
Why Clarion2Java?

1 Introduction

This document outlines the case for clarion2java. It is written by the original project
creator of Clarion2Java and it provides a personal narrative as to the motivations and
chain of events that lead to the inception of this project.

2 Do not throw away code

There are a number of reasons why I started this project, which I will list below shortly.
But there was one overriding principal driving this entire project – value your software
assets.

I develop point of sale software for motorcycle retailers in Australia. For over 15 years
the solution provided by C8 Software has been based on Clarion. From Clarion DOS, to
Clarion 2.0, to Clarion 5.5. Each progression from one version to the next was driven
primarily by growth in expectations from our customers, and along that growth path we
continued to use Clarion technologies. Prior to Clarion, we used a business basic
language, called AB-86. Every major technology shift required us to minimally rewrite
major sections of the software, if not a complete rewrite.

For a number of reasons, our needs outgrew the capabilities of Clarion 5.5. I will list
these reasons shortly, but what these are are not critical : because it is an inevitable
aspect of the software engineering lifecycle which we have been through multiple times
already.

We looked at upgrading to Clarion 6 and Clarion 7 – but were not entirely confident that
this move would address all of our issues. We also looked at Clarion.NET. But our
immediate problem with Clarion.NET was that it was not a faithful re-implementation
of the Clarion Language Specification and that we would be forced to rewrite large
tracts of our software.

This was not acceptable to us. It is a common anti-pattern in the software industry, one
which we have gone through ourselves multiple times now : if your business needs
outgrow your current technology stack then the way forward, even if you stick with the
same stack vendor (i.e. Clarion 5.5 to Clarion.NET) is to substantially rewrite your code
for a new stack.

But the software represents years of effort and investment and painstaking testing and
bug fixing. Why throw all that hard one knowledge and working asset away?

Why Clarion for Java? Manual - 2) Do not throw away code 1/4

Also the customers are used to how the software behaves. They are used to the fact that
at a certain point of Point of Sale use case for example, you press F2, Enter discount,
F10, Enter cash tender, F10, Down Arrow, Enter and they do it automatically,
reflexively. To rewrite the code in a new system will involve either painstakingly
ensuring that user experience matches perfectly, or alternatively risk upsetting your
customers.

This is the basis of clarion2java. I did not want to solve problems I already solved. I
wanted to give my customers a new system which closed all our open issues but looked
and felt the same.

So instead of rewriting code, solving problems I already solved – I decided to extend
the capabilities of the product – by adding, not replacing. I added a compiler and
runtime system.

This doesn't logically mean that, had you programmed in cobol in 1970, you should still
be programming in cobol come YEAR 2040. But providing a transitional migration
path allows us to gradually migrate more and more from Clarion to Java provides us
options to keep the software asset modern and relevant, but not undergo the risk and
expense of a rewrite. Right now we are writing more and more code in java. We will
continue to use clarion where it is useful and we will use java were useful.

2.1 Clarion and Java – best of both worlds

Clarion 5.5 is a great environment. I like working in it, and I would like to continue to
work in it – because it is simple, rapid and intuitive.

Clarion2java gives me the best of both worlds.

I continue to do the bulk of my programming in Clarion – because it is a great language
for expressing business logic. The app generator is excellent.

Yet there are times when I want something closer to general purpose programming,
something that does graphics (charts), networking and other sophisticated concerns like
cryptography efficiently and simply. I want to be able to tap into one of the worlds most
popular programming languages, into a language which is supported by a vibrant
culture of open source so that I can reuse powerful technologies and libraries, but with
the added benefit of not having to pay licencing for the right to use those libraries.

The java itself is beginning to expand number of supported languages that can co-exist
in the Java Virtual Machine (JVM). So there is scope for considering mixing even more
languages, such as Scalar, JRuby, and JPython just to name a few.

Why Clarion for Java? Manual - 2) Do not throw away code 2/4

2.2 Issues with Clarion 5.5

Firstly, all technology stacks have their strengths and limitations.

Clarion 5.5's limitations were beginning to impact us.

2.3 Application Stability

Number one was runtime stability both database and the program itself. The application
would regularly crash and generate a GPF deep within the bowels of the system.
Without access to source code for C55RUN.DLL for example, we had no idea what was
causing it. We found a correlation between performance/age of the desktop computer
and the issues we were experiencing. We also determined that disabling graphics
acceleration seemed to alleviate the problem. But not fix it.

We considered going to Clarion 6 and 7 to get relief but we were not confident that this
would fix the problem. Trawling through change logs on SV website we could not find a
specific fix. Also there is a risk we would inherit a new set of problems.

2.3.1 Database ACID

For years, since that days of Clarion for DOS, we have been using Clarion .DAT
files. .DAT files are just simple ISAM files with attached b-tree indexes. They do not
journal/transaction well, they do not provide ACID. But our application was beginning
to do more and more complicated operations which required ACID and more and more
shops were running multiple terminals. Key files would regularly corrupt. And
occasionally databases would lose data or lose referential integrity as a consequence of
undetected Key file errors.

We considered TopSpeed system some years ago : TPS. But going to TPS would mean
forgoing very valuable tools like cscn and cfil for which TopSpeed had little in way of
an analogue. Especially cfil which is a very important tool for managing database
configuration and upgrades.

For years we recognised the need to goto a system like PostgreSQL – which I have had
alot of positive experience with in other projects.

2.3.2 Migrate to PostgreSQL - problems

We migrated to PostgreSQL over a period of 3 to 4 months. The experience was not
positive. A number of issues:

• Performance. certain browse screens in particular were unacceptably slow. By
inspecting the SQL the ODBC file driver submitted to postgres we could see a
number of problems which we know we could fix if we could write the SQL
ourselves. But that would involve not using Clarion browse wizard and rolling our
own. Not desirable.

• Complexity. Installing a new terminal was too complicated. You had to install the

Why Clarion for Java? Manual - 2) Do not throw away code 3/4

ODBC driver and configure it – including configuration of non default settings such
as using Cursor Fetching (in order to try and claw back some performance). If a
customer were to install a new terminal or have a disk failure on a terminal we
simply could not count on local community IT shop/support from being able to
manage the corrective procedures to get the terminal working again.

2.3.3 Change in Business - Networking and Analytics

Business is constantly changing. 10 years ago, no motorcycle shops were connected to
the internet. Now every shop has a permanent ADSL connection, they want to be able to
email customers, SMS customers, integrate into factory electronic stocking and ordering
systems etc. Factories started hiring companies to do best practice audits which
demands more sophisticated data access and analytics. None of the things we could
cope well with with Clarion 5.5. Networking is difficult and clumsy, data analytics is
difficult in Clarion 5.5.

2.3.4 clarion2java

With all of the above – java was a natural fit for us.

Why Clarion for Java? Manual - 2) Do not throw away code 4/4

	1 Introduction
	2 Do not throw away code
	2.1 Clarion and Java – best of both worlds
	2.2 Issues with Clarion 5.5
	2.3 Application Stability
	2.3.1 Database ACID
	2.3.2 Migrate to PostgreSQL - problems
	2.3.3 Change in Business - Networking and Analytics
	2.3.4 clarion2java

