
ADOBE® DEVICE CENTRAL CS4

SDK PROGRAMMER’S GUIDE

© 2008 Adobe Systems Incorporated. All rights reserved.

Adobe® Device Central CS4 SDK Programmer’s Guide

If this guide is distributed with software that includes an end user agreement, this guide, as well as the software
described in it, is furnished under license and may be used or copied only in accordance with the terms of such license.
Except as permitted by any such license, no part of this guide may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, electronic, mechanical, recording, or otherwise, without the prior written
permission of Adobe Systems Incorporated. Please note that the content in this guide is protected under copyright law
even if it is not distributed with software that includes an end user license agreement.

The content of this guide is furnished for informational use only, is subject to change without notice, and should not be
construed as a commitment by Adobe Systems Incorporated. Adobe Systems Incorporated assumes no responsibility or
liability for any errors or inaccuracies that may appear in the informational content contained in this guide.

Any references to company names in sample templates are for demonstration purposes only and are not intended to
refer to any actual organization.

Adobe, the Adobe logo, Adobe Device Central, Adobe Device Central Software Developer’s Kit, Adobe Illustrator, Adobe
Photshop, and Flash are either registered trademarks or trademarks of Adobe Systems Incorporated in the United States
and/or other countries. Microsoft and Windows are either registered trademarks or trademarks of Microsoft Corporation
in the United States and/or other countries. Apple, Mac OS, and Macintosh are trademarks of Apple Computer, Inc.,
registered in the United States and other countries. All other trademarks are the property of their respective owners.

The information in this document is furnished for informational use only, is subject to change without notice, and should
not be construed as a commitment by Adobe Systems Inc. Adobe Systems Inc. assumes no responsibility or liability for
any errors or inaccuracies that may appear in this document. The software described in this document is furnished under
license and may only be used or copied in accordance with the terms of such license.

Adobe Systems Inc., 345 Park Avenue, San Jose, California 95110, USA.

 1

Contents

Preface . 2
About This Book . 3

1 Using the Device Central SDK . 6
Task Plug-in Components . 6

Adobe Device Central Object Model . 9

Task Plug-in Interface . 9

Processing Order . 12

2 Getting Started: HelloWorld . 13
Plug-in Files . 14

Installing the Plug-in . 15

Configuring a Task . 15

Creating an Icon . 17

Creating a Script . 18

Localizing Your Task . 19

Testing Your Task . 20

3 Creating a User Interface for Your Task . 22
Creating User Interface Objects . 22

Managing User Interface Objects . 26

4 Using ZStrings for Localization . 27
The ZString Format . 27

Working with ZStrings . 28

Index . 30

 2

Preface

The Adobe® Device Central Software Development Kit (SDK) allows you to create custom plug-ins that
extend the tasks provided as part of Device Central’s project feature. The Device Central SDK is based on
ExtendScript and XML.

The SDK is available for download from http://www.adobe.com/devnet/sdks.html. It contains the
elements listed in the table below. All paths are relative to the location that you choose during installation.
For convenience, the SDK install location is referred to as <DC_SDK>.

In addition to the four sample task plug-ins that are part of this SDK, Adobe Device Central ships with three
additional sample task plug-ins. The additional plug-ins are not packaged with the Device Central SDK, but
are part of the Adobe Device Central product. You can find the code for each of these in the
<REQUIRED_TASKS> folder described on page 5. This folder is where Adobe Device Central places required
tasks that are part of the application. These additional plug-ins are listed in the table below.

<DC_SDK>/Documents/ADC SDK Guide.pdf This programmer’s guide

<DC_SDK>/Documents/ADC SDK Reference.pdf The programmer’s reference

<DC_SDK>/Documents/JavaScript Tools Guide
CS4.pdf

The Adobe JavaScript reference

<DC_SDK>/Documents/adat.xsd XML schema file

<DC_SDK>/Documents/task.xsd XML schema file

<DC_SDK>/Sample Plugins/ Sample code that demonstrates task
development

HelloWorld A basic sample useful in getting started with the
ADC SDK

CreateZip A task plug-in that demonstrates how to use user
interface components as well as the packaging
of resources in an ADC task

SendToWeb A task plug-in that sends assets to an external
service.

XMP Metadata A task plug-in that demonstrates the
manipulation of SWF resources XMP metadata

<DC_SDK>/Sample Web Service/catalog A sample Web Service application to be used
with the SendToWeb sample task

Bluetooth Sends a file to a Bluetooth device.

CopyFile Copies a file to a specified file system directory.

SendToFTP Sends a file to an FTP server.

Preface About This Book 3

See “Default Adobe Device Central installation folder” on page 4 for the location of the Adobe Device
Central installation directory on your system.

The Adobe Device Central SDK uses the Adobe ExtendScript language and XML.

The ExtendScript language

Adobe provides an extended version of JavaScript called ExtendScript, which is used in many Adobe
products including Adobe Device Central. ExtendScript is a complete implementation of ECMA JavaScript,
plus additional tool and utilities. ExtendScript scripts use a .jsx extension, rather than the typical .js
extension.

ExtendScript scripts can be used in either Windows or Mac OS. Your Device Central JSX scripts load
automatically when you open the application by placing the scripts in the application’s Tasks folder. For
more information see Chapter 1, “Using the Device Central SDK.”

You can use any text editor to write scripts in JavaScript. Alternatively, you can use the ExtendScript Tool
Kit (ESTK). The ESTK is an interactive development environment (IDE) for JavaScript supplied with all
JavaScript-enabled Adobe applications. The ESTK is the default editor for ExtendScript files that use the
extension .jsx. See “ExtendScript installation folder” on page 5” for platform-specific information on the
toolkit installation location.

For a description of the objects, tools, and utilities defined by Adobe ExtendScript, including the
ExtendScript Toolkit, see the JavaScript Tools Guide. This guide is available in the ExtendScript application
under Help > SDK or, alternatively, you can find the guide at <DC_SDK>/Documents/JavaScript Tools
Guide CS4.pdf.

The XML markup language

Extensible Markup Language (XML) is a general-purpose specification for defining custom markup
languages. Device Central SDK configuration files are written in XML.

The format of Device Central XML files is governed by the XML schema file adat.xsd.

To learn more about XML and XML schemas, go to http://www.w3.org/XML/.

About This Book
This book includes the following sections:

➤ Chapter 1, “Using the Device Central SDK,” provides an introduction to the Device Central SDK, with
the basics of how ExtendScript tasks work, and the concepts and terminology used by the Device
Central SDK scripting environment.

➤ Chapter 2, “Getting Started: HelloWorld,” takes a detailed look at a simple task that displays a greeting
upon request.

Chapter 3, “Creating a User Interface for Your Task,” explains how to create and populate a dialog box
in your task’s .jsx file.

Chapter 4, “Using ZStrings for Localization,” explains how to localize your user interface for different
languages.

Preface About This Book 4

Conventions used in this document

The following type styles are used for specific types of text.

NOTE: Notes highlight important points that deserve extra attention.

Folders referenced in this document

The folders referenced in this document are summarized here. For convenience, they may be referred to by
the abbreviated names shown below:

<ADC> is the Adobe Device Central folder/product installation directory.

<DC_SDK> is the Adobe Device Central SDK installation directory.

<TASKS> is the directory in which you should place any Adobe Device Central task plug-ins you
develop.

<REQUIRED_TASKS> is the directory where AdobeDevice Central places required task plug-ins that are
part of the application.

<ESTK> is the ExtendScript toolkit install location.

Default Adobe Device Central installation folder

User tasks folder

The operating-system-specific paths for the user tasks folder, <TASKS>, are given in the table below. You
need to create this folder if does not already exist.

Monospace font ExtendScript code and literal values, such as function names, XML code,
file names, and paths.

italic Variables or placeholders in code. For example, in name="myName", the
text myName represents a value you are expected to supply, such as
name="Fred". Also indicates the first occurrence of a new term.

Blue underlined text A hyperlink you can click to go to a related section in this book or to a URL
in your web browser.

Sans-serif bold font The names of Adobe Device Central UI elements (menus, menu items, and
buttons). The > symbol is used as shorthand notation for navigating to
menu items. For example, Edit > Cut refers to the Cut item in the Edit
menu.

Operating System Path

Mac OS /Applications/Adobe Device Central CS4

Windows XP system drive\Program Files\Adobe\Adobe Device Central CS4

Windows Vista system drive\Program Files\Adobe\Adobe Device Central CS4

Preface About This Book 5

Required tasks folder

The required tasks folder, <REQUIRED_TASKS>, can be found at the following operating-system-specific
locations.

NOTE: While the plug-ins in this folder can be used for reference, the contents of this folder should not be
changed.

ExtendScript installation folder

The operating-system-specific paths for the ExtendScript Toolkit installation folder, <ESTK>, are given in
the table below.

Operating System Path

Mac OS /Users/username/Library/Application Support/Adobe/Adobe
Device Central CS4/Tasks/

Windows XP system drive\Documents and Settings\username\Local
Settings\Application Data\Adobe\Adobe Device Central
CS4\Tasks

Windows Vista system drive\Users\username\AppData\Local\Adobe\Adobe
Device Central CS4\Tasks

Operating System Path

Mac OS <ADC>/DeviceCentral.app/Contents/MacOS/Required/Tasks

Windows XP <ADC>\Required\Tasks\

Windows Vista <ADC>\Required\Tasks\

Operating System Path

Mac OS /Applications/Utilities/Adobe Utilities/ ExtendScript
Toolkit CS4

Windows XP system drive\Program Files\Adobe\Adobe
Utilities\ExtendScript Toolkit CS4

Windows Vista system drive\Program Files\Adobe\Adobe
Utilities\ExtendScript Toolkit CS4

 6

1 Using the Device Central SDK

This chapter provides the background information you need to create your first Device Central task
plug-in. It describes:

The files that make up a Device Central task plug-in. See “Task Plug-in Components” on page 6.”

The order in which Device Central task plug-ins are run. See “Processing Order” on page 12.”

The Device Central object model. See “Adobe Device Central Object Model” on page 9.”

The Task.jsx interface. See “Task Plug-in Interface” on page 9.”

Task Plug-in Components
This section describes how to create a Device Central task plug-in including such topics as:

Determining what components will make up your task plug-ins. See “Task plug-in files” on page 6.”

Determining where to place your task plug-in’s files. See “Locating your task plug-in’s files” on
page 11.”

Organizing the files that make up your task plug-in. See “Task folder structure” on page 11.”

Locating your task plug-in’s ZStrings. See “Localizing your task plug-in” on page 12.”

Task plug-in files

Every Device Central task plug-in consists of four required components, listed below. Your plug-in also
needs localization files if you intend to make it available in multiple locales. See Chapter 4, “Using ZStrings
for Localization” for additional information.

A graphical view of the files that make up a task is shown below.

Component Description

task.xml The task plug-in’s configuration file

task.png The task plug-in’s icon to be placed inside the project toolbar

task.jsx The task plug-in’s script

Localization files Folders containing ZStrings for each supported locale

CHAPTER 1: Using the Device Central SDK Task Plug-in Components 7

Task.xml

The Task.xml file defines general information about the task and the appearance of its user interface. The
content of this file is governed by the schemas described in “Device Central Task Schema” in the Adobe
Device Central CS4 SDK Programmer’s Reference.

Broadly speaking, a Device Central plug-in XML file includes two types of information:

The general element contains basic information that Device Central needs, such as its title, the name
of menu items used by the task, the task’s icon, and the path to the task’s JavaScript file.

The dialog element contains information about the task’s user interface.

Use the dialog element to establish the visual representation of the configuration dialog your task
needs. You can only set the visual attributes of a user interface component within the dialog element.
The Device Central API lacks the ability to dynamically add UI components during runtime. Therefore,
you must define all components your task needs here. See Chapter 3, “Creating a User Interface for
Your Task,” for more information.

Task.png

The Task.png file is the graphical representation of the task in the project window. The icon must be a
PNG or BMP file, 16 by 16 bits in size.

Task.jsx file

The Task.jsx file contains the logic required for the plug-in and handles any user input. Broadly speaking,
this file consists of three mandatory functions along with any other helper functions those functions call.
Each of these functions has access to the task and project objects. For more detailed information see “Task
Plug-in Interface” on page 9.

Task

Task.xml

Task.jsx
Task.png

es_es

Task.zstrings

en_us

Helper.jsx
Helper.jsx

Configuration
& UI

Logic Icon Localization

Adat.xsd
Task.xsd

Task Plug-in

CHAPTER 1: Using the Device Central SDK Task Plug-in Components 8

Task plug-in libraries

As previously stated, plug-ins use ExtendScript, an extended implementation of the JavaScript language
used by many Adobe applications that provide a scripting interface. Therefore, when developing a new
plug-in, you can make use of the features provided by the JavaScript language as well as the additional
features and utilities provided by ExtendScript. Adobe Device Central also provides a library of objects to
assist in the creation of plug-ins.

The following sections describe how to work with each of these libraries:

JavaScript

ExtendScript

JavaScript

When creating a plug-in, you can use the familiar JavaScript constructs including variables, functions,
statements, operators, control structures, and exception handling. JavaScript also provides a series of core
classes, including String, Array, Boolean, and Number, that are available for use in your plug-ins.

For detailed documentation on the JavaScript language or information on how to use it, see publicly
available web resources or any of numerous works on this subject, including the following:

The public JavaScript standards organization website: www.ecma-international.org

JavaScript: The Definitive Guide, 5th Edition; Flanagan, D.; O’Reilly 2006; ISBN 0-596-10199-6

JavaScript Programmer's Reference; Horn, S; Wrox; ISBN 0-470344-72-5

JavaScript Bible. 6th Edition; Goodman, D., Eich, B., and Morrison, M.; John Wiley and Sons 2007; ISBN
0-470-06916-3

ExtendScript

These are some of the features and utilities provided by Adobe’s extended implementation of JavaScript
that can be used when creating a Device Central task plug-in.

Cross-platform file-system access through the File and Folder classes.

Communication between Adobe message-enabled applications through the defined BridgeTalk
class (that is, Adobe Flash, Adobe Photoshop®, and Adobe Illustrator®).

The ExternalObject class provides a way to extend Device Central JavaScript DOM with your own
C or C++ shared libraries.

The XML object allows you to process XML within your script.

Scripting support for the manipulation of XMP metadata.

Localization of text.

For more detailed information and sample code for the features and utilities provided by ExtendScript see
the JavaScript Tools Guide.

CHAPTER 1: Using the Device Central SDK Adobe Device Central Object Model 9

Adobe Device Central Object Model
The Device Central Object Model makes available a number of objects that facilitate the development of
plug-ins. For complete information on the Device Central objects, see “Adobe Device Central DOM Object
Reference” in the Adobe Device Central CS4 SDK Programmer’s Reference.

Device Central objects

A Project object provides information about a Device Central project.

A Task object contains information regarding a Device Central task plug-in.

A Device object provides device profile information.

User interface objects

A Control object represents a distinct user interface widget.

A StatusDialog object represents a user interface dialog box that informs the user of task execution
progress.

Utility

A ZIPFile object allows the creation and management of archive files.

A ListItem object allows the creation of objects with dynamic properties.

A URLStream object provides a mechanism to communicate with external resources over the network.

A Bluetooth object is used to manage and communicate with Bluetooth-enabled devices.

For additional information of each of the objects described above, see “Adobe Device Central DOM Object
Reference” in the Adobe Device Central CS4 SDK Programmer’s Reference.

Task Plug-in Interface
The Task.jsx script contains all the processing required for the task plug-in, including the handling of
user input.

Broadly speaking, the Task.jsx file consists of three mandatory functions along with any other helper
methods those functions call. Each of these functions has access to the task and project objects.

CHAPTER 1: Using the Device Central SDK Task Plug-in Interface 10

Mandatory functions

The mandatory functions are listed in the table below.

Function When it’s called? Use

configure(toolbar) Called before the Task configuration dialog is presented to
the user.

For tasks initiated from the toolbar, called each time
the task is selected to run.

The argument toolbar is set to true in this case.

For tasks initiated from the Task section of the project,
called:

➣ Every time the user selects the Run task option, if
the Show dialog before running task option was
checked at the time of task creation.

Every time the user selects the Edit task option.

The argument toolbar is set to false in these cases.

Sets up the user
interface
elements in the
configuration
dialog before it is
displayed.

execute() Called when the user requests that the task run. The user
can click one of the tasks in the toolbar, and then click the
configuration dialog’s Run button, or can click the Run
task icon in the Tasks section after a saved task is selected.

Retrieves user
interface input
from the
configuration
dialog and
processes any
request.

install() Called each time an instance of a task plug-in is created.

For tasks in the project toolbar, this happens once
when the project is first created or opened.

For tasks in the Tasks section of the project,
install() is called:

When the user creates a new instance of the task
by choosing that task from the New Task menu.

Each time a project with that saved task is
re-opened.

Sets up default
task information.

CHAPTER 1: Using the Device Central SDK Task Plug-in Interface 11

Global variables

All functions in the Task.jsx file have access to the global variables task and project.

Helper methods

In addition to the three required methods (install(), configure(), and execute()), developers can
add any number of helper methods and variables to a task plug-in’s main script to ease the development
of the plug-in. Developers can also use a modular approach to the development of plug-ins by using
ExtendScript directives to include external scripts. For example:

#include "myfile.jsx"

See “Modular Programming Support” section in the JavaScript Tools Guide for more details.

Locating your task plug-in’s files

Device Central looks for plug-ins in the two folders listed below.

The <REQUIRED_TASKS> folder and subfolders is the first hierarchy level. This folder is reserved for use
by Adobe for task plug-ins that ship with Device Central.

The Adobe Device Central CS4 user data folder <TASKS> and subfolders in the first hierarchy level. This
is where custom user-created or third-party task plug-ins should be placed.

For more information of how Device Central manages plug-ins, see “Processing Order” on page 12.”

Task folder structure

All of the core files that make up a task plug-in reside in a single folder. Each of a task plug-in’s component
files must appear within that folder along with a folder that contains localization files. If a complex plug-in
requires subfolders to organize its files, all paths within the files in the subfolder should be relative to the
top level task.xml file.

Typically, the files Task.xml, Task.png, and Task.jsx are placed at the first level within the task folder. In
addition, the first level within that folder contains one folder for each locale supported by the plug-in. Each
of those folders contains a ZString dictionary file (Task.zstring) with the localized text.

Variable Type Description

task Task An instance of the plug-in currently in use that provides access to its
components and allows you to interact with the client machine.

See “Adobe Device Central DOM Object Reference” in the Adobe
Device Central CS4 SDK Programmer’s Reference for more details.

project Project An instance of the current active project that provides access to its
resources and devices.

See “Adobe Device Central DOM Object Reference” in the Adobe
Device Central CS4 SDK Programmer’s Reference for more details.

CHAPTER 1: Using the Device Central SDK Processing Order 12

The name of the ZString folder for each locale is the concatenation of an abbreviation for the language,
followed by an underscore, followed by an abbreviation for the country. For example, the folder en_us
would hold ZStrings in English for use in the United States. Similarly, the folder ja_jp would hold ZStrings
in Japanese for use in Japan.

The organization of a possible Tasks folder is illustrated below.

Localizing your task plug-in

The Device Central task plug-in architecture supports the ZString format.

Each task plug-in must supply its own localization files.

Any ZStrings that appear inside the XML are localized automatically if a dictionary for the locale
required exists.

Strings appearing inside a JavaScript file must be localized using the global localize() function
found in the ExtendScript functionality. For more information on how to use ZString to localize your
plug-in see Chapter 4, “Using ZStrings for Localization.”

Processing Order
When starting up tasks, Device Central first looks for plug-ins in the <REQUIRED_TASKS> folder. Only after
all those tasks are loaded does it look for task plug-ins in the user data folder. This ensures that the
common tasks maintained by the Device Central team—Bluetooth, CopyFile, and SendToFTP—are
loaded before any user task plug-ins.

Tasks-->CopyFile-->copy.png

|

HelloWorld.xml

en_GB-->HelloWorld.zstrings

en_US-->HelloWorld.zstrings

en_ES-->HelloWorld.zstrings

HelloWorld.png
|

-->HelloWord-->HelloWorld.jsx

|

|
FileCopy.jsx
|
FileCopy.xml

|
|
|
|
|
|

|

|

 13

2 Getting Started: HelloWorld

This chapter helps you get started in creating Device Central task plug-ins by walking you through the
creation of the HelloWorld task plug-in. This task is added to the list of existing tasks as soon as it is
installed in the user’s custom tasks folder.

You can find all the code for the HelloWorld task plug-in in the Device Central SDK sample plug-ins
directory (<DC_SDK>/SamplePlugins).

When the user chooses this task from the task list, a greeting is displayed. Sample output from this task is
shown below.

CHAPTER 2: Getting Started: HelloWorld Plug-in Files 14

The HelloWorld task plug-in works in either a Windows or a Macintosh OS environment. You can use the
IDE of your choice, but the use of the ExtendScript Toolkit is recommended.

While the HelloWorld task plug-in is simple, it illustrates key techniques you need to master in order to
create your own, more sophisticated tasks. In particular, this example shows you how to:

Determine what files are needed for the HelloWorld task plug-in. See “Plug-in Files” on page 14.

Install the HelloWorld task plug-in. See “Installing the Plug-in” on page 15.

Configure the HelloWorld task plug-in. See “Configuring a Task” on page 15.

Create an icon for your task plug-in. See “Creating an Icon” on page 17.

Create an ExtendScript script for the HelloWorld task plug-in. See “Creating a Script” on page 18.

Localize the HelloWorld task plug-in. See “Localizing Your Task” on page 19.

Run and debug your task plug-in. See “Testing Your Task” on page 20.

All of the concepts and techniques described in this chapter are discussed in great detail in elsewhere in
this book.

Plug-in Files
Building your HelloWorld task plug-in requires that you create several files:

HelloWorld.xml contains the task plug-in’s description information. This is the information Device
Central uses to locate and set up your task for user viewing. Among other things, it references the
task’s icon, script, and localization files described below.

See “Configuring a Task” on page 15 to learn how to build your plug-in’s description file.

HelloWorld.png is the task’s icon. This is the image that the users see on the toolbar.

See “Creating an Icon” on page 17 to learn how to create the HelloWorld icon.

HelloWorld.jsx is the ExtendScript file for this plug-in. The logic necessary to carry out the task’s
work can be found in this file.

See “Creating a Script” on page 18 to learn how to write the JavaScript code for the HelloWorld task
plug-in.

In addition, because the HelloWorld task plug-in is localized for three countries—the United States, Great
Britain, and Spain—you need to create a set of ZStrings for each of these locales.

CHAPTER 2: Getting Started: HelloWorld Installing the Plug-in 15

Installing the Plug-in
In order for Device Central to discover your plug-in files, they should be placed in a special directory.
Installing your task means creating the appropriate folder and placing the required files in that folder.

1. Begin by locating the task directory where you will place your own task’s folder. Follow the directions
below for your operating system:

On Windows Vista, place the task’s folder in Users\username\AppData\Local\Adobe\Adobe
Device Central CS4\Tasks.

On other Windows platforms, place the task’s folder in C:\Documents and
Settings\Users\username\LocalSettings\Application Data\Adobe\Adobe Device

Central CS4\Tasks.

On the Mac OS, place the task’s folder in /Users/usename/Library/Application
Support/Adobe Device Central CS4/Tasks.

For simplicity, these directories are referred to as <TASKS> in the remainder of this book.

2. Create a new folder named HelloWorld for your task’s files.

Having installed your task, you are now ready to create the HelloWorld task’s description file.

Configuring a Task
The description file, HelloWorld.xml, provides Device Central with information it needs to correctly run
your task.

1. Use any text editor to create the HelloWorld.xml file.

2. Save HelloWorld.xml in <TASKS>/HelloWorld.

3. Add the XML version number and the encoding on the first line of HelloWorld.xml.

<?xml version=”1.0” encoding=”UTF-8”?>

4. Add the task element in the adat namespace along with its attributes.

<adat:task xmlns:adat=”http://ns.adobe.com/devicecentral/task/”
guid=”5cff2c68-96b3-11dc-8314-0800200c9a7e”
version=”1”>

</adat:task>

adat is the default prefix for the task namespace.

The xmlns:adat element defines the XML namespace used by the task. The value is
http://ns.adobe.com/devicecentral/task/.

The task element has two attributes:

The guid attribute has the value 5cff2c68-96b3-11dc-8314-0800200c9a7e.

This value is a random 128-bit Global Unique Identifier (GUID) that uniquely identifies the task.
GUIDs consist of a string of random hexadecimal digits that are displayed in successive groups of

CHAPTER 2: Getting Started: HelloWorld Configuring a Task 16

8, 4, 4, and 12 hexadecimal digits with groups separated by the hyphen (-) character. The pattern is
thus xxxxxxxx-xxxx-xxxx-xxxxxxxxxxxx, where each x is a hexadecimal digit.

Any value that uniquely identifies your plug-in is valid here even if it does not conform to the GUID
standard.

The version attribute has the value 1, signifying that this is the first version of the HelloWorld
task.

5. When the task element is defined, add the first of its two children, general. This element needs a
number of child elements whose content defines basic information Device Central uses to configure
this task.

HelloWorld.xml now has the following content:

<?xml version=”1.0” encoding=”UTF-8”?>
<adat:task xmlns:adat=”http://ns.adobe.com/devicecentral/task/”

guid=”5cff2c68-96b3-11dc-8314-0800200c9a7e” version=”1”>
<general>

</general>
</adat:task>

6. Add each of the children of the general element.

The elements to add are:

title, whose value attribute is the text string that appears in the project window when you
create a new task. The type of a task is the title element.

menuItem, whose value attribute is the localized text string that appears on the Device Central’s
Project > New Task menu.

toolTip, whose value attribute is the localized text string to be used for the task’s tooltip.

script, specifying the task’s script path, relative to the XML file.

icon, the path of the icon file, relative to the XML file.

localization path, the path relative to the XML of the task’s localization files.

toolBar, set to true if the task should appear in the Device Central project toolbar. Otherwise it is
false.

The general element now looks like this:

<general>
<title value="$$$/HelloWorld/Title=Hello World"/>
<menuItem value="$$$/HelloWorld/Menu=Say Hello World..."/>
<toolTip value="$$$/HelloWorld/ToolTip=Say Hello World"/>
<script path="HelloWorld.jsx"/>
<icon path="HelloWorld.png"/>
<localization path="HelloWorld.zstrings" />
<toolbar value="true" />

</general>

7. Add the dialog element, the second of the task element’s two children. This element sets up the
initial user interface for the HelloWorld task.

CHAPTER 2: Getting Started: HelloWorld Creating an Icon 17

This element has attributes used to determine height, width, and minimum height and width of the
configuration dialog box.

<dialog height="250" width="600" minHeight="250" minWidth="600">
</dialog>

8. Add the dialog element’s child element container along with its attributes layout and sizex. These
attributes determine the layout and the distribution of the user interface elements in the dialog.

<dialog height="250" width="600" minHeight="250" minWidth="600">
<container layout="vertical" sizex="scale">
</container>

</dialog>

9. Add the container element’s four child elements. Three are staticText elements with differing
attribute and attribute values. One is a textField element that allows a place for the user to enter a
personalized message.

The staticText elements provide display information that can be set either in the XML file itself or
dynamically in the code.

<dialog height="250" width="600" minHeight="250" minWidth="600">
<container layout="vertical" sizex="scale">

<staticText width="300" alignment="left">
<label value="$$$/HelloWorld/UI/EnterName=

Enter your name for a personalised message:" />
</staticText>

<textField id="name" width="250" sizex="scale"/>

<staticText id="installmessage" width="430" alignment="left">
 <label value="" />
 </staticText>

 <staticText id="confmessage" width="430" alignment="left">
 <label value="" />
 </staticText>

</container>
</dialog>

10. The HelloWorld.xml description file is complete. Save and close the file.

Creating an Icon
Each task plug-in that appears in the task bar needs an icon to represent that task to the user. An icon is a
16x16 bitmap image in the Portable Network Graphics (PNG) format.

You can create the HelloWorld icon using any bitmap editor.

1. Create a file that is 16 pixels wide and 16 pixels high.

2. Create an icon that represents your HelloWorld task.

CHAPTER 2: Getting Started: HelloWorld Creating a Script 18

3. Save the icon under the name HelloWord.png.

Creating a Script
The actual HelloWorld script is the HelloWorld.jsx file. This file contains three required functions:

The install() function is called each time a new instance of a task is created.

The configure() function does any work necessary to configure the task. It is called before the
Configuration preferences dialog is displayed at the time that a task is run.

Here HelloWorld displays a message in configuration method’s dialog with the time of the last
configuration.

The execute() function does the actual work of the task. It is here that the HelloWorld greeting is
coded.

See “Task.jsx file” on page 7” for additional information on these functions.

Create the ExtendScript file

1. Using the ESTK or any other any text editor, create the file HelloWorld.jsx. Save the file in
<TASKS>/HelloWorld/HelloWorld.jsx.

2. Add the code for the required install() function. The function displays a message in the
configuration dialog indicating the time the task plug-in was installed.

function install()
{

/* Set the a message in the configuration dialog with the time the
was installed */

var message = localize("$$$/HelloWorld/Installed=
This task was installed on %1." , now());

task.getStaticText("installmessage").label = message;
}

3. Add the code for the required configure() function.

function configure(toolbar)
{

/* Set the message in the configuration dialog with the time of
last configuration of the task */
var message = "";

if (toolbar)
message ="$$$/HelloWorld/Configured=

This task was configured on %1 from the toolbar.";
else

message = "$$$/HelloWorld/Configured=This task was configured on %1.";

task.getStaticText("confmessage").label = localize(message, now());
}

4. Add the code for the execute function. This is where the actual work of the task plug-in is done.

function execute()

CHAPTER 2: Getting Started: HelloWorld Localizing Your Task 19

{
/* Read the user's input */
var name = task.getTextField("name").text;

/* When the name is not available greet the world */
if (name == undefined || name.length == 0)

name = localize("$$$/HelloWorld/World=World");

var os = localize(task.isOSMacintosh ? "$$$/HelloWorld/OSMac=
Mac OS" : "$$$/HelloWorld/OSWindows=Windows");

alert(localize("$$$/HelloWorld/Hello=
Hello %1!! This is Device Central CS4 running on %2.", name, os));

}

5. Create the now() method, which is used to get the date displayed by install() and configure().

function now()

{

return new Date().toString();

}

Coding of the HelloWorld script is now complete.

Localizing Your Task
The HelloWorld task uses text strings when constructing the information that appears in its dialog boxes.
By localizing the task plug-in, you make it possible for users in multiple locales with different languages to
easily use the task. For more information, see Chapter 4, “Using ZStrings for Localization.”

The work of localization happens in three places:

The HelloWorld.xml description file references the task plug-in’s ZStrings.

The HelloWorld.jsx script references the task plug-in’s ZStrings.

The task plug-in’s directory contains three subdirectories, one for each of the supported locales.

Within each of the directories, you need to save a HelloWorld.zstring dictionary file with the text string
keys and localized values for each language.

For example, the table below lists three countries, their locale names, and a sample ZString that might
appear in the HelloWorld.zstring dictionary file.

Country Locale String Sample ZString

Great Britain en_GB "$$$/HelloWorld/UI/EnterName=Enter your name for a
personalised message:"

 United States en_US "$$$/HelloWorld/UI/EnterName=Enter your name for a
personalized message:"

Spain es_ES "$$$/HelloWorld/UI/EnterName=Escribe tu nombre para
recibir un mensaje personalizado:"

CHAPTER 2: Getting Started: HelloWorld Testing Your Task 20

NOTE: See “Locales” in the Adobe Device Central CS4 SDK Programmer’s Reference for the full list of Adobe
supported locales and their associated codes.

Testing Your Task
To test your HelloWorld task plug-in:

1. Start up Device Central.

2. Select New project from the File menu.

3. Choose the Say Hello World task from the project’s New Task menu and save the task.

4. Select Run Task and verify that the Hello World greeting appears in an alert box.

Troubleshooting

If the HelloWorld task plug-in is properly coded and installed, the following should all be true:

Your task appears in the menu bar.

If not, your task plug-in might not have been loaded.

The HelloWorld icon appears on the task bar.

If the icon fails to appear, see “Debugging icon problems” on page 20.

The install() message appears when you create a new HelloWorld task.

The configure() function’s message appears in the configuration dialog when the saved task is run
unless you have turned off the Show this dialog before running option when creating the task.

If the message fails to appear, see “Debugging configuration problems” on page 20.

The Hello World greeting appears in the configuration dialog when you run the HelloWorld task.

If the greeting fails to appear, see “Debugging functionality” on page 21.

Debugging configuration problems

If the configure alert message fails to appear:

1. Verify that you have placed the appropriate code in the HelloWorld.jsx file.

2. Verify that HelloWorld.xml exists in the correct location and has appropriate content.

Debugging icon problems

1. Verify that your icon file exists and is in the appropriate place in the HelloWorld task plug-in directory.

2. Verify that the icon file has the correct name and that it matches that given in HelloWorld.xml.

3. Verify that the icon file is in the PNG format.

CHAPTER 2: Getting Started: HelloWorld Testing Your Task 21

Debugging functionality

1. Verify that you have placed the appropriate code in the HelloWorld.jsx file.

 22

3 Creating a User Interface for Your Task

An Adobe Device Central task’s user interface consists of a customizable dialog box that can display
information to the user and retrieve user input prior to that task’s execution.

For example, the custom dialog box for the Send to FTP Server task plug-in provided with Adobe
Device Central is shown below. This dialog box contains a series or components or widgets that allow a
user to input connection details and to indicate the files that need to be uploaded by the task plug-in. You
can create your own custom dialog boxes using the information provided below.

The Device Central Control object manages and customizes the available user-interface widgets in a task’s
configuration dialog.

There are two places you can manage a task plug-in’s user interface:

From the task plug-in’s XML file:

You can define the components that make up a task plug-in as well as the look and feel of that task
within the dialog element.

From the task plug-in’s JSX file:

You can dynamically modify some of the attributes of the user-interface controls defined in the task
plug-in’s XML file within the task plug-in’s JSX file.

Creating User Interface Objects
All user interface components must be defined in the Task.xml file. User interface widgets cannot be
instantiated dynamically from the task plug-in’s JSX file.

CHAPTER 3: Creating a User Interface for Your Task Creating User Interface Objects 23

The following XML code defines a basic user interface for a task plug-in. It specifies the dimension of a
dialog box, and defines a container and two controls. The controls consist of static text and an input
text field that are laid out vertically within the container.

<?xml version=”1.0” encoding=”UTF-8”?>
<adat:task xmlns:adat=”http://ns.adobe.com/devicecentral/task/“
guid=”5cff2c68-96b3-11dc-8314-0800200c9a7e” version=”1”>
<general>

<!—task configuration elements not shown -->
</general>
<dialog height="250" width="600" minHeight="250" minWidth="600">

<container layout="vertical" sizex="scale">
<staticText width="300" alignment="left">
<label value="$$$/HelloWorld/UI/EnterName=

Enter your name for a personalised message:" />
</staticText>
<textField id="name" width="250" sizex="scale"/>

</container>
</dialog>
</adat:task>

Defining user interface elements

The elements that can be used to define a task plug-in’s user interface are described in the task.xsd
schema that is part of the Adobe Device Central SDK.

There are three categories of user interface elements described in the sections that follow:

Dialog elements

Control elements

Other elements

Dialog elements

A dialog element represents the configuration dialog window and contains a sequence of control
elements. It has the attributes listed in the table below.

Control elements

The control elements all represent mechanisms via which dialog box widgets are initially defined.
control elements are accessible from the script file as an instance of the Adobe Device Central JavaScript
Control object. The varieties of control elements available for use in Adobe Device Central dialog boxes
are listed in the table below.

Attributes Data type

height xs:integer

width xs:integer

minHeight xs:integer

minWidth xs:integer

CHAPTER 3: Creating a User Interface for Your Task Creating User Interface Objects 24

The user interface appearance of a number of the elements listed in the table above are shown in the
figure below. See “Other elements” on page 25 for information on the elements referenced in the Notes
above.

Element Note

button Contains one label element.

checkBox Contains one label element.

comboBox -

container Contains a sequence of control elements.

fileList Contains one columns element.

listBox Contains one columns element.

passwordField Contains one text element.

separator -

staticText Contains one label element.

textField Contains one text element.

staticText

textField

container

button

column

listBox

fileBox

checkBox

comboBox

separator

CHAPTER 3: Creating a User Interface for Your Task Creating User Interface Objects 25

Control element attributes

The control element attributes are listed below along with their data type. All but four of the attributes
apply to all of the control elements. Four of the attributes are specific to the elements named.

NOTE: An NCName is a string that does not contain colons.
See http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/#NCName for more details.

Other elements

The remaining elements and their attributes are listed in the table below.

Attribute Data type Applies to

alignment xs:NCName staticText

checked xs:boolean checkBox

enabled xs:boolean All control objects

height integer All control objects

icon xs:NCName fileList

id xs:NCName All control objects

layout vertical|horizontal container

onClick xs:NCName button, checkbox, comboBox

sizex left|scale|right All control objects

width xs:integer All control objects

Element Note

columns Contains a sequence of column elements.

column -

label -

text -

Attribute Data type Applies to

width xs:integer column

columnText xs:string column

dataField xs:NCName column

value xs:NCName label, text

CHAPTER 3: Creating a User Interface for Your Task Managing User Interface Objects 26

Here is an example showing the use of these elements within a listBox.

<listBox id="devices" width="550" height="140" sizex="scale" selectable="true">
<columns>

 <column dataField="selected"
columnText="$$$/CreateZip/UI/Select=Select" width="50" />

 <column dataField="make"
columnText="$$$/CreateZip/UI/DeviceMake=Make" width="80" />

 <column dataField="model"
columnText="$$$/CreateZip/UI/DeviceModel=Model" width="80" />

<column dataField="path"
columnText="$$$/CreateZip/UI/DevicePath=Path" width="300" />

</columns>
</listBox>

Managing User Interface Objects
While you cannot create a new user interface object in the Task.jsx script, you can access some object
properties and make modifications to the content of existing controls from within that script. The example
that follows illustrates some of the possible changes.

//Return a control object representing the text field with id “name”
var myTextField = task.getTextField(“name”);

//Get the input entered by the user in the text field
var myName = myTextField.text;

//Set the text field text to a new value
myTextField.text = “My new name”;

//Disable the text field in the dialog
myTextField.enabled = false;

See “Adobe Device Central DOM Object Reference” the Adobe Device Central CS4 SDK Programmer’s
Reference for more information on working with the Control object model from within the task plug-in’s
script.

For an example of how to use the available control elements, see the CreateZip sample code that is
included with the Adobe Device Central SDK. That code makes use of most the different control
objects in the dialog box configuration.

 27

4 Using ZStrings for Localization

Device Central task plug-ins support the ZString format. ZStrings are an Adobe convention for defining
localization strings.

To use ZStrings in Adobe Device Central, you identify a string according to its usage in the user interface,
and specify it in the The ZString Format. This enables Device Central to look up language-specific versions
of the string to display to the user.

In Device Central, you place ZStrings in a language-specific folder. That folder is a subfolder of the Task
folder. Each folder’s name is a locale name representing a country-language combination. See “Locale
Codes” in the Adobe Device Central CS4 SDK Programmer’s Reference for more details.

Resolution of ZStrings depends on dictionary files that you supply, which contain the mappings from the
ZString path to the localized string.

The ZString Format
The format of a ZString is:

$$$/ZString_path/stringKey=defaultValue

A description of the contents of a ZString follows.

$$$ The ZString marker is always required to identify a ZString and distinguish it from
any other 8-bit ASCII string.

/ZString_path/
stringKey=

The path and key uniquely identify a specific string, and are used to look up the
translation in a dictionary file that you provide with your task plug-in.

The path is a series of 7-bit ASCII character strings separated by the slash (/)
character. You can use any strings you wish with the exception of white space.

The last element of the path is a specific key name, which is separated from the
default value by an equal sign (=).

The path groups a set of properties. For example, you might use a unique path for a
particular task plug-in, and within that task plug-in further group all strings that
appear in a particular dialog.

Each task plug-in has its own mapping of the context paths, so your paths do not
conflict with those used by other task plug-ins, or by Device Central itself.

defaultValue The string following the separator (=) is the default display string to use for this
ZString. If no matching key exists in the active localization dictionary (or if no
appropriate dictionary is found), this value is displayed to the user.

Strings values used in ZStrings can contain escape sequences to indicate certain
characters; see “Working with ZStrings” on page 28.

CHAPTER 4: Using ZStrings for Localization Working with ZStrings 28

ZStrings can be enclosed in single or double quotes. For example:

"$$$/MyTask/UI/sectionName=Description"
'$$$/MyTask/UI/Title=Document Title:'

Working with ZStrings
The Adobe Device Central task plug-in architecture supports the ZString format. Note that:

Each task plug-in provides its own localization files.

ZStrings inside the XML are localized automatically.

To localize strings inside a JavaScript file, you must call the global localize() function ExtendScript
functionality.

Using ZStrings in Task.zstrings

To create a localized dictionary, you must create a directory whose name matches the locale name for each
country and language combination for which you are localizing. See “Locale Codes” in the Adobe Device
Central CS4 SDK Programmer’s Reference for a list of these codes.

For example, a task plug-in that is localized for U.S. English, British English, and Spanish (Spain) would need
the following three directories:

en_GB

en_US

es_ES

Within each folder, you need a Task.zstrings file containing a list of needed ZStrings. A sample ZString
file is shown below.

"$$$/HelloWorld/Title=Hello World"
"$$$/HelloWorld/Menu=Say Hello World..."
"$$$/HelloWorld/ToolTip=Say Hello World"
"$$$/HelloWorld/UI/NotInstalled=Installation has not been called yet."
"$$$/HelloWorld/UI/NotConfigured=Configuration has not been called yet."
"$$$/HelloWorld/UI/EnterName=Enter your name for a personalised message:"
"$$$/HelloWorld/Installed=This task was installed on %1."
"$$$/HelloWorld/Configured=This task was configured on %1."
"$$$/HelloWorld/ConfiguredToolbar=This task was configured on %1 from the toolbar."
"$$$/HelloWorld/World=World"
"$$$/HelloWorld/OSMac=Mac OS"
"$$$/HelloWorld/OSWindows=Windows"
"$$$/HelloWorld/Hello=Hello %1!! This is Device Central CS4 running on %2."

Using ZStrings in Task.xml

The following is a sample Task.xml file that uses ZStrings to facilitate localization.

For example, the following attribute value assignment uses an ordinary string.

<title value=”Hello World”/>

This attribute value assignment uses a ZString to facilitate localization.

CHAPTER 4: Using ZStrings for Localization Working with ZStrings 29

<title value="$$$/HelloWorld/Title=Hello World"/>

The full example follows.

<adat:task xmlns:adat="http://ns.adobe.com/devicecentral/task/"
guid="5cff2c68-96b3-11dc-8314-0800200c9a7e" version="1">
<general>

<title value="$$$/HelloWorld/Title=Hello World"/>
<menuItem value="$$$/HelloWorld/Menu=Say Hello World..."/>
<toolTip value="$$$/HelloWorld/ToolTip=Say Hello World"/>
<script path="HelloWorld.jsx"/>
<icon path="HelloWorld.png"/>
<localization path="HelloWorld.zstrings" />
<toolbar value="true" />

</general>
<dialog height="250" width="600" minHeight="250" minWidth="600">

<container layout="vertical" sizex="scale">
 <staticText width="300" alignment="left">

<label value="$$$/HelloWord/UI/EnterName=
Enter your name for a personalised message:" />

 </staticText>
 <textField id="name" width="250" sizex="scale"/>
 <staticText id="installmessage" width="430" alignment="left">

 <label value="" />
 </staticText>
 <staticText id="confmessage" width="430" alignment="left">
 <label value="" />
 </staticText>

</container>
</dialog>

</adat:task>

Using ZStrings in Task.jsx

The following code fragment from a Task.jsx file illustrates the use of the localize() function.

task.getStaticText("message").label =
localize("$$$/HelloWorld/Message=Hello World");

 30

Index

A

ADC folder, 4

B

Bluetooth objects, 9

C

configuration problems, debugging, 20
control elements

attributes, 25
user interface, 23

Control objects, 9
conventions, typographical, 4

D

DC_SDK folder, 4
Device objects, 9
dialog boxes

control elements, 23
creating custom, 22

dialog elements, user interface, 23

E

ESTK folder, 4
ExtendScript

about, 3
creating plug-ins, 8

F

folder location, 11
folders

installation locations, 4
structure, 11
summary, 4
task plug-ins, 11

functionality, debugging, 21

G

Global Unique Identifier (GUID) format, 15
global variables, Task.jsx file, 11

H

HelloWorld example
configuring a task, 15
creating a script, 18
creating an icon, 17
debugging configuration problems, 20
debugging icon problems, 20
determining required files, 14
finding the source code, 13
installing, 15
key techniques, 14
localizing, 19
preparing to build, 14
testing, 20
troubleshooting, 20
ZStrings, 14

HelloWorld.jsx file
about, 14
creating, 18

HelloWorld.png file, 14
HelloWorld.xml file, 14

I

icons
creating for task plug-ins, 17
debugging problems, 20

J

JavaScript, creating plug-ins, 8

L

libraries, task plug-ins, 8
ListItem objects, 9
locales, folder location, 11
localization

task plug-ins, 12
tasks, 19

M

Mac OS folder locations, 4, 15

Index 31

O

objects
Device Central, 9
model, 9
user interface, 9
utility, 9

P

Project objects, 9

R

REQUIRED_TASKS folder, 4, 11

S

scripts, creating, 18
SDK components, 2
Status dialog objects, 9

T

Task objects, 9
task plug-ins

creating, See HelloWorld example
folder locations, 11, 15
graphical view, 7
helper methods, 11
interface, 9
libraries, 8
localizing, 12
managing the user interface, 22
object model, 9
order of processing, 12
samples, 2
using ExtendScript, 8
using JavaScript, 8

Task.jsx file
about, 7
folder location, 11
global variables, 11
mandatory functions, 10
using, 9
ZStrings, 29

Task.png file
about, 7
folder location, 11

Task.xml file
about, 7
folder location, 11
user interface components, 22

ZStrings, 28
Task.zstrings file, 28
TASKS folder, 4, 11
tasks, creating a user interface, 22
typographical conventions, 4

U

URLStream objects, 9
user interface

components, 22
control elements, 23
creating, 22
defining elements, 23
dialog elements, 23
element illustration, 24
example code, 23
managing objects, 26
miscellaneous elements, 25

user interface objects, 9
utility objects, 9

W

Windows folder locations, 4, 15

X

XML, about, 3

Z

ZIPFile objects, 9
ZStrings

content, 27
format, 27
format for locales, 12
localization, 12
localization examples, 19
overview, 27
Task.jsx file, 29
Task.xml file, 28
Task.zstrings file, 28
use of quote marks, 28
working with, 28

	Adobe® Device Central CS4 SDK Programmer’s Guide
	Preface
	About This Book

	Using the Device Central SDK
	Task Plug-in Components
	Adobe Device Central Object Model
	Task Plug-in Interface
	Processing Order

	Getting Started: HelloWorld
	Plug-in Files
	Installing the Plug-in
	Configuring a Task
	Creating an Icon
	Creating a Script
	Localizing Your Task
	Testing Your Task

	Creating a User Interface for Your Task
	Creating User Interface Objects
	Managing User Interface Objects

	Using ZStrings for Localization
	The ZString Format
	Working with ZStrings

	Index

