new child is a container, one of "container" or "notContainer"
(the default). Ignored if model is provided; otherwise, controls which icon is used for the
child.

initializeMembersToDefaultValues()
obj.initializeMembersToDefaultValues ()

Sets all members of this set to the default value for the data type:

String: "" (empty string)
Boolean: false
Number: 0
SizeInBytes: 0

CHAPTER 2: Node-Handling Extension Object Reference Infoset Object 125

Core infosets

Adobe Bridge defines a set of core node-data sets, represented by Infoset objects. The core node data
must be updated as appropriate by all script-defined node-handling extensions, in order to support the
default node-handling behavior of Adobe Bridge. The following table shows the names of the core data
sets and their members.

Infoset name Member names

immediate Contains mandatory node information, supplied at node creation.

creationDate The creation date of the file or folder node as
determined by the operating system.

displayPath The user-readable platform specific display path
of the file or folder node.

fileUrl The URL for the file or folder node.

isApplication True if the node is an executable file.

isContainer True if the node is a container.

isDeleted True if the node has been marked for deletion
(moved to the trash or recycle bin).

isHidden True if the file or folder for the node is hidden.

isLink True if the node is a shortcut or alias for a file or
folder.

isPackage True if the node is a package in Mac OS.

modificationDate The modification date of the file or folder for the
node as determined by the operating system.

name The name of the file or folder for the node.

size The node’s file size.

sortIndex A string used to sort the node by name.

CHAPTER 2: Node-Handling Extension Object Reference Infoset Object 126

item Node information that can be determined without opening and inspecting the
contents of the referenced file.

item capabilities canBeDragSource True if the node can be the source of a
drag-and-drop action.

canBeDropTarget True if the node can be the target of a
drag-and-drop action.

canCreateNewContainer True if the node supports creation of child
container nodes.

canCreateNewLink True if a link or alias can be created from this
node.

canDelete True if the node can be deleted (moved to the
trash or recycle bin).

canDuplicate True if the node can be duplicated.

canEject True if the node represents removable media,
such as a CD or network drive.

canGetFileUrl True if the node can be accessed by the
operating system through a file URL.

canLock If the node is writable and canLock is true, the
node can be locked/unlocked. In addition, the
“Lock Item”/”Unlock Item” context menu is
enabled. If users implement their own
ExtensionModel Object, they should set this
property to true in the refreshInfoset()
method if they want the current node to
support lock functionality.

canOpen True if the node can be opened and the “Open”
menu is enabled. If users want the current node
to support open functionality, this property
should be set to true in the refreshInfoset()
function of a user-defined ExtensionModel
Object.

canSearch True if the node supports search operations.

canSetName True if the node can be renamed.

Infoset name Member names

CHAPTER 2: Node-Handling Extension Object Reference Infoset Object 127

item descriptors isExternalEditInProgress True if the file for this node is open in another
application.

isLinkToContainer True if the node is a shortcut or alias that links to
a container node.

isLockedByUser True if the file or folder for this node is set as
read-only.

isNeverWritable True if this node is a volume that is never
writable, such as a CD or disk image.

isPhysicalFile True if this node is for a physical file or folder on
disk.

noWritePermission True if the current user does not have write
permission for this node, regardless of whether
it is generally writable.

itemContent Node information that must be determined by opening the referenced file.

itemContent
capabilities

canDoCameraRaw True if the image file is in a camera-raw format.

canGetFullSize True if the node supports full-size previews.

canGetPreview True if the file can be previewed.

canGetQuickPreview True if the camera-raw image file contains a
quick-preview image.

canGetThumbnail True if the file contains a thumbnail image.

canGetXmp True if the file contains embedded metadata.

canLabelOrRate True if the node supports labeling and rating.

canRotate True if the image file can be rotated.

canSetXmp True if the file’s embedded metadata is writable.

Infoset name Member names

CHAPTER 2: Node-Handling Extension Object Reference Infoset Object 128

itemContent
descriptors

dynamicMediaType The file's dynamic media type. One of:

0 (invalid)
1 (not a dynamic media file)
2 (QuickTime)
3 (DirectShow)
4 (Animated GIF)
5 (Flash®)

If an extension sets this to undefined and the
cache status to good, Adobe Bridge determines
the proper dynamic media type.

fileFormat For a file node, the file format string, such as
“jpg”.

hasSubContainers True if this container node can have child nodes
that are also containers.

mimeType The MIME type for the node, if applicable, such
as “image/jpeg”.

pageCount The number of pages in the file, if applicable.

tooltip The node’s tooltip string.

quickMetadata This is the authoritative source of displayed values, although the same properties
are also kept in various other places.

bitDepth For image files, the number of bits per pixel.

colorProfile For image files, the name of the color profile.

Infoset name Member names

CHAPTER 2: Node-Handling Extension Object Reference Infoset Object 129

quickMetadata
(cont’d)

colorMode For image files, the color mode used. One of:

-1 (invalid)
0 (monochrome bitmap)
1 (gray scale)
2 (indexed)
3 (RGB)
4 (CMYK)
5 (HSL)
6 (HSB)
7 (multi-channel)
8 (duotone)
9 (LAB)
10 (XYZ)

hasCrop For camera-raw images, true if the image is
cropped.

hasRawSettings For camera-raw images, true if the file has saved
settings.

height For image files, the image's height in pixels.

label The label string assigned to the file or folder, if
any.

rating The rating number assigned to the file or folder,
if any.

rotation For image files, the rotation value. One of 0, 90,
180, 270.

stockPhotoStatus The Stock Photos status. One of:

0 (none)
1 (thumbnail search image)
2 (comp image)
3 (purchased image)

xResolution For image files, the horizontal resolution in
pixels per inch (PPI).

yResolution For image files, the vertical resolution in pixels
per inch (PPI).

width For image files, the image's width in pixels.

badges badges An array of Badge Objects representing the
node’s status icons. A node in the Content pane
can have up to four badge icons.

Infoset name Member names

CHAPTER 2: Node-Handling Extension Object Reference Infoset Object 130

cameraRaw rawSupportType Identifies the extent to which this file can be
handled by the Camera Raw plug-in. One of:

0 (the file is of a type that is not handled by
the plug-in)
1 (the file is in a camera-raw format)
2 (the file is in JPEG or TIFF format)

children children An Array of Thumbnail Objects representing the
child nodes of a container node.

Container nodes must update their child node
lists.

fullsize fullsize A BitmapData Object representing the pixels for
the file's full-size preview thumbnail.

icon bitmap A BitmapData Object representing the pixels for
the node’s icon.

linktarget linkTarget A string containing the full path to the target, if
this node is a link.

metadata metadata The metadata blob for the file, if applicable.

preview hasHighQualityPreview True if the file contains a high-quality preview
image.

preview A BitmapData Object representing the pixels for
the file's preview thumbnail image.

thumbnail hasHighQualityThumbnail True if the file contains a high-quality thumbnail
image.

thumbnail A BitmapData Object representing the pixels for
the file's thumbnail image.

Infoset name Member names

CHAPTER 2: Node-Handling Extension Object Reference InfosetMemberDescription Object 131

InfosetMemberDescription Object
Associates a data type with a single node-data value for Adobe Bridge nodes. Each node-data value is a
member of an Infoset Object associated with an ExtensionHandler Object.

The name becomes a property of the parent Infoset Object, which provides access to a data value of this
type. For example, to access a color value in myInfo in thumbnail t1, where the myInfo set is managed
by myExtension, use:

t1.myExtension.myInfo.color

InfosetMemberDescription constructor

Create the object with the new operator:

new InfosetMemberDescription (name, type)

The parameters set the corresponding properties.

InfosetMemberDescription properties

name String The name of this value, which becomes a property of the parent Infoset Object.
Must be a valid JavaScript identifier containing no colons or special symbols.
Read/write.

type String The data type for values accessed through the name property of the parent Infoset
Object. Read/write. One of:

Boolean
String
Integer
Icon (32x32)
BitmapData (a BitmapData Object)
SizeInBytes

Date

Array (an array of type for any of these types: nested arrays are not allowed)

CHAPTER 2: Node-Handling Extension Object Reference ModalOperator Object 132

ModalOperator Object
Encapsulates a synchronous operation. Performs a task that blocks the main thread, and provides its own
user interface.

See Operator Class for basic properties and methods. For this object, the start() method yields the main
thread to the extension. The getType() method should return modal.

ModalOperator constructor

To create a new object, use the new operator:

new ModalOperator (sources, target)

type The operator type, “modal”.

sources An array of Thumbnail Objects that the operation acts upon.

target A target Thumbnail Object for the operation.

CHAPTER 2: Node-Handling Extension Object Reference Operand Object 133

Operand Object
For use in node searches. An array of these objects is kept in the operands property of a SearchCriteria
Object. They are used to populate the right-side field in the line that corresponds to the criterion in the
Find dialog (values to be compared against). If there is more than one, the field displays a drop-down list.

Operand object constructor

Create the object using the new operator:

new Operand(valueName, displayName);

Parameters set corresponding properties.

Operand properties

valueName String The operand value; that is, a possible value of the searchField property of
the SearchCriteria Object. Read-write.

displayName String Optional. The localized display name for the corresponding field in the
Find dialog. If not supplied, the valueName is used. Read-write.

CHAPTER 2: Node-Handling Extension Object Reference Operator Class 134

Operator Class
When implementing a node-handling extension, you can use Operator objects to implement and
monitor long-running operations, such as file-system interactions, or operations that require a user
interface. An operation can be modal, blocking the main thread until it is complete, or it can spawn a
background task that provides feedback and allows interaction through a Progress bar and other dialogs
that Adobe Bridge provides.

You define certain methods for a node-handler’s ExtensionHandler Object and ExtensionModel Object to
create and return an Operator object, which actually implements the operation. The model method
returns immediately. See Long-running handler operations and Long-running model operations.

The Operator class is a base class for two types of operator:

➤ ModalOperator Object: Blocks the main thread and must provide any desired user interface.

➤ ProgressOperator Object: Spawns a background task that can perform operations incrementally, while
occasionally notifying Adobe Bridge of changes that require an update to the Adobe Bridge-supplied
UI.

To start the operation, your node handler (or Adobe Bridge) passes the returned Operator object to
app.enqueueOperation(). This in turn calls the start() method defined in the object.

➤ For a ModalOperator, the start() method returns when the operation is complete.

➤ For a ProgressOperator, your start() method should begin the background task and return. Adobe
Bridge displays the Progress bar and resumes activity on the main thread. When the background task
notifies Adobe Bridge of a change by calling app.operationChanged(), Adobe Bridge queries the
Operator object and updates the Adobe Bridge-supplied user interface.

You can use app.scheduleTask() to schedule the execution of the operation, and make periodic progress
updates. Note that Adobe Bridge does not update the UI for a ProgressOperator unless and until you call
app.operationChanged().

The Operator class is a template; it does not implement any state or behavior. When creating an operator
object, you must implement the interface described here, in order to perform the desired operation, and
to provide Adobe Bridge with expected information about the progress and result of the operation.

Operator common properties

cancelRequested Boolean When true, the user has requested that the operation be
canceled.

conflictType String The type of the current file-system conflict encountered
during the operation. One of:

none
userConfirmationRequired
fatal

CHAPTER 2: Node-Handling Extension Object Reference Operator Class 135

conflictMessage String A string describing the current file-system conflict that
prevents the operation from being performed. Can identify
one of the preset Adobe Bridge error messages, or can be an
arbitrary descriptive string.

Preset messages are identified by the following string values:

none
deleteFile
deleteMultipleFiles
deleteReadOnlyFile
moveReadOnlyFile
readOnlyFileExists
fileExists
fileIsBusy
targetFolderExists
fatalErrorSameFile
fatalErrorSameFolder
fatalErrorMoveToChild
fatalErrorSourceNotAvailable
fatalErrorStorageFull
fatalErrorSourceAccessDenied
fatalErrorTargetAccessDenied
fatalErrorUnknown
noXMPSupport
undoDelete
messageCustom

description String A description of the operation, suitable for display.

errorTarget Thumbnail When operationStatus is inError, the problematic
Thumbnail Object.

newNames Array of
String

When sources has a value, an array of the same length
containing the new names to be assigned to the source
Thumbnail Objects after they are transferred to the target.

operationStatus String The status of the operation with respect to the immediate
action. Read/write. One of:

incomplete
inCancellation
inConflict
inError
succeeded
cancelled
failed

percentageComplete Number How much of the operation has currently been completed, in
a float value with the range [0, 1]. Read/write. Also returned
by getPercentageComplete().

CHAPTER 2: Node-Handling Extension Object Reference Operator Class 136

processingStatus String The current overall status of the operation with respect to
Adobe Bridge; that is, whether the operation has begun, is
still going on, has been paused by the user, or has finished.
Read/write. Also returned by getProcessingStatus(). One of:

notStarted
inProgress
awaitingResume
completed

progressMessage String A description of the current state of the operation, suitable for
display. Read/write. Also returned by getProgressMessage().

resolvePolicy String How to apply the conflict-resolution method
(resolveMethod). This is for the developer’s information in a
ModalOperator; Adobe Bridge does not check it. One of:

applyForOneConflictOnly
applyToAllConflicts

resolveMethod String How to resolve file-system conflicts. This is for the developer’s
information in a ModalOperator; Adobe Bridge does not
check it. One of:

abort
noOverride
override
overrideConditionally

result Object An optional result for an operation, such as the path that
results from a createNewContainer() operation.

sources Array of
Thumbnail

A set of Thumbnail Objects that the operation acts upon.

target Thumbnail A target Thumbnail Object for the operation.

timeout Number A number of milliseconds to wait before aborting the
operation. Default is 0, meaning that the operation does not
time out.

CHAPTER 2: Node-Handling Extension Object Reference Operator Class 137

Operator functions

getConflictInfo()
obj.getConflictInfo ()

Implement a method that returns a description of a file-system
conflict that prevents the operation from being performed on
the current thumbnail.

The returned string can identify one of the preset Adobe Bridge
error messages, or can be an arbitrary descriptive string suitable
for display in a conflict-resolution dialog. Preset messages are
identified by the following string values:

none
moveReadOnlyFile
targetFolderExists
readOnlyFileExists
fileExists
fatalErrorSameFile
fatalErrorSameFolder
fatalErrorMoveToChild
fatalErrorSourceFileNotAvailable
fatalErrorStorageFull
fatalErrorSourceAccessDenied
fatalErrorTargetAccessDenied
fatalErrorUnknown
deleteFile
deleteMultipleFiles
noXMPSupport
fileIsBusy
undoDelete
messageCustom

getPercentageComplete()
obj.getPercentageComplete ()

Implement a method that returns the percentage of the
operation that has currently been completed, for use in
displaying the Progress dialog.

Adobe Bridge invokes this when it needs to update the Progress
bar.

Return a number in the range [0...1].

getProcessedNodeCount()
obj.getProcessedNodeCount ()

Implement a method that returns the number of source nodes
that have been processed so far.

Return a number.

getProcessingStatus()
obj.getProcessingStatus ()

Implement a method that returns the current overall status of
the operation with respect to Adobe Bridge; that is, whether the
operation has begun, is still going on, has been paused by the
user, or has finished.

Return one of the following string values:

notStarted
inProgress
awaitingResume
completed

CHAPTER 2: Node-Handling Extension Object Reference Operator Class 138

getProgressMessage()
obj.getProgressMessage ()

Implement a method that returns a message suitable for display
in the Progress dialog.

Return a string.

getTotalBytesTransferred()
obj.getTotalBytesTransferred
()

Implement a method that returns the current number of bytes
that have been transferred to the target in the course of this
operation.

Return a number.

getTotalNodeCount()
obj.getTotalNodeCount ()

Implement a method that returns the total number of source
nodes to be operated on.

Return a number.

getType()
obj.getType ()

Implement a method that returns the subclass type of this
operator.

Return a string, one of:

modal
progress
background
progressBackground

resolveConflict()
obj.resolveConflict (method,
policy)

Implement a method that resolves a file-system conflict, as
identified by the conflictType and conflictMessage values.

Adobe Bridge invokes this after the user makes selections in a
conflict-resolution dialog, passing in the user’s choices.

Return undefined.

method How to resolve the conflict. One of:

noOverride—Do not perform the current action, but continue with the
operation. Corresponds to Skip in the conflict-resolution dialog.
override—Make another attempt to perform the current action.
Corresponds to Replace in the conflict-resolution dialog.
overrideConditionally—Use an extension-defined default style of
resolving the conflict. Corresponds to Auto-resolve in the conflict-resolution
dialog.
abort—Does not perform the action for the current thumbnail, and
terminates the operation. Corresponds to Cancel in the conflict-resolution
dialog.

policy How to apply the conflict resolution method. Corresponds to the checked state of
Apply to all in the conflict-resolution dialog. One of:

applyForOneConflictOnly—Resolve as specified for the current action, but
request user input again if the same type of conflict occurs again.
applyToAllConflicts—Resolve as specified for the current action, then
resolve with this method again if the same type of conflict occurs again.

CHAPTER 2: Node-Handling Extension Object Reference Operator Class 139

resume()
obj.resume ()

Implement a method that restarts the operation after it has been
stopped by user interaction.

Return true if the operation has been successfully restarted.

start()
obj.start ()

Implement a method that initiates the operation. Adobe Bridge
invokes this after the operator has been enqueued.

➤ For a modal operation, the method should return when the
operation is complete.

➤ For a non-modal operation, the method should begin the
background task and return.

Return undefined.

stop()
obj.stop ()

Implement a method that terminates the operation. Adobe
Bridge invokes this after the operation has been stopped by user
interaction.

Return undefined.

CHAPTER 2: Node-Handling Extension Object Reference ProgressOperator Object 140

ProgressOperator Object
Encapsulates an operation that performs a background task, while Adobe Bridge displays a Progress bar. It
can do so incrementally, periodically notifying Adobe Bridge of the current status. See Operator Class for
the inherited properties and methods.

For this object, the getType() method should return progress. The start() method should spawn a thread
to perform the operation and return immediately. Adobe Bridge displays a Progress bar, and resumes
activity on the main thread.

When the background thread updates the status in any way that affects the display, it must pass this
object to app.operationChanged(). Adobe Bridge queries this object in order to update the Progress
dialog or display the Adobe Bridge-supplied error handling or resolution conflict dialogs.

ProgressOperator constructor

To create a new object, use the new operator:

new ProgressOperator (type, sources, target)

type The operator type, “progress”.

sources An array of Thumbnail Objects that the operation acts upon.

target A target Thumbnail Object for the operation.

CHAPTER 2: Node-Handling Extension Object Reference Rank Object 141

Rank Object
For use in node searches. A SearchDefinition Object can limit the number of results to return, and, if results
are limited, it can define a set of possible properties to use in ranking results. Adobe Bridge sorts result
nodes by the value of the chosen rank property, and returns no more than the maximum number of result
nodes with the highest rank values. When the result is displayed, the view sorts the nodes again using its
sorting criteria.

The attribute name and display name of a property used for ranking are encapsulated in a Rank object.

An array of these objects kept in the ranks property of a SearchDefinition Object. They are used to
populate the Rank field that corresponds to the definition in the Find dialog. If there is more than one, the
field displays a drop-down list. The rank that the user selects becomes the rankField value in the
SearchSpecification Object.

Rank object constructor

Create the object using the new operator:

new Rank(valueName, displayName);

Parameters set corresponding properties.

Rank properties

valueName String The property name for the ranking property. Read-write.

displayName String Optional. The localized display name for the corresponding field in the
Find dialog. If not supplied, the valueName is used. Read-write.

CHAPTER 2: Node-Handling Extension Object Reference Scope Object 142

Scope Object
Identifies a scope modifier to use in node searches among handled nodes. The modifier can expand or
limit the scope of the search from the original target node. The scope value and usage is defined entirely
by the getSearchDefinition() method of the node’s ExtensionModel Object.

An array of these objects, kept in the scopeSpecifiers property of a SearchDefinition Object, is used to
populate the Find dialog. The box displays a check box for each possible scope extension or limitation.
When the user selects a scope, its name becomes a value of scopeSpecifiers in the resulting
SearchSpecification Object object.

Scope object constructor

Create the object using the new operator:

new Scope(valueName, displayName);

Parameters set corresponding properties.

Scope properties

valueName String The unique identifying name for the scope modifier. Read-write.

displayName String Optional. The localized display name for the corresponding field in the
Find dialog. If not supplied, the valueName is used. Read-write.

CHAPTER 2: Node-Handling Extension Object Reference SearchCondition Object 143

SearchCondition Object
Defines a specific condition that must be met for a node to match a search. The Find dialog returns a
SearchSpecification Object for a specific search, which contains a list of these objects in the conditionList
property; each object corresponds to the user’s selection in one line of the Criteria box in the dialog. The
SearchSpecification.conjunction controls whether all or any of the conditions must be met.

Your node handler can define possible search criteria for your nodes by creating SearchCriteria Objects
and passing them in the SearchDefinition Object created by the model’s getSearchDefinition() method.

Each condition specifies a property associated with a node (the searchField), whose value is compared to a
selected operand value, using a selected operator such as “equals.” Operators are predefined. Some
operators, such as “exists,” do not require an operand.

SearchCondition object constructor

Create the object with the new operator:

new SearchCondition(searchField, operatorType, operand);

Parameters set corresponding properties.

SearchCondition properties

searchField String The name of some property associated with the search node,
typically a metadata property or a member of an Infoset Object
associated with handled nodes.

This corresponds to the left side of a line in the Criteria box of
the Find dialog. Read/write.

operatorType String The comparison operator for the search. This corresponds to the
middle field of a line in the Criteria box of the Find dialog.
Read/write. One of:

exists
doesNotExist
equals
notEquals
less
lessThanOrEqual
greater
greaterThanOrEqual
contains
doesNotContain
startsWith
endsWith

operand String The value to compare against the value of the search field in
each node. This corresponds to the right side of a line in the
Criteria box of the Find dialog. Read/write.

CHAPTER 2: Node-Handling Extension Object Reference SearchCriteria Object 144

SearchCriteria Object
Encapsulates one search criterion for a search among handled nodes. Your node handler can define
possible search criteria for your nodes by creating these objects and passing them to Adobe Bridge in a
SearchDefinition Object, during the call to the getSearchDefinition() method of the node’s
ExtensionModel Object.

Each object corresponds to one line in the Criteria box of the Find dialog.

➤ The left side is a property associated with possible matching nodes, called the search field.

➤ The middle value is the comparison operator.

➤ The right side is the comparison value, or operand (some operators, such as “exists,” do not require an
operand).

For each node in the scope, a search that uses a selected criterion matches the selected search-field value
against the operand using the selected comparison operator. This object specifies the left and right sides.
By default, all of the predefined operators are displayed for user selection. You can use this object to limit
which of these operators are available for selection.

The user’s choices in the dialog are returned to Adobe Bridge in a set of a SearchCondition Objects
contained in a SearchSpecification Object.

SearchCriteria object constructor

Create the object with the new operator:

new SearchCriteria (searchField, operandType,
*searchFieldDisplay, *operands);

Parameters set corresponding properties.

SearchCriteria properties

operands Array of
Operand

Optional. One or more Operand Objects used to
populate the drop-down list for the right-side field of
this line in the Find dialog. This allows you to specify a
closed list of possible values to match against in the
search field.

operandType String The data type of the operand values. Determines the
description that appears in the operand field in the
absence of a closed list of operands. The description is
the expected format for Date values, otherwise
generally "Enter text".

One of:

String
Number
Float
Date
Boolean

CHAPTER 2: Node-Handling Extension Object Reference SearchCriteria Object 145

operatorTypesToDisable Array of
String

Optional. A set of predefined operator strings that are
not displayed for selection.

Predefined operators are:

exists
doesNotExist
equals
doesNotEqual
less
lessThanOrEqual
greater
greaterThanOrEqual
contains
doesNotContain
startsWith
endsWith

searchField String A search field, the name of some property associated
with the search node, typically a metadata property or a
member of an Infoset Object associated with handled
nodes. The value of the selected search field is
compared to the selected operand, using the selected
comparison operator.

searchFieldDisplay String Optional. A localized display name for the search field,
displayed in the Find dialog. Default is the searchField
value.

searchFieldSort Boolean Optional. When true, search field display names are
sorted alphabetically in the Find dialog. Default is false.

CHAPTER 2: Node-Handling Extension Object Reference SearchDefinition Object 146

SearchDefinition Object
Provides a way for Adobe Bridge extensions to specify how the Find dialog should be populated for a
search among handled nodes. It specifies possible search criteria, as well as result scope and ranking
criteria.

If the user invokes the Find dialog for a handled node, the dialog calls the model’s getSearchDefinition()
method. Your node-handling extension must define this method to return a SearchDefinition object
that can be used to populate Find dialog.

When a user clicks Find in the Find dialog, Adobe Bridge uses the dialog selections to create a
SearchSpecification Object, which, together with a target node, specifies a search.

SearchDefinition object constructor

Create the object with the new operator:

new SearchDefinition (criteriaList, defaultResultsLimit,
 *ranks, *scopeSpecifiers);

Parameters set corresponding properties.

SearchDefinition properties

criteriaList Array of
SearchCriteria

A collection of possible SearchCriteria Objects to use
for this search, used to populate the Criteria box in the
Find dialog.

defaultResultsLimit Number If non-zero, the Find dialog offers choices to limit the
result set to certain sizes, and the choice defaults to this
value.

ranks Array of Rank Optional, a set of Rank Objects to use only if the search
can limit results. Read-write.

Used to populate the Rank list in the Results section of
the Find dialog.

scopeSpecifiers Array of Scope Optional, one or more Scope Objects. Your search can
use these to extend or limit the scope of the search.
Read-write.

The Results section of the Find dialog displays a check
box for each scope modifier.

CHAPTER 2: Node-Handling Extension Object Reference SearchDetails Object 147

SearchDetails Object
An object that encapsulates information about how a search result node was generated by a
node-handler’s getBridgeURIForSearch() method. Returned by an ExtensionModel.getSearchDetails()
method for a search-result node.

SearchDetails object constructor

Create the object with the new operator:

new SearchDetails (searchSpecification, searchTargetUri);

Parameters set corresponding properties.

SearchDetails properties

searchCriteria SearchSpecification A SearchSpecification Object that was used to
generate this search result. Read/write.

searchTargetUri String The Bridge URI for the search target node that was
used to generate this search result. Read/write.

CHAPTER 2: Node-Handling Extension Object Reference SearchSpecification Object 148

SearchSpecification Object
Encapsulates a specific search among member nodes of a target container node. The object contains a set
of conditions to be met in order for a node to match, and instructions for how to return matching nodes.

Adobe Bridge creates this object from user selections in the Find dialog. For a search that involves handled
nodes, Adobe Bridge passes the search specification to the handler’s getBridgeURIForSearch() method.
Your handler can either save that object, or recreate one to return from the getSearchDetails() model
method of the search-result container node.

SearchSpecification object constructor

Create the object with the new operator:

new SearchSpecification (conditionList, conjunction, maximumResults,
 rankOrdering, rankField, scopeSpecifiers);

Parameters set corresponding properties.

SearchSpecification properties

conditionList Array of
SearchCondition

A collection of SearchCondition Objects to use for this
search. Each object specifies a search field, which
identifies a property associated with a node, a
comparison operator, such as "exists" or "equals", and
an operand, the value to compare with the search field
value (if the operator requires a comparison value).

conjunction String The search conjunction, and or or, as selected in the
Find dialog. When it is and, all conditions must succeed
for a node to match. When it is or, the success of any
condition results in a match.

maximumResults Number The maximum number of result nodes to return from
the search. The search halts after this number of
matches are found.

rankOrdering String The ordering style, one of ascending (the default) or
descending.

rankField String The name of a Rank Object, as specified for a
SearchDefinition Object.

If the number of results are limited, results are sorted
on the named attribute value, and the maximum
number of result nodes with the highest rank values
are returned.

The returned results are again sorted by the view’s
sorting criteria upon display.

CHAPTER 2: Node-Handling Extension Object Reference SearchSpecification Object 149

scopeSpecifiers Array of String One or more Scope Object names, as specified for a
SearchDefinition Object.

Each scope modifier can expand or limit the original
scope defined by the target node. The scope value and
usage is defined entirely by your getSearchDefinition()
model method implementation.

CHAPTER 2: Node-Handling Extension Object Reference SortCriterion Object 150

SortCriterion Object
Provides a way for Adobe Bridge extensions to specify how handled nodes can be sorted. Sorting
compares the values of a property associated with the displayed nodes. This object identifies that
property, which can be in handler-defined node data (that is, defined in an Infoset Object), or defined in
embedded XMP metadata.

When Adobe Bridge enters a container node, it calls the getSortCriteria() method of the node’s
ExtensionModel Object, which returns a list of these objects. The method can supply a completely new list,
or can get the default list from app.defaultSortCriteria and modify it, append to it, or return it unchanged.

You can apply a sorting criterion to currently displayed nodes by referencing a SortCriterion object
from the Document.sorts property.

SortCriterion object constructor

Create the object with the new operator:

new SortCriterion(name, type, xmpNamespace, xmpUri, *displayName)

new SortCriterion(name, type, infosetMember, *displayName)

Parameters set corresponding properties.

SortCriterion properties

displayName String Optional. A localized display name for this sorting criterion. Used as a
label for the Sort menu and Filter palette flyout menu. If not assigned,
name is displayed. Read-write.

infosetMember String The name of an Infoset Object and InfosetMemberDescription Object
by which to sort. Read/write. For example, "mySet.color".

name String The unique identifying name of this sort criterion. The name can be:

user
name
date-created
date-modified
label
rating
file-size
document-kind
keywords
dimensions
resolution
color-profile

CHAPTER 2: Node-Handling Extension Object Reference SortCriterion Object 151

type String The data type of the criterion property. Read only. One of:

string
date
number
dimensions
resolution
colorProfile
user

xmpNamespace String The namespace portion of an XMP property by which to sort.
Read/write.

xmpUri String The URI key portion of an XMP property by which to sort. Read/write.

 152

3 External Communication Tools

Adobe Bridge offers the Web Access library, which supplies tools for communicating with other computers
or the Internet using standard protocols. The Web Access library defines:

➤ The FtpConnection object, which supports FTP and SFTP communication protocols.

➤ The HttpConnection object, which supports HTTP and HTTPS communication protocols.

Your script must load the platform-compiled Web Access library as an ExternalObject in order to use
these objects. See ‘Loading the Web Access library’ on page 152.

Loading the Web Access library
To use the FtpConnection object or HttpConnection object, you must dynamically load the Web Access
library into Adobe Bridge as an ExternalObject. This library is compiled as a shared library; a DLL in
Windows, a bundle or framework in Mac OS.

For example, use the following JavaScript code:

if (!ExternalObject.webaccesslib) {

ExternalObject.webaccesslib = new ExternalObject('lib:webaccesslib');

}

The location of the compiled library files is determined by the operating system.

➤ In Windows, the DLLs reside in the executable directory.

➤ In Mac OS, bundles and frameworks are loaded from the @executable/../Frameworks/ directory.
Use the layout of bundles and Frameworks from the shellframework sample application as a
template.

For more information on loading compiled libraries into JavaScript, see the JavaScript Tools Guide.

FtpConnection object
This class supports the FTP and SFTP protocols for file transfer. The object allows you to send data to or
receive data from an FTP server, synchronously or asynchronously.

To use the FtpConnection object, you must load the Web Access library (webaccesslib) into JavaScript
as an ExternalObject. See “Loading the Web Access library” on page 152.

Using File objects with the FtpConnection object

Typically, you create a File object for use with your FtpConnection object. The get() and put() operations
automatically open the file for read and write, respectively, if you have not done so explicitly. The default
transfer mode is binary.

CHAPTER 3: External Communication Tools FtpConnection object 153

➤ To transfer binary files to the server, use code such as the following:

var file = new File('/c/Photo.jpg') ;

var ftp = new FtpConnection('ftp://server') ;

ftp.put(file,'Photo.jpg') ;

ftp.close() ;

file.close() ;

➤ Similarly, to transfer binary files from the server:

var file = new File('/c/Photo.jpg') ;

var ftp = new FtpConnection('ftp://server') ;

ftp.get('Photo.jpg',file) ;

ftp.close() ;

file.close() ;

The operations do not automatically close the file. This allows you, for example, to use get() to copy many
files to a single file on your local file system. For example:

var file = new File("/c/archive.bin") ;

ftp.get("a.txt",file) ;

ftp.get("c.txt",file) ;

file.close() ;

Open files are eventually closed by the JavaScript garbage collector when there are no remaining
JavaScript references.

ExtendScript supports many file filters; see the JavaScript Tools Guide for details.

Synchronous and asynchronous operation

Two properties of the FtpConnection, sync and async, control whether get() and put() operations are
performed synchronously or asynchronously. The property values are tied together, and are mutually
exclusive. You can set either one, and the other is automatically toggled to the opposite value.

When the property sync is set to true (the default), the connection operation blocks the main thread. All
operations must be completed before your script continues.

Example: synchronous operation (blocking)

var ftp = new FtpConnection("ftp://localhost") ;

var file = new File("here.text") ;

// synchronous mode is the default

ftp.get("remote.txt",file) ;

// the operation simply returns when complete

file.close() ;

ftp.close() ;

CHAPTER 3: External Communication Tools FtpConnection object 154

When the property sync is set to false (or async set to true), the connection operation occurs in a
background thread while your script continues to do other work. The background thread sets the property
isComplete to true when the current operation has finished. If the operation times out, isComplete is set to
true and error is set to FtpConnection.errorTimeout.

Only a single connection to the FTP server is allowed; you cannot start two operations on the server at the
same time. If you do attempt to do so, error is set to FtpConnection.errorCommandActive to indicate
that the connection is waiting to complete a previous operation.

You can define a callback function in the onCallback property, that checks the completion status of an
asynchronous call, and closes the file and connection when it is done. Use the pump() function to call that
function periodically from the main thread. Typically, a callback function displays and updates a dialog
that shows the progress, and allows the user to cancel an asynchronous operation before its completion;
your callback can accomplish this using cancel().

Example: asynchronous operation (non-blocking)

var file = new File("here.text") ;
ftp.sync = false ; // set asynchronous mode
// define callback to check status and close when complete
ftp.onCallback = function(reason,p_log,total) {

if (this.isComplete) {
file.close();

}
}
// the operation spawns a new thread and returns
ftp.get("remote.txt",file) ;
// at some time and occasionally
// update progress by calling ftp.onCallback()
ftp.pump() ;

FtpConnection object reference

This section provides details of the FtpConnection object’s properties and functions.

FtpConnection object constructor

[new] FtpConnection ([url]);

FtpConnection object properties

url Optional. The URL to which to connect. The URL specifies the protocol; for example:

ftp://localhost
sftp://localhost

If not provided, you must set the object’s url property.

active Boolean When true, the connection is active, not passive. Sets passive to false. See
the FTP standard (RFC 959) for details. Read-write.

ascii Boolean When true, the encoding used to transmit data is ASCII. Default is false.
When set to true, sets binary to false. Read-write.

CHAPTER 3: External Communication Tools FtpConnection object 155

async Boolean When true, the connection is asynchronous. Operations spawn a thread
and return immediately to the main thread. The background thread sets
isComplete to true when the current operation has finished. If the
operation times out, isComplete is set to true and error is set to
errorTimeout.

Default is false. When set to true, sets sync to false. Read-write.

binary Boolean When true, the encoding used to transmit data is binary. Default is true.
When set to true, sets ascii to false. Read-write.

cd String Sets the current directory when the connection is open. Default is
undefined. Read-write.

Setting to a directory that does not exist causes a JavaScript error, and sets
the error and errorString properties of the object.

dates Array of
Date

The dates of the files in the current directory. Set by the ls() call. An array
corresponding to the files array, where each member is a JavaScript Date
object (as returned by date() for an individual file). Default is undefined.
Read only.

CHAPTER 3: External Communication Tools FtpConnection object 156

error Number The most recent error encountered in the course of connecting or
executing the operation. All functions set this value before returning. A
constant value, one of:

FtpConnection.errorNoError
FtpConnection.errorCommandActive
FtpConnection.errorUnknownException
FtpConnection.errorUnknown
FtpConnection.errorOutOfMemory
FtpConnection.errorCancelled
FtpConnection.errorUnknownHost
FtpConnection.errorConnectFailed
FtpConnection.errorTimedOut
FtpConnection.errorLoginFailed
FtpConnection.errorProtocolError
FtpConnection.errorUnknownProtocol
FtpConnection.errorChannelOpen
FtpConnection.errorChannelClosed
FtpConnection.errorOperationPending
FtpConnection.errorBadParameters
FtpConnection.errorResourceExists
FtpConnection.errorResourceDoesntExist
FtpConnection.errorResourceInUse
FtpConnection.errorAccessDenied
FtpConnection.errorOutOfDisk
FtpConnection.errorLocalIoError
FtpConnection.errorRemoteIoError
FtpConnection.errorNotEmpty
FtpConnection.errorNotDirectory
FtpConnection.errorNotFile
FtpConnection.errorBadPathname
FtpConnection.errorNotImplemented
FtpConnection.errorNotLocked
FtpConnection.errorLocked
FtpConnection.errorMethodNotAllowed
FtpConnection.errorResourceRedirected

Default is errorNoError. Read only.

errorString String A description of the most recent error encountered in the course of
connecting or executing the operation. Default is “OK.” Read only.

files Array of
String

The files in the current directory. Set by the ls() call. Default is undefined.
Read only.

CHAPTER 3: External Communication Tools FtpConnection object 157

flags Array of
Number

The access permissions and types for the files in the current directory. Set
by the ls() call. An array corresponding to the files array, where each
member is a logical OR of these constant values:

FtpConnection.flagOtherExecute
FtpConnection.flagOtherWrite
FtpConnection.flagOtherRead
FtpConnection.flagGroupExecute
FtpConnection.flagGroupWrite
FtpConnection.flagGroupRead
FtpConnection.flagOwnerExecute
FtpConnection.flagOwnerWrite
FtpConnection.flagOwnerRead
FtpConnection.flagDirectory
FtpConnection.flagSymLink

Default is undefined. Read only.

isComplete Boolean When true, the operation is completed. See “Synchronous and
asynchronous operation” on page 153. Default is true. Read only.

isOpen Boolean When true, the connection to the FTP server is open. Default is false. Read
only.

onCallback Function Optional. A callback function to the connection thread for asynchronous
mode.

The object stores progress messages from operation thread; to check on
the progress, call pump() on the main thread. The pump() method invokes
this function on each stored message, passing the operation status at that
point. Within the call, you can use this.cancel() to halt the asynchronous
operation. Read-write.

The function must return undefined, and take these arguments:

function(reason,p_log,total) { }

reason: The type of progress message. One of:

FtpConnection.reasonStart: The transfer started.
FtpConnection.reasonComplete: The transfer is complete.
FtpConnection.reasonFailed: The transfer failed.
FtpConnection.reasonProgress: The transfer is in progress.
FtpConnection.reasonLog: The operation generated a log
message.

p_log: Depends on the reason for the message:

For a log message, the message string.
For a progress message, the current number of bytes transferred.
Otherwise, undefined.

total: Depends on the reason for the message:

For a progress message, the total number of bytes to be
transferred.
Otherwise undefined.

CHAPTER 3: External Communication Tools FtpConnection object 158

passive Boolean When true, the connection is passive, not active. See the FTP standard (RFC
959) for details. When set to true, sets active to false. Default is false.
Read-write.

password String The connection password for the FTP server. Set this to override the
password given in the URL. Default is undefined. Read-write.

proxy String Not used.

renamestyle String The rename() function takes a source and destination path and file name,
so that it can both move and rename the source object. You can normally
specify the source and destination without a path or with a relative path
(such as ../myfile.htm). The function interprets the path as relative to
the current working directory. This typical case is handled by the default
value for this property, "style1".

If you connect to an FTP server that cannot parse the ".." notation, change
this value to "style2", and specify both source and destination with
absolute paths.

sizes Array of
Number

The sizes of the files in the current directory. Set by the ls() call. An array
corresponding to the files array, where each member is a number of bytes.
Default is undefined. Read only.

sync Boolean When true, the connection is synchronous. Operations block the main
thread and return when complete. Default is true. When set to true, sets
async to false. Read-write.

timeout Number An integer, the number of seconds to continue attempting the operation
before completing with the error message errorTimeout. Default is 5.
Read-write.

url String The URL of the FTP server, and optionally the port, to which to connect.
This includes the protocol (FTP or SFTP), and can include a login user name
and password in this format:

[s]ftp://[[username:]password@]server[:port]

This string must use escape sequences for special characters, such as %20
for space and %40 for @.

Default is undefined. Read-write.

username String The connection user name for the FTP server. Set this to override the user
name given in the URL. Default is undefined, for anonymous FTP.
Read-write.

CHAPTER 3: External Communication Tools FtpConnection object 159

FtpConnection object functions

All functions set the error property to indicate the status of the operation when completed
(errorNoError on success).

cancel()
ftpObj.cancel ();

Cancels the current operation, if it is being performed asynchronously. See “Synchronous and
asynchronous operation” on page 153.

Returns true on success.

close()
ftpObj.close ();

Terminates the open connection. Deleting the object also closes the connection, but not until
JavaScript garbage-collects the object. The connection might stay open longer than you wish if you
do not close it explicitly. There are a limited number of open connections available; failing to close
connections can make you unable to open a new one.

Returns true if the connection was closed, false on I/O errors.

chmod()
ftpObj.chmod (remote[, flags]);

remote String. The name of the remote file-system object.

flags Optional. The new permissions. A logical OR of the flags constants.

Changes the permissions and/or type of a file-system object on the FTP server.

Returns true on success.

cwd()
ftpObj.cwd (remote);

remote String. The name of the remote directory.

Changes the current directory on the FTP server.

Returns true on success.

date()
ftpObj.date (remote);

remote String. The name of the remote file.

Retrieves the date information for a file-system object on the FTP server.

Returns an array of three JavaScript Date objects, for the creation, modification, and most recent
access dates of the given file. If a date is unavailable, the corresponding array member is undefined.
See also dates.

Returns false if all dates are unavailable; as when the file-system object does not exist, is a directory,
or is a link that cannot be resolved.

CHAPTER 3: External Communication Tools FtpConnection object 160

del()
ftpObj.del (remote);

remote String. The name of the remote file-system object.

Deletes a file-system object on the FTP server.

Returns true on success.

exists()
ftpObj.exists (remote);

remote String. The name of the remote file-system object.

Reports whether a file-system object exists on the FTP server.

Returns true if the object exists on the server, false if it does not exist or is a link that cannot be
resolved.

get()
ftpObj.get (remote, file);

remote String. The name of the remote file containing data to transfer.

file A File object, the local file in which to receive the data.

Transfers date from a file on the FTP server to a local file.

Returns true on success.

isDir()
ftpObj.isDir (remote);

remote String. The name of the remote file-system object.

Reports whether a file-system object on the FTP server is a directory.

Returns true if the file is a directory on the server, false otherwise.

ls()
ftpObj.ls ();

Retrieves information about the current directory, and returns it in the files, dates, sizes, and flags
properties of this object.

Returns true on success, false on I/O errors.

mkdir()
ftpObj.mkdir (remote);

remote String. The name of the new remote directory.

Creates a directory on the FTP server.

Returns true on success.

CHAPTER 3: External Communication Tools FtpConnection object 161

open()
ftpObj.open ();

Opens the FTP connection explicitly. This in not typically needed; calling a function to perform an
operation opens the connection if necessary.

Returns true if the connection was successfully opened, false on I/O errors.

pump()
ftpObj.pump ();

Executes the callback procedure defined in onCallback on all progress messages that have been
received since the last call to this function.

Use this function in the main thread to invoke the callback, in order to check on the progress of an
asynchronous operation. It is not required, however; the asynchronous operation continues to
progress on the spawned thread, whether or not you make this call.

Returns true on success, false on I/O errors.

put()
ftpObj.get (file, remote[, putMode]);

file A File object, the local file containing data to transfer.

remote String. The name of the remote file in which to receive the data.

putMode Optional. The style of transfer, one of these constants:

➤ FtpConnection.putModeTruncateOrCreate (default) — Allows creation of the
target file, and truncates an existing file to the size of data written. Does not lock the
target file.

➤ FtpConnection.putModeExclusive — Locks the target file during the write
operation.

Transfers data from a local file to a file on the FTP server. Overwrites the target file, if it already exists.

Returns true on success.

rename()
ftpObj.rename (from, to);

from String. The path and file name of the source object in the remote file system.

to String. The path and file name of the destination object in the remote file system.

Moves and changes the name of a file-system object on the FTP server. The path can be absolute, or
(in most cases) relative to the current working directory; see renamestyle.

Returns true on success.

rmdir()
ftpObj.rmdir (remote);

remote String. The name of the remote directory.

Deletes a directory on the FTP server.

Returns true on success.

CHAPTER 3: External Communication Tools FtpConnection object 162

size()
ftpObj.size (remote);

remote String. The name of the remote file-system object.

Retrieves the size of a file-system object on the FTP server.

Returns the number of bytes in the file, or -1 if there is no such file, or if the object is a directory or a
link that cannot be resolved.

CHAPTER 3: External Communication Tools HttpConnection object 163

HttpConnection object
Supports the HTTP and HTTPS protocols for Internet communication. The object allows your script to open
a connection to a remote computer that acts as an HTTP server, send an HTTP request, and receive the
response.

To use the HttpConnection object, you must load the Web Access library (webaccesslib) into JavaScript
as an ExternalObject. See “Loading the Web Access library” on page 152.

The HttpConnection object can open only one connection to the internet. If you call execute() before the
current operation is complete (status is HttpConnection.statusCompleted), the current operation is
terminated.

Requests and responses

The method property of the HttpConnection object determines the type of operation: GET, PUT, POST,
HEAD, or DELETE. The GET operation is the default.

The request and response properties can contain File objects or strings.

➤ Request and response files

The default encoding for both request and response files is BINARY; you can specify another encoding
in the File object; see the JavaScript Tools Guide for information on File- and Folder-supported
encoding names. (The HttpConnection properties requestencoding and responseencoding affect
only string values, not files.)

If the file is not open, it will be opened for reading (for a request) or for writing (for a response).
Request and response files are not closed automatically; when there are no remaining JavaScript
references to a file, it is eventually closed by the garbage collector.

➤ Request and response strings

When the request is a string, it is converted to binary as specified by the requestencoding value. The
default encoding is UTF-8.

When the server response is anything other than a file, it is converted to a string using the
responseencoding value; the default is ASCII.

Getting a file

var http = new HttpConnection("http://www.clanmills.com/robin.shtml") ;

http.response = new File("/c/temp/robin.shtml") ;

// Get is the default method

http.execute() ;

http.response.close() ;

Posting a string

var http = new HttpConnection("http://localhost/perlasp/wform.asp") ;

http.request = "Yourname=Fred Smith" ;

http.method = "POST"

CHAPTER 3: External Communication Tools HttpConnection object 164

http.execute() ;

Adding request headers and printing response headers

var http = new HttpConnection("http://localhost/perlasp/httpvar.asp") ;
http.requestheaders = ["MyHeader" , "MyValue"] ;
http.execute() ;
http.response = new File("/c/temp/dumpvars.txt") ;
var a = http.responseheaders ;
for (i = 0 ; i < a.length/2 ; i++) {

alert(a[i*2] + " => " + a[i*2+1]) ;
}

Asynchronous operations

The HttpConnection object can operate asynchronously; when you set async to true (or sync to false) the
operation is performed in the background, while your script continues to do other work. However, the
asynchronous behavior is not automatic. You must execute the pump() method periodically to increment
the progress of the operation, and periodically test the status and lastread properties. After the status is
HttpConnection.statusCompleted, you must continue to call pump() to transfer all bytes from the
server to your object, until lastread is negative.

Blocking (synchronous use)

var http = new HttpConnection("http://someserver/index.html") ;

http.response = new File("/c/index.html") ;

http.execute() ;

Not blocking (asynchronous call)

var http = new HttpConnection("http://some.website/file.html") ;
http.async = true ; // or http.sync = false ;
http.onCallback = function() {

with (this) {
if (status == HttpConnection.statusComplete && http.lastread < 0) {

alert("done") ;
this.close() ;
}

}
return HttpConnection.actionContinue ;

}
http.execute() ; // returns immediately
//
// . . . Somewhere and occasionally
if (http.status <= HttpConnection.statusComplete && http.lastread >= 0)

http.pump() ;

Authentication

You can specify a user login name and password in the URL using the standard syntax:

http://[username:][password@]server[:port]/path?querystring

Use an escape sequence for special characters, such as %20 for space and %40 for @.

CHAPTER 3: External Communication Tools HttpConnection object 165

You can override the user name and password specified in the URL by setting the username and password
on the HttpConnection object.

If the connection is challenged by the server and authentication is required, the operation invokes your
onAuthentication callback function. You can use this set the username and password properties; you
cannot use it to change the URL.

Authentication callback

var http = new HttpConnection("http://www.website.com") ;
http.onAuthentication= function (host,realm,isProxy,retries,

currentUser,currentPassword) {
alert ("onHttpAuthentication CALLED" + \n +

"host = " + host + \n +
"realm = " + realm + \n +
"isProxy = " + isProxy + \n +
"retries = " + retrie + \n +
"currentUser = " + currentUser + \n +
"currentPassword = " + currentPassword) ;

this.username = "therealusername" ;
this.password = "thepassword" ;
return HttpConnection.actionContinue ;
}

http.execute() ;

HttpConnection object reference

This section provides details of the HttpConnection object’s properties and functions.

HttpConnection object constructor

[new] HttpConnection ([url]);

HttpConnection object properties

url Optional. The URL to which to connect. The URL specifies the protocol; for example:

http://localhost
https://localhost

If not provided, you must set the object’s url property.

async Boolean When true, the connection is asynchronous. Operations spawn a
thread and return immediately to the main thread. The background
thread sets isComplete to true when the current operation has
finished. If the operation times out, isComplete is set to true and
error is set to errorTimeout.

Default is false. When set to true, sets sync to false. Read-write.

chunked Boolean When true, send the response using chunked encoding. Default is
true. Read-write.

CHAPTER 3: External Communication Tools HttpConnection object 166

bytesReceived Number The number of bytes received from the HTTP server. -1 when there is
no connection.

bytesSent Number The number of bytes transmitted to the HTTP server. -1 when there
is no connection.

fault Number The error status of the connection. Read only. A constant value, one
of:

HttpConnection.faultNone
HttpConnection.faultUserCancelled
HttpConnection.faultNoConnection
HttpConnection.faultHostNotFound
HttpConnection.faultNetTimeout
HttpConnection.faultClientTimeout
HttpConnection.faultMalformedUrl
HttpConnection.faultInvalidResponse
HttpConnection.faultUnauthorized
HttpConnection.faultRelocated

isOpen Boolean When true, the connection to the FTP server is open. Default is false.
Read only.

lastread Number The number of bytes read from the HTTP server during the last call
to pump(). Negative when execution is completely finished. Default
is 0. Read only.

method String The HTTP method. Read-write. One of:

GET (default)
PUT
HEAD
POST
DELETE

mime String The MIME type of the request. Default is text/html. Read-write.

network Number The network status of the connection. Read only. A constant value,
one of:

HttpConnection.networkIdle
HttpConnection.networkConnecting
HttpConnection.networkSendingRequestHeaders
HttpConnection.networkSendingRequestBody
HttpConnection.networkAwaitingResponse
HttpConnection.networkReceiveingResponseHeaders
HttpConnection.networkReceiveingResponseBody
HttpConnection.networkResponseComplete
HttpConnection.networkProxyIdle
HttpConnection.networkProxyConnecting
HttpConnection.networkProxyConnected

CHAPTER 3: External Communication Tools HttpConnection object 167

onAuthentication Function Optional. A callback function invoked by the server if authentication
fails using the username and password passed with the original URL.
Use this method to override the username and password by setting
this.username and this.password.

The callback function takes these arguments:

host: the server name string.
realm: a string provided by the server.
isProxy: true if the server is a proxy.
retries: always 1

currentUser: the user name string already presented to the server.
currentPassword: the password string already presented to the
server.

The function should return HttpConnection.actionContinue.

onCallback Function Optional. A callback function for the operation being executed. It is
automatically invoked periodically during synchronous operations.
For an asynchronous operation, each call to pump() invokes this
function. Read-write.

You can use this function to monitor the progress and check the
completion status in this object (the value of this in the function),
in order to provide progress feedback in the user interface and allow
cancellation of long operations. Use this.close() in this function to
halt the operation.

The function takes no arguments. It should return
HttpConnection.actionContinue or
HttpConnection.actionCancel.

password String The connection password for the HTTP server. Set this to override
the password given in the URL. Default is undefined, for an
unsecured or anonymous connection. Read-write.

proxy String The HTTP proxy server. A string containing an IP address and port, or
the empty string to use the operating-system default, or undefined
(the default) for no proxy server. Read-write.

redirect Number The maximum number of redirection tries for the request.

If the server redirects the request to another server (returning a
response status of 301 or 302), this connection resends the request
to that server. If it redirects this number of times without success, it
returns an error.

Default is 5. Read-write.

response String or
File

The response to the request, received from the HTTP server. Read
only.

responseencoding String The encoding to use in converting the request to a string. Default is
ascii. Read-write.

CHAPTER 3: External Communication Tools HttpConnection object 168

responseheaders Array of
String

The response headers, an array of key-value pairs. Read only.

responseStatus Number The response status, an HTTP Response code (such as 200 for OK, or
404 for “file not found”) or -1 if no status has been received. Read
only.

request String or
File

The request to execute on the HTTP server. Read-write.

requestencoding String The encoding to use in converting the request string to binary.
Default is utf8. Read-write.

requestheaders Array of
String

The request headers, an array of key-value pairs. Read-write.

snooze Number A number of milliseconds to wait before checking the completion
status of synchronous operations. Default is 10. Read-write.

status Number The execution status of the request. Read only. A constant value,
one of:

HttpConnection.statusIdle
HttpConnection.statusRunning
HttpConnection.statusCompleted
HttpConnection.statusSuspended
HttpConnection.statusFailed

sync Boolean When true, the connection is synchronous. Operations block the
main thread and return when complete. Default is true. When set to
true, sets async to false. Read-write.

timeout Number An integer, the number of seconds to continue attempting to make
the connection before completing with the message
faultNetTimeout. Default is 5. Read-write.

url String The URL of the HTTP server, and optionally the port, to which to
connect. This includes the protocol (HTTP or HTTPS), and can
include a login user name and password in this format:

http[s]://[[username:]password@]server[:port]

Default is undefined. Read-write.

username String The connection user name for the HTTP server. Set this to override
the user name given in the URL. Default is undefined, for an
anonymous connection. Read-write.

CHAPTER 3: External Communication Tools HttpConnection object 169

HttpConnection object functions

close()
httpObj.close ();

Terminates the open connection. Deleting the object also closes the connection, but not until
JavaScript garbage-collects the object. The connection might stay open longer than you wish if you
do not close it explicitly. There are a limited number of open connections available; failing to close
connections can make you unable to open a new one.

Returns true if the connection was closed, false on I/O errors.

execute()
httpObj.execute ();

Opens a connection if necessary, executes the request on the HTTP server, and receives the
response.

Returns true on success, false on errors. Check fault for the error c ode.

pump()
httpObj.pump ();

Increments the progress of an asynchronous connection. You must call this function periodically to
advance the progress of an asynchronous operation.

Executes the callback procedure defined in onCallback, passing no arguments.

Returns true on success, false on I/O errors.

 170

Index

A

App object
about, 12
functions, 15
properties, 12

applications
Event object types, 43
preferences, 79, 85

asynchronous operations
FTP, 153
HTTP, 164

authentication, 164

B

background tasks
creating, 134
monitoring progress, 140

badge icons, 103
base classes

Operator, 134
Panelette, 77

bibliography, 8
binary files, transferring, 152
BitmapData object

about, 22
constructors, 22
functions, 24
properties, 23

Bridge menu commands, 58
browser windows

adding tabbed palettes, 87
as document object, 28

C

cache
collecting node data, 105
status, 104

CacheData object, 104
CacheElement object, 105
classes

MenuElement, 54
Operand, 133
Operator, 134
Panelette, 77

Color object, 27
colors

creating, 27
editing, 22

commands
adding to menus, 54
Bridge menu, 58
Content pane, 65, 66
Edit menu, 59
Favorites palette, 65, 66
File menu, 58
Folders palette, 66
Help menu, 63
Keywords context menu, 69
Label menu, 61
menu identifiers, 57
Palette context menu, 72
Stacks menu, 61
submenu identifiers, 58
Tools menu, 62
View menu, 60
Window menu, 63

communication
authentication, 164
external tools, 152
HTTP, 163

comparison operator, 144
Content pane

icons, 91
menu commands, 65, 66

Context menu identifiers, 57
conventions, typographic, 8
core infosets

extension support, 106
names and descriptions, 125

D

data
associating types with node-data values, 131
defined for nodes, 123

dialogs
Find, 133, 146
Preferences, 79, 85

Document events, additional actions, 44
Document object

about, 28

Index 171

constructor, 28
functions, 37
properties, 28

documents, reference materials, 8
dynamic text values, 78

E

Edit menu commands, 59
equality operator, 92
equals operator, 143
Event object

about, 42
properties, 42
types, 43

events
application, 43
document, 44
in Preferences dialog, 85
PreferencesDialog, 46
target objects, 42
thumbnail, 45
types, 43
user interactions, 42

example code
asynchronous operation, 154
authentication callback, 165
blocking and not blocking, 164
HTTP requests, 163
metadata access, 72
node-handling extensions, 106
SDK, 113
synchronous operation, 153
thumbnail creation, 91

exists operator, 143
ExtendScript objects and utilities, 10
ExtensionHandler object

about, 106
constructor, 106
methods, 107
properties, 107

ExtensionModel object, 113
extensions

implementing, 113
node handling, 134
node model, 106

F

Favorites object, 48
Favorites palette

navigation nodes, 48
thumbnail menu commands, 66

thumbnail objects, 91
File menu commands, 58
File object

using with FtpConnection object, 152
files

metadata, 72
thumbnail objects, 91
transferring binary, 152

FilterDescription object, 121
filters, customizing, 121
Find dialog

operand objects, 133
populating, 146

Flyout menu identifiers, 58
Folders pane thumbnail menu commands, 65, 66
folders, thumbnail objects, 91
fonts used in this guide, 8
framework, node-handling extensions, 113
FtpConnection object

about, 152
constructor, 154
functions, 159
properties, 154
reference, 154
synchronous and asynchronous operations,

153
using File objects, 152

functions, global, 15

G

global functions, 15
global information, 12

H

handlers
immediate operations, 107
long-running operations, 109
method types, 107

Help menu commands, 63
HttpConnection object

about, 163
asynchronous operations, 164
authentication, 164
constructor, 165
functions, 169
properties, 165
reference, 165
requests and responses, 163

Index 172

I

IconListPanelette object, 51
identifiers

commands, 58
menu, 57

identity operator, 92
image file metadata, 72
images, editing, 22
immediate operations

handler, 107
model, 114

Infoset object
about, 123
constructor, 123
core infosets, 125
functions, 124
properties, 123

InfosetMemberDescription object, 131
InspectorPanel object

about, 52
constructor, 52
functions, 53
properties, 52

J

JavaScript
additional resources, 8
equality operator, 92
inserting, 78
standards information URL, 9

K

Keywords context menu commands, 69

L

Label menu commands, 61
libraries

Web Access, 152
long-running operations

handler, 109
model, 119

M

Mac OS
compiled library files, 152

main thread, blocking, 134
menubar menu identifiers, 57
MenuElement object

about, 54
functions, 54
properties, 55

menus
commands, See commands
extending, 54
identifiers, 57

Metadata object
about, 72
example code, 72
functions, 74
properties, 73

metadata, organizing, 72
modal operations, 134
ModalOperator object, 132
models

immediate operations, 114
long-running operations, 119
operation types, 114

modifiers, scope, 142

N

namespaces, 72
NavBar object

about, 75
functions, 76
properties, 75

navigation bars, configuring, 75
nodes

about, 91
displaying, 113
extending capability, 101
extending model, 106
extension framework, 113
implementing extensions, 134
multiple references, 92
scope modifier, 142
search criteria, 144
searches, 133, 141
sorting, 150
target container, 148

O

objects
App, 12
application, 12
BitmapData, 22
CacheData, 104
CacheElement, 105
color, 27
Document, 28

Index 173

DOM summary, 10
Event, 42
ExtensionHandler, 106
ExtensionModel, 113
Favorite, 48
FilterDescription, 121
FtpConnection, 152
HttpConnection, 163
IconListPanelette, 51
Infoset, 123
InfosetMemberDescription, 131
InspectorPanel, 52
MenuElement, 54
menus and commands, 54
Metadata, 72
ModalOperator, 132
NavBar, 75
node handling, 101
node handling summary, 101
Operand, 133
Operator, 134
Preferences, 79
PreferencesDialog, 85
primary, 10
ProgressOperator, 140
Rank, 141
Scope, 142
SearchCondition, 143
SearchCriteria, 144
SearchDefinition, 146
SearchDetails, 147
SearchSpecification, 148
SortCriterion, 150
TabbedPalette, 87
targets, 42
TextPanelette, 90
Thumbnail, 91
ThumbnailPanelette, 100

Operand object, 133
operands

node searches, 133
search criteria, 144

operations
immediate handler, 107
immediate model, 114
long-running, 109
long-running model, 119
modal, 134
monitoring, 134
synchronous, 132

operations, synchronous and asynchronous, 153,
164

Operator class

about, 134
functions, 137
properties, 134

Operator object, 134
operators

comparison, 144
equality, 92
equals, 143
exists, 143
identity, 92
types, 134

P

Palette context menu commands, 72
Panelette base class

about, 77
IconListPanelette subclass, 51

panelettes
configuring, 77
text objects, 90
thumbnails, 100

panels, thumbnail contextual information, 52
pixels

color characteristics, 27
manipulating, 22

preferences
accessing, 79
adding ScriptUI controls, 85
event properties, 46

Preferences object
about, 79
functions, 84
properties, 79

PreferencesDialog
events, 46
object, 85

ProgressOperator object, 140

R

Rank object, 141
reference materials, 8
requests, HTTP, 163
responses

files vs. strings, 163
HTTP requests, 163

S

Scope object, 142
script-defined palettes, 87
ScriptUI

Index 174

adding controls to dialogs, 85
objects, 10

SearchCondition object, 143
SearchCriteria object, 144
SearchDefinition object, 146
SearchDetails object, 147
searches

conditions, 142
criteria, 144
defining criteria, 144
fields, 144
limiting results, 141
populating Find dialog, 133, 146
ranking results, 141
result node information, 147
scope modifier, 142
target container nodes, 148

SearchSpecification object, 148
SortCriterion object, 150
Stacks menu commands, 61
status

background tasks, 140
cache, 104

status icons, 103
subpanels, See panelettes
synchronous operations, 132

FTP, 153
HTTP, 164

T

TabbedPalette object
about, 87
constructor, 87
methods, 89
properties, 88

target container nodes, 148
target objects, 42
TextPanelette object, 90
threads, blocking, 132
Thumbnail context menu commands, 65, 66
Thumbnail object

about, 91
constructor, 91
functions, 96
multiple references, 92
properties, 93

ThumbnailPanelette object, 100
thumbnails

adding to Favorites, 48
events, 45
metadata, 72
organizing and filtering, 121

Toolbar menu identifiers, 57
Tools menu commands, 62
typographic conventions, 8

U

URLs, thumbnail objects, 91
user interaction events, creating, 42
user interface

navigation bars, 75

V

View menu commands, 60

W

Web Access library, 152
Window menu commands, 63
Windows

compiled library files, 152

X

XMP metadata, accessing, 72

	Welcome
	About this book
	Who should read this book
	What is in this book
	Document conventions
	Typographical conventions
	JavaScript conventions

	Where to go for more information

	Adobe Bridge DOM Object Reference
	App Object
	App properties
	defaultFilterCriteria
	defaultSortCriteria
	displayDialogs
	document
	documents
	eventHandlers
	extensions
	favorites
	folderRoots
	inspectorPanels
	language
	lastSender
	locale
	name
	pendingJobs
	preferences
	synchronousMode
	standardFavorites
	userFavorites
	version
	watchDirInterval
	workspaces

	App functions
	acquirePhysicalFiles()
	addCollectionMember()
	addCredits()
	addCustomRoot()
	addLegalNotice()
	beep()
	bringToFront()
	buildFolderCache()
	cancelTask()
	createCollection()
	deleteCollection()
	enqueueOperation()
	exportKeywordsToFile()
	getCollectionMembers()
	getCollections()
	hide()
	importKeywordsFromFile()
	isCollectionMember()
	isProcessingJob()
	makeSearch()
	openUrl()
	operationChanged()
	purgeAllCaches()
	purgeFolderCache()
	quit()
	registerExtension()
	registerInfoset()
	registerInspectorPanel()
	registerPrefix()
	removeCollectionMember()
	removeCredits()
	removeLegalNotice()
	renameCollection()
	runSlideshow()
	scheduleTask()
	system()
	unregisterExtension()
	unregisterInfoset()
	unregisterInspectorPanel()
	unregisterPrefix()

	BitmapData Object
	BitmapData object constructors
	BitmapData properties
	checksum
	height
	pointer
	rectangle
	rowBytes
	transparent
	width

	BitmapData functions
	clone()
	dispose()
	exportTo()
	getPixel()
	getPixel32()
	loadFromJpegStream()
	resize()
	rotate()
	setPixel()
	setPixel32()

	Color Object
	Color object constructor
	Color properties
	alpha
	blue
	green
	number
	red

	Color functions
	toString()

	Document Object
	Document object constructor
	Document properties
	additionalMetadata
	allowDrags
	browserMode
	context
	displayInspectorView
	groupedSelections
	height
	hwnd
	id
	jsFuncs
	maximized
	minimized
	navbars
	noItems
	owner
	palettes
	position
	presentationMode
	presentationPath
	selectionLength
	selectionsLength
	selections
	showThumbnailName
	sorts
	stacks
	status
	thumbnail
	thumbnailViewMode
	visible
	visibleThumbnails
	visibleThumbnailsLength
	visitUrl
	width
	workspace

	Document functions
	bringToFront()
	center()
	chooseMenuItem()
	close()
	deselect()
	deselectAll()
	execJS()
	flushStackProperties()
	getSelection()
	maximize()
	minimize()
	normalize()
	print()
	refresh()
	resetToDefaultWorkspace()
	restore()
	reveal()
	select()
	selectAll()
	setPresentationMode()
	setWorkspace()

	Event Object
	Event properties
	appPath
	document
	favorites
	isContext
	location
	object
	section
	type
	uri
	url

	Event object types
	App events
	close
	destroy
	Document events
	create
	deselect
	destroy
	loaded
	open
	selectionsChanged
	selectionsChanging
	workspacesPreLoad
	workspacesPostLoad
	Thumbnail events
	add
	hover
	modify
	move
	open
	openWith
	preview
	remove
	PreferencesDialog events
	cancel
	create
	destroy
	disabled
	enabled
	ok

	Favorites Object
	Favorites properties
	length
	section

	Favorites functions
	add()
	addChild()
	associateWorkspace()
	clearAll()
	contains()
	disable()
	enable()
	getChildren()
	insert()
	remove()

	IconListPanelette Object
	IconListPanelette constructor
	IconListPanelette properties
	rows

	InspectorPanel Object
	InspectorPanel constructor
	InspectorPanel properties
	displayInInspector
	displayTitle
	flyoutMenuId
	hidePanelForThumbnail
	minimized
	panelettes
	sortPosition
	title
	visible
	wide

	InspectorPanel functions
	registerPanelette()
	unregisterPanelette()

	MenuElement Object
	MenuElement class functions
	create()
	find()
	remove()

	MenuElement properties
	altDown
	canBeChecked
	checked
	cmdDown
	ctrlDown
	enabled
	id
	onDisplay
	optionDown
	onSelect
	shiftDown
	text
	type

	Adobe Bridge menu and command identifiers
	Top-level menu identifiers
	Menu bar submenu and command identifiers
	Toolbar menus and commands
	Context and flyout submenus and commands

	Metadata Object
	Metadata properties
	namespace
	xmpPropertyName

	Metadata functions
	applyMetadataTemplate()
	read()
	serialize()

	NavBar Object
	NavBar properties
	height
	id
	jsFuncs
	onResize
	type
	visible

	NavBar functions
	add()
	execJS()
	print()

	Panelette Base Class
	Panelette class properties
	name
	titleMarkup

	Panelette markup elements

	Preferences Object
	Preferences properties
	extraMetadata
	showName
	AccentColor
	AutoExportCaches
	CacheDirectory
	Favorites
	FavoritesDisplayNames
	FileSize
	HideEmptyFields
	HideUnknownOpeners
	ImageBackdrop
	Keyboard
	Label1
	Label2
	Label3
	Label4
	Label5
	LabelCtrlKey
	Language
	MRUCount
	MRUFolders
	PermittedStartupScripts
	PreferencePanel
	ShowCameraRawInterface
	ShowName
	ShowPlacard
	ShowSecondLineMetadata
	ShowThirdLineMetadata
	ShowFourthLineMetadata
	ShowFifthLineMetadata
	ShowTooltips
	StackFrameRate
	StartupScriptsShouldLoad
	ThumbnailQuality
	UIBrightness
	UseSoftwareRendering
	anyPropertyName

	Preferences functions
	clear()
	resetFileAssociations()
	resetWarningDialogs()

	PreferencesDialog Object
	PreferencesDialog functions
	addPanel()
	close()

	TabbedPalette Object
	TabbedPalette constructor
	TabbedPalette properties
	TabbedPalette object methods
	setLocation()
	remove()

	TextPanelette Object
	TextPanelette constructor
	TextPanelette properties
	keyValuePairs
	thumbnails

	Thumbnail Object
	Thumbnail object constructor
	Multiple references to the same node

	Thumbnail properties
	extensionName
	aliasType
	children
	container
	core
	creationDate
	exists
	extensions
	hasMetadata
	hidden
	iconPath
	label
	lastModifiedDate
	location
	locked
	metadata
	mimeType
	model
	name
	parent
	path
	rating
	rotation
	spec
	synchronousMetadata
	type
	uri

	Thumbnail functions
	copyTo()
	moveTo()
	open()
	openWith()
	refresh()
	registerInterest()
	remove()
	resolve()
	revealInSystemBrowser()
	unregisterInterest()
	verifyExternalChanges()

	ThumbnailPanelette Object
	ThumbnailPanelette constructor
	ThumbnailPanelette properties
	keyValuePairs
	textPosition
	thumbnails

	Node-Handling Extension Object Reference
	Badge Object
	Badge properties
	badge
	toolTip

	CacheData Object
	CacheData properties
	cookie
	status

	CacheElement Object
	CacheElement properties
	infosetNames
	path

	CacheElement functions
	doAuthentication()

	ExtensionHandler Object
	ExtensionHandler object constructor
	ExtensionHandler properties
	infosets
	methods
	name
	prefixes

	ExtensionHandler methods
	Immediate handler operations
	getBridgeURIForPath()
	getBridgeURIForSearch()
	getSidecars()
	makeModel()
	Long-running handler operations
	acquirePhysicalFiles()
	duplicate()
	moveToTrash()
	rotate()
	setLabels()
	setRatings()
	setXmp()

	ExtensionModel Object
	ExtensionModel constructor
	ExtensionModel properties
	privateData

	ExtensionModel methods
	Immediate model operations
	addToDrag()
	authenticate()
	cancelRefresh()
	createNewContainer()
	doLosslessRotate()
	exists()
	getCacheStatus()
	getDisplayName()
	getFilterCriteria()
	getParent()
	getPhysicalFileName()
	getSearchDefinition()
	getSearchDetails()
	getSortCriteria()
	getUserSortOrder()
	initialize()
	lock()
	needAuthentication()
	refreshInfoset()
	registerInterest()
	registerStructuralInterest()
	setName()
	setUserSortOrder()
	supportsLosslessRotate()
	supportsUserSortOrder()
	terminate()
	unlock()
	unregisterInterest()
	unregisterStructuralInterest()
	verifyExternalChanges()
	wouldAcceptDrop()
	Long-running model operations
	copyFrom()
	eject()
	moveFrom()

	FilterDescription Object
	FilterDescription constructor
	FilterDescription properties
	closedValueList
	displayName
	filterType
	infosetMember
	isExclusive
	name
	xmpNamespace
	xmpProperty

	Infoset Object
	Infoset object constructor
	Infoset properties
	cacheData
	description
	extension
	memberValueName
	infosetName

	Infoset functions
	addChild()
	initializeMembersToDefaultValues()

	Core infosets
	immediate
	item
	quickMetadata
	badges
	cameraRaw
	children
	fullsize
	icon
	linktarget
	metadata
	preview
	thumbnail

	InfosetMemberDescription Object
	InfosetMemberDescription constructor
	InfosetMemberDescription properties
	name
	type

	ModalOperator Object
	ModalOperator constructor

	Operand Object
	Operand object constructor
	Operand properties
	valueName
	displayName

	Operator Class
	Operator common properties
	cancelRequested
	conflictType
	conflictMessage
	description
	errorTarget
	newNames
	operationStatus
	percentageComplete
	processingStatus
	progressMessage
	resolvePolicy
	resolveMethod
	result
	sources
	target
	timeout

	Operator functions
	getConflictInfo()
	getPercentageComplete()
	getProcessedNodeCount()
	getProcessingStatus()
	getProgressMessage()
	getTotalBytesTransferred()
	getTotalNodeCount()
	getType()
	resolveConflict()
	resume()
	start()
	stop()

	ProgressOperator Object
	ProgressOperator constructor

	Rank Object
	Rank object constructor
	Rank properties
	valueName
	displayName

	Scope Object
	Scope object constructor
	Scope properties
	valueName
	displayName

	SearchCondition Object
	SearchCondition object constructor
	SearchCondition properties
	searchField
	operatorType
	operand

	SearchCriteria Object
	SearchCriteria object constructor
	SearchCriteria properties
	operands
	operandType
	operatorTypesToDisable
	searchField
	searchFieldDisplay
	searchFieldSort

	SearchDefinition Object
	SearchDefinition object constructor
	SearchDefinition properties
	criteriaList
	defaultResultsLimit
	ranks
	scopeSpecifiers

	SearchDetails Object
	SearchDetails object constructor
	SearchDetails properties
	searchCriteria
	searchTargetUri

	SearchSpecification Object
	SearchSpecification object constructor
	SearchSpecification properties
	conditionList
	conjunction
	maximumResults
	rankOrdering
	rankField
	scopeSpecifiers

	SortCriterion Object
	SortCriterion object constructor
	SortCriterion properties
	displayName
	infosetMember
	name
	type
	xmpNamespace
	xmpUri

	External Communication Tools
	Loading the Web Access library
	FtpConnection object
	Using File objects with the FtpConnection object
	Synchronous and asynchronous operation
	FtpConnection object reference
	FtpConnection object constructor
	FtpConnection object properties
	active
	ascii
	async
	binary
	cd
	dates
	error
	errorString
	files
	flags
	isComplete
	isOpen
	onCallback
	passive
	password
	proxy
	renamestyle
	sizes
	sync
	timeout
	url
	username
	FtpConnection object functions
	cancel()
	close()
	chmod()
	cwd()
	date()
	del()
	exists()
	get()
	isDir()
	ls()
	mkdir()
	open()
	pump()
	put()
	rename()
	rmdir()
	size()

	HttpConnection object
	Requests and responses
	Asynchronous operations
	Authentication
	HttpConnection object reference
	HttpConnection object constructor
	HttpConnection object properties
	async
	chunked
	bytesReceived
	bytesSent
	fault
	isOpen
	lastread
	method
	mime
	network
	onAuthentication
	onCallback
	password
	proxy
	redirect
	response
	responseencoding
	responseheaders
	responseStatus
	request
	requestencoding
	requestheaders
	snooze
	status
	sync
	timeout
	url
	username
	HttpConnection object functions
	close()
	execute()
	pump()

	Index

