
ConceptBase V6.1 Programmer’s Manual

Matthias Jarke, Manfred A. Jeusfeld, Christoph Quix (Eds.)

Contributions to this manual were made by: Lutz Bauer, Rainer Gallersdörfer, Michael Gebhardt, Manfred
Jeusfeld, Thomas List, Hans Nissen, Christoph Quix, René Soiron, Martin Staudt and Ralf Stössel.

This manual refers to: ConceptBase V6.1, released 17-Jan-2003

Contents

1

Chapter 1

Server Interface

This chapter provides basic information necessary for communication with the ConceptBase server. It
is possible that the CBserver and the clients ’live’ on different machines because communication with
the CBserver is realized through a message protocol using inter-process communication (IPC) based on
standard Internet sockets. It is even possible (but not recommended :-)) to use a standard telnet program
for the communication with a CBserver. The following chapter describes this protocol as it is necessary to
know for a specialized client which wants to request services from the CBserver. Readers who intend only
to use one of the programming interfaces for C, C++ or Java may skip this chapter, but it contains some
useful basic information.

From a client’s point of view the CBserver can be seen as an abstract data type exporting several
parameterized operations. These operations comprise methods for storing/retrieving information into/from
the KB, methods for establishing and closing the connection to a CBserver and methods for testing the KB.
Since the client and CBserver are two different processes a client cannot directly call these methods like
procedures but must access them using a message protocol. However, the use of one of the application
programming interfaces (API) for C, C++ and Java simplifies the communication and interaction with the
CBserver from the viewpoint of an application programmer.

This chapter is organized as follows: Section ?? describes the message protocol which is used to com-
municate with other processes. Section ?? describes the interface to the CBserver, i.e. the data structures
and operations which the ConceptBase kernel offers and the message protocol which makes these opera-
tions accessible to other processes.

1.1 Message Format
As already mentioned, any client that wants to use the methods of a CBserver has to communicate with
CBserver according to a message protocol. So called ipcmessages can be sent via IPC to the port reserved
for this CBserver. The CBserver handles such a message and reports back an answer: the ipcanswer.

1.1.1 ipcmessage
ipcmessage (sender, receiver, method, args). where

sender is the identifier for the sender of the message,

receiver is the identifier for the receiver of the message (usually the CBserver itself, but could be any other
client connected to CBserver as well),

method is one of the methods exported by the CBserver (or a method known to another client which is
adressed by the message),

args are the arguments for method.

2

Note, that it is necessary to “encode” the parameters of an ipcmessage. This means, that the strings
must begin and end with ". If the string contains the characters " or \, they must be escaped with a
backslash (\). Please refer to the grammar definition in appendix ?? for full details.

Messages can also be directed to other clients of the CBserver by using a different ID than the server
ID as a receiver of message. If messages are sent from client to client, clients have to poll for messages
using the method NEXT MESSAGE. This function has not been tested recently.

A message can be prefixed by the length of the message, which is specified in five bytes. The first byte
is always the character ’X’, the next bytes are computed by the following formulas (len is the length of the
message without this prefix):

1. (len /2563) modulo 256

2. (len /2562) modulo 256

3. (len /256) modulo 256

4. len modulo 256

e.g., the first byte is the highest byte and the last byte is the lowest byte of an unsigned integer. Note, that
specifying the length of an IPC-message is optional. IPC-messages without the length information should
also be accepted by the server but communication problems might occur in rare circumstances.

1.1.2 ipcanswer
ipcanswer (sender, completion, return). where

sender is the identifier of the answering program (usually the CBserver since other programs cannot an-
swer directly but only receive the message and send back another message via the CBserver). This
is sent as an encoded string.

completion signals success (=ok) or failure (=error) or unability (=not handled) of handling the message

return contains the return value(s) of the handled message. This is sent as an encoded string.

Additionally the CBserver administrates message queues for all connected clients. Whenever a client
X sends a message to another client Y (which is not CBserver) the CBserver stores this message into the
message queue of the client Y and gives it back to X.
Remark: If clients are likely to exchange messages they should periodically poll their message queue.

1.2 Methods Exported by the CBserver
The CBserver offers the following methods (list is incomplete):

general methods: TELL, UNTELL, TELL MODEL, ASK, HYPO ASK, NEXT MESSAGE, ENROLL ME,
CANCEL ME, GET MODULE CONTEXT

privileged methods: STOP SERVER, REPORT CLIENTS

internal methods: LPI CALL

Privileged methods affect other clients connected to CBserver as well and should only be executed by
an authorized client. That means, that only the owner of the ConceptBase server process may execute this
methods.

The internal method LPI CALL gives a client the possibility to call internal procedures of the Concept-
Base server. This method is mainly useful for ConceptBase developers for debugging and analysing.

In the following description of the methods return refers to the respective parameter of ipcanswer(sender,
completion, return).

For each error occuring during the execution of a method an error message is stored by the CBserver
receiver in the message queue of the client sender. This error message can be fetched via a call of
method NEXT MESSAGE, see below.

3

1.2.1 TELL
ipcmessage (sender, receiver, TELL, [objects])

objects encoded string containing object descriptions in Telos represented as frames
return "yes" in case of success, "no" otherwise
The CBserver receiver checks the syntax of objects creating a parse tree for each object
description, called SMLfragment. If no syntax error occurs the SMLfragments are transformed
into an internal network representation with specialized rules and constraints. Those facts
which are not already retrievable are temporarily added to the KB. A check is then performed
to determine whether the updated KB still satisfies the integrity constraints. In the case of
satisfaction the new information is made permanent, otherwise it is deleted.

1.2.2 UNTELL
ipcmessage (sender, receiver, UNTELL, [objects])

objects encoded string containing object descriptions in Telos represented as frames
return "yes" in case of success, "no" otherwise
The objects will be untold, i.e. the upper bound of their transaction time interval is set to
the time the UNTELL operation takes place. That means from this time on the system does
not believe this information anymore. Questions about the current state of the knowledge base
yield the same answer as if the objects were never inserted into the system. However questions
about earlier states will regard all information (even untold) the transaction time of which
contains the time in question (= rollback time). Like in the TELL method, if the UNTELL
operation would result in an inconsistent KB state it is rejected by the integrity checker.

1.2.3 TELL MODEL
ipcmessage (sender, receiver, TELL MODEL, [[filelist]]).

filelist A list of comma-separeted ipc strings, which contain the full filenames of files to be
loaded by ConceptBase server.

This method is similar to the TELL method, except that the frames which are told to Concept-
Base are loaded from the given files and not passed directly to ConceptBase.
Remark: The files to be loaded by ConceptBase must be accessible for the server. This is
not always the case, when server and client are running on different machines with different
filesystems mounted on. Another problem may occur, due to access protections, because the
user running the ConceptBase server is not allowed to read the specified files.

1.2.4 ASK
ipcmessage (sender, receiver, ASK, [Format, Query, AnswerRep, RollbackTime])

Format is either FRAMES or OBJNAMES, depending of the format of Query. If in Query
only the object name of a query is given (e.g. AllEmployees) then the format must be
OBJNAMES. If the query is specified as frame (e.g. "QueryClass AllEmployees
isA Employee end") then the format must be FRAMES.

Query depending on the Format this may be simple object names or frames representing
queries. In the later case, the query is temporarily told to the object base and after eval-
uating deleted from the object base, if it does not already exist in the object base before
the transaction.

AnswerRep answer format specification, possible values are: FRAGMENT, FRAME, LABEL
or an instance of AnswerFormat1. The syntax of the FRAGMENT and FRAME formats

1See the ConceptBase User Manual for details about user-defined answer formats

4

are explained in the appendix of the ConceptBase User Manual. If the answer represen-
tation is LABEL a comma-separated list of object names is returned.

RollbackTime rollback time specification

return list of answers in case of success, "no" otherwise

The values of the Format argument (FRAMES and OBJNAMES) are ipc message keywords
and must not be encoded as the other arguments Query, AnswerRep and RollbackTime.

Example:

The following two queries are predefined builtin queries and available after booting the Con-
ceptBase server. These queries additionally give good examples for derived expressions by
instantiating parameters of generic query classes.

• exists[x/objname]

The answer return is "yes" if there is an object named x, otherwise "no".

• get_object[x/objname]

The answer is the frame representing the object x if there is an object x. Otherwise, the
answer is "no". Only information that is explicitly stored (i.e. not inherited or deduced)
is considered. If you want deduced information, you must specify additional parameters.
For example, the answer of the following query is the Class object with stored and
deduced attributes:

get_object[Class/objname,FALSE/dedIn,FALSE/dedIsa,TRUE/dedWith]

1.2.5 HYPO ASK
ipcmessage(sender, receiver, HYPO ASK,[ObjList, Format, Query, AnswerRep, RollbackTime])

ObjList string of objects in frame syntax

Format see ASK

Query see ASK

AnswerRep see ASK

RollbackTime see ASK

return list of answers in case of success, no otherwise

This method allows to process so called ’hypothetical’ queries against the KB. The objects
in objList are temporarily told. This list may contain query objects which may in turn be
referred to by names contained in Query. Then the queries in queryList are evaluated as if the
temporary information would belong to the KB. Afterwards the temporary information will be
removed.

1.2.6 NEXT MESSAGE
ipcmessage (sender, receiver, NEXT MESSAGE, [type])

type identifier describing the type of the message (e.g. ERROR_REPORT). This argument
may not be encoded as other string, but may be empty.

return contains the next message for the client if its message queue contains at least one
message, empty queue if no message exists

Client sender requests a message from the CBserver receiver stored in its message queue.
Usually, this method is called after the CBserver returns error for a previous method. The
client program must then get all error messages until it gets "empty_queue" as answer.

5

1.2.7 STOP SERVER
ipcmessage (sender, receiver, STOP SERVER, [password])

password password allowing a client to stop a CBserver (may be empty)

return "yes" in case of success, "no" otherwise

The CBserver receiver is terminated if the password is correct and the user running the client
is also the owner of the CBserver to be stopped. To the requesting client STOP SERVER has
the same effect as CANCEL ME. It is recommended to terminate the CBserver by using the
respective menu choice from the “Server Menu” of ConceptBase Workbench if you want to
stop the CBserver process.

1.2.8 REPORT CLIENTS
ipcmessage (sender, receiver, REPORT CLIENTS, [])

return list of all clients currently connected to CBserver receiver

CBserver receiver reports back the identifier, toolclass and owner name of all currently con-
nected clients including itself.

1.2.9 ENROLL ME
ipcmessage (sender, receiver, ENROLL ME, [toolclass,username])

toolclass ’class’ the client belongs to

username name of the user running the client

return identifier assigned to the client by CBserver

sender and receiver have value "" since they are not known. The sending client will
be registered as a new client of the CBserver with its own identifier and message queue. This
message must be sent to the CBserver before any other message can be sent, since all other
messages require valid identifiers to be assigned to sender and receiver. If the user specified
by username is stored as an instance of the class CB User of the CBserver, then the value
of the attribute homeModule of that user is taken as the initial module context of the client.
Otherwise, the default module context System is assigned to the client. In a variant of EN-
ROLL ME, one can specify a third parameter module which will set the module context
explicitely.

1.2.10 CANCEL ME
ipcmessage (sender, receiver, CANCEL ME, [])

return "yes" in case of successful disconnection, "no" otherwise

Client sender will be disconnected from CBserver. This means that from now on the sender
is no longer known to the CBserver (no further messages can be sent) and its message queue
is deleted. After successfully canceling the connection, the ipc sockets to the server must be
closed by the client program.

1.2.11 GET MODULE CONTEXT
ipcmessage (sender, receiver, GET MODULE CONTEXT, [])

return name of the module currently assigned to client sender

This service allows clients to interrogate the CBserver about the currently active module con-
text in which they operate.

6

1.2.12 LPI CALL
ipcmessage (sender, receiver, LPI CALL, [call])

call an internal routine

return "yes" if call succeeded, "no" otherwise

This is for debugging and testing purposes only.

7

Chapter 2

Programming Interface for a C Client:
libCB

This chapter describes the programming interface for ConceptBase. The programming interface consists of
a number of data structures and C functions which are defined in the header file CBinterface.h. Make
sure that this header file is included in each of source files that use functions of libCB. The data structures
are explained in section ??. The C library libCB contains all functions described in section ??.

The libraries can be found in the following directories:

Solaris/SPARC: The directory $CB_HOME/sun4/lib contains the libraries for static linking of your
application.

Solaris/PC: The directory $CB_HOME/i86pc/lib contains the libraries for static linking of your ap-
plication.

Linux: The directory $CB_HOME/linux/lib contains the libraries for static linking of your applica-
tion.

Windows: The directory $CB_HOME/windows/lib contains the dynamic libraries for dynamic linking
of your application.

There are currently no plans to build dynamic libraries for the Unix-based platforms.
The directories $CB_HOME/examples/Clients/LogClient and

$CB_HOME/examples/Clients/C_Client contain example programs, which uses the program-
ming interface libCB to communicate with the ConceptBase server. The LogClient program is ex-
plained in appendix ??. Information on you how to compile and link your source code with the Concept-
Base libraries can be found either in the directories of the example clients or in section ??.

2.1 Data Structures
This section describes the data structures used by the API, in particular structures which are passed to and
returned by the interface procedures.

The following C-types are defined in the file CBinterface.h which is located in the directory
$CB_HOME/include.

2.1.1 Completion
typedef enum {CB_OK=0, CB_ERROR, CB_NOT_HANDLED,

CB_TIMEOUT, CB_CONN_BROKEN} Completion;

The different return values have to be interpreted as follows:

8

CB OK the message has been handled successfully.

CB ERROR an error occurred during the execution of the message; the ConceptBase server stores some
error reports for you on your message queue which may be read calling em = get errormessages()
(see below).

CB NOTIFICATION indicates that the message is a notification message. Notification messages are sent
by the server if the client has requested notification on updates on certain views.

CB NOT HANDLED the server was not able to manage your message at all. This may be due to an
invalid format of input parameters (e.g. wrong Telos syntax) or missing parameters.

CB TIMEOUT the message has been sent successfully to the server, but there has been no answer from
the server after a specific amount of time (depends on the type of message sent). This may be due
to the number of clients which are active or due to the kind of message you sent (some queries may
last longer than others). The client is responsible for the correct handling of answers returned after
CB TIMEOUT occured.

CB CONN BROKEN the sending of the last message failed (the connection to the server is no longer
accessible). Again, the client is responsible to handle this return value (e.g. stopping the client).

2.1.2 Answer
struct answer { char *sender;

Completion completion;
char *return_data;

};
typedef struct answer Answer;

The Answer structure is returned by most library functions. The first field sender contains the name
of the sender as it is maintained by the ConceptBase server. The second one specifies the status of the
message processing (see section ??) while the third one contains return values of the message called.

2.1.3 Server
struct server { char *serverName;

char *client;
int connected_to_CB_server;
SOCKET socket;

};
typedef struct server Server;

This structure is allocated and filled by the connect CB server() call and used as an anchor by all
the other routines to get the right server. The field connected to CB server should usually be true,
as it indicates that the client is connected to the server (or not). The socket field represents the socket
which is used for the communication with the CB server and should be used only internally.

2.1.4 Clients
struct clients { char *client;

char *toolclass;
char *username;
struct clients *next;
};

typedef struct clients Clients;

This structure represents a simply linked list of clients. A pointer to this structure is returned as result
of the report clients call.

9

2.1.5 Error Messsages
struct errormessages { char *errormessage;

struct errormessages *next;
};

typedef struct errormessages Error_Messages;

List of error messages given by the ConceptBase server every time a communication event can not be
processed correctly. This list may be obtained calling get errormessages().

2.2 Functions

2.2.1 connect CB server
int connect_CB_server(int portnr,

char *hostname,
char *clientname,
char *username,
Server **server)

Description:

Sets up a connection to a given ConceptBase server. This routine has to be called once before
calling one of the following routines.

Input parameters:

portnumber number of the port of the server (this port number is unique per server as may
be defined at the server’s start up time).

hostname name of the machine on which you started the server
clientname name of the client to be connected (e.g. TelosEditor)
username name of the user who started the client
server pointerpointer to a struct server; on a succesfull connection the structure will be allo-

cated and filled

Result:

0 Connection established
-1 There is no such server (probably wrong portnumber and/or host)
>0 a completion value (see section ??)

2.2.2 disconnect CB server
int disconnect_CB_server(Server *server)

Description:

Closes a previous connection to a ConceptBase server. This procedure has to be called every
time a client is stopped (but usually the CBserver is not affected by clients that crash or do not
disconnect correctly).

Input parameters:

sever pointer to the structure discribing the current ConceptBase server

Result:

0 Connection correctly terminated
-1 error, not connected
>0 a Completion value

10

2.2.3 tellCB
Answer* tellCB(Server *server, char *objects)

Description:

Inserts a set of objects into the ConceptBase server. This function has been renamed from
previous releases as tell is a operating system function on some systems.

Input parameters:

server pointer to the structure discribing the actual server

objects pointer to a list of objects, which should be inserted into the knowledge base. This
should be a normal NULL-terminated C-string.

Result:

An answer struct where return data is either yes or no and where the completion value
indicates the result of the operation:

CB OK operation sucessfull

CB ERROR There was an error while inserting, get the errormessages by calling get errormessages()

other see the description in section ??

2.2.4 untell
Answer* untell(Server *server, char *objects)

Description:

Removes a list of objects from the knowledge base. Note the specific semantics of the untell
method as described in chapter ?? of this Manual.

Input parameters:

server pointer to the structure discribing the actual server

objects pointer to a list of objects, which should be deleted. This should be a normal NULL-
terminated C-string.

Result:

An answer struct where return data is either yes or no and where the completion value
indicates the result of the operation:

CB OK operation sucessfull

CB ERROR There was an error while removing, get the errormessages calling get errormessages()

other see the description in section ??

2.2.5 tell model
Answer* tell_model(Server* server, char** models);

Description:

Tells the given files to the server. Note that the server must be able to find these files in its file
system.

Input parameters:

11

server pointer to the structure discribing the actual server
objects pointer to a NULL-terminated array of C-strings, containing the file names which

should be loaded by the server.

Result:

An answer struct where return data is either yes or no and where the completion value
indicates the result of the operation:

CB OK operation sucessfull
CB ERROR There was an error while removing, get the errormessages calling get errormessages()

other see the description in section ??

2.2.6 get errormessages
Error_Messages *get_errormessages(Server *server)

Description:

Gets the errormessages corresponding to the last error. This procedure has to be called every
time CB ERROR has been returned by a given procedure. Otherwise, further messages may
be disturbed by the error messages which are returned first by the server.

Input parameters:

server pointer to the structure discribing the actual server

Result:

list of errormessages (see section ??)

2.2.7 ask
Answer* ask(Server* pServer,

char* szQuery,
char* szAskFormat,
char* szAnsFormat,
char* szRBTime);

Description:

Sends the query in the specified format (szAskFormat) to the server and returns the result
of the server, which will be represented in the format given in szAnsFormat. The rollback
time (szRBTime) is usually Now.

Input parameters:

pServer a pointer to a server structure
szQuery the query
szAskFormat the format of the query (FRAMES or OBJNAMES)
szAnsFormat the format of the answer (e.g. FRAME, LABEL,...)
szRBTime rollback time (e.g. Now)

Result:

an answer struct:

sender the tool that has provided the answer, usually the ID of the server
completion Completion value indicating the success of the method, e.g. CB OK, CB ERROR

return data the result of the query in the specified format, or the string "nil" if there are
no results or if there was an error during query processing

12

2.2.8 ask frames
Answer* ask_frames(Server *pSserver,

char *szQuery,
char* szAnsFormat,
char *szRBTime)

Description:

As ask, but szAskFormat is fixed to be FRAMES, i.e. queries have to be given as frames.

2.2.9 ask objnames
Answer* ask_objnames(Server *pSserver,

char *szQuery,
char* szAnsFormat,
char *cbfoGet,
char *szRBTime)

Description:

As ask, but szAskFormat is fixed to be OBJNAMES, i.e. queries have to be given as object
names (or derive expressions).

2.2.10 hypo ask
Answer* hypo_ask(Server* pServer,

char* szFrames,
char* szQuery,
char* szAskFormat,
char* szAnsFormat,
char* szRBTime);

Description:

As ask, but first tells the frames given in szFrames to the server, then performs the query and
finally deletes the told frames from the object base.

2.2.11 report clients
Clients* report_clients(Server *server)

Description:

Returnes a list of all clients connected to the server.

Input parameters:

server pointer to the structure describing the actual server

Result:

list of clients or NULL on error

13

2.2.12 get servermessage
Answer* get_servermessage(Server* server, char* type);

Description:

Gets a message from the server for the client. This function is called by get errormessages().

Input parameters:

server a pointer to a server structure

type type of the message to be retrieved (e.g. ERROR REPORT)

Result:

an answer object with the message or EMPTY QUEUE in return data

.

2.2.13 get notification
Answer* get_notification(Server* server, int timeout);

Description:

Looks for a notification message. Notification messages are sent by the server if the client has
requested notification on updates on certain views. The method will wait for a message from
the server for the specified time.

Input parameters:

server a pointer to a server structure

timeout time to wait for a message

Result:

an answer object with completion CB NOTIFICATION when a message was received, other-
wise a completion value, usually CB TIMEOUT.

2.2.14 stopServer
Answer* stopServer(Server* server, char* password);

Description:

Stops the server. Note, that only the user who has started the server may stop it.

Input parameters:

server a pointer to a server structure

password a password (not used, may be empty)

Result:

the result of the method

14

2.2.15 LPICall
Answer* LPICall(Server* server, char* lpicall);

Description:

Performs a LPI-Call at the server. With LPI (Logic Programming Interface) one can call
ProLog predicates defined in an LPI-Module.

Input parameters:

server a pointer to a server structure

lpicall the predicate to be called

Result:

the result of the method

2.2.16 free*
void freeAnswer(Answer* ans);
void freeServer(Server* srv);
void freeClients(Clients* c);
void freeErrorMessages(Error_Messages* err);

Description:

These functions free the allocated memory by the corresponding structures. Note that memory
of all results which are returned by the library methods have to be freed by the caller.

2.2.17 send message
Answer send_message(Server *server,

char *method,
char *data)

Description:

This procedure is the most general one and used by most functions mentioned before. It sends
a message of type method to the (already connected) CBserver server. data is a string
containing data expected by the method method1. For normal usage of the client library, this
function is not necessary. The more specific functions (e.g. tellCB, untell, ...) are
more useful.

Input parameters:

server pointer to the structure describing the actual server

method string which defines the type of the message (e.g. TELL)

data the arguments for the given message type (e.g. ["Class Employee with ...
end"])

Result:

an Answer structure containing sender, completion and return data

1See chapter ?? and appendix ?? of this manual for a complete description of the available methods and their expected data

15

2.2.18 CBdecodeString
char* CBdecodeString(const char* s);

Description:

Decode a string. ConceptBase encodes all strings with ’”’ and
. To get the plain string, use this function.

Input parameters:

The string to decode.

Result:

The decoded string, it is a duplicate of the input if the input string is not encoded. The memory
allocated by the result has to be freed by the caller.

2.2.19 CBencodeString
char* CBencodeString(const char* s);

Description:

Encode a String. ConceptBase encodes all strings with ’”’ and
. Use this function if you want to use Strings in Telos frames.

Input parameters:

The string to encode.

Result:

The encoded string. The memory allocated by the result has to be freed by the caller.

2.2.20 CBgetEncodeLength
unsigned CBgetEncodedLength(const char* s);

Description:

Return the length of an encoded string. This function is called by CBencodeString to allocate
the memory of the encoded string.

2.2.21 CBgetLabels
char** CBgetLabels(const char* labelList);

Description:

Parse a comma-separated list of labels. ConceptBase returns sometimes comma-separated
list of labels (e.g., for the answer format LABEL). This function makes an array of strings
out of one plain string. This is a lazy function that will fail to produce a correct result if
the object names contain commata (e.g., "This, is, a, Telos, object, name,
with, commata.").

Input parameters:

A string with comma-separated-list.

Result:

A NULL-terminated array of strings.

16

2.3 Compiling and Linking
If you want to compile your source that uses libCB, you have basically to make sure two things:

• the header files of ConceptBase are found, and

• the correct system header files are included in CBinterface.h

The first item is usually achieved by adding a parameter -I with the include-directory of your Con-
ceptBase installation to the list of compiler options. For the second point, you have to define the symbol
LINUX, WIN32 or SOLARIS (usually done with the -D option of the compiler), depending on the operat-
ing system of your client application.

We have used the following compiler flags (with gcc 3.2 on the UNIX-based systems, and MS Visual
C++ 6.0 on Windows):

Solaris -I$(CB_HOME)/include -DSOLARIS

Linux -I$(CB_HOME)/include -DLINUX

Windows -nologo -MT -W3 -GX -O2 -I$(CB_HOME)/include -D "WIN32"
-D "NDEBUG" -D "_CONSOLE" -D "_MBCS" -Fo".\\" /Fd".\\" -c

If you want to link your application, you have to make sure that libraries are found by the system (-L
option of gcc) and that the library libCB is indeed linked to your application (-l option). We have used the
following linker options:

Solaris -L$(CB_HOME)/sun4/lib -lCB -lnsl -lsocket

Linux -L$(CB_HOME)/linux/lib -lCB

Windows kernel32.lib user32.lib wsock32.lib $(CB_HOME)/windows/lib/libCB.lib
-nologo -subsystem:console -incremental:no -machine:I386

17

Chapter 3

Programming Interface for a C++
Client: libCBview

The libCBview provides a C++ encapsulation of libCB. It provides only an object-oriented API for Con-
ceptBase and does not provide any additional methods in contrast to libCB.

Compilation and linking has to be done in the same way as for libCB. Note that you have to link both
libraries libCB and libCBview if you want to use the C++ classes.

The documentation in the following sections has been generated with DOC++ (http://docpp.
sourceforge.net).

3.1 CBclient
class CBclient

A client class for ConceptBase

3.1.1 CBclient
CBclient ()

Description:

Constructs an ”empty” client which is not connected

3.1.2 CBclient
CBclient (char* host, int port, char* tool=(char*)NULL, char* user=(char*)NULL)

Description:

Constructs a new CBclient object and connect to the specified host

3.1.3 ˜CBclient
virtual ˜CBclient ()

Description:

Disconnects from the CBserver and deallocates the memory

18

http://docpp.sourceforge.net
http://docpp.sourceforge.net

3.1.4 tell
CBanswer* tell (char*)

Parameters:
char *frames the frames

Returns:
a CBanswer object containing the result and the com-

pletion

Description:

Tells frames to the server

3.1.5 untell
CBanswer* untell (char*)

Parameters:
char *frames the frames

Returns:
a CBanswer object containing the result and the com-

pletion

Description:

Untells frames to the server

3.1.6 tellModel
CBanswer* tellModel (char**)

Parameters:
char** files an array of filenames

Returns:
a CBanswer object containing the result and the com-

pletion

Description:

Tells files containing frames to the server

3.1.7 ask
CBanswer* ask (char* query, char* format=”OBJNAMES”, char* answerrep=”FRAME”, char*
rollbacktime=”Now”)

Parameters:
char *query the query
char* format the format of the query (FRAMES or OBJ-

NAMES)
char* answerrep the format of the answer (FRAME)
char* rollbacktime Rollback Time (e.g. ”Now”)

Returns:
a CBanswer object containing the result and the com-

pletion

Description:

Sends a query to the ConceptBase server

19

3.1.8 hypoAsk
CBanswer* hypoAsk (char* frames, char* query, char* format=”OBJNAMES”, char* answerrep=”FRAME”,
char* rollbacktime=”Now”)

Parameters:
char *frames frames to be told
char *query the query
char* format the format of the query (FRAMES or OBJ-

NAMES)
char* answerrep the format of the answer (FRAME)
char* rollbacktime Rollback Time (e.g. ”Now”)

Returns:
a CBanswer object containing the result and the com-

pletion

Description:

Sends frames and a query to the ConceptBase server. The frames are told temporarely, the
query is evaluated, and the temporarely objects are removed.

3.1.9 askObjNames
CBanswer* askObjNames (char* query, char* answerrep=”FRAME”, char* rollbacktime=”Now”)

Parameters:
char *query the query
char* answerrep the format of the answer (FRAME)
char* rollbacktime Rollback Time (e.g. ”Now”)

Returns:
a CBanswer object containing the result and the com-

pletion

Description:

Sends a query to the ConceptBase server. Same as ask but with fixed query format (OBJ-
NAMES).

3.1.10 askFrames
CBanswer* askFrames (char* query, char* answerrep=”FRAME”, char* rollbacktime=”Now”)

Parameters:
char *query the query
char* answerrep the format of the answer (FRAME)
char* rollbacktime Rollback Time (e.g. ”Now”)

Returns:
a CBanswer object containing the result and the com-

pletion

Description:

Sends a query to the ConceptBase server. Same as ask but with fixed query format (FRAMES).

3.1.11 enrollMe
int enrollMe (char* host, int port, char* user=NULL, char* tool=NULL)

Parameters:

20

host hostname of the machine where the server runs
port port number of server
*user the name of the tool
*tool the name of the user

Description:

Connects to a ConceptBase Server Return the return value of connect CB server (see CBin-
terfaceh): -1: if socket to specified can not be openend 0: ok other: a completion value (see
CBinterfaceh)

3.1.12 cancelMe
int cancelMe ()

Description:

Disconnects from a ConceptBase Server

Return the return value of disconnect CB server (see CBinterface.h): -1: error, not connected
0: ok other: a completion value (see CBinterface.h)

3.1.13 stopServer
CBanswer* stopServer (char* password=NULL)

Returns:
a CBanswer object containing the result and the com-

pletion

Description:

Stops the ConceptBase server. Note that a server may be stopped only by the user who has
started it.

3.1.14 reportClients
Clients* reportClients ()

Description:

Return a list of clients connected to the CB server. The result will be a list of Client objects as
defined in libCB.

3.1.15 nextMessage
CBanswer* nextMessage (char* method=””)

Parameters:
char* method the type of the message to be retrieved

Returns:
a CBanswer object containing the result and the com-

pletion

Description:

Gets a message from the server

21

3.1.16 getErrorMessages
CBerror* getErrorMessages ()

Returns:
a string containing all error messages

Description:

Gets the error messages from the server

3.1.17 LPICall
CBanswer* LPICall (char*)

Description:

Perform a LPI call on the server. A LPI call is a call of Prolog-predicate of the CBserver. This
is mostly used for debugging.

3.1.18 connected
inline int connected ()

Description:

Check whether this client is connected

3.1.19 operator int
inline operator int ()

Description:

The operator int checks also if the client is connected.

3.1.20 getServerName
char* getServerName ()

Description:

Return the name of the server

3.1.21 getClientName
char* getClientName ()

Description:

Return the name of the client

3.2 CBanswer
class CBanswer

C++ Wrapper for Answer struct of libCB

22

3.2.1 CBanswer
CBanswer (Answer* ans)

Parameters:
ans pointer to the Answer struct

Description:

Constructs a CBanswer object from a Answer struct

3.2.2 ˜CBanswer
˜CBanswer ()

Description:

Deallocate the memory of the object

3.2.3 getCompletion
Completion getCompletion ()

Description:

Get the completion value of the answer

3.2.4 getResult
char* getResult ()

Description:

Get the result string of the answer

3.2.5 getRespondingTool
char* getRespondingTool ()

Description:

Get the ID of the responding tool of the answer. This usually the CBserver

3.3 CBerror
class CBerror

C++ Wrapper of Error Messages struct in libCB.

3.3.1 CBerror
CBerror (Error Messages* e)

Parameters:
e pointer to the Error Messages

Description:

Construct a CBerror object from a list of Error Messages

23

3.3.2 ˜CBerror
˜CBerror ()

Description:

Deallocate the memory of a CBerror object

3.3.3 getErrorMessage
char* getErrorMessage ()

Description:

Get the error message of this object. This will return only the first error message of the list.

3.3.4 getAllErrorMessages
char* getAllErrorMessages ()

Description:

This method will return all error messages of the list. The method will allocate a new string,
thus the resulting string has to be freed by the calller.

3.3.5 getNextError
CBerror* getNextError ()

Description:

Get the next error message in the list

24

Chapter 4

Processing of Telos Frames: libtelos

This chapter explains the library libtelos, which contains the Telos parser. The Telos parser is able to
parse the answers in FRAME or LABEL format from ConceptBase.

To call the Telos parser, you must link your program with the library libtelos.a/libtelos.dll
which can be found in the directory $CB_HOME/<arch>/lib where <arch> is either sun4, i86pc,
linux, or windows.

In your source files, you must include the header files fragment.h, te access.h, te callparser.h,
te cursor.h, and/or te smlutil.h. All header files are located in the directory $CB_HOME/include.

The following sections explain several functions to call the parser and to handle the data structures. In
principle, there are three different ways to parse and to access Telos frames:

• Using the functions and data structures defined in fragment.h, te callparser.h, and te smlutil.h:
The Telos parser is invoked directly and the contents of the Telos frames is retrieved by navigating
over a list of fragments (a fragment is a data structure for a Telos frame). See section ?? for details.

• Using the functions and data structures defined in te access.h: Telos frames are represented in
vectorized structure. One can use functions to create, destroy or apply to filters to the structure. See
section ?? for details.

• Using the functions and data structures defined in te cursor.h: Iterating over a set of Telos
frames is done by using a cursor. See section ?? for details.

The documentation in the following sections has been generated with DOC++ (http://docpp.
sourceforge.net).

4.1 fragment.h and te callparser.h

4.1.1 Typedef: BindingList
typedef struct bindingList BindingList

Description:

A binding list represents the list of parameters in a derive expression

4.1.2 Typedef: ObjectIdentifier
typedef struct objectIdentifier ObjectIdentifier

Description:

An object identifier represents a Telos object name. It may be a simple object name, a derive
expression, or a select expression.

25

http://docpp.sourceforge.net
http://docpp.sourceforge.net

4.1.3 Typedef: te ClassList
typedef struct classlist te ClassList

Description:

A class list is a list of object identifiers

4.1.4 Typedef: AttrClassList
typedef struct attrclasslist AttrClassList

Description:

An AttrClassList is a list of attribute categories. Attribute categories or simple labels.

4.1.5 Typedef: SpecObjId
typedef struct specObjId SpecObjId

Description:

Used only internally for extended syntax

4.1.6 Typedef: SelectExpB
typedef struct selectexpb SelectExpB

Description:

Used only internally for extended syntax

4.1.7 Typedef: Restriction
typedef struct restriction Restriction

Description:

Used only internally for extended syntax

4.1.8 Typedef: ObjectSet
typedef struct objectset ObjectSet

Description:

Used only internally for extended syntax

4.1.9 Typedef: PropertyList
typedef struct propertylist PropertyList

Description:

A property list is a list of attributes. Attributes have a label and a value. The member objectSet
is used only in an extended syntax.

26

4.1.10 Typedef: AttrDeclList
typedef struct attrdecllist AttrDeclList

Description:

An AttrDeclList is a list of attribute declarations. It represents everthing between ”with” and
”end” in a Telos frame. One attribute declaration has a list of attribute categories and a list of
properties (attribute definitions).

4.1.11 Typedef: te SMLfragmentList
typedef struct smlfragmentList te SMLfragmentList

Description:

A SMLfragmentList is a list of Telos frames. Each Telos frame has an object identifier (id).
It may have in addition an inOmega class, a list of in-Classes, a list of isA-Classes, and an
attribute declaration. Except id, all members may be NULL.

4.1.12 Typedef: FrameParseOutput
typedef struct frameParseoutput FrameParseOutput

Description:

FrameParseOutput is the structure returned by the function te frame parser. It contains either
a list of fragments or information about the parse error.

te SMLfragmentList* smlfrag the list of fragments

int error 0 if ok, 1 if parse error, 2 if input is null

char* errortoken If there was an parse error, this should indicate the
token that caused the error.

int errorline
If there was an parse error, this should be the line
number of the error.

4.1.13 Typedef: ClassListParseOutput
typedef struct classlistParseoutput ClassListParseOutput

Description:

ClassListParseOutput is the structure returned by the function te classlist parser. It contains
either a list of classes or information about the parse error.

te ClassList* classlist A list of classes (object names)

int error Non-zero if an error occured

char* errortoken If there was an parse error, this should indicate the
token that caused the error.

int errorline
If there was an parse error, this should be the line
number of the error.

4.1.14 te frame parser
FrameParseOutput* te frame parser (char* indata)

Parameters:

27

indata a string containing the input frames

Returns:
a pointer to a FrameParseOut structure

Description:

Calls the Telos Parser to parse frames.

4.1.15 te classlist parser
ClassListParseOutput* te classlist parser (char* indata)

Parameters:
indata a string containing the object names

Returns:
a pointer to a ClassListParseOut structure

Description:

Calls the Telos Parser to parse a list of object names.

4.1.16 FragmentToString
char* FragmentToString (te SMLfragmentList *cursor

Description:

Unparse a fragment list into a string

4.1.17 DestroySMLfrag
void DestroySMLfrag (te SMLfragmentList* fragment)

Description:

Destroy a fragment list

4.1.18 Destroy ClassList
void Destroy ClassList (te ClassList* clist)

Description:

Destroy a class list

4.2 te access.h

4.2.1 Structure: te AttrDecl
struct te AttrDecl

Description:

This structure represents an attribute declaration. An attribute declaration is a list of attribute
categories with a list of properties (label and values) that belong to these attribute categories.

char** aszCategory contains the list of category labels

char** aszLabel contains the list of property labels corresponding to

char** aszValue the list of property values

28

4.2.2 Typedef: TAttrDecl
typedef struct te AttrDecl TAttrDecl

4.2.3 Typedef: PAttrDecl
typedef TAttrDecl* PAttrDecl

Description:

The pointer for TAttrDecl

4.2.4 Typedef: VTelos
typedef struct te VectorizedTelosframe VTelos

Description:

The type for te VectorizedTelosframe

4.2.5 Typedef: PVTelos
typedef VTelos* PVTelos

Description:

A pointer to VTelos

4.2.6 Typedef: AVTelos
typedef PVTelos* AVTelos

Description:

An array of VTelos pointers

4.2.7 Structure: te TelosReport
struct te TelosReport

Description:

A te TelosReport is a projection on certain attributes of a frame

char** aszLabel List of labels in the report

char** aszValue List of values in the report

4.2.8 Typedef: TReport
typedef struct te TelosReport TReport

4.2.9 Typedef: PReport
typedef TReport* PReport

29

4.2.10 vt createByFragment
AVTelos vt createByFragment (te SMLfragmentList* fl)

Parameters:
fl contains the fragment list in the way produced by the

parser

Returns:
NULL if the argument is NULL too, else the pointer to the

vector tree structure

Description:

Maps the given fragmentlist fl into a vector of frames.

4.2.11 vt create
AVTelos vt create (char* szTelos)

Parameters:
szTelos should be a string of correct Telos

Returns:
NULL if the szTelos fails the parsing process else it contains

the AVTelos with all its componends

Description:

Maps the given Telos text szTelos into a vector of frames.

4.2.12 vt destroy
void vt destroy (AVTelos avtFrames)

Parameters:
avtFrames points to the vector tree structure

Description:

Disposes the given vector tree.

4.2.13 rep create
PReport rep create (PVTelos pvtFrame, char** aszCategories)

Parameters:
pvtFrame points to a single Frame, which must exists@pararm

aszCategories should be a NULL terminated vector
of the categories to filter as a conjunction.

Returns:
In each case a report will be created, even if the result is

empty.

Description:

Filters all attributes to those properties which belong to all given categories at the same time.
Note: If there is a category wrong typed, it has the effect that result will always be an empty
vector with NULL at index 0.

30

4.2.14 rep destroy
void rep destroy (PReport prepReport)

Parameters:
prepReport points to the report which should be disposed

Description:

Disposes the given report structure. Should be called to free the result of rep create.

4.2.15 getValueOfLabel
char* getValueOfLabel (PVTelos pvtFrame, char* szLabel)

Parameters:
pvtFrame points to a single frame, which should be analyzed
szLabel contains the keyword, which should be searched in

the labels

Returns:
the string containing the value according to the given la-

belor NULL if no appropriate value was found

Description:

A simple service routine, which support the access on frames.

4.2.16 getCategories
char** getCategories (PVTelos pvtFrame)

Parameters:
pvtFrame points to a single frame, which should be analyzed

Returns:
array of strings with the categories

Description:

Lists the categories as flat list, each elemant appears only once. The categories will be ordered
by their appearance.

4.2.17 destroyASZ
void destroyASZ (char** asz)

Parameters:
asz the array of strings to be disposed

Description:

Disposes an asz (array of strings) structure.

4.3 te cursor.h

4.3.1 Structure: te framecursor
struct te framecursor

Description:

A cursor for a Telos frame

31

te SMLfragmentList* flAll Parsed telos frames in a fragment list

te SMLfragmentList* flCur fragment list cursor

te ClassList* clCurOmega cursor for inOmega

te ClassList* clCurIn cursor for in

te ClassList* clCurIsA cursor for isA

AttrDeclList* alCur cursor for attribute declarations

AttrClassList* clCurCategory
cursor for attribute categories (within one attribute
declaration)

PropertyList* plCur
cursor for property list (within one attribute declara-
tion)

AttrDeclList* alChecked internal filter: tests if alCur was checked

4.3.2 Typedef: TFrameCursor
typedef struct te framecursor TFrameCursor

4.3.3 Typedef: PFrameCursor
typedef TFrameCursor* PFrameCursor

4.3.4 te createCursor
PFrameCursor te createCursor (te SMLfragmentList* fl)

Description:

Creates and initializes a cursor structure for the given smlfragmentlist. and returns a pointer to
it.

4.3.5 te destroyCursor
void te destroyCursor (PFrameCursor pfc)

Description:

Deallocates a cursor structure

4.3.6 te resetFrame
void te resetFrame (PFrameCursor pfc)

Description:

Sets the frame cursor to the first frame and resets all sub cursors

4.3.7 te nextFrame
int te nextFrame (PFrameCursor pfc)

Returns:
true (non-zero) if there is a next element

Description:

32

Sets the frame cursor to the next frame in the list and resets the Omega, IsA, In, AttrDecl,
Category and Property cursors.

4.3.8 te retOID
char* te retOID (PFrameCursor pfc)

Description:

Returns the OID of a frame as plain string, even if it is a select expression. Memory for this
string has to be deallocated by the caller.

4.3.9 te resetOmega
void te resetOmega (PFrameCursor pfc)

Description:

Resets the Omega cursor

4.3.10 te nextOmega
int te nextOmega (PFrameCursor pfc)

Returns:
true (non-zero) if there is a next element

Description:

Sets the omega cursor to the next element.

4.3.11 te retOmega
char* te retOmega (PFrameCursor pfc)

Description:

Returns the omega object as string

4.3.12 te resetIsA
void te resetIsA (PFrameCursor pfc)

Description:

Resets the Isa cursor

4.3.13 te nextIsA
int te nextIsA (PFrameCursor pfc)

Returns:
true (non-zero) if there is a next element

Description:

Sets the IsA cursor to the next element.

33

4.3.14 te retIsA
char* te retIsA (PFrameCursor pfc)

Description:

Returns the IsA object as string

4.3.15 te resetIn
void te resetIn (PFrameCursor pfc)

Description:

Resets the In cursor

4.3.16 te nextIn
int te nextIn (PFrameCursor pfc)

Returns:
true (non-zero) if there is a next element

Description:

Sets the In cursor to the next element.

4.3.17 te retIn
char* te retIn (PFrameCursor pfc)

Description:

Returns the In object as string

4.3.18 te resetAttrDecl
void te resetAttrDecl (PFrameCursor pfc)

Description:

Sets the attr decl block cursor to the first attr decl block in the current frame and resets the
sub-cursors Category and Property

4.3.19 te nextAttrDecl
int te nextAttrDecl (PFrameCursor pfc)

Returns:
true (non-zero) if there is a next element

Description:

Sets the Property cursor to the next Property class in the attr decl block frame and resets the
Category and Property cursors.

4.3.20 te resetCategory
void te resetCategory (PFrameCursor pfc)

Description:

Resets the category cursor

34

4.3.21 te nextCategory
int te nextCategory (PFrameCursor pfc)

Returns:
true (non-zero) if there is a next element

Description:

Sets the category cursor to the next element.

4.3.22 te retCategory
char* te retCategory (PFrameCursor pfc)

Description:

Returns the category as string

4.3.23 te resetProperty
void te resetProperty (PFrameCursor pfc)

Description:

Resets the property cursor

4.3.24 te nextProperty
int te nextProperty (PFrameCursor pfc)

Returns:
true (non-zero) if there is a next element

Description:

Sets the category cursor to the next element.

4.3.25 te filterPropertyByCategory
int te filterPropertyByCategory (PFrameCursor pfc, char* category)

Description:

Lists all properties that are of the type ”category”. The usage of this function is similar to
the function te filterPropertyByCategories. The only diffrence is the simplicity of the second
parameter for the case that you only need to filter with one category.

4.3.26 te filterPropertyByCategories
int te filterPropertyByCategories (PFrameCursor pfc, char* categories[])

Description:

Lists all properties that matches all types of categories If the categories are empty then any
category matches. In difference to the nextXXX functions, these function should be called
before the first access via te retLabel or te retValue, because it must search the first valid
AttrDecl. This means at the beginning you should call: ”te resetAttrDecl(...);” AND
”te filterPropertyByCategories(...);”

35

4.3.27 te filterPropertyByLabel
char* te filterPropertyByLabel (PFrameCursor pfc, char*)

Description:

Lists the value of the property with label of the current frame. This results only one value
which is a new created string. Note that the caller has to dispose the return value !

4.3.28 te retLabel
char* te retLabel (PFrameCursor pfc)

Description:

Returns the current label of the current property in the current decl block or NULL

4.3.29 te retValue
char* te retValue (PFrameCursor pfc)

Description:

Returns the current value of the current property in the current decl block or NULL

36

Chapter 5

Programming Interface for a Java
Client

The Java Application Programming Interface (Java API) consists of a package for the communication with
the ConceptBase server, and the Telos Parser which uses the Java Generic Library 3.1.0 of ObjectSpace Inc
(http://www.objectspace.com). The Telos Parser was generated with the tool JavaCC of SunTest.
All classes relevant to ConceptBase are in the packages under i5.cb.

This chapter gives only an overview on how to use the Java API of ConceptBase. Detailed docu-
mentation of the classes and their methods can be found in the API documentation generated by javadoc.
This should be included in the package with programmers information, otherwise contact the ConceptBase
Team (cb@i5.informatik.rwth-aachen.de).

The Java API for ConceptBase consists of three main packages:

i5.cb.api contains classes that handle the communication with a ConceptBase, e.g. create a connection,
send messages, retrieve answers,

i5.cb.telos.frame contains a Telos parser to parse Telos frames and classes to represent the structure of
Telos frames in Java, and

i5.cb.telos.object provides a one-to-one representation of the Telos objects of the ConceptBase server in
a Java client. Methods provide facilities to retrieve all instances, subclasses, attributes, etc. of an
object.

The preferred method for the interaction with ConceptBase is the usage of the package i5.cb.telos.object.
The classes of the other packages can be used, too, but then more programming in your client application
is required.

Some examples for the communication with ConceptBase can be found in the directory
$CB_HOME/examples/Clients/JavaClient.

5.1 Communication with ConceptBase: i5.cb.api
The main class of the package i5.cb.api is the class CBclient. The connection with a ConceptBase
server can be established during the construction of an object of this class or with the method enrollMe.

This class has methods like tell, untell, ask etc. to perform the usual operations on the Con-
ceptBase server. They return in most cases an object of the class CBanswer, which represents the answer
delivered by the ConceptBase server. The methods and the structures are similar to the methods and struc-
tures defined in the C and C++ API.

Furthermore, several get...-methods allow to retrieve status information of the client object and some
set-methods change some parameters of the client, e.g. the timeout value or the current module.

The class CButil contains some static methods for decoding and encoding of strings, so that they are
accepted by ConceptBase.

37

http://www.objectspace.com

The class CBterm is used only internally, it parses Prolog-like terms.
Nearly every method throws an exception if some unexpected error has occured during the operation.

All exceptions are derived from the class i5.cb.CBException. The exceptions of the class CBIOException
are thrown if, for example, the communication between client and server is broken or a timeout has occured.
CBUtilExceptions are thrown if a string cannot be decoded or encoded.

5.2 Parsing Telos Frames: i5.cb.telos.frame
The package i5.cb.telos.frame provides all classes and methods that are necessary to parse (and unparse)
Telos frames or list of Telos object names, and to represent frames and objects as Java objects.

The parsing of Telos frames or a list of object names requires two steps. First you have to construct a
TelosParser object:

TelosParser tpParser=new
TelosParser(new StringBufferInputStream(sFrame));

The constructor of TelosParser requires an InputStream object as parameter, therefore it is necessary to
construct a StringBufferInputStream out of a String object.

In the second step, you have to call a method of TelosParser to start the parsing. Possible methods are:

telosFrames to parse a set of Telos frames,

telosFrame to parse one Telos frame, and

objectNames to parse a list of Telos object names.

The methods return TelosFrame(s) or ObjectName objects, that can be accessed with several methods.
For details, see the API documentation or the examples provided in $CB_HOME/examples/Clients/JavaClient.

It is also possible to construct a TelosFrame object step by step, without parsing a string. This is shown
in the method test2 of ExampleParser.java. The TelosFrame class has a method toString which converts
the TelosFrame into a string, which can be given as an argument to the tell method of CBclient.

5.3 ObjectBaseInterface: i5.cb.telos.object
This package provides methods and classes to represent Telos objects and sets of them as Java objects.
There are two possible ways of using this package:

• without a connection to a ConceptBase server: Telos objects are created directly in the Java program
by using the static methods getIndividual, getSpecialization, getInstantiation
and getAttribute. Objects may be added to ITelosObjectSets that have been created by
the TelosObjectSetFactory. Within an ITelosObjectSet, one can search for instances,
subclasses, attributes, etc. of a Telos object.

• with a connection to a ConceptBase server: An instance of the class ObjectBaseInterface has
to be created (using a CBclient object). Then, this object can be used to retrieve an object from the
ConceptBase server (getIndividual), to list all instances of an object (getAllInstancesOf),
to retrieve all attributes of an object (getAttributesOf), etc. The class ObjectBaseInterface
is an implementation of ITelosObjectSet. Also, insertion and deletion of objects in the CB-
server via the methods add and remove is possible. However, it is usually easier to construct a
Telos frame and use the method tell of CBclient than constructing a set of Telos objects.

Note that the relationships of a Telos object to other Telos objects are specific to a Telos object
set, e.g. X might be an instance of Y in one set and not in another set. Therefore, methods such as
getAllInstancesOf are methods of the ITelosObjectSet and not of TelosObject.

The file ExampleOBI.java in $CB_HOME/examples/Clients/JavaClient contains uses the
ObjectBaseInterface to test various operations.

38

Appendix A

Example C Client

This chapter explains the usage of the C programming interface with an example program called LogClient.
This program is able to read the OB.log file created by ConceptBase server and performs the operations
stored in this file.

The full source code of this program is in the directory $CB_HOME/examples/Clients/LogClient.
The file LogClient.c contains beside the main program some little functions to read the log file. This
source file must be compiled and linked together with a version of the ConceptBase library libCB.a.
The file MakeLogClient is a makefile, which executes the necessary commands to compile and link the
file with gcc on a Unix-platform. The following paragraphs explain only the important parts of the main
program.

Before any functions of libCB can be used, one must include the header file CBinterface.h.

#include <CBinterface.h>

int main(int argc,char* argv[]) {

int PortNr;
char* HostName;
char* UserName;
Answer *ans;
Server *gserver;
char* command;
char* arg;

char *ClientName = "LogClient";

The variables PortNr, HostName, UserName and ClientName are initialized with the command
line arguments and passed to the connect_CB_server function below. ans stores the answer of an
operation with the ConceptBase server. gserver is a pointer to a Server structure which is filled by
the connect-function. command is the command which has been read from the log file and arg is the
argument for this command.

/* Reading and checking command line arguments */
/* ... */

/* Connect to CBserver */
connect_CB_server(PortNr, HostName, ClientName, UserName, &gserver);
if (!gserver) {

fprintf(stderr,"Connection failed!\n");
return 1;

}

39

The function connect_CB_server opens an IPC socket to the specified ConceptBase server and per-
forms an ENROLL MEmethod as described in chapter ??. If the connection can be successfully established,
the gserver variable points to the connected server. Otherwise, gserver will be NULL.

Now, the program begins to read the log file. As long as there are commands in the log file, the variable
command points to a string containing the actual method and arg contains the arguments of this method.

Depending on the value of command, the program executes the corresponding function to pass the
method with its arguments arg to the ConceptBase server. Possible values for command are e.g. tellCB,
untell,ask frames, ...

/* Read commands from logfile until end of file */
while(readLogCommand(fp,&command,&arg)) {

/* Ask user, if the command should be executed */
/* ... */

/* Tell */
if (!strcmp(command,"tell")) {

printf("Telling: %s \n\n",arg);
ans=tellCB(gserver, arg);

}

/* Untell */
if (!strcmp(command,"untell")) {

printf("Untelling: %s \n\n",arg);
ans=untell(gserver, arg);

}

/* Tell Model */
if (!strcmp(command,"tell_model")) {

printf("Loading models: %s \n\n",arg);
files=commaList2charArray(arg);
ans=tell_model(gserver, files);
for(i=0;i<MAX_FILES;i++) {

if (files[i])
free(files[i]);

free(files);
}

}

Note, that the tell and untell functions take a simple string containing frames as argument, whereas
the function tell model takes a list of filenames as argument. The frames are loaded from these files by
ConceptBase and the told to the knowledge base.

Tell and untell operations return a pointer to an Answer object. For tell and untell, it is sufficient to
check the completion value of the answer. The return data can be ignored for these methods.

The following ask functions return also an Answer object. The answer of the query is stored in the
field return data, the completion is CB OK, if the query could be evaluated. Otherwise the completion
will CB ERROR or CB TIMEOUT.

/* Ask objnames */
if (!strcmp(command,"ask_objnames")) {

printf("Ask (OBJNAMES): %s \n\n",arg);
ans=ask_objnames(gserver, arg, "LABEL","Now");
printf("Answer: %s\n\n", ans->return_data);

}

40

/* Ask frames */
if (!strcmp(command,"ask_frames")) {

printf("Ask (OBJNAMES): %s \n\n",arg);
ans=ask_frames(gserver, arg, "LABEL","Now");
printf("Answer: %s\n\n", ans->return_data);

}

/* Check completion */
if (ans && ans->completion) {

fprintf(stderr,
">>> Server reports error on method: %s(%s)\n\n",
command,arg);

}

When an error occured, i.e. completion is not zero (another value than CB OK), than a error message is
printed on the console. Perhaps, it is also useful to get the all error messages from ConceptBase server, but
this is not done here1.

}
/* Close connection to CBserver */
disconnect_CB_server(gserver);

return 0;
}

If the while-loop is finished the connection to the ConceptBase server can be closed with the function
disconnect_CB_server and the program is finished.

1But that should be done in a good client program.

41

Appendix B

Syntax Specifications

B.1 Syntax Specification for IPC messages
<ipcmessage> -> ipcmessage(<sender>,<receiver>,<method_and_args>).

<sender> -> IPCSTRING

<receiver> -> IPCSTRING

<method_and_args> -> <tell>
| <untell>
| <ask>
| <hypoask>
| <tellmodel>
| <enrollme>
| <cancelme>
| <nextmessage>
| <stopserver>
| <reportclients>
| <lpicall>

<tell> -> TELL , [<telosframes> <modulearg>]

<tellmodel> -> TELL_MODEL , [<filelist> <modulearg>]

<filelist> -> [<ipcstringlist>]

<untell> -> UNTELL , [<telosframes> <modulearg>]

<ask> -> ASK , [<askargs> <modulearg>]

<askargs> -> <query> , <answerrep> , <rollbacktime>

<query> -> FRAMES , <telosframes>
| OBJNAMES , <objnames>

<objnames> -> IPCSTRING

<answerrep> -> IPCSTRING

42

<rollbacktime> -> IPCSTRING

<hypoask> -> HYPO_ASK , [<telosframes> , <askargs> <modulearg>]

<enrollme> -> ENROLL_ME , [<toolclass> , <username> <modulearg>]

<modulearg>-->’,’ IPCID
| "empty"

<toolclass> -> IPCSTRING

<username> -> IPCSTRING

<cancelme> -> CANCEL_ME , []

<nextmessage> -> NEXT_MESSAGE , [<method>]

<method> -> "empty"
| IPCID

<stopserver> -> STOP_SERVER , [<method>]

<reportclients> -> REPORT_CLIENTS , []

<lpicall> -> LPI_CALL , [IPCSTRING]

<telosframes> -> IPCSTRING

<ipcstringlist> -> IPCSTRING
| <ipcstringlist> , IPCSTRING

IPCSTRING -> everything enclosed in " except " and \,
which must be escape with \

IPCID -> [a-zA-Z]+[a-zA-Z0-9_]*

B.2 Syntax Specification for IPC answers
<ipcanswer> -> ipcanswer(<sender>,<completion>,<result>).

<sender> -> IPCSTRING

<completion> -> ok
| error
| not_handled

<result> -> IPCSTRING

43

