
ConceptBase Tutorial III: Exporting

Manfred Jeusfeld
University of Skövde, 54128 Skövde, Sweden

http://conceptbase.cc

2013-06-10

1 Introduction
The models in a ConceptBase database can be exported in user-defined formats. This tutorial shows how
to employ the ConceptBase answer formats and the CBShell to realize the export.
The tutorial uses petri nets as an example to be exported to the format that the GraphViz package required
to automatically layout a graph. The GraphViz layout is textual but does not use XML. You can also export
to XML but using appropriate answer formats.
We select the CBShell utility for this tutorial. It can be used both interactively and in batch mode. You can
thus automate the export via a suitable CBShell script.

2 The Scenario
We consider the case of petri nets. The goal to to export them in a format that can be further processed
by the GraphViz layout tool http://graphviz.org/. We assume familiarity with the ConceptBase user
interface and with the query language of ConceptBase, in particular with the answer formatting system at
http://conceptbase.sourceforge.net/userManual75/cbm004.html.
The tutorial includes the following steps:

1. Create a notation for petri nets: this allows to store petri nets in ConceptBase

2. Define the PNModel: the PNModel is a container for the petri net elements

3. Define an example petri net model: the TrafficLights example

4. Define answer format for the classes to be exported: specifies to which output strings the elements
shall be exported

5. Define the export task: the overall answer format that governs the exportation

2.1 Create a notation for petri nets
Petri nets consist of places (displayed as circles) and transitions (displayed as rectangles). Places can have
tokens on them (the marking of a place). Directed links exist between places and transitions, and between
transition and places.
Start a CBShell

cbshell

and then a CBserver within the CBShell (all subsequent commands are within the CBShell command
window):

cbserver -db PETRINETS

1

http://conceptbase.cc
http://graphviz.org/
http://conceptbase.sourceforge.net/userManual75/cbm004.html

We use a database PETRINETS here. It persistently stores the subsequent definitions. As next step, tell in
the CBShell the definitions for petri nets:

tell ’
Place with

attribute sendsToken: Transition;
marks: Integer {* defines markings *}

end

Transition with
attribute producesToken : Place

end
’

The two classes allow to represent all features of a classical petri net.

2.2 Define the PNModel
Now, we want to be able to maintain several petri nets in ConceptBase next to each other. They should not
interfer with each other. PNModel shall include rules that define which elements of the petri net model are
of interest for the visualization that we aim for. In this case, we are not interested in the marking but in all
other elements:

tell ’
PNElement end
Place isA PNElement end
Transition isA PNElement end
Place!sendsToken isA PNElement end
Transition!producesToken isA PNElement end

PNModel in Class with
attribute
contains: PNElement

rule
r1: $ forall p/Place m/PNModel a/Place!sendsToken

(m contains p) and Ai(p,sendsToken,a)
==> (m contains a) $;

r2: $ forall t/Transition m/PNModel a/Transition!producesToken
(m contains t) and Ai(t,producesToken,a)
==> (m contains a) $

end
’

The class PNElement subsumes all elements of a petri net model that we are interested in. The class
PNModel then aggregates such elements to a model. The two rules allow will add all links between places
and transitions that are declared as part of the model.

2.3 Define an example petri net model
Let’s define the classical Dutch traffic light example as a petri net model:

tell ’
red1 in Place with

sendsToken
t1: rg1

2

end

yellow1 in Place with
sendsToken

t1: yr1
end

green1 in Place with
sendsToken

t1: gy1
end

safe1 in Place with
sendsToken

t1: rg1
end

yr1 in Transition with
producesToken

p1: red1;
p2: safe2

end

rg1 in Transition with
producesToken

p1: green1
end

gy1 in Transition with
producesToken

p1: yellow1
end

red2 in Place with
sendsToken

t1: rg2
end

yellow2 in Place with
sendsToken

t1: yr2
end

green2 in Place with
sendsToken

t1: gy2
end

safe2 in Place with
sendsToken

t1: rg2
end

3

yr2 in Transition with
producesToken

p1: red2;
p2: safe1

end

rg2 in Transition with
producesToken

p1: green2
end

gy2 in Transition with
producesToken

p1: yellow2
end

TrafficLights in PNModel with
contains
e1: red1;
e2: yellow1;
e3: green1;
e4: safe1;
e5: red2;
e6: yellow2;
e7: green2;
e8: safe2;
e9: yr1;
e10: rg1;
e11: gy1;
e12: yr2;
e13: rg2;
e14: gy2

end
’

The last object TrafficLights lists the places and transitions that are supposed to be part of the model.
The rules r1 and r2 of PNModel will automatically add the links as well to the model TrafficLights.

2.4 Define answer format for the classes to be exported
We want to export transitions (as boxes), places (as circles), and the two link types as directed links:

tell ’
BOXNODE_FORMAT in AnswerFormat with

pattern p:
"node [shape=box]; {Foreach(({this.elem}), (n), {n};)}"

end

CIRCLENODE_FORMAT in AnswerFormat with
pattern p:
"node [shape=circle,fixedsize=true,width=0.9]; {Foreach(({this.elem}), (n), {n};)}"

end

LINK_FORMAT in AnswerFormat with

4

pattern p:
"{Foreach(({this.elem}),(l),{From({l})}->{To({l})};\\n)}"

end
’

The answer format shall iterate over all elements that match the corresponding export class (Foreach
this.elem). The following query computes the elements for a given export class. The textual elements
like ”node” and ”shape” are specific to the GraphViz format.

tell ’
GenericQueryClass ShowElement isA PNModel with

required,parameter
pn: PNModel;
type: Proposition

computed_attribute
elem: PNElement

constraint
c1: $ (pn = this) and

(this contains elem) and
(elem in type) $

end
’

So, when we ask the query ShowElement for the model TrafficLights and the export type Place,
we get as answer in this.elem all those elements of the petri net that are places.

ask ShowElement[TrafficLights/pn,Place/type] OBJNAMES FRAME

If you call the same query with the CIRCLENODE FORMAT, the answer shall be the export string for those
petri net elements:

ask ShowElement[TrafficLights/pn,Place/type] OBJNAMES CIRCLENODE_FORMAT

2.5 Define the export task
As a last step we define a query ShowPN with a special answer format that takes care that all elements of
the petri net are exproted using the right answer format, and that puts some additional Graphviz statements
around it required by the GraphViz tool.

tell ’
GenericQueryClass ShowPN isA PNModel with

required,parameter
pn: PNModel

constraint
c1: $ (pn = this) $

end

GraphVizPN in AnswerFormat with
forQuery q: ShowPN
head h: "

Generated by ConceptBase {cb_version} at {transactiontime}
Process this file by Graphviz, e.g.
neato -Tpng thisfile.txt > thisfile.png

"

5

pattern p: "
digraph {this} \{
{ASKquery(ShowElement[{this}/pn,Transition/type],BOXNODE_FORMAT)}
{ASKquery(ShowElement[{this}/pn,Place/type],CIRCLENODE_FORMAT)}
{ASKquery(ShowElement[{this}/pn,Place!sendsToken/type],LINK_FORMAT)}
{ASKquery(ShowElement[{this}/pn,Transition!producesToken/type],LINK_FORMAT)}
overlap=false
label=\"PetriNet Model {this}\\\n

Extracted from ConceptBase and layed out by Graphviz \"
fontsize=12;
\}
"

end
’

The tag digraph instructs GraphViz to regard the exported text as the specification of a directed graph. The
complete documentation of the GraphViz format is at http://graphviz.org/Documentation.php.
The query ShowPN is used to trigger the creation of the answer accoring to the answer format GraphVizPN.
The anser format has a head that creates some header for the output. In this case, it generates some com-
ment lines. The pattern is applied to all answer objects of query ShowPN: this is exactly one, namely
the PNModel supplied with the parameter pn. This answer object matches the expression {this} in the
pattern.
Certain special character of the pattern need to be escaped. The clause starting with label is to be followed
by a double quote. Since this double quote is inside the pattern string, which is double-quoted, the internal
double quote needs to be espacef by a backslash.
The other example is the sequence with three backslashes followed by an n. The purpose is to pass just
a backslash-n to the output. To do so, the answer formatting tool of ConceptBase must be instructed to
produce the blackslash character rather than interpreting the backslash itself.
Try out the query call

ask ShowPN[TrafficLights/pn] OBJNAMES GraphVizPN

in the CBShell window. It will bind variable this to the object TrafficLights. This string is printed
by the answer format after the string digraph. Then an opening curly bracket follows that needed to
be escaped since curly brackets have a special meaning in answer formats. Afterwards, three queries are
called from within the answer format. The first one will generate the GraphViz commands for specifying
the box nodes. The next one is replaced by the GraphViz commands for the circle nodes, followed by the
commands for the links.
Afterwards three more text lines are added to the output.
The definitions are stored in the database PETRINETS. To retrieve only the desired output from it, first
stop the CBserver via the CBShell

stopServer

Then, start it again with tracing disabled:

cbserver -t no -db PETRINETS

Then, call the query and show the answer:

ask ShowPN[TrafficLights/pn] OBJNAMES GraphVizPN
showAnswer

The output of the command is formed by the GraphVizPN answer format. Its text for the TrafficLights
example is:

6

http://graphviz.org/Documentation.php

Generated by ConceptBase 7.5.02 at 2013-06-24 10:26:41
Process this file by Graphviz, e.g.
neato -Tpng thisfile.txt > thisfile.png

digraph TrafficLights {
node [shape=box]; gy2; yr2; rg2; gy1; yr1; rg1;
node [shape=circle,fixedsize=true,width=0.9]; green2; yellow2; red2;

safe2; safe1; green1; yellow1; red1;
safe2->rg2;
green2->gy2;
yellow2->yr2;
red2->rg2;
safe1->rg1;
green1->gy1;
yellow1->yr1;
red1->rg1;

gy2->yellow2;
rg2->green2;
yr2->safe1;
yr2->red2;
gy1->yellow1;
rg1->green1;
yr1->safe2;
yr1->red1;

overlap=false
label="PetriNet Model TrafficLights\n

Extracted from ConceptBase and layed out by Graphviz "
fontsize=12;
}

You can store the file and convert it to a diagram with GraphViz. With the neato layouter the output looks
as shown in figure ??
All commands of this tutorial are also available from the CB-Forum at http://merkur.informatik.
rwth-aachen.de/pub/bscw.cgi/3504020.

7

http://merkur.informatik.rwth-aachen.de/pub/bscw.cgi/3504020
http://merkur.informatik.rwth-aachen.de/pub/bscw.cgi/3504020

Figure 1: TrafficLights model layed out by GraphViz

8

