
ConceptBase Tutorial II: Metamodeling

Manfred Jeusfeld
University of Skövde, 54128 Skövde, Sweden

http://conceptbase.cc

2012-10-04

1 Introduction
This tutorial extends the first tutorial by examples on metamodeling, i.e. to scenarios where you define ob-
jects, classes, and meta classes. Metamodeling is particularily useful in situations where you need to define
your own modeling languages (domain-specific languages). You will see that you can use the ConceptBase
query language to analyze the models created in your dedicated modeling languages and that it is rather
easy to define simple modeling languages. Solutions to the exercises are at the end of this tutorial.

2 The Scenario
We start with a simple version of entity-relationship diagrams. First, we will define entity types and re-
lationship types (meta classes). Then, define an example entity-relationship diagram (classes) plus some
example data (objects).
In the next part, we add a simple process language to the existing entity-relationship language. We are
interested in analyzing process models. In particular, we want to check whether one agent is responsible
for two tasks t1 and t2, and there is a task t on the path between t1 and t2 that is assigned to another agent.

2.1 Start ConceptBase
There are several methods to start the ConceptBase server and its user interface CBIva. We decide for
the simplest way: start the ConceptBase server from within CBIva. So, switch to the directory to which
ConceptBase is installed on your computer and start the ConceptBase.cc user interface CBiva:

cbiva

Figure ?? shows the CBIva window just after starting it. The red label ”Disconnected” at the lower left
corner indicates that the user interface is not yet connected to a ConceptBase server. To do so, select the
option ”Start CBserver” of the ”File” menu. CBIva will now ask you for some startup parameters of the
CBserver a shown in figure ??.
Leave the parameters unchanged. The setting ”Update Mode” is preset with the value ”nonpersistent”.
That means that the ConceptBase server will not permanently store the definitions that you enter later. This
is just fine for this tutorial. See the ConceptBase manual for more details.

2.2 Define a simple Entity-Relationship notation

Exercise 1: The task is to define two classes EntityType and RelationshipType. The class
RelationshipType shall have an attribute role with value EntityType.

1

http://conceptbase.cc


Figure 1: CBIva just after starting it

Figure 2: CBserver start parameters

Enter the definitions into the Telos Editor window and store them to the ConceptBase server with the ”Tell”
function.

Exercise 2: Add to EntityType an attribute attr with value Domain. Also define Domain as
an object without attributes.

This provides us with a very simple entity-relationship language. It just allows to define entity types with
attributes, and relationship types with role links. Entity attributes are restristed to domains. So we need to
specify the allowed domains.

Exercise 3: Specify Integer and String as domains, i.e. as instances of the class Domain.

2



The classes Integer and String are predefined in ConceptBase. Any integer number occurring in an
object definition will automatically be an instance of Integer. Likewise any double-quoted string will
be regarded as an instance of String.

Exercise 4: Specify a new domain Date. Include ”2009-05-19” and ”2001-01-01” as two possible
values for dates.

The object Date is not predefined in ConceptBase. Hence, we need to take care ourselves about the set of
possible values (=instances of Date).
After these exercises, you can visualize the current state with the graph editor. User RelationshipType
as start object. The graph editor is started from CBIva via the menu item ”Browse / Graph Editor”. Expand
the outgoing attributes of RelationshipType (right mouse button) and select ”Show all”. Do the same
with EntityType. For Domain, show the instances. For Date, show the instances as well.

Figure 3: Graphical display of the ER language

The graph window shows already three abstraction levels: the objects ”2009-05-19” and ”2001-01-01” are
at the lowest abstraction level (data level). The objects Date, Integer, and String are classes (model
level), and the objects RelationshipType, EntityType, and Domain are meta classes (notation
level).

2.3 Define an Entity-Relationship model

Exercise 5: Specify an example ER diagram for an insurance scenario. An insurance policy has a
customer, a premium, a start date, and an end date. Customers have names and addresses. A claim
has a description and is referring to an insurance policy.

3



Figure ?? graphically displays the insurance model. ConceptBase can also assign dedicated graphical
symbols to certain objects, e.g. diamond shapes to relationship types. We skip this feature in this tutorial
and refer you to the user manual for more details on this.
The green links are instantiations. Hence the insurance model is one abstraction level below the ER lan-
guage.

2.4 Enter data for the insurance model

Exercise 6: Enter data objects for the following facts. Customer mary signed an insurance policy
with start date ”2009-05-19” (no end date). The premium is 1000.

The display of the data objects in figure ?? completes all three abstraction levels (meta classes, classes,
data objects).

2.5 Define a process modeling notation
Process models can be used to denote workflows, business processes, and algorithms. We are in particular
interested in a process modeling notation that allows us to analyze process models for certain patterns.
Before we start defining the notation, we define the transitivity construct that shall be useful subsequently
for defining the pattern.

Proposition in Class with
attribute

transitive: Proposition
rule

trans_R: $ forall x,y,z,R/VAR
AC/Proposition!transitive C/Proposition

P(AC,C,R,C) and (x in C) and (y in C) and (z in C) and
A_e(x,R,y) and (y R z) ==> (x R z) $

end

The predicate A e(x,R,y) is true if there is an explicit attribute between objects x and y that has the
category R.

Exercise 7: Define a process notation that allows tasks to be defined. Tasks can have successor
tasks. Agents execute tasks. The successor relation shall be transitive.

The process modeling notation is very simple but it has the ability to represent very complex workflows.
Let now distinguish start statements and predicate statements.

Exercise 8: A start statement is a task that has no predecessor (no task has a start statement as
sucessor). A predicate statement is a task that has more than one successor. Define these concepts
as query classes.

You can define end statements in a similar way. A more tricky concept is the following.

Exercise 9 (difficult): Define the concept of a loop task, i.e. a task that is part of a loop. The name
of the query shall be LoopTask.

4



There can be several loops inside a process model. Loops can also be nested, i.e. a task can be mem-
ber of several loops. Note that the regular attribution predicate (t1 successor t2) is closed under
transitivity!
Now that we have defined loops, let us tackle the pattern ”agent with split responsibility”.

Exercise 10 (difficult): Assume that an agent A is responsible for tasks t1 and t2 in a process model
but there is a task t between t1 and t2 that is executed by another agent. This matches situations
where an agent does some work, then passes control to another agent, and afterwards resumes
control. Define this patterns as a query class named AgentWithSplitResponsibility that
returns agents with split responsibility.

2.6 Define an example process model
Recall the insurance scenario. Now we need to represent a workflow in this domain with our newly defined
process modeing notation.

Exercise 11: Claim handling starts with an insurance agent receiving the claim. Afterwards, the
policy is checked. Afterwards, either a payment is proposed or an assessor is assigned. The assessor
assesses the damage. On that basis, the insurance agent proposes a payment. After proposing the
payment, we either can continue with processing the payment (customers accepts the proposal), or
we need to iterate i.e. check again the policy and possibly repropose a new payment. The workflow
is finished after processing the payment.

Exercise 12: Ask the two queries LoopTask and AgentWithSplitResponsibility.

You can also visualize the results of the queries by the graph editor. The example process model together
with the classification to the two query classes is shown in figure ??.
The dotted green links are derived instantiations. So, an object that is in the answer set of a query class is
regarded as a derived instance of that query class. Indeed, query classes are classes where the instances are
derived via the membership condition of the query class.

2.7 Link the two notations
We have created two simple notations, one for data modeling and the scond for process modeling. Now let
us combine these two. The most natural way appears to regard object types (entity types and relationship
types) as possible inputs and outputs of tasks in a process model.

Exercise 13: Define a new construct ObjectType that generalizes EntityType and
RelationshipType.

So, this was easy. We now can link the two notations via ObjectType.

Exercise 14: Define object type as possible input/output of tasks in process models.

5



Figure 4: Classifying a process model via query classes

Attributes in ConceptBase are by default multi-valued, ie. they can have zero, one or many values. This is
exaclty what we want in this case.
We finalize this tutorial by attaching some objects types as input/output of tasks.

Exercise 15: Define some of the object types of exercise 5 as input/output of the process model of
exercise 11.

3 Conclusions
In this tutorial, we defined two simple notations, one for data modeling, another for process modeling. We
defined queries to analyze process models for non-trivial patterns, building on a newly defined construct
for transitivity. We created example models for both notations. Finally, we linked the two notations to form
an integrated method for data and process modeling.
The two notations were both very simple. For example, the ER notation lacks cardinalities of role links.
The process modeling notation cannot represent parallel splits. Adding the missing construct would not
require too much effort. The interested reader is referred to the CB-Forum (http://conceptbase.
sourceforge.net/CB-Forum.html) for extended examples.

6

http://conceptbase.sourceforge.net/CB-Forum.html
http://conceptbase.sourceforge.net/CB-Forum.html


4 Solutions to the Exercises

Exercise 1

EntityType end

RelationshipType with
attribute

role: EntityType
end

Exercise 2

EntityType with
attribute

attr: Domain
end

Domain end

Exercise 3

Integer in Domain end
String in Domain end

Exercise 4

Date in Domain end
"2009-05-19" in Date end
"2001-01-01" in Date end

Exercise 5

Customer in EntityType with
attr

name: String;
address: String

end

Policy in EntityType with
attr
startdate: Date;
enddate: Date;
premium: Integer

end

7



holds in RelationshipType with
role

customer: Customer;
policy: Policy

end

Claim in EntityType with
attr

description: String
end

claim_policy in RelationshipType with
role

claim: Claim;
policy: Policy

end

Figure 5: The insurance model as instantiation of the ER language

8



Exercise 6

mary in Customer end
policy1 in Policy with

startdate d: "2009-05-19"
premium p: 1000

end

holds1 in holds with
customer c: mary
policy p: policy1

end

Figure 6: Sample data for the insurance model

9



Exercise 7

Task with
attribute,transitive

successor: Task
end

Agent with
attribute

executes: Task
end

Exercise 8

StartStatement in QueryClass isA Task with
constraint

c1: $ not exists t/Task (t successor this) $
end

PredicateTask in QueryClass isA Task with
constraint

c1: $ exists s1,s2/Task A_e(this,successor,s1) and
A_e(this,successor,s2) and (s1 \= s2) $

end

Exercise 9

LoopTaskOf in GenericQueryClass isA Task with
parameter

rep: Task
constraint

c: $ (this successor rep) and (rep successor this) and
(exists s/Task A_e(rep,successor,s) and (s successor rep)) $

end

LoopTask in QueryClass isA LoopTaskOf
end

The parameter rep in the first query stands a representative of a loop. Note that there may be many loops
inside a process model and we would like to be able to query, which tasks belong to the same loop. The
second query just returns all loop statements regardless of the representative. It is sufficient to leave out a
value for parameter rep in this case.

10



Exercise 10

AgentWithSplitResponsibility in QueryClass isA Agent with
constraint

c1: $ exists t1,t2,t/Task a/Agent (this executes t1) and
(this executes t2) and (t1 successor t) and
(t successor t2) and (a executes t) and (a \= this)$

end

The condition (a \= this) makes sure that the middle task t is executed by a different agent.

Exercise 11

start in Task with
successor

n: receiveClaim
end

receiveClaim in Task with
successor

n: checkPolicy
end

checkPolicy in Task with
successor

n1: assignAssessor;
n2: proposePayment

end

assignAssessor in Task with
successor

n: assessDamage
end

assessDamage in Task with
successor

n: proposePayment
end

proposePayment in Task with
successor

accept: processPayment;
reject: checkPolicy

end

processPayment in Task with
successor

n: finish
end

finish in Task end

11



Assessor in Agent with
executes

t1: assessDamage
end

InsuranceAgent in Agent with
executes

t1: receiveClaim;
t2: proposePayment

end

Exercise 12
The answer to LoopTask is checkPolicy, assignAssessor, assessDamage, proposePayment.
The answer to AgentWithSplitResponsibility is InsuranceAgent, Assessor. Note that
the task assessDamage is in a loop with proposePayment. Hence, a sequence assessDamage-
proposePayment-checkPolicy-assignAssessor-assessDamage is possible and is the rea-
son to classify both agents into the query class AgentWithSplitResponsibility.

Exercise 13

ObjectType end
EntityType isA ObjectType end
RelationshipType isA ObjectType end

Exercise 14

Task with
attribute

input: ObjectType;
output: ObjectType

end

Exercise 15

receiveClaim with
output o1: Claim

end

checkPolicy with
input i1: claim_policy

end

12


