
Adobe Premiere Pro CS5
Software Development Kit

Adobe Premiere Pro CS5 Software Development Kit, Pre-Release 1
Copyright © 1992–2010 Adobe Systems Incorporated. All rights reserved.

The information in this document is furnished for informational use only, is subject to change
without notice, and should not be construed as a commitment by Adobe Systems Incorporated.
Adobe Systems Incorporated assumes no responsibility or liability for any errors or inaccuracies
that may appear in this document. The software described in this document is furnished under
license and may only be used or copied in accordance with the terms of such license.

Adobe, Adobe Premiere, Adobe After Effects, Adobe Photoshop, Adobe Illustrator, Adobe Type
Manager, ATM and PostScript are trademarks of Adobe Systems Incorporated that may be reg-
istered in certain jurisdictions. Microsoft and Windows are registered trademarks of Microsoft
Corporation. Macintosh and Apple are registered trademarks, and Mac OS are trademarks of
Apple Computer, Inc. All other products or name brands are trademarks of their respective hold-
ers.

Version History
13 February 1995 Matt Foster, Nick Schlott Version 4.0 - first Windows release
9 February 1996 Brian Andrews Version 4.2
20 April 1998 Brian Andrews Version 5
10 December 2000 Bruce Bullis & Eric Sanders Version 6 release 1
10 May 2001 Bruce Bullis Version 6 release 2
19 July 2002 Zac Lam & Bruce Bullis Version 6.5
21 August 2003 Zac Lam Version 1.0 (Premiere Pro)
25 May 2004 Zac Lam Version 1.5
17 January 2006 Zac Lam Version 2.0 release 1
13 July 2006 Zac Lam Version 2.0 release 2
5 October 2007 Zac Lam Version CS3
21 September 2009 Zac Lam Version CS4
28 April 2010 Zac Lam Version CS5

TOCTable of Contents

1. Introduction
SDK Audience�� 14

What Premiere Plug-ins Do����������������������� 15

What’s New?�� 15

What’s New in CS5?��������������������������������������15

Quick Tips For 64-bit Windows Porting�����16

Quick Tips For 64-bit Mac Porting�����������������16

Encore CS5���16

Mac 64-Bit and Cocoa��17

What’s New in CS4?��������������������������������������17

New Exporter API��17

New Video Segments���17

New Renderer API and Custom Pixel

Formats��17

Sequence Preview Formats�������������������������������18

Sequence-specific Settings�������������������������������18

Separate Importer Process��������������������������������18

Separate Processes During Export����������������18

XMP metadata���19

More Pixel Format Flexibility�����������������������������19

New RT status��19

Plug-in Blacklisting���19

New Plug-in Support in Encore����������������������19

What’s New in CS3?��������������������������������������20

Mac OS Support���20

Plug-in type specific changes��������������������������20

Creating XCode Projects From Existing

Windows Code��20

Premiere Plug-in Support in Other

Production Premium Applications��������21

Miscellaneous��21

Legacy API���21

Where Do I Start?�� 21

Document Overview���������������������������������� 22

Documentation Conventions�������������������22

Premiere Pro Plug-in Types����������������������� 22

Plug-in Support Across Production

Premium Applications��������������������������24

Premiere Elements Plug-in Support������������24

What Is a Premiere Plug-in, Exactly?������24

Sample Projects�� 25

Descriptions��25

How To Build the SDK Projects�����������������28

Load ‘Em Up!�� 29

Plug-in Caching���29

Resolving Plug-in Loading Problems����30

No Shortcuts Allowed���������������������������������30

Debugging Plug-ins����������������������������������� 31

Attaching The Debugger Using

Microsoft Visual Studio .NET ��������������31

Attaching The Debugger Using XCode

���31

Dog Ears���31

Plug-in Installation������������������������������������� 32

Plug-in Naming Conventions�������������������33

Creating Sequence Presets�����������������������33

Application-level Preferences������������������33

Localization��� 33

Best Practices�� 34

Structure Alignment������������������������������������34

Getting Support and Providing Feedback

�� 34

2. Resources
Plug-In Property Lists (PiPL) Resource��� 36

Which Types of Plug-ins Need PiPLs?����36

A Basic PiPL Example�����������������������������������37

How PiPLs Are Processed By Resource

Compilers���37

IMPT Resource��� 38

3. Universals
Time�� 39

scale over sampleSize���������������������������������39

PrTime���40

Video Frames��� 40

Pixel Formats and Color Spaces��������������� 40

What Format Should I Use?�����������������������40

Importers��41

Effects���41

Exporters and Players��41

Other Considerations��42

Byte Order���42

Custom Pixel Formats���������������������������������44

Smart Rendering��45

Pixel Aspect Ratio��������������������������������������� 45

Fields��� 46

Audio��� 46

32-bit Float, Uninterleaved Format��������46

Audio Sample Types������������������������������������47

Audio Sample Frames���������������������������������47

Audio Sample Rate���������������������������������������48

Audio Channel Types����������������������������������48

Memory Management������������������������������� 48

What Really is a Memory Problem?��������48

Solutions for Memory Contention���������49

Basic Types and Structures����������������������� 49

Suites�� 52

SweetPea Suites�� 52

Overview���52

App Info Suite��54

Application Settings Suite�������������������������54

Audio Suite���54

Clip Render Suite��54

Error Suite��55

File Registration Suite���������������������������������55

Flash Cue Marker Data Suite���������������������55

Image Processing Suite������������������������������55

Marker Suite���55

Memory Manager Suite������������������������������55

ReserveMemory���55

Pixel Format Suite���56

PPix Cache Suite��56

PPix Creator Suite���57

CreatePPix��57

ClonePPix��57

PPix Creator 2 Suite��������������������������������������58

PPix Suite���58

PrPPixBufferAccess��58

Dispose��58

GetPixels��58

GetBounds���59

GetRowBytes��59

GetPixelAspectRatio��59

GetUniqueKey���60

GetUniqueKeySize��60

GetRenderTime���60

PPix 2 Suite��61

Quality Suite���61

Render Quality��61

Playback Quality���61

Playback Fractional Resolutions���������������������62

RollCrawl Suite���62

Sequence Info Suite�������������������������������������62

String Suite���62

Threaded Work Suite�����������������������������������62

Time Suite��63

pmPlayTimebase��63

PrVideoFrameRates��63

GetTicksPerSecond���63

GetTicksPerVideoFrame���������������������������������������63

GetTicksPerAudioSample�����������������������������������64

Video Segment Render Suite�������������������64

Video Segment Suite�����������������������������������64

Window Suite���65

Legacy Callback Suites������������������������������ 65

piSuites���65

Memory Functions���66

Window Functions���67

PPix Functions���67

Utility Functions���69

Timeline Functions���71

Bottleneck Functions����������������������������������74

4. Hardware Integration
Hardware Integration Components�������� 78

Importers���78

Recorders���78

Exporters��78

Players���79

Editing Modes��� 79

ClassID, Filetype and Subtype������������������ 81

ClassData Functions����������������������������������� 81

5. Importers
What’s New�� 84

What’s New in Premiere Pro CS5?�����������84

What’s New in Premiere Pro CS4?�����������84

What’s New in Premiere Pro CS3?�����������85

What’s New in Premiere Pro 2.0?�������������86

Asynchronous Import���86

Timecode Rate��87

New Selectors��87

New/Updated Structures�����������������������������������88

Getting Started��� 89

Try the Sample Importer Plug-ins�����������89

How to Get First Crack at a File����������������89

imGetSourceVideo versus

imImportImage���������������������������������������90

privateData and prefs���������������������������������90

Audio Conforming and Peak File

Generation��90

Quieting versus Closing a File������������������91

File Handling��91

Quality Levels���91

Multiple Audio Streams������������������������������92

Project Manager Support��������������������������92

Creating a Custom Importer���������������������92

Showing a Video Preview in a Setup

Dialog��93

Real-Time Rolling and Crawling Titles���93

Format repeated in menu?������������������������94

Resources��94

Entry Point���94

Standard Parameters�����������������������������������94

Importer-Specific Callbacks����������������������95

Selector Table�� 95

Selector Descriptions��������������������������������� 97

imInit���97

Synthetic Importers���97

Custom Importers���97

imGetIndFormat���98

imGetSubTypeNames���������������������������������98

imGetIndPixelFormat����������������������������������98

imGetPrefs8��99

imGetInfo8��99

imGetTimeInfo8��� 100

imSetTimeInfo8�� 100

imGetFileAttributes���������������������������������� 100

imImportImage�� 100

imGetPreferredFrameSize���������������������� 101

imGetSourceVideo������������������������������������ 101

imImportAudio7�� 101

imGetPeakAudio�� 101

imOpenFile8�� 102

imQuietFile�� 102

imCloseFile��� 102

imSaveFile8�� 102

imAnalysis�� 103

imDataRateAnalysis���������������������������������� 103

imDeleteFile�� 103

imGetMetaData�� 103

imSetMetaData�� 104

imShutdown�� 104

imGetSupports8�� 104

imGetSupports7�� 104

imCalcSize8�� 104

imCheckTrim8��� 105

imTrimFile8�� 105

imCopyFile��� 106

imDeferredProcessing����������������������������� 106

imRetargetAccelerator���������������������������� 106

imCreateAsyncImporter�������������������������� 106

imQueryDestinationPath������������������������ 106

imQueryContentState������������������������������ 107

Return Codes��� 107

Structures��� 109

Structure Descriptions����������������������������� 110

imAcceleratorRec��������������������������������������� 110

imAnalysisRec��� 110

imAsyncImporterCreationRec�������������� 111

imAudioInfoRec7��������������������������������������� 111

imCalcSizeRec��� 112

imCheckTrimRec�� 112

imCopyFileRec�� 113

imDataRateAnalysisRec��������������������������� 114

imDeferredProcessingRec���������������������� 115

imDeleteFileRec��� 115

imFileAccessRec8��������������������������������������� 115

imFileAttributesRec���������������������������������� 116

imFileInfoRec8�� 116

imFileOpenRec8��� 118

imFileRef��� 119

imFrameFormat�� 119

imGetPrefsRec�� 119

imImageInfoRec��� 121

imImportAudioRec7��������������������������������� 124

imImportImageRec����������������������������������� 125

imImportInfoRec�� 127

imIndFormatRec�� 129

imIndPixelFormatRec������������������������������� 131

imMetaDataRec�� 131

imPeakAudioRec�� 132

imPreferredFrameSizeRec���������������������� 132

imQueryContentStateRec���������������������� 133

imQueryDestinationPathRec����������������� 133

imSaveFileRec8��� 134

imSourceVideoRec������������������������������������ 134

imSubTypeDescriptionRec��������������������� 135

imTimeInfoRec8��� 135

imTrimFileRec8��� 136

Suites�� 137

Async File Reader Suite��������������������������� 137

Deferred Processing Suite���������������������� 137

Media Accelerator Suite�������������������������� 137

6. Recorders
What’s New?�� 139

What’s New in Premiere Pro CS5?�������� 139

What’s New in Premiere Pro CS4?�������� 139

No More Project Presets�����������������������������������140

What’s New in Premiere Pro CS3?�������� 140

What’s New in Premiere Pro 2.0?���������� 140

New Selectors���140

New Structures��140

New Callbacks��141

Getting Started��� 141

Selector Calling Sequence��������������������� 141

Try the Sample Recorder Plug-in��������� 142

Metadata�� 142

Save Captured File Dialog���������������������� 142

Switching Preview Area Between

Different Frame Sizes�������������������������� 143

Scene Detection��� 143

Scene Capture��143

Scene Searching��143

Entry Point�� 144

Standard Parameters�������������������������������� 144

Recorder-Specific Callbacks������������������� 144

Selector Table�� 148

Selector Descriptions������������������������������� 149

recmod_Startup8�������������������������������������� 149

recmod_Shutdown����������������������������������� 149

recmod_GetSetupInfo8�������������������������� 149

recmod_ShowOptions���������������������������� 149

recmod_Open��� 150

recmod_Close��� 150

recmod_SetActive������������������������������������� 150

recmod_SetDisp�� 150

recmod_Idle�� 151

recmod_PrepRecord8������������������������������ 151

recmod_StartRecord�������������������������������� 151

recmod_ServiceRecord��������������������������� 151

recmod_StopRecord�������������������������������� 152

recmod_CloseRecord������������������������������� 152

Return Codes��� 152

Structures��� 153

Structure Descriptions����������������������������� 154

recInfoRec8�� 154

recCapSetups8�� 157

recDisplayPos�� 157

recOpenParms�� 158

recCapturedFileInfo���������������������������������� 158

recFileSpec8�� 159

recSetupParms��� 159

recCapParmsRec8�������������������������������������� 160

recGetTimecodeRec��������������������������������� 162

recSceneDetectionParmsRec���������������� 163

7. Exporters
What’s New in CS5������������������������������������ 164

Porting From the Compiler API�������������� 164

Getting Started��� 165

Multiple File Formats�������������������������������� 165

Adding Parameters����������������������������������� 165

Media Encoder as a Test Harness��������� 165

Creating Presets��� 166

Parameter Caching������������������������������������ 167

Increment the Parameter Version��������������167

Flush the Parameter Cache����������������������������167

Exporters Used for Editing Modes������� 168

Sequence Encoder Presets�����������������������������168

Timeline Segments in Exporters���������� 168

Smart Rendering�� 169

Entry Point�� 169

Standard Parameters�������������������������������� 169

Selector Table�� 170

Selector Descriptions������������������������������� 170

exSelStartup�� 171

exSelBeginInstance����������������������������������� 171

exSelGenerateDefaultParams��������������� 171

exSelPostProcessParams������������������������� 171

exSelValidateParamChanged���������������� 171

exSelGetParamSummary������������������������ 172

exSelParamButton������������������������������������� 172

exSelExport�� 172

exSelQueryExportFileExtension����������� 172

exSelQueryOutputFileList���������������������� 173

exSelQueryStillSequence����������������������� 173

exSelQueryOutputSettings�������������������� 173

exSelValidateOutputSettings���������������� 173

exSelEndInstance�������������������������������������� 174

exSelShutdown�� 174

Return Codes��� 174

Structures��� 175

Structure Descriptions����������������������������� 176

exDoExportRec��� 176

exExporterInfoRec������������������������������������� 177

exExporterInstanceRec���������������������������� 178

exGenerateDefaultParamRec���������������� 179

exParamButtonRec����������������������������������� 179

exParamChangedRec������������������������������� 180

exParamSummaryRec������������������������������ 181

exPostProcessParamsRec������������������������ 181

exQueryExportFileExtensionRec���������� 182

exQueryOutputFileListRec��������������������� 182

exQueryOutputSettingsRec������������������ 183

exQueryStillSequenceRec���������������������� 184

exValidateOutputSettingsRec��������������� 184

Suites�� 185

Export File Suite��� 185

Export Info Suite�� 185

GetExportSourceInfo��185

Export Param Suite����������������������������������� 186

Export Progress Suite������������������������������� 186

Palette Suite��� 187

Sequence Audio Suite������������������������������ 187

MakeAudioRenderer��187

ReleaseAudioRenderer��������������������������������������187

GetAudio��188

ResetAudioToBeginning�����������������������������������188

GetMaxBlip���189

Sequence Render Suite��������������������������� 189

MakeVideoRenderer()��189

ReleaseVideoRenderer()�����������������������������������189

struct SequenceRender_ParamsRec��������190

struct SequenceRender_

GetFrameReturnRec������������������������������������191

RenderVideoFrame()���191

GetFrameInfo()���192

SetAsyncRenderCompletionProc()������������192

PrSDKSequence

AsyncRenderCompletionProc()������������193

QueueAsyncVideoFrameRender()��������������193

PrefetchMedia()���194

PrefetchMediaWithRenderParameters()�194

CancelAllOutstandingMediaPrefetches()

��195

IsPrefetchedMediaReady()������������������������������195

MakeVideoRendererForTimeline()�������������195

MakeVideoRendererForTimeline

WithFrameRate()��195

ReleaseVideoRendererForTimeline()��������195

Additional Details������������������������������������� 196

Multiplexer Tab Ordering������������������������ 196

Creating a Non-Editable String in the

Parameter UI�� 196

Accelerated Renderers����������������������������� 196

Guidelines for Exporters in Encore������ 197

Naming Your Exporter���������������������������������������198

Naming Your Output��198

Parameters��198

Guidelines for Exporters in Premiere

Elements��� 200

Exporter Preset���200

Return Values��200

8. Players
What’s New�� 203

What’s New in Premiere Pro CS5?�������� 203

What’s New in Premiere Pro CS4?�������� 203

New Timeline Segments����������������������������������203

Reporting Real-Time Status����������������������������204

Sequence-Specific Settings���������������������������205

Fractional Resolution��205

New RT status���205

Other Changes���206

What’s New in Premiere Pro CS3?�������� 206

Getting Started��� 207

Selector Calling Sequence��������������������� 207

Try the Sample Player Plug-in��������������� 208

Real-time or Needs Rendering?������������ 208

Which Pixel Formats to Use?������������������ 209

Why Can’t I Always Get a Compressed

Frame Back?��� 209

Segments�� 210

High-Bit Color Depth�������������������������������� 210

Multi-Camera Monitor����������������������������� 210

Real-Time Titling and Stills��������������������� 210

What About Audio?���������������������������������� 211

Entry Point�� 211

PrPlayID��� 211

Standard Parameters�������������������������������� 211

Player-Specific Callbacks������������������������� 212

File Callbacks��� 212

getPixelAspectRatio��213

Video Callbacks�� 213

showFileFrame���214

getCurrentTime���214

frameDropped���214

showFileFrameWithSafeAreas����������������������215

showFileFrameRenderSettings��������������������215

Selector Table�� 216

Selector Descriptions������������������������������� 217

playmod_Startup�������������������������������������� 218

playmod_Shutdown��������������������������������� 218

playmod_GetIndFormat������������������������� 218

playmod_GetInfo�������������������������������������� 218

playmod_GetFilePrefs������������������������������ 218

playmod_SetFilePrefs������������������������������ 219

playmod_PushPlayerSettings��������������� 219

playmod_Close�� 219

playmod_Activate������������������������������������� 219

playmod_Update��������������������������������������� 220

playmod_UpdateMarkers����������������������� 220

playmod_SetDisp�������������������������������������� 220

playmod_SetView������������������������������������� 220

playmod_SetDisplayMode��������������������� 220

playmod_SetVideoDisplayType����������� 221

playmod_SetDisplayStateProperties�221

playmod_SetQuality�������������������������������� 221

playmod_SetUseFractionalResolution

�� 222

playmod_SetFractionalResolution������ 222

playmod_AdornSafeAreas��������������������� 222

playmod_ProjectSettingsChanged����� 222

playmod_DisplayMoving����������������������� 223

playmod_DisplayChanged�������������������� 223

playmod_GetAudioInfo�������������������������� 223

playmod_GetAudioChannelInfo���������� 223

playmod_EnableDynamicPlayback���� 224

playmod_GetPos��������������������������������������� 224

playmod_Preroll��� 224

playmod_Play��� 224

playmod_PlayIdle�������������������������������������� 224

playmod_SetPlaybackSpeed����������������� 225

playmod_Stop�� 225

playmod_EnterScrub������������������������������� 225

playmod_SetPos�� 225

playmod_Step�� 226

playmod_LeaveScrub������������������������������ 226

playmod_PutTemporaryTimeline�������� 226

playmod_PutFrameRequest������������������ 226

playmod_PutFrame���������������������������������� 227

playmod_NewList������������������������������������� 227

playmod_VideoSequenceHasChanged

�� 228

playmod_GetRTStatusForTime ����������� 228

Return Codes��� 228

Structures��� 229

Structure Descriptions����������������������������� 230

pmActivateRec��� 230

pmAdornSafeAreasParams�������������������� 231

pmAudioChannelInfo������������������������������ 231

pmAudioInfo��� 232

pmDisplayPos��� 232

pmDisplayStateProperties��������������������� 233

pmGetFilePrefsRec������������������������������������ 234

pmModuleInfoRec������������������������������������ 234

pmPlayerSettings�������������������������������������� 237

pmPlayInfoRec�� 237

pmPlayTimebase��������������������������������������� 238

pmPutFrameRec�� 238

pmPutFrameRequestRec������������������������ 238

pmPutTemporaryTimelineRec�������������� 239

pmStartupRec��� 240

PrVideoDisplayParameters��������������������� 240

pmGetPosRec�� 241

pmPlayParms�� 241

pmStepRec��� 242

pmNewListParms��������������������������������������� 243

prtPlayableRangeRec������������������������������� 244

Suites�� 244

Playmod Audio Suite�������������������������������� 244

Host-Based, or Plug-in Based Audio?�������245

Audio Playback���245

Audio Scrubbing���246

AudioTimeCallback���246

InitHostAudio��246

InitPluginAudio��247

StartAudio���247

GetNextAudioBuffer���248

SetPosition��249

GetPosition���249

SetRange��249

SetPlaybackSpeed��250

StopAudio���251

AudioPlaybackSettings�������������������������������������251

AudioPositions���252

Playmod Device Control Suite�������������� 252

Seek���252

Arm��253

Record���253

Stop���253

PlayModuleDeviceID��253

Playmod Render Suite����������������������������� 253

PrRenderCacheType���254

PrSDKPlayModuleRenderSuite_

AsyncCompletionProc�������������������������������254

RenderVideoFrame��254

QueueAsyncVideoFrameRender�����������������255

SetAsyncRenderCompletionProc���������������256

CancelOneOutstandingAsyncRequest���256

CancelAllOutstandingAsyncRequests�����257

FetchRenderedFrameFromCache��������������257

PrefetchMedia��257

PrefetchMediaWithRenderParameters����258

CancelPrefetchMedia

WithRenderParameters�����������������������������258

CancelAllOutstandingMediaPrefetches�258

AddFrameToCache��259

AllowTransparentVideoFrames��������������������259

RefreshRTStatus���259

GetAcceleratedRendererRTStatusForTime

��260

Scope Render Suite����������������������������������� 260

Stock Image Suite�������������������������������������� 260

9. Transitions
Getting Started��� 261

Resources��� 261

A Transition PiPL Example�������������������������������261

Resources Table�� 263

Entry Point�� 264

Selector Table�� 264

Selector Descriptions������������������������������� 265

esSetup�� 265

esExecute�� 265

esDisposeData�� 266

esCanHandlePAR��������������������������������������� 266

esGetPixelFormatsSupported��������������� 266

esCacheOnLoad��� 266

Return Codes��� 266

EffectRecord�� 267

FXCallBackProcPtr������������������������������������� 269

sizeFlags�� 270

Additional Details������������������������������������� 270

Fields and Field Processing�������������������� 270

Frame Caching�� 270

Real-Time Transitions������������������������������� 271

10. Video Filters
What’s New�� 272

What’s New in Premiere Pro CS5?�������� 272

What’s New in Premiere Pro CS3?�������� 272

Getting Started��� 273

Resources��� 273

A Filter PiPL Example��273

Entry Point�� 276

Selector Table�� 276

Selector Descriptions������������������������������� 277

fsInitSpec�� 277

fsHasSetupDialog�������������������������������������� 277

fsSetup��� 277

fsExecute��� 278

fsDisposeData��� 278

fsCanHandlePAR�� 278

fsGetPixelFormatsSupported���������������� 278

fsCacheOnLoad�� 279

Return Codes��� 279

VideoRecord�� 279

VFilterCallBackProcPtr������������������������������ 281

sizeFlags�� 282

Additional Details������������������������������������� 282

Fields and Field Processing�������������������� 282

Frame Caching�� 282

Creating Effect Presets����������������������������� 282

Effect Badging�� 283

Real-Time Video Filters����������������������������� 284

Premiere Elements and Effect Thumbnail

Previews�� 284

11. Device Controllers
What’s New in Premiere Pro CS3?���������� 285

Getting Started��� 285

Resources��� 285

Entry Point�� 286

Selector Table�� 286

Selector Descriptions������������������������������� 286

dsInit�� 286

dsSetup��� 286

dsExecute��� 287

dsCleanup�� 287

dsRestart��� 287

dsQuiet�� 287

dsHasOptions�� 287

Return Codes��� 287

DeviceRec��� 288

Commands��� 291

cmdGetFeatures��� 292

cmdStatus�� 293

cmdNewMode�� 293

cmdGoto��� 294

cmdLocate��� 294

cmdShuttle�� 294

cmdInsertEdit��� 294

cmdGetDeviceDisplayName����������������� 295

cmdSetDropness��������������������������������������� 295

Additional Details������������������������������������� 295

Handling dsInit and dsRestart�������������� 295

Introduction • 14Adobe Premiere Pro CS5 SDK Guide

Welcome to the Adobe® Premiere® Pro CS5 Software Development Kit! This is a living document,
and is constantly being updated and edited. The latest release of the SDK is available at:
http://www.adobe.com/devnet/premiere/

If you have questions about the APIs described in this document, or about integration with
Premiere Pro, your question may already be answered on the Premiere Pro SDK forum at:
http://forums.adobe.com/community/premiere/premierepro_current/sdk.

SDK Audience

The Premiere Pro Software Development Kit enables developers to create plug-ins for Premiere
Pro, After Effects, Encore, Soundbooth, Media Encoder, and Premiere Elements.

The required development environment for the Premiere Pro SDK for Windows is Microsoft
Visual Studio .NET 2008 SP1 on Windows Vista 64-bit and Windows 7 64-bit. On Mac OS, the
required environment is XCode 3.1 on Mac OS 10.5, or XCode 3.2 on Mac OS 10.6 . The SDK in-
cludes sample projects for these development environments. On Windows, projects can often be
updated to more current versions of Microsoft Visual Studio .NET by simply opening the project
and approving the automatic conversion. The sample code is written in C++. Other compilers and
programming languages are not supported. We cannot assist with platform API programming
issues not central to Premiere Pro plug-in programming.

Having a solid understanding of digital video concepts is vital to developing plug-ins. This docu-
mentation assumes you understand basic video topics such as resolution, frame rates, field inter-
lacing, pixel aspect ratio, bit depth, timecode, compression, color spaces, etc. You must also un-
derstand how your plug-in will fit into a user’s workflow in Premiere Pro. If you aren’t yet familiar
with Premiere Pro or video editing concepts, we recommend the Adobe Premiere Pro Classroom
in a Book.

1Introduction

http://www.adobe.com/devnet/premiere/
http://forums.adobe.com/community/premiere/premierepro_current/sdk
http://www.adobe.com/training/books/premiere.html
http://www.adobe.com/training/books/premiere.html

Introduction • 15Adobe Premiere Pro CS5 SDK Guide

What Premiere Plug-ins Do

Premiere APIs provide access to many points of the video editing pipeline. Recording from an
external device, device control, file import, video effects and transitions, playback, and output
can all be performed by plug-ins. Hardware acceleration is enabled by writing plug-ins to manage
various aspects of media handling.

If this is your first time developing a Premiere plug-in, you can skip the What’s New section, and
go directly to Where Do I Start?

What’s New?

What’s New in CS5?

Premiere Pro is now a 64-bit application! This is the single most important change that affects
plug-ins. As a result of the 64-bit port, we have had to change code that assumed a long was
32-bits. CS5 does not support 32-bit plug-ins developed with the CS4 or earlier SDKs. Plug-ins
for CS5 must be built using the CS5 SDK. The sample projects have been ported to 64-bit on
Windows and Mac OS.

Importers now have access to the resolution, pixel aspect ratio, timebase, and audio sample rate of
the source clip from a setup dialog. Custom importers can use a new call to update a clip after it
has modified by the user in the setup dialog. Please refer to the Importers chapter for more info
on what’s new.

Recorders can now provide audio metering during preview and capture. Read more about what’s
new in the Recorders chapter.

Exporters and players can automatically take advantage of GPU acceleration, if available on the
end-user’s system. Each project now has a setting for the renderer that the user can choose in the
project settings dialog. When renders occur through the Sequence Render Suite or the Playmod
Render Suite, they now go through the renderer chosen for the current project. This allows third-
party exporters and players to use the built-in GPU acceleration available in the new Mercury
Playback Engine.

Exporters and players can now handle any pixel format, with the new Image Processing Suite.
Exporters and players that parse segments and perform their own rendering can now call the host
for subtree rendering. See the Video Segment Render Suite for details.

If you provide an installer for an exporter, note that custom presets created in Premiere Pro are
now visible in AME and vice-versa.

Introduction • 16Adobe Premiere Pro CS5 SDK Guide

Players can respond to the new field display settings, and play/pause resolution settings, in the
Monitor panels. Please refer to the Players chapter for more details on what’s new.

Video filters, in the Effects panel, can now appear with badges to advertise if they support YUV,
32-bit, and accelerated rendering. See more about what’s new in the Video Filters chapter.

QuickTime VOut component support has been removed in CS5, due to current 64-bit limitations
in QuickTime.

Quick Tips For 64-bit Windows Porting

1) Open your Visual Studio solution file in Visual Studio 2008. Perform the automatic conversion
to upgrade the solution from a previous version.
2) Add a new solution platform of type “x64”.
3) Now you’ll need to port any code that assumed 32-bit compilation: Use the new cross-platform
types in PrSDKTypes.h, update suite usage for suites that are no longer supported, and so on.
Voila! The plug-in project is ready to compile a 64-bit binary!

Quick Tips For 64-bit Mac Porting

1) Open your XCode project file. In the project’s info panel, in the General tab, set “Cross-
Develop Using Target SDK:” to “Mac OS X 10.5”.
2) In the Build tab, set the Architectures setting to build a 64-bit binary. Note that if you have
already set Target-specific settings in the XCode project, this Architecture setting will not take
effect, and you will need to open the target’s info panel and set it there. You can confirm that
the plug-in is being built for the correct architecture from the Terminal, by running “otool -f
<filename>”, where the filename is the binary inside the Contents/MacOS/ folder of the plug-in
bundle.
3) For anything that includes Cocoa, you will need to set “Compile Sources As” to
“Objective-C++”.
4) Now you’ll need to port any code that assumed 32-bit compilation: Use the new cross-platform
types in PrSDKTypes.h, update suite usage for suites that are no longer supported, and so on.
Voila! The plug-in project is ready to compile a 64-bit binary!

Encore CS5

Encore will remain a 32-bit application for CS5. So if you are developing plug-ins for Encore, use
the CS5 headers to create 32-bit plug-ins. We have left the 32-bit configurations in the sample
projects to facilitate this.

3rd-party exporters can now be used to transcode assets to MPEG-2 or Blu-ray compliant files.
Please refer to the Guidelines for Exporters in Encore for instructions on how to set up your ex-
porter so that Encore can use it for transcoding.

Introduction • 17Adobe Premiere Pro CS5 SDK Guide

Mac 64-Bit and Cocoa

It is invalid to unload any bundle that uses Cocoa because of restrictions in the Objective-C run-
time which do not support unregistering classes. If a plugin uses Cocoa, it must call CFRetain on
its own bundle, otherwise it will cause a crash when the application is closing and tries to unload
the plug-ins.

What’s New in CS4?

New Exporter API

The new exporter API replaces the old compiler API as the way to export video, audio, and still
images, and to generate preview files. In CS4, all forms of export from Premiere Pro use the
Adobe Media Encoder UI for a unified export interface. If you are updating a legacy compiler
plug-in to become a new exporter plug-in, most of the export code will remain the same, but the
code that defines and makes use of user-controllable parameters will need to be updated. This
lets your plug-in take a wide selection of customizable UI components that match the look of the
built-in exporters. Your exporter can also be used within the standalone Adobe Media Encoder
application. The old compiler API is no longer supported. Also, when an exporter is loaded in
the standalone Adobe Media Encoder application, it does not have access to the full set of RT
segments, so accelerated export must be implemented using both the exporter API and the new
renderer API.

New Video Segments

The new video segments replace the old segments as the way to get information about sequences
in the timeline. Rather than the host sending the video segments to the player, the player must
request specific details using the Video Segment Suite. The new segments provide a hash value
that the player can use to quickly determine whether or not a segment has changed. This hash
value can be maintained even if a segment is shifted in time. The new segments also allow a
player to accelerate segments with time remapping. Since the video segments have changed,
plugGetVideoSegmentFunc and plugDisposeSegmentFunc have been replaced by
the Video Segment Suite.

New Renderer API and Custom Pixel Formats

The new renderer API provides a way to take over and accelerate rendering of segments. Just as a
player can choose which segments to accelerate, so a renderer can choose which segments to ac-
celerate. Renderers may accelerate any segment, in any sequence, in any project.

Introduction • 18Adobe Premiere Pro CS5 SDK Guide

Renderers also provide a way to add completely custom pixel formats to the render pipeline.
Supporting a custom pixel format in an importer, a renderer, and an exporter is the new way to
implement smart rendering, by passing custom compressed data from input to output.

Sequence Preview Formats

Sequence preview file formats are now defined by Sequence encoder preset files. Without any
presets installed, you will not be able to create a new sequence using your custom editing mode.

Sequence-specific Settings

Sequences in the same project can now have different settings. So there is no longer a single
editing mode per project. This means that the Editing Mode suite and most selectors for the
getSettings callback in the utilFuncs are no longer supported. So if you are developing a
recorder or device controller plug-in, you should provide reasonable defaults when the plug-in is
initialized.

Also, project presets have been replaced by sequence presets. The difference from project presets
are that sequence presets do not contain information to initialize capture settings.

Separate Importer Process

For CS4 only, importers are loaded and called from a separate process. As a result of being in
a separate process, (1) all importers must do their own file handling, (2) privateData is no
longer accessible from imGetPrefs8, and (3) the compressed frame selectors such as imGetCom­
pressedFrame are no longer supported (this may now be achieved using custom pixel formats and
a renderer plug-in).

To debug importers, attach to the ImporterProcessServer process. There is also a new Importer
Process Plugin Loading.log.

Separate Processes During Export

When choosing export settings, the settings UI is displayed by Premiere Pro. When the user
confirms the settings, the clip or sequence is passed to Media Encoder. From Media Encoder,
frames from the clip or sequence can be retrieved and rendered without further participation
from Premiere Pro. For a clip export, Media Encoder uses any installed importers to get source
frames. For sequence export, Media Encoder uses a process called PProHeadless, to import and
render frames to be exported.

Since there are so many processes involved during export, it is important that plug-ins be acces-
sible to all processes, by being installed in the common plug-ins folder. PProHeadless Plugin

Introduction • 19Adobe Premiere Pro CS5 SDK Guide

Loading.log provides information on the PProHeadless process. PProHeadless is also used when
the user creates a dynamic link to a .prproj that is not opened in Premiere Pro.

XMP metadata

There are built-in XMP metadata handlers for known filetypes. These handlers write and read
metadata to and from the file, without going through the importer. imSetTimeInfo8 is no longer
called, since this is set by the XMP handler for that filetype.

More Pixel Format Flexibility

Effects, transitions, and exporters no longer need to support 8-bit RGB at a minimum. So, for
example, an effect can be written to process floating point YUV only. If necessary, Premiere will
make an intermediate conversion so that the effect will receive the pixel format it supports.

New RT status

Players can now mark a segment yellow, so that it is not rendered when previewing the work area,
but is rendered before export to tape.

Plug-in Blacklisting

Have a plug-in that works fine in one CS application, but has problems in another CS application?
Now, specific plug-ins can be blocked from being loaded by MediaCore in specific applications,
using blacklists. Note that this does not work for After Effects plug-ins loaded by AE, although it
does work for AE plug-ins loaded in Premiere Pro. In the plug-ins folder, look for the appropriate
blacklist file, and append the the filename of the plug-in to the file (e.g. BadPlugin, not BadPlugin.
prm). If the file doesn’t exist, create it first. “Blacklist.txt” contains names of plug-ins black-
listed from all apps. Plug-ins can be blocked from loading in specific apps by including them in
“Blacklist Adobe Premiere Pro CS4.txt”, or “Blacklist Adobe After Effects CS4.txt”, etc.

New Plug-in Support in Encore

Encore now supports third-party importers, players, and QuickTime VOut components.

Introduction • 20Adobe Premiere Pro CS5 SDK Guide

What’s New in CS3?

Mac OS Support

The only difference between the Mac and Windows SDKs are the development environment-
specific project files for the sample projects. All plug-in types are supported on Mac OS and
Windows. QuickTime VDig and VOut components are supported on Mac OS for video capture
and video playback output. Core Audio is also supported on MacOS for audio playback output.

Some types have changed to enable smoother cross-platform development.
• All occurences of wchar_t have been changed to a Premiere-specific type, prUTF16Char,

which is defined in PrSDKTypes.h as a wchar_t on Windows, but an unsigned short
on MacOS. This is because wchar_t is 16-bit on Windows, but 32-bit on MacOS, and
not well supported by MacOS APIs. By contrast, unsigned short is interchangable with
UniChar, a basic MacOS type. PrSDKTypes.h also provides utility functions prUT-
F16CharCopy to replace wcscpy, prUTF16CharCompare to replace wcscmp, and
prUTF16CharLength to replace wcslen.

• All occurences of __int64 have been changed to a Premiere-specific type, prInt64, which is
defined in PrSDKTypes.h as a __int64 on Windows, but a signed long long
on MacOS.

• The new utility function prSetRect sets the dimensions of a prRect struct. This should
be used because MacOS Rect members have a different ordering than Windows RECT
members.

• Note: The prRgn parameter of the StretchBits function in the Bottlenecks is only used on
Windows.

Plug-in type specific changes

Importers, recorders, compilers, players, video filters, and device controllers have all had API
changes that are documented within their specific chapter.

Creating XCode Projects From Existing Windows Code

1) Create a new Carbon Bundle project.
2) Replace main.c with your source files. Add the files relative to the project.
3) Add the headers to the External Frameworks and Libraries folder.
4.0) If the plug-in requires a PiPL (.r file), add a New Build ResourceManager Resources Build
Phase
4.1) Add the .r file to the Build ResourceManager Resources Build Phase
4.2) Make sure the .r file includes the following:
	 #ifndef PRWIN_ENV

Introduction • 21Adobe Premiere Pro CS5 SDK Guide

	 #define MAC_ENV
	 #include “PrSDKPiPLVer.h”
	 #include “PrSDKPiPL.r”
	 #endif

Premiere Plug-in Support in Other Production Premium Applications

Premiere importers are now supported in After Effects and SoundBooth. Premiere exporters
are also supported in SoundBooth. See also a comprehensive chart of plug-in support across
Production Premium applications.

The App Info Suite can be used by all Premiere and After Effects plug-in types to determine what
host application they are running in.

Miscellaneous

The getMarkerData callback can now return the timebase of a marker.

Other plug-in specific changes are in the appropriate chapter for the plug-in type.

Legacy API

Legacy API features, such as selectors and callbacks that are superceded by new ones, are depre-
cated, but are supported, unless indicated.

Where Do I Start?

Read about the sample projects. Decide which one is closest to the functionality you want to
provide. Build the plug-in into the shared plug-ins folder. Launch Premiere Pro with the debug-
ger attached, and set breakpoints at the plug-in’s entry point to see all communication between
Premiere Pro and the plug-in. The documentation is intended as a reference with detailed expla-
nation where appropriate, but studying the interaction between Premiere Pro and plug-ins is the
best way to understand it.

Write plug-ins by modifying sample plug-in source code. This will greatly simplify your efforts,
and make it easier for us to help you. Feel free to explore and experiment with the API on your
own once you’re familiar with it, but please, resist the temptation to start from scratch; you’ll only
force yourself to repeat other developers’ mistakes, including our own.

If you run into behavior that seems wrong, see if you can reproduce the behavior using one of the
unmodified sample projects. This can save you a lot of time, if you can determine whether the bug
behavior was introduced by your modifications, or was already there to begin with.

Introduction • 22Adobe Premiere Pro CS5 SDK Guide

Document Overview

This introduction information is common to all the plug-in types. All developers should read this
chapter, as well as chapters two and three.

Chapter 2 describes the Premiere Pro-specific resources used by plug-ins, including the Plug-in
Property List (PiPL).

Chapter 3, Universals, documents the data types and structures used throughout the APIs, and
suites and functions available across different plug-in types.

Chapter 4 introduces Media Abstraction, used by hardware integrators and software developers to
integrate with Premiere and accelerate specific workflows.

The remainder of the document describes specific plug-in types.

Documentation Conventions

Functions, structure names and general C/C++ code are in Courier;
MyStruct.member and MyFunction()
Underlined text in light blue is hyperlinked.
Premiere selectors are italicized; imGetPrefs.

Premiere Pro Plug-in Types

All Premiere Pro plug-ins are called in response to a user selection. There are currently no plug-
in types to programatically control Premiere Pro.

Recorders Records from a (usually hardware) source to disk. If necessary, pro-
vides a plug-in-defined settings dialog. Displays the video overlay in
the preview area of the Capture panel. Any audio preview should be
played directly be the recorder. The captured file is passed to Premiere
after capture by its file path. The recorder can optionally provide the
timecode of the captured file to Premiere Pro.

Importers Import video and audio media into Premiere. Synthetic importers, a
subset, dynamically synthesize media without creating an actual file on
disk. Custom importers, dynamically synthesize media to disk.

Introduction • 23Adobe Premiere Pro CS5 SDK Guide

Players Provide all video output to the Monitor and optionally any external de-
vice during playback and editing. The player receives all information
about the timeline, and can optionally accelerate video playback by
providing an accelerated render path for of any segment of the time-
line. The player can provide its own audio output, but using an ASIO
driver is recommended. A player that provides its own audio output
cannot support audio input for voiceover recording in the audio mixer,
whereas an ASIO driver can.

Exporters Allows the user to output media to disk. Can additionally be associated
with a player and bound with an Editing Mode XML file to form an
Editing Mode.

Video Filters Process a series of video frames with parameters that can be animated
over time. We strongly recommend using the After Effects SDK to de-
velop effects plug-ins. Most of the effects included in Premiere Pro are
After Effects plug-ins.

Video Transitions Process two video sources into a single destination over time.
Device Controllers Control an external device (video tape recorder, camera, etc.) during

Capture and Export To Tape.

Other supported plug-in standards
Adobe After Effects
API

Premiere Pro supports a portion of the AE API. The After Effects SDK
is not included in the Premiere Pro SDK. The last chapter in the After
Effects SDK Guide.pdf, included in the After Effects SDK, contains
information on known differences with how Premiere Pro supports the
AE API.

VST Premiere supports version 2.3 of the VST specification for audio ef-
fects.

ASIO An ASIO driver is often provided in addition to a player, to provide
audio output during editing, playback, and Export To Tape. An ASIO
driver is required to support audio input for voiceover recording in the
audio mixer. On Mac OS, a Core Audio component may be provided
rather than an ASIO driver.

Core Audio Mac OS only. May be provided instead of an ASIO driver.
QuickTime VDig Mac OS only. Premiere Pro’s built-in QuickTime recorder is a VDig

host to capture (or digitize) from sources that support this API. VDig
components will appear as an option in the QuickTime recorder’s
Video settings, in the Source tab.

QuickTime VOut Mac OS only. Premiere Pro’s built-in player is a VOut host to play
video out to destinations that support this API. VOut components will
appear as an option in the built-in player’s Playback Settings, in the
External Device drop-down menus.

http://www.adobe.com/devnet/aftereffects/
http://ygrabit.steinberg.de/

Introduction • 24Adobe Premiere Pro CS5 SDK Guide

Plug-in Support Across Production Premium Applications

This chart shows which third-party plug-ins are supported by the various Production Premium
applications.

Premiere Pro After
Effects

Encore SoundBooth Media
Encoder

After Effects AEGPs X
After Effects effects X X
ASIO X X X X
Premiere device controllers X
Premiere exporters X X X X
Premiere importers X X X X X
Premiere players X X
Premiere recorders X
Premiere transitions X
Premiere video filters X
QuickTime codecs X X X X X
QuickTime Export Components X
QuickTime VDig (Mac OS)
VfW codecs X X X X X
VST audio effects X

Encore can use third-party exporters to transcode assets to MPEG-2 or Blu-ray compliant files.
Please refer to the Guidelines for Exporters in Encore for instructions on how to set up your ex-
porter so that Encore can use it for transcoding.

Premiere Elements Plug-in Support

Premiere Elements uses the same core libraries for plug-in support that Premiere Pro does.
Premiere Elements 4 and 7 both use libraries equivalent to Premiere Pro CS3. Premiere Elements
8 uses libraries equivalent to Premiere Pro CS4. In many cases, a plug-in written for Premiere
Pro will just work in Premiere Elements, but it’s always important to test the plug-in fully in each
application before advertising compatibility. Check out the Guidelines for Exporters in Premiere
Elements for instructions on how to set up your exporter to be used in Premiere Elements.

What Is a Premiere Plug-in, Exactly?

Premiere plug-ins contain a single entry point of a type specific to each API. Plug-ins are DLLs on
Windows, and Carbon or Cocoa Bundles on Mac OS. Plug-ins in the \Plug-ins\[language] folder,

Introduction • 25Adobe Premiere Pro CS5 SDK Guide

and any of its subfolders, will be loaded at launch. Plug-ins can have private resources. Only one
plug-in per file is parsed, unlike After Effects and Photoshop plug-ins, which can contain multiple
entry points.

Sample Projects

Descriptions

Name Description
SDK File Importer This importer supports .sdk media files. To use the importer, choose File

> Import, and select an .sdk file. Such files may be created using the SDK
Exporter.

It supports uncompressed 8-bit RGB with or without alpha, and packed
10-bit YUV (v410). It supports mono, stereo, and 5.1 audio at arbitrary
sample rates and 32-bit float. It supports trimming using the Project
Manager, Properties and Data Rate Analysis, Unicode filenames, the
avoidAudioConform flag, and can read video frames asynchronously. It
also features a test harness for multistream audio, which can be turned
on by uncommenting the MULTISTREAM_AUDIO_TESTING define
in the header.

Synth Import This synthetic importer generates 8-bit YUV and RGB, video only. To use
it, choose File > New > SDK Synthetic Importer. When the clip is created,
it demonstrates a sample settings dialog, which can be displayed again
by double-clicking the clip in the Project Panel or Timeline Panel. Every
time the settings dialog is displayed, it creates new footage in memory. It
creates ten seconds of footage at 24 fps. The video consists of horizontal
lines of random colors. No file is created on disk - for an example of that,
see the Custom Importer.

SDK Custom Import This custom importer creates a clip similar to the Synth Import sample,
but generates it to disk, rather than memory. To use it, choose File > New
> SDK Custom Importer. Or, import an existing .sdkc clip from the File
> Import dialog. On Windows, newly generated files with .sdkc file ex-
tensions are created in C:\Windows\Temp\. On Mac OS, they are created
on the Desktop.

After the sample settings dialog, it optionally displays a background
frame from the timeline (useful for titlers). The generated footage is
between 2 and 30 frames at 24 fps, with a random resolution between
32 and 720 pixels wide and between 32 and 480 high, at DV NTSC pixel
aspect ratio.

Introduction • 26Adobe Premiere Pro CS5 SDK Guide

Record This recorder pretends to capture .sdk files. To select it, choose Project >
Project Settings > Capture > Capture Format: SDK Record. To simulate
a capture, there must be a valid .sdk file at C:\premiere.sdk, and the SDK
File Importer must also be installed. When the record button is pressed,
a capture is simulated, and when capture is finished, the file at C:\pre-
miere.sdk is copied to the file specified in the Save Captured File dialog,
and automatically imported into the project.

It demonstrates a simple implementation of two capture options buttons,
audio capture settings directly in the Project Settings > Capture panel,
Unicode filenames, and changing the capture format mid-stream.

SDK Exporter This exporter writes .sdk files. To use it, choose File > Export > Media,
and in the Export Settings choose File Type: SDK File.

It supports uncompressed 8-bit RGB with or without alpha, and packed
10-bit YUV (v410). It supports mono, stereo, and 5.1 audio at arbitrary
sample rates and 32-bit float. It demonstrates custom parameters, in-
cluding a custom settings button. It also writes marker data to an .html
file with the same filename.

To write files with v410 compression using 8-bit RGB sources, this
sample uses routines to convert the 8-bit RGB data to 32-bit RGB, then
to 32-bit YUV, and finally to v410. These same routines may be adapted
for transitions, filters, and other plug-in types.

This exporter can also be used with RTPlayback and the SDK Editing
Mode.xml (in Examples\Editing Modes) to create a new editing mode.
To select the editing mode, choose File > New > Sequence > General >
Editing Mode: PlayerSDK. Render files created in this editing mode will
be created using this exporter.

Introduction • 27Adobe Premiere Pro CS5 SDK Guide

RTPlayback This player is for use with the SDK Exporter and the SDK Editing
Mode.xml (in Examples\Editing Modes) to create a new editing mode.
To select the editing mode, choose File > New > Sequence > General >
Editing Mode: PlayerSDK.

It demonstrates cutlist management using a linked list structure, video
playback with audio synchronization, scope rendering, segment parsing,
and RT range reporting. It supports all the Monitor transport controls,
the safe-area display, monitor window zoom levels, render quality set-
tings, and the Multicam Monitor. On Windows, it overlays a description
of the current segment on the Monitor, which is a great way to learn
about segments. On Mac OS, the same information is calculated, but
this player has not yet implemented that overlay. When the Playback
Settings button is pressed, it displays a message box on Windows, and an
alert on Mac OS.

When the SDK Device Control is the current device control and the
Timeline panel is active, File > Export > Export To Tape is active.
Selecting this will first render any non-RT segments using the SDK
Exporter, next the Device Controller will show its Export To Tape dialog,
then this player will play the work area, and then the Device Controller
will show its Export To Tape dialog again.

Transition This transition implements a simple cross dissolve. It supports 8-bit
and 32-bit YUV and RGB. It is found in the SDK folder of the Video
Transitions in the Effects Control panel. It uses the StretchBits util-
ity callback for 8-bit processing. It demonstrates usage of instance-
Data, and FXCallbackProcPtr to get frames from other times.

Simple Video Filter This video filter is found in the SDK folder of the Video Effects in the
Effects Control panel. It has a color picker parameter and slider param-
eter in the Effects Control panel, and modifies the source pixels based on
the parameters.

If the slider is zero, the filter adds the RGB values in the color picker
to the RGB values of each pixel and preserves the alpha. If the slider is
non-zero, the filter uses the callback to get the current frame. Using the
callback for this purpose is purely for demonstration purposes. The cur-
rent frame is passed in through (*theData)->source and using the
callback to get the current frame in a real filter is only wasting time!

Introduction • 28Adobe Premiere Pro CS5 SDK Guide

Field-Aware Video
Filter

This video filter is found in the SDK folder of the Video Effects in the
Effects Control panel. It supports 8-bit YUV and RGB. It has a color
picker parameter, a slider parameter, and an unused angle parameter in
the Effects Control panel, and modifies the source pixels based on the pa-
rameters and current field rendering.

If the field rendering is upper fields first, it will blend the upper fields
of the upper half of the image with the color parameter by the percent-
age specified by the slider parameter. If the field rendering is lower fields
first, it will blend the lower fields of the lower half of the image. If the
field rendering is off, it will blend every other row of pixels. The alpha
is preserved. It demonstrates use of PPix Suite and Pixel Format Suite.
When the setup button is pressed, it displays a message box on Windows,
and an alert on Mac OS.

Device This device controller pretends to control a hardware device. To select
it, choose Edit > Preferences > Device Control > Devices: SDK Device
Control. When the device control Options button is pressed or Export
To Tape is selected, it displays a message box on Windows, and an alert
on Mac OS. It reports status in the status pane of the Capture panel, and
a simulated timecode location in response to the transport controls. It
demonstrates a sample error message when using the Step Back button at
time zero.

How To Build the SDK Projects

The required development environment is described in the SDK Audience section.

On Windows, to specify where you want the built plug-ins to go, set a user environment variable
(right-click My Computer > Properties > Advanced > Environment Variables > User variables)
called PREMSDKBUILDPATH to the desired path (e.g. “C:\Program Files\Adobe\Common\
Plug-ins\[version]\MediaCore\”), and re-log in so that the variable will be set. See the screenshot
below. In the Visual Studio Property Pages for each SDK project, this path is the base path for the
Output File.

Introduction • 29Adobe Premiere Pro CS5 SDK Guide

Create a new user environment variable to specify the build target directory.

On Mac OS, go to the XCode Preferences, in the Building panel, and set “Place Build Products
in:” to “Customized location:”. There you can specify the build target folder.

Load ‘Em Up!

Plug-in Caching

On its first launch, Premiere Pro loads all the plug-ins, reads the PiPL resource, and sends any
startup selectors to determine the plug-ins’ capabilities. To save time on future application launch-
es, it saves some of these capabilities in what we call the plug-in cache (the registry on Windows,
a Property List file on Mac OS). The next time the application is launched, the cached informa-
tion is used wherever possible, rather than loading the plug-ins. Caching plug-ins will make the
application launch faster, but it may be undesirable for plug-ins that need to be initialized every
time. These include plug-ins that need to get run-time information that might change in between
app launches (i.e. installed codec lists), and plug-ins that check for hardware and need to be able
to fail. So we give your plug-in control final say over whether or not it is reloaded each time.

Introduction • 30Adobe Premiere Pro CS5 SDK Guide

By default, importers, recorders, exporters, and players are not cached. Exporters can be cached
by setting exExporterInfoRec.isCacheable to non-zero during exSelStartup. The rest
can be cached if desired by returning *IsCacheable instead of *NoError (e.g. for import-
ers, imIsCacheable instead of imNoError) on the startup selector. On Mac OS, do not set
rmIsCacheable for recorder plug-ins, as this will cause problems when the recorder is loaded
from the cache (bug 1546820).

By default, transitions, video filters, and device controllers are cached by default. To specify that
they must be reloaded each time, rather than cached, Premiere effects and transitions should
respond to fsCacheOnLoad and esCacheOnLoad, respectively.

Resolving Plug-in Loading Problems

There are various tools to help in the development process.

On Windows only, you can force Premiere to reload all the plug-ins by holding down shift on
startup. The plug-in cache on Mac OS may be deleted manually from the user folder, at
~/Library/Preferences/com.Adobe.Premiere Pro [version].plist.

For plug-in loading issues, you may first check one of the plug-in loading logs.
On Windows Vista:
[user folder]\AppData\Roaming\Adobe\Premiere Pro\[version num-
ber]\[process name] Plugin Loading.log

On MacOS, this is:
~/Library/Application Support/Adobe/Premiere Pro/[version num-
ber]/[process name] Plugin Loading.log

Your plug-in will be listed by path and filename, and the log will contain details on what hap-
pened during the plug-in loading process. If the log says a plug-in has been marked as Ignore,
then you should force Premiere to reload all the plug-ins as described above.

No Shortcuts Allowed

The Premiere Pro plug-in loader does not follow Windows shortcuts. Although it does follow Mac
OS symbolic links, we recommend against using symbolic links in the plug-ins folder, since the
plug-in loader checks the timestamp of the symbolic link rather than the timestamp of the plug-in
pointed to. Explanation: If you use a symbolic link and the plug-in fails to load once (for example,
if the plug-in pointed to isn’t there) it will be marked to ignore when Premiere launches. Even if
the plug-in is restored to the proper location, the plug-in loader will check the modification time
of the symbolic link, rather than the plug-in pointed to, and continue to ignore the plug-in until

Introduction • 31Adobe Premiere Pro CS5 SDK Guide

the modification date of the symbolic link is updated. So plug-ins should be placed directly in a
plug-ins folder or subfolder.

Debugging Plug-ins

Attaching The Debugger Using Microsoft Visual Studio .NET

Processes may be attached to for debugging after they have been launched. You can do this
in Visual Studio via Debug > Process > Attach, or programmatically using _asm int 3 or
DebugBreak(). You will then receive the Microsoft error reporting message, but if you hit the
Debug button you will enable Just-In-Time Debugging and can attach to the process.

Attaching The Debugger Using XCode

If you attach to one of the Adobe Premiere Pro processes using the unmodified sample projects,
you will get the error “No launchable executable present at path.” In the Groups & Files panel
of XCode, add a New Custom Executable to the Executables group. Specify the full path to the
Adobe Premiere Pro app or process you wish to debug. Now you will be able to attach the debug-
ger to the process.

In 4.0.1 and later, there is a new library included that unfortunately has copy protection:
/Applications/Adobe Premiere Pro CS4/Adobe Premiere Pro CS4.app/MediaIO/codecs/SurCode.
framework
This library will prevent debugging using XCode. To workaround the problem on a development
system, temporarily move the library out of the codecs folder.

Dog Ears

Premiere Pro’s built-in player has a mode to display statistics, historically known as “dog ears”,
which can be useful in debugging and tuning performance of importers and effects. The statistics
include frames per second, frames dropped during playback, pixel format rendered, render size,
and field type being rendered.To use this feature, you’ll need to bring up the debug console in
Premiere Pro. You can do this via Ctrl/Cmd-F12. To enable the dog ears, type this:

debug.set EnableDogEars=true

to disable, use this:

debug.set EnableDogEars=false

Introduction • 32Adobe Premiere Pro CS5 SDK Guide

If the enter keystroke seems to go to the wrong panel, this is an intermittent panel focus problem.
Click the Tools or Info panel before typing in the Console panel, and the enter key will be pro-
cessed properly.

Once enabled, the player displays the statistics as black text on a partially transparent back-
ground. This allows you to still see the underlying video (to some extent) and yet also read the
text. When you turn off dog ears, the setting may not take effect until you switch or reopen your
current sequence.

Plug-in Installation

Plug-ins must have an installer. This simplifies installation by the user, provides more compact
distribution media, and ensures all the pieces are installed correctly. Create a container folder for
your plug-in(s) to minimize user confusion. Don’t unintentionally overwrite existing plug-ins, or
replace newer versions. The installer should find the default installation directories as described
below, but should also allow the user to specify an alternate directory.

In Premiere Pro CS3 and later, plug-ins should be installed in the common plug-in location.
Supported Premiere and After Effects plug-ins installed here will be loaded by Premiere Pro, After
Effects, Encore, SoundBooth, and Media Encoder. Other plug-in types, such as QuickTime and
VfW codecs should be installed at the operating system level.

On Windows, the common plug-in path can be found in the registry in the following key:
HKEY_LOCAL_MACHINE/Software/Adobe/Premiere Pro/CurrentVersion/Plug-InsDir

On Mac OS, this common plug-in location is at:
/Library/Application Support/Adobe/Common/Plug-ins/[version]/MediaCore

Presets and editing mode XML files are loaded from the application-specific folders, not from the
common location. On Windows, the root path for Premiere Pro is in the registry at
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\App Paths\
Adobe Premiere Pro.exe. Then, just add the proper subdirectories.
For sequence presets:
\Settings\SequencePresets\[Your specific folder]\
Editing modes:
\Settings\Editing Modes\
Sequence preview presets:
\Settings\EncoderPresets\SequencePreview\[Your editing mode GUID]\
Encoder presets:
\MediaIO\systempresets\[Your exporter folder]\
Effects presets:
\Plug-ins\[language subdirectory]\Effect Presets\ (see Localization for the list of language codes)

Introduction • 33Adobe Premiere Pro CS5 SDK Guide

Plug-in Naming Conventions

On Windows, Premiere Pro plug-ins must have the file extension “.prm”. On Mac OS, they have
the file extension “.bundle”. Other supported plug-in standards use their conventional file exten-
sions: “.aex” for After Effects plug-ins, “.dll” for VST plug-ins.

While it is not required for your plug-in to load, naming your plug-ins using the plug-in type as a
prefix (e.g. ImporterSDK, FilterSDK, etc.) will help reduce user confusion.

Creating Sequence Presets

Not to be confused with encoder presets or sequence preview encoder presets, sequence presets
are the successor to project presets. They contain the video, audio, timecode, and track layout
information used when creating a new sequence.

When providing a new editing mode, provide user-friendly Sequence Presets for the New
Sequence dialog. Save the settings with a descriptive name and comment. Emulate our settings
files. Install the presets as described in the section, “Plug-in Installation”.

Application-level Preferences

For Windows Vista restricted user accounts, the only place that code has guaranteed write access
to a folder is inside the user documents folder and its subfolders.
..\Users\[user name]\AppData\Roaming\Adobe\Premiere Pro\[version]\
This means that you cannot save data or documents in the application folder. There is currently
no plug-in level API for storing preferences in the application prefs folder. Plug-ins can create
their own preferences file in the user’s Premiere prefs directory like so:

HRESULT herr =
 SHGetFolderPath(NULL, CSIDL_APPDATA, NULL, 0, preferencesPath);
strcat(preferencesPath,
 “\\Adobe\\Premiere Pro\\[version]\\MyPlugin.preferences”);

Localization

The language used by Premiere Pro is decided by the user during installation. Plug-ins can deter-
mine this setting from the following locations:
On Windows, in the registry at HKEY_CURRENT_USER\Software\Adobe\Premiere Pro\[ver-
sion], in a key named “Language”.
On Mac OS, at ~/Library/Preferences/com.Adobe.Premiere Pro.[version].plist, at Root >
Language.
The string will be set to one of the values below by Premiere Pro at startup.

Introduction • 34Adobe Premiere Pro CS5 SDK Guide

Language String
English en_US
French fr_FR
German de_DE
Italian it_IT
Japanese ja_JP
Spanish es_ES
Korean (new in CS4) ko_KR

Changing the string will not change the language Premiere Pro runs in, unless you override the
application language by placing a file in the following location:

Windows: [App installation folder]\lang-override.txt
Mac OS: [App Installation folder]/[Premiere Pro application package]/Contents/lang-override.txt

Best Practices

When a plug-in receives a selector it doesn’t recognize, it should always return the code specific to
the plug-in type that means the selector is not supported (i.e. imUnsupported, rmUnsupported,
etc). In this way, new selectors can be added to the API and legacy plug-ins will automatically
answer whether or not they support it.

Structure Alignment

All the sample projects include PrSDKTypes.h. This header sets the proper (single-byte) structure
alignment and specifies the necessary (C-style) external linkage.

Getting Support and Providing Feedback

Please read relevant sections of this document and view the included sample code before request-
ing assistance. Please direct questions regarding installation, configuration, or use of Adobe prod-
ucts to Adobe Technical Support.

To report a bug or submit a feature request for Premiere Pro, please visit:
http://www.adobe.com/cfusion/mmform/index.cfm?name=wishform
Since this form can be used to submit bugs and features for all Adobe products, make sure you
have the right product selected.

http://www.adobe.com/support/
http://www.adobe.com/cfusion/mmform/index.cfm?name=wishform

Introduction • 35Adobe Premiere Pro CS5 SDK Guide

We encourage you to use the Premiere Pro SDK forum to ask questions on the API and general
integration. For development questions that you’d rather keep confidential, you may contact API
Engineering directly. Your feedback can improve the API and SDK to streamline future develop-
ment.

http://forums.adobe.com/community/premiere/premierepro_current/sdk
mailto:zlam@adobe.com?subject=Premiere_SDK_Question
mailto:zlam@adobe.com?subject=Premiere_SDK_Question

Resources • 36Adobe Premiere Pro CS5 SDK Guide

2Resources

There are two types of special resources that are specific to Premiere plug-ins: the PiPL and the
IMPT. This chapter describes these resources, and how certain plug-in types use them.

Plug-In Property Lists (PiPL) Resource

For many plug-in types, Premiere loads a PiPL (Plug-in Property List) resource. The PiPL is
described in a file with a “.r” extension. The complete PiPL syntax is described in PiPL.r. You’ll
notice that PiPLs are really old. A vestige of 68k Mac OS programming, they spread to Windows.
However, if you develop from the sample projects, you shouldn’t have to do anything to get them
to build properly for Latin languages.

Which Types of Plug-ins Need PiPLs?

Exporters, players, and recorders do not need PiPLs.

Standard importers do not need PiPLs. Synthetic and custom importers use a basic PiPL to
specify their name, and the match name that Premiere uses to identify them. The name appears
in the File > New menu.

Device controllers use a basic PiPL to specify their name and the match name that Premiere uses
to identify them.

Video filters use an extended PiPL to specify their name, the match name that Premiere uses to
identify them, the bin they go in, how they handle pixel aspect ratio, whether or not they have
randomness, and their parameters. For more information on the ANIM_FilterInfo and ANIM_
ParamAtom sections, see the resources section in the Video Filters chapter.

Transitions use an extended PiPL to specify their name, the match name that Premiere uses to
identify them, the bin they go in, their description that appears in the Effect Controls Panel, the
directional arrow controls, whether or not they have a setup button, whether or not they receive
an esSetup when the transition is applied, whether or not they are treated as a transition [TODO

Resources • 37Adobe Premiere Pro CS5 SDK Guide

- Is this used anymore?], whether or not they have a Reverse checkbox, whether or not they have
borders, the point controls, and how they handle pixel aspect ratio. For more information on the
Pr_Effect_Info section, see the resources section in the Transitions chapter.

A Basic PiPL Example

#define plugInName	 	 “SDK Custom Import”
#define plugInMatchName	 “SDK Custom Import”

resource ‘PiPL’ (16000) {
{

// The plug-in type
Kind {PrImporter},
		
// The name as it will appear in a Premiere menu, this can be localized
Name {plugInName},
		
// The internal name of this plug-in - do not localize this. This is used for both Premiere

and After Effects plug-ins.
AE_Effect_Match_Name {plugInMatchName}

// Transitions and video filters define more PiPL attributes here

}
};

How PiPLs Are Processed By Resource Compilers

On Mac OS, .r files are processed natively by XCode, as a Build ResourcesManager Resources
Build Phase. This step is already set for the sample projects.

On Windows, .r files are processed with CnvtPiPL.exe, which creates an .rcp file based upon
custom build steps in the project. The .rcp file is then included in the .rc file along with any other
resources the plug-in uses. These custom build steps are already in place in the sample projects.
To view them, open up the sample project in .NET. In the Solution Explorer, right-click the .r
file and choose Properties. In the dialog, choose the Custom Build Step folder. The Command
Line contains the script for executing the CnvtPiPL.exe. Unless you are using a different compiler
than the support compiler, or adding support for Asian languages, you should not need to modify
the custom build steps. This script may also be found as a text file in the SDK at \Examples\
Resources\Win\Custom Build Steps.txt. This text file also describes the additional switches used
for Asian languages.

Resources • 38Adobe Premiere Pro CS5 SDK Guide

IMPT Resource

Premiere Pro looks for an IMPT resource to identify a plug-in as an importer. Before Premiere
Pro 1.0, the IMPT resource was also used to declare the file extension supported by an importer.
Since file extensions are now declared during imGetIndFormat, the drawtype fourcc in the IMPT
resource is no longer used by Premiere Pro. However, a unique drawtype fourcc is needed for
the importer to function properly in After Effects on Mac OS. Do not use 0x4D4F6F76. This is
already reserved by After Effects.

1000 IMPT DISCARDABLE
BEGIN
	 0x12345678 // Put your own unique hexadecimal code here
END

Universals • 39Adobe Premiere Pro CS5 SDK Guide

3Universals

This chapter covers topics that are common to more than one type of Premiere plug-in. We start
by discussing fundamental concepts and common data structures. The rest of the chapter dis-
cusses the various function suites that are available to plug-ins.

Time

There are two different representations of time: scale over sampleSize, and ticks.

scale over sampleSize

The first representation of time uses value/scale/sampleSize components, either sepa-
rated, or combined in a TDB_TimeRecord structure. scale over sampleSize defines
the timebase. For example, to represent the NTSC standard of 29.97 frames per second, scale
= 30000 and sampleSize = 1001. To represent the PAL standard of 25 frames per second,
scale = 25 and sampleSize = 1. To represent the 24P standard of 23.976, scale = 23976
and sampleSize = 1000. To represent most other timebases, use sampleSize = 1, and
scale is the frame rate (e.g. 15, 24, 30 fps, etc). Another way of thinking about scale and
sampleSize is that sampleSize is the duration of a frame of video, and scale is that dura-
tion of a second of video.

value is the time in the timebase given by scale over sampleSize. So, for example, 30
frames with a sampleSize of 1001 have a value of 30030. To convert value to seconds, divide by
scale. To convert value to frames, divide by sampleSize.

Sometimes, as when handling audio-only media, sampleSize refers to a sample of audio, and
sampleSize = 1. In this case, scale is the audio sampling rate (22050, 32000, 44100, 48000
Hz, etc).

Universals • 40Adobe Premiere Pro CS5 SDK Guide

PrTime

Most newer areas of the API use a tick-based time value that is stored in a signed 64-bit integer.
Variables that use this new format are of type PrTime. When a frame rate is represented as a
PrTime, the frame rate is the number of ticks in a frame duration.

The current number of ticks per second must be retrieved using the callback in the Time Suite.
This rate is guaranteed to be constant for the duration of the application’s run-time.

Video Frames

Premiere stores each video frame in a PPix structure. A PPixHand is a handle to a PPix. This
structure should not be accessed directly, but manipulated using various suites such as the PPix
Suite, PPix 2 Suite, PPix Creator Suite, and PPix Creator 2 Suite. Yes, our engineers have had to
buy replacement ‘P’ keys for their keyboards.

Far from being just a boring buffer of RGB data, PPixes contain a significant amount of infor-
mation about a video frame, including: rectangle bounds (width, height), pixel aspect ratio, pixel
format, field order, and more.

In the pixel buffer itself, there may be padding between neighboring horizontal rows of pixels. So
when iterating through the pixels in the buffer, don’t assume that the first pixel on the next line is
stored immediately after the last pixel on the current line. Honor the rowbytes, which is a measure
of the size in bytes of a row of pixels, including any extra padding.

Frames are guaranteed to be 16-byte aligned.

Pixel Formats and Color Spaces

As of CS5, Premiere supports 54 different pixel formats, not including raw and custom formats.
Why so many? Each pixel format has it’s unique advantages and disadvantages. 8-bit formats
are compact, but lack quality. 32-bit ones are more accurate, but overkill in some situations.
Compressed formats are great for storing raw frames, but bad for effects processing. And so on...
The conclusion - choose wisely!

What Format Should I Use?

Starting in CS4, plug-ins no longer need to support 8-bit BGRA at a minimum. If required,
Premiere can make intermediate format conversions in the render pipeline, although these inter-
mediate conversions will be avoided if possible. Previously in CS3 and earlier, all plug-ins except
importers needed to support 8-bit per channel BGRA, even if they supported other formats.

Universals • 41Adobe Premiere Pro CS5 SDK Guide

When choosing which pixel formats to support, there are different factors to consider, depending
on the plug-in type.

Importers

Importers should provide frames in a format closest to the source format. If needed, Premiere
can convert any compressed format to a 8-bit or 32-bit uncompressed format. Keeping the format
compressed as long as possible as it passes through the render pipeline will save memory and
bandwidth.

Effects

Effects should support the uncompressed format(s) that works best with the effect’s pixel process-
ing algorithm. If the algorithm is based on RGB pixel calculations, provide a fast render path
using 8-bit BGRA, and optionally a high-quality render path using 32-bit BGRA. If the algorithm
is Y’UV-based, use the VUYA pixel formats.

Exporters and Players

Exporters and players should request frames in a format closest to the output format. New in
CS5, PrPixelFormat_Any can be used in render requests. Any render function that takes a
list of pixel formats can now be called with just two formats - the desired 4:4:4:4 pixel format, and
PrPixelFormat_Any. This allows the host to avoid frame conversions and decompressions in
many very common cases. The best part is that the plug-in doesn’t need to understand all the pos-
sible pixel formats to make use of this. It can use the Image Processing Suite to copy/convert from
any a PPix of any format to a separate memory buffer, which is a copy that would likely need to be
done anyway.

After the request is made, Premiere analyzes the preferred format of all importers and effects that
are used to produce a single rendered frame, as well as the list of requested formats, and chooses
the best format to use on a per-segment basis. If the requestor supports more than one format,
and the importers and effects used for various clips in the sequence support different formats, the
render may use different formats for each segment.

Premiere Pro’s built-in Rec. 601 to 709 color space conversion can be slow. So if the majority of
the sources and effects use the Rec 601 color space, and if the exporter or player can handle the
601 to 709 conversion quickly on its own, it may be faster to do the color space conversion in the
exporter or player.

Universals • 42Adobe Premiere Pro CS5 SDK Guide

Other Considerations

For high-bit depth support, the 32f formats are the recommended route, rather than the 16u
formats. For example, an exporter that supports 10-bit Y’UV should ask for frames in 32f Y’UV
format, and then convert the 32f to 10u.

The ARGB formats can be natively used in the After Effects render pipeline, and are used by
After Effects effect plug-ins that do not specifically support any other pixel format. However, in
Premiere Pro, these ARGB formats will require byte-swapping, and shouldn’t be used.

Byte Order

BGRA, ARGB, and VUYA are written in order of increasing memory address from left to right.
Uncompressed formats have a lower-left origin, meaning the first pixel in the buffer describes the
pixel in the lower-left corner of the image. Compressed formats have format-specific origins.

PrPixelFormat Bits /
Channel

Format Additional Details

Unpacked, Uncompressed
BGRA_4444_8u 8 RGB
VUYA_4444_8u 8 Y’UV
VUYA_4444_8u_709 8 Y’UV Rec. 709 color space. New in

Premiere Pro 4.1.
ARGB_4444_8u 8 RGB For After Effects support. For

Premiere Pro, use BGRA.
BGRX_4444_8u 8 RGB Implicitly opaque alpha

channel. The actual data may
be left filled with garbage,
which allows you to optimize
your processing, with the
understanding the the alpha
channel is opaque. New in
Premiere Pro CS5.

VUYX_4444_8u 8 Y’UV
VUYX_4444_8u_709 8 Y’UV
XRGB_4444_8u 8 RGB

BGRP_4444_8u 8 RGB Premultiplied alpha. New in
Premiere Pro CS5.VUYP_4444_8u 8 Y’UV

VUYP_4444_8u_709 8 Y’UV
PRGB_4444_8u 8 RGB
BGRA_4444_16u 16 RGB
ARGB_4444_16u 16 RGB For After Effects support. For

Premiere Pro, use BGRA.

Universals • 43Adobe Premiere Pro CS5 SDK Guide

PrPixelFormat Bits /
Channel

Format Additional Details

BGRX_4444_16u 16 RGB Implicitly opaque alpha. New
in Premiere Pro CS5.XRGB_4444_16u 16 RGB

BGRP_4444_16u 16 RGB Premultiplied alpha. New in
Premiere Pro CS5.PRGB_4444_16u 16 RGB

BGRA_4444_32f 32 RGB
VUYA_4444_32f 32 Y’UV
VUYA_4444_32f_709 32 Y’UV Rec. 709 color space. New in

Premiere Pro 4.1.
ARGB_4444_32f 32 RGB For After Effects support. For

Premiere Pro, use BGRA.
BGRX_4444_32f 32 RGB Implicitly opaque alpha. New

in Premiere Pro CS5.VUYX_4444_32f 32 Y’UV
VUYX_4444_32f_709 32 Y’UV
XRGB_4444_32f 32 RGB
BGRP_4444_32f 32 RGB Premultiplied alpha. New in

Premiere Pro CS5.VUYP_4444_32f 32 Y’UV
VUYP_4444_32f_709 32 Y’UV
PRGB_4444_32f 32 RGB

Packed, Uncompressed
YUYV_422_8u_601 8 YUY2 New in Premiere Pro CS4.
YUYV_422_8u_709 8 YUY2 Rec. 709 color space. New in

Premiere Pro CS4.
UYVY_422_8u_601 8 UYVY New in Premiere Pro CS4.
UYVY_422_8u_709 8 UYVY Rec. 709 color space. New in

Premiere Pro CS4.
V210_422_10u_601 10 V210 New in Premiere Pro CS4.
V210_422_10u_709 10 V210 Rec. 709 color space. New in

Premiere Pro CS4.

Linear
BGRA_4444_32f_Linear 32 RGB These RGB formats have

a gamma of 1, rather than
the standard 2.2. New in
Premiere Pro CS5.

BGRP_4444_32f_Linear 32 RGB
BGRX_4444_32f_Linear 32 RGB
ARGB_4444_32f_Linear 32 RGB
PRGB_4444_32f_Linear 32 RGB
XRGB_4444_32f_Linear 32 RGB

Compressed

Universals • 44Adobe Premiere Pro CS5 SDK Guide

PrPixelFormat Bits /
Channel

Format Additional Details

NTSCDV25 8 DV25
PALDV25 8 DV25
NTSCDV50 8 DV50 New in Premiere Pro 3.1.
PALDV50 8 DV50 New in Premiere Pro 3.1.
NTSCDV100_720p 8 DV100 720p New in Premiere Pro 3.1.
PALDV100_720p 8 DV100 720p New in Premiere Pro 3.1.
NTSCDV100_1080i 8 DV100 1080i New in Premiere Pro 3.1.
PALDV100_1080i 8 DV100 1080i New in Premiere Pro 3.1.
YUV_420_MPEG2_
FRAME_PICTURE_
PLANAR_8u_601

12 Y’UV 4:2:0 Progressive Rec. 601 color
space

YUV_420_MPEG2_
FIELD_PICTURE_
PLANAR_8u_601

12 Y’UV 4:2:0 Interlaced Rec. 601 color
space

YUV_420_MPEG2_
FRAME_PICTURE_
PLANAR_8u_709

12 Y’UV 4:2:0 Progressive Rec. 709 color
space

YUV_420_MPEG2_
FIELD_PICTURE_
PLANAR_8u_709

12 Y’UV 4:2:0 Interlaced Rec. 709 color
space

Raw ? ? Raw, opaque data, with no
rowbytes or height

Custom Pixel Formats

New in CS4, custom pixel formats are supported. Plug-ins can define a pixel format which can
pass through various aspects of our pipeline, but remain completely opaque to the MediaCore
renderer. Use the macro MAKE_THIRD_PARTY_CUSTOM_PIXEL_FORMAT_FOURCC in the
Pixel Format Suite. Please use a unique name to avoid collisions. The format doesn’t need to be
registered in any sense. They can just be used in the same way the current pixel formats are used,
though in many cases they will be ignored.

The first place the new pixel formats can appear in the render pipeline is at the importer level.
Importers can advertise the availability of these pixel formats during imGetIndPixelFormat, just as
they would for any other format. Note that importers must also support a non-custom pixel for-
mat, for the case where the built-in renderer is used, which would not be prepared to handle an
opaque pixel format added by a third-party. In the importer, use the new CreateCustomPPix
call in the PPix Creator 2 Suite, and specify a custom pixel format and a memory buffer size, and
the call will pass back a PPix of the requested format. These PPixes can then be returned from
an importer, like any other. The memory for the PPix will be allocated by MediaCore, and must

Universals • 45Adobe Premiere Pro CS5 SDK Guide

be a flat data structure as they will need to be copied between processes. However, because the
data itself is completely opaque, it can easily be a reference to another pixel buffer, as long as the
reference can be copied. For example, the buffer could be a constant 16 bytes, containing a GUID
which can be used to access a memory buffer by name in another process.

To query for available custom pixel formats from the player, use the
GetNumCustomPixelFormats and GetCustomPixelFormat calls in the Clip Render
Suite. The custom pixel formats will not returned by the regular calls to get the supported frame
formats, mostly to prevent them from being used. The other Clip Render Suite functions will
accept requests for custom pixel formats and will return these custom PPixes like any others.
With the Clip Render Suite, a third-party player can directly access these custom PPixes from a
matched importer.

Smart Rendering

Smart rendering involves passing compressed frames from the importer to the exporter, to bypass
any unnecessary decompression and recompression, which reduces quality and performance.
The way to implement this is by passing custom PPixes between an importer, exporter, and usu-
ally a renderer.

In the rare case of exporting a single clip, using the Clip Render Suite in the exporter to request
custom PPixes from the importer is sufficient. But in the more common case of exporting a se-
quence, a renderer that supports the custom pixel format is required.

When an exporter running in Media Encoder parses the segments in the sequence, it only has
a very high-level view. It sees the entire sequence as a single clip (which is actually a temporary
project file that has been opened using a Dynamic Link to the PProHeadless process), and it
sees any optional cropping or filters as applied effects. So when the exporter parses that simple,
high-level sequence, if there are no effects, it should use the MediaNode’s ClipID with the Clip
Render Suite to get frames directly from the PProHeadless process. In the PProHeadless process,
the renderer can step in and parse the real sequence in all its glory. It can use the Clip Render
Suite to get the frames in the custom pixel format directly from the importer, and then set the
custom PPix as the render result. This custom PPix then is available to the exporter, in a pris-
tine, compressed PPix.

Pixel Aspect Ratio

Pixel Aspect Ratio (PAR) is usually represented as a rational number, with a numerator and a
denominator. Note that several PAR values were changed in CS4 to match broadcast standards.
Here are some examples of pixel aspect ratios:

NTSC DV 0.9091 PAR is (10, 11)
NTSC DV Widescreen 1.2121 PAR is (40, 33)

Universals • 46Adobe Premiere Pro CS5 SDK Guide

PAL DV 1.0940 PAR is (768, 702)
PAL DV 1.4587 PAR is (1024, 702)
Square 1.0 PAR is (1,1)

In certain legacy structures, PAR is represented as a single long, such as in recCapInfoRec.
pixelAspectRatio. This uses a representation where the numerator is bit-shifted 16 to the
left, and OR’d with the denominator. For example NTSC DV 0.9091 PAR is (10 << 16) |
11.

Fields

There are different constants defined for fields. These constants are now interchangable in CS4,
since the conflicting constants for the old compiler API have been removed.

Recorders Exporters, Players,
getSettings(), etc

kMALFieldsNone prFieldsNone
kMALFieldsUpperFirst prFieldsUpperFirst
kMALFieldsLowerFirst prFieldsLowerFirst
kMALFieldsUnknown prFieldsUnknown
kMALFieldsInvalid

Audio

32-bit Float, Uninterleaved Format

All audio calls to and from Premiere use arrays of buffers of 32-bit floats to pass audio. Audio is
not interleaved, rather separate channels are stored in separate buffers. So the structure for stereo
audio looks like this:

float* audio[2];

where audio[0] is the address of a buffer N samples long, and audio[1] is the address of a
second buffer N samples long. audio[0] contains the left channel, and audio[1] contains
the right channel. N is the number of sample frames in the buffer.

Since Premiere uses 32-bit floats for each audio sample, it can represent values above 0 dB. 0 dB
corresponds to +/- 1.0 in floating point. A floating point sample can be converted to a 16-bit
short integer by multiplying by 32767.0 and casting the result to a short. E.g.:
sample16bit[n] = (short int) (sample32bit[n] * 32767.0)

Universals • 47Adobe Premiere Pro CS5 SDK Guide

The plug-in is responsible for converting to and from the 32-bit uninterleaved format when read-
ing a file that uses a different format. There are calls to convert between formats in the Audio
Suite.

Audio Sample Types

Since 32-bit floats are the only audio format ever passed, there is no option of sample type
or bit depth. However, file formats do use a variety of sample types and bit depths, so
AudioSampleTypes define a variety of possible formats. These formats are used to set mem-
bers in structures passed to Premiere to define the user interface, and do not affect the format of
the audio passed to and from Premiere.

PrAudioSampleType Description
kAudioSampleType_8BitInt 8-bit integer
kAudioSampleType_8BitTwosInt 8-bit integer, two’s complement
kAudioSampleType_16BitInt 16-bit integer
kAudioSampleType_24BitInt 24-bit integer
kAudioSampleType_32BitInt 32-bit integer
kAudioSampleType_32BitFloat 32-bit floating point
kAudioSampleType_64BitFloat 64-bit floating point
kAudioSampleType_16BitIntBigEndian 16-bit integer, big endian
kAudioSampleType_24BitIntBigEndian 24-bit integer, big endian
kAudioSampleType_32BitIntBigEndian 32-bit integer, big endian
kAudioSampleType_32BitFloatBigEndian 32-bit floating point, big endian
kAudioSampleType_Compressed Any non-PCM format
kAudioSampleType_Packed Any PCM format with mixed sample

types
kAudioSampleType_Other A sample type not in this list
kAudioSampleType_Any Any available sample type (used by

exporters)

Audio Sample Frames

A sample frame is a unit of measurement for audio. One audio sample frame describes all chan-
nels of one sample of audio. Each sample is a 32-bit float. Thus, the storage requirement of an
audio sample frame in bytes is equal to 4 * number of channels.

Universals • 48Adobe Premiere Pro CS5 SDK Guide

Audio Sample Rate

PrAudioSample is a prInt64

Audio Channel Types

Premiere currently supports three different audio channel types: mono, stereo, and 5.1. The order
of the stereo channels is: left, right. The order of the 5.1 channels is: left, right, left surround, right
surround, center, LFE.

New in Premiere Pro 4.0.1, there is partial support for a 16 channel master audio track, only for
importing OMFs and playing out to hardware. The 16-channel master audio track should not be
used for export.

PrAudioChannelType Description
kPrAudioChannelType_Mono Mono
kPrAudioChannelType_Stereo Stereo
kPrAudioChannelType_51 5.1
kPrAudioChannelType_16Channel 16 channel, support for master audio track

playback only

Memory Management

Premiere Pro has a media cache in which it stores imported frames, intermediate frames (inter-
mediate stages of a render), fully rendered frames, and audio. This is sized based on a specific
percentage of physical memory, taking into account if multiple Production Premium applications
like After Effects, Encore, etc are also running. PPro manages this cache itself, so as it adds new
items to the cache, it flushes least recently used items.

What Really is a Memory Problem?

Often, users monitoring memory usage are alarmed when they see memory growing to a specific
point during a render or playback. When the memory doesn’t drop right back down after a ren-
der or playback, they might think they have found a memory leak. However, keeping in mind the
function of the Premiere Pro media cache, this behavior is to be expected.

On the other hand, memory contention between plug-ins and the rest of Premiere Pro can lead
to memory problems. If a plug-in allocates a significant amount of memory and the Premiere
Pro media cache has not accounted for it, this means there is less free memory available after the
media cache grows to the predefined size. Even if Premiere Pro does not completely run out of

Universals • 49Adobe Premiere Pro CS5 SDK Guide

memory, limited memory can cause memory thrashing as memory is moved around to make
room for video frames, which in turn can cause poor performance.

Solutions for Memory Contention

The best approach to reduce memory contention is to reduce the memory requirements of each
plug-in. However, if the memory requirements of a plug-in are significant, it should also use the
Memory Manager Suite to report any memory usage that would not already be accounted for.
Frames allocated using the PPix Creator Suite are accounted for, but any memory allocated using
the old PPix and Memory functions are not automatically accounted for.

If each instance of an importer has very high memory requirements, importers can set the flag
imFileInfoRec8.highMemUsage = kPrTrue during imGetInfo8. This makes Premiere Pro
limit the number of open file instances with the flag set to true.

Basic Types and Structures

These types and structures are defined in PrSDKTypes.h and PrSDKStructs.h, and are used
throughout the Premiere API. Premiere defines cross-platform types for convenience when devel-
oping plug-ins for both Windows and Mac OS.

Name Description
prColor An unsigned 32-bit integer that stores an RGB color. This type is

useful for the 8-bpc colors retrieved by the color picker in a video
effect or transition. Color channels are stored as BGRA, in order
of increasing memory address from left to right.

prWnd A Windows HWND or Mac OS NSView*
prOffscreen A Windows HDC
prRect A Windows RECT or Mac OS Rect. Use the utility function

prSetRect to set the dimensions of a prRect struct. This
should be used because Mac OS Rect members have a different
ordering than Windows RECT members.

prFloatRect typedef struct {
float left;
float top;
float right;
float bottom;

} prFloatRect;
prRgn A Windows HRGN

Universals • 50Adobe Premiere Pro CS5 SDK Guide

Name Description
prPoint, LongPoint typedef struct {

	 csSDK_int32 x;
	 csSDK_int32 y;
} prPoint, LongPoint;
LongPoint is deprecated, but still used for a couple of
Bottleneck callbacks

prFPoint typedef struct
{
	 double x;
	 double y;
} prFPoint64;

prPixel (Deprecated)
prPixelAspectRatio (Deprecated)
PPix, *PPixPtr,
**PPixHand

Holds a video frame or field, and contains related attributes such
as pixel aspect ratio and pixel format. Manipulate PPixs using
the PPix Suite, never directly.

TDB_TimeRecord A time database record representing a time value in the context of
a video frame rate.
typedef struct {

TDB_Time value;
TDB_TimeScale scale;
TDB_SampSize sampleSize;

} TDB_TimeRecord;
prBool Can be either kPrTrue or kPrFalse
PrMemoryPtr,
*PrMemoryHandle

A char*

PrTimelineID,
PrClipID

A 32-bit signed integer.

prUTF8Char An 8-bit unsigned integer.
PrSDKString An opaque data type that should be accessed using the new String

Suite.

Universals • 51Adobe Premiere Pro CS5 SDK Guide

Name Description
PrParam Used for exporter parameters

struct PrParam
{
	 PrParamType	 	 mType;
	 union
	 {
	 	 csSDK_int8	 mInt8;
	 	 csSDK_int16	 mInt16;
	 	 csSDK_int32	 mInt32;
	 	 csSDK_int64	 mInt64;
	 	 float		 	 mFloat32;
	 	 double	 	 mFloat64;
	 	 csSDK_uint8	 mBool;
		 prFPoint64	 mPoint;
	 	 prPluginID	 mGuid;
	 	 PrMemoryPtr	 mMemoryPtr;
	 };
};

enum PrParamType
{
	 kPrParamType_Int8 = 1,	
	 kPrParamType_Int16,	
	 kPrParamType_Int32,	
	 kPrParamType_Int64,
	 kPrParamType_Float32,
	 kPrParamType_Float64,
	 kPrParamType_Bool,
	 kPrParamType_Point,
	 kPrParamType_Guid,
	 kPrParamType_PrMemoryPtr
};

prDateStamp Used in by importers in imFileAttributesRec.cre-
ationDateStamp.
typedef struct
{
	 csSDK_int32	 day;
	 csSDK_int32	 month;
	 csSDK_int32	 year;
	 csSDK_int32	 hours;
	 csSDK_int32	 minutes;
	 double	 	 seconds;
} prDateStamp;

Universals • 52Adobe Premiere Pro CS5 SDK Guide

Suites

There are different sets of function suites available to Premiere plug-ins. The SweetPea Suites
are the more modern suites that have been added for most new functionality. The piSuites are
still needed for various functionality that has not all been superceded by the SweetPea Suites.
Whenever possible, use the SweetPea Suites.

There are also function suites more specific to certain plug-in types. The Bottleneck Functions
are useful for transitions and video filters. Other suites available to only one plug-in type are
documented in the appropriate chapter for that plug-in type.

SweetPea Suites

Overview

Suites common to more than one plug-in type are documented in this chapter below. Suites that
are only used by one plug-in type are documented in the chapter on that plug-in type. Below is a
table of all suites available in Premiere Pro:

Suite Name Relevant to Plug-in Type
Accelerated Render Invocation Suite Exporters, Players, Renderers
App Info Suite All
Application Settings Suite All
Async File Reader Suite Importers
Async Operation Suite All
Audio Suite Importers, Exporters
Clip Render Suite Exporters, Players, Renderers
Deferred Processing Suite Importers
Error Suite All
Export File Suite Exporters
Export Info Suite Exporters
Export Param Suite Exporters
Export Progress Suite Exporters
File Registration Suite Importers, Transitions, Video Filters
Flash Cue Marker Data Suite Exporters
Image Processing Suite All
Importer File Manager Suite Importers
Legacy Suite All

Universals • 53Adobe Premiere Pro CS5 SDK Guide

Marker Suite Exporters
Media Accelerator Suite Importers
Memory Manager Suite All
Palette Suite Exporters
Pixel Format Suite All
Playmod Audio Suite Players
Playmod Device Control Suite Players
Playmod Render Suite Players
PPix Cache Suite Importers, Players, Renderers
PPix Creator Suite All
PPix Creator 2 Suite All
PPix Suite All
PPix 2 Suite All
Quality Suite Players, Renderers
RollCrawl Suite Exporters, Players, Renderers
Scope Render Suite Players
Sequence Audio Suite Exporters
Sequence Info Suite Importers, Transitions, Video Filters
Sequence Render Suite Exporters, Renderers
Stock Image Suite Players
String Suite All
Threaded Work Suite Renderers
Time Suite Players
Video Segment Render Suite Exporters, Players, Renderers
Video Segment Suite Exporters, Players, Renderers
Window Suite All

All SweetPea suites are accessed through the Utilities Suite. Plug-ins can acquire the suites like so:
	 SPBasicSuite *SPBasic = NULL;
	 PrSDKPixelFormatSuite *PixelFormatSuite = NULL;
	 SPBasic = stdParmsP->piSuites->utilFuncs->getSPBasicSuite();
	 if (SPBasic)
	 {
	 SPBasic->AcquireSuite (kPrSDKPixelFormatSuite,
	 	 	 	 	 	 kPrSDKPixelFormatSuiteVersion,
	 	 	 	 	 	 (const void**)&PixelFormatSuite);
	 }

If for some reason your code depends on a specific older version of a suite, rather than requesting
kPrSDKPixelFormatSuiteVersion, you request a specific version number instead.

Universals • 54Adobe Premiere Pro CS5 SDK Guide

Don’t forget to release the suites when finished!
	 if (SPBasic && PixelFormatSuite)
	 {
	 SPBasic->ReleaseSuite (kPrSDKPixelFormatSuite,
	 	 	 	 	 	 kPrSDKPixelFormatSuiteVersion);
	 }

App Info Suite

New in CS3. For plug-in types that are shared between different applications, such as After Effects
plug-ins, Premiere exporters, players, and importers, it may be important to know which host the
plug-in is currently running in. This suite currently provides the host application and version
number. See PrSDKAppInfoSuite.h.

Application Settings Suite

New in CS4. This suite provides calls to get the scratch disk folder paths defined in the current
project, where the captured files and preview files are created. It also provides a call to get the
project file path. All paths are passed back as PrSDKStrings. Use the new String Suite to extract
the strings to UTF-8 or UTF-16. See PrSDKApplicationSettingsSuite.h.

Audio Suite

Calls to convert to and from the native audio format used by the Premiere API, at various bit
depths. See PrSDKAudioSuite.h.

Clip Render Suite

New in 2.0. Use this suite in the player or renderer, to request source frames directly from the
importer. There are calls to find the supported frame sizes and pixel formats, so that the caller can
make an informed decision about what format to request. Frames can be retrieved synchronously
or asynchronously. Asynchronous requests can be cancelled, for example if the frames have
passed their window of playback. See PrSDKClipRenderSuite.h.

Starting in CS4, this suite includes calls to find any custom pixel format supported by a clip, and
to get frames in those custom pixel formats.

An exporter can use this suite to request frames from the renderer in a compressed pixel format.

Universals • 55Adobe Premiere Pro CS5 SDK Guide

Error Suite

Uses a single callback for errors, warnings, and info. This callback will activate a flashing icon in
the lower left-hand corner of the main application window, which when clicked, will open up the
new Events Window containing the error information. See PrSDKErrorSuite.h.

Starting in version 3 of the suite, introduced in CS4, the suite supports UTF-16 strings.

File Registration Suite

Used for registering external files (such as textures, logos, etc) that are used by a plug-
in instance but do not appear as footage in the Project Window. Registered files will be
taken into account when trimming or copying a project using the Project Manager. See
PrSDKFileRegistrationSuite.h.

Flash Cue Marker Data Suite

New in CS4. Specific utilities to read Flash cue points. Use in conjunction with the Marker Suite.
See PrSDKFlashCueMarkerDataSuite.h.

Image Processing Suite

New in CS5. Various calls to get information on pixel formats and process frames. The
ScaleConvert() call is the way to copy-convert from a buffer of any supported pixel format
to a separate memory buffer.

Marker Suite

New in CS4. New way to read markers of all types. See PrSDKMarkerSuite.h.

Memory Manager Suite

New in Premiere Pro 2.0. Calls to allocate and deallocate memory, and to reserve an amount of
memory so that it is not used by the host. See PrSDKMemoryManagerSuite.h.

ReserveMemory

Universals • 56Adobe Premiere Pro CS5 SDK Guide

A plug-in instance can call ReserveMemory as a request to reserve space so that Premiere’s
media cache does not use it. Each time ReserveMemory is called, it updates Premiere Pro as
to how many bytes the plug-in instance is currently reserving. The amount specified is absolute,
rather than cumulative. So to release any reserved memory to be made available to Premiere Pro’s
media cache, call it with a size of 0.

ReserveMemory changes the maximum size of Premiere’s Media Cache. So if the cache
size starts at 512 MB, and you reserve 100 MB, then the cache will not grow beyond 412 MB.
ReserveMemory will reserve a different amount of memory, depending on the amount of
available memory in the system, and what other plug-in instances have already reserved. The
media cache needs a minimum amount of memory to play audio, render, etc.

Starting in version 2 of the suite, introduced in CS4, there are calls to allocate/deallocate memory.
This is necessary for exporters, which are not passed the legacy memFuncs.

Pixel Format Suite

See the table of supported pixel formats. GetBlackForPixelFormat returns the minimum
(black) value for a given pixel format. GetWhiteForPixelFormat returns the maximum
(white) value for a given pixel format. Pixel types like YUYV actually contain a group of two pix-
els to specify a color completely, so the data size returned in this case will be 4 bytes (rather than
2). This call does not support MPEG-2 planar formats.

ConvertColorToPixelFormattedData converts an BGRA/ARGB value into a value of a
different pixel type. These functions are not meant to convert entire frames from one colorspace
to another, but may be used to convert a single color value from a filter color picker or transition
border. To convert frames between pixel formats, see the Image Processing Suite.

New in Premiere Pro 4.0.1, MAKE_THIRD_PARTY_CUSTOM_PIXEL_FORMAT_FOURCC()
defines a custom pixel format.

PPix Cache Suite

Used by an importer, player, or renderer to take advantage of the host application’s PPix cache. See
PrSDKPPixCacheSuite.h.

Starting in version 2 of this suite, introduced in Premiere Pro 4.1, AddFrameToCache and
GetFrameFromCache now have two extra parameters, inPreferences and inPrefer-
encesLength. Now frames are differentiated within the cache, based on the importer prefer-
ences, so when the preferences change, the host will not use the old frame when it gets a frame
request.

Universals • 57Adobe Premiere Pro CS5 SDK Guide

PPix Creator Suite

Includes callbacks to create and copy PPixs. See also the PPix Creator 2 Suite.

CreatePPix

Creates a new PPix. The advantage of using this callback is that frames allocated are accounted
for in the media cache, and are 16-byte aligned. ppixNew and newPtr don’t allocate memory
in the media cache, or perform any alignment.

prSuiteError (*CreatePPix)(
PPixHand*		 	 outPPixHand,
PrPPixBufferAccess	 inRequestedAccess,
PrPixelFormat	 	 inPixelFormat,
const prRect*	 	 inBoundingRect);

Parameter Description
PPixHand *outPPixHand The new PPix handle if the cre-

ation was successful. NULL other-
wise.

PrPPixBufferAccess inRequestedAccess Requested pixel access. Read-only
is not allowed (doesn’t make sense).
PrPPixBufferAccess values
are defined in PPix Suite.

PrPixelFormat inPixelFormat The pixel format of this PPix

ClonePPix

Clones an existing PPix. It will ref-count the PPix if only read access is requested and the PPix
to copy from is read-only as well, otherwise it will create a new one and copy.

prSuiteError (*ClonePPix)(
PPixHand	 	 	 inPPixToClone,
PPixHand*		 	 outPPixHand,
PrPPixBufferAccess	 inRequestedAccess);

Parameter Description
PPixHand inPPixToClone The PPix to clone from.
PPixHand *outPPixHand The new PPix handle if the cre-

ation was successful. NULL other-
wise.

Universals • 58Adobe Premiere Pro CS5 SDK Guide

Parameter Description
PrPPixBufferAccess inRequestedAccess Requested pixel access. Only

read-only is allowed right now.
PrPPixBufferAccess values
are defined in PPix Suite.

PPix Creator 2 Suite

More callbacks to create PPixs, including raw PPixs. Starting in version 2 of this suite, introduced
in Premiere Pro 4.0.1, there is a new CreateCustomPPix call to create a PPix in a custom
pixel format. See PrSDKPPixCreator2Suite.h.

PPix Suite

Callbacks and enums pertaining to PPixs. See also PPix 2 Suite.

PrPPixBufferAccess

Can be either PrPPixBufferAccess_ReadOnly, PrPPixBufferAccess_
WriteOnly, or PrPPixBufferAccess_ReadWrite.

Dispose

This will free this PPix. The PPix is no longer valid after this function is called.

prSuiteError (*Dispose)(
PPixHand inPPixHand);

Parameter Description
PPixHand inPPixHand The PPix handle to dispose.

GetPixels

This will return a pointer to the pixel buffer.

prSuiteError (*GetPixels)(
PPixHand	 	 	 inPPixHand,
PrPPixBufferAccess	 inRequestedAccess,
char**	 	 	 outPixelAddress);

Universals • 59Adobe Premiere Pro CS5 SDK Guide

Parameter Description
PPixHand inPPixHand The PPix handle to operate on.
PrPPixBufferAccess inRequestedAccess Requested pixel access. Most PPixs do

not support write access modes.
char** outPixelAddress The output pixel buffer address. May be

NULL if the requested pixel access is
not supported.

GetBounds

This will return the bounding rect.

prSuiteError (*GetBounds)(
PPixHand	 inPPixHand,
prRect*	 inoutBoundingRect);

Parameter Description
PPixHand inPPixHand The PPix handle to operate on.
prRect* inoutBoundingRect The address of a bounding rect to be filled in.

GetRowBytes

This will return the row bytes of the PPix.

prSuiteError (*GetRowBytes)(
PPixHand	 	 inPPixHand,
csSDK_int32*	 outRowBytes);

Parameter Description
PPixHand inPPixHand The PPix handle to operate on.
csSDK_int32* outRowBytes Returns how many bytes must be added to the

pixel buffer address to get to the next line.

GetPixelAspectRatio

This will return the pixel aspect ratio of this PPix.

prSuiteError (*GetPixelAspectRatio)(
PPixHand	 	 inPPixHand,
csSDK_uint32*	 outPixelAspectRatioNumerator,

Universals • 60Adobe Premiere Pro CS5 SDK Guide

csSDK_uint32*	 outPixelAspectRatioDenominator);

Parameter Description
PPixHand inPPixHand The PPix handle to operate on.
PrPixelFormat* outPixelFormat Returns the pixel format of this PPix

GetUniqueKey

This will return the unique key for this PPix. Returns error if the buffer size is too small (call
GetUniqueKeySize to get the correct size). Returns error if the key is not available. Returns
success if the key data was filled in.

prSuiteError (*GetUniqueKey)(
PPixHand	 	 inPPixHand,
unsigned char*	inoutKeyBuffer,
size_t	 	 inKeyBufferSize);

Parameter Description
PPixHand inPPixHand The PPix handle to operate on.
unsigned char* inoutKeyBuffer Storage for the key to be returned.
size_t inKeyBufferSize Size of buffer

GetUniqueKeySize

This will return the unique key size. This will not change for the entire run of the application.

prSuiteError (*GetUniqueKeySize)(
size_t* outKeyBufferSize);

Parameter Description
size_t* outKeyBufferSize Returns the size of the PPix unique key.

GetRenderTime

This will return the render time for this PPix.

prSuiteError (*GetRenderTime)(
PPixHand	 	 inPPixHand,
csSDK_int32*	 outRenderMilliseconds);

Universals • 61Adobe Premiere Pro CS5 SDK Guide

Parameter Description
PPixHand inPPixHand The PPix handle to operate on.
csSDK_int32* outRenderMillisec-
onds

Returns the render time in milliseconds. If the
frame was cached, the time will be zero.

PPix 2 Suite

A call to get the size of a PPix. Starting in version 2 of this suite, introduced in CS4, there is a new
GetYUV420PlanarBuffers call to get buffer offsets and rowbytes of YUV_420_MPEG2
pixel formats. See PrSDKPPix2Suite.h.

Quality Suite

Contains enumerated values for render and playback qualities. Starting in Premiere Pro 4.0.1,
there is a new value, kPrRenderQuality_Max quality. When the built-in renderer is called
with this quality, it uses new higher quality algorithms for image scaling, compositing, and
deinterlacing. The render time required is much longer than high quality. Starting in Premiere
Pro 4.1, there is a new kPrPlaybackQuality_Invalid value. There is also a new set of
PrPlaybackFractionalResolution enums for use with the fractional resolution feature
in the player.

During playback, it’s recommended that render requests be made with medium quality. You may
ask for high quality when paused, but high quality can be very slow in simple cases, such that it is
not recommended for rendering during playback.

Render Quality

typedef enum
{
	 kPrRenderQuality_Max = 4,
	 kPrRenderQuality_High = 3,
	 kPrRenderQuality_Medium = 2,
	 kPrRenderQuality_Low = 1,
	 kPrRenderQuality_Draft = 0,
} PrRenderQuality;

Playback Quality

typedef enum {
	 kPrPlaybackQuality_Invalid = 4,
	 kPrPlaybackQuality_High = 3,	 	 	

Universals • 62Adobe Premiere Pro CS5 SDK Guide

	 kPrPlaybackQuality_Draft = 2,		
	 kPrPlaybackQuality_Auto = 1,
} PrPlaybackQuality;

Playback Fractional Resolutions

typedef enum {
	 kPrPlaybackFractionalResolution_Invalid = 6,
	 kPrPlaybackFractionalResolution_Sixteenth = 5,	 	 	
	 kPrPlaybackFractionalResolution_Eighth = 4,	 	
	 kPrPlaybackFractionalResolution_Quarter = 3,		
	 kPrPlaybackFractionalResolution_Half = 2,
	 kPrPlaybackFractionalResolution_Full = 1,
} PrPlaybackFractionalResolution;

RollCrawl Suite

Used by a player or renderer to obtain the pixels for a roll/crawl. The player or render can then
move and composite it using accelerated algorithms or hardware. See PrSDKRollCrawlSuite.h.

Sequence Info Suite

New in CS4. Calls to get the frame size and pixel aspect ratio of a sequence. This is use-
ful for importers, transitions, or video filters, that provide a custom setup dialog with a pre-
view of the video, so that the preview frame can be rendered at the right dimensions. See
PrSDKSequenceInfoSuite.h.

String Suite

New in CS4. Calls to allocate, copy, and dispose of PrSDKStrings. See PrSDKStringSuite.h.

Threaded Work Suite

New in CS4. Calls to register and queue up a threaded work callback for processing on a render
thread. If you queue multiple times, it is possible for multiple threads to call your callback. If this
is a problem, you’ll need to handle this on your end.

Universals • 63Adobe Premiere Pro CS5 SDK Guide

Time Suite

A SweetPea suite that includes the following structure, callbacks, and enum:

pmPlayTimebase

Member Description
csSDK_uint32 scale rate of the timebase
csSDK_int32 sampleSize size of one sample
csSDK_int32 fileDuration number of samples in file

PrVideoFrameRates

Member Description
kVideoFrameRate_24Drop 24000 / 1001
kVideoFrameRate_24 24
kVideoFrameRate_PAL 25
kVideoFrameRate_NTSC 30000 / 1001
kVideoFrameRate_30 30
kVideoFrameRate_PAL_HD 50
kVideoFrameRate_NTSC_HD 60000 / 1001
kVideoFrameRate_60 60
kVideoFrameRate_Max 0xFFFFFFFF

GetTicksPerSecond

Get the current ticks per second. This is guaranteed to be constant for the duration of the run-
time.
prSuiteError (*GetTicksPerSecond)(

PrTime* outTicksPerSec);

GetTicksPerVideoFrame

Get the current ticks in a video frame rate. inVideoFrameRate may be any of the
PrVideoFrameRates enum.
prSuiteError (*GetTicksPerVideoFrame)(

PrVideoFrameRates	 inVideoFrameRate,
PrTime*	 	 	 outTicksPerFrame);

Universals • 64Adobe Premiere Pro CS5 SDK Guide

GetTicksPerAudioSample

Get the current ticks in an audio sample rate. Returns kPrTimeSuite_RoundedAudioRate
if the requested audio sample rate is not an even divisor of the base tick count and therefore times
in this rate will not be exact. Returns kPrTimeSuite_Success if otherwise.
prSuiteError (*GetTicksPerAudioSample)(

float		 inSampleRate,
PrTime*	 outTicksPerSample);

Video Segment Render Suite

New in CS5. This suite uses the built-in software path for rendering, and supports subtree render-
ing. This means the plug-in can ask the host to render a part of the segment, and then still handle
the rest of the rendering. This is useful if, for example, one of the layers has an effect that the
plug-in cannot render itself. The plug-in can have the host render that layer, but then handle the
other layers along with the compositing.

Video Segment Suite

New in CS4. This suite provides calls to parse a sequence and get details on video segments. All
the queryable node properties are in PrSDKVideoSegmentProperties.h. These properties will be
returned as PrSDKStrings, and should be managed using the String Suite.

When calling GetSegmentInfo(), a plug-in can quickly determine if the segment has
changed by comparing the new outHash with the plug-in’s copy for that segment. If it has
changed, then you can start digging into the segment nodes.

The basic structure of the video segments is that of a tree structure. There is a Compositor node
with n inputs. Each of those inputs is a Clip node, which has one input which is a Media node,
and it also has n Operators, which are effects.

So, a simple example, three clips in a stack, the top one with three effects looks like this:
Segment
	 Compositor Node
		 Clip Node
	 	 	 Media Node (bottom clip)
		 Clip Node
	 	 	 Media Node (middle clip)
		 Clip Node
	 	 	 Media Node (top clip)
	 	 	 Clip Operators (Blur, Color Corrector, Motion)

Universals • 65Adobe Premiere Pro CS5 SDK Guide

To get a good idea of the segment structure, try the SDK player, create a sequence using the SDK
Editing Mode, and watch the text overlay in the Sequence Monitor as you perform edits.

See PrSDKVideoSegmentSuite.h and PrSDKVideoSegmentProperties.h.

Window Suite

New in CS4. This is the new preferred way to get the handle of the mainframe window, especially
for exporters, who don’t have access to the legacy piSuites.

Legacy Callback Suites

piSuites

These callbacks are available to all plug-ins, although many of these callbacks are only appropriate
for specific plug-in types.

typedef struct {
	 int piInterfaceVer;
	 PlugMemoryFuncsPtr	 	 memFuncs;
	 PlugWindowFuncsPtr	 	 windFuncs;
	 PlugppixFuncsPtr	 	 ppixFuncs;
	 PlugUtilFuncsPtr	 	 utilFuncs;
	 PlugTimelineFuncsPtr	 timelineFuncs;
} piSuites, *piSuitesPtr;

Member Description
piInterfaceVer API version

Premiere Pro CS4 - PR_PISUITES_VERSION_9
Premiere Pro CS3 - PR_PISUITES_VERSION_8
Premiere Pro 2.0 - PR_PISUITES_VERSION_7
Premiere Pro 1.5.1 - PR_PISUITES_VERSION_6
Premiere Pro 1.5 - PR_PISUITES_VERSION_5
Premiere Pro 1.0 - PR_PISUITES_VERSION_4
Premiere 6.x - PR_PISUITES_VERSION_3
Premiere 5.1 - PR_PISUITES_VERSION_2
Premiere 5.0 - PR_PISUITES_VERSION_1

memfuncs Pointer to memory functions
windFuncs Pointer window functions
ppixFuncs Pointer PPix functions

Universals • 66Adobe Premiere Pro CS5 SDK Guide

utilFuncs Pointer to utility functions. In the utilFuncs, the getSPBasicSuite
callback provides access to the “SweetPea” Suites, which are used
for most of the newer functions.

timelineFuncs Pointer to timeline functions

Memory Functions

Memory and handle allocation. Where possible, use the PPix Creator Suite for PPix-specific al-
location.

Strings passed to and from Premiere in API structures are always null-terminated C strings.

Function Description
newPtr Allocates a block of memory, returns a pointer to the new block.

char* newPtr (csSDK_uint32 size);
newPtrClear Equivalent to newPtr, but initializes the memory to 0.

char* newPtrClear (csSDK_uint32 size);
setPtrSize Resizes an allocated memory block.

void setPtrSize (
PrMemoryPtr *ptr,
csSDK_uint32 newsize);

getPtrSize Returns size in bytes of an allocated memory block.

csSDK_int32 getPtrSize (char *ptr);
disposePtr Frees an allocated memory block.

void disposePtr (char *ptr);
newHandle Allocates a block of memory, returning a handle to it.

char** newHandle (csSDK_uint32 size);
newHandleClear Equivalent to newHandle, but initializes the memory to 0.

char** newHandleClear (csSDK_uint32 size);
setHandleSize Resizes an allocated memory handle.

csSDK_int16 setHandleSize (
char **PrMemoryHandle,
csSDK_uint32 newsize);

Universals • 67Adobe Premiere Pro CS5 SDK Guide

Function Description
getHandleSize Returns the size (in bytes) of an allocated block.

csSDK_int32 getHandleSize (
char **PrMemoryHandle);

disposeHandle Disposes of a previously allocated handle.

void disposeHandle (char **PrMemoryHandle);
lockHandle
unlockHandle

These legacy functions are deprecated and should no longer be
used.

Window Functions

Window management routines. Superceded by the Window Suite.

Function Description
updateAllWindows Updates all windows. Windows only, doesn’t work on Mac OS.

void updateAllWindows (void);
getMainWnd Returns the main application HWND.

void getMainWnd (void);

PPix Functions

Used to manipulate a PPix. Superceded by the PPix Creator Suite for PPix allocation and the
PPix Suite for general PPix functions.

Function Description
ppixGetPixels Returns a pointer to the array of pixels contained in a

PPix.

char* ppixGetPixels (PPixHand pix);
ppixGetBounds Returns the bounds of a PPix.

void ppixGetBounds (
PPixHand pix;
prRect *bounds);

Universals • 68Adobe Premiere Pro CS5 SDK Guide

Function Description
ppixGetRowbytes Returns the rowbytes of a PPix so you can properly

parse the pixels returned by ppixGetPixels.

int ppixGetRowbytes (PPixHand pix);
ppixNew Allocates and returns a handle to a new PPix, with speci-

fied bounds. Since this is an older call, the pixel format is
hardcoded to BGRA_4444_8u.

PPixHandle ppixNew (prRect *bounds);
ppixDispose Frees a PPixHand.

void ppixDispose (PPixHand pix);
ppixLockPixels
ppixUnlockPixels

These legacy functions are deprecated and should no lon-
ger be used.

ppixGetPixelAspectRatio Passes back the pixel aspect ratio of a PPixHand.
Premiere populates the longs with the PAR numerator and
denominator.

int ppixGetPixelAspectRatio (
PPixHand pix,
csSDK_uint32 *num,
csSDK_uint32 *den);

ppixGetAlphaBounds Passes back the alpha bounds of a PPixHand.

void ppixGetAlphaBounds (
PPixHand pix,
prRect *alphaBounds);

Universals • 69Adobe Premiere Pro CS5 SDK Guide

Utility Functions

Function Description
getSettings Superceded by the Application Settings Suite. Queries Premiere

for a setting, and returns its value. CS4 no longer supports many
previously supported selectors.

long getSettings (long settingsSelector);

Settings values:
kSettingsCapDrive
kSettingsTempVideo
kSettingsTempAudio
kSettingsProjectDrive
kSettingsAudioCapDrive
kSettingsProjectPath

getSerialNumber Passes back Premiere’s serial number.

void getSerialNumber (char* buffer);

buffer - must be at least 40 characters long.
getFileTimebase Passes back a file’s timebase in a TDB_TimeRecord (allocated by

the plug-in). If the file is already in the sequence, it is preferable
to get a file’s timebase using the Video Segment Suite to get the
kVideoSegmentProperty_Media_StreamFrameRate.

Note: Know your formats. Don’t ask an audio only format for
video, you may get unexpected results.

csSDK_int32 getFileTimebase (
prFileSpec *filespec,
csSDK_int32 audioOnly,
TDB_TimeRecord *result);

filespec - description of the file, use before getFileVideo
audioOnly - if non-zero, return the audio timebase. If zero,

return the video timebase.
result - the returned timebase

Universals • 70Adobe Premiere Pro CS5 SDK Guide

Function Description
getFileVideo Gets a frame of video (at a specified time) from a file. If the file is

already in the sequence, it is preferable to get a file’s video using
the Clip Render Suite.

csSDK_int32 getFileVideo (
prFileSpec	 *filespec,
csSDK_int32	 	 	 frame,
PPixHand	 	 thePort,
prRect	 	 *bounds,
csSDK_int32	 	 	 flags);

filespec - the description of the file
frame - the frame to retrieve
thePort - where the frame will be delivered, allocate prior to

calling
bounds - the boundary of the port
flags - unused

getFileVideoBounds Passes back the bounds of a file. If the file is already in the se-
quence, it is preferable to get a file’s video bounds using the Clip
Render Suite.

csSDK_int32 getFileVideoBounds (
prFileSpec	 *filespec,
prRect	 	 *bounds);

getSPBasicSuite This very important call returns the SweetPea suite that allows
plug-ins to acquire and release all other SweetPea suites.

SPBasicSuite* getSPBasicSuite();
getFileExtString Passes back the list of valid entensions/filter strings given a class

of media (see file types constants below).

csSDK_int32 (*plugGetFileExtStringFunc)(
csSDK_uint32 fileTypes,
char *inBuffer,
csSDK_uint32 inBufferSize);

kFileTypes_Still - still media
kFileTypes_AudioOnly - audio-only media
kFileTypes_AudioVideo - audio and video media
kFileTypes_AllNoIntrinsics - all importable media

types via importer plug-ins (no prproj, txt, etc)

Universals • 71Adobe Premiere Pro CS5 SDK Guide

Timeline Functions

Function Description
getClipVideo Superceded by the Clip Render Suite, which provides asynchro-

nous import.

Retrieves a frame from a clip in a segment tree returned from the
Video Segment Suite. It can be used by to retrieve and store a still
frame, such as a title, for playback. This call is expensive; use it
carefully.

csSDK_int32 getClipVideo (
csSDK_int32	 frame,
PPixHand	 	 thePort,
prRect	 	 *bounds,
csSDK_int32	 flags,
PrClipID	 	 clipData);

frame - the frame number you’re requesting
thePort - allocate using the PPix Creator Suite before calling
bounds - the boundaries of video to return
flags - either kGCVFlag_UseFilePixelAspectRatio

or 0. Setting it to kGCVFlag_
UseFilePixelAspectRatio will return a PPix
stamped with the PAR of the file. Setting it to 0 will
return a PPix adjusted to the PAR of the project and
stamped accordingly. It scales, but does not stretch the
PPix to fit the destination PPix that is passed in. So if
the destination PPix is larger than the frame asked for,
the frame will maintain its frame aspect ratio, letterbox-
ing or pillarboxing the frame with transparent black.
To import a frame at its native dimensions, use get-
ClipVideoBounds, allocate the destination PPix using
the dimensions returned, and pass the PPixHand and the
dimensions into getClipVideo. If the frame size is not
the same as the sequence size, the frame must be posi-
tioned in the composite by the plug-in.

clipData - the clipData handle found in prtFileRec

Universals • 72Adobe Premiere Pro CS5 SDK Guide

Function Description
getWorkArea Passes back two longs with the start and end of the current work

area (read-only). Set timelineData to the timelineData of the
current sequence.

csSDK_int32 getWorkArea (
PrTimelineID	 timelineData,
csSDK_int32	 *workAreaStart,
csSDK_int32	 *workAreaEnd);

getCurrentTimebase Passes back the current timebase of the timeline (scale +
sampleSize).

void getCurrentTimebase(
PrTimelineID	 timelineData,
csSDK_uint32	 *scale,
csSDK_int32	 *sampleSize);

timelineData - the timelineData of the current se-
quence

scale - the sequence scale
sampleSize - the sequence sampleSize

getCurrentPos Returns the position of the current time indicator (the position
bar set by the user). If (-1) is returned, the position bar in the
timeline is not present.

csSDK_int32 getCurrentPos(
PrTimelineID timelineData);

timelineData - the timelineData of the current se-
quence

Universals • 73Adobe Premiere Pro CS5 SDK Guide

Function Description
getPreviewFrameEx Gets a fully rendered frame from the timeline (all layers). Used by

video filters and transitions for previews in a modal setup dialog.
If the return value is -1, an error occurred, but if it is 0, the call-
back has returned safely. Exporters rendering final movies should
NOT use this callback.

csSDK_int32 getPreviewFrameEx(
PrTimelineID	 timelineData,
csSDK_int32		 inFrame,

PPixHand *	 	 outRenderedFrame,
const prRect *	 inFrameRect,

PrPixelFormat *	 inRequestedPixelFormatArray
csSDK_int32		 inRequestedPixelFormatArrayCount,
csSDK_uint32	 inPixelAspectRatioNumerator,
csSDK_uint32	 inPixelAspectRatioDenominator,

bool	 	 	 inAlwaysRender);

timelineData - The timelineData of the cur-
rent sequence. Pass a timeline handle as provided in
EffectRecord, VideoRecord, compDoCompil-
eInfo, or imGetPrefsRec.

inFrame - The frame to get, specified in the current timebase.
If a timelineData handle is specified (first param
above), this frame will be relative to the start of the se-
quence.

outRenderedFrame - The destination buffer. Allocate prior to
this call by the plug-in using the PPix Suite. Released by
the caller before returning.

getClipVideoBounds Passes back the dimensions of a clip in a sequence. For rolling/
crawling titles, use the Roll/Crawl Suite to get the dimensions
instead.

csSDK_int32 getClipVideoBounds (
PrClipID	 	 inClipData,
prRect	 	 *outBounds,
csSDK_uint32	 *outPixelAspectRatioNumerator,
csSDK_uint32	 *outPixelAspectRatioDenominator);

Universals • 74Adobe Premiere Pro CS5 SDK Guide

Function Description
getClipVideoEx Superceded by the Clip Render Suite, which provides asynchro-

nous import.

Retrieves a frame from a clip in a segment tree returned from the
Video Segment Suite. It can be used by to retrieve and store a still
frame, such as a title, for playback. This call is expensive; use it
carefully.

csSDK_int32 getClipVideoEx (
csSDK_int32	 	 	 inFrame,
PPixHand	 	 *outRenderedFrame,
const prRect	 *inFrameRect,
const PrPixelFormat	 *inRequestedPixelFormatArray,

csSDK_int32	 inRequestedPixelFormatArrayCount,

csSDK_uint32	 inPixelAspectRatioNumerator,
csSDK_uint32	 inPixelAspectRatioDenominator,
PrClipID	 	 inClipData);

inFrame - the frame number you’re requesting, in the timebase
of the clip

outRenderedFrame - Allocated by the host. The plug-in
should dispose of the PPixHand when done

inFrameRect - the boundaries of video to return. To
import a frame at its native dimensions, use get-
ClipVideoBounds. If the frame size is not the same
as the sequence size, the frame must be positioned in the
composite by the plug-in.

inClipData - the PrClipID from the video segment

Bottleneck Functions

The pointer to the legacy bottleneck functions is passed only to transitions and video filters.
These functions are not exposed for other plug-in types. These functions are not aware of different
pixel formats, and are intended only for 8-bit BGRA processing.

Sample usage:

((*theData)->bottleNecks->StretchBits) (*srcpix,
	 	 	 	 	 	 	 	 *dstpix,
	 	 	 	 	 	 	 	 &srcbox,
	 	 	 	 	 	 	 	 &srcbox,

Universals • 75Adobe Premiere Pro CS5 SDK Guide

	 	 	 	 	 	 	 	 0,
	 	 	 	 	 	 	 	 NULL);

Function Description
StretchBits Stretches and copies an image, including the alpha channel. When the

destination is larger than the source, it performs bilinear interpolation
for smooth scaling.

void StretchBits (
PPixHand	 	 srcPix,
PPixHand	 	 dstPix,
prRect	 	 srcRect,
prRect	 	 dstRect,
int	 	 	 mode,
prRgn	 	 rgn);

StretchBits only works on 8-bit PPixs. srcRect is the area of the
source PPix to copy; dstRect is used to scale the copy. Valid modes
are cbBlend, cbInterp, and cbMaskHdl

For cbBlend, the low byte of the mode defines the amount of blend
between the source and destination in a range of 0-255.

Example:
To blend 30% of the source with the destination, use cbBlend |
(30*255/100).

While much slower than cbBlend, cbInterp mode does bilinear
interpolation when resizing a source PPix to a larger destination, result-
ing in a much smoother image.

cbMaskHdl tells StretchBits that prRgn is a handle to a 1-bit
deep buffer the same size as the source and destination PPixs, to be
used as a mask. Pass 0 for no clipping. The prRgn parameter is only
used on Windows.

Universals • 76Adobe Premiere Pro CS5 SDK Guide

Function Description
DistortPolygon Maps the source rectangle to a four-point polygon in the

destination.

void DistortPolygon (
PPixHand	 src,
PPixHand	 dest,
prRect	 *srcbox,
prPoint	 *dstpts);

When scaling up, DistortPolygon uses bilinear interpolation; it
uses pixel averaging when scaling down.

MapPolygon Maps a four-point src polygon into a four-point polygon (dstpts). If
the source polygon is a rectangle, it is equivalent to DistortPolygon.

void MapPolygon (
PPixHand	 src,
PPixHand	 dest,
prPoint	 *srcpts,
prPoint	 *dstpts);

DistortFixed Equivalent to DistortPolygon, using fixed-point coordinates.

void DistortFixed (
PPixHand	 src,
PPixHand	 dest,
prRect	 *srcbox,
LongPoint	*dstpts);

FixedToFixed Equivalent to MapPolygon, using fixed-point coordinates.

void FixedToFixed (
PPixHand	 src,
PPixHand	 dest,
LongPoint	*srcpts,
LongPoint	*dstpts);

Universals • 77Adobe Premiere Pro CS5 SDK Guide

Function Description
DoIndexMap Image map function.

void DoIndexMap (
char		 *src,
char		 *dst,
short	 row,
short,	 pixwidth,
short,	 height,
char		 *lookup1,
char		 *lookup2,
char		 *lookup3);

DoConvolve Convolution function.

void DoConvolve (
unsigned char	 *src,
unsigned char	 *dst,
short	 	 *inmatrix,
short,	 	 rowBytes,
short,	 	 width,
short,	 	 height);

Hardware Integration • 78Adobe Premiere Pro CS5 SDK Guide

4Hardware Integration

To integrate hardware with Premiere Pro, you may consider developing up to five types of plug-
ins: importers, recorders, exporters, players, and device controllers. Premiere Pro provides most
of the user interface for the capture, timeline, export, and monitor windows; the plug-ins provide
the functionality behind the interface.

Hardware Integration Components

Importers

Importers are used whenever frames of video or audio from a clip are needed. To give Premiere
Pro the ability to read media that uses a new format or codec, develop an importer. See the
Importers chapter for more information.

Recorders

Users may choose a recorder in Project > Project Settings > General > Capture Format. Recorders
are used to grab frames from a hardware source and write them to a file, to be imported for edit-
ing. See the Recorders chapter for more information.

Exporters

Exporters are used whenever Premiere Pro renders preview files, or performs an export on a clip
or sequence. To give Premiere Pro the ability to write media that uses a new format or codec,
develop an exporter. The exporter used to render preview files in the timeline is set in Sequence >
Sequence Settings > Preview File Format. The exporter used for exports is chosen when the user
selects File > Export > Media > File Type. See the Exporters chapter for more information.

Hardware Integration • 79Adobe Premiere Pro CS5 SDK Guide

Players

A player drives the rendering and display of video in the Program and Source Monitors, as well
as any external A/V output. To give Premiere Pro the ability to play video out to hardware for
preview and final playout, write a player. The player is chosen for a sequence when the sequence
is created, by the Editing Mode chosen. The player is chosen for the Source Monitor in Edit >
Preferences > Player Settings. See the Players chapter for more information.

Editing Modes

An editing mode consists of a player and one or more exporters. The current editing mode is
chosen by the user when creating a new sequence. The user may select a sequence preset that is
associated with an editing mode (if sequence presets have been installed), or they may choose the
editing mode specifically in New Sequence > General > Editing Mode. For example, when a user
starts a new project, they are immediately asked to create a sequence, and presented with the New
Sequence dialog. Selecting a DV preset will automatically choose the DV Editing Mode. The user
can alternatively go to the General panel of the same dialog, and select the Desktop Editing Mode.
This Desktop editing mode uses a different combination of a player and exporters than the DV
Editing Mode.

An editing mode is defined by an XML file that references the GUID of a player and the class IDs
of exporters. The XML file goes in the Editing Modes folders, which are subdirectories of lan-
guage subdirectories of the Plug-ins folder. So for example:
C:\Program Files\Adobe\Adobe Premiere Pro CS5\Plug-ins\en_US\Editing Modes\SDK Editing
Mode.xml

The big change with editing mode definitions in CS4 is that sequence encoder presets describe
the preview file formats, rather than looking at the <EditingMode.PreviewFileFormat> tags in the
editing mode XML.

See Examples\Editing Modes\SDK Editing Mode.xml for a sample XML file (not updated for CS4,
but fully functional), and modify it to create a new editing mode. The description of each element
is below.

<?xml version=”1.0” encoding=”utf-8” ?>
<PremiereData Version=”3”>
<EditingModes Version=”1”>
<EditingMode1 Version=”1”>

<EditingMode.ID> // Create a new GUID
<EditingMode.Name> // The localized name of your editing

mode
<EditingMode.Player> // The player GUID, specified by the

player in pmStartupRec->outPlayerID.mGUID

Hardware Integration • 80Adobe Premiere Pro CS5 SDK Guide

<EditingMode.Recorder> // The recorder GUID, specified by the
recorder in recInfoRec->outRecorderID.mGUID

<EditingMode.PreviewFileFormat1> // The GUID of the file for-
mat defined later in the XML file

<EditingMode.FrameRect1 Version=”1”> // The dimensions of
the frame size supported in the editing mode. (0,0) if
unrestricted

<EditingMode.FrameRate.Count> // The number of different
frame rates supported in the editing mode

<EditingMode.FrameRate1 Version=”1”> // A supported frame
rate, expressed as a rational value

<EditingMode.PAR1 Version=”1”> // A supported pixel aspect
ratio, expressed as a rational value

<EditingMode.PAR.Count> // The number of different pixel as-
pect ratios supported in the editing mode

</EditingMode1>
... and so on for each editing mode

<FileFormat1 Version=”1”>
<FileFormat.ID> // Create a new GUID, referenced above by an

<EditingMode.PreviewFileFormat1>
<FileFormat.Name> // The localized name of the file format
<FileFormat.ClassID> // The class ID, specified by the com-

piler in compInfoRec->classID
<FileFormat.Filetype> // The file type, specified by the com-

piler in compInfoRec->filetype
</FileFormat1>
... and so on for each file type

<EditingModes.FileFormatCount> // The number of different file
types supported in the editing mode

</EditingModes>

<LegacyEditingModeConverters Version=”1”>
<Converter1 Version=”1”>

<Converter.ClassID> // The classID of the legacy editing
mode

<Converter.Filetype> // The file type of the legacy editing
mode

<Converter.Subtype> // The subtype of the legacy editing
mode

<Converter.ID> // The GUID of the new editing mode created
above

<Converter.FileFormatID> // The GUID of the new file format
created above

Hardware Integration • 81Adobe Premiere Pro CS5 SDK Guide

<Converter.RecorderID> // The GUID of the new recorder spec-
ified above

</Converter1>
... and so on for each legacy editing mode converter

<LegacyEditingModeConverters.Count> // The number of different
legacy editing modes

</LegacyEditingModeConverters>
</PremiereData>

ClassID, Filetype and Subtype

All plug-in types that support media must identify unique classID, filetype, and subtype. These
are all four character codes, or ’fourCCs’.

Identifier Purpose
filetype Identifies the plug-in’s associated file type(s). Plug-ins create lists of filetypes

they support.
subtype Differentiates between files of the same filetype. Identifies the codec or com-

pression to be used.
classID With the new editing mode system starting in CS4, the classID is far less

important. It is used as part of the identification for exporters in the Editing
Mode XML. And plug-ins may share information with most other plug-ins
running in the same process using the ClassData Functions below.

ClassData Functions

All plug-in types that support media can use these callbacks to share information associated with
their classID.

For example, these plug-ins can confirm their hardware is present and operational using the
ClassData functions. They all call getClassData during initialization. If getClassData re-
turns 0, the module checks for and initialize the hardware. It then calls setClassData to store
information about the current context. Use handles, not pointers, for storing info.

typedef struct {
SetClassDataFunc setClassData;
GetClassDataFunc getClassData;

} ClassDataFuncs, *ClassDataFuncsPtr;

Hardware Integration • 82Adobe Premiere Pro CS5 SDK Guide

Function Description
setClassData Writes class data, destroys previous data.

int setClassData (
unsigned int theClass
void *info);

theClass - the class being set. Use a unique 4-byte code.
info - the class data to be set. It can be used as a pointer or a handle.

Note that all plug-ins that share the data must use the same
data structure.

getClassData Retrieves the class data for the given class.

int getClassData (unsigned int theClass);

theClass - the class for which to retrieve data.

Importers • 83Adobe Premiere Pro CS5 SDK Guide

Importers provide video and/or audio from the media source. This source can be a single file, a
set of files, a communication link between another application, etc.

Standard importers appear as choices in the File > Import dialog, in the Files of type drop-down
menu. Importers can support movies, still images, series of still images, and/or audio. If your im-
porter provides enhanced support for a format already supported by another importer that ships
with Premiere, set a high value in imImportInfoRec.priority to give your importer the
first opportunity to handle the file.

Synthetic importers synthesize source material, rather than reading from disk. They appear in the
File > New menu.

Custom importers are a special type of synthetic importer, implemented to better support titlers.
Custom importers can create files on disk; synthetic importers don’t. Custom importers either
create new media or import existing media handled by the importer. After the file is created, the
media is treated like a standard file by the host application. Additionally, the media can be modi-
fied by the importer when the user double-clicks on it in the Project Panel.

Importer Type Reads from disk Creates clips Menu Location
Standard Yes No File > Import
Synthetic No Yes File > New
Custom Yes Yes File > New

File > Import

For each clip, importers can tell Premiere the resolutions and pixel formats they can decode video
frames to. Premiere will request video frames as needed during scrubbing, playback, or export.
Audio will be requested right when the clip is imported, if audio conforming or peak file genera-
tion is necessary. If audio conforming is not necessary, audio frames will be requested as needed
during scrubbing, playback, or export. Premiere requests audio in arrays of 32-bit float, uninter-
leaved format.

5Importers

Importers • 84Adobe Premiere Pro CS5 SDK Guide

If you’ve never developed an importer before, you can skip the What’s New sections, and go di-
rectly to Getting Started.

What’s New

What’s New in Premiere Pro CS5?

When an importer’s settings dialog is opened, the importer now has access to the resolution, pixel
aspect ratio, timebase, and audio sample rate of the source clip, in imGetPrefsRec.

Custom importers can now use a new call in the Importer File Manager Suite,
RefreshFileAsync(), to be able to update a clip after it is modified in imGetPrefs8.

Two new selectors have been added. imQueryDestinationPath allows importers that trim or copy
files to be able to change the destination path of the trimmed or copy file. imQueryContentState
gives the host an alternate way of checking the state of a clip, for clips that have multiple source
files. A new return value, inFileNotAvailable can be returned from imQueryContentState
if the clip is no longer available because it is offline or has been deleted.

As a convenience, when a file is opened, an importer can tell Premiere Pro how much memory to
reserve for the importer’s usage, rather than calling ReserveMemory in the Memory Manager
Suite. The importer should pass back this value in imFileOpenRec8.outExtraMemory-
Usage.

Several new return values are available for more descriptive error reporting: imBadHeader,
imUnsupportedCompression, imFileOpenFailed, imFileHasNoImporta-
bleStreams, imFileReadFailed, imUnsupportedAudioFormat, imUnsupport-
edVideoBitDepth, imDecompressionError, and imInvalidPreferences.

What’s New in Premiere Pro CS4?

For CS4 only, importers are loaded and called from a separate process. As a result of being in
a separate process, (1) all importers must do their own file handling, (2) privateData is no
longer accessible from imGetPrefs8, and (3) the compressed frame selectors such as imGetCom­
pressedFrame are no longer supported (this may now be achieved using custom pixel formats and
a renderer plug-in).

To debug importers, attach to the ImporterProcessServer process. There is also a separate
Importer Process Plugin Loading.log.

Importers • 85Adobe Premiere Pro CS5 SDK Guide

All legacy selectors have been removed, and are now longer supported. All structures used only
in these legacy selectors have been removed as well.

There are built-in XMP metadata handlers for known filetypes. These handlers write and read
metadata to and from the file, without going through the importer. imSetTimeInfo8 is no longer
called, since this is set by the XMP handler for that filetype.

All file-based importers (which does not include synthetics) are required to do their own file
handling now, rather than having Premiere Pro open the files. The imCallbackFuncs:
OpenFileFunc and ReleaseFileFunc are no longer supported.

Due to the out-of-process importing, privateData is not accessible during imGetPrefs8, and
has been removed from imGetPrefsRec.

imGetFrameInfo, imDisposeFrameInfo, imGetCompressedFrame, and imDisposeCompressedFrame
are no longer supported. Supporting a custom pixel format in an importer, a renderer, and an
exporter is the new way to implement smart rendering, by passing custom compressed data from
input to output.

New imFrameNotFound return code. Returned if an importer could not find the requested
frame (typically used with async importers).

New in Premiere Pro 4.1, importer prefs are now part of imSourceVideoRec, passed to both
imGetSourceVideo and the async import calls

New in Premiere Pro 4.1, there is a new filepath member in imFileInfoRec8. For clips
that have audio in files separate from the video file, set the filename here, so that UMIDs can
properly be generated for AAFs.

What’s New in Premiere Pro CS3?

Importers can specify an initial poster frame for a clip in imImageInfoRec.

Importers can specify subtype names during the new imGetSubTypeNames selector. This selector
is sent after each imGetIndFormat, which gives an importer the opportunity to enumerate all the
fourCCs and display names (e.g. “Cinepak”) of their known compression types for a specific file-
type. The importer can return imUnsupported, or create an array of imSubTypeDescrip-
tionRec records (pairs of fourCCs and codec name strings) for all the codecs/subtypes it knows
about.

Importers that open their own files should specify how many files they keep open between im­
OpenFile8 and imQuietFile using the new Importer File Manager Suite, if the number is not equal
to one. Importers that don’t open their own files, or importers that only open a single file should
not use this suite. Premiere’s File Manager now keeps track of the number of files held open by

Importers • 86Adobe Premiere Pro CS5 SDK Guide

importers, and limits the number open at a time by closing the least recently used files when too
many are open. On Windows, this helps memory usage, but on Mac OS this addresses a whole
class of bugs that may occur when too many files are open.

Importers can also specify that certain files have very high memory usage, by setting imFil-
eInfoRec8.highMemUsage. The number of files allowed to be open with this flag set to true
is currently capped at 5.

Importers can now specify an arbitrary matte color for premultiplied alpha channels in imIm-
ageInfoRec.matteColor. Importers can state that they are uncertain about a clip’s pixel aspect
ratio, field type, or alpha info in imImageInfoRec.interpretationUncertain.

The imInvalidHandleValue is now -1 for Mac OS.

Importers can specify a transform matrix for frames by setting imImageInfoRec.can-
Transform = kPrTrue, and then during imImportImage, when imImportImageRec.
applyTransform is non-zero, use imImportImageRec.transform, and destClip-
Rect to calculate the transform - This code path is currently not called by Premiere Pro. After
Effects uses this call to import Flash video.

New in Premiere Pro 3.1, the new capability flag, imImportInfoRec.canSupplyMeta-
dataClipName, allows an importer to set the clip name from metadata, rather than the file-
name. The clip name should be set in imFileInfoRec8.streamName. This is useful for
clips recorded by some new file-based cameras.

New in Premiere Pro 3.1, the new imGetFileAttributes selector allows an importer to provide the
clip creation date in the new imFileAttributesRec.

What’s New in Premiere Pro 2.0?

Importers can set imFileInfoRec.imImageInfoRec.alphaType to the new alpha-
Opaque for video with alpha channel prefilled to opaque. This allows Premiere to avoid the fill to
opaque performed with video set to alphaNone.

The new Deferred Processing Suite allows an importer to schedule processing time when import-
ing asynchronously, and to notify the user that the media item is pending additional processing.

Asynchronous Import

Video frames can now be retrieved asynchronously. The importer can optionally implement a
new set of selectors.

Importers • 87Adobe Premiere Pro CS5 SDK Guide

Timecode Rate

Timecode rate can now be embedded in files. This is done for files that have timecode, but not an
implicit frame rate, or where the sampling rate might differ from the timecode rate. For example,
audio captured from a tape uses the video’s frame rate for timecode, although its sampling rate
is not equal to the timecode rate. Another example is capturing a still from tape, which could be
stamped with timecode, yet not have a media frame rate. New selectors imGetTimeInfo8 and im­
SetTimeInfo8 use a new imTimeInfoRec8 struct that has the original and alternate timecode
rates. For AVI files, the timecode LIST chunk now has four new sub-chunks for two scale/sample-
Size pairs.

New Selectors

imCopyFile - New selector sent rather than imSaveFile to importers that have set imImportIn-
foRec.canCopy when doing a copy operation using the Project Manager. The import-
er should maintain data on the original file rather than the copy when it returns from the
selector.

imCreateAsyncImporter - New selector tells the importer to create an asynchronous importer ob-
ject using the data provided, and store it in imAsyncImporterCreationRec.

imDeferredProcessing - New selector called to get the current progress of the deferred processing
on the clip.

imGetInfo8 - New selector for unicode support, supercedes imGetInfo7, passing imFileAc-
cessRec8 instead of imFileAccessRec and imFileInfo8 instead of imFil-
eInfo7.

imGetPeakAudio - New selector called to get the peak values of the audio at the specified position.
imGetPreferredFrameSize - New selector called to get the frame sizes preferred by the importer.
imGetPrefs8 - New selector for unicode support, supercedes imGetPrefs, passing imFileAc-

cessRec8 instead of imFileAccessRec.
imGetSourceVideo - New selector called to request an unscaled frame of video. This selector will

be sent instead of imImportImage if supportsGetSourceVideo is set to true during
imGetInfo8.

imGetSupports8 - New selector called to determine if the importer supports the new Premiere Pro
2.0 selectors.

imGetTimeInfo8 - New selector called to get the file timecode and timecode rate from the file.
Supercedes imGetTimeInfo, passing imTimeInfoRec8 instead of imTimeInfoRec.

imOpenFile8 - New selector for unicode support, supercedes imOpenFile, passing imOpenFil-
eRec8 instead of imOpenFileRec.

imRetargetAccelerator - New selector. When the Project Manager copies media and its accelera-
tor, this selector gives an opportunity to update the acclerator to refer to the copied media.

imSetTimeInfo8 - New selector called to set the file timecode and timecode rate to the file.
Supercedes imSetTimeInfo, passing imTimeInfoRec8 instead of imTimeInfoRec.

Importers • 88Adobe Premiere Pro CS5 SDK Guide

New/Updated Structures

imAcceleratorRec - New structure sent with the new imRetargetAccelerator selector.

imAsyncImporterCreationRec - New structure sent with the new imCreateAsyncImporter
selector.

imCopyFileRec - New structure passed with new imCopyFile selector.

imDeferredProcessingRec - New structure sent with the new imDeferredProcessing selec-
tor.

imFileAccessRec8 - New structure for unicode support, supercedes imFileAccessRec,
using a const wchar_t[] instead of imFileSpec for the file path and name. New
PrMemoryPtr newfilename member allows synthetic importers to specify a new
unicode filename during imGetPrefs8.

imFileInfoRec8 - New structure for unicode support, supercedes imFileInfo7, using a
wchar_t[] instead of char[] for the stream name. New char alwaysUnquiet
member should set to non-zero to tell Premiere if the clip should always be unquieted im-
mediately when the application regains focus.

imFileOpenRec8 - New structure for unicode support, supercedes imFileOpenRec, using
imFileAccessRec8 instead of imFileAccessRec for the file details.

imFileOpenRec - Added new long inImporterID member to end, which can be used as
the ID for calls in the PPix Cache Suite.

imFrameFormat - New structure sent with the new imGetSourceVideo selector, contained in
imSourceVideoRec.

imImageInfoRec - Added new long importerID, long supportsAsyncIO, long
supportsGetSourceVideo, long hasPulldown, and long pulldownCa-
dence members to end. importerID can be used as the ID for calls in the PPix Cache
Suite. supportsAsyncIO should be set to true if the importer supports the new asyn-
chronous import calls. supportsGetSourceVideo should be set to true if the im-
porter supports the new imGetSourceVideo selector. hasPulldown should be set
to true if the clip contains NTSC film footage with 3:2 pulldown. pulldownCadence
should be set to the enumerated value that describes the pulldown of the clip.

imImportImageRec - The pixformat member was changed from a long to a
PrPixelFormat.

Importers • 89Adobe Premiere Pro CS5 SDK Guide

imImportInfoRec - Added new int avoidAudioConform, wchar_t *accelera-
torFileExt, and int canCopy members to end. avoidAudioConform should
be set to true if the importer supports fast audio retrieval and does not need the audio
clips it imports to be conformed. acceleratorFileExt should be filled out with the
file extensions of accelerator files that the importer creates and uses. canCopy should be
set to true if the importer supports copying clips in the Project Manager.

imPeakAudioRec - New structure sent with the new imGetPeakAudio selector.

imPreferredFrameSizeRec - New structure sent with the new imGetPreferredFrameSize
selector.

imIndPixelFormatRec - The outPixelFormat member was changed from a long to a
PrPixelFormat.

imSourceVideoRec - New structure sent with the new imGetSourceVideo selector.

imTimeInfoRec8 - New structure holds the file timecode and timecode rate of the file.
Supercedes imTimeInfoRec, adding scale and sampleSize members to hold the time-
code rate.

imTrimFileRec8 - New structure for unicode support, supercedes imTrimFileRec, using
a const wchar_t[] instead of imFileSpec * for the destination file path and name.

Getting Started

Try the Sample Importer Plug-ins

Choose which one of the three sample importers matches closest with your desired functionality.
Build that one, or if you are still not sure, build all three! Step through the code in your debugger
to learn order of events. Start your importer by modifying one of the SDK samples.

How to Get First Crack at a File

To get the first opportunity to import a filetype also supported by a built-in importer (e.g. MPEG,
AVI, QuickTime, etc), provide a different subtype and classID in order for your importer
to be called for the types of files you support. imImportInfoRec.priority must be higher
than any of the other importers for that filetype. Set this value to 100 or higher to override all
built-in importers. Premiere Pro has more than one type of AVI importer and MPEG importer,

Importers • 90Adobe Premiere Pro CS5 SDK Guide

which use this same prioritization mechanism. So your importer can override all of them and get
the first shot at a filetype.

Just because you want to take over handling some files of a given filetype, it doesn’t mean you
have to handle all of them. To defer an unsupported subtype to a lower priority importer,
return imBadFile during imOpenFile8 or imGetInfo8. See the Media Abstraction chapter for
more information on filetypes, subtypes, and classIDs.

imGetSourceVideo versus imImportImage

There are two different selectors an importer can use to provide frames to the host. Why? In a
nutshell, imGetSourceVideo is best for media that has specific resolutions. Importers that sup-
port imGetSourceVideo can import frames at their native resolution or specify preferred resolu-
tions, rather than having to scale the frames to an arbitrary size. imImportImage is only useful
for resolution-independent video, such as vector-based graphics. Choose the one that fits the
media your importer will support. The SDK importer demonstrates imGetSourceVideo because
resolution dependent video is much more common. The synthetic importer sample demonstrates
imImportImage because it generates video on-the-fly and doesn’t have a preference as to video
resolution.

privateData and prefs

Don’t use global variables to store data. Use privateData and prefs instead. Each clip can
have its own privateData and prefs. If the importer provides a setup dialog during imGet­
Prefs8, store any setup dialog settings in prefs. Store any other data in privateData. The
host application will automatically pass the correct privateData and prefs to the appropri-
ate importer instance.

privateData and prefs are not allocated in the same way. For privateData, create a
handle to the custom structure you wish to store (during imGetInfo8 or imGetPrefs8.) and save
the handle to the privateData member of the structure passed in. The importer is responsible
for allocating and deallocating the memory for privateData using Premiere’s memory func-
tions. Free the allocated privateData during imCloseFile or imShutdown, as appropriate.

For prefs, Premiere will allocate the prefs based on the prefsLength returned from the
first call to imGetPrefs8. Premiere will deallocate the prefs when it is no longer needed.

Audio Conforming and Peak File Generation

When a clip that contains audio is imported into Premiere, one or two types of files may be gener-
ated:

Importers • 91Adobe Premiere Pro CS5 SDK Guide

First, a separate .pek file is always created, which holds peak samples for quick access when
Premiere needs to draw the audio waveform.

Second, the audio may be conformed into a separate .cfa file. The conformed audio is in an inter-
leaved 32-bit floating point format that matches the sequence audio sample rate, to maximize the
speed at which Premiere can render audio effects and mix it without sacrificing quality.

Both of these files are generated through sequential calls for audio using imImportAudio7. Audio
conforming cannot be disabled through the Premiere menus or API. However, if an importer can
provide uncompressed audio of the clip at the audio sample rate of the sequence, or at an easily-
converted ratio (1:2, 2:3), Premiere will not conform the audio. All compressed audio data must
be conformed.

The location of the .cfa and .pek files is determined by the user-specified path in Edit >
Preferences > Media > Media Cache Files. When the project is closed, the files will be cleaned up.
If the source clip is not saved in the project, the associated conformed audio files will be deleted.

Importers can get audio for scrubbing, playing and other timeline operations before conforming
has completed, resulting in responsive audio feedback during conforming. To do this, they must
support both random access and sequential access audio importing. The kSeparateSequen-
tialAudio access mode should be set in imFileInfoRec8.accessModes.

Quieting versus Closing a File

When the application loses focus, importers receive imQuietFile for each file it has been asked to
open. Update any PrivateData and close the file. If the project is closed, imCloseFile is sent,
telling the importer to free any PrivateData. If the importer didn’t store any PrivateData,
it will not receive imCloseFile.

File Handling

Importers can provide their own file handling (useful if you have child files or a custom file sys-
tem). Set canOpen, canSave, and canDelete to true during imInit, and respond to imOpen­
File8, imQuietFile, imCloseFile, imSaveFile8, imDeleteFile8. Use the Async File Reader Suite for
cross-platform file operations.

Quality Levels

Importers can optionally support two different quality modes, with the imDraftMode flag that
is used in imImportImageRec.

Importers • 92Adobe Premiere Pro CS5 SDK Guide

Multiple Audio Streams

Importers can support multiple streams of audio and/or video. This is useful for audio con-
figurations beyond mono, stereo, and 5.1, or for stills with layers, such as Photoshop files. An
importer describes each stream one-by-one during iterative calls to imGetInfo8. In response
to each call, the importer describes one stream, and returns imIterateStreams, until it
reaches the last stream, and then it returns imBadStreamIndex. Set imFileInfoRec8-
>streamsAsComp = kPrFalse, so that the set of streams appear as a single clip within
Premiere Pro.

In imGetInfo8, save streamIdx in privateData, to have access to it later. That way, when
called in imImportAudio7, the importer will know which stream of audio to pass back.

See the sample code in the SDK File Importer, which can be turned on by uncommenting back in
the MULTISTREAM_AUDIO_TESTING define in SDK_File_Import.h.

Project Manager Support

The Project Manager is only in Premiere Pro, and it allows users to archive projects, trim out
unused media, or collect all source files to a single location. Importers are the most knowled-
gable about the sources they work with. So Premiere Pro doesn’t make any assumptions about
the source media, but instead relies on the importers to handle the trimming and file size esti-
mates. Only importers that specifically support trimming will trim and not copy when the Project
Manager trims projects.

To support trimming, importers will want to set the canCalcSizes and canTrim flags dur-
ing imInit, and support imCalcSize8, imCheckTrim8, and imTrimFile8.

If the each clip has more than one source file (such as audio channels in separate files), the im-
porter should also set canCopy and support imCopyFile. Otherwise, the Project Manager will
not know about the other source files.

External files, such as textures, logos, etc. that are used by an importer instance but do not appear
as footage in Project panel, should be registered with Premiere Pro using the File Registration
Suite during imGetInfo8 or imGetPrefs8. Registered files will be taken into account when trim-
ming or copying a project using the Project Manager.

Creating a Custom Importer

This variant of the importer API allows importers to dynamically create disk-based media while
working within Premiere. A titler plug-in or similar should use this API. Once your clip is cre-
ated, it is treated like any other standard file and will receive all standard missing file handling.

Importers • 93Adobe Premiere Pro CS5 SDK Guide

A Custom Importer must do the following:

- Set the following flags true in imImportInfoRec; canCreate, canOpen, addToMenu,
noFile. This tells Premiere your plug-in will create a clip on disk at imGetPrefs8 time.

- To determine when you need to create a new clip vs. modify an existing clip, check the im-
FileAccessRec filename. If it’s identical to the plug-in display name (as set in the PiPL), cre-
ate a new clip; otherwise modify the clip.

- If the user cancels from your dialog when creating a new clip, return imCancel.

- If the clip is modified, the importer needs to do a few things for Premiere to pick up the changes.
Put your file access information in the supplied imFileAccessRec. Premiere will use this data
to reference your clip from now on. Close the file handle after you create it. Return imSetFile
after creating a file handle in imGetPrefs8., and call RefreshFileAsync() in the Importer
File Manager Suite to notify Premiere that the clip has been modified. Premiere will immediately
call you to open the file and return a valid imFileRef. Respond to imOpenFile8, imQuietFile,
imCloseFile at a minimum.

Showing a Video Preview in a Setup Dialog

Synthetic importers can get a frame from the timeline beneath the current clip or timeline loca-
tion. This is useful for titler plug-ins. Use the getPreviewFrameEx callback with the time
given by TDB_TimeRecord tdbTimelocation in imGetPrefsRec. timelineData
is now also valid during imGetPrefs8.

Real-Time Rolling and Crawling Titles

For RT rolls and crawls, a player and importer must be specially designed to work together. An
importer can implement the appropriate functionality, but it is up to the player to take advantage
of it.

Importers can make image data available for rolling and crawling titles, using imImageIn-
foRec.isRollCrawl. If the importer sets it to non-zero, this declares that the image is a title
or other image that does roll/crawl, and that the importer supports the imGetRollCrawlInfo and
imRollCrawlRenderPage selectors. imGetRollCrawlInfo is used to get info on the roll/crawl from
the importer, and imRollCrawlRenderPage is used to get a rendered page of the roll/crawl.

Importers • 94Adobe Premiere Pro CS5 SDK Guide

Format repeated in menu?

To avoid having your importer appear multiple times in the file formats supported pop-up list, fill
out the formatName, formatShortName and platform extension once and only once during
your imGetIndFormat.

Resources

Importers must contain a IMPT resource. Premiere uses this to identify the plug-in as an im-
porter. Also, depending on the type of importer (standard, synthetic, or custom), a PiPL may be
required.

Entry Point

csSDK_int32 xImportEntry (
	 csSDK_int32	 selector,
	 imStdParms	 *stdParms,
	 void		 	 *param1,
	 void		 	 *param2)

selector is the action Premiere wants the importer to perform. stdParms provides callbacks
to obtain additional information from Premiere or to have Premiere perform tasks. param1
and param2 vary with the selector; they may contain a specific value or a pointer to a structure.
Return imNoErr if successful, or an appropriate return code.

Standard Parameters

A pointer to this structure is sent from the host application to the plug-in with every selector.

typedef struct {
	 csSDK_int32	 	 imInterfaceVer;
	 imCallbackFuncs	 *funcs;
	 piSuitesPtr	 	 piSuites;
} imStdParms;

Member Description
imInterfaceVer Importer API version

Premiere Pro CS5 - IMPORTMOD_VERSION_10
Premiere Pro CS4 - IMPORTMOD_VERSION_9
Premiere Pro CS3 - IMPORTMOD_VERSION_8

Importers • 95Adobe Premiere Pro CS5 SDK Guide

funcs Pointers to callbacks for importers
piSuites Pointer to universal callback suites

Importer-Specific Callbacks

typedef struct {
	 ClassDataFuncsPtr	 classFuncs;
	 csSDK_int32	 	 unused1;
	 csSDK_int32	 	 unused2;
} imCallbackFuncs;

typedef csSDK_int32 (*importProgressFunc){
	 csSDK_int32	 partDone;
	 csSDK_int32	 totalToDo;
	 void		 	 *trimCallbackID};

Function Description
classFuncs See ClassData functions.
importProgressFunc Available in imSaveFileRec and imTrimFileRec dur-

ing imSaveFile8 and imTrimFile8. Callback function pointer
for use during project archiving or trimming to call into
Premiere and update the progress bar and check for cancella-
tion. Either imProgressAbort or imProgressCon-
tinue will be returned.

The trimCallbackID parameter is passed in the same
structures.

Selector Table

This table is ordered roughly by calling sequence. The Synth column indicates whether or not the
selector is applicable to synthetic importers. Custom importers can respond to any of the selec-
tors.

Selector param1 param2 Synth
imInit imImportInfoRec * unused Yes
imGetIndFormat (int) index imIndFormatRec * Yes
imGetSubTypeNames (csSDK_int32) file-

Type
imSubTypeDescrip-
tionRec **

No

imGetIndPixelFormat (int) index imIndPixel
FormatRec *

Yes

Importers • 96Adobe Premiere Pro CS5 SDK Guide

imGetPrefs8 imFileAccessRec8 * imGetPrefsRec * Yes
imGetInfo8 imFileAccessRec8 * imFileInfoRec8 * Yes
imGetTimeInfo8 imFileRef imTimeInfoRec8 * No
imSetTimeInfo8 imFileRef imTimeInfoRec8 * No
imGetFileAttributes imFileAttributesRec * unused
imImportImage imFileRef imImportImageRec * Yes
imGetPreferredFrameSize imPreferredFrame

SizeRec *
unused Yes

imGetSourceVideo imFileRef imSourceVideoRec * Yes
imImportAudio7 imFileRef imImportAu-

dioRec7 *
Yes

imResetSequentialAudio imFileRef imImportAu-
dioRec7 *

Yes

imGetSequentialAudio imFileRef imImportAu-
dioRec7 *

Yes

imGetPeakAudio imFileRef imPeakAudioRec * Yes
imOpenFile8 imFileRef * imFileOpenRec8 * No
imQuietFile imFileRef * (void*)

PrivateData **
No

imCloseFile imFileRef * (void*)
PrivateData **

No

imSaveFile8 imSaveFileRec8 * unused No
imAnalysis imFileRef imAnalysisRec * Yes
imDataRateAnalysis imFileRef imDataRate

AnalysisRec *
No

imDeleteFile imDeleteFileRec * unused No
imGetMetaData imFileRef imMetaDataRec * No
imSetMetaData imFileRef imMetaDataRec * No
imShutdown unused unused Yes
imGetSupports8 unused unused Yes
imGetSupports7 unused unused Yes
imGetRollCrawlInfo imRollCrawl

InfoRec *
unused Yes

imRollCrawlRenderPage rollCrawlRender-
Rec *

unused Yes

imCalcSize8 imCalcSizeRec * imFileAccessRec8 * No
imCheckTrim8 imCheckTrimRec * imFileAccessRec8 * No
imTrimFile8 imFileAccessRec8 * imTrimFileRec8 * No
imCopyFile imCopyFileRec * unused No

Importers • 97Adobe Premiere Pro CS5 SDK Guide

imDeferredProcessing imDeferred
ProcessingRec *

unused No

imRetargetAccelerator imAcceleratorRec * unused No
imCreateAsyncImporter imAsyncImporter

CreationRec *
unused Yes

imQueryDestinationPath imQueryDestination-
PathRec *

unused No

imQueryContentState imQueryContent-
StateRec *

unused No

Selector Descriptions

This section provides a brief overview of each selector and highlights implementation issues.
Additional implementation details are at the end of the chapter.

imInit

param1 - imImportInfoRec *
param2 - unused

Sent during application startup. Describe the importer’s capabilities in the imImportInfoRec;
all options are false by default. The similarly named flags in imIndFormatRec.flags are obsolete
and should not be used.

Set hasSetup to kPrTrue if the importer has a setup dialog, and setupOnDblClk to
kPrTrue to have that dialog display when the user double-clicks a file in the Project Panel;
Premiere throws away any preview files generated for a file imported with this setting, even if no
setup dialog is displayed.

Return imIsCacheable from imInit if a plug-in does not need to be called to initialize every
time Premiere ilaunched. This will help reduce the time to launch the application.

Synthetic Importers

Setting noFile to kPrTrue indicates that the importer is synthetic. Set addToMenu to
kPrTrue to add the importer to the File > New menu.

Custom Importers

To create a custom importer, the following capabilities must be set. See Additional Details for
more info on custom importers.

Importers • 98Adobe Premiere Pro CS5 SDK Guide

noFile = kPrTrue;
hasSetup = kPrTrue;
canOpen = kPrTrue;
canCreate = kPrTrue;
addToMenu = imMenuNew;

imGetIndFormat

param1 - (int) index
param2 - imIndFormatRec *

Sent repeatedly, immediately after imInit; enumerate the filetypes the plug-in supports by popu-
lating the imIndFormatRec. When finished, return imBadFormatIndex. imIndFormatRec.flags
are obsolete and should not be used.

Synthetic Importers
Because they have no file, synthetic importers only need to respond with the filetype established
in their resource. Create a separate plug-in for each synthetic file type.

imGetSubTypeNames

param1 - (csSDK_int32) fileType
param2 - imSubTypeDescriptionRec **

New optional selector added for After Effects CS3. As of CS4, this info still isn’t used in Premiere
Pro, but is used in After Effects to display the codec name in the Project Panel. The importer
should fill in the codec name for the specific subtype fourcc provided. This selector will be sent
repeatedly until names for all subtypes have been requested. The imSubTypeDescription-
Rec must be allocated by the importer, and will be released by the plug-in host.

imGetIndPixelFormat

param1 - (int) index
param2 - imIndPixelFormatRec *

New optional selector called to enumerate the pixel formats available for a specific file. This mes-
sage will be sent repeatedly until all formats have been returned. Pixel formats should be returned
in the preferred order that the importer supports. The Importer should return imBadFormatIn-
dex after all formats have been enumerated. imUnsupported should be returned on the first call if
only *yawn* BGRA_4444_8u is supported.

Importers • 99Adobe Premiere Pro CS5 SDK Guide

What pixel formats should you support? Keep it real. Just return the pixel format that most closely
matches the data stored in your file. If decoding to two or more formats can be done at about the
same speed, declare support for both, but favor any pixel formats that are more compact, to save
on memory and bandwidth.

imGetPrefs8

param1 - imFileAccessRec8 *
param2 - imGetPrefsRec *

New in Premiere Pro 2.0. Premiere sends this selector when the user imports (or creates, if syn-
thetic) a file of your type. You must have set hasSetup = true during imInit to receive this
selector.

Storing preferences is a two step process. If the pointer in imGetPrefsRec.prefs is NULL,
set prefsLength to the size of your preferences structure and return imNoErr. Premiere
sends imGetPrefs again; display your dialog, and pass the preferences pointer back in im-
GetPrefsRec.prefs. Starting in Premiere Pro 1.5, the importer can get a frame from the
timeline beneath the current clip or timeline location. This is useful for titler plug-ins. Use the
getPreviewFrameEx callback with the time given by TDB_TimeRecord tdbTimelocation in im-
GetPrefsRec.

Synthetic Importers
Synthetic importers can specify the displayable name by changing the newfilename member im-
FileAccessRec8.

The first time this selector is sent, the imGetPrefsRec.timelineData, though non-null,
contains garbage and should not be used. It will only contain valid information once the user has
put the clip into the timeline, and is double-clicking on it.

Custom Importers
Custom importers should return imSetFile after successfully creating a new file, storing the
file access information in imFileAccessRec8. Premiere will use this data to then ask the im-
porter to open the file it created. See Additional Details for more information on custom import-
ers.

imGetInfo8

param1 - imFileAccessRec8 *
param2 - imFileInfoRec8 *

New in Premiere Pro 2.0. Replacement for imGetInfo7 that uses new imFileInfoRec8. Called
when a specific file is instantiated. Importer checks file validity, optionally allocates file instance

Importers • 100Adobe Premiere Pro CS5 SDK Guide

data, and describes the properties of the file being imported by populating the imFileIn-
foRec8.

Synthetic Importers
You can create a still frame, a movie of a set duration, or an ’infinite’ length movie, but cannot
change the properties of a synthetic file once imported.

imGetTimeInfo8

param1 - imFileRef
param2 - imTimeInfoRec8 *

New in Premiere Pro 2.0. Read any embedded timecode data in the file. Supercedes imGetTimeIn­
fo.

imSetTimeInfo8

param1 - imFileRef
param2 - imTimeInfoRec8 *

New in Premiere Pro 2.0. Sent after a capture completes, where timecode was provided by the re-
corder or device controller. Use this to write timecode data and timecode rate to your file. See the
Universals chapter for more information on time in Premiere. Supercedes imSetTimeInfo.

Timecode rate is important for files that have timecode, but not an implicit frame rate, or where
the sampling rate might differ from the timecode rate. For example, audio captured from a tape
uses the video’s frame rate for timecode, although its sampling rate is not equal to the timecode
rate. Another example is capturing a still from tape, which could be stamped with timecode, yet
not have a media frame rate.

imGetFileAttributes

param1 - imFileAttributesRec *

New in Premiere Pro 3.1. Optional. Pass back the creation date stamp in imFileAttrib-
utesRec.

imImportImage

param1 - imFileRef
param2 - imImportImageRec *

Importers • 101Adobe Premiere Pro CS5 SDK Guide

Give the host a frame of video; populate the imImportImageRec buffer with pixel data, or
(if you’ve set canDraw to true during imInit) draw to the screen in the provided window using
platform-specific calls to do so. You must scale the image data to fit the window; Premiere relies
on the import module for properly scaled frames.

imGetPreferredFrameSize

param1 - imFileRef
param2 - imPreferredFrameSizeRec *

New in Premiere Pro 2.0. Provide the frame sizes preferred by the importer.

imGetSourceVideo

param1 - imFileRef
param2 - imSourceVideoRec *

New in Premiere Pro 2.0. Get the host an unscaled frame of video. This selector will be sent in-
stead of imImportImage if supportsGetSourceVideo is set to true during imGetInfo8.

imImportAudio7

param1 - imFileRef
param2 - imImportAudioRec7 *

Replacement for imImportAudio that uses new imAudioInfoRec7. Called to import audio us-
ing the new 32-bit float, uninterleaved audio format. Fill imImportAudioRec7->buffer
with the number of sample frames specified in imImportAudioRec7->size, starting from
imImportAudioRec7->position. Always return 32-bit float, uninterleaved samples as de-
scribed in the Universals chapter. You may use the calls in the Audio Suite to do some common
conversions.

imGetPeakAudio

param1 - imFileRef
param2 - imPeakAudioRec *

Optional selector allows Premiere to get audio peak data directly from the importer. This is
used for synthetic clips longer than five minutes. Providing peak data can significantly improve
waveform rendering performance when the user views audio waveform of the clip in the Source
Monitor.

Importers • 102Adobe Premiere Pro CS5 SDK Guide

imOpenFile8

param1 - imFileRef *
param2 - imFileOpenRec8 *

New in Premiere Pro 2.0. Open a file and give Premiere its handle. This selector is sent only if
canOpen was set to true during imInit; do so if you generate child files, you need to have read
and write access during the Premiere session, or use a custom file system. If you respond to this
selector, you must also respond to imQuietFile and imCloseFile. You may additionally need to
respond to imDeleteFile and imSaveFile; see Additional Details. Close any child files during im­
CloseFile.

Importers that open their own files should specify how many files they keep open between im­
OpenFile8 and imQuietFile using the new Importer File Manager Suite, if the number is not equal
to one. Importers that don’t open their own files, or importers that only open a single file should
not use this suite. Premiere’s File Manager now keeps track of the number of files held open by
importers, and limits the number open at a time by closing the least recently used files when too
many are open. On Windows, this helps memory usage, but on Mac OS this addresses a whole
class of bugs that may occur when too many files are open.

imQuietFile

param1 - imFileRef *
param2 - (void*) PrivateData **

Close the file in imFileRef, and release any hardware resources associated with it. Respond
to this selector only if canOpen was set to true during imInit. A quieted file is closed (at the OS
level), but associated privateData is maintained by Premiere. Do not deallocate private-
Data in response to imQuietFile; do so during imCloseFile.

imCloseFile

param1 - imFileRef *
param2 - (void*) PrivateData **

The specified file is no longer required; dispose of privateData. Only sent if privateData
was allocated during imGetInfo.

imSaveFile8

param1 - imSaveFileRec8 *
param2 - unused

Importers • 103Adobe Premiere Pro CS5 SDK Guide

Save the file specified in imSaveFileRec8. Only sent if canOpen was set to true during imI­
nit.

imAnalysis

param1 - imFileRef
param2 - imAnalysisRec *

Provide information about the file in the imAnalysisRec; this is sent when the user chooses
Get Properties on your file. Premiere displays a dialog with information about the file, including
the text you provide.

imDataRateAnalysis

param1 - imFileRef
param2 - imDataRateAnalysisRec *

Give Premiere a data rate analysis of the file. Sent when the user presses the Data Rate button in
the Get Properties dialog, and is enabled only if hasDataRate was true in the imFileIn-
foRec returned during imGetInfo. Premiere generates a data rate analysis graph from the data
provided.

imDeleteFile

param1 - imDeleteFileRec *
param2 - unused

Request this selector (by setting canDelete to true during imInit) only if you have child files
or related files associated with your file. If you have only a single file per clip you do not need to
delete your own files. Numbered still file importers do not need to respond to this selector; each
file is handled individually.

imGetMetaData

param1 - imFileRef
param2 - imMetaDataRec *

Called to get a metadata chunk specified by a fourcc code. If imMetaDataRec->buffer
is null, the plug-in should set buffersize to the required buffer size and return imNoErr.
Premiere will then call again with the appropriate buffer already allocated.

Importers • 104Adobe Premiere Pro CS5 SDK Guide

imSetMetaData

param1 - imFileRef
param2 - imMetaDataRec *

Called to add a metadata chunk specified by a fourcc code.

imShutdown

param1 - unused
param2 - unused

Release all resources and perform any other necessary clean-up; sent when Premiere quits.

imGetSupports8

param1 - unused
param2 - unused

A plug-in that supports the Premiere Pro 2.0 API must return malSupports8.

imGetSupports7

param1 - unused
param2 - unused

A plug-in that supports the Premiere Pro 1.0 API must return malSupports7.

imCalcSize8

param1 - imCalcSizeRec *
param2 - imFileAccessRec8 *

Called before Premiere trims a clip, to get the disk size used by a clip. This selector is called if the
importer sets imImportInfoRec.canCalcSizes to non-zero. An importer should support
this call if it uses a tree of files represented as one top-level file to Premiere. The importer should
calculate either the trimmed or current size of the file and return it. If the trimIn and duration are
set to zero, Premiere is asking for the current size of the file. If the trimIn and duration are valid
values, Premiere is asking for the trimmed size.

Importers • 105Adobe Premiere Pro CS5 SDK Guide

imCheckTrim8

param1 - imCheckTrimRec *
param2 - imFileAccessRec8 *

Called before Premiere trims a clip, to check if a clip can be trimmed at the specified boundar-
ies. imCheckTrimRec and imFileAccessRec are passed in. The importer examines the proposed
trimmed size of the file, and can change the requested in point and duration to new values if the
file can only be trimmed at certain locations (for example, at GOP boundaries in MPEG files). If
the importer changes the in and duration, the new values must include all the material requested
in the original trim request. If an importer does not need to change the in and duration, it may
either return imUnsupported, or imNoErr and simply not change the in/duration fields. If the
importer does not want the file trimmed (perhaps because the audio or video would be degraded
if trimmed at all) it can return imCantTrim and the trim operation will fail and the file will be
copied instead.

For a file with both audio and video, the selector will be sent several times. The first time, im-
CheckTrimRec will have both keepAudio and keepVideo set to a non-zero value, and the
trim boundaries will represent the entire file, and Premiere is asking if the file can be trimmed at
all. If the importer returns an error, it will not be called again. The second time, imCheckTrim-
Rec will have keepAudio set to a non-zero value, and the trim boundaries will represent the
audio in and out points in the audio timebase, and Premiere is asking if the audio can be trimmed
on these boundaries. The third time, imCheckTrimRec will have keepVideo set to a non-
zero value, and the trim boundaries will represent the video in and out points in the video time-
base, and Premiere is asking if the video can be trimmed on these boundaries. If either the video
or audio boundaries extend further than the other boundaries, Premiere will trim the file at the
furthest boundary.

imTrimFile8

param1 - imFileAccessRec8 *
param2 - imTrimFileRec8 *

New in Premiere Pro 2.0. Called when Premiere trims a clip. imFileAccessRec8 and
imTrimFileRec8 are passed in. imDiskFull or imDiskErr may be returned if there is
an error while trimming. The current file, inPoint, and new duration are given and a destination
file path. If a file has video and audio, the trim time is in the video’s timebase. For audio only, the
trim times are in the audio timebase. A simple callback and callbackID is passed to imTrimFile8
and imSaveFile8 that allows plug-ins to query whether or not the user has cancelled the opera-
tion. If non-zero (and they can be nil), the callback pointer should be called to check for cancella-
tion. The callback function will return imProgressAbort or imProgressContinue.

Importers • 106Adobe Premiere Pro CS5 SDK Guide

imCopyFile

param1 - imCopyFileRec *
param2 - unused

New in Premiere Pro 2.0. imCopyFile is sent rather than imSaveFile to importers that have set
imImportInfoRec.canCopy when doing a copy operation using the Project Manager. The
importer should maintain data on the original file rather than the copy when it returns from the
selector.

imDeferredProcessing

param1 - imDeferredProcessingRec *
param2 - unused

New in Premiere Pro 2.0. Describe the current progress of the deferred processing on the clip.

imRetargetAccelerator

param1 - imAcceleratorRec *
param2 - unused

New in Premiere Pro 2.0. When the Project Manager copies media and its accelerator, this selec-
tor gives an opportunity to update the acclerator to refer to the copied media.

imCreateAsyncImporter

param1 - imAsyncImporterCreationRec *
param2 - unused

New in Premiere Pro 2.0. Create an asynchronous importer object using the data provided, and
store it in imAsyncImporterCreationRec.

imQueryDestinationPath

param1 - imQueryDestinationPathRec *
param2 - unused

New in CS5. This allows the plug-in to modify the path that will be used for a trimmed clip, so the
trimmed project is written with the correct path.

Importers • 107Adobe Premiere Pro CS5 SDK Guide

imQueryContentState

param1 - imQueryContentStateRec *
param2 - unused

New in CS5. This is used by streaming importers and folder based importers (P2, XDCAM, etc)
that have multiple files that comprise the content. If an importer doesn’t support the selector then
the host checks the last modification time for the file.

Return Codes

Return Code Reason
imNoErr Operation has completed without error.
imTooWide File dimensions too large.
imBadFile Bad file format. To defer an unsupported subtype to a lower

priority importer, return this during imOpenFile8 or imGetInfo8.
imUnsupported Unsupported selector.
imMemErr Memory error.
imOtherErr Unknown error.
imNoContent No audio or video.
imBadRate Bad audio rate.
imBadCompression Bad compression.
imBadCodec Codec not found.
imNotFlat Unflattened QuickTime movie.
imBadSndComp Bad sound compression.
imNoTimecode Timecode supported, but not found.
imMissingComponent Missing component needed to open the file.
imSaveErr Error saving file.
imDeleteErr Error deleting file.
imNotFoundErr The requested metadata chunk was not found.
imSetFile Return this from imGetPrefs8 only if you are a custom

importer and you need Premiere to alter it’s file access
information (e.g. a new path or filename is created).

imIterateStreams Return from imGetInfo8 to indicate that there are more streams
to describe. Premiere will send imGetInfo8 for the next stream.

imBadStreamIndex Return from imGetInfo8 after interating through streams to indi-
cate that there are no more streams to describe.

imCantTrim Return from imCheckTrim if the file cannot be trimmed by the
importer.

Importers • 108Adobe Premiere Pro CS5 SDK Guide

imDiskFull Return from imTrimFile8 if there is not enough space to complete
the trim operation.

imDiskErr Return from imTrimFile8 if there is a general disk or I/O error
during the trim operation.

imFileShareViolation Return from imOpenFile8 if file cannot be opened due to another
process having exclusive read access

imIterateFrameSizes Return from imGetPreferredFrameSize, to be called again to de-
scribe more frame sizes for a particular pixel format.

imMediaPending Return from imGetSourceVideo or imCreateAsyncImporter if
the importer is still processing the file and cannot return video
frames yet.

imDRMControlled Return from imOpenFile8 if the file cannot be opened because it
is under rights management.

imActivationFailed Activation of a component failed (usually due to user cancella-
tion). This is used by Premiere Elements.

imFrameNotFound New in CS4. Return if an importer could not find the requested
frame (typically used with async importers)

imBadHeader New in CS5. The file cannot be opened because of a header error
imUnsupportedCom-
pression

New in CS5. The file has a compression type that the importer
does not support

imFileOpenFailed New in CS5. The importer was unable to open the file on disk
imFileHasNoImport-
ableStreams

New in CS5. The file has no audio or video stream

imFileReadFailed New in CS5. A read from an open file failed
imUnsupport-
edAudioFormat

New in CS5. The importer cannot import something in the audio
format

imUnsupportedVide-
oBitDepth

New in CS5. The video bit depth of this file is unsupported by the
importer

imDecompressionEr-
ror

New in CS5. The importer hit an error decompressing the audio
or video

imInvalidPrefer-
ences

New in CS5. Invalid prefs data was passed to the importer

inFileNotAvailable New in CS5. Return from imQueryContentState if the file/stream
is no longer available because it is offline or deleted

imCancel Return from imGetPrefs8 if user cancels or the plug-in
cannot open the file (custom/synthetic importer).

imBadFormatIndex Return this when given an out of range format index,
and from imGetIndFormat when plug-in has no more formats
to enumerate.

Importers • 109Adobe Premiere Pro CS5 SDK Guide

imIsCacheable Return from imInit if a plug-in does not need to be called to ini-
tialize every time Premiere is launched. This will help reduce the
time to launch the application.

Structures

Structure Sent with selector
imAcceleratorRec imRetargetAccelerator
imAnalysisRec imAnalysis
imAsyncImporterCre-
ationRec

imCreateAsyncImporter

imAudioInfoRec7 imGetInfo8 (member of imFileInfoRec7)
imCalcSizeRec imCalcSize8
imCheckTrimRec imCheckTrim8
imCopyFileRec imCopyFile
imDataRateAnalysisRec imDataRateAnalysis
imDeferredProcessingRec imDeferredProcessing
imDeleteFileRec imDeleteFile
imFileAccessRec8 imGetInfo8 and imGetPrefs8
imFileAttributesRec imGetFileAttributes
imFileInfoRec8 imGetInfo8
imFileOpenRec8 imOpenFile8
imFileRef imAnalysis, imDataRateAnalysis, imOpenFile8, imQuiet­

File, imCloseFile, imGetTimeInfo8, imSetTimeInfo8, imIm­
portImage, imImportAudio7

imFileSpec imGetInfo8, imGetPrefs8, imSaveFile8, imDeleteFile, and
imTrimFile8 (member of imFileAccessRec8, im-
SaveFileRec8, imDeleteFileRec, and imTrim-
FileRec8)

imFrameFormat imGetSourceVideo (member of imSourceVideoRec)
imGetPrefsRec imGetPrefs8
imImageInfoRec imGetInfo8 (member of imFileInfoRec8)
imImportAudioRec7 imImportAudio7
imImportImageRec imImportImage
imImportInfoRec imInit
imIndFormatRec imGetIndFormat
imIndPixelFormatRec imGetIndPixelFormat
imMetaDataRec imGetMetaData and imSetMetaData
imPeakAudioRec imGetPeakAudio

Importers • 110Adobe Premiere Pro CS5 SDK Guide

imPreferredFrameSizeRec imGetPreferredFrameSize
imQueryContentStateRec
imQueryDestinationPath-
Rec
imRollCrawlInfoRec imGetRollCrawlInfo
imRollCrawlRenderRec imRollCrawlRenderPage
imSaveFileRec8 imSaveFile8
imSourceVideoRec imGetSourceVideo
imSubTypeDescriptionRec imGetSubTypeNames
imTimeInfoRec8 imGetTimeInfo8 and imSetTimeInfo8
imTrimFileRec8 imTrimFile8

Structure Descriptions

imAcceleratorRec

Selector: imRetargetAccelerator

Describes the path to the new media and new accelerator created when the Project Manager cop-
ies media and its accelerator.

typedef struct {
	 const prUTF16Char	 *inOriginalPath;
	 const prUTF16Char	 *inAcceleratorPath;
} imAcceleratorRec;

inOriginalPath The unicode path and name of the copied media.
inAcceleratorPath The unicode path and name of the copied accelerator.

imAnalysisRec

Selector: imAnalysis

Sending back analysis data is a two step process. First, set buffersize to the size of your char-
acter buffer and return imNoErr. Premiere will immediately send imAnalysis again; populate the
buffer with text. Previously-stored preferences and privateData are returned in this structure.

typedef struct {

Importers • 111Adobe Premiere Pro CS5 SDK Guide

	 void		 	 *privatedata;
	 void		 	 *prefs;
	 csSDK_int32	 buffersize;
	 char		 	 *buffer;
	 csSDK_int32	 *timecodeFormat;
} imAnalysisRec;

privatedata Instance data from imGetInfo8 or imGetPrefs8.
prefs Instance data from imGetPrefs8 (setup dialog info).
buffersize Set to the desired size and return imNoErr to Premiere, which will

re-size and call the plug-in again with the imGetPrefs8 selector.
buffer Text buffer. Terminate lines with line endings (CR and LF).
timecodeFormat Preferred timecode format, sent by the host.

imAsyncImporterCreationRec

Selector: imCreateAsyncImporter

Create an asynchronous importer object using the data provided, and store it here.

typedef struct {
	 void		 	 	 *inPrivateData;
	 void		 	 	 *inPrefs;
	 AsyncImporterEntry	 outAsyncEntry;
	 void		 	 	 *outAsyncPrivateData;
}

inPrivateData Instance data from imGetInfo8 or imGetPrefs8.
inPrefs Instance data from imGetPrefs8 (setup dialog info).
outAsyncEntry Provide the entry point for async selectors sent to the asynchronous

importer object.
outAsyncPrivate-
Data

PrivateData for the asynchronous importer object.

imAudioInfoRec7

Selector: imGetInfo8 (member of imFileInfoRec8)

Audio data properties of the file (or of the data you will generate, if synthetic).

typedef struct {
	 csSDK_int32	 	 numChannels;

Importers • 112Adobe Premiere Pro CS5 SDK Guide

	 float		 	 	 sampleRate;
	 PrAudioSampleType	 sampleType;
}

numChannels Number of audio channels in the audio stream. Either 1, 2, or 6.
sampleRate In hertz.
sampleType This is for informational use only, to disclose the format of the audio on disk,

before it is converted to 32-bit float, uninterleaved, by the importer. The au-
dio sample types are listed in the Universals chapter.

imCalcSizeRec

Selector: imCalcSize8

Asks the importer for an estimate of disk space used by the clip, given the provided trim boundar-
ies.

typedef struct {
	 void		 	 *privatedata;
	 void		 	 *prefs;
	 csSDK_int32	 trimIn;
	 csSDK_int32	 duration;
	 prInt64	 	 sizeInBytes;
	 csSDK_int32	 scale;
	 csSDK_int32	 sampleSize;
} imCalcSizeRec;

privatedata Instance data gathered from imGetInfo8 or imGetPrefs8.
prefs Instance data gathered from imGetPrefs8 (setup dialog info).
trimIn In point of the trimmed clip the importer should calculate the size for, in

the timebase specified by scale over sampleSize.
duration Duration of the trimmed clip the importer should calculate the size for.

If 0, then the importer should calculate the size of the untrimmed clip.
sizeInBytes Return the calculated size in bytes.
scale The frame rate of the video clip, represented as scale over sampleSize.
sampleSize

imCheckTrimRec

Selector: imCheckTrim8

Importers • 113Adobe Premiere Pro CS5 SDK Guide

Provides the requested trim boundaries to the importer, and allows adjusted trim boundaries to
be passed back to Premiere.

typedef struct {
	 void		 	 *privatedata;
	 void		 	 *prefs;
	 csSDK_int32	 trimIn;
	 csSDK_int32	 duration;
	 csSDK_int32	 keepAudio;
	 csSDK_int32	 keepVideo;
	 csSDK_int32	 newTrimIn;
	 csSDK_int32	 newDuration;
	 csSDK_int32	 scale;
	 csSDK_int32	 sampleSize;
} imCheckTrimRec;

privatedata Instance data gathered from imGetInfo8 or imGetPrefs8.
prefs Instance data gathered from imGetPrefs8 (setup dialog info).
trimIn Requested in point of the trimmed clip, in the timebase specified by scale

over sampleSize.
duration Requested duration. If 0, then the request is to leave the clip untrimmed,

and at the current duration
keepAudio If non-zero, the request is to keep the audio in the trimmed result.
keepVideo If non-zero, the request is to keep the video in the trimmed result.
newTrimIn Return the acceptable in point of the trimmed clip. It must be at or be-

fore the requested in point.
newDuration Return the acceptable duration. newTrimIn + newDuration must be at or

after the trimIn + duration.
scale The frame rate of the video clip, represented as scale over sampleSize.
sampleSize

imCopyFileRec

Selector: imCopyFile

Describes how to copy a clip. Also provides a callback to update the progress bar and check if the
user has cancelled.

typedef struct {
	 void		 	 	 *inPrivateData;
	 csSDK_int32	 	 *inPrefs;
	 const prUTF16Char	 *inSourcePath;
	 const prUTF16Char	 *inDestPath;

Importers • 114Adobe Premiere Pro CS5 SDK Guide

	 importProgressFunc	 inProgressCallback;
	 void		 	 	 *inProgressCallbackID;
} imTrimFileRec;

inPrivateData Instance data gathered during imGetInfo8 or imGetPrefs8.
inPrefs Instance data gathered during imGetPrefs8 (setup dialog).
inSourcePath Full unicode path of the source file.
inDestPath Full unicode path of the destination file.
inProgressCallback importProgressFunc callback to call repeatedly to pro-

vide progress and to check for cancel by user. May be a NULL
pointer, so make sure the function pointer is valid before call-
ing.

inProgressCallbackID Pass to progressCallback.

imDataRateAnalysisRec

Selector: imDataRateAnalysis

Specify the desired buffersize, return to Premiere with imNoErr; upon the next call fill buf-
fer with imDataSamples, and specify a base data rate for audio (if any). This structure is used
like imAnalysisRec.

typedef struct {
	 void		 	 *privatedata;
	 void		 	 *prefs;
	 csSDK_int32	 buffersize;
	 char		 	 *buffer;
	 csSDK_int32	 baserate;
} imDataRateAnalysisRec;

privatedata Instance data gathered from imGetInfo8 or imGetPrefs8.
prefs Instance data gathered from imGetPrefs8 (setup dialog info).
buffersize The size of the buffer you request from Premiere prior to passing data

back data in buffer.
buffer Pointer to the analysis buffer to be filled with

imDataSamples (see structure below).
baserate Audio data rate (bytes per second) of the file.

typedef struct {
	 csSDK_uint32 sampledur;
	 csSDK_uint32 samplesize;
} imDataSample;

Importers • 115Adobe Premiere Pro CS5 SDK Guide

sampledur Duration of one sample in video timebase, in samplesize increments;
set the high bit if this is a keyframe.

samplesize Size of this sample in bytes.

imDeferredProcessingRec

Selector: imDeferredProcessing

Describes the current progress of the deferred processing on the clip referred to by inPrivateData.

typedef struct {
	 void		 	 *inPrivateData;
	 float		 	 outProgress;
	 char		 	 outInvalidateFile;
	 char		 	 outCallAgain;
} imDeferredProcessingRec;

inPrivateData Instance data gathered from imGetInfo8 or imGetPrefs8.
outProgress Set this to the current progress, from 0.0 to 1.0.
outInvalidateFile The importer has updated information about the file.
outCallAgain Set this to true to request that the importer be called again immedi-

ately.

imDeleteFileRec

Selector: imDeleteFile

Describes the file to be deleted.

typedef struct {
	 csSDK_int32	 	 filetype;
	 const prUTF16Char	 deleteFile;
} imDeleteFileRec;

filetype The file’s unique four character code, defined in the IMPT resource
deleteFile Specifies the name (and path) of the file to be deleted.

imFileAccessRec8

Selectors: imGetInfo8 and imGetPrefs8

Importers • 116Adobe Premiere Pro CS5 SDK Guide

Describes the file being imported.

typedef struct {
	 void		 	 	 *importID;
	 csSDK_int32	 	 filetype;
	 const prUTF16Char	 *filepath;
	 imFileRef		 	 fileref;
	 PrMemoryPtr	 	 newfilename;
} imFileAccessRec;

importID Unique ID provided by Premiere. Do not modify!
filetype The file’s unique four character code, defined in the IMPT resource.
filepath The unicode file path and name.
fileref A Windows HANDLE. Premiere does not overload this value by using it

internally, although setting it to the constant kBadFileRef may cause
Premiere to think the file is closed. This value is always valid.

newfilename If the file is synthetic, the importer can specify the displayable name here
as a prUTF16Char string during imGetPrefs8.

imFileAttributesRec

Selector: imGetFileAttributes

New in Premiere Pro 3.1. Provide the clip creation date.

typedef struct {
	 prDateStamp	 creationDateStamp;
	 csSDK_int32	 reserved[40];
} imFileAttributesRec;

creationDateStamp Structure to store when the clip was created

imFileInfoRec8

Selector: imGetInfo8

The clip description sent to Premiere. Create and store any privateData.

typedef struct {
	 char		 	 	 hasVideo;
	 char		 	 	 hasAudio;

Importers • 117Adobe Premiere Pro CS5 SDK Guide

	 imImageInfoRec		 vidInfo;
	 csSDK_int32	 	 vidScale;
	 csSDK_int32	 	 vidSampleSize;
	 csSDK_int32	 	 vidDuration;
	 imAudioInfoRec7	 audInfo;
	 PrAudioSample	 	 audDuration;
	 csSDK_int32	 	 accessModes;
	 void		 	 	 *privatedata;
	 void		 	 	 *prefs;
	 char		 	 	 hasDataRate;
	 csSDK_int32	 	 streamIdx;
	 char		 	 	 streamsAsComp;
	 prUTF16Char	 	 streamName[256];
	 csSDK_int32	 	 sessionPluginID;
	 char		 	 	 alwaysUnquiet;
	 char		 	 	 highMemUsage;
	 prUTF16Char	 	 filePath[2048];
} imFileInfoRec8;

hasVideo If non-zero, the file contains video.
hasAudio If non-zero, the file contains audio.
vidInfo If there is video in the file, fill out the imImageInfoRec structure

(e.g. height, width, alpha info, etc.).
vidScale The frame rate of the video, represented as scale over sampleSize.
vidSampleSize
vidDuration The total number of frames of video, in the video timebase.
audInfo If there is audio in the file, fill out the imAudioInfoRec7 struc-

ture.
audDuration The total number of audio sample frames.
accessModes The access mode of this file. Use one of the following constants:

kRandomAccessImport - This file can be read by random access
(default)
kSequentialAudioOnly - When accessing audio, only sequen-
tial reads allowed (for variable bit rate files)
kSequentialVideoOnly - When accessing video, only sequen-
tial reads allowed
kSequentialOnly - Both sequential audio and video
kSeparateSequentialAudio - Both random access and
sequential access. This setting allows audio to be retrieved for scrub-
bing or playback even during audio conforming.

privatedata Private instance data. Allocate a handle using Premiere’s memory
functions and store it here. Premiere will return the handle with sub-
sequent selectors.

Importers • 118Adobe Premiere Pro CS5 SDK Guide

prefs Settings data gathered from imGetPrefs8 (setup dialog info).
hasDataRate If set, the importer can read or generate data rate

information for this file and will be sent imDataRateAnalysis.
streamIdx The Premiere-specified stream index number
streamsAsComp If multiple streams and this is stream zero, indicate whether to im-

port as a composition or multiple clips.
streamName Optional. The unicode name of this stream if there are multiple

streams. New in Premiere Pro 3.1, an importer may use this to set the
clip name based on metadata rather than the filename. The importer
should set imImportInfoRec.canSupplyMetadataClip-
Name to true, and fill out the name here.

sessionPluginID This ID should be used in the File Registration Suite for registering
external files (such as textures, logos, etc) that are used by an im-
porter instance but do not appear as footage in the Project Window.
Registered files will be taken into account when trimming or copy-
ing a project using the Project Manager. The sessionPluginID is valid
only for the call that it is passed on.

alwaysUnquiet Set to non-zero to tell Premiere if the clip should always be unquieted
immediately when the application regains focus.

highMemUsage Added in Premiere Pro CS3. Set to non-zero if this clip uses an
extreme amount of memory. The number of files allowed to be open
with this flag set to true is currently capped at 5.

filepath Added in Premiere Pro 4.1. For clips that have audio in files separate
from the video file, set the filename here, so that UMIDs can properly
be generated for AAFs.

imFileOpenRec8

Selector: imOpenFile8

The file Premiere wants the importer to open.

typedef struct {
	 imFileAccessRec8	 fileinfo;
	 void		 	 	 *privatedata;
	 csSDK_int32	 	 reserved;
	 PrFileOpenAccess	 inReadWrite;
	 csSDK_int32	 	 inImporterID;
	 csSDK_size_t	 	 outExtraMemoryUsage;
} imFileOpenRec8;

fileinfo imFileAccessRec8 describing the incoming file.

Importers • 119Adobe Premiere Pro CS5 SDK Guide

privatedata Instance data gathered from imGetInfo8 or imGetPrefs8.
reserved Do not use.
inReadWrite The file should be opened with the access mode specified:

Either
kPrOpenFileAccess_ReadOnly or
kPrOpenFileAccess_ReadWrite

inImporterID Can be used as the ID for calls in the PPix Cache Suite.
outExtraMemoryUsage New in CS5. If the importer uses memory just by being open,

which cannot otherwise be registered in the cache, put the size
in bytes in this field.

imFileRef

Selectors: imAnalysis, imDataRateAnalysis, imOpenFile8, imQuietFile, imCloseFile, imGetTimeIn­
fo8, imSetTimeInfo8, imImportImage, imImportAudio7

A file HANDLE on Windows, or a void* on MacOS. imFileRef is also a member of im-
FileAccessRec. Use OS-specific functions, rather than ANSI file functions, when manipulat-
ing imFileRef.

imFrameFormat

Selector: imGetSourceVideo (member of imSourceVideoRec)

Describes the frame dimensions and pixel format.

typedef struct {
	 csSDK_int32	 inFrameWidth;
	 csSDK_int32	 inFrameHeight;
	 PrPixelFormat	 inPixelFormat;
} imFrameFormat;

inFrameWidth The frame dimensions requested.
inFrameHeight
inPixelFormat The pixel format of the frame requested.

imGetPrefsRec

Selector: imGetPrefs8

Importers • 120Adobe Premiere Pro CS5 SDK Guide

Contains preference data gathered from (or defaults to populate) a setup dialog. If you are creat-
ing media, use timelineData to walk through the current timeline in order to generate a preview
of the media.

typedef struct {
	 char		 	 *prefs;
	 csSDK_int32	 prefsLength;
	 char		 	 firstTime;
	 PrTimelineID	 timelineData;
	 void		 	 *privatedata;
	 TDB_TimeRecord	tdbTimelineLocation;
	 csSDK_int32	 sessionPluginID;
	 csSDK_int32	 imageWidth;
	 csSDK_int32	 imageHeight;
	 csSDK_uint32	 pixelAspectNum;
	 csSDK_uint32	 pixelAspectDen;
	 csSDK_int32	 vidScale;
	 csSDK_int32	 vidSampleSize;
	 float		 	 sampleRate;
} imGetPrefsRec;

prefs A pointer to a private structure (which you allocate) for stor-
ing dialog box preferences.

prefsLength Prior to storing anything in the prefs member, set pref-
sLength to the size of your structure and return imNoErr;
Premiere will re-size and call the plug-in again with imGet­
Prefs8.

firstTime If set, imGetPrefs8 is being sent for the first time. Instead,
check to see if prefs has been allocated. If not, imGetPrefs8
is being sent for the first time. Set up default values for the
prefsLength buffer and present any setup dialog.

timelineData Can be passed to getPreviewFrameEx callback along
with tdbTimelineLocation to get a frame from the
timeline beneath the current clip or timeline location. This is
useful for titler plug-ins.

privatedata Private instance data. Allocate a handle using Premiere’s
memory functions and store it here, if not already allocated in
imGetInfo8. Premiere will return the handle with subsequent
selectors.

tdbTimelineLocation Can be passed to getPreviewFrameEx callback along
with timelineData to get a frame from the timeline be-
neath the current clip or timeline location. This is useful for
titler plug-ins.

Importers • 121Adobe Premiere Pro CS5 SDK Guide

sessionPluginID This ID should be used in the File Registration Suite for
registering external files (such as textures, logos, etc) that are
used by a importer instance but do not appear as footage in
the Project Window. Registered files will be taken into ac-
count when trimming or copying a project using the Project
Manager. The sessionPluginID is valid only for the call
that it is passed on.

imageWidth New in CS5. The native resolution of the video.
imageHeight
pixelAspectNum New in CS5. The pixel aspect ratio of the video.
pixelAspectDen
vidScale New in CS5. The frame rate of the video, represented as scale

over sampleSize.vidSampleSize
sampleRate New in CS5. Audio sample rate.

imImageInfoRec

Selector: imGetInfo8 (member of imFileInfoRec8)

Describes the video to be imported.

typedef struct {
	 csSDK_int32	 imageWidth;
	 csSDK_int32	 imageHeight;
	 csSDK_uint16	 pixelAspectV1;
	 csSDK_uint16	 depth;
	 csSDK_int32	 subType;
	 char		 	 fieldType;
	 char		 	 fieldsStacked;
	 char		 	 reserved_1;
	 char		 	 reserved_2;
	 char		 	 alphaType;
	 matteColRec	 matteColor;
	 char		 	 alphaInverted;
	 char		 	 isVectors;
	 char		 	 drawsExternal;
	 char		 	 canForceInternalDraw;
	 char		 	 dontObscure;
	 char		 	 isStill;
	 char		 	 noDuration;
	 char		 	 reserved_3;
	 csSDK_uint32	 pixelAspectNum;
	 csSDK_uint32	 pixelAspectDen;

Importers • 122Adobe Premiere Pro CS5 SDK Guide

	 char		 	 isRollCrawl;
	 char		 	 reservedc[3];
	 csSDK_int32	 importerID;
	 csSDK_int32	 supportsAsyncIO;
	 csSDK_int32	 supportsGetSourceVideo;
	 csSDK_int32	 hasPulldown;
	 csSDK_int32	 pulldownCadence;
	 csSDK_int32	 posterFrame;
	 csSDK_int32	 canTransform;
	 csSDK_int32	 interpretationUncertain;
	 csSDK_int32	 reserved[21];
} imImageInfoRec;

Plug-in Info
importerID Can be used as the ID for calls in the PPix Cache Suite.
supportsAsyncIO Set this to true if the importer supports imCreateAsyncImporter

and ai* selectors.
supportsGet
SourceVideo

Set this to true if the importer supports the imGetSourceVideo
selector.

Bounds Info
imageWidth Frame width in pixels.
imageHeight Frame height in pixels.
pixelAspectNum The pixel aspect ratio numerator and denominator. For synthetic

importers, these are by default the PAR of the project. Only set
this if you need a specific PAR for the geometry of the synthe-
sized footage to be correct.

pixelAspectDen

Time Info
isStill If set, the file contains a single frame, so only one frame will be

cached.
noDuration One of the following:

imNoDurationFalse
imNoDurationNoDefault
imNoDurationStillDefault - use the default duration for

stills, as set by the user in the Preferences
imNoDurationNoDefault - the importer will supply it’s

own duration

This is primarily for synthetic clips, but can be used for import-
ing non-sequential still images.

Importers • 123Adobe Premiere Pro CS5 SDK Guide

isRollCrawl Set to non-zero value to specify this clip is a rolling or crawling
title. This allows a player to optionally use the RollCrawl Suite to
get sections of this title for real-time playback.

hasPulldown New in Premiere Pro 2.0. Set this to true if the clip contains
NTSC film footage with 3:2 pulldown.

pulldownCadence New in Premiere Pro 2.0. Set this to the enumerated value that
describes the pulldown of the clip:

importer_PulldownPhase_NO_PULLDOWN

2:3 cadences
importer_PulldownPhase_WSSWW
importer_PulldownPhase_SSWWW
importer_PulldownPhase_SWWWS
importer_PulldownPhase_WWWSS
importer_PulldownPhase_WWSSW

24pa cadences
importer_PulldownPhase_WWWSW
importer_PulldownPhase_WWSWW
importer_PulldownPhase_WSWWW
importer_PulldownPhase_SWWWW
importer_PulldownPhase_WWWWS

posterFrame New in Premiere Pro CS3. Poster frame number

Format Info
depth Bits per pixel. This currently has no effect and should be left

unchanged.
subType The four character code of the file’s codec; associates files with

MAL plug-ins. For uncompressed files, set to imUncom-
pressed.

fieldType One of the following:

prFieldsNone
prFieldsUpperFirst
prFieldsLowerFirst
prFieldsUnknown

fieldsStacked Fields are present, and not interlaced.

Importers • 124Adobe Premiere Pro CS5 SDK Guide

alphaType Used when depth is 32 or greater. One of the following:

alphaNone - no alpha channel (the default)
alphaStraight - straight alpha channel
alphaBlackMatte - premultiplied with black
alphaWhiteMatte - premultiplied with white
alphaArbitrary - premultiplied with the color specified in

matteColor
alphaOpaque - alpha channel prefilled to opaque

matteColor Newly used in Premiere Pro CS3. Used to specify matte color if
alphaType is set to alphaArbitrary.

alphaInverted If non-zero, alpha is treated as inverted (e.g. black becomes trans-
parent).

canTransform Set to non-zero value to specify this importer handles resolution
independent files and can apply a transform matrix. The matrix
will be passed during the import request in imImportImag-
eRec.transform. This code path is currently not called by
Premiere Pro. After Effects uses this call to import Flash video.

interpretation-
Uncertain

Use an ‘or’ operator to combine any of the following flags:

imPixelAspectRatioUncertain
imFieldTypeUncertain
imAlphaInfoUncertain

Unused
pixelAspectV1 Maintain for backwards compatability. Plug-ins written for the

Premiere 6.x or later API should use pixelAspectNum and
pixelAspectDen.

isVectors Use canTransform instead.
drawsExternal
canForceInter-
nalDraw
dontObscure

imImportAudioRec7

Selector: imImportAudio7

Describes the audio samples to be returned, and contains an allocated buffer for the importer to
fill in. Provide the audio in 32-bit float, uninterleaved audio format.

typedef struct {

Importers • 125Adobe Premiere Pro CS5 SDK Guide

	 PrAudioSample	 position;
	 csSDK_uint32	 size;
	 float		 	 **buffer;
	 void		 	 *privatedata;
	 void		 	 *prefs;
} imImportAudioRec7;

position In point, in audio sample frames. The importer should save the out point of
the request in privatedata, because if position is less than zero, then the
audio request is sequential, which means the importer should return con-
tiguous samples from the last imImportAudio7 call.

size The number of audio sample frames to import.
buffer An array of buffers, one buffer for each channel, with length specified in

size. These buffers are allocated by the host application, for the plug-in to
fill in with audio data.

privatedata Instance data gathered from imGetInfo8 or imGetPrefs8.
prefs Instance data gathered from imGetPrefs8 (setup dialog info).

imImportImageRec

Selector: imImportImage

Describes the frame to be returned.

typedef struct {
	 csSDK_int32	 onscreen;
	 csSDK_int32	 dstWidth;
	 csSDK_int32	 dstHeight;
	 csSDK_int32	 dstOriginX;
	 csSDK_int32	 dstOriginY;
	 csSDK_int32	 srcWidth;
	 csSDK_int32	 srcHeight;
	 csSDK_int32	 srcOriginX;
	 csSDK_int32	 srcOriginY;
	 csSDK_int32	 unused2;
	 csSDK_int32	 unused3;
	 csSDK_int32	 rowbytes;
	 char		 	 *pix;
	 csSDK_int32	 pixsize;
	 PrPixelFormat	 pixformat;
	 csSDK_int32	 flags;
	 prFieldType	 fieldType;
	 csSDK_int32	 scale;

Importers • 126Adobe Premiere Pro CS5 SDK Guide

	 csSDK_int32	 sampleSize;
	 csSDK_int32	 in;
	 csSDK_int32	 out;
	 csSDK_int32	 pos;
	 void		 	 *privatedata;
	 void		 	 *prefs;
	 prRect	 	 alphaBounds;
	 csSDK_int32	 applyTransform;
	 float		 	 transform[3][3];
	 prRect	 	 destClipRect;

} imImportImageRec;

Bounds Info
dstWidth Width of the destination rectangle (in pixels).
dstHeight Height of the destination rectangle (in pixels).
dstOriginX Origin X point (0 indicates the frame is drawn offscreen).
dstOriginY Origin Y point (0 indicates the frame is drawn offscreen).
srcWidth The same number returned as dstWidth.
srcHeight The same number returned as dstHeight.
srcOriginX The same number returned as dstOriginX.
srcOriginY The same number returned as dstOriginY.

Frame Info
rowbytes The number of bytes in a single row of pixels.
pix Pointer to a buffer into which the importer should draw. Allocated

based on information from the imGetInfo8.
pixsize The number of pixels. rowbytes * height.
pixformat The pixel format Premiere requests.
flags imDraftMode - Draw quickly if possible, using a faster and pos-

sibly less accurate algorithm. This may be passed when playing from
the timeline.
imSamplesAreFields - Most importers will ignore as Premiere
already scales in/out/scale to account for fields, but if you need to
know that this has occurred (because maybe you measure something
in ‘frames’), check this flag. Also, may we suggest considering mea-
suring in seconds instead of frames?

fieldType If the importer can swap fields, it should render the frame with the
given field dominance: either
imFieldsUpperFirst or imFieldsLowerFirst.

scale The frame rate of the video, represented as scale over sampleSize.
sampleSize

Importers • 127Adobe Premiere Pro CS5 SDK Guide

in In point, based on the timebase defined by scale over sampleSize..
out Out point, based on the timebase defined by scale over sampleSize..
pos Import position, based on the above timebase. API bug: Synthetic

and custom importers will always receive zero. Thus, adjusting the in
point on the timeline will not offset the in point.

privatedata Instance data gathered during imGetInfo or imGetPrefs.
prefs Instance data gathered during imGetPrefs (setup dialog info).
alphaBounds New in Premiere Pro 1.5. This is the rect outside of which the alpha

is always 0. Simply do not alter this field if the alpha bounds match
the destination bounds. If set, the alpha bounds must be contained by
the destination bounds. This is only currently used when a plug-in
calls ppixGetAlphaBounds, and not currently used by any native
plug-ins.

applyTransform New in After Effects CS3. Not currently provided by Premiere. If
non-zero, the host is requesting that the importer apply the transform
specified in transform and destClipRect before returning the
resulting image in pix.

transform New in After Effects CS3. Not currently provided by Premiere. The
source to destination transform matrix.

destClipRect New in After Effects CS3. Not currently provided by Premiere.
Destination rect inside the bounds of the pix buffer.

imImportInfoRec

Selector: imInit

Describes the importer’s capabilities to Premiere.

typedef struct {
	 csSDK_uint32	 importerType;
	 csSDK_int32	 canOpen;
	 csSDK_int32	 canSave;
	 csSDK_int32	 canDelete;
	 csSDK_int32	 canResize;
	 csSDK_int32	 canDoSubsize;
	 csSDK_int32	 canDoContinuousTime;
	 csSDK_int32	 noFile;
	 csSDK_int32	 addToMenu;
	 csSDK_int32	 hasSetup;
	 csSDK_int32	 dontCache;
	 csSDK_int32	 setupOnDblClk;
	 csSDK_int32	 keepLoaded;
	 csSDK_int32	 priority;

Importers • 128Adobe Premiere Pro CS5 SDK Guide

	 csSDK_int32	 canAsync;
	 csSDK_int32	 canCreate;
	 csSDK_int32	 canCalcSizes;
	 csSDK_int32	 canTrim;
	 csSDK_int32	 avoidAudioConform;
	 prUTF16Char	 *acceleratorFileExt;
	 csSDK_int32	 canCopy;
	 csSDK_int32	 canSupplyMetadataClipName;
	 csSDK_int32	 reserved[20];
} imImportInfoRec;

Screen Info
noFile If set, this is a synthetic importer. The file reference will be zero.
addToMenu If set to imMenuNew, the importer will appear in the File > New

menu.
canDoContinuousTime If set, the importer can render frames at arbitrary times and there

is no set timecode. A color matte generator or a titler would set
this flag.

canCreate If set, Premiere will treat this synthetic importer as if it creates
files on disk to be referenced for frames and audio. See Additional
Details for more information on custom importers.

File handling flags
canOpen If set, the importer handles open and close operations. Set if the

plug-in needs to be called to handle imOpenFile, imQuietFile, and
imCloseFile.

canSave If set, the importer handles File > Save and File > Save As after a
clip has been captured and must handle the imSaveFile selector.

canDelete If set, the importer can delete its own files. The plug-in must
handle the imDeleteFile selector.

canCalcSizes New in Premiere Pro 1.5. If set, the importer can calculate the
disk space used by a clip during imCalcSize. An importer should
support this call if it uses a tree of files represented as one top-
level file to Premiere.

canTrim New in Premiere Pro 1.5. If set, the importer can trim files during
imTrimFile.

canCopy New in Premiere Pro 2.0. Set this to true if the importer supports
copying clips in the Project Manager.

Setup flags
hasSetup If set, the importer has a setup dialog. The dialog should be pre-

sented in response to imGetPrefs

Importers • 129Adobe Premiere Pro CS5 SDK Guide

setupOnDblClk If set, the setup dialog should be opened whenever the user
double clicks on a file imported by the plug-in the timeline or the
project bin.

Memory handling flags
dontCache Unused.
keepLoaded If set, the importer plug-in should never be unloaded. Don’t set

this flag unless it’s absolutely necessary (it usually isn’t).

Other
priority Determines priority levels for importers that handle the same

filetype. Importers with higher numbers will override importers
with lower numbers. Starting in Premiere Pro 1.0, more than 2
priority levels are now recognized. For overriding importers that
ship with Premiere, use a value of 100 or greater. Higher-priority
importers can defer files to lower-priority importers by returning
imBadFile during imOpenFile8 or imGetInfo8.

importType Type identifier for the import module assigned based on the
plug-in’s IMPT resource. Do not modify this field.

avoidAudioConform New in Premiere Pro 2.0. Set this to true if the importer supports
fast audio retrieval and does not need the audio clips it imports to
be conformed.

acceleratorFileExt New in Premiere Pro 2.0. Fill this prUTF16Char array of size
256 with the file extensions of accelerator files that the importer
creates and uses.

canSupplyMetadata-
ClipName

New in Premiere Pro 3.1. Allows file based importer to set clip
name from metadata. Set this in imFileInfoRec8.stream-
Name.

Unused
canResize
canDoSubsize
canAsync

imIndFormatRec

Selector: imGetIndFormat

Describes the format(s) supported by the importer. Synthetic files can only have one format.

typedef struct {
	 csSDK_int32	 filetype;
	 csSDK_int32	 flags;
	 csSDK_int32	 canWriteTimecode;

Importers • 130Adobe Premiere Pro CS5 SDK Guide

	 char		 	 FormatName[256];
	 char		 	 FormatShortName[32];
	 char		 	 PlatformExtension[256];
	 prBool	 	 hasAlternateTypes;
	 csSDK_int32	 alternateTypes[kMaxAlternateTypes];
	 csSDK_int32	 canWriteMetaData;
} imIndFormatRec;

filetype Unique four character code (fourcc) of the file.
flags Legacy mechanism for describing the importer

capabilities. Though the flags will still be honored
for backward compatability, current and future im-
porters should not use these flags. See table below
for details.

canWriteTimecode If set, timecode can be written for this filetype.
FormatName[256] The descriptive importer name.
FormatShortName[256] The short name for the plug-in, appears in the

format menu.
PlatformExtension[256] List of all the file extensions supported by this im-

porter. If there’s more than one, separate with null
characters.

hasAlternateTypes Unused
alternateTypes[kMaxAlternate
Types]

Unused

canWriteMetaData New in 6.0. If set, imSetMetaData is supported for
the filetype

The flags listed below are only for legacy plug-ins and should not be used.

Flag Usage
xfIsMovie Unused
xfCanReplace Unused
xfCanOpen Unused: Use imImportInfoRec.canOpen instead.
xfCanImport Unused: The PiPL resource describes the file as an importer.
xfIsStill Unused: Use imFileInfoRec.imImageInfoRec.isStill instead.
xfIsSound Unused: Use imFileInfoRec.hasAudio instead.
xfCanWriteTimecode If set, the importer can respond to imGetTimecode and

imSetTimecode.

Obsolete: use imIndFormatRec.canWriteTimecode
instead.

Importers • 131Adobe Premiere Pro CS5 SDK Guide

xfCanWriteMetaData Writes (and reads) metadata, specific to the importer’s four char-
acter code filetype.

Obsolete: use imIndFormatRec.canWriteMetaData
instead.

xfCantBatchProcess Unused

imIndPixelFormatRec

Selector: imGetIndPixelFormat

Describes the pixel format(s) supported by the importer.

typedef struct {
	 void		 	 *privatedata;
	 PrPixelFormat	 outPixelFormat;
} imIndPixelFormatRec;

privatedata Instance data from imGetInfo8 or imGetPrefs8.
outPixelFormat One of the pixel formats supported by the importer

imMetaDataRec

Selector: imGetMetaData and imSetMetaData

Describes the metadata specific to a given four character code.

typedef struct {
	 void		 	 *privatedata;
	 void 	 	 *prefs;
	 csSDK_int32	 fourCC;
	 csSDK_uint32	 buffersize;
	 char		 	 *buffer;
} imMetaDataRec;

privatedata Instance data gathered during imGetInfo8 or imGetPrefs8.
prefs Instance data gathered during imGetPrefs8 (setup dialog).
fourcc Fourcc code of the metadata chunk.
buffersize Size of the data in buffer.
buffer The metadata.

Importers • 132Adobe Premiere Pro CS5 SDK Guide

imPeakAudioRec

Selector: imGetPeakAudio

Describes the peak values of the audio at the specified position.

typedef struct {
	 void		 	 *inPrivateData;
	 void 	 	 *inPrefs;
	 PrAudioSample	 inPosition;
	 float		 	 inSampleRate;
	 csSDK_int32	 inNumSampleFrames;
	 float		 	 **outMaxima;
	 float		 	 **outMinima;
} imPeakAudioRec;

inPrivateData Instance data gathered during imGetInfo8 or imGetPrefs8.
inPrefs Instance data gathered during imGetPrefs8 (setup dialog).
inPosition The starting audio sample frame of the peak data.
inSampleRate The sample rate at which to generate the peak data.
inNumSampleFrames The number of sample frames in each buffer.
outMaxima An array of arrays to be filled with the maximum sample values.
outMinima An array of arrays to be filled with the minimum sample values.

imPreferredFrameSizeRec

Selector: imGetPreferredFrameSize

Describes a frame size preferred by the importer.

typedef struct {
	 void		 	 *inPrivateData;
	 void 	 	 *inPrefs;
	 PrPixelFormat	 inPixelFormat;
	 csSDK_int32	 inIndex;
	 csSDK_int32	 outWidth;
	 csSDK_int32	 outHeight;
} imPreferredFrameSizeRec;

inPrivateData Instance data gathered during imGetInfo8 or imGetPrefs8.
inPrefs Instance data gathered during imGetPrefs8 (setup dialog).
inPixelFormat The pixel format for this preferred frame size.

Importers • 133Adobe Premiere Pro CS5 SDK Guide

inIndex The index of this preferred frame size.
outWidth The dimensions of this preferred frame size.
outHeight

imQueryContentStateRec

Selector: imQueryContentState

Fill in the outContentStateID, which should be a GUID calculated based on the content
state of the clip at inSourcePath. If the state hasn’t changed since the last call, the GUID re-
turned should be the same.

typedef struct {
	 const prUTF16Char*	 inSourcePath;
	 prPluginID 	 	 outContentStateID;
} imQueryContentStateRec;

imQueryDestinationPathRec

Selector: imQueryDestinationPath

Fill in the desired outActualDestinationPath, based on the inSourcePath and in-
SuggestedDestinationPath.

typedef struct {
	 void		 	 	 *inPrivateData;
	 void		 	 	 *inPrefs;
	 const prUTF16Char	 *inSourcePath;
	 const prUTF16Char	 *inSuggestedDestinationPath;
	 prUTF16Char	 	 *outActualDestinationPath;
} imQueryDestinationPathRec;

inPrivateData Instance data gathered during imGetInfo8 or imGetPrefs8.
inPrefs Instance data gathered during imGetPrefs8 (setup dialog).
inSourcePath The path of the source file to be trimmed
inSuggestedDesti-
nationPath

The path suggested by Premiere where the destination file should
be created.

outActualDestina-
tionPath

The path where the importer wants the destination file to be cre-
ated.

Importers • 134Adobe Premiere Pro CS5 SDK Guide

imSaveFileRec8

Selector: imSaveFile8

Describes the file to be saved.

typedef struct {
	 void		 	 	 *privatedata;
	 csSDK_int32	 	 *prefs;
	 const prUTF16Char*	 sourcePath;
	 const prUTF16Char*	 destPath;
	 char		 	 	 move;
	 importProgressFunc	 progressCallback;
	 void		 	 	 *progressCallbackID;
} imSaveFileRec8;

privatedata Instance data gathered from imGetInfo8 or imGetPrefs8.
prefs Instance data gathered from imGetPrefs8 (setup dialog info).
sourcePath Full path of the file to be saved.
destPath Full path the file should be saved to.
move If non-zero, this is a move operation and the original file (the

sourcePath) can be deleted after copying is complete.
progressCallback Function to call repeatedly to provide progress and to check for

cancel by user. May be a NULL pointer, so make sure the func-
tion pointer is valid before calling.

progressCallbackID Pass to progressCallback.

imSourceVideoRec

Selector: imGetSourceVideo

Describes the requested frame, to be passed back in outFrame.

typedef struct {
	 void		 	 *inPrivateData;
	 PrTime	 	 inFrameTime;
	 imFrameFormat	 *inFrameFormats;
	 csSDK_int32	 inNumFrameFormats;
	 bool		 	 removePulldown;
	 PPixHand	 	 *outFrame;
	 void		 	 *prefs;
	 csSDK_int32	 prefsSize;
} imSourceVideoRec;

Importers • 135Adobe Premiere Pro CS5 SDK Guide

inPrivateData Instance data gathered during imGetInfo8 or imGetPrefs8.
inFrameTime Time of frame requested.
inFrameFormats An array of requested frame formats, in order of preference. If

NULL, then any format is acceptable.
inNumFrameFormats The number of frame formats in the inFrameFormats.
removePulldown If true, pulldown should be removed if the pixel format supports

it.
outFrame Allocate memory to hold the requested frame, and pass it back

here.
prefs New in Premiere Pro 4.1. prefs data from imGetPrefs8
prefsSize New in Premiere Pro 4.1. Size of prefs data.

imSubTypeDescriptionRec

Selector: imGetSubTypeNames

Added in Premiere Pro CS3. Describes the codec name associated with a given fourcc.

typedef struct {
	 csSDK_int32	 subType;
	 prUTF16Char	 subTypeName[256];
} imSubTypeDescriptionRec;

imTimeInfoRec8

Selector: imGetTimeInfo8 and imSetTimeInfo8

Describes the timecode and timecode rate associated with a clip.

typedef struct {
	 void		 	 *privatedata;
	 void 	 	 *prefs;
	 char 	 	 orgtime[18];
	 csSDK_int32	 orgScale;
	 csSDK_int32	 orgSampleSize;
	 char 	 	 alttime[18];
	 csSDK_int32	 altScale;
	 csSDK_int32	 altSampleSize;
	 char 	 	 orgreel[40];

Importers • 136Adobe Premiere Pro CS5 SDK Guide

	 char 	 	 altreel[40];
	 char 	 	 logcomment[256];
	 csSDK_int32	 dataType;
} imTimeInfoRec;

privatedata Instance data gathered during imGetInfo8 or imGetPrefs8.
prefs Instance data gathered during imGetPrefs8 (setup dialog).
orgtime[18] The original time in hours;minutes;seconds;frames, as cap-

tured from the source reel. The use of semi-colons indicates (to
Premiere) drop-frame timecode, e.g. “00;00;00;00”. Use colons for
non-drop-frame timecode, e.g. “00:00:00:00”.

orgScale Timebase of the timecode in orgtime, represented as scale over
sampleSize.orgSampleSize

alttime[18] An alternative timecode (may differ from the source timecode),
formatted as described above.

altScale Timebase of the timecode in alttime.
altSampleSize
orgreel[40] Original reel name.
altreel[40] Alternate reel name.
logcomment[256] Comment string.
dataType Currently always set to 1, denoting SMPTE timecode. More val-

ues may be added in the future.

imTrimFileRec8

Selector: imTrimFile8

Describes how to trim a clip, based on information returned by the importer during imCheck-
Trim8. Also provides a callback to update the progress bar and check if the user has cancelled.

typedef struct {
	 void		 	 	 *privatedata;
	 void 	 	 	 *prefs;
	 csSDK_int32	 	 trimIn;
	 csSDK_int32	 	 duration;
	 csSDK_int32	 	 keepAudio;
	 csSDK_int32	 	 keepVideo;
	 const prUTF16Char	 *destFilePath;
	 csSDK_int32	 	 scale;
	 csSDK_int32	 	 sampleSize;
	 importProgressFunc	 progressCallback;
	 void		 	 	 *progressCallbackID;

Importers • 137Adobe Premiere Pro CS5 SDK Guide

} imTrimFileRec8;

privatedata Instance data gathered during imGetInfo8 or imGetPrefs8.
prefs Instance data gathered during imGetPrefs8 (setup dialog).
trimIn In point of the trimmed clip, in the timebase specified by scale

and sampleSize.
duration Duration of the trimmed clip. If 0, then the request is to leave the

clip untrimmed, and at the current duration
keepAudio If non-zero, the request is to keep the audio in the trimmed result.
keepVideo If non-zero, the request is to keep the video in the trimmed result.
destFilePath The unicode path and name of the file to create.
scale The frame rate of the video, represented as scale over sampleSize.
sampleSize
progressCallback importProgressFunc callback to call repeatedly to provide

progress and to check for cancel by user. May be a NULL pointer,
so make sure the function pointer is valid before calling.

progressCallbackID Pass to progressCallback.

Suites

For information on how to acquire and manage suites, see the SweetPea Suites section.

Async File Reader Suite

New in Premiere Pro CS5. A cross-platform file handling suite.

Deferred Processing Suite

New in Premiere Pro 2.0. Allows an importer to schedule processing time when importing asyn-
chronously, and to notify the user that the media item is pending additional processing. In the
Project panel, the name of the item will be italicized, and its thumbnail will show as Pending.

Media Accelerator Suite

New in Premiere Pro 2.0. Allows an importer to register and find media accelerators (media
metadata that improves performance, such as conformed audio files, audio waveform peak files,
MPEG index files, etc).

In CS4, the suite is now at version 3. GetMediaAcceleratorDirectoryPath now takes
an inOriginalPath. New GetDocumentIDAndContentState, which takes a path,

Importers • 138Adobe Premiere Pro CS5 SDK Guide

and returns a Document ID and Content State GUID, which are needed for which are needed
for the register and find calls. RegisterPathInDatabase now requires a Document ID
and Content State GUID as input. FindPathInDatabase now requires a Document ID and
Content State GUID as input. It no longer requires the original media path.

Recorders • 139Adobe Premiere Pro CS5 SDK Guide

6Recorders

Recorders interface directly with capture hardware, and capture video and/or audio to any file
format. The recorder is responsible for displaying any video preview in the Capture panel, play-
ing any audio preview to the system sound or hardware output, driving the meters in the Audio
Master Meters panel, providing any settings in a custom dialog, and digitizing the video and
audio to a file (or multiple files) on disk. A recorder can optionally provide source timecode
information to Premiere, and notify Premiere when the video format changes so that the capture
preview area can be resized. The recorder does not communicate anything about the audio to
Premiere. When recording is complete, Premiere imports the file using any available importers
that support that filetype.

A recorder can only capture to a single filetype. To capture to several filetypes, provide several
recorders.

If you’ve never developed a recorder before, you can skip the What’s New sections, and go directly
to Getting Started.

What’s New?

What’s New in Premiere Pro CS5?

Recorders can now display audio meters in the Audio Master Meters panel while previewing and
capturing. Just use the new AudioPeakDataFunc callback passed in recOpenParms with
recmod_Open.

What’s New in Premiere Pro CS4?

Audio settings in the Capture Settings window are no longer supported. Any audio settings
should be in the custom dialog shown by the recorder during recmod_ShowOptions. Recorders
should no longer set the acceptsAudioSettings flag in recInfoRec8.

Recorders • 140Adobe Premiere Pro CS5 SDK Guide

No More Project Presets

Since Premiere Pro CS4 support sequence-specific settings, project presets have been replaced by
sequence presets. The difference from project presets are that sequence presets do not contain
information to initialize capture settings. This means that users will have to initialize capture set-
tings manually the first time they use a recorder with custom settings.

When the Capture Panel is invoked, if the capture settings are invalid or uninitialized, the
Capture Settings dialog is invoked. In the Capture Settings dialog: If the recorder requires private
data, the user cannot continue past the Capture Settings dialog until they have opened the current
recorder’s settings dialog.

What’s New in Premiere Pro CS3?

A new function, GetDeviceTimecodeFunc, can be used to ask the device controller for its
current timecode.

A new return value, rmRequiresCustomPrefsError, should be returned on recmod_
SetActive if there are no valid capture prefs.

What’s New in Premiere Pro 2.0?

New Selectors

recmod_GetSetupInfo8 - New selector for Unicode support, supercedes recmod_GetSetupInfo,
passing recCapSetups8 instead of recCapSetups.

recmod_PrepRecord8 - New selector for Unicode support, supercedes recmod_PrepRecord, passing
recCapParmsRec8 instead of recCapParmsRec.

recmod_Startup8 - New selector for Unicode support, supercedes recmod_Startup, passing re-
cInfoRec8 instead of recInfoRec.

New Structures

recCapParmsRec8 - New structure for Unicode support, supercedes recCapPar-
msRec, using recFileSpec8 instead of recFileSpec for the file path, and
SceneCapturedFunc8 instead of SceneCapturedFunc.

Recorders • 141Adobe Premiere Pro CS5 SDK Guide

recCapSetups8 - New structure for Unicode support, supercedes recCapSetups, using
recSetupItem8 instead of recSetupItem for the file path.

recFileSpec8 - New structure for Unicode support, supercedes recFileSpec, using a
wchar_t[kPrMaxPath] instead of char[256] for the subtype name.

recInfoRec8 - New structure for Unicode support, supercedes recInfoRec, using
wchar_t[255] instead of char[255] for recmodName.

New Callbacks

SceneCapturedFunc8 - New callback for Unicode support, supercedes
SceneCapturedFunc, using wchar_t* instead of char* for inFileCaptured.

Getting Started

Selector Calling Sequence

The best ways to get familiar with the recorder API is to observe the messages sent between Pre-
miere and the recorder plug-in.

recmod_Startup8 is sent once when Premiere launches. When Project Settings > Capture Settings
is opened, recmod_Open is sent to create a new recorder instance and open the capture driver. rec­
mod_GetSetupInfo8 is then sent, so the recorder can specify which settings buttons (if any) should
be enabled in the Capture Settings window when the recorder is selected.

If one or more settings buttons are enabled and then clicked by the user, recmod_ShowOptions is
sent so the recorder can display a dialog (and save any user choices). When the Capture Settings
window is closed, recmod_Close is sent to end the capture instance.

Whenever the Capture panel is open, the recorder will receive recmod_SetActive calls, with a
parameter telling it to become active or inactive (based on user activity). recmod_SetDisp provides
the plug-in the dimensions of the preview area in the Capture panel. recmod_Idle is repeatedly
sent until the Record button is pushed, to give the recorder time to update the preview area and
play audio coming from the capture hardware.

When the user clicks Record, or starts an In/Out or Batch capture, recmod_PrepRecord8 is sent.
The recorder prepares to capture, and if a start timecode is provided, tells the device controller to
get the device into position using preRollFunc. The preRollFunc will block until the de-
vice is exactly in the right position, and when it returns, the recorder should immediately return

Recorders • 142Adobe Premiere Pro CS5 SDK Guide

back to Premiere, open which recmod_StartRecord is then sent to the recorder, which should im-
mediately starts capturing.

When the recorder starts capturing and returns from recmod_StartRecord, Premiere will repeat-
edly call recmod_ServiceRecord to give the recorder processor time. During recording, report
status to Premiere with StatusDispFunc.

The capture may be stopped in several ways: The user could click the Stop button, the capture may
reach the predetermined out point of an In/Out or Batch capture, or the recorder might return
an error from recmod_ServiceRecord. In all cases, recmod_StopRecord will be sent to stop the
capture, possibly followed by recmod_CloseRecord if there no more items in the batch. Finally,
recmod_Close is sent when the Capture panel is closed to destroy the recorder instance.

recmod_Shutdown is sent when Premiere terminates.

Try the Sample Recorder Plug-in

Now that you’ve read the overview of the selector calling sequence above, build the sample re-
corder plug-in included with this SDK, and give it a whirl. To properly simulate a capture, you’ll
also need to create an .sdk media file and place it in the proper location.
1) Build the recorder, importer, and exporter into the plug-ins directory
2) Launch Premiere Pro and use the exporter to transcode any media file into the .sdk file format.
3) Place the newly created media file at “C:\premiere.sdk” on Windows, or “premiere.sdk” on the
Desktop on Mac OS.
Now when you “capture” a file, it will use this file, and automatically import it using the importer.

Metadata

Pixel aspect ratio and timecode are provided by the recorder by filling out recCapturedFil-
eInfo. Starting in CS4, after a clip has been captured, if Premiere has an XMP handler that sup-
ports the clip’s filetype, the XMP handler will open the captured file and inject the information.
If no such XMP handler is provided, the recorder is responsible for embedding any pixel aspect
ratio information to the file, but Premiere will send imSetTimeInfo8 to the importer to stamp the
file with timecode.

Save Captured File Dialog

After a single clip is captured, the Save Captured File dialog allows the user to rename the file-
name of the clip just captured. The recorder is not involved in this process. Instead, the importer
is called to open the newly captured clip, and it is sent imSaveFile8 with the move flag set to true
to move the file. This is handled by the importer, since imSaveFile8 is usually already implement-
ed to support the Project Manager.

Recorders • 143Adobe Premiere Pro CS5 SDK Guide

Switching Preview Area Between Different Frame Sizes

FormatChangedFunc enables recorders to tell Premiere when the pixel aspect ratio has
changed so the Capture Panel preview area can be resized. It can be called during preview, and
even during capture.

Scene Detection

A recorder can optionally implement one or both of two features based on scene detection: Scene
Capture and Scene Searching. What determines a scene break is up to the discretion of the re-
corder. The built-in DV recorder determines scene breaks by time/date breaks in the DV stream.
But a recorder could analyze the video for breaks, or use any method it chooses to implement.

Scene Capture

Scene Capture enables a recorder to capture a continuous stream to multiple files divided up by
scenes.

To support scene capture, the recorder must set recInfoRec8.canCaptureScenes =
kPrTrue during recmod_Startup8. When the user captures with Scene Detect on, recCap-
ParmsRec8.captureScenes will be non-zero during recmod_PrepRecord8. The recorder
should begin capture, and when it detects the end of a scene, call SceneCapturedFunc8, to
notify Premiere that a scene has been captured. Premiere passes back the recFileSpec8 to
give the recorder the filepath to which the next scene should be captured. Premiere also reserves
memory for and passes back recCapturedFileInfo for the next capture.

Scene Searching

Scene Searching enables a recorder to fast forward or rewind to different scenes. The user can hit
the Next Scene or Previous Scene buttons several times to seek several scenes away. Of course,
this feature is only possible with the help of a device controller as well.

To support scene capture, the recorder must set recInfoRec8.canSearchScenes =
kPrTrue during recmod_Startup8. When the user chooses Next Scene or Previous Scene, the
recorder is sent recmod_StartSceneSearch. The scene searching algorithm happens in two passes.
The first pass is a play fast forward or backward in the initial direction. In this mode, when
the recorder passes the scene boundary, it should call ReportSceneFunc to tell Premiere
the approximate range where the scene boundary is and return rmEndOfScene. Premiere
will call recmod_StopSceneSearch, followed by recmod_StartSceneSearch, to start a new slow
scan scene search in the opposite direction, passing back the approximate range reported by
ReportSceneFunc. When the recorder reaches the scene boundary again, it should once
again call ReportSceneFunc and return rmEndOfScene.

Recorders • 144Adobe Premiere Pro CS5 SDK Guide

Entry Point

Below is the entry point function prototype for all recorder plug-ins. Premiere calls this entry
point function to drive the recorder based on user input.

int RecEntry (
	 csSDK_int32	 selector,
	 rmStdParms	 *stdParms,
	 void		 	 *param1,
	 void		 	 *param2)

The selector is the action Premiere wants the recorder to perform. It tells the recorder the rea-
son for the call. stdParms provides the recorder with callback functions to access additional
information from Premiere or to have Premiere perform tasks. Parameters 1 and 2 contain state
information and vary with the selector; they may contain a specific value or a pointer to a struc-
ture. Return rmNoErr if successful, or an appropriate return code.

Standard Parameters

This structure is sent from Premiere to the plug-in with every selector.

typedef struct {
	 int	 	 	 	 rmInterfaceVer;
	 recCallbackFuncs	 *funcs;
	 piSuitesPtr	 	 piSuites;
} rmStdParms;

Member Description
rmInterfaceVer Recorder API version

Premiere Pro CS5 - RECMOD_VERSION_10
Premiere Pro CS4 - RECMOD_VERSION_9
Premiere Elements 3 - RECMOD_VERSION_8
Premiere Pro CS3 - RECMOD_VERSION_7

funcs Pointers to callbacks for recorders
piSuites Pointer to universal callback suites

Recorder-Specific Callbacks

Recorders have access to ClassData Functions and Memory Functions through the recCall-
backFuncs, which is a member of rmStdParms. StatusDispFunc, PrerollFunc,

Recorders • 145Adobe Premiere Pro CS5 SDK Guide

ReportSceneFunc, and SceneCapturedFunc8 are accessible through recCapParm-
sRec8, which is sent with recmod_PrepRecord8.

typedef struct {
	 ClassDataFuncsPtr	 classFuncs;
	 PlugMemoryFuncsPtr	 memoryFuncs;
} recCallbackFuncs;

int (*StatusDispFunc){
	 void *callbackID,
	 char *stattext,
	 int	 framenum};

csSDK_int32 (*PrerollFunc)(
	 void *callbackID);

void (*ReportSceneFunc)(
	 void		 	 *callbackID,
	 csSDK_uint32	 inSceneEdgeTimecode,
	 csSDK_uint32	 inEarliestSceneEdgeTimecode,
	 csSDK_uint32	 inGreatestSceneEdgeTimecode);

void (*SceneCapturedFunc8)(
	 void		 	 	 *callbackID,
	 prUTF16Char	 	 *inFileCaptured,
	 recFileSpec8	 	 *outNextSceneFilename,
	 recCapturedFileInfo	**outFileInfo);

void (*SceneCapturedFunc)(
	 void		 	 	 *callbackID,
	 char		 	 	 *inFileCaptured,
	 recFileSpec	 	 *outNextSceneFilename,
	 recCapturedFileInfo	**outFileInfo);

void (*FormatChangedFunc)(
	 void		 	 *callbackID,
	 unsigned int	 inPixelAspectRatioNum,
	 unsigned int	 inPixelAspectRatioDen,
	 unsigned int	 inMaxFrameWidth,
	 unsigned int	 inMaxFrameHeight,
	 TDB_TimeRecord	inFramerate,
	 int	 	 	 isDropFrame);

void (*GetDeviceTimecodeFunc)(
	 void		 	 *callbackID,

Recorders • 146Adobe Premiere Pro CS5 SDK Guide

	 csSDK_uint32	 *outTimecode,
	 TDB_TimeRecord	*outFrameRate,
	 int	 	 	 *outIsDropFrame);

void (*AudioPeakDataFunc)(
	 void 	 	 	 *callbackID,
	 recAudioPeakData	 *inAudioPeakData)

Function Description
classFuncs See ClassData functions
memoryFuncs Legacy memory-related callbacks. These are the same

ones passed in through piSuites.
StatusDispFunc Available in recCapParmsRec8 during recmod_

PrepRecord8. Callback function pointer for use during
capture to call into Premiere and update status informa-
tion in the Capture Window.

callbackID is the recording session instance passed in
recCapParmsRec.

stattext is text Premiere will display at the top of the
Capture Window.

framenum is the frame number being captured, repre-
sented in the absolute number of frames. For example,
00;00;04;03 in NTSC drop-frame timecode would be
represented as 123.

PrerollFunc Available in recCapParmsRec8 during recmod_
PrepRecord8. Callback function pointer to initiate device
control pre-roll. Callback returns when the deck is play-
ing at the proper frame.

callbackID is the recording session instance passed in
recCapParmsRec.

Host returns a prDevicemodError to inform why the
preroll failed.

Recorders • 147Adobe Premiere Pro CS5 SDK Guide

ReportSceneFunc Although this callback is obsolete for Scene Capture (su-
perceded by SceneCapturedFunc8), it is still used for
Scene Search to return the scene detected by the recorder.
Available in recSceneDetectionParmsRec during
recmod_StartSceneSearch.

The inSceneEdgeTimecode parameter marks the
timecode of the scene edge, if it can be determined exactly.
If it cannot, it marks the approximated timecode of the
edge, and the inEarliestSceneEdgeTimecode
and inGreatestSceneEdgeTimecode parameters
mark the earliest and latest possible timecodes that the
scene would fall in between. If the scene break can be
determined exactly, all three return parameters should be
set to the same value.

SceneCapturedFunc8 New in Premiere Pro 2.0. Available in recCapParm-
sRec8 during recmod_ PrepRecord8. Callback to notify
Premiere that a scene has been captured. Premiere returns
the recFileSpec8 to designate a filename for the next
scene to capture and reserves memory for and returns
recCapturedFileInfo for the next capture.

SceneCapturedFunc Obsolete. Use SceneCapturedFunc8 above.
FormatChangedFunc Available in recOpenParms during recmod_Open.

Use this when the pixel aspect ratio has changed so the
Capture Panel can be resized. It can be called during pre-
view, and even during capture.

GetDeviceTimecodeFunc New in Premiere Pro CS3. Used to ask the device control-
ler for its current timecode.

Recorders • 148Adobe Premiere Pro CS5 SDK Guide

AudioPeakDataFunc New in Premiere Pro CS5. Available in recOpenParms
during recmod_Open. Use this to display audio meters in
the Audio Master Meters panel while previewing and cap-
turing. The values will be updated as long as the capture
panel is active or front.

This call can be made from any thread, at any time.
Metering can be provided for up to 16 channels, in any
configuration desired: 1, 2, 4, 6/5.1, 8, or 16.

The recorder provides the peak amplitude in longAm-
plitude, and the current audio amplitude in short-
Amplitude. The recorder can decide whether to pick a
single value in longAmplitude, or do an average over
the sound data. In Premiere Pro’s built-in recorders, the
long term peak data is currently buffered for 3 seconds at
a time.

If no new data is sent, it stays on the last value. So set the
amplitude values to zero when finished.

Selector Table

This table summarizes the various selector commands a recorder can receive.

Selector param1 param2
recmod_Startup8 recInfoRec8 * unused
recmod_Shutdown unused unused
recmod_GetSetupInfo8 PrivateData recCapSetups8

recmod_ShowOptions PrivateData recSetupParms

recmod_Open PrivateData recOpenParms

recmod_Close PrivateData unused
recmod_SetActive PrivateData (csSDK_int32) boolean

toggle
recmod_SetDisp PrivateData recDisplayPos

recmod_Idle PrivateData recGetTimecodeRec

recmod_PrepRecord8 PrivateData recCapParmsRec8

recmod_StartRecord PrivateData recCapturedFileInfo

recmod_ServiceRecord PrivateData unused
recmod_StopRecord PrivateData unused
recmod_CloseRecord PrivateData unused

Recorders • 149Adobe Premiere Pro CS5 SDK Guide

recmod_StartSceneSearch recSceneDetection
ParmsRec *

recmod_StopSceneSearch unused
recmod_ServiceSceneSearch unused
Obsolete - recmod_Startup, recmod_GetSetupInfo, recmod_PrepRecord
Currently unused in CS4 - recmod_QueryInfo, recmod_AudioIndFormat, recmod_
GetAudioIndFormat7, recmod_StepRecord, recmod_StillRecord

Selector Descriptions

This section provides a brief overview of each selector and highlights implementation issues.

recmod_Startup8

param1 - recInfoRec8
param2 - unused

Sent once when Premiere launches so the plug-in can initialize and return its attributes to
Premiere. The module should connect to any required capture hardware or drivers and fill in the
recInfoRec8.

recmod_Shutdown

param1 - unused
param2 - unused

Sent when Premiere terminates. Deallocate any memory and release the capture hardware or
driver.

recmod_GetSetupInfo8

param1 - PrivateData
param2 - recCapSetups8

Sent when the Capture Settings dialog is first displayed to obtain custom settings information.
recCapSetups8 provides text label fields button titles and enabling.

recmod_ShowOptions

param1 - PrivateData

Recorders • 150Adobe Premiere Pro CS5 SDK Guide

param2 - recSetupParms

Sent when the user presses a settings button (one of four available) in the Capture Settings dialog.
Request settings buttons during recmod_GetSetupInfo8.

recSetupParms indicates which button was pushed. If the char * passed in recSetup-
Parms isn’t NULL, it points to memory containing private data; otherwise, no previous settings
are available. All the setup dialogs share the same memory; only one record is preserved. If there
are several different setup records, they should all fit within one flattened memory allocation.

recmod_Open

param1 - PrivateData
param2 - recOpenParms

Sent when Premiere’s New Project Settings > Capture Settings dialog or the Movie Capture win-
dow is displayed. Initialize hardware, create a private data structure for instance data, and pass a
pointer to it back in param1. It will be sent back to you with subsequent selectors. recOpen-
Parms contains information about the capture window and callbackID; store this information in
private instance data.

recmod_Close

param1 - PrivateData
param2 - unused

Capture is complete and the capture window is closed. Disconnect from the hardware and deal-
locate the private instance data.

recmod_SetActive

param1 - PrivateData
param2 - boolean toggle

param2 indicates whether the plug-in should activate. When a capture window is opened or
receives the focus, it will be activated.

recmod_SetDisp

param1 - PrivateData
param2 - recDisplayPos

Recorders • 151Adobe Premiere Pro CS5 SDK Guide

Sent when the capture window is resized or moved. Update a proxy or overlay in the capture
window during capture. recDisplayPos specifies the new bounds. If they are unaccept-
able, modify them; the selector will be sent again with the new position. Set mustresize in
recDisplayPos to resize the preview frame with the specified bounds. The plug-in is not
allowed to resize the capture window, just the preview frame. If mustresize is set but the plug-
in can’t resize the frame, display something (black, grey, a graphic of your choice) for a preview.
mustresize will be set when the Capture Settings dialog is being displayed.

recmod_Idle

param1 - PrivateData
param2 - recGetTimecodeRec *

Sent to give the plug-in processing time.

recmod_PrepRecord8

param1 - PrivateData
param2 - recCapParmsRec8

Set up for recording, based on the data in recInfoRec8. Use the prerollFunc callback to
tell the device controller to get the device ready. Recording commences with the next selector,
recmod_StartRecord.

If pressing the record button results in a recorder error before the recmod_PrepRecord8 selector is
even sent, make sure that the fileType four character code set in recInfoRec8 is supported
by an installed importer.

recmod_StartRecord

param1 - PrivateData
param2 - recCapturedFileInfo *

Sent after recmod_PrepRecord. Start capturing immediately. The pointer to recCapturedFil-
eInfo is valid until the recording finishes.

recmod_ServiceRecord

param1 - PrivateData
param2 - unused

Sent repeatedly to give the plug-in processor time while recording.

Recorders • 152Adobe Premiere Pro CS5 SDK Guide

recmod_StopRecord

param1 - PrivateData
param2 - unused

Stop recording and release record buffers.

recmod_CloseRecord

param1 - PrivateData
param2 - unused

Sent after recmod_StopRecord. During batch capturing, recmod_StopRecord will be called after
every clip, but recmod_CloseRecord will not be called until after the last clip has been captured, to
finalize the record process.

Return Codes

Return Code Reason
rmNoErr Operation has completed without error.
rmUnsupported Unsupported command selector.
rmAudioRecordError Audio recording error.
rmVideoRecordError Video recording error.
rmVideoDataError Data rate too high to record (return this if too many frames get

dropped).
rmDriverError Driver error.
rmMemoryError Memory error.
rmDiskFullError Disk full.
rmDriverNotFound Can’t connect to the capture driver.
rmStatusCapture-
Done

Return from recmod_StartRecord when capture is complete.

rmCaptureLimit-
Reached

Return from recmod_ServiceRecord when the (self-imposed)
record limit time is reached.

rmBadFormatIndex Invalid format index - stops recmod_GetAudioIndFormat queries
from Premiere.

rmFormatAccept The output format is valid.
rmFormatDecline Cannot capture to this format.
rmErrorPreroll
Abort

Preroll function aborted.

rmUserAbort Return from recmod_StartRecord if user aborts.

Recorders • 153Adobe Premiere Pro CS5 SDK Guide

rmErrFileSize
LimitErr

Return from recmod_ServiceRecord if file size limit was reached.

rmFramesDropped Return value to use for dropped frames.
rmDeviceRemoved The device was removed during capture. Premiere assumes all

material captured before this value as valid.
rmDeviceNotFound The capture device was not found.
rmCapturedNoFrames No frames were captured.
rmEndOfScene If detecting scenes and recorder senses end of scene
rmNoFrameTimeout Haven’t seen any frames in a while, maybe the tape stopped or hit

blank part of tape
rmCantDetect
ScenesError

If the recorder can’t find the info it needs to properly judge scene
bounds

rmCantFindRecord
InPoint

If capturing in to out and the recorder can’t find the in point
timecode

rmLastErrorSet The recorder set the last error string using the SweetPea Error
Suite

rmLastWarningSet The recorder set the last warning string using the SweetPea Error
Suite

rmLastInfoSet The recorder set the last info string using the SweetPea Error
Suite

rmIllegalAudio
FormatChange

Return when two different audio formats are recorded on a tape
and the user tries to capture frames from both in a single capture.

rmRequiresCustom-
PrefsError

New for Premiere Pro CS3. Return when no valid capture prefs
are found during recmod_SetActive.

rmErrBadFile Problem with output file.
rmIsCacheable Return from recmod_Startup8 if the plug-in is cacheable, rmNo-

Error if not cacheable

Structures

Structure Sent with selector
recInfoRec8 recmod_Startup8
recCapSetups8 recmod_GetSetupInfo8
recDisplayPos recmod_SetDisp, recmod_Open (member of re-

cOpenParms)
recOpenParms recmod_Open
recCapturedFileInfo recmod_StartRecord
recFileSpec8 recmod_PrepRecord8 (member of recCapParm-

sRec8)

Recorders • 154Adobe Premiere Pro CS5 SDK Guide

recSetupParms recmod_ShowOptions
recCapParmsRec8 recmod_PrepRecord8
recGetTimecodeRec recmod_Idle
recSceneDetectionParmsRec recmod_StartSceneSearch
Obsolete - recInfoRec, recCa-
pSetups, recFileSpec, recCa-
pParmsRec

Structure Descriptions

recInfoRec8

Selector: recmod_Startup8

Describes the recorder’s capabilities to Premiere.

typedef struct {
	 csSDK_int32	 recmodID;
	 csSDK_int32	 fileType;
	 csSDK_int32	 classID;
	 int	 	 	 canVideoCap;
	 int	 	 	 canAudioCap;
	 int	 	 	 canStepCap;
	 int	 	 	 canStillCap;
	 int	 	 	 canRecordLimit;
	 int	 	 	 acceptsTimebase;
	 int	 	 	 acceptsBounds;
	 int	 	 	 multipleFiles;
	 int	 	 	 canSeparateVidAud;
	 int	 	 	 canPreview;
	 int	 	 	 wantsEvents;
	 int	 	 	 wantsMenuInactivate;
	 int	 	 	 acceptsAudioSettings;
	 int	 	 	 canCountFrames;
	 int	 	 	 canAbortDropped;
	 int	 	 	 requestedAPIVersion;
	 int	 	 	 canGetTimecode;
	 int	 	 	 reserved[16];
	 csSDK_int32	 prefTimescale;
	 csSDK_int32	 prefSamplesize;
	 csSDK_int32	 minWidth;

Recorders • 155Adobe Premiere Pro CS5 SDK Guide

	 csSDK_int32	 minHeight;
	 csSDK_int32	 maxWidth;
	 csSDK_int32	 maxHeight;
	 int	 	 	 prefAspect;
	 csSDK_int32	 prefPreviewWidth;
	 csSDK_int32	 prefPreviewHeight;
	 prUTF16Char	 recmodName[256];
	 csSDK_int32	 audioOnlyFileType;
	 int	 	 	 canSearchScenes;
	 int	 	 	 canCaptureScenes;
	 prPluginID	 outRecorderID;
} recInfoRec, *recInfoPtr;

recmodID Premiere’s internal identifier for the plug-in. Never
change this value.

fileType Four character code for the captured file (for ex-
ample ‘AVIV’ for Video for Windows .AVI files,
and ‘MOOV’ for QuickTime .MOV files). Invent
a unique code for proprietary formats as necessary,
but make sure an importer is installed that sup-
ports the fourcc. If no such importer is installed,
pressing the record button will result in a recorder
error before the recmod_PrepRecord selector is
even sent.

classID Class identifier, used to differentiate between plug-
ins that support the same fileType. ClassID is the
identifying characteristic of plug-ins which form a
media abstraction layer.

canVideoCap If set, the recorder can capture video.
canAudioCap If set, the recorder can capture audio
canStepCap Unused
canStillCap Unused
canRecordLimit If set, the recorder can accepts recording time

limits. The recorder will receive the user-speci-
fied record limit in recCapParmsRec.re-
cordlimit. The plug-in must enforce the time
limit during capture.

acceptsTimebase If set, the recorder can capture to an arbitrary
timebase.

acceptsBounds If set, the recorder can capture to an arbitrary
frame size.

multipleFiles Unused
canSeparateVidAud Unused

Recorders • 156Adobe Premiere Pro CS5 SDK Guide

canPreview Unused
wantsEvents Unused
wantsMenuInactivate Unused
acceptsAudioSettings Unused, do not set
canCountFrames If set, the recorder is expected to count frames and

quit when the count is reached.
canAbortDropped If set, the recorder can abort when frames are

dropped
requestedAPIVersion Unused
canGetTimecode Can provide timecode from the capture stream

(like DV).
reserved[16] Do not use.
activeDuringSetup If set, that the recorder shouldn’t be deactivated

before a recmod_GetSetupInfo8 selector is issued
prefTimescale Frames per second, in scale over sampleSize.
prefSamplesize
minWidth Define the minimum and maximum frame sizes

the plug-in can capture. If the plug-in can only
capture to a single fixed size, then set them to the
same value.

minHeight
minWidth
minHeight
prefAspect Preferred frame aspect ratio for the captured

frames. Shift the width into the high order word
and the height into the low order word. For exam-
ple, store 640x480 (a 4:3 aspect ratio) as:

prefAspect = (640 << 16) + 480;
prefPreviewWidth Unused
prefPreviewHeight Unused
recmodName[256] The recorder’s name (appears in the Capture

Format pulldown menu).
audioOnlyFileType File type for audio-only captures. If 0, the video

file type will be used.
canSearchScenes If true, the recorder can detect a scene boundary

for searching purposes
canCaptureScenes If true, the recorder can identify when it has

reached the end of a scene
outRecorderID New in Premiere Pro 2.0. A GUID identifier is

now required for all recorders. Editing Mode
XMLs use these GUIDs to refer to recorders.

Recorders • 157Adobe Premiere Pro CS5 SDK Guide

recCapSetups8

Selector: recmod_GetSetupInfo8

Enumerate custom setup buttons for the Capture Settings dialog, and pull-down menu items in
the Capture panel.

typedef struct {
	 int	 	 	 customSetups;
	 csSDK_int32	 enableflags;
	 recSetupItem8	 setups[4];
} recCapSetups8;

customSetups Number of setup buttons (up to 4).
enableflags Bitstring where bits 0 to 3 correspond with set-

ups 1 to 4. Set the appropriate bits to indicate to
Premiere which setups should be enabled

setups[4] Four recSetupItem8s used to label the setup
buttons. A recSetupItem8 is just a prUT-
F16Char[256].

recDisplayPos

Selector: recmod_SetDisp, recmod_Open (member of recOpenParms)

Describes the display position for preview frames.

typedef struct {
	 prWnd	 wind;
	 int	 	 originTop;
	 int	 	 originLeft;
	 int	 	 dispWidth;
	 int	 	 dispHeight;
	 int	 	 mustresize;
} recDisplayPos;

wind The window.
originTop originTop and originLeft identify the

offset in pixels from the top left of the window in
which to display.

originLeft

Recorders • 158Adobe Premiere Pro CS5 SDK Guide

dispWidth Display area dimensions.
dispHeight
mustresize If set, the video must be resized to fit within these

bounds (see recmod_SetDisp).

recOpenParms

Selector: recmod_Open

Provides capture session information; save this information in private instance data.

typedef struct {
	 recDisplayPos	 	 disp;
	 void		 	 	 *callbackID;
	 char		 	 	 *setup;
	 FormatChangedFunc	 formatFunc;
	 AudioPeakDataFunc	 audioPeakDataFunc;
} recOpenParms;

disp Preview display area
callbackID Premiere’s instance identifier for this recording

session. Save this value for use with callback rou-
tines.

setup If not null, points to settings saved from a previous
recording session.

formatFunc Use to inform Premiere of a new aspect ratio so
the Capture panel can be updated

audioPeakDataFunc New in CS5. Callback function to send audio
metering data to be displayed by Premiere in the
Audio Master Meters panel.

recCapturedFileInfo

Selector: recmod_StartRecord

Provide pixel aspect ratio and timecode of the captured file.

typedef struct {
	 unsigned int	 pixelAspectRatioNum;
	 unsigned int	 pixelAspectRatioDen;
	 char		 	 timeCode[31];
	 TDB_TimeRecord	tdb;

Recorders • 159Adobe Premiere Pro CS5 SDK Guide

	 char		 	 date[31];
} recCapturedFileInfo;

pixelAspectRatioNum Numerator of pixel aspect ratio.
pixelAspectRatioDen Denominator of pixel aspect ratio.
timeCode Text representation of timecode.
tdb Timebase of the captured file.
date New in Premiere Elements 7. The date of the the

captured file, formatted in one of the following
ways: “d/m/y” or “d/m/y h:m” or “d/m/y h:m:s”

recFileSpec8

Selector: recmod_PrepRecord8 (member of recCapParmsRec8)

Used to describe the capture destination file.

typedef struct {
	 short	 	 volID;
	 csSDK_int32	 parID;
	 prUTF16Char	 name[kPrMaxPath];
} recFileSpec8;

volID Unused
parID Unused
name Full file path.

recSetupParms

Selector: recmod_ShowOptions

Indicates which settings dialog should be displayed, and provides any previously saved settings.

typedef struct {
	 uintptr_t	parentwind;
	 int	 	 setupnum;
	 char		 *setup;
} recSetupParms;

parentwind Parent window owner.
setupnum Which setup button (1-4) was selected by the user.

Recorders • 160Adobe Premiere Pro CS5 SDK Guide

setup If not null, points to saved settings from previous
sessions.

recCapParmsRec8

Selector: recmod_PrepRecord8

Specifies capture settings.

typedef struct {
	 void		 	 	 	 *callbackID;
	 int	 	 	 	 	 stepcapture;
	 int	 	 	 	 	 capVideo;
	 int	 	 	 	 	 capAudio;
	 int	 	 	 	 	 width;
	 int	 	 	 	 	 height;
	 csSDK_int32	 	 	 timescale;
	 csSDK_int32	 	 	 samplesize;
	 csSDK_int32	 	 	 audSubtype;
	 csSDK_uint32	 	 	 audrate;
	 int	 	 	 	 	 audsamplesize;
	 int	 	 	 	 	 stereo;
	 char		 	 	 	 *setup
	 int	 	 	 	 	 abortondrops;
	 int	 	 	 	 	 recordlimit;
	 recFileSpec8	 	 	 thefile;
	 StatusDispFunc		 	 statFunc;
	 PrerollFunc	 	 	 prerollFunc;
	 csSDK_int32	 	 	 frameCount;
	 char		 	 	 	 reportDrops;
	 short	 	 	 	 currate;
	 short	 	 	 	 timeFormat;
	 csSDK_int32	 	 	 timeCode;
	 csSDK_int32	 	 	 inHandleAmount;
	 ReportSceneFunc	 	 reportSceneFunc;
	 int	 	 	 	 	 captureScenes;
	 SceneCapturedFunc8	 	 sceneCapturedFunc;
	 bool		 	 	 	 recordImmediate;
	 GetDeviceTimecodeFunc	 getDeviceTimecodeFunc;
} recCapParmsRec8;

Recorders • 161Adobe Premiere Pro CS5 SDK Guide

callbackID Premiere’s instance identifier for this recording
session. Save this value for use with callback rou-
tines.

stepcapture Unused
capVideo If set, capture video.
capAudio If set, capture audio.
width Dimensions of the video frames to capture. These

are only sent if acceptsBounds was set in the
recInfoRec. If the plug-in doesn’t accept bounds,
capture to the preferred dimensions we previously
set in recInfoRec8.

height

timescale Recording timebase. Only sent if accept-
sTimebase was set in the recInfoRec8.
Otherwise, capture using the timebase we previ-
ously set in recInfoRec8.

samplesize

audSubtype
audrate
audsamplesize
stereo

Unused

setup Pointer to private instance data allocated in re-
sponse to recmod_GetSetupInfo8.

abortondrops If set, stop capture if frames are dropped.
recordlimit Recording time limit, in seconds, only valid if

canRecordLimit was set in recInfoRec8.
Value passed in by Premiere. The plug-in must
enforce the limit during capture.

thefile Structure of type recFileSpec8 describing the
capture destination file, only valid during recmod_
PrepRecord8.

statFunc Callback function pointer for use during capture
to call into Premiere and update status informa-
tion in the Capture Panel. See StatusDispFunc for
more information.

preroll Callback function pointer to initiate device con-
trol pre-roll. This callback is only initialized if it
will be needed, meaning only it if doing an in/out
capture or batch capture. Otherwise, this function
pointer to be set to NULL. See PrerollFunc for
more information.

frameCount If canCountFrames was set in recIn-
foRec8, the number of frames to capture. No
device polling will be done.

Recorders • 162Adobe Premiere Pro CS5 SDK Guide

reportDrops If non-zero, report dropped frames when they oc-
cur (by returning rmErrVidDataErr).

currate Frames per second supported by the capture de-
vice (24, 25, 30).

timeFormat 0 = non-drop frame, 1 = drop frame timecode.
timeCode Timecode for in-point of capture (-1 means ig-

nore).
inHandleAmount Number of frames of handle (buffered lead-in),

previous to the user-specified capture in point, the
record module requires.

reportSceneFunc Obsolete. Use sceneCapturedFunc8 instead.
captureScenes True if user has initiated scene capture
sceneCapturedFunc Use this callback during scene capture to report

the end of a scene
recordImmediate If non-zero, begin recording immediately after

device control returns from seek for pre-roll; don’t
wait for a timecode.

getDeviceTimecodeFunc New for Premiere Pro CS3. Use this callback to ask
the device controller for its current timecode.

recGetTimecodeRec

Selector: recmod_Idle

Allows the recorder to supply timecode information.

typedef struct {
	 csSDK_int32	 status;
	 short	 	 currate;
	 short	 	 timeFormat;
	 csSDK_int32	 timeCode;
	 short	 	 autoDetectDropness;
} recGetTimecodeRec;

status 0 indicates valid timecode, 1 indicates it’s un-
known or stale.

currate 30 for NTSC timecode, 25 for PAL.
timeFormat 0 for non-drop, 1 for drop-frame timecode.

Recorders • 163Adobe Premiere Pro CS5 SDK Guide

timeCode Timecode as an integer, represented in the abso-
lute number of frames. For example, 00;00;04;03
in NTSC drop-frame timecode would be repre-
sented as 123.

autoDetectDropness Non-zero if device controller has set
DeviceRec.autoDetectDropness to true.
This means that the device controller is relying on
the recorder to determining whether the timecode
is drop-frame or non-drop-frame. The recorder
must call FormatChangedFunc if there is any
change.

recSceneDetectionParmsRec

Selectors: recmod_StartSceneSearch

Used for scene searching. searchingForward is provided as a hint as the state of the device, and
the reportSceneFunc should be used to notify Premiere of a scene boundary.

typedef struct {
	 void		 	 	 *callbackID;
	 ReportSceneFunc	 reportSceneFunc;
	 int	 	 	 	 searchingForward;
	 int	 	 	 	 searchMode;
	 short	 	 	 isDropFrame;
	 csSDK_int32	 	 earliestTimecode;
	 csSDK_int32	 	 greatestTimecode;
} recSceneDetectionParmsRec;

callbackID Required for reportSceneFunc
reportSceneFunc Use this to report the scenes
searchingForward True if the tape is playing forward
searchMode Either sceneSearch_FastScan or sce-

neSearch_SlowScan
isDropFrame True if drop-frame, false otherwise
earliestTimecode Only set for sceneSearch_SlowScan: in

point for range to report scene edge
greatestTimecode Only set for sceneSearch_SlowScan: out

point for range to report scene edge

Exporters • 164Adobe Premiere Pro CS5 SDK Guide

7Exporters

Exporters are used to export video, audio, and markers in any format. Exporters can optionally
provide hardware acceleration by coordinating with a renderer plug-in to render timeline seg-
ments. An exporter and a player combine to form an editing mode; the exporter generates pre-
view files and the player manages the cutlist.

Exporters can be used from within Premiere Pro, or from Adobe Media Encoder. From within
Premiere Pro, go to the File > Export > Media dialog. From there, the Export Settings dialog
appears. The format chosen in the Format drop-down determines the exporter used, and the
exporter provides the settings displayed in the Export Settings dialog.

What’s New in CS5

exQueryOutputFileListAfterExportRec is now exQueryOutputFileListRec,
with a slight change to the structure order.

We’ve also fixed a few bugs, such as bug 1925419, where all sliders would be given a checkbox to
disable the control, as if exParamFlag_optional had been set.

3rd-party exporters can now be used to transcode assets to MPEG-2 or Blu-ray compliant files.
Please refer to the Guidelines for Exporters in Encore for instructions on how to set up your ex-
porter so that Encore can use it for transcoding.

Porting From the Compiler API

The export API replaces the old compiler API from CS3 and earlier versions. The export API
combines the processing speed and quality of the old compiler API, with the UI flexibility of
Media Encoder. Although the selectors and structures have been renamed and reorganized, much
of the code that deals with rendering and writing frames is mostly the same.

Exporters • 165Adobe Premiere Pro CS5 SDK Guide

The parameter UI is what has changed the most. Rather than having a standard set of param-
eters as standard compilers had, or having a completely custom UI as custom compilers had, in
the new exporter API, all parameters must be explicitly added using the Export Param Suite.
First register the parameters during exSelGenerateDefaultParams, and then provide the localized
strings and constrained parameter values during exSelPostProcessParams. When the exporter is
sent exSelExport to export, get the parameter values, again using the Export Param Suite.

Getting Started

Start your plug-in by modifying one of the SDK samples. Step through the code in your debugger
to learn the order of events.

Multiple File Formats

To support more than one file format in a single exporter, describe one format at a time during
exSelStartup. After describing the first one, return exportReturn_IterateExporter from
exSelStartup, and the exporter will be called again to describe the second format, and so on. After
describing the last format, return exportReturn_IterateExporter, and the exporter will
be called yet again. This time, return exportReturn_IterateExporterDone.

Use a unique fileType for each format. When you are later sent exSelGenerateDefaultParams,
exSelPostProcessParams, etc, you’ll want to pay attention to the fileType, and respond according
to the format.

Adding Parameters

Add parameters using the Export Param Suite. First register the parameters during exSelGenerat­
eDefaultParams, and then provide the localized strings and constrained parameter values dur-
ing exSelPostProcessParams. When the exporter is sent exSelExport to export, get the parameter
values, again using the Export Param Suite.

Media Encoder as a Test Harness

Adobe Media Encoder can be launched as a separate application. It may be faster to developing
exporters using Media Encoder, since it is a lighter-weight application. However, you will want
to test your exporter in Premiere Pro, to make sure the behavior is the same as when running in
Media Encoder.

Exporters • 166Adobe Premiere Pro CS5 SDK Guide

Creating Presets

Create your own presets using the Export Settings UI, either from within Premiere Pro, or Media
Encoder. Just modify the parameters the way you want, and hit the Save icon to save the preset to
disk. The presets are saved with the extension ‘.epr’.

Starting in CS5, all the presets are saved to the same location, regardless of whether saved from
Premiere Pro or Media Encoder:

On Windows Vista 64, presets are saved here:
[User folder]\AppData\Roaming\Adobe\Common\AME\[version]\Presets\

In CS4, where the files are saved depends on whether you’ve opened the Export Settings UI in
Premiere Pro or Media Encoder:

Media Encoder presets
On Windows Vista, presets are saved here:
[User folder]\AppData\Roaming\Adobe\Adobe Media Encoder\[ver-
sion]\Presets\
On Windows XP:
[Documents and Settings folder]\[user name]\Application Data\
Adobe\Adobe Media Encoder\[version]\Presets\
On Mac OS:
Macintosh HD/Users/[user name]/Library/Preferences/Adobe/Adobe
Media Encoder/[version]/Presets/

Premiere Pro presets
On Windows Vista, presets are saved here:
[User folder]\AppData\Roaming\Adobe\Premiere Pro\[version]\
Presets\
On Windows XP:
[Documents and Settings folder]\[user name]\Application Data\
Adobe\Premiere Pro\[version]\Presets\
On Mac OS:
Macintosh HD/Users/[user name]/Library/Preferences/Adobe/Adobe
Premiere Pro/[version]/Presets/

For better performance, we recommend you install any presets for your exporter in the applica-
tion folder for Premiere Pro and Media Encoder. For both Windows and Mac OS:
[App installation path]\MediaIO\systempresets\[exporter subfold-
er]
The subfolder must be named based on the hexadecimal fourCCs of the ClassID and fi-
letype of the exporter. For example, the SDK exporter has a ClassID of ‘DTEK’ or
0x4454454B, and a filetype of ‘SDK_’ or 0x53444B5F. So the subfolder must be named

Exporters • 167Adobe Premiere Pro CS5 SDK Guide

‘4454454B_53444B5F’. For convenience, you can find the ClassID and filetype
fourCCs in the preset file itself, in a decimal representation.

Parameter Caching

During development, when you modify parameters in your exporter and reload the plug-in into
the host, the Settings UI may continue to show stale parameter data. New parameters that you
have added may not appear, or old ones may continue to appear. Or if you have changed the UI
for an existing parameter, it may not take effect.

At a minimum, any old presets must be deleted. This includes Media Encoder presets and
Premiere Pro presets. After deleting the old presets, there are two options, depending on whether
the an older version of the exporter has already been distributed and is in use.

Increment the Parameter Version

If an older version of the exporter is already being used by customers, you’ll need to use param-
eter versioning. During exSelGenerateDefaultParams, you should call SetParamsVersion()
in the Export Param Suite and increment the version number.

After that, create new presets and sequence encoder presets (if needed) using the new set of pa-
rameters. Make sure your installer removes the old presets, and installs the new ones.

Flush the Parameter Cache

If you don’t increment the parameter version, you can manually flush the parameter cache in a
few steps. After you’ve deleted the old presets, do the following:

1) Delete hidden presets that were created by the hosts for the most recently used parameter set-
tings. Look for a file called Placeholder Preset.epr in both the folders above the Media
Encoder presets and the Premiere Pro presets.
2) Delete batch.xml, used by Media Encoder. This is also in the folder above the Media
Encoder presets. Deleting this is equivalent to deleting the items out of the Media Encoder render
queue.
3) Delete Premiere Pro sequence encoder presets that use the exporter, if any
4) Even after deleting all the old presets, Media Encoder may initially show old cached parameter
UI. In the Settings UI, just switch to a different format and then back to yours.

Exporters • 168Adobe Premiere Pro CS5 SDK Guide

Exporters Used for Editing Modes

Any exporter that is used in an editing mode must have a codec parameter, and that parameter ID
must be ADBEVideoCodec. If Premiere Pro cannot find this parameter, it will not be able to
reopen projects in the custom editing mode, and will revert the project to Desktop mode.

Sequence Encoder Presets

Sequence preview presets are now required for editing modes. These contain the exporter param-
eters to generate preview files. This makes preview file formats much easier to define, by using
the Media Encoder or Premiere Pro UI to create presets, rather than directly editing XML.

To create a sequence encoder preset:
1) Create a preset. The name that you give it will be the name that will be used in the Sequence
Settings > General > Preview File Format drop-down.
2) Make sure this preset is installed in the application folder for Premiere Pro, along with the
other sequence presets:

On Windows, they should be installed here:
[App installation path]\Settings\EncoderPresets\SequencePreview\[editing mode GUID]*.epr
On MacOS, it is basically the same (inside the application package):
[App installation path]/[Premiere Pro package]/Contents/Settings/EncoderPresets/
SequencePreview/[editing mode GUID]/*.epr

As you can see by the installation paths above, Premiere Pro associates the sequence preview pre-
sets with the editing mode they go with, by using the presets in the folder that matches the GUID
of the editing mode. The editing mode GUID is defined in the editing mode XML file, using the
<EditingMode.ID> tag.

You can not only provide sequence preview presets for your own editing mode, but you could
even add additional sequence preview presets for one of the built-in editing modes. Editing
mode GUIDs for built-in editing modes can be found in the Adobe Editing Modes.
xml file. For example, the Desktop editing mode on Windows has the GUID 9678AF98-
A7B7-4bdb-B477-7AC9C8DF4A4E. On Mac OS it is 795454D9-D3C2-429d-9474-
923AB13B7018.

Timeline Segments in Exporters

The timeline segments available to exporters do not always fully describe the sequence being ex-
ported. To consistently get timeline segments that fully describe the sequence, an exporter needs
to work along with a renderer plug-in.

Exporters • 169Adobe Premiere Pro CS5 SDK Guide

During a sequence export, Premiere Pro makes a copy of the project file and passes it to Media
Encoder. Media Encoder takes that project and uses the PProHeadless process to generate ren-
dered frames. So when an exporter, which is running in Media Encoder, parses the sequence, it
only has a very high-level view. It sees the entire sequence as a single clip, and sees any optional
cropping or filters as applied effects. So when parsing that simple, high-level sequence, if there
are no effects, an exporter can just use the MediaNode’s ClipID with the Clip Render Suite to
get frames directly from the PProHeadless process. In the PProHeadless process, a renderer plug-
in can step in, parse the real sequence in all its glory, and optionally provide frames in a custom
pixel format.

When rendering preview files, Premiere Pro does the rendering without Media Encoder, so an
exporter can get the individual segments for each clip, similar to before.

Smart Rendering

Under very specific circumstances, an exporter can request compressed frames, avoiding unnec-
essary de/recompression. This would be done by providing both exporter and renderer plug-ins
that parse timeline segments. If the source can be copied over to the destination, the compressed
frames can be passed in a custom pixel format. These compressed frames are not guaranteed,
however, so the exporter should be prepared to handle uncompressed frames.

Entry Point

DllExport PREMPLUGENTRY xSDKExport (
	 csSDK_int32	 	 selector,
	 exportStdParms*	 stdParmsP,
	 void*	 	 	 param1,
	 void*	 	 	 param2)

selector is the action the host wants the exporter to perform. stdParms provides callbacks to
obtain additional information from the host or to have the host perform tasks. Parameters 1 and
2 vary with the selector; they may contain a specific value or a pointer to a structure. Return ex-
portReturn_ErrNone if successful, or an appropriate return code.

Standard Parameters

A pointer to this structure is sent from the host to the plug-in with every selector. See Universals.

typedef struct {
	 csSDK_int32	 	 	 interfaceVer;
	 plugGetSPBasicSuiteFunc*	getSPBasicSuite;
} exportStdParms;

Exporters • 170Adobe Premiere Pro CS5 SDK Guide

Member Description
interfaceVer Exporter API version

Premiere Pro CS5 - prExportVersion200
Premiere Pro 4.0.1 through 4.2.1 - prExportVersion101
Premiere Pro CS4 - prExportVersion100

getSPBasicSuite This very important call returns the SweetPea suite that allows
plug-ins to acquire and release all other SweetPea suites.

SPBasicSuite* getSPBasicSuite();

Selector Table

This table summarizes the various selector commands an exporter can receive.

Selector param1 param2
exSelStartup exExporterInfoRec* unused
exSelBeginInstance exExporterInstanceRec* unused
exSelGenerateDefaultParams exGenerateDefaultParamRec* unused
exSelPostProcessParams exPostProcessParamsRec* unused
exSelValidateParamChanged exParamChangedRec* unused
exSelGetParamSummary exParamSummaryRec* unused
exSelParamButton exParamButtonRec* unused
exSelExport exDoExportRec* unused
exSelQueryExportFileExtension exQueryExportFileExtensionRec* unused
exSelQueryOutputFileList exQueryOutputFileList* unused
exSelQueryStillSequence exQueryStillSequenceRec* unused
exSelQueryOutputSettings exQueryOutputSettingsRec* unused
exSelValidateOutputSettings exValidateOutputSettingsRec* unused
exSelEndInstance exExporterInstanceRec* unused
exSelShutdown unused unused

Selector Descriptions

This section provides a brief overview of each selector and highlights implementation issues.
Additional implementation details are at the end of the chapter.

Exporters • 171Adobe Premiere Pro CS5 SDK Guide

exSelStartup

param1 - exExporterInfoRec *
param2 - unused

Sent during application launch, unless the exporter has been cached. A single exporter can sup-
port multiple codecs and file extensions. exExporterInfoRec describes the exporter’s attri-
butes, such as the format display name.

exSelBeginInstance

param1 - exExporterInstanceRec *
param2 - unused

Allocate any private data.

exSelGenerateDefaultParams

param1 - exGenerateDefaultParamRec *
param2 - unused

Set the exporter’s default parameters using the Export Param Suite.

exSelPostProcessParams

param1 - exPostProcessParamsRec *
param2 - unused

Post process parameters. This is where the localized strings for the parameter UI must be pro-
vided.

exSelValidateParamChanged

param1 - exParamChangedRec *
param2 - unused

Validate any parameters that have changed. The exporter may correct an invalid combination of
parameters here, or dim/undim certain parameter controls based on the current settings.

Exporters • 172Adobe Premiere Pro CS5 SDK Guide

exSelGetParamSummary

param1 - exParamSummaryRec *
param2 - unused

Provide a text summary of the current parameter settings, which will be displayed in the sum-
mary area of the Export Settings dialog.

exSelParamButton

param1 - exParamButtonRec *
param2 - unused

Sent if exporter has one or more buttons in its parameter UI, and the user clicks one of the but-
tons in the Export Settings. The ID of the button pressed is passed in exParamButtonRec.
buttonParamIdentifier. Display any dialog using platform-specific UI, collect any user
input, and save any changes back to privateData.

exSelExport

param1 - exDoExportRec *
param2 - unused

Do the export! Sent when the user starts an export to the format supported by the exporter, or if
the exporter is used in an Editing Mode and the user renders the work area.

Single file exporters are sent this selector only once per export (e.g. AVI, QuickTime). To create a
single file, setup a loop where you request each frame in the startTime to endTime range us-
ing one of the render calls in the Sequence Render Suite and GetAudio in the Sequence Audio
Suite. For better performance, you can use the asynchronous calls in the Sequence Render Suite to
render multiple frames on multiple threads.

Still frame exporters are sent exSelExport for each frame in the sequence (e.g. numbered TIFFs).
The host will name the files appropriately.

Save render time by checking to see if frames are repeated. Inspect the SequenceRender_
GetFrameReturnRec.repeatCount returned from a render call, which holds a frame
repeat count.

exSelQueryExportFileExtension

param1 - exQueryExportFileExtensionRec *

Exporters • 173Adobe Premiere Pro CS5 SDK Guide

param2 - unused

For exporters that support more than one file extension, specify an extension given the file type. If
this selector is not supported by the exporter, the extension is specified by the exporter in exEx-
porterInfoRec.fileTypeDefaultExtension.

exSelQueryOutputFileList

param1 - exQueryOutputFileListRec *
param2 - unused

For exporters that export to more than one file. This is called before an export for the host to find
out which files would need to be overwritten. It is called after an export so the host will know
about all the files created, for any post encoding tasks, such as FTP. If this selector is not support-
ed by the exporter, the host application will only know about the original path.

This selector will be called three times. On the first call, the plug-in fills out numOutputFiles.
The host will then make numOutputFiles count of outputFileRecs, but empty. On the
second call, the plug-in fills out the path length (incl trailing null) for each exOutputFileRec
element in outputFileRecs. The host will then allocate all paths in each outputFileRec.
On the third call, the plug-in fills in the path members of the outputFileRecs.

exSelQueryStillSequence

param1 - exQueryStillSequenceRec *
param2 - unused

The host application asks a still-only exporter if it wants to export as a sequence, and at what
frame rate.

exSelQueryOutputSettings

param1 - exQueryOutputSettingsRec *
param2 - unused

The host application asks the exporter for general details about the current settings. This is a re-
quired selector.

exSelValidateOutputSettings

param1 - exValidateOutputSettingsRec *
param2 - unused

Exporters • 174Adobe Premiere Pro CS5 SDK Guide

The host application asks the exporter if it can export with the current settings. The exporter
should return exportReturn_ErrLastErrorSet if not, and the error string should be set
to a description of the failure.

exSelEndInstance

param1 - exExporterInstanceRec *
param2 - unused

Deallocate any private data.

exSelShutdown

param1 - unused
param2 - unused

Sent immediately before shutdown. Free all remaining memory and close any open file handles.

Return Codes

Return Code Reason
exportReturn_ErrNone Operation has completed without error.
exportReturn_Abort User aborted the export.
exportReturn_Done Export finished normally.
exportReturn_InternalError Return this if none of the other errors apply.
exportReturn_OutOfDiskSpace Out of disk space error.
exportReturn_BufferFull The offset into the buffer would overflow it.
exportReturn_ErrOther The vaguer the better, right?
exportReturn_ErrMemory Out of memory.
exportReturn_ErrFileNotFound File not found.
exportReturn_
ErrTooManyOpenFiles

Too many open files.

exportReturn_ErrPermErr Permission violation.
exportReturn_ErrOpenErr Unable to open the file.
exportReturn_ErrInvalidDrive Invalid drive.
exportReturn_ErrDupFile Duplicate filename.
exportReturn_ErrIo File I/O error.
exportReturn_ErrInUse File is in use.

Exporters • 175Adobe Premiere Pro CS5 SDK Guide

exportReturn_IterateExporter Return value from exSelStartup to request exporter
iteration.

exportReturn_
IterateExporterDone

Return value from exSelStartup to indicate there
are no more exporters.

exportReturn_
InternalErrorSilent

Return error code from exSelExport to put a cus-
tom error message on screen just before returning
control to the host.

exportReturn_
ErrCodecBadInput

A video codec refused the input format.

exportReturn_ErrLastErrorSet The exporter is returning an error using the Error
Suite.

exportReturn_
ErrLastWarningSet

The exporter is returning a warning using the
Error Suite.

exportReturn_ErrLastInfoSet The exporter is returning information using the
Error Suite.

exportReturn_
ErrExceedsMaxFormatDuration

The exporter (or the host) has deemed the dura-
tion of the export to be too large.

exportReturn_
VideoCodecNeedsActivation

The current video codec is not activated and can-
not be used.

exportReturn_
AudioCodecNeedsActivation

The current audio codec is not activated and can-
not be used.

exportReturn_
IncompatibleAudioChannelType

The requested audio channels are not compatible
with the source audio.

exportReturn_
IncompatibleVideoCodec

New in CS5. User tried to load a preset with an
invalid video codec

exportReturn_
IncompatibleAudioCodec

New in CS5. User tried to load a preset with an
invalid audio codec

exportReturn_Unsupported Unsupported selector.

Structures

Structure Sent with selector
exDoExportRec exSelExport
exExporterInfoRec exSelStartup
exExporterInstanceRec exSelBeginInstance and exSelEndInstance
exGenerateDefaultParamRec exSelGenerateDefaultParams
exParamButtonRec exSelParamButton
exParamChangedRec exSelValidateParamChanged
exParamSummaryRec exSelGetParamSummary
exPostProcessParamsRec exSelPostProcessParams

Exporters • 176Adobe Premiere Pro CS5 SDK Guide

exQueryExportFileExtensionRec exSelQueryExportFileExtension
exQueryOutputFileListRec exSelQueryOutputFileList
exQueryOutputSettingsRec exSelQueryOutputSettings
exQueryStillSequenceRec exSelQueryStillSequence
exValidateOutputSettingsRec exSelValidateOutputSettings

Structure Descriptions

exDoExportRec

Selector: exSelExport

Provides general export settings. The exporter should retrieve the parameter settings from the
Export Param Suite.

typedef struct {
	 csSDK_uint32	 	 exporterPluginID;
	 void*	 	 	 privateData;
	 csSDK_uint32	 	 fileType;
	 csSDK_int32	 	 exportAudio;
	 csSDK_int32	 	 exportVideo;
	 PrTime	 	 	 startTime;
	 PrTime	 	 	 endTime;
	 csSDK_uint32	 	 fileObject;
	 PrTimelineID	 	 timelineData;
	 csSDK_int32	 	 reserveMetaDataSpace;
	 csSDK_int32	 	 maximumRenderQuality;
} exDoExportRec;

exporterPluginID The host’s internal identifier for this exporter, used for various
suite calls, such as in the Sequence Render Suite and Sequence
Audio Suite.

privateData Data allocated and managed by the exporter.
fileType The file format four character code set by the exporter during

exSelStartup. Indicates which format the exporter should write,
since exporters can support multiple formats.

exportAudio If non-zero, export audio.
exportVideo If non-zero, export video.
startTime The start time of the sequence to export.

Exporters • 177Adobe Premiere Pro CS5 SDK Guide

endTime The end time of the sequence to export. If startTime is 0, also
the total durection to export. Range specified is
[startTime, endTime), meaning the endTime is not actu-
ally included in the range.

fileObject For use with the Export File Suite, to get and manipulate the file
specified by the user.

timelineData Handle used for the Timeline Functions.
reserveMeta-
DataSpace

Amount to reserve in a file for metadata storage.

maximumRenderQual-
ity

If non-zero, render at the highest possible quality.

exExporterInfoRec

Selector: exSelStartup

Describe the exporter’s capabilities by filling out this structure. For each filetype, populate
exExporterInfoRec and return exportReturn_IterateExporter. exSelStartup will
then be resent. Repeat the process until there are no more file formats to describe, then return
exportReturn_IterateExporterDone. The fileType indicates which format the ex-
porter should currently work with in subsequent calls.

typedef struct {
	 csSDK_uint32	 unused;
	 csSDK_uint32	 fileType;
	 prUTF16Char 	 fileTypeName[256];
	 prUTF16Char 	 fileTypeDefaultExtension[256];
	 csSDK_uint32	 classID;
	 csSDK_int32	 exportReqIndex;
	 csSDK_int32	 wantsNoProgressBar;
	 csSDK_int32	 hideInUI;
	 csSDK_int32	 doesNotSupportAudioOnly;
	 csSDK_int32	 canExportVideo;
	 csSDK_int32	 canExportAudio;
	 csSDK_int32	 singleFrameOnly;
	 csSDK_int32	 maxAudiences;
	 csSDK_int32	 interfaceVersion;
	 csSDK_uint32	 isCacheable;
} exExporterInfoRec;

fileType The file format four character code (e.g. ‘AVIV’ = Video for
Windows, ‘MooV’ = QuickTime).

fileTypeName The localized display name for the fileype.

Exporters • 178Adobe Premiere Pro CS5 SDK Guide

fileTypeDefaultEx-
tension

The default extension for the filetype. An exporter can support
multiple extensions per filetype, by implementing exSelQueryEx­
portFileExtension.

classID Class identifier for the module, differentiates between exporters
that support the same filetype and creates associations between
different Media Abstraction Layer plug-ins.

exportReqIndex If an exporter supports multiple filetypes, this index will be in-
cremented by the host for each call, as the exporter is requested
to describe its capabilities for each filetype. Initially zero, incre-
mented by the host each time the exporter returns exportRe-
turn_IterateExporter.

wantsNoProgressBar If non-zero, the default exporter progress dialog will be turned
off, allowing the exporter to display its own progress dialog. The
exporter also will not get exportReturn_Abort errors from
the host during callbacks – it must detect an abort on its own, and
return exportReturn_Abort from exSelExport if the user
aborts the export.

hideInUI Set this to non-zero if this filetype should only be used for mak-
ing preview files, and should not be visible as a general export
choice.

doesNotSupportAu-
dioOnly

Set this to non-zero for filetypes that do not support audio-only
exports.

canExportVideo Set this to non-zero if the exporter can output video.
canExportAudio Set this to non-zero if the exporter can output audio.
singleFrameOnly Set this to non-zero if the exporter makes single frames (used by

still image exporters).
maxAudiences
interfaceVersion Exporter API version that the plug-in supports.
isCacheable New in CS5. Set this non-zero to have Premiere Pro cache this

exporter.

exExporterInstanceRec

Selector: exSelBeginInstance and exSelEndInstance

Provides access to the privateData for the indicated filetype, so that the exporter can al-
locate privateData and pass it to the host, or deallocate it.

typedef struct {
	 csSDK_uint32	 exporterPluginID;
	 csSDK_uint32	 fileType;
	 void*	 	 privateData;

Exporters • 179Adobe Premiere Pro CS5 SDK Guide

} exExporterInstanceRec;

exporterPluginID The host’s internal identifier for this exporter. Do not modify.
fileType The file format four character code set by the exporter during

exSelStartup.
privateData Data allocated and managed by the exporter.

exGenerateDefaultParamRec

Selector: exSelGenerateDefaultParams

Provides access to the privateData for the indicated filetype, so that the exporter can gen-
erate the default parameter set.

typedef struct {
	 csSDK_uint32	 exporterPluginID;
	 void*	 	 privateData;
	 csSDK_uint32	 fileType;
} exExporterInstanceRec;

exporterPluginID The host’s internal identifier for this exporter. Do not modify.
privateData Data allocated and managed by the exporter.
fileType The file format four character code set by the exporter during

exSelStartup.

exParamButtonRec

Selector: exSelParamButton

Provides access to the privateData for the indicated filetype, and discloses the specific but-
ton hit by the user, since there can be multiple button parameters.

typedef struct {
	 csSDK_uint32	 	 exporterPluginID;
	 void*	 	 	 privateData;
	 csSDK_uint32	 	 fileType;
	 csSDK_int32	 	 exportAudio;
	 csSDK_int32	 	 exportVideo;
	 csSDK_int32	 	 multiGroupIndex;
	 exParamIdentifier	 buttonParamIdentifier;
} exParamButtonRec;

Exporters • 180Adobe Premiere Pro CS5 SDK Guide

exporterPluginID The host’s internal identifier for this exporter. Do not modify.
privateData Data allocated and managed by the exporter.
fileType The file format four character code set by the exporter during

exSelStartup.
exportAudio If non-zero, the current settings are set to export audio.
exportVideo If non-zero, the current settings are set to export video.
multiGroupIndex Discloses the index of the multi-group, containing the button

hit by the user.
buttonParamIdentifier Discloses the parameter ID of the button hit by the user.

exParamChangedRec

Selector: exSelValidateParamChanged

Provides access to the privateData for the indicated filetype, and discloses the specific
parameter changed by the user.

typedef struct {
	 csSDK_uint32	 	 exporterPluginID;
	 void*	 	 	 privateData;
	 csSDK_uint32	 	 fileType;
	 csSDK_int32	 	 exportAudio;
	 csSDK_int32	 	 exportVideo;
	 csSDK_int32	 	 multiGroupIndex;
	 exParamIdentifier	 changedParamIdentifier;
	 csSDK_int32	 	 rebuildAllParams;
} exParamChangedRec;

exporterPluginID The host’s internal identifier for this exporter. Do not modify.
privateData Data allocated and managed by the exporter.
fileType The file format four character code set by the exporter during

exSelStartup.
exportAudio If non-zero, the current settings are set to export audio.
exportVideo If non-zero, the current settings are set to export video.
multiGroupIndex Discloses the index of the multi-group, containing the param-

eter changed by the user.
changedParamIdentifier Discloses the parameter ID of the parameter changed by the

user. May be empty if the changed item was exportAudio,
exportVideo or the current multiGroupIndex.

rebuildAllParams Set this to non-zero to tell the host to reload ALL parameters
from the parameter list.

Exporters • 181Adobe Premiere Pro CS5 SDK Guide

exParamSummaryRec

Selector: exSelGetParamSummary

Provides access to the privateData for the indicated filetype, and provides buffers for the
exporter to fill in with a localized summary of the parameters.

typedef struct {
	 csSDK_uint32	 exporterPluginID;
	 void*	 	 privateData;
	 csSDK_int32	 exportAudio;
	 csSDK_int32	 exportVideo;
	 prUTF16Char	 Summary1[256];
	 prUTF16Char	 Summary2[256];
	 prUTF16Char	 Summary3[256];
} exParamSummaryRec;

exporterPluginID The host’s internal identifier for this exporter. Do not modify.
privateData Data allocated and managed by the exporter.
exportAudio If non-zero, the current settings are set to export audio.
exportVideo If non-zero, the current settings are set to export video.
Summary1 Fill these in with a line of a localized summary of the param-

eters.Summary2
Summary3

exPostProcessParamsRec

Selector: exSelPostProcessParams

Provides access to the privateData for the indicated filetype.

typedef struct {
	 csSDK_uint32	 	 exporterPluginID;
	 void*	 	 	 privateData;
	 csSDK_uint32	 	 fileType;
	 csSDK_int32	 	 exportAudio;
	 csSDK_int32	 	 exportVideo;
} exPostProcessParamsRec;

exporterPluginID The host’s internal identifier for this exporter. Do not modify.
privateData Data allocated and managed by the exporter.

Exporters • 182Adobe Premiere Pro CS5 SDK Guide

fileType The file format four character code set by the exporter during
exSelStartup.

exportAudio If non-zero, the current settings are set to export audio.
exportVideo If non-zero, the current settings are set to export video.

exQueryExportFileExtensionRec

Selector: exSelQueryExportFileExtension

Provides access to the privateData for the indicated filetype, and provides a buffer for the
exporter to fill in with the file extension.

typedef struct {
	 csSDK_uint32	 	 exporterPluginID;
	 void*	 	 	 privateData;
	 csSDK_uint32	 	 fileType;
	 prUTF16Char	 	 outFileExtension[256];
} exQueryExportFileExtensionRec;

exporterPluginID The host’s internal identifier for this exporter. Do not modify.
privateData Data allocated and managed by the exporter.
fileType The file format four character code set by the exporter during

exSelStartup.
outFileExtension Provide the file extension here, given the current parameter

settings.

exQueryOutputFileListRec

Selector: exSelQueryOutputFileList

Provides access to the privateData for the indicated filetype, and provides a pointer to a
array of exOutputFileRecs for the exporter to fill in with the file paths.

typedef struct {
	 csSDK_uint32	 	 exporterPluginID;
	 void*	 	 	 privateData;
	 csSDK_uint32	 	 fileType;
	 csSDK_int32	 	 numOutputFiles;
	 PrSDKString	 	 path;
	 exOutputFileRec	 *outputFileRecs;
} exQueryOutputFileListRec;

Exporters • 183Adobe Premiere Pro CS5 SDK Guide

exporterPluginID The host’s internal identifier for this exporter. Do not modify.
privateData Data allocated and managed by the exporter.
fileType The file format four character code set by the exporter during

exSelStartup.
numOutputFiles On the first call to exSelQueryOutputFileList, provide the

number of file paths here.
path New in CS5. Contains the primary intended destination path

provided by the host.
outputFileRecs An array of exOutputFileRecs. On the second call to

exSelQueryOutputFileList, the path length (including trailing
null) for each path. On the third call, fill in the path of each
exOutputFileRec.

typedef struct
{
	 int	 	 	 pathLength;
	 prUTF16Char*	 path;
} exOutputFileRec;

exQueryOutputSettingsRec

Selector: exSelQueryOutputSettings

Provides access to the privateData for the indicated filetype, and provides a set of mem-
bers for the exporter to fill in with the current export settings.

typedef struct {
	 csSDK_uint32	 	 exporterPluginID;
	 void*	 	 	 privateData;
	 csSDK_uint32	 	 fileType;
	 csSDK_int32	 	 inMultiGroupIndex;
	 csSDK_int32	 	 inExportVideo;
	 csSDK_int32	 	 inExportAudio;
	 csSDK_int32	 	 outVideoWidth;
	 csSDK_int32	 	 outVideoHeight;
	 PrTime	 	 	 outVideoFrameRate;
	 csSDK_int32	 	 outVideoAspectNum;
	 csSDK_int32	 	 outVideoAspectDen;
	 csSDK_int32	 	 outVideoFieldType;
	 double	 	 	 outAudioSampleRate;
	 PrAudioSampleType	 outAudioSampleType;
	 PrAudioChannelType	 outAudioChannelType;
	 csSDK_uint32	 	 outBitratePerSecond;

Exporters • 184Adobe Premiere Pro CS5 SDK Guide

} exQueryOutputSettingsRec;

exporterPluginID The host’s internal identifier for this exporter. Do not modify.
privateData Data allocated and managed by the exporter.
fileType The file format four character code set by the exporter during

exSelStartup.
inMultiGroupIndex Return the parameter settings of the multi-group with this

index.
inExportVideo If non-zero, the current settings are set to export video.
inExportAudio If non-zero, the current settings are set to export audio.
outVideoWidth
outVideoHeight
...

Return each parameter setting, by getting the current value of
the parameter using the Export Param Suite. Some settings,
such as outVideoFieldType, may be implicit, for exam-
ple if the format only supports progressive frames.

exQueryStillSequenceRec

Selector: exSelQueryStillSequence

Provides access to the privateData for the indicated filetype, and provides a set of mem-
bers for the exporter to provide information on how it would export the sequence of stills.

typedef struct {
	 csSDK_uint32	 exporterPluginID;
	 void*	 	 privateData;
	 csSDK_uint32	 fileType;
	 csSDK_int32	 exportAsStillSequence;
	 PrTime	 	 exportFrameRate;
} exQueryStillSequenceRec;

exporterPluginID The host’s internal identifier for this exporter. Do not modify.
privateData Data allocated and managed by the exporter.
fileType The file format four character code set by the exporter during

exSelStartup.
exportAsStillSequence Set this to non-zero to tell the host that the exporter can ex-

port the stills as a sequence.
exportFrameRate Set this to the frame rate of the still sequence.

exValidateOutputSettingsRec

Selector: exSelValidateOutputSettings

Exporters • 185Adobe Premiere Pro CS5 SDK Guide

Provides access to the privateData for the indicated filetype, so that the exporter can vali-
date the current parameter settings.

typedef struct {
	 csSDK_uint32	 exporterPluginID;
	 void*	 	 privateData;
	 csSDK_uint32	 fileType;
} exExporterInstanceRec;

exporterPluginID The host’s internal identifier for this exporter. Do not modify.
privateData Data allocated and managed by the exporter.
fileType The file format four character code set by the exporter during

exSelStartup.

Suites

For information on how to acquire and manage suites, see the SweetPea Suites section.

Export File Suite

A cross-platform suite for writing to files on disk. Also provides a call to get the file path, given
the file object. See PrSDKExportFileSuite.h.

Export Info Suite

GetExportSourceInfo

Get information on the source currently being exported.

prSuiteError (*GetExportSourceInfo)(
csSDK_uint32	 	 	 	 inExporterPluginID,
PrExportSourceInfoSelector	 inSelector,
PrParam 	 	 	 	 	 *outSourceInfo);

Value Type Description
kExportInfo_VideoWidth Int32 Width of source video
kExportInfo_VideoHeight Int32 Height of source video
kExportInfo_VideoFrameRate PrTime Frame rate

Exporters • 186Adobe Premiere Pro CS5 SDK Guide

kExportInfo_VideoFieldType Int32 One of the prFieldType values
kExportInfo_VideoDuration Int64 A PrTime value
kExportInfo_
PixelAspectNumerator

Int32 Pixel aspect ratio (PAR) numerator

kExportInfo_
PixelAspectDenominator

Int32 Pixel aspect ratio denominator

kExportInfo_AudioDuration Int64 A PrTime value
kExportInfo_
AudioChannelsType

Int32 One of the PrAudioChannelType
values. Returns 0 (which is unde-
fined) if there’s no audio.

kExportInfo_AudioSampleRate Float64
kExportInfo_ProjectPath
kExportInfo_ProjectLinkAtom
kExportInfo_CreatorAtom

Unimplemented in CS4.

kExportInfo_SourceHasAudio Bool Non-zero if source has audio
kExportInfo_SourceHasVideo Bool Non-zero if source has video
kExportInfo_RenderAsPreview Bool Returns a non-zero value if cur-

rently rendering preview files.
kExportInfo_SequenceGUID Guid A PrPluginID, which is a

unique GUID for the sequence.
kExportInfo_SessionFilePath PrMemoryPtr A prUTF16Char array. The

exporter should release the pointer
using the Memory Manager suite.

Export Param Suite

Specify all parameters for your exporter UI. See PrSDKExportParamSuite.h. Also, see the SDK
Export sample for a demonstration of how to use this suite.

As of CS5, there is an issue where width and height ranges aren’t correctly set (bug 2570438). You
may notice this when adjusting the width and height in the Export Settings UI. By unclicking
the chain that constrains width and height ratio, you will be able to modify the width and height.
As a side-effect of this bug, if the exporter is used to render preview files in an Editing Mode, the
user will be able to choose any preview frame size between 24x24 and 10240x8192.

Export Progress Suite

Report progress during the export. Also, handle the case where the user pauses an export. See
PrSDKExportProgressSuite.h.

Exporters • 187Adobe Premiere Pro CS5 SDK Guide

Palette Suite

A seldom-used suite for palettizing an image, for example, for GIFs. See PrSDKPaletteSuite.h.

Sequence Audio Suite

Get audio from the host.

MakeAudioRenderer

Create an audio renderer, in preparation to get rendered audio from the host.

prSuiteError (*MakeAudioRenderer)(
	 csSDK_uint32	 	 inPluginID,
	 PrTime	 	 	 inStartTime,
	 PrAudioChannelType	 inChannelType,
	 PrAudioSampleType	 inSampleType,
	 float		 	 	 inSampleRate,
	 csSDK_uint32*	 	 outAudioRenderID);

Parameter Description
inPluginID Pass in exporterPluginID from exDo-

ExportRec.
inStartTime Start time for the audio requests.
inChannelType PrAudioChannelType enum value for the

channel type needed.
inSampleType PrAudioSampleType enum value for the

sample type needed.
inSampleRate Samples per second.
outAudioRenderID This ID passed back is needed for subsequent

calls to this suite.

ReleaseAudioRenderer

Release the audio renderer when the exporter is done requesting audio.

prSuiteError (*ReleaseAudioRenderer)(
	 csSDK_uint32	 inPluginID,
	 csSDK_uint32	 inAudioRenderID);

Exporters • 188Adobe Premiere Pro CS5 SDK Guide

Parameter Description
inPluginID Pass in exporterPluginID from exDo-

ExportRec.
inAudioRenderID The call will release the audio renderer with

this ID.

GetAudio

Returns from the host the next contiguous requested number of audio sample frames, specified in
inFrameCount, in inBuffer as arrays of uninterleaved floating point values. Returns sui-
teError_NoError if no error. The plug-in must manage the memory allocation of inBuf-
fer, which must point to n buffers of floating point values of length inFrameCount, where n
is the number of channels. When inClipAudio is non-zero, this parameter makes GetAudio
clip the audio samples at +/- 1.0.

prSuiteError (*GetAudio)(
	 csSDK_uint32	 inAudioRenderID,

csSDK_uint32	 inFrameCount,
float**	 	 inBuffer,
char		 	 inClipAudio);

Parameter Description
inAudioRenderID Pass in the outAudioRenderID returned

from MakeAudioRenderer(). This gives
the host the context of the audio render.

inFrameCount The number of audio frames to return
in inBuffer. The next contiguous au-
dio frames will always be returned, unless
ResetAudioToBeginning has just been
called.

inBuffer An array of float arrays, allocated by the
exporter. The host returns the samples for each
audio channel in a separate array.

inClipAudio When true, GetAudio will return audio
clipped at +/- 1.0. Otherwise, it will return
unclipped audio.

ResetAudioToBeginning

This call will reset the position on the audio generation to time zero. This can be used for multi-
pass encoding.

Exporters • 189Adobe Premiere Pro CS5 SDK Guide

prSuiteError (*ResetAudioToBeginning)(
csSDK_uint32 inAudioRenderID);

GetMaxBlip

Returns the maximum number of audio sample frames that can be requested from one call to
GetAudio in maxBlipSize.

prSuiteError (*GetMaxBlip)(
csSDK_uint32	 inAudioRenderID,
PrTime	 inTicksPerFrame,
csSDK_uint32*	 maxBlipSize);

Sequence Render Suite

Get rendered video from one of the renderers available to the host. This may use the host’s
built-in renderer, or a plug-in renderer, if available For best performance, use the asynchronous
render requests with the source media prefetching calls, although synchronous rendering is avail-
able too.

MakeVideoRenderer()

Create a video renderer, in preparation to get rendered video.

prSuiteError (*MakeVideoRenderer)(
	 csSDK_uint32	 pluginID,
	 csSDK_uint32*	 outVideoRenderID
	 PrTime	 	 inFrameRate);

Parameter Description
pluginID Pass in exporterPluginID from exDo-

ExportRec.
outVideoRenderID This ID passed back is needed for subsequent

calls to this suite.
inFrameRate Frame rate, in ticks.

ReleaseVideoRenderer()

Release the video renderer when the exporter is done requesting video.

Exporters • 190Adobe Premiere Pro CS5 SDK Guide

prSuiteError (*ReleaseVideoRenderer)(
	 csSDK_uint32	 pluginID,
	 csSDK_uint32	 inVideoRenderID);

Parameter Description
pluginID Pass in exporterPluginID from exDo-

ExportRec.
inVideoRenderID The call will release the video renderer with

this ID.

struct SequenceRender_ParamsRec

Fill this structure in before calling RenderVideoFrame(),
QueueAsyncVideoFrameRender(), or
PrefetchMediaWithRenderParameters(). Note that if the frame aspect ratio of the
request does not match that of the sequence, the frame will be letterboxed or pillarboxed, rather
than stretched to fit the frame.

typedef struct
{
	 const PrPixelFormat*	 inRequestedPixelFormatArray;	 	 	
	 csSDK_int32	 	 	 inRequestedPixelFormatArrayCount;
	 csSDK_int32	 	 	 inWidth;
	 csSDK_int32	 	 	 inHeight;
	 csSDK_int32	 	 	 inPixelAspectRatioNumerator;
	 csSDK_int32	 	 	 inPixelAspectRatioDenominator;
	 PrRenderQuality	 	 inRenderQuality;
	 prFieldType	 	 	 inFieldType;
	 csSDK_int32	 	 	 inDeinterlace;
	 PrRenderQuality	 	 inDeinterlaceQuality;
	 csSDK_int32	 	 	 inCompositeOnBlack;
} SequenceRender_ParamsRec;

Member Description
inRequestedPixelFormatArray An array of PrPixelFormats that list your format

preferences in order.
inRequestedPixelFormatArray-
Count

Size of the pixel format array.

inWidth Width to render at.
inHeight Height to render at.
inPixelAspectRatioNumerator Numerator of the pixel aspect ratio.
inPixelAspectRatioDenominator Denominator of the pixel aspect ratio.

Exporters • 191Adobe Premiere Pro CS5 SDK Guide

inRenderQuality Use one of the PrRenderQuality enumerated
values.

inFieldType Use one of the prFieldType constants.
inDeinterlace Set to non-zero, to deinterlace.
inDeinterlaceQuality Use one of the PrRenderQuality enumerated

values.
inCompositeOnBlack Set to non-zero, to composite the render on black.

struct SequenceRender_GetFrameReturnRec

Returned from RenderVideoFrame() and passed by
PrSDKSequenceAsyncRenderCompletionProc().

typedef struct
{
	 void*	 	 asyncCompletionData;
	 csSDK_int32	 returnVal;
	 csSDK_int32	 repeatCount;
	 csSDK_int32	 onMarker;
	 PPixHand	 	 outFrame;
} SequenceRender_GetFrameReturnRec;

Member Description
asyncCompletionData Passed to

PrSDKSequenceAsyncRenderCompletionProc()
from QueueAsyncVideoFrameRender(). Not used by
RenderVideoFrame().

returnVal ErrNone , Abort, Done, or an error code.
repeatCount The number of repeated frames from this frame forward. In

the output file, this could be writing NULL frames, changing
the current frame’s duration, or whatever is appropriate ac-
cording to the codec.

onMarker If non-zero, there is a marker on this frame.
outFrame Returned from RenderVideoFrame(). Not returned from

PrSDKSequenceAsyncRenderCompletionProc()

RenderVideoFrame()

The basic, synchronous call to get a rendered frame from the host. Returns suiteError_
NoError if you can continue exporting, exportReturn_Abort if the user aborted the
export, exportReturn_Done if the export has finished, or an error code.

Exporters • 192Adobe Premiere Pro CS5 SDK Guide

prSuiteError (*RenderVideoFrame)(
	 csSDK_uint32	 	 	 	 	 inVideoRenderID,
	 PrTime	 	 	 	 	 	 inTime,
	 SequenceRender_ParamsRec*	 	 inRenderParams,
	 PrRenderCacheType	 	 	 	 inCacheFlags,
	 SequenceRender_GetFrameReturnRec*	 getFrameReturn);

Parameter Description
inVideoRenderID Pass in the outVideoRenderID returned

from MakeVideoRenderer(). This gives
the host the context of the video render.

inTime The frame time requested.
inRenderParams The details of the render.
inCacheFlags One or more cache flags.
getFrameReturn Passes back a structure that contains info about

the frame returned, and the rendered frame
itself.

GetFrameInfo()

Gets information about a given frame. Currently, SequenceRender_FrameInfoRec only
contains repeatCount, which is the number of repeated frames from this frame forward.

prSuiteError (*GetFrameInfo)(
	 csSDK_uint32	 	 	 	 inVideoRenderID,
	 PrTime	 	 	 	 	 inTime,
	 SequenceRender_FrameInfoRec*	 outFrameInfo);

SetAsyncRenderCompletionProc()

Register a notification callback for getting asynchronously rendered frames when the ren-
der completes. asyncGetFrameCallback should have the signature described in
PrSDKSequenceAsyncRenderCompletionProc below.

prSuiteError (*SetAsyncRenderCompletionProc)(
	 csSDK_uint32	 	 	 	 	 inVideoRenderID,
	 PrSDKSequenceAsyncRenderCompletionProc	 asyncGetFrameCallback,
	 long		 	 	 	 	 	 callbackRef);

Parameter Description

Exporters • 193Adobe Premiere Pro CS5 SDK Guide

inVideoRenderID Pass in the outVideoRenderID returned from
MakeVideoRenderer(). This will be passed to
PrSDKSequenceAsyncRenderCompletionProc.

asyncGetFrameCallback The notification callback.
inCallbackRef A pointer holding data private to the export-

er. This could be, for example, a pointer to an
exporter instance. This will also be passed to
PrSDKSequenceAsyncRenderCompletionProc.

PrSDKSequenceAsyncRenderCompletionProc()

Use this function signature for your callback used for async frame notification, passed to
SetAsyncRenderCompletionProc. Error status (error or abort) is returned in inGet-
FrameReturn.

void (*PrSDKSequenceAsyncRenderCompletionProc)(
csSDK_uint32	 	 	 	 	 inVideoRenderID,
void*	 	 	 	 	 	 inCallbackRef,
PrTime 	 	 	 	 	 	 inTime,
PPixHand	 	 	 	 	 	 inRenderedFrame,
SequenceRender_GetFrameReturnRec	 *inGetFrameReturn);

Parameter Description
inVideoRenderID The outVideoRenderID that the exporter passed to

SetAsyncRenderCompletionProc earlier.
inCallbackRef A pointer that the exporter sets using

SetAsyncRenderCompletionProc(). This could
be, for example, a pointer to an exporter instance.

inTime The frame time requested.
inRenderedFrame The rendered frame. The exporter is reponsible for dis-

posing of this PPixHand using the Dispose() call in the
PPix Suite.

inGetFrameReturn A structure that contains info about the frame returned,
and it includes the inAsyncCompletionData origi-
nally passed to QueueAsyncVideoFrameRender().

QueueAsyncVideoFrameRender()

Use this call rather than RenderVideoFrame() to queue up a request to render a specific
frame asynchronously. The rendering can happen on a separate thread or processor. When the

Exporters • 194Adobe Premiere Pro CS5 SDK Guide

render is completed, the PrSDKSequenceAsyncRenderCompletionProc that was set
using SetAsyncRenderCompletionProc will be called.

prSuiteError (*QueueAsyncVideoFrameRender)(
	 csSDK_uint32	 	 	 	 inVideoRenderID,
	 PrTime	 	 	 	 	 inTime,
	 csSDK_uint32*	 	 	 	 outRequestID,
	 SequenceRender_ParamsRec*	 inRenderParams,
	 PrRenderCacheType	 	 	 inCacheFlags,
	 void*	 	 	 	 	 inAsyncCompletionData);

Parameter Description
inVideoRenderID Pass in the outVideoRenderID returned from

MakeVideoRenderer(). This gives the host the con-
text of the video render.

inTime The frame time requested.
outRequestID Passes back a request ID, which... doesn’t seem to have any

use.
inRenderParams The details of the render.
inCacheFlags One or more cache flags.
inAsyncCompletionData This data will be passed to the

PrSDKSequenceAsyncRenderCompletionProc
in inGetFrameReturn.asyncCompletionData.

PrefetchMedia()

Prefetch the media needed to render this frame. This is a hint to the importers to begin reading
media needed to render this video frame.

prSuiteError (*PrefetchMedia)(
	 csSDK_uint32	 inVideoRenderID,
	 PrTime	 	 inFrame);

PrefetchMediaWithRenderParameters()

Prefetch the media needed to render this frame, using all of the parameters used to render the
frame. This is a hint to the importers to begin reading media needed to render this video frame.

prSuiteError (*PrefetchMediaWithRenderParameters)(
	 csSDK_uint32	 	 	 	 inVideoRenderID,
	 PrTime	 	 	 	 	 inTime,
	 SequenceRender_ParamsRec*	 inRenderParams);

Exporters • 195Adobe Premiere Pro CS5 SDK Guide

CancelAllOutstandingMediaPrefetches()

Cancel all media prefetches that are still outstanding.

prSuiteError (*PrefetchMedia)(
	 csSDK_uint32	 inVideoRenderID);

IsPrefetchedMediaReady()

Check on the status of a prefetch request.

prSuiteError (*IsPrefetchedMediaReady)(
	 csSDK_uint32	 inVideoRenderID,
	 PrTime	 	 inTime,
	 prBool*	 	 outMediaReady);

MakeVideoRendererForTimeline()

Similar to MakeVideoRenderer, but for use by renderer plug-ins. Creates a video renderer,
in preparation to get rendered video from the host. The TimelineID in question must refer to a
top-level sequence.

prSuiteError (*MakeVideoRendererForTimeline)(
	 PrTimelineID	 inTimeline,
	 csSDK_uint32*	 outVideoRendererID);

MakeVideoRendererForTimelineWithFrameRate()

Similar to MakeVideoRendererForTimeline, with an additional frame rate parameter.
This is useful for the case of a nested multicam sequence.

prSuiteError (*MakeVideoRendererForTimelineWithFrameRate)(
	 PrTimelineID	 inTimeline,
	 PrTime	 	 inFrameRate,
	 csSDK_uint32*	 outVideoRendererID);

ReleaseVideoRendererForTimeline()

Similar to ReleaseVideoRenderer, but for use by renderer plug-ins. Release the video ren-
derer when the renderer plug-in is done requesting video.

Exporters • 196Adobe Premiere Pro CS5 SDK Guide

prSuiteError (*ReleaseVideoRendererForTimeline)(
	 csSDK_uint32	 inVideoRendererID);

Additional Details

Multiplexer Tab Ordering

If your exporter provides a Multiplexer tab like some of ours do, you will find that it appears after
the Video and Audio tab, rather than before those tabs as in the case of our exporters. The key is
to use the following define as the parameter identifer for the multiplexer tab group:
#define ADBEMultiplexerTabGroup	 “ADBEAudienceTabGroup”

Creating a Non-Editable String in the Parameter UI

During exSelGenerateDefaultParams, add a parameter with exNewParamIn-
fo.flags = exParamFlag_none. Then during exSelPostProcessParams, call
AddConstrainedValuePair() in the Export Param Suite. f you only add one value pair,
then the parameter will be a non-editable string. In the case of the SDK Exporter sample, it adds
two, which appear as a drop-down option.

Accelerated Renderers

Accelerated renderers are a new plug-in type in CS4, defined in PrSDKAcceleratedRender.h. At
the top-level, a renderer statelessly advertises a list of pixel formats that it supports, including cus-
tom formats, but also including standard formats (allowing the acceleration of renders for built-in
exporters).

Since 3rd-party renderers need to take over rendering for certain segments of a sequence, there
is a priority mechanism similar to the importer mechanism. Plug-ins can be prioritized above or
below the built-in renderer.

Given a specific sequence, the host will setup a state object for rendering that sequence using a
specific renderer. The renderer will query the sequence using the same suite functions that the
player currently uses to do the same. This state will include a callback function that will act much
like the real-time status querying that is done in the player, allowing a specific renderer to acceler-
ate only certain ranges of a sequence.

For a given export, this initialization will be performed for each loaded renderer. At the end of the
export each will be torn down.

Exporters • 197Adobe Premiere Pro CS5 SDK Guide

During the export, for a given frame request the host will choose the highest priority renderer
that supports that frame, for a requested pixel format. A renderer at a lower priority than the
built-in renderer can be selected if a custom pixel format is requested.

The renderer interface will be completely asynchronous. The request can be initiated, queried for
completion and canceled. The request will include a callback function which will be called if there
is an error, if the render completes, or if the host cancels it. There should be no instance where
the request is initiated without error, and the callback is not called. The request will include a
RequestID object, and a suite will allow the renderer to query this for properties (pixel formats,
deinterlacing options, etc.).

The renderer will allocate PPixs using the PPix Creator Suite. If the renderer produces a frame in
a custom format, it will pass through to the exporter, as above. The host will do no post process-
ing, and the renderer must support the complete frame render (or not at all). The host will, in the
case of exporting through Media Encoder need to copy the frame to another process, so again, the
frame data must be flat.

Effects and transition plugins will not support the custom pixel formats. To enable accelerated
effects and transitions, this must be done at the renderer level. The renderer can access importers
using the Clip Render Suite.

These plug-ins are loaded, and initialized in PProHeadless. When a Media Encoder export ren-
ders through PProHeadless, an accelerated renderer is created for the sequence, and queried for
the segments and pixel formats that it can handle.

In PProHeadless, when a renderer is available for a given render request, it will be used. Render
requests will be made and tracked, and can be cancelled by the dynamic link client. Multiple ren-
derer plugins can be loaded, and will be queried in priority order.

DynamicLinkClient now supports requests for custom pixel formats, and will forward that on to
DynamicLinkServer, which will use the custom formats when deciding on a renderer. At the mo-
ment, all custom formats are assumed to be preferred over the selected native 4444 format.

Guidelines for Exporters in Encore

New in CS5, third-party exporters can now be used to transcode assets to MPEG-2 or Blu-ray
compliant files. Currently, the option to choose a third-party exporter is only available on a per-
clip basis, not on a project-wide basis. The user will need to right-click on an asset in the Project
panel, choose Transcode Settings, and choose the third-party preset from the Quality Preset
drop-down.

Encore will remain a 32-bit application for CS5. So if you are developing plug-ins for Encore,
use the CS5 headers to create 32-bit plug-ins. We have left the 32-bit configurations in the

Exporters • 198Adobe Premiere Pro CS5 SDK Guide

sample projects to facilitate this. Install the exporter in the Encore application folder at Plug-ins/
Common/. Note that on Mac OS, this subfolder is in within the application package.

Naming Your Exporter

Encore only uses the MPEG2-DVD and MPEG2 Blu-ray formats for transcoding to MPEG2-
DVD and MPEG2 Blu-ray formats, respectively. Currently it looks for the substrings “MPEG2-
DVD”, “MPEG2 Blu-ray” and “H.264 Blu-ray” in the exporter name to identify the video format
of the exporter, and to enable it within the Encore UI. So the format name returned from export-
er plug-in should contain one of these as a substring, in order for it to be usable within Encore.
For example “My MPEG2 Blu-ray”, “Accelerated MPEG2-DVD”, etc. Please avoid using the exact
same names as the built-in formats to avoid conflict.

Naming Your Output

Encore uses the exporters to create elementary video and audio streams (muxing is switched to
off during transcoding). The output file extensions should be standard ones: .m2v for MPEG2-
DVD, MPEG2 Blu-ray video formats, .m4v for H.264 Blu-ray; .ac3 for Dolby audio, .wav for
PCM, .mpa for MPEG-1 Layer 2.

Parameters

Please refer to the built-in MPEG2-DVD and MPEG2 Blu-ray formats present in Encore to get
familiar with the typical exporter user interface in Encore. Having UI properties similar to the
built-in formats in Encore will make it easier to integrate a third-party exporter.

The audio formats available in an exporter should correspond to the same choices as available in
Encore for a DVD or Blu-ray project. In an MPEG-2 DVD exporter, the audio formats should be
either Dolby Digital 2.0 (stereo), MPEG-1 Layer 2 audio in stereo or PCM audio (48kHz). For
an MPEG2 Blu-ray exporter, only the Dolby and the PCM formats should be available. For more
details regarding audio formats supported in Encore, please refer to the Encore help documenta-
tion. Allowing audio formats other than these for encoding will not work in Encore due to the
constraints of the DVD/Blu-ray disc specifications.

Encore will need to access many of the exporter’s encoding parameters. It may even modify some
of the encoding parameters during the transcoding to MPEG-2 DVD and Blu-ray formats, so that
the encoding stays within the bit-budget constraints of the project. So a third-party exporter must
use specific property identifiers and property types. If these parameters are not used, then there
is little guarantee of the correctness of the encoded file and the size of the final disc, since Encore
will not be able to control the settings of the exporter to apply the size constraints to the output
files. Below is a list of the properties with their identifiers and types that an exporter plugin must
support:

Exporters • 199Adobe Premiere Pro CS5 SDK Guide

Property Identifier Property type Description
ADBEVideoWidth
(required)

exParamType_int Frame width

ADBEVideoHeight
(required)

exParamType_int Frame height

ADBEVideoVBR exParamType_int
Constrained value list

Type of encoding (constant/variable
bitrate, 1 / 2 passes)
0 = CBR
1 = VBR, 1 Pass
2 = VBR, 2 Pass

ADBEVideoBitRate
ADBEVideoMaxBitRate
ADBEVideoAvgBitRate
ADBEVideoMinBitRate

exParamType_float Video bitrate(s) (Mbps)
For CBR encoding use the first
parameter.
For VBR encoding use parameters
2-4.

ADBEVideoFPS (required) exParamType_
ticksFrameRate

Frame rate

ADBEMPEGCodec
BroadcastStandard
(required)

exParamType_int
Constrained value list

0 = NTSC
1 = PAL
2 = SECAM

ADBEVideoAspect exParamType_int
Constrained value list

Frame aspect ratio
1 = Square 1:1
2 = Standard 4:3
3 = Widescreen16:9

ADBEVMCMux_Type exParamType_int
Constrained value list

Encore needs a way to switch off
muxing as it creates only elemen-
tary streams
0 = MPEG-1
1 = VCD
2 = MPEG-2
3 = SVCD
4 = DVD
5 = TS
6 = None

ADBEVideoFieldType exParamType_int
Constrained value list

0 = Progressive
1 = Upper field first
2 = Lower field first

ADBEAudioCodec
(required)

exParamType_int
Constrained value list

Use these 4CCs for values
‘dlby’ – Dolby
‘PCMA’ – PCM
‘mpa ‘ – MPEG-1 Layer 2

Exporters • 200Adobe Premiere Pro CS5 SDK Guide

ADBEAudio_Endianness
(optional)

exParamType_int
Constrained value list

If using Dolby audio; Encore will
set to big endian for AC3 files
0 = little endian
1 = big endian

ADBEAudioBitrate
(required for Dolby and
MPEG-2 audio codecs)

exParamType_int Audio codec bitrate (kbps)

Guidelines for Exporters in Premiere Elements

First, make sure you are building the exporter using the right SDK. Premiere Elements 8 requires
the Premiere Pro CS4 SDK. The next version of Premiere Elements will likely use the CS5 SDK.

Exporter Preset

For an exporter to show up in the Premiere Elements UI, you’ll need to install a preset in a spe-
cific location:

1) Create a folder named “OTHERS” in [App installation folder]/sharingcen-
ter/Presets/pc/
2) Create a sub-folder with your name (e.g. MyCompany) under OTHERS and place the preset file
(.epr) in it.
The final path of the preset file should be something like [App installation folder]/
sharingcenter/Presets/pc/OTHERS/MyCompany/MyPreset.epr
3) Relaunch Premiere Elements.
	 a. Add a clip to the timeline
	 b. Goto the “Share” tab
	 c. Under that choose “Personal Computer”
	 d. You should see the “Others – 3rd Party Plug-ins” in the list of formats. Select this.
	 e. Your preset should be seen in the drop-down.

Return Values

Premiere Elements 8 uses a slightly different definition of the return values. Use the following
definition instead:

enum
{
 exportReturn_ErrNone = 0,
 exportReturn_Abort,
 exportReturn_Done,
 exportReturn_InternalError,

Exporters • 201Adobe Premiere Pro CS5 SDK Guide

 exportReturn_OutputFormatAccept,
 exportReturn_OutputFormatDecline,
 exportReturn_OutOfDiskSpace,
 exportReturn_BufferFull,
 exportReturn_ErrOther,
 exportReturn_ErrMemory,
 exportReturn_ErrFileNotFound,
 exportReturn_ErrTooManyOpenFiles,
 exportReturn_ErrPermErr,
 exportReturn_ErrOpenErr,
 exportReturn_ErrInvalidDrive,
 exportReturn_ErrDupFile,
 exportReturn_ErrIo,
 exportReturn_ErrInUse,
 exportReturn_IterateExporter,
 exportReturn_IterateExporterDone,
 exportReturn_InternalErrorSilent,
 exportReturn_ErrCodecBadInput,
 exportReturn_ErrLastErrorSet,
 exportReturn_ErrLastWarningSet,
 exportReturn_ErrLastInfoSet,
 exportReturn_ErrExceedsMaxFormatDuration,
 exportReturn_VideoCodecNeedsActivation,
 exportReturn_AudioCodecNeedsActivation,
 exportReturn_IncompatibleAudioChannelType,
 exportReturn_Unsupported = -100
};

The red values are unique to Premiere Elements 8, and shifted the subsequent return values 2
values higher than their definition in the Premiere Pro SDK.

Players • 202Adobe Premiere Pro CS5 SDK Guide

8Players

Players manage playback of video in the Source Monitor, Sequence Monitor, Multicam Monitor,
or Reference Monitor. Players can also play video out to a hardware device such as an SDI card
or other third-party hardware. Only one player per sequence can be used for playback, and once
the player is set, it cannot be changed. So a player should be designed to handle playback from
the start of the editing process all the way to final playout. The player used by the sequence is
determined while creating a new sequence, by the Editing Mode selected. An Editing Mode is
a pairing of a player and a exporter. The player used for playback of a single clip in the Source
Monitor is determined by the player selected in Preferences > Player Settings > Default Player. So
this player may not be the same as the player selected in the Editing Mode.

A player can call the host to render frames using the Playmod Render Suite, or it can take over
rendering for any segment it chooses. A player may choose to take over rendering if it can render
certain effects or composite faster than the host’s renderer. However, a player may not wish to
take over rendering every segment of a sequence, since there may be certain effects or file formats
that it cannot render.

There may be several instances of a player at a time, each with a unique playID. One instance
is created when a project is opened for the titler, for external monitor output. Another instance
is created for each sequence that has been opened in the Sequence Monitor. Another instance
may be created when a single clip is opened in the Source Monitor. Another instance may be
for a Reference Monitor to the Sequence Monitor. Yet another instance may be for a transition
preview in the Effect Controls Panel (only certain transitions have a transition preview). Only
one of these players will be active at a time, and each player will receive messages from the host to
activate and deactivate. A player will receive messages to playback or scrub only when it is active.

All sequence players must manage their own private representation of the sequence called a cut-
list -- a list of tree structures of video clips and effects. The host sends messages to the appropri-
ate player instance as the user makes edits to the sequence, so that the player can use the Video
Segment Suite to find out exactly what parts of the sequence have changed, and make correspond-
ing updates to its cutlist. Certain edits may result in cutlist updates to several player instances, for
example, if the user makes changes to a sequence that is nested within another sequence.

Players • 203Adobe Premiere Pro CS5 SDK Guide

If you’ve never developed a player before, you can skip the What’s New sections, and go directly to
Getting Started.

What’s New

What’s New in Premiere Pro CS5?

New settings in the Monitor panel give the user control over which field to display, and
whether rendering for the display should be done at full resolution or at a lower resolu-
tion. To provide API access to these new settings, a new selector has been added: playmod_
SetDisplayStateProperties. Players should set PMCapSupportsDisplayStateProperties
in pmModuleInfoRec.capabilityFlags to receive this new selector.

New in CS5, GetAcceleratedRendererRTStatusForTime in the Playmod Render
Suite provides a way for a player to find out if a segment uses effects accelerated by the Mercury
Playback Engine or any other accelerated renderer.

Sequences can now have video preview resolution settings that differ from the resolution of the
sequence itself. This preview resolution is not used as the resolution sent with playmod_NewList,
but is used as the resolution preview files are generated at. Since the preview resolution can be
changed on-the-fly, this new setting can be useful for working at proxy sizes.

The new optional playmod_PutTemporaryTimeline selector brings back the old playmod_
PutSegment functionality, allowing a player to provide its own rendering of a frame to be dis-
played on external hardware during an edit.

Returning playmod_ErrNone from playmod_PutFrame will no longer serve as a signal to the
host to draw the frame in the Monitor panel, as was the case previously on Windows. Any player
that implements playmod_PutFrame must draw the frame in the Monitor panel.

What’s New in Premiere Pro CS4?

New Timeline Segments

The new video segments replace the old segments as the way to get information about se-
quences in the timeline. The player is notified of a change to a sequence during playmod_
VideoSequenceHasChanged. There are no segments sent with this selector. Rather than the host
sending the video segments to the player, the player must request specific details using the Video
Segment Suite.

Players • 204Adobe Premiere Pro CS5 SDK Guide

The structure of segments has changed. Previously for segments with multiple layers, there was a
layer segment with two inputs, one of which was a layer segment with two inputs, one of which
was a layer segment with two inputs, and so on. Now there is a Compositor node with n inputs.
Each of those inputs is a Clip node, which has one input which is a Media node, and it also has n
Operators, which are effects.

So, a simple example, three clips in a stack, the top one with three effects looked like this before:
Segment
	 Clip
		 Layer
	 	 	 Clip (foreground layer)
	 	 	 	 Effect (Motion, with keyframes)
	 	 	 	 	 Effect (Color Corrector)
	 	 	 	 	 	 Effect (Blur)
	 	 	 	 	 	 	 File (top clip)
	 	 	 Clip (background layer)
				 Layer
	 	 	 	 	 Clip (foreground layer)
	 	 	 	 	 	 File (middle clip)
	 	 	 	 	 Clip (background layer)
	 	 	 	 	 	 File (middle clip)

Now it looks like:
Segment
	 Compositor Node
		 Clip Node
	 	 	 Media Node (bottom clip)
		 Clip Node
	 	 	 Media Node (middle clip)
		 Clip Node
	 	 	 Media Node (top clip)
	 	 	 Clip Operators (Blur, Color Corrector, Motion)

To get a good idea of the segment structure, try the SDK player on Windows, create a sequence
using the SDK Editing Mode, and watch the text overlay in the Sequence Monitor as you perform
edits.

Reporting Real-Time Status

Providing RT status is fairly similar to before. Respond to the new playmod_GetRTStatusForTime
selector by filling in the two last members of prtPlayableRangeRec.

Players • 205Adobe Premiere Pro CS5 SDK Guide

prtPlayableRangeRec has been changed. The player must now provide not only the real-
time status as a PRT_PLAYCODE, but also the outEndTime at the end of the range starting at
inStartTime where the real-time status is constant.

Many PRT_PLAYCODEs have been removed. Premiere hadn’t been treating these any differently
than PRT_PLAYCODE_NON_REALTIME_UNSPECIFIED.

invalRTRanges() has been removed, but an equivalent call is available in the Playmod
Render Suite, called RefreshRTStatus.

Sequence-Specific Settings

Sequences in the same project can now have different settings. So there is no longer a single edit-
ing mode per project. This means that the Editing Mode suite and most selectors for the get-
Settings callback in the utilFuncs are no longer supported.

Fractional Resolution

New in Premiere Pro 4.1. Players can optionally support fractional resolution display. Rather
than decoding and rendering video at full resolution, it can use a fractional resolution. Fractional
decoding is dependent on the importer supporting import at fractional resolution, providing
fractional sizes for imGetPreferredFrameSize. Premiere Pro 4.1 currently only uses fractional
resolution for the Red editing modes, so you can use those editing modes to experiment with the
feature.

There are various ways for the user to reach the fractional resolution modes in the UI: From the
monitor output menu, monitor wingtip, context menu in the grey area of a monitor background,
and the context menu over the video in the window. When in fractional resolution mode, the
fractional resolution menu items replace the normal High/Draft/Auto Quality modes.

The player must set PMCapCanDoFractionalResolution during playmod_GetIndFormat,
which will turn on fractional resolution capabilities for all editing modes supported by the
player. The player will get two new selectors, playmod_SetUseFractionalResolution and playmod_
SetFractionalResolution, to notify the player which fractional resolution mode to use.

New RT status

Players can now mark a segment yellow, so that it is not rendered when previewing the work
area, but is rendered before export to tape. Use the new prtPlaycode, PRT_PLAYCODE_
REALTIME_WITH_MISMATCH.

Players • 206Adobe Premiere Pro CS5 SDK Guide

Other Changes

Players no longer receive the quieting calls playmod_ActivateFile8 and playmod_ActivateFile, or
playmod_PutSegment.

What’s New in Premiere Pro CS3?

A new clip type in prtClipRec, PRT_CLIPTYPE_HOSTRENDER, tells the player that the
clip must be rendered by the host because it has variable speed.

All player instances are now sequence players, which means playmod_NewList is now always sent
rather than playmod_Open for players in the Source Monitor. The player for the current editing
mode is called for all types of clips in the Source Monitor, not just ones it specifies in playmod_
GetIndFormat. This enables all types of clips to be previewed on the external monitor, and the
audio to be played out through the device used by the player.

A player without a cutlist or window handle is created when a clip is selected in the timeline, and
the Effect Controls panel is open. This new player is used when the user hits the audio preview
button, to play out audio to the device used by the player. When the clip is deselected or deleted,
the player is closed.

New enum value in PrVideoDisplayType: kPrVideoDisplayType_AudioOnly. This
is the display type sent with playmod_SetVideoDisplayType when playing an audio-only clip in the
Source Monitor. This tells the player instance to turn off video display, and to not round the posi-
tion returned in playmod_GetPos to video frame boundaries. This allows for smoother current
time indicator movement, and prevents the CTI from jumping back to the previous video frame
boundary when playback begins. pmPlayerDisplay_AudioOnly was also added to pm-
DisplayMode, for players still using the legacy playmod_SetDisplayMode selector.

The RenderScope call in the Scope Render Suite now renders to a prWnd rather than a prOff-
screen. So the Scope Render Suite version has been incremented to 2.

Field type, audio sample rate, and video subtype are passed in pmNewListParms.

New Stock Image Suite, which provides four images useful for players: color bars, not yet ren-
dered, playing on hardware, and capture preview on hardware.

Note: showFileFrame only works in Windows.

Clip Render Suite is now at version 2, adding a new call, GetClipFieldType.

Players • 207Adobe Premiere Pro CS5 SDK Guide

Getting Started

Selector Calling Sequence

playmod_Startup is sent once at application start-up. playmod_GetIndFormat is sent repeatedly
so the player can enumerate filetypes and subtypes it plays. This is how the host determines which
player is used for which editing mode.

When a new sequence is created that uses the player as part of the sequence’s editing mode,
playmod_NewList is sent, telling the player to create a new cutlist. This selector is also sent to the
player specified by Preferences > Player Settings > Default Player, each time a clip is opened in the
Source Monitor. playmod_GetInfo is then sent to retrieve additional playback information. play­
mod_VideoSequenceHasChanged is then sent, signalling the start of the cutlist updates. Since the
project has just been created, the cutlist is empty. As usual after a cutlist update, the host sends
playmod_GetRTStatusForTime to query the player for the real-time status of each segment in the
cutlist. playmod_Activate is then sent to tell the player it is the active player, and can output video
to the screen or external device. Next, playmod_SetDisp tells the player the coordinates on the
screen where it should draw. playmod_SetQuality is also sent to give the player the initial play-
back quality setting, modifiable by the user. Finally, playmod_Update is sent to tell the player to
output the video at the current time to the screen or external device. Then, playmod_SetPos tells
the player what the current time is. playmod_GetPos may be called over and over again, to make
sure the current time position has not changed.

If a clip is modified in a sequence, the host sends messages to the sequence player so that
it can update its private representation of the cutlist. These messages include playmod_
VideoSequenceHasChanged, playmod_GetRTStatusForTime, and playmod_Update. There may be
several playmod_GetRTStatusForTime calls, if the clip spans multiple segments. If a segment is
changed, one will be added in its place; if a segment is removed, an empty one will be added in its
place.

A player will get many playmod_Update messages whenever the display area is obscured and
uncovered. playmod_Activate will be sent to activate or deactivate an instance of a player when
switching back and forth between player windows (e.g. Sequence Monitor and Reference
Monitor), or when the application gains or loses focus.

When the user scrubs in a clip or sequence, the host sends playmod_EnterScrub, indicating that
a series of positioning calls is about to come, followed by a series of playmod_SetPos commands.
The player should position itself to the location described by playmod_SetPos, display a frame of
video, and play a blip of audio. The host ends the sequence with playmod_LeaveScrub. When the
user steps back and forth using the arrow keys, the host sends playmod_EnterScrub, playmod_
Step, playmod_LeaveScrub.

Players • 208Adobe Premiere Pro CS5 SDK Guide

When the user initiates playback, the host sends playmod_Preroll to tell the player to prepare
for playback. The player should ready the output device, the audio hardware using the Playmod
Audio Suite, etc. The host then sends playmod_Play to begin playback. If the host is playing the
audio through an ASIO driver (recommended), the player should call the host to get the current
audio position, to use as a clock for the video. If the player is driving the audio, it should call the
host to get mixed-down audio buffers. The host repeatedly sends playmod_GetPos to retrieve the
player’s current position and state (playing or stopped). The host sends playmod_PlayIdle to give
the player processor time to service the playback. The player must update the screen and/or the
external device as quickly as possible, either rendering the frames itself, or calling the Playmod
Render Suite to render the frames. If playback is stopped by the user, playmod_Stop is sent.
Otherwise, the player should stop itself when it reaches the out point specified in playmod_Play,
or in point if playing backwards, or loop back to the in/out point if looping was specified in play­
mod_Play.

If the user closes the project, the host sends playmod_Close. Release any hardware or memory.

playmod_Shutdown is sent when the host terminates.

Try the Sample Player Plug-in

A player requires a little more setup than most other plug-ins:
1) First build the player into the plug-ins folder
2) Build the exporter into the same folder
3) Players must have an Editing Mode XML to link it with an exporter to form an editing mode.
Copy the SDK Editing Mode.xml file from the Examples\Editing Modes\ folder in
the SDK to the Editing Modes subfolder in the application installation folder.
4) Players also need Sequence Encoder Presets. Copy the folder in Examples\Projects\
RTPlayback\SequencePreview\ to the folder described here.
5) Launch Premiere Pro, and in a new or existing project, create a New Sequence. In the New
Sequence dialog, in the General tab, set the Editing Mode to PlayerSDK.

Real-time or Needs Rendering?

A player must analyze each segment of the cutlist, and tell the host whether or not the segment
needs to be rendered to render files to achieve playback at the full frame rate. For example, the
DV player used in the DV Editing Mode tells the host that a segment is real-time if it includes
only one visible DV clip that matches the frame size and aspect ratio of the sequence. If more
than one DV clip is used (such as a semi-transparent clip over another, or a Picture-In-Picture ef-
fect), or if any non-DV clip is used (such as a QuickTime clip, or a Premiere title), or if any effect
is used, the DV player tells the host that the segment is not real-time. The host then marks the
segment non-real-time using a red bar above the segment in the Sequence Panel.

Players • 209Adobe Premiere Pro CS5 SDK Guide

All non-real-time segments must be rendered before a sequence can be Exported To Tape.
Render files are created in the format specified by the Editing Mode, in a format supported by the
exporter in the editing mode. Logically, the exporter should create render files in a format that
the player can play at the full frame rate without dropping frames.

Which Pixel Formats to Use?

Since the player drives any rendering done during playback, the player must provide an ordered
list of pixel formats as one of the render parameters. This list of pixel formats allows the renderer
to decide how best to perform the rendering, based on the pieces of the segment, and the other
parameters of the render request.

New in CS5, the player can use a combination of calls to get any format desired. It is never guar-
anteed that the built-in renderers will return a specific format, since it will use the shortest con-
version path. However, ScaleConvert(), in the new Image Processing Suite, will convert any
of the supported formats into any other.

So going back to the list of pixel formats, we recommend you request two:

1) Some 4:4:4:4 format – The built-in renderer will use this to choose a pixel format when it abso-
lutely needs to make a conversion and the choice is arbitrary. It also uses this to decide how deep
to do some processing. For example, if the player asks for VUYA_4444_8u, and the renderer
needs to make a framerate adjustment, then it will do that work in a 8-bit Y’UV space. If the play-
er asks for VUYA_4444_32f, then wherever possible, the renderer will process in 32-bit. In the
built-in player, this is controlled in the Sequence Settings by the “Maximum Bit Depth” checkbox.

2. PrPixelFormat_Any - This tells the built-in renderers that any format is acceptable and
that it should avoid unnecessary conversions. If the player receives back a format that it isn’t ex-
pecting or can’t handle, then it can use ScaleConvert() in the new Image Processing Suite to
convert to the buffer into any format desired.

If a player wants a compressed or subsampled format after the render, it can use the Image
Processing Suite to convert. If using asynchronous rendering, it can even do the conversion in a
completion callback, so that it happens on multiple threads.

Why Can’t I Always Get a Compressed Frame Back?

If the built-in renderer has to do any processing, then it will do so in a 4:4:4:4 format. As a general
rule, in a render it will never post-encode to a compressed or subsampled format - once it gets to
4:4:4:4, it will stay there to preserve the quality.

So the renderer won’t return a compressed frame if the source footage has a different compression
or is uncompressed. If the source frame has the same compression, and the player still doesn’t get

Players • 210Adobe Premiere Pro CS5 SDK Guide

that format from the renderer, then it implies that the renderer is doing some kind of processing
on the frames. There must be a mismatch in frame size, PAR, field type, frame rate, etc.

Segments

A cutlist is a list of tree structures of video clips and effects. Each tree structure represents a seg-
ment of the sequence. The following is an example segment:

Segment
	 Compositor Node
		 Clip Node
	 	 	 Media Node (bottom clip)
		 Clip Node
	 	 	 Media Node (middle clip)
		 Clip Node
	 	 	 Media Node (top clip)
	 	 	 Clip Operators (Blur, Color Corrector, Motion)

To get a good idea of the segment structure, try the SDK player on Windows, create a sequence
using the SDK Editing Mode, and watch the text overlay in the Sequence Monitor as you perform
edits.

High-Bit Color Depth

In the Sequence Settings, in the Video Previews area, the Maximum Bit Depth checkbox allows
the user to toggle between 8-bit color rendering for speed, and the deepest supported color ren-
dering for quality. This setting corresponds to the useMaximumRenderPrecision member
of pmPlaySettings, sent with the playmod_PushPlayerSettings selector.

Multi-Camera Monitor

Players can not assume that the video display area matches the sequence dimensions. If the
player is created for a Multi-Camera Monitor, it can be larger than the sequence dimensions.
In the Multi-Camera Monitor, effect parameters can change during playback, so the rendering of
the effects should occur at the last possible moment. The player will be sent the new playmod_
EnableDynamicPlayback to tell it to enter/exit dynamic playback mode.

Real-Time Titling and Stills

For real-time titles and still images, during playmod_VideoSequenceHasChanged, use the Clip
Render Suite to render the title if the clip is a still, save the rendered image, and display it at the
appropriate time during playback.

Players • 211Adobe Premiere Pro CS5 SDK Guide

What About Audio?

All audio rendering is done internally by the host. The player controls audio playback using the
Playmod Audio Suite. Segments do not contain any information on the audio in the sequence.

Entry Point

int xPlayEntry (
	 int	 	 	 selector,
	 pmStdParms*	 stdParms,
	 void*	 	 param1,
	 void*	 	 param2)

selector is the action the host wants the player to perform. stdParms provides callbacks to
obtain additional information from the host or to have the host perform tasks. Parameters 1
and 2 vary with the selector; they may contain a specific value or a pointer to a structure. Return
playmod_ErrNone if successful, an appropriate return code, or playmod_Unsupported
if an unrecognized selector is sent. There are other specific responses to some selectors that aren’t
errors.

PrPlayID

Many selectors pass a PrPlayID as param1. The PrPlayID is a pointer to a private structure
defined, created, and managed solely by an instance of the player, and is passed to most selectors
for the player to use as storage. It should be created during playmod_NewList, and disposed of
during playmod_Close. The player is responsible for all memory management in this structure.

Standard Parameters

A pointer to this structure is sent from the host to the player with every selector.

typedef struct {
	 int	 	 	 	 pmInterfaceVer;
	 pmCallbackFuncs	 *funcs;
	 piSuitesPtr	 	 piSuites;
} pmStdParms;

Member Description

Players • 212Adobe Premiere Pro CS5 SDK Guide

pmInterfaceVer Player API version
Premiere Pro CS5 - PLAYMOD_VERSION_110
Premiere Pro CS4 - PLAYMOD_VERSION_100
Premiere Pro CS3 - PLAYMOD_VERSION_90

funcs Pointers to callbacks for players.
piSuites Pointer to universal callback suites.
playmodPrefs Pointer to private player preferences data (saved in the project

file). Data is returned to the plug-in with every subsequent call.
See playmod_GetFilePrefs.

Player-Specific Callbacks

typedef struct {
	 ClassDataFuncsPtr	 	 classFuncs;
	 FileFuncsPtr	 	 	 fileFuncs;
	 VideoFuncsPtr	 	 	 videoFuncs;
} pmCallbackFuncs;

Callbacks Description
classFuncs See ClassData functions
fileFuncs File Callbacks.
videoFuncs Video Callbacks.

File Callbacks

Only getPixelAspectRatio is not deprecated.

typedef struct {
	 pmOpenFileFunc		 	 	 openFile;
	 pmReleaseFileFunc	 	 	 releaseFile;
	 pmSetDebugParameterFunc	 	 setDebugParameter;
	 pmGetPixelAspectRatioFunc	 getPixelAspectRatio;
} FileFuncs, *FileFuncsPtr;

Function Description
openFile, releaseFile,
setDebugParameter

Deprecated

getPixelAspectRatio Used to get the pixel aspect ratio of a file. No longer needed
in CS3 and later. Use the Video Segment Suite instead.

Players • 213Adobe Premiere Pro CS5 SDK Guide

getPixelAspectRatio

Used to get the pixel aspect ratio of a file.

void getPixelAspectRatioFunc(
	 PrPlayID	 	 playID,
	 csSDK_uint32	 *num,
	 csSDK_uint32	 *den);

Parameter Description
playID The ID of the player instance. Provided by the host.
num The pixel aspect ratio, represented by a rational value, with a nu-

merator and a denominator.den

Video Callbacks

Many of these callbacks are obsolete, or superceded by the Playmod Render Suite.

typedef struct {
	 pmShowFileFrameFunc		 	 showFileFrame;
	 pmShowFileFrameProxyFunc		 showFileFrameProxy;
	 pmShowNeedsRenderXFunc	 	 showNeedsRenderX;
	 pmShowFileFrameOffscreenFunc	 showFileFrameOffscreen;
	 pmGetCurrentTime	 	 	 getCurrentTime;
	 pmFrameDropped		 	 	 frameDropped;
	 pmShowFileFrameWithSafeAreasFunc	showFileFrameWithSafeAreas;
	 pmShowFileFrameRenderSettings	showFileFrameRenderSettings;
} VideoFuncs, *VideoFuncsPtr;

Function Description
showFileFrame Windows only. Tells the host to render and display

a frame of video in the Monitor.
showFileFrameProxy,
showNeedsRenderX,
showFileFrameOffscreen

Obsolete. Calling these functions has no effect.

getCurrentTime Get the current time during playback, as deter-
mined by the audio clock.

frameDropped Reports dropped frames during Export To Tape.

showFileFrameWithSafeAreas Tells the host to render and display a frame of
video in the Monitor, with safe areas overlaid.

Players • 214Adobe Premiere Pro CS5 SDK Guide

showFileFrameRenderSettings New in Premiere Pro 2.0. Sets additional param-
eters for showFileFrame.

showFileFrame

Tells the host to render and display a frame of video in the Monitor. If you’re playing a cutlist
and encounter frames you cannot play, call this function to ask the host to display the frame. If
frames must be sent to external hardware, or more control is needed over render parameters, use
RenderVideoFrame in the Playmod Render Suite.

void showFileFrameFunc(
	 PrPlayID	 	 playID,
	 csSDK_int32	 frametime,
	 pmDisplayPos	 *disp,
	 prFloatRect	 *view);

Parameter Description
playID The ID of the player instance. Provided by the host.
frametime Specifies the frame to render and display.
disp Specifies where in the window the video should be displayed. This

is passed to the player during playmod_SetDisp.
view Specifies the area of the video that should be displayed. This is

passed to the player during playmod_SetView.

getCurrentTime

Get the current time during playback, as determined by the audio clock.

int getCurrentTime(
	 PrPlayID	 	 playID,
	 double	 	 *inCurrentTime);

Parameter Description
playID The ID of the player instance. Provided by the host.
currentTime Returned by the callback. The value is in milliseconds.

frameDropped

Reports dropped frames during Export To Tape, when using the standard Export To Tape dialog.
The host keeps track of the total number of dropped frames reported with this callback, displays

Players • 215Adobe Premiere Pro CS5 SDK Guide

the number to the user, and aborts when the user-defined limit is reached.

void frameDropped(
	 PrPlayID	 	 playID,
	 csSDK_int32	 inNumberFramesDropped);

Parameter Description
playID The ID of the player instance. Provided by the host.
inNumberFramesDropped Specifies the number of frames dropped.

showFileFrameWithSafeAreas

Tells the host to render and display a frame of video in the Monitor, with safe areas overlaid. If
you’re playing a cutlist and encounter frames you cannot play, and safe areas are on, call this func-
tion to ask the host to display the frame. If frames must be sent to external hardware, or more
control is needed over render parameters, use RenderVideoFrame in the Playmod Render Suite.

void showFileFrameFuncWithSafeAreas(
	 PrPlayID	 	 	 	 playID,
	 csSDK_int32	 	 	 frametime,
	 pmDisplayPos	 	 	 *disp,
	 prFloatRect	 	 	 *view,
	 pmAdornSafeAreasParams	 *adornSafeAreaParams);

Parameter Description
playID The ID of the player instance. Provided by the host.
frametime Specifies the frame to render and display.
disp Specifies where in the window the video should be displayed.

This is passed to the player during playmod_SetDisp.
view Specifies the area of the video that should be displayed. This

is passed to the player during playmod_SetView.
adornSafeAreaParams Specifies the details of the safe area that should be displayed.

This is passed to the player during playmod_AdornSafeAreas

showFileFrameRenderSettings

New in Premiere Pro 2.0. Sets additional parameters for showFileFrame.

void showFileFrameRenderSettings(
	 PrPlayID	 	 	 	 playID,
	 const int		 	 	 inWidth,

Players • 216Adobe Premiere Pro CS5 SDK Guide

	 const int		 	 	 inHeight,
	 const PrRenderQuality	 inRenderQuality,
	 const prBool	 	 	 inRenderFields);

Parameter Description
playID The ID of the player instance. Provided by the host.
inWidth Sets the dimensions to be used by showFileFrame.
inHeight
inRenderQuality Sets the render quality.
inRenderFields Sets the field rendering setting.

Selector Table

This table summarizes the various selector commands a player can receive.

Selector param1 param2
Messaging Selectors
playmod_Startup pmStartupRec * unused
playmod_Shutdown unused unused
playmod_GetIndFormat pmModuleInfoRec * (int) index
playmod_GetInfo PrPlayID pmPlayInfoRec *
playmod_GetFilePrefs PrPlayID pmGetFilePrefsRec *
playmod_SetFilePrefs PrPlayID void *playmodPrefs

playmod_PushPlayerSettings PrPlayID pmPlayerSettings *
playmod_Open No longer sent in CS3 and later
playmod_Close PrPlayID unused
playmod_Activate PrPlayID pmActivateRec *
playmod_Update PrPlayID unused
playmod_UpdateMarkers unused unused
playmod_SetDisp PrPlayID pmDisplayPos *
playmod_SetView PrPlayID prFloatRect *
playmod_SetDisplayMode PrPlayID pmDisplayMode

playmod_SetVideoDisplayType PrPlayID PrVideoDisplay-
Parameters *

playmod_SetDisplayStateProperties PrPlayID pmDisplayStateProper-
ties*

playmod_SetQuality PrPlayID PrPlaybackQuality

playmod_
SetUseFractionalResolution

long unused

Players • 217Adobe Premiere Pro CS5 SDK Guide

playmod_SetFractionalResolution long unused
playmod_AdornSafeAreas PrPlayID pmAdornSafeAreas-

Params
playmod_ProjectSettingsChanged PrPlayID unused
playmod_DisplayMoving PrPlayID prRect *
playmod_DisplayChanged PrPlayID unused
playmod_GetAudioInfo pmAudioInfo * unused
playmod_GetAudioChannelInfo pmAudioChan-

nelInfo *
unused

playmod_EnableDynamicPlayback prBool unused

Playback Selectors
playmod_GetPos PrPlayID pmGetPosRec *
playmod_Preroll PrPlayID pmPlayParms *
playmod_Play PrPlayID pmPlayParms *
playmod_PlayIdle PrPlayID unused
playmod_SetPlaybackSpeed PrPlayID float

*inoutPlaybackSpeed
playmod_Stop PrPlayID unused
playmod_EnterScrub PrPlayID prBool

playmod_SetPos PrPlayID PrTime *

playmod_Step PrPlayID pmStepRec *
playmod_LeaveScrub PrPlayID unused
playmod_PutTemporaryTimeline PrPlayID pmPutTemporaryTimeli-

neRec*
playmod_PutFrameRequest PrPlayID pmPutFrameRequestRec *
playmod_PutFrame PrPlayID pmPutFrameRec *
playmod_
AllowSetPositionDuringPlayback

Not used in Premiere Pro or Encore. Only used in
Soundbooth for the built-in player.

Video Segment Selectors
playmod_NewList PrPlayID pmNewListParms *
playmod_VideoSequenceHasChanged PrPlayID unused
playmod_GetRTStatusForTime PrPlayID prtPlayableRangeRec *

Selector Descriptions

This section provides a brief overview of each selector and highlights implementation issues.

Players • 218Adobe Premiere Pro CS5 SDK Guide

playmod_Startup

param1 - pmStartupRec *
param2 - unused

Sent when the host launches. Determine if your plug-in has the necessary software and/or driv-
ers to play the files it supports. Provide the plug-in specified player ID in pmStartupRec. For
the player to be used in an editing mode, this ID must match the <EditingMode.Player>
element in an editing mode XML file. If the call returns any error, the host will not call this player
again. Heartless, we know.

playmod_Shutdown

param1 - unused
param2 - unused

Sent when the host terminates. Release any hardware drivers, and free all memory. Only std-
Parms is sent with this selector.

playmod_GetIndFormat

param1 - pmModuleInfoRec *
param2 - (int) index

Populate pmModuleInfoRec, describing which filetypes and subtypes the module supports.
You’ll continue to get this selector so you can iterate through all the filetypes you support, until
you return playmod_BadFormatIndex. See Additional Details for more information.

playmod_GetInfo

param1 - PrPlayID
param2 - pmPlayInfoRec *

Return information about the file in PrPlayID in the pmPlayInfoRec.

playmod_GetFilePrefs

param1 - PrPlayID
param2 - pmGetFilePrefsRec *

Players • 219Adobe Premiere Pro CS5 SDK Guide

Sent whenever the user selects Playback Settings in the Sequence > Sequence Settings >
General dialog. Display a settings dialog, populated either with defaults or using data from the
pmGetFilePrefsRec. If the changes made should not force a rebuild of the cutlist, return
playmod_ErrNone, otherwise return playmod_RebuildCutlist. Return play-
mod_BroadcastPrefs if prefs have changed so that the host can call all playmod_
SetFilePrefs on all open players with the updated prefs.

playmod_SetFilePrefs

param1 - PrPlayID
param2 - void *playmodPrefs

Notification to a player that the Playback Settings in the Sequence > Sequence Settings > General
dialog have changed and should be updated accordingly.

playmod_PushPlayerSettings

param1 - PrPlayID
param2 - pmPlayerSettings *

New in Premiere Pro 2.0. Notification to a player that the general playback settings have changed
and should be updated accordingly.

playmod_Close

param1 - PrPlayID
param2 - unused

Release any handles or open files, dispose any memory still allocated.

playmod_Activate

param1 - PrPlayID
param2 - pmActivateRec

Sets the activation state. At any time there can be more than one player instance, but only one
is active. Activation means the plug-in may be playing soon. Player instances still receive play­
mod_Update and playmod_SetPos to redraw windows while deactivated, but no messages to begin
playback will be sent to it until the player instance is activated.

Players • 220Adobe Premiere Pro CS5 SDK Guide

On deactivate, release hardware resources, sound channels, memory so other modules can play.
On activate, start all driver/play hardware, do not update current frame until playmod_Update
message is sent.

playmod_Update

param1 - PrPlayID
param2 - unused
Redraw the current frame (the playback area was obscured by another window and has now been
uncovered).

playmod_UpdateMarkers

param1 - unused
param2 - unused

The timeline markers have changed; use stdParms->piSuites->timelineFuncs to
retrieve new marker data. Markers are read-only, and cannot be changed by plug-ins.

playmod_SetDisp

param1 - PrPlayID
param2 - pmDisplayPos *

Describes the playback position on the screen. Save this information for use during playmod_
Play.

playmod_SetView

param1 - PrPlayID
param2 - prFloatRect *

Describes the viewable area of the video in the monitor, in normalized coordinates. For example,
if the entire video is viewable, the top and left will be zero, and the bottom and right will be one.
If the monitor is zoomed into the video, only a part of the video will be visible. Save this informa-
tion for use during playback.

playmod_SetDisplayMode

param1 - PrPlayID
param2 - pmDisplayMode

Players • 221Adobe Premiere Pro CS5 SDK Guide

Obsolete. Replaced by playmod_SetVideoDisplayType in Premiere Pro 1.5. Sets the current dis-
play mode of the player. Display modes include:
pmPlayerDisplay_Off,
pmPlayerDisplay_Composite - The standard composite video mode,
pmPlayerDisplay_Alpha - Alpha mode,
pmPlayerDisplay_Scope - Scopes display mode,
pmPlayerDisplay_DirectManipulation - Direct manipulation mode.
pmPlayerDisplay_AudioOnly - Audio-only clip in the Source Monitor.

playmod_SetVideoDisplayType

param1 - PrPlayID
param2 - PrVideoDisplayParameters *

Sets the current display parameters of the player. This tells the player whether it should be dis-
playing the composite video, just playing audio, or in one of the scopes modes. If in one of the
scopes modes, the scopes settings are also provided.

A player isn’t required to draw scopes. To draw the scopes to an external output, then yes, it
must handle that drawing itself. Otherwise, it can choose to just support kPrVideoDisplay-
Type_Composite, kPrVideoDisplayType_Off, and kPrVideoDisplayType_
AudioOnly. Premiere Pro will handle drawing the rest of the types to the screen if the player
returns playmod_Unsupported for any other display type.

When playing an audio-only clip in the Source Monitor, turn off video display, and don’t round
the position returned in playmod_GetPos to video frame boundaries. This allows for smoother
current time indicator movement, and prevents the CTI from jumping back to the previous video
frame boundary when playback begins.

playmod_SetDisplayStateProperties

param1 - PrPlayID
param2 - pmDisplayStateProperties*

New in CS5, and supercedes playmod_SetQuality, playmod_SetUseFractionalResolution, and play­
mod_SetFractionalResolution. Premiere Pro passes display settings to the player, as set by the user
in the Monitor panel settings.

playmod_SetQuality

param1 - PrPlayID
param2 - PrPlaybackQuality

Players • 222Adobe Premiere Pro CS5 SDK Guide

Superceded by playmod_SetDisplayStateProperties in CS5. Set/change playback quality. This
quality is set by the user in the Monitor settings. It is not changed during playback. Each player
instance can have its own state.

playmod_SetUseFractionalResolution

param1 - PrPlayID
param2 - long

Superceded by playmod_SetDisplayStateProperties in CS5. New in Premiere Pro 4.1. Turn on
or off fractional resolution. param2 contains a boolean, so if it is non-zero, the user has turned
on fractional resolution mode. This quality is set by the user in the Monitor settings. It is not
changed during playback. Each player instance can have its own state.

playmod_SetFractionalResolution

param1 - PrPlayID
param2 - long

Superceded by playmod_SetDisplayStateProperties in CS5. New in Premiere Pro 4.1. Set the cur-
rent fractional resolution mode. param2 contains the enumerated value. This quality is set by the
user in the Monitor settings. It is not changed during playback. Each player instance can have its
own state.

playmod_AdornSafeAreas

param1 - PrPlayID
param2 - pmAdornSafeAreasParams

Provides attributes for safe title and safe action overlays

playmod_ProjectSettingsChanged

param1 - PrPlayID
param2 - unused

At least some of the project settings have changed. Use our timeline and utility funcs to determine
whether or not you need to rebuild the cutlist or create new preview files.

Players • 223Adobe Premiere Pro CS5 SDK Guide

playmod_DisplayMoving

param1 - PrPlayID
param2 - prRect *

Notifies the player that a window is moving. Assuming the window is not changing size the same
time, the rect passed in is likely to stay the same. playmod_SetDisp is never called when the win-
dow is moving and hence this new selector is used for that. Most old players don’t really need to
know when the window is moving since Windows blits the images around.

playmod_DisplayChanged

param1 - PrPlayID
param2 - unused

Notifies a player that the desktop display has changed, likely do to a color depth or resolution
change. It’s useful when players need to know this in order to optimizing their code that displays
their frames on the desktop.

playmod_GetAudioInfo

param1 - pmAudioInfo *
param2 - unused

New in Premiere Pro 2.0. Gets information about the audio capabilities of the player. This selec-
tor should be implemented if the player uses plug-in based audio, calling InitPluginAudio in
version 2 or higher of the Playmod Audio Suite. This provides the host with information for the
Preferences > Audio Output Mapping dialog, where the user can assign channel mappings for
audio output.

playmod_GetAudioChannelInfo

param1 - pmAudioChannelInfo *
param2 - unused

New in Premiere Pro 2.0. Gets information about a specific audio channel of the player. This
selector should be implemented if the player uses plug-in based audio, calling InitPluginAudio
in version 2 or higher of the Playmod Audio Suite. This provides the host with information for
the Preferences > Audio Output Mapping dialog, where the user can assign channel mappings for
audio output.

Players • 224Adobe Premiere Pro CS5 SDK Guide

playmod_EnableDynamicPlayback

param1 - prBool
param2 - unused

New in Premiere Pro 2.0. Gives a hint to help playback in the Multicam Monitor. If this is en-
abled, a player should expect that effect parameters can change during playback, so the rendering
of the effects should occur at the last possible moment.

playmod_GetPos

param1 - PrPlayID
param2 - pmGetPosRec *

Return the current position and mode to the host. Fill in the position and current mode (play-
mode_Playing, or playmode_Stopped) in pmGetPosRec.

playmod_Preroll

param1 - PrPlayID
param2 - pmPlayParms

Prepare a player to playback. Sent immediately before playmod_Play. The player should ready
the output device, the audio hardware using the Playmod Audio Suite, etc. The pmPlayParams
describe where to play and stop.

playmod_Play

param1 - PrPlayID
param2 - pmPlayParms *

Begin playback. The members of the pmPlayParms structure describe the position to start at,
in/out point, loop flag, and speed.

playmod_PlayIdle

param1 - PrPlayID
param2 - unused

Players • 225Adobe Premiere Pro CS5 SDK Guide

Sent repeatedly during play to give the playback module time to service the playback. The player
should stop itself when it reaches the out point specified in playmod_Play, or in point if playing
backwards, or loop back to the in/out point if looping was specified in playmod_Play.

playmod_SetPlaybackSpeed

param1 - PrPlayID
param2 - float *inoutPlaybackSpeed

A request that the player change to the requested playback speed. The speed value is a float,
with 1.0 meaning forward play at normal speed and (-1.0) meaning backward play at normal
speed. Zero is an illegal speed an will never be passed down. However, values very close to zero
can be passed down. The player can refuse to play at a requested speed, in which case the player
should change the float value to the speed it is going to play at and return the new playmod_
UnsupportedPlaybackSpeed error code.

playmod_Stop

param1 - PrPlayID
param2 - unused

Stop playback. This selector is only sent when playback is stopped by the user. Otherwise, the
player should stop itself when it reaches the output specified in playmod_Play, or in point if play-
ing backwards, or loop back to the in/out point if looping was specified in playmod_Play.

playmod_EnterScrub

param1 - PrPlayID
param2 - prBool

The user has started scrubbing, and a series of playmod_SetPos calls should follow. If the second
parameter is false, the playmod should initialize the audio system and keep it initialized until
playmod_LeaveScrub is called. On playmod_SetPos calls, it should move to the new position and
play a blip of audio. If the second parameter is true, then any audio from the host will be silent
and there is no need to initialize the audio system.

playmod_SetPos

param1 - PrPlayID
param2 - PrTime *

Players • 226Adobe Premiere Pro CS5 SDK Guide

Sent when the user scrubs through a clip or sequence. Jump to the position specified at PrTime,
and display the frame at the new position. If player is scrubbing, play an audio blip using the
Playmod Audio Suite. Can be sent when player is not in scrub mode, for example, when scrub-
bing a timecode hottext.

playmod_Step

param1 - PrPlayID
param2 - pmStepRec *

Move the current position by the requested time, and display the frame at the new position. If
player is scrubbing, play an audio blip using the Playmod Audio Suite.

playmod_LeaveScrub

param1 - PrPlayID
param2 - unused

The user has finished scrubbing. If the audio system is active, the player should uninitialize it.

playmod_PutTemporaryTimeline

param1 - PrPlayID
param2 - pmPutTemporaryTimelineRec*

New in CS5. Optional. A player should support this selector it wants to render a frame of a
temporary timeline and display it on the Monitor panel and any video output destinations. This
is a replacement to the old playmod_PutSegment functionality. If the player wants to display
the frame, but doesn’t need to handle the rendering itself, it should support playmod_PutFrame
instead. This selector is called only if the player set PMCapCanPutTemporaryTimeline in
pmModuleInfoRec.capabilityFlags.

playmod_PutFrameRequest

param1 - PrPlayID
param2 - pmPutFrameRequestRec *

Called only after playmod_RenderAndPutFrame was returned from playmod_PutSegment,
when a segment is available and can be rendered at the preferred size of the player. Sent to query
for the frame size and pixel format the player would like to receive in a subsequent call to play­
mod_PutFrame. playmod_PutFrame is not always preceeded by playmod_PutFrameRequest.

Players • 227Adobe Premiere Pro CS5 SDK Guide

If playmod_ErrNone is not returned, playmod_PutFrame will not be sent, and the host will
update only the Monitor. Returning an error code does not prevent the player from receiving
subsequent calls of playmod_PutFrameRequest.

playmod_PutFrame

param1 - PrPlayID
param2 - pmPutFrameRec *

Passes the host-rendered frame to the player for display on the external device and/or the screen.
The player should display the frame on the external device and draw the frame on the screen. This
is used for updating the video display when performing and edit, when frames are output from
the titler, during direct manipulation (Motion, Transform, and other effects), and other scenarios
where only a rendered frame is available. If the player wishes to perform its own rendering for
this frame, it should implement playmod_PutTemporaryTimeline instead.

This selector is called only if the PMCapPutFrame flag is set for the player. If playmod_
PutFrameRequest is sent first, the size of the frame that is specified by the player will be the size
sent to playmod_PutFrame. If playmod_PutFrameRequest is not sent, any size image can be sent to
playmod_PutFrame.

Prior to CS5, the player had to return playmod_OverlayDone if the it had displayed the
frame on the screen so that the host will not draw over the results. On Windows only, the player
could return playmod_ErrNone if it had displayed the frame on the external device only, and
the host would draw the frame on the screen.

playmod_NewList

param1 - PrPlayID *
param2 - pmNewListParms *

Initialize a new player instance, with a unique cutlist.

There can be multiple instances of the same sequence. For example, when the user opens a se-
quence, one instance is created. When the titler is first opened, another instance will be created to
provide the background video. If a transition is selected in the sequence, and the Effect Controls
Panel is open, another instance will be created to provide the transition preview.

Private data stored in PrPlayID will be returned to the plug-in with all subsequent selectors.
pmNewListParms describes the lists’ timebase and screen position.

Players • 228Adobe Premiere Pro CS5 SDK Guide

playmod_VideoSequenceHasChanged

param1 - PrPlayID
param2 - unused

A video sequence has been updated. An edit was made to the timeline that affects the out-
put. If the player takes over rendering in at least certain cases, the player should use the Video
Segment Suite to parse the timeline, and reevaluate which areas of the timeline are real-time, and
which areas are not. The real-time status should be returned to the host later during playmod_
GetRTStatusForTime.

For RT titling and still images, use the Clip Render Suite to render the title if the clip is a still, save
the rendered image, and play it back at the appropriate time during playback.

playmod_GetRTStatusForTime

param1 - PrPlayID
param2 - prtPlayableRangeRec

Give the host the status of the current cutlist. If a specific segment has previously been added to
the cutlist and was acknowledged in its entirety (can be played intact and in Real-time), it is said
to be a “Real-time” segment. A segment that plays at a lower frame rate during playback, or is
“scaled down” to remove elements that are not supported by the player is not Real-time”.

A non-RT segment is marked with a red line on the timeline.

Return Codes

Return Code Reason
playmod_ErrNone Operation has completed without error.
playmod_ErrBadFile File is corrupt or unreadable.
playmod_ErrDriver A driver error is detected, perhaps because of a hard-

ware failure.
playmod_ErrNotPreferred The file subtype is incorrect for this module.
playmod_BadFormatIndex The format index is invalid (for playmod_

GetIndFormat).
playmod_DeclinePlay Return this if your player declines to play this clip, the

host will attempt to find another player which will.
playmod_ListWrongType Player can’t play this clip, it is the wrong type. This

asks the host to render it.
playmod_ListBadSpeed Module can’t play back this file at the requested speed.

Players • 229Adobe Premiere Pro CS5 SDK Guide

playmod_CantAddSegment The cutlist can’t add a segment.
playmod_Unsupported Always return this if you’re sent a selector that you

don’t support.
playmod_AudioOverload Unused.
playmod_OutOfRange Unused.
playmod_CannotRender The plug-in cannot render the frame in real-time.
playmod_RebuildCutlist Return value used in playmod_GetFilePrefs to force

the cutlist to be rebuilt.
playmod_CannotShiftLayer Unused.
playmod_OverlayDone No longer supported in CS5. Only supported on

Windows in CS3 and CS4. Return value used in
playmod_PutFrame to tell the host that the player has
successfully updated the Monitor, so that the host will
not draw over the results.

playmod_
UnsupportedPlaybackSpeed

Return from playmod_SetPlaybackSpeed if the request-
ed speed is not supported.

playmod_BroadcastPrefs Return from playmod_GetFilePrefs to have the host
call playmod_SetFilePrefs on all open players to update
them with using the returned prefs.

playmod_CannotRecord Return from playmod_Play if audio voiceover record-
ing is requested and the player cannot support it. The
audio mixer will then put up a descriptive error mes-
sage.

playmod_RenderAndPutFrame Unused
pmIsCacheable Return from playmod_Startup if the player is

cacheable, or playmod_ErrNone if not cacheable.

Structures

Structure Sent with selector
Messaging Structures
pmActivateRec playmod_Activate
pmAdornSafeAreasParams playmod_AdornSafeAreas
pmAudioChannelInfo playmod_GetAudioChannelInfo
pmAudioInfo playmod_GetAudioInfo
pmDisplayPos playmod_NewList (member of pmNewListParms),

playmod_SetDisp. Also used in showFileFrame and
showFileFrameWithSafeAreas callbacks.

pmDisplayStateProperties playmod_SetDisplayStateProperties

Players • 230Adobe Premiere Pro CS5 SDK Guide

pmFileSpec No longer used in CS4
pmGetFilePrefsRec playmod_GetFilePrefs
pmModuleInfoRec playmod_GetIndFormat
pmPlayerSettings playmod_PushPlayerSettings
pmPlayInfoRec playmod_GetInfo
pmPlayOpenParms No longer used in CS4
PrPlayID Almost all selectors
pmPlayTimebase playmod_NewList (member of pmNewListParms)
pmPutFrameRec playmod_PutFrame
pmPutFrameRequestRec playmod_PutFrameRequest
pmPutTemporaryTimeli-
neRec

playmod_PutTemporaryTimeline

pmStartupRec playmod_Startup
pmViewRec playmod_SetView
PrVideoDisplayParameters playmod_SetVideoDisplayType

Playback Structures
pmGetPosRec playmod_GetPos
pmPlayParms playmod_Preroll and playmod_Play
pmStepRec playmod_Step

Cutlist Structures
pmNewListParms playmod_NewList
prtPlayableRangeRec playmod_GetRTStatusForTime

Structure Descriptions

pmActivateRec

Selector: playmod_Activate

Provides application activation information.

typedef struct {
	 prBool	 	 	 activate;
	 PrActivationEvent	 activationEvent;
	 PrFourCC	 	 	 pluginClassID;
	 PrFourCC	 	 	 pluginFileType;
} pmActivateRec;

Players • 231Adobe Premiere Pro CS5 SDK Guide

activate If true, and the player is not active, activate it. If false, and the player
is not inactive, deactivate it.

activationEvent The type of event causing the activation/deactivation:
PrActivationEvent_Unspecified,
PrActivationEvent_RecorderActivated,
PrActivationEvent_PlayerActivated, or
PrActivationEvent_ApplicationLostFocus

pluginClassID
pluginFileType

pmAdornSafeAreasParams

Selector: playmod_AdornSafeAreas

Attributes for safe title and safe action overlays.

typedef struct {
	 prBool	 	 enableSafeTitle;
	 float		 	 safeTitlePercentWidth;
	 float		 	 safeTitlePercentHeight;
	 prBool	 	 enableSafeAction;
	 float		 	 safeActionPercentWidth;
	 float		 	 safeActionPercentHeight;
} pmAdornSafeAreasParams;

enableSafeTitle If true, safe title should be overlaid.
safeTitlePercentWidth How far (percent-wise) to inset the overlaid rectangle

displaying safe title (i.e. for a 720x480 display, “0.1” would
mean to inset the rectangle by 72x48 pixels)

safeTitlePercentHeight

enableSafeAction If true, safe action should be overlaid.
safeActionPercentWidth How far (percent-wise) to inset the overlaid rectangle

displaying safe action.safeActionPercentHeight

pmAudioChannelInfo

Selector: playmod_GetAudioChannelInfo

Describes a specific audio channel of the player.

typedef struct {
	 PrMemoryPtr	 inPrefs;

Players • 232Adobe Premiere Pro CS5 SDK Guide

	 unsigned int	 inPrefsSize;
	 unsigned int	 inChannelIndex;
	 int	 	 	 inIsInput;
	 prUTF16Char	 outChannelName[256];
} pmAudioChannelInfo;

inPrefs A pointer to the player preference data.
inPrefsSize Size of preference data.
inChannelIndex The index of the channel for which to return the info.
inIsInput If set to true, then the request is for an input channel. Otherwise, the

request is for an output channel.
outChannelName Set this to the Unicode name for the channel.

pmAudioInfo

Selector: playmod_GetAudioInfo

Describes the audio capabilities of the player.

typedef struct {
	 PrMemoryPtr	 inPrefs;
	 unsigned int	 inPrefsSize;
	 unsigned int	 outNumInputChannels;
	 unsigned int	 outNumOutputChannels;
	 int	 	 	 outWillUsePluginAudio;
	 prUTF16Char	 outAudioDisplayName[256];
} pmAudioInfo;

inPrefs A pointer to the player preference data.
inPrefsSize Size of preference data.
outNumInputChannels Currently unused.
outNumOutputChannels The number of output channels for the player.
outWillUsePluginAudio Set to true if the plug-in will call InitPluginAudio.

If false, the call will fail if the player calls
InitPluginAudio.

outAudioDisplayName Set this to the Unicode display name of the current audio
hardware.

pmDisplayPos

Selector: playmod_NewList (member of pmNewListParms) and playmod_SetDisp. Also used in
showFileFrame and showFileFrameWithSafeAreas callbacks.

Players • 233Adobe Premiere Pro CS5 SDK Guide

Describes the playback position on the screen where the movie should be displayed.

typedef struct {
	 prWnd	 wind;
	 int	 	 originTop;
	 int	 	 originLeft;
	 int	 	 originWidth;
	 int	 	 originHeight;
} pmDisplayPos;

wind Display window.
originTop Offset in pixels from top of display window.
originLeft Offset in pixels from left of display window.
dispWidth Width of display area in pixels.
dispHeight Height of display area in pixels.

pmDisplayStateProperties

Selector: playmod_SetDisplayStateProperties

Describes the current video display quality and characteristics.

typedef struct
{
	 pmPlayMode	 	 inPlayMode;
	 PrRenderQuality	 inRenderQuality;
	 PrRenderQuality	 inDeinterlaceQuality;
	 pmFieldDisplay 	 inFieldDisplay;
	 csSDK_int32	 	 inDownsampleFactor;
} pmDisplayStateProperties;

inPlayMode Specifies the mode for to the rest of the settings apply. Either
playmode_Stopped, playmode_Playing, or play-
mode_Scrubbing.

inRenderQuality Render quality flag.
inDeinterlaceQuality Render quality flag, applied to the deinterlacing quality.
inFieldDisplay Either pmFieldDisplay_ShowFirstField, pm-

FieldDisplay_ShowSecondField, or pmField-
Display_ShowBothFields.

Players • 234Adobe Premiere Pro CS5 SDK Guide

inDownsampleFactor Factor at which to downsample the video. For example, with
a factor of 2, the video can be rendered at half the sequence
width and height for better performance.

pmGetFilePrefsRec

Selector: playmod_GetFilePrefs

typedef struct {
	 PrFourCC	 	 filetype;
	 PrFourCC	 	 subtype;
	 PrFourCC	 	 classID;
	 PrMemoryPtr	 *playmodPrefs;
	 prBool	 	 projectOpen;
} pmGetFilePrefsRec;

filetype FourCC of filetype the preferences are requested for.
subtype FourCC of subtype the preferences are requested for. Usually the

codec identifier. It can also be 0.
classID FourCC of class identifier. This is used to differentiate between com-

pile modules that support the same filetype and to cross reference
between different plug-in types (i.e. players and recorders).

playmodPrefs A pointer to a structure, private to the player. If NULL, preferences
data has not been stored and the player should allocate a block of
memory using the Memory Functions. Otherwise, preferences have
been already been stored and can be reused.

projectOpen If set to true, this selector is being sent while a project is open. If
false, there is currently no project open, for example, if the selector is
being sent from the New Project dialog.

pmModuleInfoRec

Selector: playmod_GetIndFormat

Describes the capabilities of the player.

typedef struct {
	 PrFourCC	 	 filetype;
	 PrFourCC	 	 subtype;
	 PrFourCC	 	 classID;
	 csSDK_int32	 playflags;
	 int	 	 	 hasSetup;

Players • 235Adobe Premiere Pro CS5 SDK Guide

	 int	 	 	 capabilityFlags;
	 int	 	 	 requestedAPIVersion;
	 int	 	 	 reserved[32];
} pmModuleInfoRec;

filetype FourCC of filetype supported.
subtype FourCC of subtype supported. Usually the codec identifier. It can

also be 0.
classID FourCC of class identifier. This is used to differentiate between com-

pile modules that support the same filetype and to cross reference
between different plug-in types (i.e. players and recorders).

playflags Must be pmFlag_canPlayLists.
hasSetup If non-zero, the host enables the Playback Settings button in

Sequence > Sequence Settings > General. The player will receive
playmod_GetFilePrefs when the user pushes this button, and you can
display your setup dialog.

Players • 236Adobe Premiere Pro CS5 SDK Guide

capabilityFlags PMCapPutFrame
Advertises the player can output frames to an external device using
playmod_PutFrame.

PMWillReportDroppedFrames
Player will report dropped frames during Export To Tape.

PMCapCanLoopPlayback
Player can loop playback.

PMCapCanShuttlePlayback
Player can playback speeds between -4x and 4x.

PMCapCanZoom
Player supports different zoom levels in the Monitor.

PMCapCanSafeMargin
Player can overlay title and action-safe guides.

PMCapCanExport
Player supports Export To Tape. A device controller must also be
active to establish a connection to the device. Otherwise, the menu
item will be inactive.

PMCapPutSegment
Unused in CS4 and later.

PMCapSingleClipPlayerWantsRTSegments
Unused in CS3 and later.

PMCapCanDoFractionalResolution
New in CS4. Turn on fractional resolution capabilities for all editing
modes supported by the player.

PMCapCanPutTemporaryTimeline
New in CS5. Advertises support for playmod_PutTemporaryTimeline.

PMCapSupportsDisplayStateProperties
New in CS5. Advertises support for playmod_
SetDisplayStateProperties.

requestedAPIVersion Unused.
reserved[32] Do not use.

Players • 237Adobe Premiere Pro CS5 SDK Guide

pmPlayerSettings

Selector: playmod_PushPlayerSettings

Notification to a player that the general playback settings have changed and should be updated
accordingly.

typedef struct {
	 int	 	 	 useMaximumRenderPrecision;
	 int	 	 	 mSuppressTransmit;
} pmPlayerSettings;

useMaximumRenderPrecision If set to true, the player should render at the highest bit
depth possible.

mSuppressTransmit If set to true, the player should only display the video on
the desktop, not to any external device.

pmPlayInfoRec

Selector: playmod_GetInfo

Describes the clip or sequence to be played.

typedef struct {
	 int	 	 	 width;
	 int	 	 	 height;
	 prBool	 	 hasVideo;
	 prBool	 	 hasAudio;
	 csSDK_int32	 prefPreviewWidth;
	 csSDK_int32	 prefPreviewHeight;
	 csSDK_uint32	 pixelAspectNum;
	 csSDK_uint32	 pixelAspectDen;
} pmPlayInfoRec;

width The host provides the dimensions of the clip or sequence
height
hasVideo True if clip has video. Always true for sequence players.
hasAudio True if clip has audio. Always true for sequence players.
prefPreviewWidth The host provides the dimensions of the preferred screen display.

For now, this is always the same as width and height above.prefPreviewHeight
pixelAspectNum New in Premiere Pro 2.0. The numerator and denominator of the

pixel aspect ratio.pixelAspectDen

Players • 238Adobe Premiere Pro CS5 SDK Guide

pmPlayTimebase

Selector: playmod_NewList (member of pmNewListParms)

Describes the timebase and duration of a clip.

typedef struct {
	 csSDK_uint32	 timeBase;
	 csSDK_int32	 samplesize;
	 csSDK_int32	 fileDuration;
} pmPlayTimebase;

timeBase The timebase of the clip.
samplesize The size of one sample.
fileDuration The duration of the clip. This is equal to frames * samplesize

pmPutFrameRec

Selector: playmod_PutFrame

The host passes a rendered frame in. Display the frame.

typedef struct {
	 csSDK_int32	 	 	 size;
	 csSDK_int32	 	 	 version;
	 PPixHand	 	 	 	 theFrame;
	 pmPutFrameDestination	 destination;
} pmPlayTimebase;

size The size of the structure.
version Version of the player API.
theFrame The rendered frame to display.
destination Location to display frame. Either pmPutFrameDestina-

tion_VideoDesktop or pmPutFrameDestination_
VideoHardware.

pmPutFrameRequestRec

Selector: playmod_PutFrameRequest

The attributes of the frame the player would like to receive in a subsequent call to playmod_
PutFrame.

Players • 239Adobe Premiere Pro CS5 SDK Guide

typedef struct {
	 csSDK_int32	 	 	 size;
	 csSDK_int32	 	 	 version;
	 pmPutFrameDestination	 destination;
	 csSDK_int32	 	 	 width;
	 csSDK_int32	 	 	 height;
	 PrPixelFormat	 	 	 pixelFormats[64];
	 csSDK_int32	 	 	 pixelFormatCount;
	 PrRenderQuality	 	 quality;
} pmPlayTimebase;

size The size of the structure.
version Version of the player API.
destination Location to display frame. Either pmPutFrameDestina-

tion_VideoDesktop or pmPutFrameDestination_
VideoHardware.

width The player’s preferred frame width.
height The player’s preferred frame height.
pixelFormats[64] Array of pixel format prefs.
pixelFormatCount Actual number of pixel formats in array.
quality Render quality flag.

pmPutTemporaryTimelineRec

Selector: playmod_PutTemporaryTimeline

Gives the player access to the timeline and position to display. timelineData is valid for a
short period of time, ending on the next playmod_Update call.

typedef struct
{
	 csSDK_int32	 size;
	 csSDK_int32	 version;
	 PrTimelineID	 timelineData;
	 PrTime	 	 position;
} pmPutTemporaryTimelineRec;

size The size of the structure.
version Version of the player API.
timelineData An identifier to be passed back to calls in the Timeline Functions.
position The time to display.

Players • 240Adobe Premiere Pro CS5 SDK Guide

pmStartupRec

Selector: playmod_Startup

Provide basic information on the player.

typedef struct {
	 prPluginID	 outPlayerID;
	 prUTF16Char	 outDisplayName[256];
} pmStartupRec;

outPlayerID Provide the plug-in specified player ID. For the player to be used
in an editing mode, this ID must match the <EditingMode.
Player> element in an editing mode XML file.

outDisplayName New in CS4. Provide the localized display name of the player.

PrVideoDisplayParameters

Selector: playmod_SetVideoDisplayType

The host specifies the display parameters for the current player.

typedef struct {
	 PrVideoDisplayType	 	 displayType;
	 PrScopeDisplayIntensity	 scopeIntensity;
	 prBool	 	 	 	 scopeUseSetup;
	 prBool	 	 	 	 scopeUseIRE;
	 prBool	 	 	 	 scopeShowChroma;
	 prBool	 	 	 	 scopeMagnify;
	 csSDK_int32	 	 	 reserved[23];
} PrVideoDisplayParameters;

Players • 241Adobe Premiere Pro CS5 SDK Guide

displayType One of the following types:
kPrVideoDisplayType_Vectorscope,
kPrVideoDisplayType_Waveform,
kPrVideoDisplayType_RGBParade,
kPrVideoDisplayType_YUVParade,
kPrVideoDisplayType_VectWaveYParade,
kPrVideoDisplayType_VectWaveRParade,
kPrVideoDisplayType_Alpha,
kPrVideoDisplayType_All,
kPrVideoDisplayType_Off,
kPrVideoDisplayType_DirectManipulation,
kPrVideoDisplayType_Composite
kPrVideoDisplayType_AudioOnly

scopeIntensity A user-specified float value for the scope intensity, applicable to
all scope view types.

scopeUseSetup If non-zero, the user has checked the Setup checkbox, applicable
to the YC Waveform view types.

scopeUseIRE If non-zero, the scopes are using IRE units. Otherwise, they are
using millivolts.

scopeShowChroma If non-zero, the user has checked the Chroma checkbox, appli-
cable to the YC Waveform view types.

scopeMagnify Unused.

pmGetPosRec

Selector: playmod_GetPos

Tell the host the current position and play mode.

typedef struct {
	 PrTime	 	 position;
	 pmPlayMode	 mode;
} pmGetPosRec;

position The current time position.
mode The current mode. Either playmode_Stopped or play-

mode_Playing

pmPlayParms

Selector: playmod_Preroll and playmod_Play

Players • 242Adobe Premiere Pro CS5 SDK Guide

The host specifies how and where to start and stop playing.

typedef struct {
	 PrTime	 	 	 inTime;
	 PrTime	 	 	 outTime;
	 PrTime	 	 	 startTime;
	 prBool	 	 	 loop;
	 float		 	 	 speed;
	 prBool	 	 	 export;
	 PlayModuleDeviceID	 deviceID;
	 prBool	 	 	 audioRecord;
} pmPlayParms;

inTime In point. This is not necessarily the startTime, and is used
when looping or playing backwards. If looping and playing back-
wards, jump to outTime when the movie reaches this frame,
otherwise stop playing.

outTime Out point. If looping, jump to inTime when the movie reaches
this frame, otherwise stop playing.

startTime Start point. The frame from which to start playing.
loop If true, loop playback until you receive playmod_Stop.
speed Playback speed. The speed value is a float, with 1.0 meaning

forward play at normal speed and (-1.0) meaning backward play
at normal speed.

export If true, export to tape.
deviceID If export is true, this ID will be non-zero to allow use of the

Playmod Device Control Suite.
audioRecord If true, the user has initiated a playback with voiceover audio

recording. If the player uses host-based audio (InitHostAudio),
then no special action is required. If the player uses plug-in based
audio, then voiceover recording is not supported, and it must
return playmod_CannotRecord to the host.

pmStepRec

Selector: playmod_Step

The host specifies the next position step.

typedef struct {
	 PrTime	 stepDistance;
} pmStepRec;

Players • 243Adobe Premiere Pro CS5 SDK Guide

stepDistance How far to step. A positive value is a step forward, and a negative
value is a step backward.

pmNewListParms

Selector: playmod_NewList

Create a new cutlist.

typedef struct {
	 pmPlayTimebase		 listTimebase;
	 pmDisplayPos	 	 unused;
	 PrPlayID	 	 	 playID;
	 PrTimelineID	 	 timelineData;
	 PrAudioChannelType	 audioChannelType;
	 PrMemoryPtr	 	 playmodPrefs;
	 int	 	 	 	 width;
	 int	 	 	 	 height;
	 csSDK_uint32	 	 pixelAspectNum;
	 csSDK_uint32	 	 pixelAspectDen;
	 prFieldType	 	 fieldType;
	 float		 	 	 audioSampleRate;
	 csSDK_uint32	 	 videoSubType;
} pmNewListParms;

listTimebase The timebase for the new cutlist.
playID ID of this play instance, used for callback functions.
timelineData An identifier to be passed back to calls in the Timeline Functions.
audioChannelType The audio channel type.
playmodPrefs A pointer to the player preference data.
width New in Premiere Pro 2.0. The dimensions.
height
pixelAspectNum New in Premiere Pro 2.0. The numerator and denominator of the

pixel aspect ratio.pixelAspectDen
fieldType New in Premiere Pro CS3. Field dominance. One of either pr-

FieldsNone, prFieldsUpperFirst, prFieldsLower-
First, or prFieldsUnknown.

audioSampleRate New in Premiere Pro CS3.
videoSubType New in Premiere Pro CS3.

Players • 244Adobe Premiere Pro CS5 SDK Guide

prtPlayableRangeRec

Selector: playmod_GetRTStatusForTime

Note: This structure has changed in CS4. Defines the real-time ability of a segment. If the segment
at the position is an empty area in the timeline that continues to the end, the player should
return the PRT_END_OF_TIMELINE value in the outEndTime field.

typedef struct {
	 csSDK_int32	 size;
	 csSDK_int32	 version;
	 PrTime	 	 position;
	 PrTime	 	 outEndTime;
	 prtPlaycode	 playcode;
} prtPlayableRangeRec;

size Size of the entire structure.
version Version of the structure, now PRT_VERSION_

PLAYABLERANGEREC_PREM10. Version before CS4 was
PRT_VERSION_PLAYABLERANGEREC_PREM7.

position The frame the host is asking the real-time ability for.
outEndTime Provide the out time of the segment at position.
playcode Provide the appropriate code for the real-time ability of the seg-

ment:
PRT_PLAYCODE_REALTIME - no rendering required
PRT_PLAYCODE_NON_REALTIME_UNSPECIFIED - red bar
when unrendered, green bar when rendered
PRT_PLAYCODE_REALTIME_WITH_MISMATCH - new in
CS4, if a clip can playback realtime, but has a media mismatch
with the project, show that clip as yellow. When the user renders
the work area, the yellow segments will not be rendered and will
remain yellow. There is a new sequence command, Render All,
that will render the yellow segments in addition to the red seg-
ments. On Export To Tape, the yellow segments will be rendered.

Suites

For information on how to acquire and manage suites, see the SweetPea Suites section.

Playmod Audio Suite

This suite is used to play audio during both playback and scrubbing.

Players • 245Adobe Premiere Pro CS5 SDK Guide

Host-Based, or Plug-in Based Audio?

A player has two choices for playing audio: it can ask the host to play the audio through the audio
device selected by the user, or it can get audio buffers from the host and handle its own playback
of audio. It’s possible to use host audio and plug-in audio at different times in the same player.
For example, in the built-in DV editing mode, the built-in player will use plug-in audio if playing
out to the DV device. But if just playing to the Sequence Monitor in the application UI, it will use
host audio instead.

Players that use plug-in based audio can provide details to be used in the Preferences
> Audio Output Mapping dialog. They should use InitPluginAudio from version
2 of the Playmod Audio Suite, and implement playmod_GetAudioInfo and playmod_
GetAudioChannelInfo.

Audio Playback

For host-based audio, the following sequence of calls should happen:
• Plugin receives playmod_Preroll.
• Plugin calls initHostAudio.
• Plugin returns from playmod_Preroll.
• Plugin receives playmod_Play.
• Plugin calls startAudio.
• Plugin plays.
• Plugin stops playback.
• Plugin calls stopAudio.
During playback, the plugin can get the current play position from the host using

getCurrentTime, which will be clocked from the audio device.

For plugin-based audio, the following sequence should happen:
• Plugin receives playmod_Preroll.
• Plugin calls initPluginAudio, passing a AudioPlaybackSettings struct holding the

current audio playback settings.
• Plugin returns from playmod_Preroll.
• Plugin receives playmod_Play.
• Plugin calls startAudio.
• Plugin plays. Whenever the plugin needs another buffer of audio, it calls getNextAudio

Buffer. Note that these buffers are always sequential.
• Plugin stops playback.
• Plugin calls stopAudio.

Note that the initAudio and startAudio calls can fail by returning an error code. If this
happens, then the player must abort preroll or playback start.

Players • 246Adobe Premiere Pro CS5 SDK Guide

The host will return a negative countdown during its own audio preroll, which will last at least as
long as the requested minimum preroll time in the StartAudio call.

Audio Scrubbing

The player will receive a playmod_EnterScrub selector. It should call InitHostAudio
or InitPluginAudio at this point, passing in that it is in scrub mode, followed by a
StartAudio call. If InitHostAudio was called, it should pass into StartAudio an
AudioPositions structure with the currentPosition, inPosition, and outPosi-
tion all the same, so that no audio will be played.

After this, the player will receive one or more playmod_SetPos selector. When it gets such a selec-
tor, it should play the audio associated with that video frame. Call SetRange, with the bounds
being the length of the video frame. For host-based audio, this range will immediately begin
playing. For plug-in-based audio, the plug-in can now request the next buffer and it will return
audio sample frames from the correct position. The host will output silence after the out point in
SetRange is reached.

When the player receives playmod_LeaveScrub, it should call StopAudio.

The player will never receive a playmod_Preroll or playmod_Play call while in scrub mode.

AudioTimeCallback

This callback definition is for the host to tell the plugin what the current audio time is while it
is playing the audio. It will be called on a very high priority thread and it is important that the
plugin not block this thread or perform any lengthy processing during this call.

typedef void (*AudioTimeCallback)(
void*	 inInstanceData,
PrTime	 inCurrentTime);

InitHostAudio

Tell the host to initialize the audio hardware for the host to play the audio. GetNextAudio
Buffer will be unavailable using this initialization. Returns either suiteError_NoError or
suiteError_PlayModuleAudioInitFailure.

prSuiteError (*InitHostAudio)(
csSDK_int32	 	 inPlayID,
AudioTimeCallback	 inTimerCallback,
void*	 	 	 inInstanceData,
int	 	 	 	 inIsScrubbing,

Players • 247Adobe Premiere Pro CS5 SDK Guide

PrTime*	 	 	 outClockInterval);

Parameter Description
inTimerCallback This is an optional parameter. If NULL, then the

player will not be called by the audio hardware thread.
If non-NULL, it must point to a function which can
handle being called on a high-priority thread at a
regular interval.

inInstanceData If inTimerCallback is non-NULL, then the player
can pass a pointer to instance data that it wishes re-
turned when the timer callback is called.

inIsScrubbing If non-zero, the host will treat this as a scrubbing init.
outClockInterval If inTimerCallback is non-NULL and this pa-

rameter is non-NULL, then on return it will contain
the expected calling interval of inTimerCallback.
This should be used as a guide only, and may vary
depending on the audio hardware.

InitPluginAudio

Tell the host to initialize the audio render chain for the plugin to play the audio. A player that calls
InitPluginAudio must also specify the audio hardware attributes during playmod_GetAudioInfo.
GetNextAudioBuffer will be available using this initialization. Returns either suiteError_
NoError or suiteError_PlayModuleAudioInitFailure.

prSuiteError (*InitPluginAudio)(
csSDK_int32	 	 	 	 inPlayID,
int	 	 	 	 	 	 inIsScrubbing,
const AudioPlaybackSettings*	 inSettings);

Parameter Description
inIsScrubbing If non-zero, the host will treat this as a scrubbing

init.
inSettings The settings for the requested playback.

StartAudio

Tell the host to start the audio playback. If InitHostAudio was used, then the playback clock
will start running on another thread, possibly before this call returns. If InitPluginAudio
was used, then GetNextAudioBuffer is now available. Returns suiteError_
NoError, suiteError_PlayModuleAudioNotInitialized, or suiteError_
PlayModuleIllegalPlaySetting.

Players • 248Adobe Premiere Pro CS5 SDK Guide

prSuiteError (*StartAudio)(
csSDK_int32	 	 	 inPlayID,
const AudioPositions*	 inPlayPosition,
float		 	 	 	 inPlaybackSpeed,
PrTime	 	 	 	 inMinimumPreroll);

Parameter Description
inPlayPosition The playback position structure
inPlaybackSpeed The requested playback speed. Must be non-zero
inMinimumPreroll The minimum time that the player needs to preroll

video. The host guarantees that the audio clock will
start at least this long before the start point.

GetNextAudioBuffer

Retrieves from the host the next contiguous requested number of audio sample frames, speci-
fied in inNumSampleFrames, in inInBuffers as arrays of uninterleaved floats. The
plug-in must manage the memory allocation of inInBuffers, which must point to n buf-
fers of floating point values of length inNumSampleFrames, where n is the number of
channels. This call is only available if InitPluginAudio was used. Returns suiteEr-
ror_NoError, suiteError_PlayModuleAudioNotInitialized, or suiteEr-
ror_PlayModuleAudioNotStarted.

prSuiteError (*GetNextAudioBuffer)(
csSDK_int32	 inPlayID,
float**	 	 inInBuffers,
float**	 	 outOutBuffers,
unsigned int	 inNumSampleFrames);

Parameter Description
inInBuffers A pointer to an array of buffers holding in-

NumSampleFrames input audio in each
buffer, corresponding to the total number of
available input channels.

outOutBuffers A pointer to an array of buffers inNum-
SampleFrames long into which the host
will write the output audio. There must be N
buffers, where N is the number of output chan-
nels for the output channel type specified in
InitPluginAudio.

Players • 249Adobe Premiere Pro CS5 SDK Guide

inNumSampleFrames The size of each of the buffers in the array in
both inInBuffers and outOutBuffers.

SetPosition

Change the current audio playback position. If it is outside the in or out points, then the ap-
propriate action will be taken to set the position. Returns suiteError_NoError,
suiteError_PlayModuleAudioNotInitialized, or suiteError_
PlayModuleAudioNotStarted.

prSuiteError (*SetPosition)(
csSDK_int32	 inPlayID,
const PrTime*	 inRequestedPosition,
PrTime*	 	 outActualPosition);

Parameter Description
inRequestedPosition Points to the requested playback position.
outActualPosition On return, will contain the actual position

after the change (can be NULL).

GetPosition

This function will return the time of the audio buffer currently being played by the audio hard-
ware. It is only valid to call after an Init call and until StopAudio is called. Returns suiteEr-
ror_NoError, suiteError_PlayModuleAudioNotInitialized, or suiteEr-
ror_PlayModuleAudioNotStarted.

prSuiteError (*GetPosition)(
csSDK_int32	 inPlayID,
PrTime*	 	 outPosition);

Parameter Description
outPosition On return, the time of the audio buffer currently being

played by the audio hardware.

SetRange

Change the current audio in and out points, and the looping state. If the current position field
contains a valid position (i.e. it is between the in and out points), then the playback position will
be moved to this position. If it contains an illegal value, then the playback position will not be

Players • 250Adobe Premiere Pro CS5 SDK Guide

moved except as constrained by the changed in and out points. So, to simply change the in and
out points or looping state, here is an example of the AudioPositions struct on calling:

AudioPositions position(0, 1000000, -1, TRUE);

On return, the currentPosition value will be filled in with the current position. If instead
the following struct is used:

AudioPositions position(0, 1000000, 25000, TRUE);

then the current position will be moved to 25000. Returns suiteError_NoError,
suiteError_PlayModuleAudioIllegalPlaySetting, or suiteError_
PlayModuleAudioNotInitialized.

prSuiteError (*SetRange)(
csSDK_int32	 	 	 inPlayID,
const AudioPositions*	 inRequestedPosition,
AudioPositions*	 	 outActualPosition);

Parameter Description
inRequestedPosition The requested state for the in, out, and loop positions, and, if

valid, current position.
outActualPosition On return, this will be the actual position that will be used

even if an invalid position was sent in. Can be NULL.

SetPlaybackSpeed

Set the audio playback speed. This value must be non-zero, but can be any positive or nega-
tive value. Once the magnitude reaches a certain point, the host will generate silence. For
plug-in-based audio, this call should be used to enable the host’s audio resampling. For assur-
ance, you can use the GetPosition call to ensure that the host stays in sync. If the plug-in
does its own resampling, leaving this at 1. Note that you can never request a larger buffer from
GetNextAudioBuffer than you initially declared in InitPluginAudio, so if the plug-in
does its own resampling, at faster speeds it will need to break up the buffers into sections. Returns
suiteError_NoError, suiteError_PlayModuleAudioIllegalPlaySetting, or
suiteError_PlayModuleAudioNotInitialized.

prSuiteError (*SetPlaybackSpeed)(
csSDK_int32	 inPlayID,
float		 	 inSpeed);

Parameter Description

Players • 251Adobe Premiere Pro CS5 SDK Guide

inSpeed The requested playback speed. Must be non-zero

StopAudio

StopAudio will cease audio playback and deinitialize the audio system. After calling
StopAudio, you must call one of the InitAudio routines before calling StartAudio again.
Returns suiteError_NoError, suiteError_PlayModuleAudioNotInitialized,
or suiteError_PlayModuleAudioNotStarted.

prSuiteError (*StopAudio)(
csSDK_int32	 inPlayID);

AudioPlaybackSettings

This structure is passed in to the call to InitPluginAudio.

typedef struct AudioPlaybackSettings
{
	 float		 	 	 sampleRate;
	 csSDK_uint32	 	 maxBufferSize;
	 PrTime	 	 	 inputLatency;
	 PrTime	 	 	 outputLatency;
	 csSDK_uint32	 	 outNumInputChannels;
	 csSDK_uint32	 	 outNumOutputChannels;
} AudioPlaybackSettings2;

Member Description
sampleRate The sample rate the player requests audio at
maxBufferSize The largest buffer (in sample frames) that the player will ever

ask for.
inputLatency The estimated delay from the actual sound to when the plug-

in receives the audio. A sample latency calculation is:
[buffer size] + [hardware input latency].

outputLatency The estimated delay from when the plug-in receives the audio
to when it is sent through the output hardware. A sample
latency calculation is
[buffer size] + [hardware output latency].

outNumInputChannels Number of input channels. Passed back from
InitPluginAudio.

outNumOutputChannels Number of output channels. Passed back from
InitPluginAudio.

Players • 252Adobe Premiere Pro CS5 SDK Guide

AudioPositions

typedef struct AudioPositions
{
	 PrTime	 inPosition;
	 PrTime	 outPosition;
	 PrTime	 currentPosition;
	 prBool	 looping;
} AudioPositions;

Member Description
inPosition The in point of the playback. The in point is not necessar-

ily the start point. For example, if playback begins in the
middle of a sequence, then the start point will be after the
in point. The in point must be less than or equal to the
playback start and out points.

outPosition The out point of playback. Must be greater than or equal
to the playback start and in points.

currentPosition The current playback time. Must be between the in and
out points.

looping If kPrTrue, then playback should loop at the boundar-
ies.

Playmod Device Control Suite

This suite is used by players to control a hardware device during Export To Tape. The necessary
PlayModuleDeviceID will only be passed down when a transmit is requested. The player
must then call all of the methods in this suite, in the order in which they are listed. This suite
includes the following callbacks and type:

Seek

Tells the device to seek to the appropriate location. Returns kPrDeviceControlResult_
Success, kPrDeviceControlResult_IllegalCallSequence, or kPrDevice-
ControlResult_GeneralError.

prSuiteError (*Seek)(
PlayModuleDeviceID inDeviceID);

Players • 253Adobe Premiere Pro CS5 SDK Guide

Arm

Tells the device to prepare to record. Returns kPrDeviceControlResult_Success,
kPrDeviceControlResult_IllegalCallSequence, or kPrDeviceControlRe-
sult_GeneralError.

prSuiteError (*Arm)(
PlayModuleDeviceID inDeviceID);

Record

Tells the device to start recording. Returns kPrDeviceControlResult_Success,
kPrDeviceControlResult_IllegalCallSequence, or kPrDeviceControlRe-
sult_GeneralError.

prSuiteError (*Record)(
PlayModuleDeviceID inDeviceID);

Stop

Tells the device to stop recording. Returns kPrDeviceControlResult_Success, kPrDe-
viceControlResult_IllegalCallSequence, or kPrDeviceControlResult_
GeneralError.

prSuiteError (*Stop)(
PlayModuleDeviceID inDeviceID);

PlayModuleDeviceID

of type csSDK_int32

Playmod Render Suite

Get rendered video from the host. For best performance, use the asynchronous render requests
with the source media prefetching calls, although synchronous rendering is available too. New in
CS5, GetAcceleratedRendererRTStatusForTime provides a way for a player to find
out if a segment uses effects accelerated by the Mercury Playback Engine or any other acceler-
ated renderer.

Players • 254Adobe Premiere Pro CS5 SDK Guide

PrRenderCacheType

Value Description
kRenderCacheType_None Don’t cache any type of frames.
kRenderCacheType_ImportedFrames Cache imported frames.
kRenderCacheType_ImportedStillFrames Cache imported stills.
kRenderCacheType_IntermediateFrames Cache intermediate frames.
kRenderCacheType_RenderedFrame Cache rendered frames.
kRenderCacheType_AllFrames Cache all frames.

PrSDKPlayModuleRenderSuite_AsyncCompletionProc

This plug-in specified function will be called by the host when asynchronous renders are com-
pleted. It is passed to the host to call in SetRenderCompletionProc.

void (*PrSDKPlayModuleRenderSuite_AsyncCompletionProc)(
void*	 	 inAsyncCompletionData,
csSDK_int32	 inRequestID,
PPixHand	 	 inPPixHand);

RenderVideoFrame

Renders a video frame synchronously. It will not return until the requested video frame has been
rendered or an error has occurred.

prSuiteError (*RenderVideoFrame)(
csSDK_int32	 	 	 inPlayID,
const PrTime*	 	 	 inFrameTime,
PPixHand*		 	 	 outRenderedFrame,
const PrPixelFormat*	 inRequestedPixelFormatArray,
csSDK_int32	 	 	 inRequestedPixelFormatArrayCount,
const prRect*	 	 	 inFrameRect,
csSDK_uint32	 	 	 inPixelAspectRatioNumerator,
csSDK_uint32	 	 	 inPixelAspectRatioDenominator,
PrRenderQuality	 	 inRenderQuality,
PrRenderCacheType	 	 inCacheFlags,
prBool	 	 	 	 inRenderFields);

Parameter Description
outRenderedFrame The output PPix, the caller is responsible to

destroy this

Players • 255Adobe Premiere Pro CS5 SDK Guide

inFrameTime The time of the video frame
inRequestedPixelFormatArray An array of PF_PixelFormats that

list your format preferences in order. This
list must end with PrPixelFormat_
BGRA_4444_8u

inRequestedPixelFormatArrayCount Number of formats in the format array
inFrameRect Video frame size
inPixelAspectRatioNumerator The numerator for the pixel aspect ratio
inPixelAspectRatioDenominator The denominator for the pixel aspect ratio.
inRenderQuality The render quality of this frame.
inCacheFlags The type of rendered frames to cache.
inRenderFields Render fields

QueueAsyncVideoFrameRender

This will queue a render of a video frame. It will return immediately. If the frame was available
in the cache, it will be returned from this call and the completion proc will not be called. If the
frame is not available, the request will be queued and the completion proc will be called when the
request is complete. Note: while inside your completion proc, no other video frames will be ren-
dered so do not do any time consuming work in your completion proc. The async render comple-
tion proc must be set before calling this function.

prSuiteError (*QueueAsyncVideoFrameRender)(
csSDK_int32	 	 	 inPlayID,
const PrTime*	 	 	 inFrameTime,
void*	 	 	 	 inAsyncCompletionData,
csSDK_int32*	 	 	 outRequestID,
PPixHand*		 	 	 outRenderedFrame,
const PrPixelFormat*	 inRequestedPixelFormatArray,
csSDK_int32	 	 	 inRequestedPixelFormatArrayCount,
const prRect*	 	 	 inFrameRect,
csSDK_uint32	 	 	 inPixelAspectRatioNumerator,
csSDK_uint32	 	 	 inPixelAspectRatioDenominator,
PrRenderQuality	 	 inRenderQuality,
prBool				 inRenderFields
PrRenderCacheType	 	 inCacheFlags);

Parameter Description
inAsyncCompletionData User-specific data sent to the async completion

proc
inFrameTime The time of the video frame

Players • 256Adobe Premiere Pro CS5 SDK Guide

outRequestID The request ID, if the frame is rendered async
outRenderedFrame The output PPix, the caller is responsible to

destroy this
inRequestedPixelFormatArray An array of PF_PixelFormats that

list your format preferences in order. This
list must end with PrPixelFormat_
BGRA_4444_8u

inRequestedPixelFormatArray-
Count

Number of formats in the format array

inFrameRect Video frame size
inPixelAspectRatioNumerator The numerator for the pixel aspect ratio
inPixelAspectRatioDenominator The denominator for the pixel aspect ratio.
inRenderQuality The render quality of this frame.
inCacheFlags The type of rendered frames to cache.
inRenderFields Render fields

SetAsyncRenderCompletionProc

Sets the completion function that will be called when an async render request is completed. Note:
while inside your completion proc, no other video frames will be rendered so do not do any time
consuming work in your completion proc. Instance data is sent into each async render call, and
will be returned to this completion proc.

prSuiteError (*SetAsyncRenderCompletionProc)(
csSDK_int32	 	 	 	 	 	 inPlayID,
PrSDKPlayModuleRenderSuite_AsyncCompletionProc	inCompletionProc);

Parameter Description
inPlayID
inCompletionProc This function will be called when async

renders are completed

CancelOneOutstandingAsyncRequest

Cancel a specific render request for this RenderFrame ref.

prSuiteError (*CancelOneOutstandingAsyncRequest)(
csSDK_int32	 inPlayID,
csSDK_int32	 inAsyncRequestID);

Players • 257Adobe Premiere Pro CS5 SDK Guide

CancelAllOutstandingAsyncRequests

Cancel all pending render requests for this RenderFrame ref.

prSuiteError (*CancelAllOutstandingAsyncRequests)(
csSDK_int32	 inPlayID);

FetchRenderedFrameFromCache

Returns the video frame if it is already in the cache. This does not cause a render to occur.

prSuiteError (*FetchRenderedFrameFromCache)(
csSDK_int32	 	 	 inPlayID,
const PrTime*	 	 	 inFrame,
PPixHand*		 	 	 outRenderedFrame,
const PrPixelFormat*	 inRequestedPixelFormatArray,
csSDK_int32	 	 	 inRequestedPixelFormatArrayCount,
const prRect*	 	 	 inFrameRect,
csSDK_uint32	 	 	 inPixelAspectRatioNumerator,
csSDK_uint32	 	 	 inPixelAspectRatioDenominator,
PrRenderQuality	 	 inRenderQuality);

Parameter Description
inFrame The time of the video frame
outRenderedFrame The output PPix, the caller is respon-

sible to destroy this
inRequestedPixelFormatArray An array of PF_PixelFormats

that list your format preferences
in order. This list must end with
PrPixelFormat_BGRA_4444_8u

inRequestedPixelFormatArrayCount Number of formats in the format array
inFrameRect Video frame size
inPixelAspectRatioNumerator The numerator for the pixel aspect ratio
inPixelAspectRatioDenominator The denominator for the pixel aspect

ratio.
inRenderQuality The render quality of this frame.

PrefetchMedia

Prefetches the media needed to render this frame. This is a hint to the importers to begin reading
media needed to render this video frame.

Players • 258Adobe Premiere Pro CS5 SDK Guide

prSuiteError (*PrefetchMedia)(
csSDK_int32	 inPlayID,
const PrTime*	 inFrame);

PrefetchMediaWithRenderParameters

Prefetches the media needed to render this frame, using all of the parameters used to render the
frame. This is a hint to the importers to begin reading media needed to render this video frame.

prSuiteError (*PrefetchMediaWithRenderParameters)(
csSDK_int32	 	 	 inPlayID,
const PrTime*	 	 	 inFrameTime,
const PrPixelFormat*	 inRequestedPixelFormatArray,
csSDK_int32	 	 	 inRequestedPixelFormatArrayCount,
const prRect*	 	 	 inFrameRect,
csSDK_uint32	 	 	 inPixelAspectRatioNumerator,
csSDK_uint32	 	 	 inPixelAspectRatioDenominator,
PrRenderQuality	 	 inRenderQuality,
prBool	 	 	 	 inRenderFields);

CancelPrefetchMediaWithRenderParameters

New in CS4. Cancel a specific prefetch if playback has already passed the time for which the
prefetch was needed.

prSuiteError (*CancelPrefetchMediaWithRenderParameters)(
csSDK_int32	 	 	 inPlayID,
const PrTime*	 	 	 inFrameTime,
const PrPixelFormat*	 inRequestedPixelFormatArray,	 	
csSDK_int32	 	 	 inRequestedPixelFormatArrayCount,
const prRect*	 	 	 inFrameRect,
csSDK_uint32	 	 	 inPixelAspectRatioNumerator,
csSDK_uint32	 	 	 inPixelAspectRatioDenominator,
PrRenderQuality	 	 inRenderQuality,
prBool	 	 	 	 inRenderFields);

CancelAllOutstandingMediaPrefetches

This will cancel all media pre-fetches that are still outstanding.

prSuiteError (*CancelAllOutstandingMediaPrefetches)(
csSDK_int32	 inPlayID);

Players • 259Adobe Premiere Pro CS5 SDK Guide

AddFrameToCache

This will add a video frame to the cache. As an example, this can be used to add a video frame of
another pixel format back to the cache. Then future requests for this video frame may be satisfied
in this pixel format.

prSuiteError (*AddFrameToCache)(
csSDK_int32	 inPlayID,
PPixHand	 	 inOriginalPPix,
PPixHand	 	 inNewPPix);

Parameter Description
inPlayID
inOriginalPPix The original PPix that was rendered
inNewPPix The new PPix that also represents this frame

AllowTransparentVideoFrames

Set the type of video frame returned. If set to TRUE the video frame returned may have trans-
parent alpha. Note that this type of video frame still needs to be composited on black. This is an
option if you can perform the final composite in hardware, otherwise set to FALSE and the final
composite onto black will be performed during the render.

prSuiteError (*AllowTransparentVideoFrames)(
csSDK_int32	 inPlayID,
prBool	 	 inAllowTransparentVideoFrames);

Parameter Description
inPlayID
inAllowTransparentVideoFrames If kPrTrue, the resulting video frame will not

be composited onto black

RefreshRTStatus

New in version 3. Force a refresh of the RT segment status for a given player.

prSuiteError (*RefreshRTStatus)(
	 csSDK_int32	 inPlayID);

Players • 260Adobe Premiere Pro CS5 SDK Guide

GetAcceleratedRendererRTStatusForTime

New in version 4. Query the real-time status of an accelerated renderer if used. This is important
for players to show the correct real-time status for a segment with effects accelerated using the
Mercury Playback Engine, or any other accelerated renderer.

prSuiteError (*GetAcceleratedRendererRTStatusForTime)(
csSDK_int32	 	 	 inPlayID,
prtPlayableRangePtr		 outplayableRange);

Scope Render Suite

A player receives enough information to display its own scopes. It can optionally use the Scope
Render Suite to have the host to render the scopes. The Scope Render Suite processes frame buf-
fers of either BGRA_4444_8u or VUYA_4444_8u. It does not support other pixel formats.

In version 2 of this suite, RenderScope now renders to a prWnd rather than a prOffscreen.

Stock Image Suite

New in CS3. Provides four images useful for players: color bars, not yet rendered, playing on
hardware, and capture preview on hardware. Starting in CS4, two more images are now retriev-
able from the suite: media pending and media offline.

Transitions • 261Adobe Premiere Pro CS5 SDK Guide

9Transitions

Transitions take two source frames and process them into a single destination frame. Transitions
can have their own custom modal setup dialog for additional settings.

Getting Started

Begin with the sample project, progressively replacing its functionality with your own.

Resources

More than other plug-in types, transitions depend heavily on the PiPL. After making changes to
the PiPL, rebuild the plug-in each time, so that the PiPL will be recompiled.

A Transition PiPL Example

#include “PrSDKPiPLVer.h”
#ifndef PRWIN_ENV
#include “PrSDKPiPL.r”
#endif

// The following three strings should be localized
#define plugInName “Cool Video Transition”
#define description “Image A warps into image B.”
#define plugInCategory “SDK Transitions”

// This name should not be localized or updated
#define plugInMatchName ”SDK Cool Transition”

resource ‘PiPL’ (16000) {
{

// The plug-in type

Transitions • 262Adobe Premiere Pro CS5 SDK Guide

Kind {PrEffect},

// The plug-in name as it will appear to the user
Name {plugInName},

// The internal name of this plug-in
AE_Effect_Match_Name {plugInMatchName},

// The folder containing the plug-in in the Effects Panel
Category {plugInCategory},

// The version of the PiPL resource definition
AE_PiPL_Version {PiPLVerMajor, PiPLVerMinor},

// Transition effect description, this should be localized
Pr_Effect_Description {description},

// Transition effect info flags
Pr_Effect_Info {

#if (PiPLVerMinor == 2) & (PiPLVerMinor > 1)
1,	 	 	 	 	 	 // 1 - Version Number

#endif
bitNone,	 	 	 	 	 // 2 - Valid Corner Bits
bitNone,	 	 	 	 	 // 3 - Initial Corner Bits

#if (PiPLVerMinor == 2) & (PiPLVerMinor > 1)
false,	 	 	 	 	 // unused
noExclusiveDialog,	 	 	 // 4 - Exclusive Dialog
doesNotNeedCallbacksAtSetup,	 // 5 - Callbacks at setup
noDirectCompData,	 	 	 // 6 - Internal use only

#else
doesNotNeedCallbacksAtSetup,	 // 5 - Callbacks at setup
false,	 	 	 	 	 // unused

#endif
dontWantInitialSetupCall,	 // 7 - Initial setup call
treatAsTransition,	 	 	 // 8 - 2 Input Filter
noCustomDialog,	 	 	 // 9 - Custom Dialog
dontHighlightOppositeCorners,	// 10 - Highlight Opposite Corners
notExclusive,	 	 	 	 // 11 - Exclusive
notReversible,		 	 	 // 12 - Reversible
doesNotHaveEdges,	 	 	 // 13 - Has Edges
doesNotHaveStartPoint,	 	 // 14 - Start Point
doesNotHaveEndPoint			 // 15 - End Point

}
}
};

Transitions • 263Adobe Premiere Pro CS5 SDK Guide

Resources Table

Line Name Use Valid States
1 Version Number Version number of this property Set to 1
2 Valid Corner Bits Describes all the valid corner bits bitNone, bitTop,

bitRight, bit-
Bottom, bitLeft,
bitUpperRight, bit-
LowerRight, bit-
LowerLeft, bitUp-
perLeft

3 Initial Corner Bits Describes all the initial corners dis-
played in the default setup

Same as Valid Corner Bits

4 Exclusive Dialog Set to add a Setup button to the
Effect Controls Panel. When the
user hits the button, esSetup will be
sent.

noExclusiveDialog,
needsExclusiveDia-
log

5 Callbacks at Setup Set if the transition uses previ-
ous frames; otherwise, the callback
pointer is invalid during esSetup

doesNotNeedCall-
backsAtSetup, need-
sCallbacksAtSetup

6 Internal Use only [TODO] No effect? noDirectCompData

7 Initial Setup Call Set if you want to receive esSetup
when your transition is first applied

wantInitialSetup-
Call, dontWantIni-
tialSetupCall

8 Two Input Filter Set if your transition is time-invari-
ant (doesn’t require interpolation);
i.e., is really a two-input filter, not a
transition

treatAsTransition,
treatAsTwoInput-
Filter

9 Custom Dialog Set to add a Setup button to the
Effect Controls Panel. When the
user hits the button, esSetup will be
sent.

noCustomDialog,
hasCustomDialog

10 Highlight
Opposite Corners

Set if opposite corners bits are always
to be highlighted simultaneously

dontHighlightOp-
positeCorners,
highlightOppo-
siteCorners

11 Exclusive If set, the corner arrows will act like
radio buttons, otherwise they act like
checkboxes.

notExclusive, ex-
clusive

Transitions • 264Adobe Premiere Pro CS5 SDK Guide

12 Reversible Set if the transition is reversible
(can proceed either from source 1 to
source 2); a direction control will be
shown.

notReversible, re-
versible

13 Has Edges If set, the anti-aliasing level control,
the border thickness slider, and the
border color controls will be shown.

doesNotHaveEdges,
haveEdges

14 Start Point If set, the transition supports a mov-
able start point; a start point will
appear in the Start thumbnail in the
Effect Controls Panel.

doesNotHaveStart-
Point, haveStart-
Point

15 End Point If set, the transition supports a mov-
able end point; an end point will
appear in the End thumbnail in the
Effect Controls Panel

doesNotHaveEnd-
Point, haveEndPoint

Entry Point

short xEffect (
	 short	 	 selector,
	 EffectHandle	 theData)

selector is the action Premiere wants the transition to perform. EffectHandle provides source
and destination buffers, and other useful information. Return esNoErr if successful, or an ap-
propriate return code.

Selector Table

This table summarizes the various selector commands a transition can receive.

Selector Description
esSetup (optional) Allocate memory for your parameters if necessary.

Display your modal setup dialog with default parameter val-
ues or previously stored values. Save the new values to spec-
sHandle.

esExecute Execute the transition using the stored parameters from
specsHandle. Be aware of interlaced video, and don’t over-
look the alpha channel!

esDisposeData (optional) Dispose of any instance data created during esEx­
ecute.

Transitions • 265Adobe Premiere Pro CS5 SDK Guide

esCanHandlePAR (optional) Tell Premiere how your transition handles pixel
aspect ratio.

esGetPixelFormatsSupported (optional) Return the pixel formats supported. Called itera-
tively until all formats have been given.

esCacheOnLoad (optional) Return esDoNotCacheOnLoad to disable plug-
in caching for this transition.

Selector Descriptions

esSetup

Optional. Display your custom settings dialog, populated with initial values from data stored
in specsHandle. If it is NULL, show your dialog with default values and store results in a
properly-sized handle in specsHandle. esSetup is only sent if you set hasCustomDialog in
the Pr_Effect_Info property of the PiPL resource. Store any updated values back to spec-
sHandle when done.

During esSetup, the frames passed to EffectRecord.source1 and source2 are always
320x240. The frame is the layer the transition is applied to at the current time indicator. If the CTI
is not on the clip the transition is applied to, the frame is transparent black. If the transition has
a setup dialog, the FXCallbackProcPtr should be used to get source frames for previews.
getPreviewFrameEx can be used to get rendered frames, although if this call is used, the
video filter should be ready to be called reentrantly with fsExecute.

esExecute

This is really the only required selector for a transition, and it’s where the rendering happens. Take
the input frames in EffectRecord.source1 and EffectRecord.source2, render the
transition and return the frame to Premiere in EffectRecord.destination. The spec-
sHandle contains your parameter settings (already interpolated). You can store a handle to any
additional non-parameter data in EffectRecord.InstanceData. If you do so, respond to
esDisposeData, or your plug-in will leak memory.

The video your transition receives may be interlaced, in the field order determined by the se-
quence settings. Respect the rowbytes. Transitions must preserve the alpha channel, so that they
will be correctly composited with underlying clips. Transitions may also have only an incom-
ing clip, or only an outgoing clip, in which case one of the sources will be transparent alpha.
Transitions should never assume the part and total values are related to frames. They should just
always render based on the percent of part divided by total.

Transitions • 266Adobe Premiere Pro CS5 SDK Guide

esDisposeData

Optional. Dispose of any instance data you allocated using Premiere’s memory callbacks during
esExecute. See EffectRecord.InstanceData.

esCanHandlePAR

Optional. Indicate how your transition wants to handle pixel aspect ratio by returning a combina-
tion of the following flags.

This selector is only sent if several conditions are met. The pixel aspect ratio of the clip to which
the transition is applied must be known, and not be square (1.0). The clip must not be a solid
color. The PiPL bits anyPixelAspectRatio and unityPixelAspectRatio must not be
set. Note that even if an AspectRatio bit appears in the PiPL, it will not be set if the PiPL version
is less than 2.3.

Flag Description
prEffectCanHandlePAR Premiere should not make any adjustment to the source

image to compensate for PAR
prEffectUnityPARSetup Premiere should render the source image to square pixels

during esSetup
prEffectUnityPARExecute Premiere should render the source image to square pixels

during esExecute

esGetPixelFormatsSupported

Optional. Return the pixel formats supported. Called iteratively until all formats have been given.
Set EffectRecord.pixelFormatSupported to a supported pixel format, and return
esNoErr. When all formats have been described, return esBadFormatIndex. See the transi-
tion sample for an example.

esCacheOnLoad

Optional. Return esDoNotCacheOnLoad to disable plug-in caching for this transition.

Return Codes

Return Code Reason
esNoErr Operation has completed without error.

Transitions • 267Adobe Premiere Pro CS5 SDK Guide

esBadFormatIndex Return from esGetPixelFormatsSupported when all pixel formats
have been enumerated.

esDoNotCacheOnLoad Return from esCacheOnLoad to disable plug-in caching for this
transition.

esUnsupported The selector is not recognized, or unsupported.

EffectRecord

A transition is passed a handle to an EffectRecord with almost every selector.

typedef struct {
	 PrMemoryHandle		 specsHandle;
	 PPixHand	 	 	 source1;
	 PPixHand	 	 	 source2;
	 PPixHand	 	 	 destination;
	 csSDK_int32	 	 part;
	 csSDK_int32	 	 total;
	 char		 	 	 previewing;
	 unsigned char	 	 arrowFlags;
	 char		 	 	 reverse;
	 char		 	 	 source;
	 prPoint	 	 	 start;
	 prPoint	 	 	 end;
	 prPoint	 	 	 center;
	 void *	 	 	 privateData;
	 FXCallBackProcPtr	 callBack;
	 BottleRec *	 	 bottleNecks;
	 short	 	 	 version;
	 short	 	 	 sizeFlags;
	 csSDK_int32	 	 flags;
	 TDB_TimeRecord *	 tdb;
	 piSuitesPtr	 	 piSuites;
	 PrTimelineID	 	 timelineData;
	 PrMemoryHandle		 instanceData;
	 char		 	 	 altName[MAX_FXALIAS];
	 PrPixelFormat	 	 pixelFormatSupported;
	 csSDK_int32	 	 pixelFormatIndex;
	 csSDK_uint32	 	 instanceID;
	 TDB_TimeRecord		 tdbTimelineLocation;
	 csSDK_int32	 	 sessionPluginID;
} EffectRecord, **EffectHandle;

Transitions • 268Adobe Premiere Pro CS5 SDK Guide

specsHandle Instance settings, persistent across Premiere sessions. Create
this handle during esSetup. Only used by transitions with
custom parameters; must be created using newHandle.

source1 PPixHand for the incoming (the clip on the left of the tran-
sition) source video frame.

source2 PPixHand for the outgoing (the clip on the right of the tran-
sition) source video frame.

destination PPixHand for the destination video frame, always the same
size as source1 and source2. Store the output frame here dur-
ing esExecute.

part How far into the transition you are. part varies from
0 to total, inclusive.

total Total length of the transition. Divide part by total to calculate
the percentage of the transition to perform for a given esExe­
cute. This value doesn’t always correspond to frames or fields.

previewing Unsupported
arrowFlags Corner flags, set by the user.
reverse If set, the frames are reversed.
source [TODO] Is this still used?
start Starting point of the transition (relative to the center point),

specified by the user. Only meaningful if movablestart-
point is specified in the PiPL.

end End point of the transition (relative to the center point). Only
meaningful if movablestartpoint is specified in the
PiPL.

center Center point (for transitions that open and close).
privateData Data private to Premiere. Pass to the frame-retrieval callback

when requesting a frame.
callBack Pointer to a callback for retrieving frames (or fields, for inter-

laced video) from source clips.
bottleNecks Pointer to Premiere’s bottleRec functions.
version Version of this structure (kEffectVersion).

Premiere Pro CS5 = TRANSITION_VERSION_11
Premiere Pro CS3 = TRANSITION_VERSION_10

sizeFlags Field-rendering information.
flags If doing a lower quality render, Premiere will pass in kEf-

fectFlags_DraftQuality during esExecute. The tran-
sition can then optionally render a faster, lower-quality image
for previewing.

tdb Pointer to a time database record describing the project’s
timebase.

Transitions • 269Adobe Premiere Pro CS5 SDK Guide

piSuites Pointer to callback piSuites.
timelineData Only available during esSetup. This opaque handle to the

timeline database is required by timelineFuncs callbacks
available in piSuites. This handle is useful in order to have
a preview in a modal setup dialog during esSetup.

instanceData Handle to private instance data that persists across invoca-
tions. Allocate the memory for this during esExecute and
deallocate during esDisposeData. Do not use this field during
esSetup.

altName Unused.
pixelFormatSupported Only valid during esGetPixelFormatsSupported. Return pixel

format supported.
pixelFormatIndex Only valid during esGetPixelFormatsSupported. Index of

query of pixel type supported.
instanceID The runtime instance ID uniquely identifies filters during a

session. This is the same ID that is passed to players in prt-
TransitionRec.

tdbTimelineLocation A time database record describing the location of the transi-
tion in sequence. Only valid during esSetup.

sessionPluginID This ID should be used in the File Registration Suite for
registering external files (such as textures, logos, etc) that are
used by a plug-in instance but do not appear as footage in the
Project Panel. Registered files will be taken into account when
trimming or copying a project using the Project Manager.

FXCallBackProcPtr

Pointer to a callback for retrieving frames (or fields, for interlaced video) from source clips.
Always available during esExecute, but only valid during esSetup if needsCallbacksAtSet-
up is set in the PiPL. Do not expect real-time performance from this callback.

typedef short (CALLBACK *FXCallBackProcPtr)(
	 csSDK_int32	 frame;
	 short	 	 track;
	 PPixHand	 	 thePort;
	 prRect *	 	 theBox;
	 PrMemoryHandle	privateData);

Parameter Description
frame Frame (or field, for interlaced video) requested.

Transitions • 270Adobe Premiere Pro CS5 SDK Guide

track Set this to 0 to get the incoming source (the clip on the left of the
transition), and 1 to get the outgoing source (the clip on the right
of the transition)

thePort PPixHand where Premiere will store the frame
theBox Bounds of the frame you want Premiere to retrieve.
privateData Handle provided by Premiere in VideoRecord.private-

Data

sizeFlags

For sizeFlags, the following bit flags are of interest:

Flag Description
gvFieldsEven The transition should render upper-field dominance
gvFieldsOdd The transition should render lower-field dominance
gvFieldsFirst The transition is currently rendering the dominant field

Additional Details

Fields and Field Processing

In an interlaced project, Premiere calls your transition once per field. This allows transitions such
as wipes to have interlaced motion. (*theData)->total will be twice as large, each frame
will be half-height, and rowbytes will double.

Respect the value of rowbytes when traversing data or the output will be incorrect.
Caching Behavior

Frame Caching

The rendered output of transitions is stored in the host media cache. For example, when the user
scrubs over a frame with a transition on it, the transition will be called to render its effect on the
frame and return the buffer to Premiere. Premiere caches the returned frame, so when the user
scrubs over the same frame, Premiere will return the cached frame without having to call the
transition again. If the user has modified the transition settings, the clip settings, the preview
quality, etc, Premiere will call the transition to render with the new settings, but will keep the
previously cached frame for a while. So if the changes are reversed, Premiere may still have the
cached frame to return when appropriate.

Transitions • 271Adobe Premiere Pro CS5 SDK Guide

Real-Time Transitions

In order to allow for real-time previews in transitions, an opaque handle to the current timeline-
Data is passed to the transition during esSetup for use with piSuites->timelineFuncs.

Use this handle to obtain a real-time preview, provided by a player (provided you can communi-
cate directly with the player; not every transition can be made real-time).

Video Filters • 272Adobe Premiere Pro CS5 SDK Guide

10Video Filters

Video filters process a video frame into a destination frame. Filter parameters can vary with time.
Premiere provides basic user interface in the Effect Controls panel, drawing sliders, color pickers,
angle dials, and checkboxes based on the parameter definitions in the PiPL resource. Video filters
can have their own custom modal setup dialog for additional settings.

We strongly recommend using the After Effects SDK to develop effects plug-ins. Almost all of the
effects included in Premiere Pro are After Effects plug-ins.

If you’ve never developed a video filter before, you can skip the What’s New section, and go di-
rectly to Getting Started.

What’s New

What’s New in Premiere Pro CS5?

In the Effects panel, video filters now appear with badges to advertise if they support YUV, 32-
bit, and accelerated rendering. The user can filter the list of effects to show only the effects that
support those rendering modes. Video filters will automatically receive YUV and 32-bit badges if
they advertise support using the existing fsGetPixelFormatsSupported. Custom badges can also be
created. See Effect Badging for more information.

What’s New in Premiere Pro CS3?

Checkbox controls are now supported directly in the Effect Controls panel.

Filters can specify whether or not they want a setup button in the Effect Controls panel during
fsHasSetupDialog, by returning fsHasNoSetupDialog or fsNoErr. Previously, this was set
in the PiPL resource.

http://www.adobe.com/devnet/aftereffects/

Video Filters • 273Adobe Premiere Pro CS5 SDK Guide

Getting Started

Begin with one of the two video filter sample projects, progressively replacing its functionality
with your own.

Resources

Filter plug-ins can use PiPL resources to define their behaviors and supported properties. To
provide any parameters in the Effect Controls panel, they must be defined in the PiPL in ANIM_
ParamAtom sections, as demonstrated in the example below. The ‘no UI’ UI type is for non-key-
frameable parameters. After making changes to the PiPL, rebuild the plug-in each time, so that
the PiPL will be recompiled.

A Filter PiPL Example

#include “PrSDKPiPLVer.h”
#ifndef PRWIN_ENV
#include “PrSDKPiPL.r”
#endif

// The following two strings should be localized
#define plugInName “Cool Video Filter”
#define plugInCategory “SDK Filters”

// This name should not be localized or updated
#define plugInMatchName ”SDK Cool Filter”

resource ‘PiPL’ (16000) {
{

// The plug-in type
Kind {PrEffect},

// The plug-in name as it will appear to the user
Name {plugInName},

// The internal name of this plug-in
AE_Effect_Match_Name {plugInMatchName},

// The folder containing the plug-in in the Effects Panel
Category {plugInCategory},

// The version of the PiPL resource definition
AE_PiPL_Version {PiPLVerMajor, PiPLVerMinor},

Video Filters • 274Adobe Premiere Pro CS5 SDK Guide

// The ANIM properties describe the filter parameters, and also how the data is stored
in the project file. There is one ANIM_FilterInfo property followed by n ANIM_
ParamAtoms

ANIM_FilterInfo {
0,

#ifdef PiPLVer2p3
// Non-square pixel aspect ratio supported
notUnityPixelAspectRatio,
anyPixelAspectRatio,
reserved4False,
reserved3False,
reserved2False,

#endif
reserved1False, // These flags are for use by After Effects
reserved0False, // Not used by Premiere
driveMe, // Not used by Premiere
needsDialog, // Not used by Premiere
paramsNotPointer, // Not used by Premiere
paramsNotHandle, // Not used by Premiere
paramsNotMacHandle, // Not used by Premiere
dialogNotInRender, // Not used by Premiere
paramsNotInGlobals, // Not used by Premiere
bgAnimatable, // Not used by Premiere
fgAnimatable, // Not used by Premiere
geometric, // Not used by Premiere
noRandomness, // Not used by Premiere
// Put the number of parameters here
2,
plugInMatchName

},

// There is one ANIM_ParamAtom for each parameter
ANIM_ParamAtom {

// This is the first property - Zero based count
0,
// The name to appear for the control
“Level”,
// Parameter number goes here - One based count
1,
// Put the data type here
ANIM_DT_SHORT,
// UI control type
ANIM_UI_SLIDER,
0x0,

Video Filters • 275Adobe Premiere Pro CS5 SDK Guide

0x0, // valid_min (0.0)
0x405fc000,
0x0, // valid_max (127.0)
0x0,
0x0, // ui_min (0.0)
0x40590000,
0x0, // ui_max (100.0)

#if PiPLVer2p3
// New - Scale/dontScale UI Range if user modifies
dontScaleUIRange,

#endif
// Set/don’t set this if the param should be animated
animateParam,
dontRestrictBounds, // Not used by Premiere
spaceIsAbsolute, // Not used by Premiere
resIndependent, // Not used by Premiere
// Bytes size of the param data
2

},

ANIM_ParamAtom {
1,
“Target Color”,
2,
// Put the data type here
ANIM_DT_COLOR_RGB,
// UI control type
ANIM_UI_COLOR_RGB,
0x0,
0x0,
0x0,
0x0,
0x0,
0x0,
0x0,
0x0,

#ifdef PiPLVer2p3
dontScaleUIRange,

#endif
// Set/don’t set this if the param should be animated
animateParam,
dontRestrictBounds,
spaceIsAbsolute,
resIndependent,
// Bytes size of the param data

Video Filters • 276Adobe Premiere Pro CS5 SDK Guide

4
},

}
};

Entry Point

short xFilter (
	 short	 	 selector,
	 VideoHandle	 theData)

selector is the action Premiere wants the video filter to perform. EffectHandle provides
source and destination buffers, and other useful information. Return fsNoErr if successful, or
an appropriate return code.

Selector Table

This table summarizes the various selector commands a video filter can receive.

Selector Description
fsInitSpec (optional) Allocate and initialize your parameters with default

values without popping a modal setup dialog.
fsHasSetupDialog (optional) New for Premiere Pro CS3. Specify whether or not

the filter has a setup dialog.
fsSetup (optional) Allocate memory for your parameters if necessary.

Display your modal setup dialog with default parameter val-
ues or previously stored values. Save the new values to spec-
sHandle.

fsExecute Filter the video using the stored parameters from spec-
sHandle. Be aware of interlaced video, and don’t overlook
the alpha channel!

fsDisposeData (optional) Dispose of any instance data created during fsEx­
ecute.

fsCanHandlePAR (optional) Tell Premiere how your effect handles pixel aspect
ratio.

fsGetPixelFormatsSupported (optional) Gets pixel formats supported. Called iteratively
until all formats have been given.

fsCacheOnLoad (optional) Return fsDoNotCacheOnLoad to disable plug-
in caching for this filter.

Video Filters • 277Adobe Premiere Pro CS5 SDK Guide

Selector Descriptions

fsInitSpec

Responding to this selector is optional. This selector is sent when the filter is applied to a clip and
the plug-in is called for the first time. This call can be used to initialize the plug-in parameters
with default values in order to achieve an initial ”silent setup”, in which fsSetup is skipped when
the filter is applied to a clip, to avoid popping the modal dialog that may be needed in fsSetup.

Allocate and pass back a handle to a structure containing the parameter values in specsHandle.
The filter is given the total duration (in samples), and number of the first sample in the source
buffer.

fsHasSetupDialog

New for Premiere Pro CS3. Optional. Specify whether or not the filter has a setup dialog, by re-
turning fsHasNoSetupDialog or fsNoErr.

fsSetup

Optional. Sent when the filter is applied, if fsInitSpec doesn’t allocate a valid specsHandle. Also
sent when the user clicks on the setup link in the Effect Controls Panel. The filter can optionally
display a (platform-dependent) modal dialog to get new parameter values from the user. First,
check VideoHandle.specsHandle. If NULL, the plug-in is being called for the first time.
Initialize the parameters to their default values. If non-NULL, load the parameter values from
specsHandle. Now use the parameter values to display a modal setup dialog to get new values.
Return a handle to a structure containing the parameter values in specsHandle.

In order to properly store parameter values between calls to the plug-in, describe the structure
of your specsHandle data in your PiPL’s ANIM properties. Premiere interpolates animatable
parameter values as appropriate before sending fsExecute.

The filter is given the total duration in samples and the sample number of the first sample in the
source buffer. VideoHandle.source contains the first frame in the clip the filter is applied to,
scaled to a 240 by 180 PPix, for preview purposes.

During fsSetup, the frames passed to VideoRecord.source are always 320x240. The
frame is the layer the filter is applied to at the current time indicator. If the CTI is not on the
clip the filter is applied to, the frame is transparent black. If the filter has a setup dialog, the
VFilterCallbackProcPtr should be used to get source frames for previews. getPre-

Video Filters • 278Adobe Premiere Pro CS5 SDK Guide

viewFrameEx can be used to get rendered frames, although if this call is used, the video filter
should be ready to be called reentrantly with fsExecute.

fsExecute

This is really the only required selector for a video filter, and it’s where the rendering happens.
Take the input frame in VideoHandle.source, render the effect and return the frame to
Premiere in VideoHandle.destination. The specsHandle contains your parameter
settings (already interpolated if animatable). You can store a handle to any additional non-param-
eter data in VideoHandle.InstanceData. If you do so, deallocate the handle in response to
fsDisposeData, or your plug-in will leak memory.

The video your filter receives may be interlaced, in the field order determined by the project set-
tings. If interlaced, your plug-in will be called twice for each frame of video, and each PPix will
be half the frame height.

fsDisposeData

Optional. Called when the project closes. Dispose of any instance data created during fsExecute.
See VideoHandle->InstanceData.

fsCanHandlePAR

Optional. Indicate how your filter wants to handle pixel aspect ratio by returning a combination
of the following flags.

This selector is only sent if several conditions are met. The pixel aspect ratio of the clip to which
the filter is applied must be known, and not be square (1.0). The clip must not be a solid color. The
PiPL bits anyPixelAspectRatio and unityPixelAspectRatio must not be set.

Flag Description
prEffectCanHandlePAR Premiere should not make any adjustment to the source

image to compensate for PAR
prEffectUnityPARSetup Premiere should render the source image to square pixels

during fsSetup
prEffectUnityPARExecute Premiere should render the source image to square pixels

during fsExecute

fsGetPixelFormatsSupported

Optional. Gets pixel formats supported. Called iteratively until all formats have been given. Set

Video Filters • 279Adobe Premiere Pro CS5 SDK Guide

(*theData)->pixelFormatSupported to a supported pixel format, and return fsNo-
Err. When all formats have been described, return fsBadFormatIndex. See the field-aware
video filter sample for an example.

fsCacheOnLoad

Optional. Return fsDoNotCacheOnLoad to disable plug-in caching for this filter.

Return Codes

Return Code Reason
fsNoErr Operation has completed without error.
fsBadFormatIndex Return from fsGetPixelFormatsSupported when all pixel formats

have been enumerated.
fsDoNotCacheOnLoad Return from fsCacheOnLoad to disable plug-in caching for this

filter.
fsHasNoSetupDialog Return from fsHasSetupDialog to disable setup button in Effect

Controls panel
fsUnsupported The selector is not recognized, or unsupported.

VideoRecord

A video filter is passed a handle to a VideoRecord with almost every selector.

typedef struct {
	 PrMemoryHandle		 	 specsHandle;
	 PPixHand	 	 	 	 source;
	 PPixHand	 	 	 	 destination;
	 csSDK_int32	 	 	 part;
	 csSDK_int32	 	 	 total;
	 char		 	 	 	 previewing;
	 void *	 	 	 	 privateData;
	 VFilterCallBackProcPtr	 callBack;
	 BottleRec *	 	 	 bottleNecks;
	 short	 	 	 	 version;
	 short	 	 	 	 sizeFlags;
	 csSDK_int32	 	 	 flags;
	 TDB_TimeRecord *	 	 tdb;
	 PrMemoryHandle		 	 instanceData;
	 piSuitesPtr	 	 	 piSuites;
	 PrTimelineID	 	 	 timelineData;

Video Filters • 280Adobe Premiere Pro CS5 SDK Guide

	 char		 	 	 	 altName[MAX_FXALIAS];
	 PrPixelFormat	 	 	 pixelFormatSupported;
	 csSDK_int32	 	 	 pixelFormatIndex;
	 csSDK_uint32	 	 	 instanceID;
	 TDB_TimeRecord		 	 tdbTimelineLocation;
	 csSDK_int32	 	 	 sessionPluginID;
} VideoRecord, **VideoHandle;

specsHandle Instance settings, persistent across Premiere sessions. Create
this handle during fsInitSpec or fsSetup. Populated by
Premiere if the filter’s parameters can be manipulated in the
Effect Controls Panel. Use Premiere’s memory allocation call-
backs to allocate memory for the specsHandle.

source PPixHand for the source video frame.
destination PPixHand for the destination video frame, always the same

size as source. Store the output frame here during fsExecute.
part How far into the effect you are. part varies from 0 to total,

inclusive.
total Total length of the video filter. Divide part by total to calculate

the percentage of the time-variant filter for a given fsExecute.
This value doesn’t necessarily correspond to frames or fields.

previewing Unsupported
privateData Data private to Premiere. Pass to the frame-retrieval callback

when requesting a frame.
callBack Pointer to VFilterCallbackProcPtr, used for retriev-

ing frames (or fields, for interlaced video) from source clips.
bottleNecks Pointer to Premiere’s bottleRec functions.
version Version of this structure (kVideoFilterVersion).

Premiere Pro CS5 = VIDEO_FILTER_VERSION_11
Premiere Pro CS3 = VIDEO_FILTER_VERSION_10

sizeFlags Field-rendering information.
flags If doing a lower-quality render, Premiere will pass in kEf-

fectFlags_DraftQuality during fsExecute. The filter
can then optionally render a faster, lower-quality image for
previewing.

tdb Pointer to a time database record describing the sequence
timebase.

instanceData Handle to private instance data that persists across invoca-
tions. Allocate the memory for this during fsExecute and
deallocate during fsDisposeData. Do not use this field during
fsSetup.

piSuites Pointer to callback piSuites.

Video Filters • 281Adobe Premiere Pro CS5 SDK Guide

timelineData Only available during fsInitSpec and fsSetup. This opaque han-
dle to the timeline database is required by timelineFuncs
callbacks available in piSuites. This handle is useful in or-
der to have a preview in a modal setup dialog during fsSetup.

altName Unused.
pixelFormatSupported Only valid during fsGetPixelFormatsSupported. Return pixel

type supported.
pixelFormatIndex Only valid during fsGetPixelFormatsSupported. Index of

fourCC of pixel type supported.
instanceID The runtime instance ID uniquely identifies filters during a

session. This is the same ID that is passed to players in prt-
FilterRec.

tdbTimelineLocation A time database record describing the location of the filter in
sequence. Only valid during fsInitSpec and fsSetup.

sessionPluginID This ID should be used in the File Registration Suite for
registering external files (such as textures, logos, etc) that are
used by a plug-in instance but do not appear as footage in the
Project Panel. Registered files will be taken into account when
trimming or copying a project using the Project Manager.

VFilterCallBackProcPtr

Pointer to a callback for retrieving frames (or fields, for interlaced video) from the source clip. Do
not expect real-time performance from this callback.

typedef short (CALLBACK *VFilterCallBackProcPtr)(
	 csSDK_int32	 frame;
	 PPixHand	 	 thePort;
	 RECT *	 	 theBox;
	 Handle	 	 privateData);

Parameter Description
frame Frame requested. The frame value passed in should be frame *

samplesize. The callback will always return the current field
(upper or lower) during field rendering.

thePort PPixHand where Premiere will store the frame
theBox Bounds of the frame you want Premiere to retrieve.
privateData Handle provided by Premiere in VideoRecord.private-

Data

Video Filters • 282Adobe Premiere Pro CS5 SDK Guide

sizeFlags

For sizeFlags, the following bit flags are of interest:

Flag Description
gvFieldsEven The video filter should render upper-field dominance
gvFieldsOdd The video filter should render lower-field dominance
gvFieldsFirst The video filter is currently rendering the dominant field

Additional Details

Fields and Field Processing

In an interlaced project, Premiere calls your video filter once per field. This allows video filters to
have interlaced motion. (*theData)->total will be twice as large, each frame will be half-
height, and rowbytes will double.

Respect the value of rowbytes when traversing data or the output will be incorrect.

Frame Caching

The rendered output of video filters is stored in the host media cache. For example, when the user
scrubs over a frame with a filter on it, the filter will be called to render its effect on the frame and
return the buffer to Premiere. Premiere caches the returned frame, so when the user scrubs over
the same frame, Premiere will return the cached frame without having to call the filter again. If
the user has modified the filter settings, the clip settings, the preview quality, etc, Premiere will
call the filter to render with the new settings, but will keep the previously cache frame for a while.
So if the changes are reversed, Premiere may still have the cached frame to return when appropri-
ate.

If the filter should generate random, non-deterministic output, or if it changes over time without
keyframes, the randomness bit must be set in the ANIM_FilterInfo section in the PiPL (.r
file). If you set the bit to noRandomness, Premiere will only render one frame of a still image.

Creating Effect Presets

Effect presets appear in the Presets bin in the Effects panel, and can be applied just like Effects
with specific parameter settings and keyframes. Effect presets can be created as follows:

Video Filters • 283Adobe Premiere Pro CS5 SDK Guide

1) Apply a filter to a clip
2) Set the parameters of the filter, adding keyframes if desired
3) Right-click on the filter name in the Effect Controls panel, and select “Save Preset...”
4) Create preset bins if desired by right-clicking in the Effects panel and choosing “New Presets
Bin”
5) Organize the presets in the preset folders
6) Select the bins and/or presets you wish to export, right-click, and choose “Export Preset”

On Windows, newly created presets are saved in the hidden Application Data folder of the user’s
Documents and Settings (e.g. C:\Documents and Settings\[user]\Application Data\Adobe\
Premiere Pro\[version]\Effect Presets and Custom Items.prfpset). On Mac OS, they are in the
user folder, at ~/Library/Application Support/Adobe/Premiere Pro/[version]/Effect Presets and
Custom Items.prfpset.

Effect Presets should be installed as described in the section, “Plug-in Installation”. Once they are
installed in that folder, they will be read-only, and the user will not be able to move them to a dif-
ferent folder or change their names. User-created presets will be modifiable.

Effect Badging

Starting in CS5, video filters now appear with badges in the Effects panel to advertise if they sup-
port YUV, 32-bit, and/or accelerated rendering. The user can filter the list of effects to show only
the effects that support those rendering modes. Video filters will automatically receive YUV and
32-bit badges if they advertise support using the existing fsGetPixelFormatsSupported. Custom
badges can also be created.

To add your own effect badge, go to the following folder:
On Windows: [App installation path]\Settings\BadgeIcons\
On Mac OS: Adobe Premiere Pro CS5.app/Contents/Settings/BadgeIcons/
In that folder are the PNG graphics that are loaded at runtime for various badges, and an addi-
tional ‘Sample.png’ and ‘Sample.xml’ file.

1) Copy the Sample.png file to a new name that matches whatever you want to call the new
badge (like ‘NewBadge.png’). Edit the PNG as you’d like, but don’t change the image dimen-
sions.
2) Copy the Sample.xml file to a new name that matches whatever you want to call the new
badge (like ‘NewBadge.xml’). Edit the list of match names that you want to be decorated with
your badge. Change the <Name> tag to the name you chose in step 1 (like ‘NewBadge’). You
can also add your tooltip text as the <DescriptionItem> tags. These tags act as a localiza-
tion map with the langid as the key. If a language isn’t found, ‘en_US’ is used by default.
3) Relaunch the application. You’ll get a badge filter icon next to the others and a badge icons
next to each effect that was listed in the XML file.

Video Filters • 284Adobe Premiere Pro CS5 SDK Guide

Note: ‘Sample’ is a special case that is intentionally excluded. Any other *.xml/*.png pair
will be used.

Real-Time Video Filters

In order to allow for real-time previews in video filters, an opaque handle to the current
timelineData is passed to the video filter during fsSetup for use with piSuites-
>timelineFuncs.

Use this handle to obtain a real-time preview, provided by a player (provided you can communi-
cate directly with the player; not every video filter can be made real-time).

Premiere Elements and Effect Thumbnail Previews

Premiere Elements (but not Premiere Pro) displays visual icons for each effect. You will need to
provide icons for your effects, or else an empty black icon will be shown for your effects, or even
worse behavior in Premiere Elements 8. The icons are 60x45 PNG files, and are placed here:

[Program Files]\Adobe\Adobe Premiere Elements [version]\Plug-ins\Common\EffectPreviews\

The filename should be the match name of the effect, which you specify in the PiPL, prefixed with
“PR.” So if the match name was “MatchName”, then the filename should be “PR.MatchName.png”

Device Controllers • 285Adobe Premiere Pro CS5 SDK Guide

11Device Controllers

Device controllers control hardware devices such as cameras and tape decks using various com-
munication protocols. They are called by Premiere (to interact with video hardware) from the
Capture panel and Export to Tape. They set hardware operating modes, tell Premiere what mode
the hardware is in, and work along with recorders to provide Premiere with timecode information
from the hardware. Export to Tape is performed using insert edits, where the device controller
directs Premiere to insert a video segment at a specified timecode. With Export to Tape, Premiere
drives the edit, using the device controller perform the operation.

If you’ve never developed a device controller before, you can skip the What’s New sections, and go
directly to Getting Started.

What’s New in Premiere Pro CS3?

The timebase is now set to device controllers as preferredScale and preferredSample-
Size in DeviceRec. This is more specific than the old timerate value. Use this rather than
calling piSuites->utilFuncs->getSettings(kSettingsProjectScale) or ge
tSettings(kSettingsProjectSampleSize).

Getting Started

You’ll need a thorough understanding of the device(s) you hope to control before developing a
Premiere plug-in. Begin with the sample project, progressively replacing its functions with your
own.

Resources

Device controllers use a basic PiPL to specify their name and the match name that Premiere uses
to identify them. When making changes to the PiPL resource, rebuild the plug-in each time, so
that the PiPL will be recompiled.

Device Controllers • 286Adobe Premiere Pro CS5 SDK Guide

Entry Point

short xDevice (
	 short	 	 selector,
	 DeviceHand	 theData)

selector is the action Premiere wants the device controller to perform. DeviceHand provides all
pertinent information. Return dmNoError if successful, or an appropriate return code.

Selector Table

This table summarizes the various selector commands a device controller can receive.

Selector Description
dsInit Create data structures, choose an operating mode.
dsSetup Display your modal setup dialog.
dsExecute Perform a specified device control command.
dsCleanup Dispose of any allocated data structures.
dsRestart Restart device controller – used at startup to reconnect to a de-

vice.
dsQuiet Disconnect from the device, but don’t dispose of allocated struc-

tures.
dsHasOptions New in Premiere Pro 2.0. Return dmHasNoOptions to disable

the device controller options button.

Selector Descriptions

dsInit

Create a handle for instance data; store it in the DeviceRec.deviceData. Choose a default
operating mode if more than one is available. A dialog can be presented to prompt the user for
settings. Open any necessary drivers, connect to your hardware. See Implementation Tips.

dsSetup

Display your modal setup dialog. If your device controller doesn’t require user input, this selec-
tor can be safely ignored, but should return dmNoErr. There currently is no way to disable the
Setup button in the device control options.

Device Controllers • 287Adobe Premiere Pro CS5 SDK Guide

dsExecute

Perform a device control operation based on the command in the DeviceRec. See the
Commands section below for detailed descriptions.

dsCleanup

Disconnect from hardware and dispose of the plug-in’s local data (stored in deviceData).

dsRestart

Reestablish connections to hardware devices. This selector is similar to dsInit, but deviceData
is already populated.

dsQuiet

Like dsCleanup; disconnect from the device, but don’t dispose of local data. dsRestart will be sent
to reconnect the device.

dsHasOptions

New in Premiere Pro 2.0. Return dmHasNoOptions to disable the device controller options
button.

Return Codes

Return Code Reason
dmNoErr Operation has completed without error.
dmDeviceNotFound The device is not available.
dmTimecodeNotFound The device cannot read the timecode from the media, or

there is none to be read.
dmBadTimecode The device has timecode but it doesn’t trust it.
dmCantRecord The device is unable to record to the media.
dmUserAborted The operation has stopped because the user cancelled.
dmLastErrorSet The device controller set the last error string using the

Error Suite.
dmExportToTapeFinished The device controller is signaling the end of the export to

tape operation.

Device Controllers • 288Adobe Premiere Pro CS5 SDK Guide

dmTapeWriteProtected Return value during Export To Tape if tape is write pro-
tected.

dmNoTape Return value during Export To Tape if there is no tape in
the deck.

dmLastInfoSet The device controller set the last info string using the
SweetPea Error Suite.

dmLastWarningSet The device controller set the last warning string using the
SweetPea Error Suite.

dmHasNoOptions Return during dsHasOptions to disable the device control-
ler options button..

dmUnknownError The device controller set the last error string using the
Error Suite.

dmUnsupported The selector is not recognized, or unsupported.
dmGeneralError Unspecified error.

DeviceRec

A device controller is passed a handle to a DeviceRec with every selector.

typedef struct {
	 PrMemoryHandle		 	 deviceData;
	 short	 	 	 	 command;
	 short	 	 	 	 mode;
	 csSDK_int32	 	 	 timecode;
	 short	 	 	 	 timeformat;
	 short	 	 	 	 timerate;
	 csSDK_int32	 	 	 features;
	 short	 	 	 	 error;
	 short	 	 	 	 preroll;
	 CallBackPtr	 	 	 callback;
	 PauseProcPtr	 	 	 PauseProc;
	 ResumeProcPtr			 ResumeProc
	 long		 	 	 	 xtimecode;
	 long		 	 	 	 keycode;
	 short	 	 	 	 editmode;
	 short	 	 	 	 exteditmode;
	 Print2TapeProcPtr	 	 PrintProc;
	 HWND		 	 	 	 parentWindow;
	 piSuitesPtr	 	 	 piSuites;
	 char*	 	 	 	 displayName;
	 TimecodeUpdatePtr		 TimecodeUpdateProc;
	 void*	 	 	 	 classID;

Device Controllers • 289Adobe Premiere Pro CS5 SDK Guide

	 long		 	 	 	 version;
	 short	 	 	 	 videoStreamIsDrop;
	 short	 	 	 	 autoDetectDropness;
	 char*	 	 	 	 currentDeviceIDStr;
	 long		 	 	 	 preferredScale;
	 unsigned long	 	 	 preferredSampleSize;
	 char		 	 	 	 reserved[36];
} DeviceRec, *DevicePtr, **DeviceHand;

deviceData Handle to private data allocated during dsInit; persists across
invocations.

command The command being performed when you receive dsExecute.
mode Used in three ways. For dsExecute/cmdNewMode, mode contains

your device’s new mode. For dsExecute/cmdStatus, mode is where you
indicate the device’s current mode (the last mode reported will still
be there). For dsExecute/cmdShuttle, mode contains the shuttle rate
(-100 to 100).

timecode Used three ways. For dsExecute/cmdGoto and dsExecute/cmdLocate,
the timecode field indicates the timecode to which your should move.
For dsExecute/cmdStatus, return the deck’s current timecode position
via the timecode field, where kInvalidTimecode will display
“N/A” (not available), -2 will blank the timecode display, and -3 will
display “Searching…”. For dsExecute/cmdJogTo, timecode specifies the
location to which you should jog.

timeformat Reports the format of timecode for a dsExecute/cmdStatus; 0 for non-
drop frame, 1 for drop-frame.

timerate Reports the frames-per-second rate of timecode for a dsExecute/cmd­
Status call. Set to 24, 25, 30, or 60.

features Reports the device’s features in response to a dsExecute/cmdGet­
Features call.

error Set this field to an appropriate error code and return a non-zero value
from your device controller.

preroll Used by dsExecute/cmdLocate. Preroll is how far before (smaller
timecode) the seek time specified in timecode you should seek. The
preroll value is the product of a calibration sequence the user per-
forms.

callback Pointer to a routine to call during dsExecute/cmdLocate to
determine if the user is attempting to abort.

typedef csSDK_int32 (*CallBackPtr) (void);

If the return value is non-zero, the user has attempted to abort.

Device Controllers • 290Adobe Premiere Pro CS5 SDK Guide

PauseProc Pointer to a routine that you can call to temporarily pause any se-
quence grabber operations in a device-controlled window. It is de-
fined as follows:

typedef void (*PauseProcPtr) (void);
ResumeProc A pointer to a routine to call to resume sequence capture after calling

PauseProc. Every call to PauseProc must be matched by a call
to ResumeProc.

typedef void (*ResumeProcPtr) (void);

Call these routines before putting up an error alert, for instance:

(*(*theData)->PauseProc)();
// your error handler here
(*(*theData)->ResumeProc)();

If PauseProc isn’t called before putting up an alert (or any other
dialog), video will be played over it

xtimecode Duration of the movie being exported (used for the Export to Tape).
keycode Unused.
editmode Can be any combination of the following flags to enable user actions:

insertVideo,
insertAudio1,
insertAudio2,
insertTimeCode,
insertAssemble,
insertPreview

exteditmode Unused.
PrintProc A pointer to a plug-in function Premiere calls to print to tape.

csSDK_int32 (*Print2TapeProcPtr)(
PrMemoryHandle	deviceHand,
long		 	 selector);

deviceHand is passed to the plug-in in DeviceRec. selector can
be setupWaitProc, idle, or complete.

See cmdInsertEdit.
piSuites Pointer to universal callback suites.
displayName A 255 character string to display the name of the device the plug-in is

currently controlling.

Device Controllers • 291Adobe Premiere Pro CS5 SDK Guide

TimecodeUpdate
Proc

During cmdLocate, use this to report timecode.

void (*TimecodeUpdatePtr)(
csSDK_int32	 outTimecode,
void*	 	 outClassID);

classID Used for TimecodeUpdateProc
version Device controller API version

Premiere Pro CS5 - kDeviceControlAPIVersion10
Premiere Pro CS3 and CS4 - kDeviceControlAPIVersion9

videoStreamIs-
Drop

New in Premiere Pro 2.0. If autoDetectDropness was set ear-
lier, and the recorder called FormatChangedFunc to provide the
drop-frame attribute of the timecode, Premiere will call cmdSetDro­
pness and use this to tell the device controller if the video stream is
drop-frame.

autoDetectDro-
pness

New in Premiere Pro 2.0. Set this to true if you want Premiere to no-
tify the device controller whether or not the video stream uses drop-
frame timecode. Premiere will get this timecode information from
the active recorder. The result will be sent during cmdSetDropness in
videoStreamIsDrop.

currentDevice-
IDStr

For internal use only.

preferredScale New in Premiere Pro CS3. Use this rather than calling piSuites-
>utilFuncs->getSettings(kSettingsProjectScale).

preferredSample-
Size

New in Premiere Pro CS3. Use this rather than calling piSuites-
>utilFuncs->getSettings(kSettingsProjectSample
Size).

Parameter Description
frame Frame (or field, for interlaced video) requested.
thePort PPixHand where Premiere will store the frame
theBox Bounds of the frame you want Premiere to retrieve.
privateData Handle provided by Premiere in VideoRecord.private-

Data

Commands

When the plug-in receives dsExecute, DeviceRec.command indicates the behavior requested.

Command Description
cmdGetFeatures Fill in the features field with the device’s features.

Device Controllers • 292Adobe Premiere Pro CS5 SDK Guide

cmdStatus Return the deck mode and current timecode position.
cmdNewMode Change the deck’s mode.
cmdGoto Go to a particular time.
cmdLocate Go to a particular time and return when you’re there.
cmdShuttle Shuttle the deck at a specified rate.
cmdEject Eject media.
cmdInsertEdit Export To Tape
cmdGetDeviceDisplayName Provide the device display name for display in the Capture

Panel.
cmdSetDropness Tells the device controller whether the current timecode is

drop-frame or non-drop-frame.
cmdGetCurrentDeviceI-
dentifier

For internal use only.

cmdGetFeatures

Populate DeviceRec.features with the features of your device controller, using the follow-
ing flags:

Flag Description
fExportDialog The device controller has an export dialog and wishes to control

the edit.
fCanInsertEdit Insert edit mode is supported.
fDrvrQuiet Quiet mode is supported.
fHasJogMode Jog is supported.
fCanEject Media ejection is supported.
fStepFwd Stepping the device forward one frame is supported.
fStepBack Stepping the device backward one frame is supported.
fRecord Your device can record.
fPositionInfo Your device can retrieve position information.
fGoto Your device can seek to a particular frame. You must also set

fPositionInfo, and respond to cmdGoto.
f1_5 Your device can play at one-fifth speed.
fBasic Your device supports the basic five deck control operations: stop,

play, pause, fast-forward, and rewind.
fReversePlay Your device can play in reverse.

Device Controllers • 293Adobe Premiere Pro CS5 SDK Guide

fCanLocate Your device can accurately locate a particular timecode and sup-
ports cmdLocate. Please do so; cmdLocate is more accurate than
cmdGoto.

fCanShuttle Your device is capable of variable-speed shuttle operations, for-
ward and backward.

fNoTransport Device supports no transport modes (play, stop, etc).

cmdStatus

Premiere sends cmdStatus to obtain the deck’s current mode (play, pause, etc.) and the current
timecode position. Store the device’s current mode in mode, and the current timecode value in
timecode. Be sure to set timerate and timeformat as described in DeviceRec.

The values of mode and timecode persist. If you only know one of the two pieces of information,
store it, and ignore the other. If your device controller makes two calls to determine these values,
alternately request one and return the other.

cmdNewMode

Puts the device into a new operating mode, specified in mode.

Mode Description
modeStop Stop.
modePlay Play.
modePlay1_5 Play at 1/5 speed.
modePlay1_10 Play at 1/10 speed.
modePause Pause.
modeFastFwd Fast forward.
modeRewind Rewind.
modeRecord Record.
modeGoto Go to time specified in DeviceRec.timecode.
modeStepFwd Step one frame forward.
modeStepBack Step one frame backward.
modePlayRev Play backward at full speed.
modePlayRev1_5 Play backward at 1/5 speed.
modePlayRev1_10 Play backward at 1/10 speed.
modeTapeOut No tape is in device.
modeLocal Device is unavailable.
modeRecordPause Pause in record mode.

Device Controllers • 294Adobe Premiere Pro CS5 SDK Guide

modeRecordPlayFastFwd Fast forward in play mode.
modeRecordPlayRewind Rewind in play mode.

cmdGoto

Seek to the timecode specified by timecode, and place the device in pause mode (if you were able
to complete the seek) or stop mode (if there was an error). Often you will set up an asynchronous
seek and return immediately.

Premiere send cmdStatus requests until the mode is cmdPause or cmdStop. While seeking, set
mode to modeGoto; Premiere will put “Searching…” in the timecode display of the supervising
window. when done seeking, store the new mode (modePause or modeStop) in mode.

cmdLocate

Seek to an exact frame and return immediately with the device in modePlay. This is a synchro-
nous operation; do not return until the operation is complete or an error occurs.

preroll indicates how far before the specified time in timecode to which to seek. Preroll value
is set by the user through calibration.

cmdShuttle

Sent when the user moves the shuttle control; mode is the shuttle speed:

Use intermediate speeds if the device supports them. If it doesn’t implement shuttling but does
support multiple play speeds, Premiere will simulate shuttling by playing at different rates, based
on the shuttle control position. Better results can be obtained by directly supporting shuttling
with the cmdShuttle command.

cmdInsertEdit

Sent if the device controller supports insert mode and wants to control the edit (set fExport-
Dialog and fCanInsertEdit during cmdGetFeatures to do so).

When the user invokes Export To Tape, Premiere prepares to play the chosen clip and sets the fol-
lowing in the DeviceHand:

command = cmdInsertEdit
mode = modeRecord
xTimecode = duration of the movie

Device Controllers • 295Adobe Premiere Pro CS5 SDK Guide

Premiere then enters a loop, calling the device controller with the above DeviceHand. When
the device controller returns, Premiere sends the PrintProc specified in DeviceHand.set-
upWaitProc. Premiere will have already performed the preroll; everything is ready to play.

When the device controller returns, Premiere plays the clip, sending idle to PrintProc once
per frame. Premiere again calls the plug-in’s entry point with the DeviceHand, allowing the
device controller to perform any cue operations. Premiere calls PrintProc with complete when
finished. If cmdInsertEdit is proceeding correctly PrintProc should always return 0.

cmdGetDeviceDisplayName

Sent so the device controller can provide the device display name for display in the Capture Panel.
The device controller fills in DeviceRec.displayName.

cmdSetDropness

Sent only if DeviceRec.autoDetectDropness is set to true. This selector tells the device
controller whether the current timecode is drop-frame or non-drop-frame, as determined by the
active recorder. The timecode information is passed in videoStreamIsDrop in DeviceRec.
Sent when recorder determines drop-frame attribute and calls FormatChangedFunc.

Additional Details

Handling dsInit and dsRestart

dsInit must allocate a new DeviceData handle; dsRestart uses the handle provided. dsInit can
fall into the dsRestart case.

	1. Introduction
	SDK Audience
	What Premiere Plug-ins Do
	What’s New?
	What’s New in CS5?
	Quick Tips For 64-bit Windows Porting
	Quick Tips For 64-bit Mac Porting
	Encore CS5
	Mac 64-Bit and Cocoa

	What’s New in CS4?
	New Exporter API
	New Video Segments
	New Renderer API and Custom Pixel Formats
	Sequence Preview Formats
	Sequence-specific Settings
	Separate Importer Process
	Separate Processes During Export
	XMP metadata
	More Pixel Format Flexibility
	New RT status
	Plug-in Blacklisting
	New Plug-in Support in Encore

	What’s New in CS3?
	Mac OS Support
	Plug-in type specific changes
	Creating XCode Projects From Existing Windows Code
	Premiere Plug-in Support in Other Production Premium Applications
	Miscellaneous

	Legacy API

	Where Do I Start?
	Document Overview
	Documentation Conventions

	Premiere Pro Plug-in Types
	Plug-in Support Across Production Premium Applications
	Premiere Elements Plug-in Support

	What Is a Premiere Plug-in, Exactly?

	Sample Projects
	Descriptions
	How To Build the SDK Projects

	Load ‘Em Up!
	Plug-in Caching
	Resolving Plug-in Loading Problems
	No Shortcuts Allowed

	Debugging Plug-ins
	Attaching The Debugger Using Microsoft Visual Studio .NET
	Attaching The Debugger Using XCode
	Dog Ears

	Plug-in Installation
	Plug-in Naming Conventions
	Creating Sequence Presets
	Application-level Preferences

	Localization
	Best Practices
	Structure Alignment

	Getting Support and Providing Feedback

	2. Resources
	Plug-In Property Lists (PiPL) Resource
	Which Types of Plug-ins Need PiPLs?
	A Basic PiPL Example
	How PiPLs Are Processed By Resource Compilers

	IMPT Resource

	3. Universals
	Time
	scale over sampleSize
	PrTime

	Video Frames
	Pixel Formats and Color Spaces
	What Format Should I Use?
	Importers
	Effects
	Exporters and Players
	Other Considerations

	Byte Order
	Custom Pixel Formats
	Smart Rendering

	Pixel Aspect Ratio
	Fields
	Audio
	32-bit Float, Uninterleaved Format
	Audio Sample Types
	Audio Sample Frames
	Audio Sample Rate
	Audio Channel Types

	Memory Management
	What Really is a Memory Problem?
	Solutions for Memory Contention

	Basic Types and Structures
	Suites
	SweetPea Suites
	Overview
	App Info Suite
	Application Settings Suite
	Audio Suite
	Clip Render Suite
	Error Suite
	File Registration Suite
	Flash Cue Marker Data Suite
	Image Processing Suite
	Marker Suite
	Memory Manager Suite
	ReserveMemory

	Pixel Format Suite
	PPix Cache Suite
	PPix Creator Suite
	CreatePPix
	ClonePPix

	PPix Creator 2 Suite
	PPix Suite
	PrPPixBufferAccess
	Dispose
	GetPixels
	GetBounds
	GetRowBytes
	GetPixelAspectRatio
	GetUniqueKey
	GetUniqueKeySize
	GetRenderTime

	PPix 2 Suite
	Quality Suite
	Render Quality
	Playback Quality
	Playback Fractional Resolutions

	RollCrawl Suite
	Sequence Info Suite
	String Suite
	Threaded Work Suite
	Time Suite
	pmPlayTimebase
	PrVideoFrameRates
	GetTicksPerSecond
	GetTicksPerVideoFrame
	GetTicksPerAudioSample

	Video Segment Render Suite
	Video Segment Suite
	Window Suite

	Legacy Callback Suites
	piSuites
	Memory Functions
	Window Functions
	PPix Functions
	Utility Functions
	Timeline Functions

	Bottleneck Functions

	4. Hardware Integration
	Hardware Integration Components
	Importers
	Recorders
	Exporters
	Players

	Editing Modes
	ClassID, Filetype and Subtype
	ClassData Functions

	5. Importers
	What’s New
	What’s New in Premiere Pro CS5?
	What’s New in Premiere Pro CS4?
	What’s New in Premiere Pro CS3?
	What’s New in Premiere Pro 2.0?
	Asynchronous Import
	Timecode Rate
	New Selectors
	New/Updated Structures

	Getting Started
	Try the Sample Importer Plug-ins
	How to Get First Crack at a File
	imGetSourceVideo versus imImportImage
	privateData and prefs
	Audio Conforming and Peak File Generation
	Quieting versus Closing a File
	File Handling
	Quality Levels
	Multiple Audio Streams
	Project Manager Support
	Creating a Custom Importer
	Showing a Video Preview in a Setup Dialog
	Real-Time Rolling and Crawling Titles
	Format repeated in menu?
	Resources
	Entry Point
	Standard Parameters
	Importer-Specific Callbacks

	Selector Table
	Selector Descriptions
	imInit
	Synthetic Importers
	Custom Importers

	imGetIndFormat
	imGetSubTypeNames
	imGetIndPixelFormat
	imGetPrefs8
	imGetInfo8
	imGetTimeInfo8
	imSetTimeInfo8
	imGetFileAttributes
	imImportImage
	imGetPreferredFrameSize
	imGetSourceVideo
	imImportAudio7
	imGetPeakAudio
	imOpenFile8
	imQuietFile
	imCloseFile
	imSaveFile8
	imAnalysis
	imDataRateAnalysis
	imDeleteFile
	imGetMetaData
	imSetMetaData
	imShutdown
	imGetSupports8
	imGetSupports7
	imCalcSize8
	imCheckTrim8
	imTrimFile8
	imCopyFile
	imDeferredProcessing
	imRetargetAccelerator
	imCreateAsyncImporter
	imQueryDestinationPath
	imQueryContentState

	Return Codes
	Structures
	Structure Descriptions
	imAcceleratorRec
	imAnalysisRec
	imAsyncImporterCreationRec
	imAudioInfoRec7
	imCalcSizeRec
	imCheckTrimRec
	imCopyFileRec
	imDataRateAnalysisRec
	imDeferredProcessingRec
	imDeleteFileRec
	imFileAccessRec8
	imFileAttributesRec
	imFileInfoRec8
	imFileOpenRec8
	imFileRef
	imFrameFormat
	imGetPrefsRec
	imImageInfoRec
	imImportAudioRec7
	imImportImageRec
	imImportInfoRec
	imIndFormatRec
	imIndPixelFormatRec
	imMetaDataRec
	imPeakAudioRec
	imPreferredFrameSizeRec
	imQueryContentStateRec
	imQueryDestinationPathRec
	imSaveFileRec8
	imSourceVideoRec
	imSubTypeDescriptionRec
	imTimeInfoRec8
	imTrimFileRec8

	Suites
	Async File Reader Suite
	Deferred Processing Suite
	Media Accelerator Suite

	6. Recorders
	What’s New?
	What’s New in Premiere Pro CS5?
	What’s New in Premiere Pro CS4?
	No More Project Presets

	What’s New in Premiere Pro CS3?
	What’s New in Premiere Pro 2.0?
	New Selectors
	New Structures
	New Callbacks

	Getting Started
	Selector Calling Sequence
	Try the Sample Recorder Plug-in
	Metadata
	Save Captured File Dialog
	Switching Preview Area Between Different Frame Sizes
	Scene Detection
	Scene Capture
	Scene Searching

	Entry Point
	Standard Parameters
	Recorder-Specific Callbacks

	Selector Table
	Selector Descriptions
	recmod_Startup8
	recmod_Shutdown
	recmod_GetSetupInfo8
	recmod_ShowOptions
	recmod_Open
	recmod_Close
	recmod_SetActive
	recmod_SetDisp
	recmod_Idle
	recmod_PrepRecord8
	recmod_StartRecord
	recmod_ServiceRecord
	recmod_StopRecord
	recmod_CloseRecord

	Return Codes
	Structures
	Structure Descriptions
	recInfoRec8
	recCapSetups8
	recDisplayPos
	recOpenParms
	recCapturedFileInfo
	recFileSpec8
	recSetupParms
	recCapParmsRec8
	recGetTimecodeRec
	recSceneDetectionParmsRec

	7. Exporters
	What’s New in CS5
	Porting From the Compiler API
	Getting Started
	Multiple File Formats
	Adding Parameters
	Media Encoder as a Test Harness
	Creating Presets
	Parameter Caching
	Increment the Parameter Version
	Flush the Parameter Cache

	Exporters Used for Editing Modes
	Sequence Encoder Presets

	Timeline Segments in Exporters
	Smart Rendering
	Entry Point
	Standard Parameters

	Selector Table
	Selector Descriptions
	exSelStartup
	exSelBeginInstance
	exSelGenerateDefaultParams
	exSelPostProcessParams
	exSelValidateParamChanged
	exSelGetParamSummary
	exSelParamButton
	exSelExport
	exSelQueryExportFileExtension
	exSelQueryOutputFileList
	exSelQueryStillSequence
	exSelQueryOutputSettings
	exSelValidateOutputSettings
	exSelEndInstance
	exSelShutdown

	Return Codes
	Structures
	Structure Descriptions
	exDoExportRec
	exExporterInfoRec
	exExporterInstanceRec
	exGenerateDefaultParamRec
	exParamButtonRec
	exParamChangedRec
	exParamSummaryRec
	exPostProcessParamsRec
	exQueryExportFileExtensionRec
	exQueryOutputFileListRec
	exQueryOutputSettingsRec
	exQueryStillSequenceRec
	exValidateOutputSettingsRec

	Suites
	Export File Suite
	Export Info Suite
	GetExportSourceInfo

	Export Param Suite
	Export Progress Suite
	Palette Suite
	Sequence Audio Suite
	MakeAudioRenderer
	ReleaseAudioRenderer
	GetAudio
	ResetAudioToBeginning
	GetMaxBlip

	Sequence Render Suite
	MakeVideoRenderer()
	ReleaseVideoRenderer()
	struct SequenceRender_ParamsRec
	struct SequenceRender_GetFrameReturnRec
	RenderVideoFrame()
	GetFrameInfo()
	SetAsyncRenderCompletionProc()
	PrSDKSequence­AsyncRenderCompletionProc()
	QueueAsyncVideoFrameRender()
	PrefetchMedia()
	PrefetchMediaWithRenderParameters()
	CancelAllOutstandingMediaPrefetches()
	IsPrefetchedMediaReady()
	MakeVideoRendererForTimeline()
	MakeVideoRendererForTimeline­WithFrameRate()
	ReleaseVideoRendererForTimeline()

	Additional Details
	Multiplexer Tab Ordering
	Creating a Non-Editable String in the Parameter UI
	Accelerated Renderers
	Guidelines for Exporters in Encore
	Naming Your Exporter
	Naming Your Output
	Parameters

	Guidelines for Exporters in Premiere Elements
	Exporter Preset
	Return Values

	8. Players
	What’s New
	What’s New in Premiere Pro CS5?
	What’s New in Premiere Pro CS4?
	New Timeline Segments
	Reporting Real-Time Status
	Sequence-Specific Settings
	Fractional Resolution
	New RT status
	Other Changes

	What’s New in Premiere Pro CS3?

	Getting Started
	Selector Calling Sequence
	Try the Sample Player Plug-in
	Real-time or Needs Rendering?
	Which Pixel Formats to Use?
	Why Can’t I Always Get a Compressed Frame Back?
	Segments
	High-Bit Color Depth
	Multi-Camera Monitor
	Real-Time Titling and Stills
	What About Audio?
	Entry Point
	PrPlayID
	Standard Parameters
	Player-Specific Callbacks
	File Callbacks
	getPixelAspectRatio

	Video Callbacks
	showFileFrame
	getCurrentTime
	frameDropped
	showFileFrameWithSafeAreas
	showFileFrameRenderSettings

	Selector Table
	Selector Descriptions
	playmod_Startup
	playmod_Shutdown
	playmod_GetIndFormat
	playmod_GetInfo
	playmod_GetFilePrefs
	playmod_SetFilePrefs
	playmod_PushPlayerSettings
	playmod_Close
	playmod_Activate
	playmod_Update
	playmod_UpdateMarkers
	playmod_SetDisp
	playmod_SetView
	playmod_SetDisplayMode
	playmod_SetVideoDisplayType
	playmod_SetDisplayStateProperties
	playmod_SetQuality
	playmod_SetUseFractionalResolution
	playmod_SetFractionalResolution
	playmod_AdornSafeAreas
	playmod_ProjectSettingsChanged
	playmod_DisplayMoving
	playmod_DisplayChanged
	playmod_GetAudioInfo
	playmod_GetAudioChannelInfo
	playmod_EnableDynamicPlayback
	playmod_GetPos
	playmod_Preroll
	playmod_Play
	playmod_PlayIdle
	playmod_SetPlaybackSpeed
	playmod_Stop
	playmod_EnterScrub
	playmod_SetPos
	playmod_Step
	playmod_LeaveScrub
	playmod_PutTemporaryTimeline
	playmod_PutFrameRequest
	playmod_PutFrame
	playmod_NewList
	playmod_VideoSequenceHasChanged
	playmod_GetRTStatusForTime

	Return Codes
	Structures
	Structure Descriptions
	pmActivateRec
	pmAdornSafeAreasParams
	pmAudioChannelInfo
	pmAudioInfo
	pmDisplayPos
	pmDisplayStateProperties
	pmGetFilePrefsRec
	pmModuleInfoRec
	pmPlayerSettings
	pmPlayInfoRec
	pmPlayTimebase
	pmPutFrameRec
	pmPutFrameRequestRec
	pmPutTemporaryTimelineRec
	pmStartupRec
	PrVideoDisplayParameters
	pmGetPosRec
	pmPlayParms
	pmStepRec
	pmNewListParms
	prtPlayableRangeRec

	Suites
	Playmod Audio Suite
	Host-Based, or Plug-in Based Audio?
	Audio Playback
	Audio Scrubbing
	AudioTimeCallback
	InitHostAudio
	InitPluginAudio
	StartAudio
	GetNextAudioBuffer
	SetPosition
	GetPosition
	SetRange
	SetPlaybackSpeed
	StopAudio
	AudioPlaybackSettings
	AudioPositions

	Playmod Device Control Suite
	Seek
	Arm
	Record
	Stop
	PlayModuleDeviceID

	Playmod Render Suite
	PrRenderCacheType
	PrSDKPlayModuleRenderSuite_AsyncCompletionProc
	RenderVideoFrame
	QueueAsyncVideoFrameRender
	SetAsyncRenderCompletionProc
	CancelOneOutstandingAsyncRequest
	CancelAllOutstandingAsyncRequests
	FetchRenderedFrameFromCache
	PrefetchMedia
	PrefetchMediaWithRenderParameters
	CancelPrefetchMedia­WithRenderParameters
	CancelAllOutstandingMediaPrefetches
	AddFrameToCache
	AllowTransparentVideoFrames
	RefreshRTStatus
	GetAcceleratedRendererRTStatusForTime

	Scope Render Suite
	Stock Image Suite

	9. Transitions
	Getting Started
	Resources
	A Transition PiPL Example

	Resources Table
	Entry Point

	Selector Table
	Selector Descriptions
	esSetup
	esExecute
	esDisposeData
	esCanHandlePAR
	esGetPixelFormatsSupported
	esCacheOnLoad

	Return Codes
	EffectRecord
	FXCallBackProcPtr
	sizeFlags

	Additional Details
	Fields and Field Processing
	Frame Caching
	Real-Time Transitions

	10. Video Filters
	What’s New
	What’s New in Premiere Pro CS5?
	What’s New in Premiere Pro CS3?

	Getting Started
	Resources
	A Filter PiPL Example

	Entry Point

	Selector Table
	Selector Descriptions
	fsInitSpec
	fsHasSetupDialog
	fsSetup
	fsExecute
	fsDisposeData
	fsCanHandlePAR
	fsGetPixelFormatsSupported
	fsCacheOnLoad

	Return Codes
	VideoRecord
	VFilterCallBackProcPtr
	sizeFlags

	Additional Details
	Fields and Field Processing
	Frame Caching
	Creating Effect Presets
	Effect Badging
	Real-Time Video Filters
	Premiere Elements and Effect Thumbnail Previews

	11. Device Controllers
	What’s New in Premiere Pro CS3?
	Getting Started
	Resources
	Entry Point

	Selector Table
	Selector Descriptions
	dsInit
	dsSetup
	dsExecute
	dsCleanup
	dsRestart
	dsQuiet
	dsHasOptions

	Return Codes
	DeviceRec
	Commands
	cmdGetFeatures
	cmdStatus
	cmdNewMode
	cmdGoto
	cmdLocate
	cmdShuttle
	cmdInsertEdit
	cmdGetDeviceDisplayName
	cmdSetDropness

	Additional Details
	Handling dsInit and dsRestart

