ConceptBase Tutorial

René Soiron, ConceptBase Team
Informatik V, RWTH Aachen, Ahornstr. 55, 52056 Aachen, Germany

last update: 2015-03-23 by Manfred Jeusfeld

1 Introduction

This tutorial gives a beginners introduction into Telos and ConceptBase. Telos is a formal language for rep-
resenting knowledge in a wide area of applications, e.g. requirements and process-modelling. It integrates
object-oriented and deductive features into a logical framework. ConceptBase is an experimental deduc-
tive database management system, based on the Telos data model. It is designed to store and manipulate a
database of Telos objects. The tutorial is organized as follows: The next section gives a short introduction
into the architectural organization of the ConceptBase system and describes the necessary steps to start the
system. Section three explains some basic features of Telos and ConceptBase using a simple example. The
last chapter contains solutions to the exercises.

Please note:

The objective of this tutorial is to give a novice user a first intuitive feeling on how to work with CB and how
to build own models, not to mention all the features of Telos and ConceptBase or describe the semantics of
Telos.

2 First Steps

2.1 Overview of the Architecture of the ConceptBase-System

ConceptBase is organized in a client/server architecture. The server manages the database while the client
may be any user-defined application program. A graphical client CBIva and a command-line client CBShell
are distributed with the ConceptBase system. We use in this tutorial the grahical client. The communication
between server and client is realized via Internet protocols, i.e. client and server can run on different
computers in your local network or even ob the global Internet. They can also run on the same computer,
which is the most frequent way of use. The connection is offered by the ConceptBase server via a so-called
port number. Every database is stored in a seperate directory with the name of the database as directory
name.

Before working with this tutorial ConceptBase has to be installed properly. This is documented in the
installation guide which is available from the site where you downloaded the system, typically http:
//conceptbase.sourceforge.net/CB-Download.html.

http://conceptbase.sourceforge.net/CB-Download.html
http://conceptbase.sourceforge.net/CB-Download.html

2.2 Starting the ConceptBase Server

(Skip this step, if your ConceptBase installation is configured to use a public ConceptBase server, in particular on Windows and Mac OS-X.)

At first start a ConceptBase server:

Exercise 2.1:

a) Get a description of all possible command-line parameters by entering the following commands in a
command window. The commands are:

cd $CB_HOME
cbserver -help

The string SCB_HOME has to be replaced by the directory path, into which ConceptBase was installed
on your local computer. You may want to include this directory path into the search path of your
command shell.

b) Start a ConceptBase server loading the database TutDB on port number 5544

A server will start running immediately. If the database TutDB doesn’t exist, a new database will be created
before loading. Then the copyright notice and parameter settings are displayed, followed by a message
which contains hostname and port number of the ConceptBase server you have just started. These two
informations are used to identify a server. The host is the one, you are currently logged on to and the port
number is set by the —~port parameter. The port number must be free on the host where ConceptBase shall
run. If this number is already in use by another server, the error message

IPC Error: Unable to bind socket to name

appears and the server stops. In this case restart the server with another port number.

2.3 Starting the ConceptBase User Interface

Clients can communicate with a server through the ConceptBase Usage Environment. The interface con-
tains several tools which can be invoked from the CBIva (ConceptBase User Interface in Java). Start CBIva
by entering the following commands in a new command window:

cd $CB_HOME
cbiva

After a few seconds a window will appear which is titled “CBlva - ConceptBase User Interface in Java”. It
consists of a main window, statusline at the left buttom, and offers several function keys and menu-items.
A complete description of these menus is given in the User Manual. Depending on your operating system,
you can also double-click the file *cbiva’ (resp. *cbiva.bat’) in the installation directory of ConceptBase.

Exercise 2.2:
Establish a connection between CBIva and the server you have started under 2.1

After the connection is established the first field of the statusline contains the status “connected”.
Note: If your ConceptBase installation uses a public ConceptBase server, then you can skip this step because your CBIva window automatically connects

to the public server.

3 The Example Model

In this section the use of basic tools and concepts will be illustrated by modelling the following simple
scenario:

A company has employees, some of them being managers. Employees have a name and a
salary which may change from time to time. They are assigned to departments which are
headed by managers. The boss of an employee can be derived from his department and the
manager of that department. No employee is allowed to earn more money than his boss.

The model we want to create contains two levels: the class level containing the classes Employee, Manager
and Department and the token level which contains instances of these 3 classes.

3.1 Editing Telos Objects
3.1.1 The Class Level

The first step is to create the three classes used: Employee, Manager and Department. Enter the following
definition into the CBIva’s top window labelled Telos Editor:

Employee in Class
end

This is the declaration of the class Employee, which will contain every employee as instance. Employee
is declared as instance of the system class Class, because it is on the class level of our example, i.e. it is
intended to have instances.

To add this object to the database, press the Tell button. If no syntax error occurs and the semantic integrity
of the database isn’t violated by this new object it will be added to the database. The next class to ad is
the class Manager. Managers are also employees, so the class Manager is declared as a specialization of
Employee using the keyword isA:

Manager in Class isA Employee
end

Press the Clear button to clear the editor field. Enter the telos frame given above and add it to the database
by telling it. The final class to be added is the class Department.

Exercise 3.1:
Define a class Department and add it to the database.

At this point we have added some new classes to the object base, but have told nothing about the so called
attributes of these classes. The modification of the classes we have just entered is the next task.

3.1.2 Defining Attributes of Classes

As mentioned in the description of the example-model, the employee-class has several attributes. To add
them, we need to modify the Telos frame describing the class Employee.

Exercise 3.2:
Load the object Employee via the load frame button and modify it as follows:

Employee in Class with
attribute
name: String;

salary: Integer;

dept: Department;

boss: Manager
end

Tell the modified Employee frame to the database. Now you have added attributes to the class Employee.
They are of the category attribute and their labels are: name, salary, dept, and boss. They establish “links”
between the class Employee and the classes mentioned as “targets”. Department and Manager are user-
defined classes, while String and Integer are builtin classes of ConceptBase.

Notice that these attributes are also available for the class Manager, because this class is a subclass of
Employee (i.e. Telos offers attribute inheritance, see also chapter 2.1 of the User manual, Specialization
axiom,).

Exercise 3.3:
The class Department has only one attribute: the manager, who leads the department. Add this attribute to
the class Department. The label of this attribute shall be head.

Now we have completed the class-level of our example. The next step is to add instances of our classes to
the database.

3.1.3 The Token Level

The company we are modelling consists of the 4 departments Production, Marketing, Administration and
Research. Every employee working in the company belongs to a department. The employees will be listed
later, apart from the managers of the departments:

department head
Production Lloyd
Marketing Phil
Administration | Eleonore
Research Albert

3.1.4 Defining Attributes of Tokens
At first let’s have a look at the department class, defined in exercise 3.3:

Department in Class with
attribute
head: Manager
end

There is a link between Department and Manager of category attribute with label head at the class-level.
Now we have to establish a link between Production and Lloyd of category head at the token-level. The
label of this link must be a unique name for all links with the source object “"Production”. We choose
head_of_Production as name.
The resulting Telos frame is:

Production in Department with
head
head_of_Production : Lloyd
end

Exercise 3.4:

a) Add the frames for Lloyd, Phil, Eleonore and Albert to the database.

b) Add the Telos frames for Production, Marketing, Administration, and Research and the links between
the departments and their manager to the database.

c) The four managers have the following salaries:

manager | salary
Lloyd 100000
Phil 120000
Eleonore | 20000
Albert 110000

Add this information to the database. Use ”LloydsSalary”, ”PhilsSalary”, etc. as labels. (Remember that
you can load an existing object from the database into the Telos Editor by using ”Load frame”.)

The destination objects of attribute instantiations must be existing objects in the database or instances of
the system builtin classes Integer, Real or String. Objects which instantiate these classes are generated
automatically when referenced in a Telos-frame. At this point it is important to recognize, that attributes
specified at the class level do not need to be instantiated at the instance level. On the other hand an instance
of a class containing an attribute may contain several instances of this attribute.

Example:

George in Employee with
name
GeorgesName: "George D. Smith"
salary
GeogesBaseSalary : 30000;
GeorgesBonusSalary : 3000
end

The attribute dept and boss have no instances, while salary is instantiated twice.
To complete the token level, we have to add more employees to the database.

Exercise 3.5:
Add the following employees to the database. Use MichaelsDepartment etc. as labels for the attributes.

employee | department salary
Michael Production 30000
Herbert | Marketing 60000
Maria Administration | 10000
Edward Research 50000

Now the first step in building the example database is completed. The next chapter describes a basic tool
of the usage environment which can be used for inspecting the database: the GraphBrowser.

3.2 The Graph Editor

To start the Graph Editor, choose the menu item Browse from the Workbench and select Graph Editor.
The Graph Editor will start up and establish a connection to the same server as the workbench, if the
workbench is currently connected. You can establish additional connections from within the Graph Editor
application. If the Graph Editor has established the connection and loaded the initial data (note: this takes
about 10 seconds), you can add an object to the editor window by clicking on the “Load object” button.

An interaction window appears, asking for an object name. After entering a valid name (e.g. Employee)
the Graph Browser displays the corresponding object. By clicking the left mouse-button, every displayed
object can be selected. A selected object can be moved by dragging the object with the left mouse-button
pressed. By clicking on the right mouse-button, a popup-menu will be shown with the following operations:

Toggle component view

switches the view of this object. In the detailed component view, you can either see the frame of this
object or tree-like representation of super- and subclasses, instances, classes, and attributes of this
object.

Super classes, sub classes, classes, instances

for each menu item you can select whether you want to see only the explicitly defined super classes
(or sub classes, etc.) or all super classes including all implicit relationships. The query to the Con-
ceptBase server to retrieve this information will be done when you select the menu item. So, the
construction of the corresponding submenu might take a few seconds.

Incoming and outgoing attributes

The Graph Editor will ask the ConceptBase server for the attribute classes that apply to this object.
For each attribute class, it is possible to display only explicit attributes or all attributes as above. The
attribute class “Attribute” applies for every object and all attributes are in this class. Therefore, all
explicit attributes of an object will be visible in this category.

Add Instance, Class, SuperClass, SubClass, Attribute, Individual

These menu items will open the “Create Object” dialog where you can specify new objects that
should be created in the database. Note, that these modifications are not performed directly on the
database. The editor will collect all modifications and send them to the ConceptBase server when
you click on the “Commit” button.

Delete object from database

This operation will delete the object from the database. As for the insertion of objects before, the
modification will be send to the server when you click on the “Commit” button. Note that this
operation has an effect on the database in contrast to the next operation.

Remove object from view
The object will be removed from the current view. This operation has no effect on the database, i.e.
the object will not be deleted from the database.

Display in Workbench
This operation will load the frame of the object into the Telos editor.

Show in new Frame
A new internal window (within the Graph Editor) will be shown and the selected object will be
shown in the new window.

Exercise 3.6:
Start a GraphBrowser, and load ” Employee” as initial object and experiment with the menu options avail-

able.

3.3

Adding Deductive Rules

At this point you should have made some experiences with the editing- and browsing-facilities of the
ConceptBase Usage Environment and the Telos language. This chapter gives an introduction into the use
of rules and integrity constraints.

Until now we have never instantiated the boss-attribute of an employee. The boss can be derived from
the department the employee is assigned to and the head of this department. So its obvious to define the
instances of the boss-attribute by adding a rule to the Employee-Frame.

At first we’ll give a short introduction into the syntax of the assertion language. The exact syntax is given
in the appendix of the user manual.

A deductive rule has the following format:

forall x1/cl x2/c2 ... xn/cn < Rule> ==> 1lit(al,...,am)

where < Rule > is a formula and the xi’s are variables bound to the class ci, lit is a literal of type 1 or 3
(see below) and the variables among the ai’s are included in x1,..,xn.
To compose the formula defining a deductive rule or integrity constraint the following literals may be used:

. (x in c)
The object x is an instance of class c.

2. (c isA d)
The object c is a specialization (subclass) of d

3. (x 1 vy)
The object x has an attribute to object y and this relationship is an instance of an attribute category
with label 1. Structural integrity demands that the label 1 belongs to an attribute of a class of x.

In order to avoid ambiguity, neither ”in” and ”isA” nor the logical connectives “and” and “or” are allowed
as attribute labels.

The next literals are second class citizens in formulas. In contrast to the above literals they cannot be
assigned to classes of the Telos database. Consequently, they may only be used for testing, i.e. in a legal
formula their parameters must be bound by one of the literals 1 - 3.

4 (x <y), (x>y), (x<=y), (x>>vy), (x=y), (x<>y)
Note that x and y must be instances of Integer or Real.

5 (x == y)
The objects x and y are the same. You can alsouse (x = y).

”and” and “or” are allowed as infix operators to connect subformulas. Variables in formulas can be quanti-
fied by forall x/corexists x/c, where cis aclass, i.e. the range of x is the set of all instances of
the class c.

The constants appearing in formulas must be names of existing objects in the database or of type Integer,
Real or String. Also for the attribute predicates (x 1 y) occuring in the formulas there must be a unique
attribute labelled 1 of one class c of x in the database. For the exact syntax refer to the appendix of the
user manual.

We’ll give a first example of a deductive rule by defining the boss of an employee:

Employee with
rule
BossRule : $ forall e/Employee m/Manager
(exists d/Department
(e dept d) and (d head m))
==> (e boss m) $
end

Please note that the text of the formula must be enclosed in ”$” and that this deductive rule is legal, because
all variables appearing in the conlusion literal (e, m) are universally (forall) quantified. The logically
equivalent formula

forall e/Employee m/Manager d/Department
(e dept d) and (d head m)
==> (e boss m)

can also be used.

Exercise 3.7:
Add the BossRule to the database.

3.4 Adding Integrity Constraints

The following integrity constraint specifies that no Manager should earn less than 50000:

Manager with
constraint
earnEnough: $ forall m/Manager x/Integer
(m salary x) ==> (x >= 50000) $
end

Please note that our example model doesn’t satisfy this constraint, because Eleonore earns only 20000. If
you use 20000 instead of 50000, the model satisfies this constraint and adding it will be successfull.
Figure ?? shows the Telos editor after the attempt to tell the above integrity constraint. The error message
is shown in the error window.

Exercise 3.8:
Define an integrity constraint stating that no employee is allowed to earn more money than any of her/his
bosses. (The constraint should work on each individual salary, not on the sum).

In the subdirectory RULES+CONSTRAINTS of the example directory there is a more extensive example
concerning deductive rules and integrity constraints. It should be used in addition to this section of the
tutorial.

3.5 Defining Queries

In ConceptBase queries are represented as classes, whose instances are the answer objects to the query.
The system-internal object "QueryClass” may have so-called query classes as instances, which contain
necessary and sufficient membership conditions for their instances.

Exercise 3.9:

Load the object ”QueryClass” into the Telos Editor window.

The syntax of query classes is a class definition with superclasses, attributes, and a membership condition.
The set of possible answers to a query is restricted to the set of common instances of all its superclasses.
The following query computes all managers, which are bosses of an employee:

QueryClass AllBosses isA Manager with
constraint
all_bosse_srule:
$ exists e/Employee (e boss this) $
end

CBiva - ConceptBase.cc User Interface in Java

File Edit Browse Options History Windows Help
) OreEe HmelearE 9

Telos Editor

Manager with
constraint
earnEnough: § forall m/Manager x/Integer
{msalary) == (x == 50000) &

end

rHistory Window

13 ERROR [

Error Message: -
The updated object base regards ${Eleonore in Manager) and (Eleonore salary
20000% as a true statement. In such cases an integrity constraint requires that
anaother statement, $(20000 == 50000)%, is also true. But that is not the case
hera!

The new integrity constraint § forall m/Manager x/Integer
{m salary ®) == (x == 50000) § is not satisfied by this

module.

1]

nacted 1 e

Version: Mow Module: aHome 1157 (UTC) 0.274

Figure 1: Telos Editor after the attempt to tell the integrity constraint

The predefined variable this in the constraint is identified with all solutions of the query class.

Enter this query into the editor-window and press Ask (not Tell). The query will be evaluated by the server
and after a few seconds the answer will appear both in the protocoll- and in the editor-window. If an error
has occured and the query was typed correctly, load the Employee-frame and check if the frame contains
the BossRule, defined in chapter 3.3.

If the answer was correct we add the query class AllBosses to the database. The next query uses this query
class to restrict the range of the answer set:

QueryClass BossesWithSalaries isA AllBosses with
retrieved_attribute
salary : Integer
end

Before this Query can be evaluated AllBosses must be told, because it is referenced in BossesWithSalaries.
This query returns the instances of AllBosses together with their salaries. Attributes of the category re-
trieved_attribute must be attributes of one of the superclasses of the query class. In this example Boss-
esWithSalaries is a subclass of AllBosses, which is subclass of Manager, which is subclass of Employee.
The Employee class contains the declaration of the attribute salary. So the retrieved_attribute is permitted
for BossesWithSalaries.

Exercise 3.10:
Add the query class ”BossesWithSalaries” to the database.

Query classes can also define computed_attributes. These attributes are defined for the query class itself,
but unlike as for retrieved attributes they do not occur in the definition of the superclasses of the query class.
They are called computed, because their computation is done during evaluating the constraint at runtime.
Computed_attributes don’t exist persistently in the database, that’s why they don’t get a persistent attribute
label. Instead, the labels of the computed attributes of the answer objects are system-generated.

CBiva - ConceptBase.cc User Interface in Java
File Edit Browse Options History Windows Help

B Ox=e = re el s

Telos Editor

Lloyed in BossesWithsalaries with
salary

Display Queries

Select one ... Lloydssalary : 100000
AllBosses end

BossesWithSalaries

listModule Fhil in BossesWith5alaries with

salany
FhilsSalary : 120000
end

Eleonore in BossesWithSalaries with

salary
Eleonoressalary . 20000
end

bert in BossesWithzalaries with

salary
Albertssalary: 110000

end
N

~History Window
19: ASK ‘ | 1] | |

Query:
BossesWithsalaries

Ask Telos Edit

Format; QOBJNAMES
swer Format: FRAME
Rollback Time: Now

Result:
_Quervsuccessful
Version: Mow Module: oHome 11:59 (UTQ) 0.043

Figure 2: Result of asking the query BossesWithSalaries
Figure ?? shows the Telos editor after asking the query BossesWithSalaries.

The following query class computes for every manager the department that he or she leads:

QueryClass BossesAndDepartments isA Manager with
computed_attribute
head_of : Department
constraint
head_of_rule:
$ ("head_of head this) $

end

Exercise 3.11:

10

Define a query class BossesAndEmployees, which is a subclass of Manager and will return all leaders of
departments with their department and the employees who work there.

More information about query classes can be found in the User manual, chapter 2.3 and in the example
directory QUERIES.

Exercise 3.12:
Stop the ConceptBase server and the user interface.

This last step completes the tutorial. We hope that it provided a first impression on ConceptBase and
Telos. Refer to the other examples, especially to RULES+CONSTRAINTS and QUERIES and of course
to the user manual to learn more about the features of ConceptBase. There is also a more advanced tutorial
available on metamodeling.

Any comments and suggestions concerning this tutorial or ConceptBase are welcome. Contact us via
http://conceptbase.cc.

11

http://conceptbase.cc

4 Solutions to the Exercises
2.1 Enter in the same command window the following command:
cbserver -port 5544 -d TutDB

You can also use the option —db instead of —d:
cbserver —-port 5544 -db TutDB

In this case, ConceptBase will maintain the Telos source representation of all objects in the database
directory TutDB. Your own definitions will go to the file System-oHome . sml, because that is
the default database module when you log into a ConceptBase server.

An alternative to starting the ConceptBase server from the command line is to start it from CBIva.
To do so, start CBIva and the select the menu item File / Start CBserver. A window like in figure ??
will pop up and you need to change the following parameters:

1. The port number could be changed to 5544 but you can also leave it to 4001.

2. Enter the path of the database TutDB; it is sufficient to replace the last two characters db by
TutDB. But remember the whole directory path.

3. Change source mode to on. This is equivalent to the —db option above.

4. Change update mode to persistent.

Then press "OK” to let CBlva start a ConceptBase server with the specified parameters and connect

to it.
@ Start CBserver: Parameters

IE‘ Porc 4001
Database: me/jeusfeld/TutDB
Source Mode: on -
Trace Mode: minimal -
Update Mode: persistent -
Untell Mode: cleanup -
Multi-user Mode: |disabled -
Predicate Typing: |Strict -
Cache Mode: keep -
ECA Mode: safe -
| oK || Cancel |

Figure 3: Start CBserver from CBlva

2.2 Select "Connect” from the File menu. An interaction window appears, querying the host name and
the port number of the server you want to connect to. Enter the name of the host the ConceptBase
server was started on and the port number specified by the -p parameter, then select "Connect”. If you
started the ConceptBase server on the same computer as CBIva, then use ’localhost’ as hostname.

This step is obsolete, if you started the ConceptBase server from within CBlIva.

12

3.1 Department in Class
end

3.2 To load an object from the database into the editor-window, select the frame button with tooltip

”Load an object from CBserver” of the button panel or the option Load Object from the Edit menu.
You should have a similar view as displayed in figure ??.

CBiva - ConceptBase.cc User Interface in Java

File Edit Browse Options History Windows Help
O % 8 |

Telos Editor ©

Employee in Class with
attribute
name: string;
salary. Integer;
dept: Department;
boss: Manager
end

rHistory Window

_ Connection establishad

Version: Mow Module: oHome 845 (UTC) 0.00s5

Figure 4: CBlva Telos Editor

3.3 Department in Class with
attribute

head: Manager
end

34 Lloyd in Manager end
Phil in Manager end
Eleonore in Manager end
Albert in Manager end

Production in Department with
head
head_of_Production : Lloyd

end

Administration in Department with

13

3.5

head
head_of_Administration : Eleonore
end

Marketing in Department with
head
head_of_ Marketing : Phil
end

Research in Department with
head
head_of_Research : Albert
end

Lloyd in Manager with
salary
LloydsSalary : 100000
end

Phil in Manager with
salary
PhilsSalary : 120000
end

Eleonore in Manager with
salary
EleonoresSalary : 20000
end

Albert in Manager with
salary
AlbertsSalary : 110000
end

Michael in Employee with

dept
MichaelsDepartment : Production
salary
MichaelsSalary : 30000
end

Maria in Employee with

dept
MariasDepartment : Administration
salary
MariasSalary : 10000
end

Herbert in Employee with
dept
HerbertsDepartment : Marketing
salary

14

HerbertsSalary : 60000
end

Edward in Employee with

dept
EdwardsDepartment : Research
salary
EdwardsSalary : 50000
end

3.6 Figure ?? shows the ConceptBase graph editor on object Employee. The attributes of Employee and
its instances are expanded using the menu of the right mouse button clicked on Employee.

File Edit Options View Current connection

SH © e

localhost4001

Create

H
E
n=IESS

1

4] Il | [»]

“* Connected with localhost

Figure 5: CB Graph Editor on object Employee

3.8 Employee with

constraint

salaryIC: $ forall e/Employee m/Manager x,y/Integer
(e boss m) and (e salary x) and (m salary y) ==> (x <=vy) $
end

3.11 QueryClass BossesAndEmployees isA Manager with
computed_attribute
emps : Employee;
head_of : Department

15

constraint
employee_rule:
$ ("head_of head this) and (“emps dept “head_of) $
end

Figure ?? shows parts of the answer to the query BossesAndEmployees.

CBiva - ConceptBase.cc User Interface in Java

File Edit Browse Options History Windows Hel
A

2 Die s Sire

(5] isplay Que [Telos Editor :

Lloyd in BossesAndEmployees with

emps

COMPUTED _emps_id_1666 : Michael
BossesAndEmpll| hzad_of
BossesWithSalal COMPUTED _head_of_id_1632 : Production
listModule end

[v|

Phil in BossesAndEmployees with
emps
COMPUTED _emps_id_1682 : Herben

head_of
b COMPUTED _head_of_id_1640 : Marketing
end

Eleonore in BossesAndEmployees with

emps
Ask | Telo COMPUTED _emps_id_1674 : Maria
head_of
COMPUTED _head_of_id_1636 @ Administration
2ndf

Albert in BossesAndEmplayees with

emps
COMPUTED _emps_id_1690 : Edward
head_of
COMPUTED _head_of_id_1644 : Research & |
end

CEEEANIN Query successiu

Wersion: Mow Module: ocHome 11:59 (UTC)y 0.041

Figure 6: Display of answers of BossesAndEmployees

3.12 Select the option ”Stop CBserver” from the “File” menu of CBlIva. Afterwards, stop CBIva via the
“Exit” option in the same menu. If you started the ConceptBase server with the -db option (or with
source mode set to “on’), then you find the sources of your definitions also in the directory TutDB,
see file System—oHome . sml. Open this file with a text editor such as WordPad.

16

