
CplxCalPro

The calculator for numerical analyses on the
palm® Operating System.

User manual
Version 4.15

ADACS LLC
Advanced Digital & Analog Consulting Service

Email:
Phone:

Fax:
Web site:

info@adacs.com
803 322 – 8312
803 547 - 4667
http://www.adacs.com

mailto:info@adacs.com

CplxCalPro © ADACS LLC

Table of contents

TABLE OF CONTENTS.. 2

CHAPTER 1.. 6

INTRODUCTION... 6
A GALLERY OF PROGRAMS AND GRAPHICS.. 7

CHAPTER 2.. 8

BASICS... 8
THE MAIN SCREEN... 8
BASIC CALCULATIONS .. 10
MODIFYING KEY ASSIGNMENTS.. 12
THE MENU ITEMS... 13
OPTIONS... 13
Preferences.. 13
Display formats... 14
Variables ... 16
Clear all... 16
Clear memory.. 16
Default Keyboard.. 16
Memory... 17
Register ... 17
EDIT... 17
PROG.. 18
Load program.. 18
Edit program ... 19
Plot function.. 19
Solve Equation .. 21
Copy text program .. 22
Delete text program... 22
Create text program... 22
HELP .. 22
Functions:.. 22
Constants:.. 23
Site licenses:.. 23
Legal agreement.. 23

CHAPTER 3.. 24

PUTTING IT ALL TOGETHER.. 24

www.adacs.com page 2/72

CplxCalPro © ADACS LLC

CHAPTER 4.. 27

BUILT-IN FUNCTIONS ON CPLXCALPRO... 27
COMPLEX: .. 27
BASIC: ... 27
TRIGONOMETRIC: .. 28
CALCULUS: ... 28
FINANCIAL:... 29
LOGICAL:.. 29
BASE CONVERSION: .. 29
PROBABILITY & STATISTICS: .. 30

CHAPTER 5.. 33

USER-DEFINED FUNCTIONS ... 33

CHAPTER 6.. 34

GRAPHICS ON CPLXCALPRO ... 34
GRAPHICS EXAMPLES .. 35

CHAPTER 7.. 39

PROGRAMMING CPLXCALPRO.. 39
A PROGRAMMING PRIMER .. 39
CPLXCALPRO’S PROGRAMMING COMMANDS:... 41
PROGRAMMING EXAMPLES: .. 42

APPENDIX A.. 48

TECHNICAL SPECIFICATIONS ... 48

APPENDIX B .. 49

DATA FORMATS.. 49
FLOAT:.. 49
ENGINEERING:.. 49
SYMBOL: ... 49
HEXADECIMAL: .. 50
BINARY: .. 50
OCTAL: ... 50
POLAR:.. 50
DATE:.. 50
SEXAGESIMAL: ... 50

www.adacs.com page 3/72

CplxCalPro © ADACS LLC

APPENDIX C.. 51

DISPLAY FORMAT ... 51

APPENDIX D.. 52

FUNCTIONS, OPERATORS, AND COMMANDS ... 52
BASE CONVERSION: .. 52
BASIC: ... 52
CALCULUS: ... 53
COLOR: ... 53
COMPLEX: .. 53
CONVERSION: ... 53
DATE:.. 53
FINANCIAL:... 55
FLOW CONTROL:.. 55
FORMAT:... 55
GRAPHICS:.. 56
INTERACTIVE: .. 58
LOGICAL:.. 58
RELATIONAL: ... 58
SPECIAL: ... 59
PROBABILITY & STATISTICS: .. 59
STRING:... 60
TRIGONOMETRIC: .. 62

APPENDIX E .. 63

CONSTANTS... 63

APPENDIX F .. 64

SAMPLE PROGRAMS ... 64
GRAPH DEMO: .. 64
FFT EXAMPLE PROGRAM: ... 64
FFT BUILT-IN FUNCTIONS: .. 66
QUADRATIC REGRESSION EXAMPLE:... 66
CHI-SQUARE TEST: ... 67
OPAMP:... 68
ROOT FUNCTION:.. 68

APPENDIX G.. 69

THE PALM® OS (POS) EMULATOR.. 69

www.adacs.com page 4/72

CplxCalPro © ADACS LLC

APPENDIX H.. 70

CURVE SKETCHING .. 70

APPENDIX I .. 71

USEFUL WEB LINKS ... 71

AFTERWORD .. 72

www.adacs.com page 5/72

CplxCalPro © ADACS LLC

Chapter 1

Introduction

 If this is your first time reading this manual, chances are you’ve just hotsync’d an
unregistered copy of CplxCalPro onto your PDA to try it out, perhaps to compare it to
other Palm calculators available on the Web, and see if it meets your needs. Whether
those needs are as a professional who requires a calculator to process field results or a
student who’s trying to get a grasp on science, math, or engineering concepts, we feel that
CplxCalPro is up to the challenge.
 CplxCalPro is a power user’s non-RPN calculator. It uses a 64-bit double-
precision floating-point format, providing an approximate numerical range of -2.23E-308
<= n <= 1.80E308.* It comes with 190 built-in functions, most of which can take
imaginary numbers as arguments, as well as yield imaginary results when appropriate.
 CplxCalPro was designed to be the most powerful calculator for palm PDAs
today, allowing the user to do more complicated calculations than ever before. It was also
designed to be as flexible as possible.
 Tailor CplxCalPro to meet your needs. It has a user-configurable keyboard, and is
a fully programmable color-graphics calculator. If you’re shaky on programming or
graphics manipulation, don’t panic. This manual goes over both, and includes a primer to
walk you through the fundamentals of programming. Furthermore, CplxCalPro hotsync’d
onto your PDA comes with many ready-to-use programs in its database, and we maintain
a library of programs for the CplxCalPro for you to download at
http://www.adacs.com/CplxCalPro/downloads.htm. This means a solution to meet your
needs may already exist!

CplxCalPro has a memopad-like built-in database to hold, retrieve, and manage
programs. Programs can be grouped in the database by category. And the number of
programs the database can hold is limited only by the amount of free memory in your
PDA.
 Please take a few moments to sit down with this manual and CplxCalPro to
familiarize yourself with this calculator. This manual was designed to serve as an easy-to-
follow guide to CplxCalPro, as well as a handy reference for those tackling real-world
problems with our calculator.
 And most of all, enjoy!

* Refer to Appendix A, Technical Specifications, for the exact range.

www.adacs.com page 6/72

http://www.adacs.com/CplxCalPro/downloads.htm

A Gallery of Programs and Graphics

 For those of you who want to know if looking into CplxCalPro is worth your
time, we offer here a small gallery of graphics to illustrate its power:

Draw multiple
graphs and text
on the graphical

screen.

Use colors in
graphs and text.

Related text
and plotted
curves are

displayed in the
same color.

CplxCalPro
has a suite of

built-in
functions that
makes doing
sophisticated

analyses a
breeze.

Do statistical
analyses on
large sets of
data. Here

CplxCalPro
plots the data
points, then
draws their
trendline.

Draw a
diagram. In this

program,
change values
on the main
screen and

press [RUN].
CplxCalPro
redraws the
diagram and

recalculates the
output voltage.

If you want to investigate the particulars of any of these graphics now, just follow their
hyperlinks.

CplxCalPro © ADACS LLC

Chapter 2
Basics

The “Cplx” in “CplxCalPro” stands for “complex”; and though it’s supposed to
stand for this calculator’s ability to handle complex numbers, it can just as easily stand
for the complexity inherent in the power of our product. So let’s look at its features by
taking CplxCalPro one step at a time.

Whenever CplxCalPro starts, it goes through a startup sequence:

On startup, CplxCalPro tries to find a user-created

file in its database called "Initialize". If it exists, CplxCalPro
skips the title line and evaluates the second, third, and forth
lines of the file. The variables on those lines are displayed on
the first, second, and third lines of the screen and also stored
in permanent variable space. This is where commonly used
variables should be assigned that will be used in several
programs over the course of a session. More than one
variable assignment to a line is possible by separating
assignments with a semi-colon (;).

Variable assignments made on lines below line 4 of the file are stored in program space
that CplxCalPro clears before loading a program. After checking for the initialization
program, CplxCalPro will, depending on the settings in the preference form screen, load
the previously used program. For more on these settings, please refer to the section on the
preference screen.

After CplxCalPro initializes, you see:

The Main Screen

CplxCalPro has two screens: a main screen and a graphics
screen. This is the main screen. The top 3 lines are called the
scratchpad. These show your input and intermediate results.
The fourth line displays the result of your calculation. It also
becomes the value of ans, a buffer to hold intermediate results
of your calculations. The fifth line is the status line. It shows
which version of CplxCalPro you’re using, the name of the
program you’re running, and the date. Below that is the
keyboard.

From this screen you can enter equations and perform immediate computations just as
you would using an algebraic calculator. The difference is you can carry the answer from
one calculation to another on the 4th line.

www.adacs.com page 8/72

http://mathworld.wolfram.com/ComplexNumber.html

CplxCalPro © ADACS LLC

The Keyboard

Keys Function
Hexadecimal format key.

= / * - + Arithmetic operators.
0-9 Numeric input keys.
^ Exponentiation.
, Comma. Separates arguments.
; Semi-colon. Separates statements.

ans The variable which holds the results of intermediate calculations.
Pressing this key enters “ans” at the cursor location.

() Parentheses modify precedence of arithmetic operators.
pi Math constant equal to 3.14159265358979284808.
e Math constant equal to 2.7182818284590458404.

arg Enters the function “arg(“ at the cursor location. arg(x) returns the
angle of x.

Re The real of x.
Im The imaginary of x.
j The imaginary portion of a complex number.

sqr The square root of x.
sin, asin, cos,
acos, tan,
atan, sqr

Enters basic trig functions or their inverses.

A B C D E F Pressing any of these keys enters the variables A-F at the cursor
location. These keys are also used for hexadecimal entry.

CLS Clears the scratchpad area.
VAR Displays a list of all the assigned variables.

FUNC Key that, when pressed, brings up list of CplxCalPro’s built-in
functions. Choosing a function from the list places it on the
scratchpad.

EDIT Brings up the program currently loaded into CplxCalPro for editing.
RUN Evaluates the three lines in the scratchpad, then runs the loaded

program.
EXE Evaluates the three lines in the scratchpad only.

www.adacs.com page 9/72

CplxCalPro © ADACS LLC

Basic calculations
Now that we’re familiar with the main screen, let’s do some basic calculations on
CplxCalPro using the default preferences:

The Problem
Statement: You press: CplxCalPro

Displays: Remarks:

3 + 4 3 + 4 [EXE] 3+4
7

Pretty straightforward.

(3+4) * 2 * 2 [EXE] ans*2

14

Use the previous result
for the current
calculation.

2^((3+4)*2) 2 ^ [ans] [EXE] 2^ans

16,384

ans key supplies the
previous result in the
equation.

(2^((3+4)*2))^(1/1
4)

[ans] ^ (1 / 14) [EXE]

ans^(1/14)

2

Fractional exponents.

same as above [CLS] (2 ^ ((3 + 4) *
2)) ^ (1 / 14) [EXE]

(2^((3+4)*2))^(1/14)

2

CplxCalPro follows
algebraic order of
precedence when
evaluating expressions.

same as above, but
with a deliberate
error

with your stylus, delete a
) from the expression in
the scratchpad, then
press [EXE]

) missing CplxCalPro’s interpreter
does syntax error-
catching.

(-1)^(1/2) [sqr] – 1) [EXE] sqr(-1)

0 + j1

Imaginary numbers!
Note that a prepended
‘j’ designates the
imaginary part of a
complex number
CplxCalPro.*

The Problem
Statement: You press: CplxCalPro

Displays: Remarks:

* Most math books use the postpended 'i' to designate the imaginary part of a complex number; e.g, sqr(-1)
= 1i. CplxCalPro, however, was developed for practical use. Engineering books use the prepended 'i' or 'j'.
Math books use the 'j' or 'i' when a complex number is raised to the power 'e'; e.g., e^jb. In practice,
electronics engineers (like myself), commonly use the 'j' instead the 'i' since the 'i' is used to designate
current. It is a good practice to put parentheses around a complex number. This is not needed when adding
or subtracting complex numbers but is needed when multiplying or dividing complex numbers. 4+j5*4-j2
will yield a different result than (4+j5)*(4-j2)

www.adacs.com page 10/72

CplxCalPro © ADACS LLC

(0 + j1) + (2+j3) +(2 + j3) ans+(2+j3)

2+j4

Adding imaginary
numbers

(2+j4) – (3+j) -(3 + j) ans-(3+j)

-1+j3

Subtracting imaginary
numbers

-(1+j5) * (7+j11) *(7 + j 11) ans*(7+j11)

-40+j10

Multiplying imaginary
numbers

(-62+j24) / (-1+j3) / (-1 + j 3) Ans/(5+j3)

-5+j5

Dividing imaginary
numbers

sin(sqr(-1)) [CLS][sin] [sqr] – 1))
[EXE]

sin(sqr(-1))

0 + j1.175201

Most functions on
CplxCalPro can take
complex numbers as
arguments.

let A=4*5 [CLS] A = 4 * 5 [EXE] A=4*5

20

Variable assignments.

A/3 / 3 [EXE] ans/3

6.67

20 / 3

A*3 [CLS] A * 3 [EXE] A*3

60

20*3

let A=3; B=4 [CLS] A = 3 ; B = 4
[EXE]

A=3; B=4

4

Separate multiple
variable assignments
on the same line with a
semicolon

sqr(A^2+B^2) [CLS] [sqr] (A * A + B *
B) [EXE]

sqr(A*A+B*B)

5

sqr(3^2+4^2)
Entering the problem
using the ^ key yields
the same result.
CplxCalPro follows the
algebraic order of
precedence

www.adacs.com page 11/72

CplxCalPro © ADACS LLC

Modifying Key Assignments

The user can assign all keys on the main screen. A simple text file, keyboard assignment
file, determines key assignments. Each line of text maps to a row of keys, and a comma
separates the text for each key. Frequently-used functions can have keys assigned to them
for quick and easy entry of your equations. Let’s look again at the default keyboard:

All the keys were assigned by
reading the text file on the right.
Notice the tilde is replaced by a
comma since the comma is used as a
delimiter between key assignments.

#,=,~,;,(,),CLS
pi,A,B,C,D,E,F
e,^,j,@arg,@Re,@Im,VAR
7,8,9,/,@sin,@asin,FUNC
4,5,6,*,@cos,@acos,EDIT
1,2,3,-,@tan,@atan,RUN
0,.,E,+,sqr,ans,EXE

These key assignment files are stored in the keyboard category of the database. Use the
program editor to create or edit these files. Select [prog.] from the menu and then select
[load program]. This shows the contents of the database. Next select the keyboard
category and you should see at least two files, “Default keys” and “Logic keys”. Make
sure the edit box at the bottom is not checked and select “Logic keys”. This should
change the main screen. Now tap on the edit button in the main screen to see the key
assignment file. After a key is pressed, CplxCalPro determines if a "special" key was
pressed. When a "special" key is pressed, the CplxCalPro executes a "special" function
accordingly. Reserved keywords determine if a key is “special”. If the keyword EXE is
assigned to a key, for instance, CplxCalPro executes the lines in the scratchpad (the top
three lines of the display) when that key is pressed. These keywords are reserved for
CplxCalPro key assignment:

EXE Evaluate the three lines in the scratchpad.
RUN Evaluate the three lines in the scratchpad, then run the program.
EDIT Edit the program.
FUNC Show a list of all the functions. tapping one on the list puts it in the scratchpad.
VAR Show a list of all the assigned variables.

@ Put an open-parenthesis in the scratchpad. this saves time when using functions.
& Evaluate the three lines in the scratchpad, then run the program. the iskey()

function can be used to test for key.
= Put the equal sign at the cursor position.
$ Variable assignment of a key. pressing a key assigned a variable puts the

variable, an equal sign, and the value of the variable in the result line.

www.adacs.com page 12/72

CplxCalPro © ADACS LLC

The Menu Items

Options

Preferences

The preferences form allows you to set the display format of
numbers, to set angular measurements in radians or degrees;
and to specify whether the program used at the close of a
CplxCalPro session should be reloaded at the start of the next
session.

The following formats are supported: Float, Engineering,
Symbol, Hexadecimal, Binary, Octal, Polar, Date and
Sexagesimal.

The display format determines the width and precision of the
displayed numbers. The sum of these two numbers can’t
exceed 24. In the example on the left, the sum is 10 which
means a number like 1234.56789 will be rounded and
displayed as 1234.5679

CPLXCALPRO DEFAULT PREFERENCES:

format ………………………………………...…………... float
width ……………………………………………………… 6
precision …………………………...….…..……………… 4
angular measurement ………………………..………….. degrees
trailing zeros……………………………………………… no
ask if previously-loaded program should be reloaded… never

The format function fmt(t,w,p,tr) can be used to set format options to be used during the
execution of a calculation or program.

t: 0-float, 1-eng, 2-sym, 3-hex, 4-bin, 5-oct, 6-pol, 7-date, 8-sexagesimal
w: width of number (0-15)
p: precision of number (0-15)
tr: trailing zeros. (0 or 1)

Preferences for angular measurement can be changed with the functions:

www.adacs.com page 13/72

CplxCalPro © ADACS LLC

stdeg() Sets angular format to degrees.
strad() Sets angular format to radians.

Display formats
Some examples of how numbers are displayed in different formats, widths and precisions
by changing the preferences:

Number Format Width Precision Display Comments

123456.789 float 7 2 123,456.79

Default
settings of
CplxCalPro.

123456.789 float 7 3 123,456.789

ah-hah!
CplxCalPro
retained the
last digit.

123456.789 float 1 5 1.23457E05
Only one digit
in front of the
period.

123456.789 float 1 9 1.23456789E05

Nine digits
maximum
behind the
period.

123456.789 engineering 1 9 123.456789E03

Engineering
formats by
10^(3n),
where n >= 0.

123456.789 engineering 1 9 123.456789E03 No difference.

123456.789 symbol 1 9 123.456789k

“symbol”
means SI
symbols, and
“k” means
“kilo” or
“multiply by
1000”.

1234567 hexadecimal 4 9 #12D678:1,234,567
Number Format Width Precision Display Comments
1234.567 hexadecimal 4 9 #4D2:1,235 CplxCalPro

rounds off the
decimal part

www.adacs.com page 14/72

CplxCalPro © ADACS LLC

of input, then
hexes the
result.

1234.567 binary 4 9 10011010010 CplxCalPro
also bins
rounded
input.

1234.567 octal 4 9 2322 Also octal.

sqr(-1) polar 4 9 pol(1, 90)

Polar format
displays
complex
numbers in
polar format.
90 is the
angle in
degrees.

1+j1 polar 9 4 pol(1.4142, 45) As expected
the magnitude
is sqr(2).

3090000000 date 0 4 Fri, Nov 30, 2001 When width
is set to 0,
date is
displayed in
full format.

3090000000 date 1 4 11/30/01 When width
is set to 1,
date is
displayed in
compressed
format.

1.5 sexagesimal 9 4 1°30’0” Sexagesimal
format
converts a
decimal input
into DMS.

1.75 sexagesimal 9 4 1°45’0” 3/4’s of 60
minutes is 45

www.adacs.com page 15/72

CplxCalPro © ADACS LLC

Variables

The variables screen (under the options menu) not only
shows you variables and their values, but also allows you to
change those values. Just select the variable whose value you
want to change, and the value will appear on the edit line.
Now change the value behind the equal sign and press
[Update].

Clear all

Think of this as CplxCalPro’s soft-reset. This clears variable
values and the currently loaded program, and reloads the
default keyboard.

Clear memory

This clears variable values and the currently loaded program,
but leaves the user-defined keyboard as is.

Default Keyboard
Just as this menu item name says, selecting it clears the user-defined keyboard and loads
the default keyboard.

www.adacs.com page 16/72

CplxCalPro © ADACS LLC

Memory

The total amount of memory is divided into three
separate memory spaces. One is dedicated for the storage
of strings. A miscellaneous storage space is used for
what the name suggests, and the last one is used for
storage of the function steps.

This screen will show you how the total available
memory is used for the current program.

Register

You can use CplxCalPro without registering for about
three weeks. This allows you to evaluate the calculator to
see if it meets your needs.

Registration gives the user access to all features of
CplxCalPro; most importantly, this allows the user to
write new keyboard layouts, graphics files, and programs.

Edit

This is the standard Palm [Edit] menu. CplxCalPro allows you
to copy-and-paste values from the result line into the
scratchpad, or to share information across applications (e.g.,
to copy values from the result line into a memo).

www.adacs.com page 17/72

CplxCalPro © ADACS LLC

Prog.

Load program

Selecting [Load program] from
the [Prog.] menu will display
programs available in the
database similar to the screen
on the left.

Tapping a program’s name loads the program into the program buffer of CplxCalPro’s
runtime interpreter. During the load, the interpreter checks the program for errors.

If it finds none, CplxCalPro
returns to the text screen, where
the program’s variables and initial
values are placed in the
scratchpad, “Program loaded
successfully!” is placed in the
result line, and the program name
is placed in the status line.

The screenshot above left shows the result of successfully loading the program “Car
loan”. Now you can change the variable assignments in the scratchpad. Pressing [RUN]
then executes the program. With the values for “Car loan” in the screenshot on the left
loaded into the program, pressing [RUN] brings up the screen above on the right.

www.adacs.com page 18/72

CplxCalPro © ADACS LLC

Edit program

Selecting [Edit program] from the [Prog.] menu brings up the same
screen as [Load program], but the edit checkbox at the bottom is
selected; as in the example on the right. Tapping the name of a
program allows you to edit that program with the same
functionality you have when writing and editing memos.

Notice the "C" and "F" at the top of the screen. The first is a drop-
down list of built-in constants; the second a drop-down list of
built-in functions.

Selecting a constant puts its assignment
wherever the cursor is in the program.
Selecting the speed of light, for
instance, will put the assignment
c=2.99792458E8 at the cursor position.
This way the constant is saved with the
program. Constants not used do not
allocate any memory space of the user
program.
Selecting a function enters it at the
cursor location, speeding up entry of
that function.

The next two items, [Plot function] and [Solve equation], use worksheets, and share
information across worksheets. Worksheets are little forms in which you enter some
parameters that will be used to create a program.

Plot function

Select [Plot function] from [Prog.]
menu. You should see the screen
on the left. The textbox at the top
allows you to set initial conditions
for the plot. In this example, ‘x’ is
the unknown variable; ‘a’ and ‘b’
are fixed. We set their values here.
We also set format values for the
numbers generated (here, display
format = float, width = 6,
precision = 6; and no trailing
zeros). The ‘h’ is used by [Solve
equation] and will be discussed
later.

www.adacs.com page 19/72

CplxCalPro © ADACS LLC

The next six values set plot parameters. Xmin, Ymin, Xmax, and Ymax, set the plot
boundaries, while gx and gy define how many grid lines are plotted along the x-axis and
y-axis, respectively.
Using [Plot function], CplxCalPro will plot 2 functions simultaneously (however, using a
program, CplxCalPro plots as many functions as you want). You enter each function on
its own line at y1= and y2=.
Finally, N is the number of points used to plot a graph.

Press [OK] and a template program is created. This program is then executed, resulting in
the plot on the right. Notice that the two lines intersect twice within the plot’s boundaries
In this example, we are interested specifically in Xmin and Xmax. Tapping on the screen
shows the x,y coordinates of the stylus tap within the graph at the bottom of the screen.
Tapping where the curves intersect gives the x,y coordinates of their intersection.

Return to the main screen. Press the [EDIT] key. The program
that was created using the parameters from [Plot function]
comes up. You can change the name from “Template” to any
name you choose by replacing “Template” in the first line to
whatever name you like, then saving this modified program.

We encourage you to modify programs, parameters, etc. on
CplxCalPro to get a better understanding of how to use these
features.

www.adacs.com page 20/72

CplxCalPro © ADACS LLC

Solve Equation

Select [Solve equation] from [Prog.] menu. CplxCalPro uses a
numerical root-finding algorithm called the Newton-Raphson
method. This method uses the numeric derivative of the
function whose roots you’re looking for, which is what the
variable ‘h’ in Init equation is for. This method is fast and
accurate, but it requires you to enter an initial guess in the
Guess: textfield.

Notice that the equations on the left-hand side (or LHS) and right-hand side (RHS) of the
equal sign on the Equation to solve: are lines y1 and y2 in the [Plot function] worksheet
above. Changing equations y1 and y2 in that worksheet will change the LHS and RHS of
this equation. Pressing [OK] solves for variable ‘x’. If you’d rather solve for 'a', just
change 'a=-3' to 'x=0' in the Init equation: textfield and 'x' to 'a' in the Solve for variable:
textbox.
The TOL: textfield value is the tolerance of precision between the answer returned by
CplxCalPro and the real value of the root. The smaller you make this value, the more
accurate the answer but the longer CplxCalPro takes to generate a result. The program
keeps trying to converge upon the root’s real value until the error is within tolerance or
the number of tries exceeds the limit. The error in the equation of our example is abs(x) <
TOL.

When you press [OK], CplxCalPro creates a template, just as
it did for [Plot function], then solves the equation. Because
the RHS is one function, and the LHS is another, [Solve
equation] searches for where the two are equal (or intersect
when plotted). Because the Newton-Raphson method
converges on one real value for a root near the guess value, it
can find just one root at a time.
And just as with [Plot function], pressing the [EDIT] key on
the main screen exposes the template to you.
Go back to [Solve equation]. Now change the guess value
from 0 to 2, press [OK], and notice CplxCalPro comes up
with a the different value for x. This is because the value of
this guess was close to the second point of intersection.

This brings us to an important point on the use of CplxCalPro (and other graphing
calculators) when analyzing functions by plotting them and solving for their roots: are
there other values of x where the RHS and LHS functions intersect? How can we know?
Return to [Plot function], and change the plot boundaries to Xmin=-5, Xmax=20, Ymin=-
40, and Ymax=200, then press [OK]. CplxCalPro now reveals a third intersection that it
didn’t earlier because our plot boundaries were not sufficiently great to capture the detail
we needed (careful: there are also instances in which one could say our plot boundaries
were not sufficiently large to capture the detail we needed). Using [Plot function] and
[Solve equation] together creates a powerful method for getting roots: a plot of the
function(s) gives you good values for those initial guesses you have to put in. And the

www.adacs.com page 21/72

http://mathworld.wolfram.com/NewtonsMethod.html
http://mathworld.wolfram.com/NewtonsMethod.html
http://mathworld.wolfram.com/NewtonsMethod.html

CplxCalPro © ADACS LLC

point? There is no substitute for having solid knowledge of the general behavior of
the functions you’re working with. That includes knowing how to sketch curves of
these functions, given their parameters. Curve sketching is beyond the scope of this
manual, but we’ve included a reference of points to consider when sketching curves (see
Appendix H); and we wish to point out that good, instructive websites exist to allow you
to learn or review the skill. Just type “curve sketching” into the textbox of your favorite
Internet search engine, and browse the results. There’s bound to be at least one website
that meets your tastes and needs.

Copy text program
This menu item allows you to bring a text file of a CplxCalPro program or key
assignment file that you’ve hotsync’d onto your PDA into CplxCalPro’s program
database. Once in the database, it is available to run. The text file will actually reside in
your PDA’s memory as a PRC file, and using “Copy text program” will copy it into
CplxCalDB.PDB. Once in the database the text file can be deleted.

Delete text program
This menu item allows you to delete a text (PRC) file from your PDA’s memory that
CplxCalPro recognizes as a CplxCalPro program or key assignment file. You do this after
copying the file into CplxCalProDB.PDB in order to keep your PDA’s memory
uncluttered.

Create text program
This menu item allows you to copy a CplxCalPro program, key assignment file, or
graphic from CplxCalPro’s program database into your PDA’s available memory. The
copy is a PRC file. From there it can be hotsync’d onto your personal computer and
manipulated as a simple text file.

IF YOU WISH TO CREATE CplxCalPro PROGRAMS OR KEY ASSIGNMENT
FILES ON YOUR PC, you will need a program that converts simple text files on your
PC into PRC files. Several such programs, like MakeDocW, are available at
www.handango.com. Make sure compression mode is NOT selected on your conversion
program when making PRC files for CplxCalPro.

Help

Functions:
This will show a list of all the available built-in functions. Tapping a function will insert
the function at the current cursor position.

www.adacs.com page 22/72

http://www.handango.com/

CplxCalPro © ADACS LLC

Constants:
This will show a list of all the available built-in constants. Tapping a function will insert
the constant at the current cursor position.

Site licenses:
We have special volume discounts. This screen will indicate if you have a discount
version or a standard version. Companies of schools might have there own special copy
which this screen indicates.

Legal agreement
This screen will show you what you probably expected already!

About
Also shows our web site address for the latest information.

www.adacs.com page 23/72

CplxCalPro © ADACS LLC

Chapter 3
Putting It All Together

Wow! We’ve covered quite a bit of ground in just one chapter. As you can see, just
off the main screen and with the default keyboard, CplxCalPro puts tremendous
capabilities and computing power at your fingertips, just a few stylus taps away. We’ve
intentionally glossed over many of them when introducing them to you because using
them requires knowledge of other capabilities that were introduced later. In this chapter,
we’re going to put it all together: we’re going to walk through examples of how to
change CplxCalPro’s initialization file and keyboard; and we’re going to walk through
downloading a program from our online library, installing it, and running it.

There is an example in the built-in database that you can copy to the clipboard and

paste into a new text file. Then you can edit the text file to put the keys where you would
like them. Where you put the keys or what you put in them, is up to you. These text files
must be in the "keyboard" category. The program checks the category before processing
the file. This is how the program determines if the file is a program or a keyboard
assignment file.

Problem: You know that CplxCalPro is the calculator to meets your needs. You’ve gone
to our online library of programs and found a program there that might meet your needs.
How do you get the program from our library into your CplxCalPro’s database of
programs?

Answer: Let’s say, for the sake of this example, that NewGraph__1_00 in the
“Examples” category of the online library is what you. You can use the search feature to
find this program as shown below. Select ‘Program name’ type ‘new’ and press ‘Search’
and all programs with ‘new’ in it will be shown.

Click the ‘NewGraph__1_00’ hyperlink and the screen below will appear.

www.adacs.com page 24/72

CplxCalPro © ADACS LLC

Each program information page has a “DOWNLOAD” hyperlink. You click it, and opt to
save the zip file to your hard drive.

That done, you open the zip file using an unzip program. Download an unzip program
from http://www.winzip.com if you don’t have one already. You could extract the entire
contents; but impatient to run NewGraph__1_00, you opt simply to double-click
NewGraph__1_00.pdb, which loads the file into your PDA’s desktop “Install Tool”.

www.adacs.com page 25/72

http://www.winzip.com/

CplxCalPro © ADACS LLC

You hotsync your palm PDA, which loads NewGraph__1_00.pdb onto your device. Then
you bring up CplxCalPro, bring up its menu items, select [Prog.], and [Copy text
program]. CplxCalPro shows you the text file “NewGraph__1_00” in your PDA’s
memory.

You tap it to bring it into CplxCalPro’s program database, then go back to the [Prog.]
menu and choose [Load program].

There it is, at the top of the list, NewGraph__1_00. You tap on its name, read as
CplxCalPro tells you, “Loading program, Please wait!!!”, then reports in the result line,
“Program loaded successfully”.

It’s now ready for you to use or edit to meet your specific needs. As a final step, you
choose [Delete text program] from the [Prog.] menu, which shows you NewGraph__1_00
in your PDA’s memory.

Tapping on its name brings up a confirmation alert asking if you’re sure you want to
delete NewGraph__1_00. Tapping [Yes] deletes the PDB, but leaves the program in
CplxCalPro’s program DB.

www.adacs.com page 26/72

CplxCalPro © ADACS LLC

Chapter 4
Built-In Functions on CplxCalPro

 CplxCalPro comes with more than 190 functions with applications in math,
sciences, engineering, statistics and finance. From version 3.0 on, this includes functions
that return the first and second derivatives of a function f at x. In this chapter, we look at
some of those functions, as well as some of their applications. We will start with
Complex number functions.

Complex:
FUNCTION REMARK ARG YIELDS EXAMPLE
 Input Output
arg(x) Returns the angle of x. cplx real arg(1-j) -45

conj(x) Returns conjugate of x. cplx cplx conj(3-j4) conj(3+j4)

pol(r,a) Returns rectangular value

of radius r and angle a.
real cplx pol(3, 45) 2.12+j2.12

Im(x)
Returns imaginary of x. cplx real Im(3-j4) -4

Re(x) Returns real of x. cplx real Re(3-j4) 3

Basic:

EXAMPLE OPERATOR
or
FUNCTION

REMARK ARG YIELD

Input Output
50% .5 % If only percent is evaluated,

returns decimal equivalent
of percent. If percent is
second part of arithmetic
expression, takes percent
of first part as second part,
then evaluates expression.

real real

10 +
7.5%

10.75

real abs(x) abs(-5) 5 abs(x) Returns absolute value if x
is real and returns
magnitude if x is complex.

cplx mag(x) abs(sqrt(-
1))

1

cbrt(x) Returns cube root. real real cbrt(-5) -1.71
ceil(x) Returns x if x is int, else

returns next int > x
real real ceil(-2.5) -2

exp(x)
Returns e^x. For complex z=x+jy, exp(z) = exp(x)*(cos(y)+j*sin(y)).

floor(x) Returns x if x is int, else
returns next int < x

real real floor(-3.2) -4

frac(x) Returns fractional part of x real real frac(-3.2) -0.2
round(x) Returns next int < x if

fractional part of x between
.0 and .49-bar, else next int
> x

real real round(-3.7) -4

www.adacs.com page 27/72

http://mathworld.wolfram.com/ComplexNumber.html

CplxCalPro © ADACS LLC

real real sqr(-9) 0+j3 sqr(x)
Returns square root.

cplx cplx sqr(-5+j12) 2+j3
ln(x) Returns natural logarithm of x.
log(x) Returns common logarithm (base 10) of x.
max(a,b) if a > b returns a else b.
min(a,b) if a < b returns a else b.
mod(x,y) Returns x modulo of y.

Trigonometric:
FUNCTION REMARK
sin(a) sine
cos(a) cosine
tan(a) tangent
asin(a) arcsine
acos(a) arccosine
atan(a) arctangent
sinh(a) Hyperbolic sine.
cosh(a) Hyperbolic cosine.
tanh(a) Hyperbolic tangent.
acosh(a) Inverse hyperbolic cosine.
asinh(a) Inverse hyperbolic sine.
atanh(a) Inverse hyperbolic tangent.

Calculus:
FUNCTION REMARK ARG YIELDS
int(f,x1,x2) Solves a definite integral function f, x1, x2

der1(f,x,h) Returns the first derivative of
function f at x.

function f, x, h f’(x)

der2(f,x,h) Returns the second derivative of
function f at x.

function f, x, h f’’(x)

h is also known as ∆x, and the definition of a derivative,
h

xfhxfxf
h

)()(lim)('
0

−+
=

>−
,

comes from the difference quotient of function f. h then is the difference between
two values of x, x0 and x1. The definition above yields the derivative of a
function as h tends to zero. For CplxCalPro, a small difference for h should be
chosen, one that is close enough to zero to yield results accurate within the
format precision on your CplxCalPro while calculating derivatives.

www.adacs.com page 28/72

CplxCalPro © ADACS LLC

Financial:
FUNCTION REMARK
fv(rate,nper,pmt,pv,type) Returns the future value of an investment based on periodic,

constant payments and a constant interest rate.
inter(nper,pmt,pv,fv,t) Returns the interest for an investment based on number of

periods, periodic constant payments.
nper(rate,pmt,pv,fv,type) Returns the number of periods for an investment based on

periodic, constant payments and a constant interest rate.
Calculates the payment for a loan based on constant
payments and a constant interest rate.
For the monthly payment on a $10,000 loan at an annual rate
of 7 percent that you must pay off in 10 months:
pmt(7%/12, 10, 10000, 0, 0) returns -$1,032.36

pmt(rate,nper,pv,fv,type)

For the same loan, if payments are due at the beginning of the
period, the payment is:
pmt(7%/12, 10, 10000, 0, 1) returns -$1,026.38

pv(rate,nper,pmt,fv,type)

Returns the present value of an investment. The present value
is the total amount that a series of future payments is worth
now. For example, when you borrow money, the loan amount
is the present value to the lender.

Logical:

EXAMPLE FUNCTION REMARK
Input Output

and(h,h) Bitwise AND. and(4,6) 4
not(x) Returns 0 if x!=0 else 1 . not(1) 0
or(h,h) Bitwise OR or(4,6) 6
shl(h,b) Bitwise shift left shl(4,1) 8
shr(h,b) Bitwise shift right shr(4,1) 2
xor(h,h) Bitwise EXCLUSIVE OR xor(4,6) 10

Base conversion:
OPERATOR REMARK ARG EXAMPLE
Signify input is hexadecimal hex integer #A9C3
& Signify input is binary binary integer &1010

www.adacs.com page 29/72

CplxCalPro © ADACS LLC

Probability & Statistics:

 CplxCalPro can do powerful statistical analyses on multivariate data
elements. The data elements can be entered into a text file in CplxCalPro’s
database for processing. The values in this text file can be converted using the
sdata(‘file’) function and stored in an array for processing. The array can also be
filled using the sadd(r,c,x) or scadd(r,c,x) functions. It can handle a maximum of
512 rows (data elements) and a maximum of 5 columns (variables).

 Let’s look at some basic statistical functions by way of example. For
illustrative purposes, let’s say you have four data elements of 3 variables to
analyze:

 Var 1 Var 2 Var 3
Element 1 2 3 4
Element 2 5 6 7
Element 3 8 9 10
Element 4 11 12 13

First, enter them into a CplxCalPro text file. Press [EDIT] from the text screen. If
you have no program loaded, CplxCalPro takes you to its database of text files. If
you do have a program loaded, CplxCalPro places that program in the editor and
brings it up; in that case, press [Done]. You should now be in the database of text
files.
Press [New] to open a new text file. Give it a name on the first line. We’ll call ours
“Stat Data”. You can begin writing your data on the next line, separating each
variable with a comma. Once you finish, your file should look like this:

Press [Done]. You should see your file’s name at the top of the database list.

Press [Return] to get back to the text screen. In the scratchpad, enter stclr() and
press [EXE]. Now enter sdata('Stat Data'). Press [EXE]. This loads CplxCalPro’s
memory array with the values in the file and returns the number of data elements
in the result line; in this case, 4. Enter stdev(2) and press [EXE]. The result line
displays 3.35, the standard deviation of 3, 6, 9 and 12. Enter ssum(3) and press
[EXE]. The result line displays 34, the sum of 4, 7, 10 and 13.

www.adacs.com page 30/72

CplxCalPro © ADACS LLC

Finally, to calculate the linear regression, where column one holds the x-values
and column two the y-values, enter a=sqrc(3); b=sqrc(2); c=sqrc(1) on the first
line of the scratchpad, and sqrv(6) on the second line, and press [EXE]. The
result is a*6^2+b*6+c, or the calculated y-value when x is six.

To verify the answer you can also enter a*6^2+b*6+c on the second line instead
of sqrv(6).

CplxCalPro statistical and probability functions.
FUNCTION REMARK
! Factorial
fac(n) Factorial
ftest(c1,n1,c2,c2) Returns the result of an F-test. An F-test returns the one-tailed probability that

the variances in column c1 and column c2 are not significantly different. Use
this function to determine whether two samples have different variances. The
arguments n1 and n2 indicate the number of data points in column c1 and c2.
See F-test.pdb user program.

nCr(n,m) Combination
nPr(n,m) Permutation
rnd() Generates a random number in the range [0, 1] with a uniform distribution and

good statistical properties.
rndn() Uses the Polar Method to return a random number with a normal distribution

and a mean of zero.
sadd(r,c,v) Store value v at row r and column c. When v is a complex use scadd(r,c,v)

instead!!
scadd(r,c,v) Store value v at row r and column c. When v is a complex value the real part

will be stored in column c , and the imaginary par
scget(r,c) Returns a complex value from the array. After a scadd(3,2,v) the function

v=scget(3,2) will return the complex value. Column two is used for the real
values and column three is used for the imaginary values.

schi(c1,c2) Chi-squared function.
c1 - column of expected values.
c2 - column of observed values.

scnorm(x,mu,sig) Returns the cumulative standard normal distribution. (m=mu, sig=stdev)
scorr(c) Returns the correlation between the values in column 1 and the valuesin

column r.
sdata('rec') Clear statistical variables and fill array with values of record 'rec'.
serre(c) Returns the standard error of estimate.
serrr(c) Returns the standard error of regression.
sget(r,c) Get value at row r and column c.
smax(c) Maximum value in column c.
smean(c) Returns the mean. (Sum / N) of column c.
smin(c) Minimum value in column c.
snorm(x,mu,sig) Returns the standard normal distribution. (m=mu, sig=stdev)
splot(c1,c2,T) Plot values in column c1 versus values in column c2 using T. T=0 line, T=1

diamonds, T=2 plus-signs.
sqrc(c) Returns the coefficients for the quadatic regression. A=sqrc(3) B=sqrc(2)

B=sqrc(1) See QuadReg.prc user program for and example.
sqrv(x) Returns the value for the quadratic regression Y=A*X^2 + B*X + CSee

QuadReg.prc user program for and example.
sregc(c) Returns the regression coefficient of column 1 and column c.
sregl(c) Plots the regression line for column 1 and column c.

www.adacs.com page 31/72

CplxCalPro © ADACS LLC

srplot(Col,r1,r2,T
ype)

Plot the range starting at row r1 to row r2 of column Col. Type specifies the type
of plot 0-line 1-diamond points 2-cross points 3-plus points. This function will
clear the screen use the maximum size to draw the plot and use autoaxis
labeling.

ssum(c) Sum of values in column c.
stclr() Clear statistical variables.
stdev(c) Returns the population standard deviation sqr(var()) of column c.
Stdev(c) Returns the sample standard deviation sqr(Var()) of column c.
svar(c) Returns the population variance (1/N * (A(n)-mean)^2) of column c.
sVar(c) Returns the sample variance (1/(N-1) * (A(n)-mean)^2) of column c.
sxy(c) Returns A(1,n) * A(c,n) .
syint(c) Returns y-intersect.
ttest(c1,n1,c2,n2,t
ail,type)

Returns the probability associated with a Student's t-Test. Use ttest to
determine whether two samples are likely to have come from the same two
underlying populations that have the same mean. The arguments n1 and n2
indicate the number of data points in column c1 and c2. Tail specifies the
number of distribution tails. If tails = 1, ttest uses the one-tailed distribution. If
tails = 2, ttest uses the two-tailed distribution. Type is the kind of t-Test to
perform and should be set to two. See Student_ttest.pdb user program.

www.adacs.com page 32/72

CplxCalPro © ADACS LLC

Chapter 5

User-Defined Functions

Starting in version 3.0 you can create your own functions for use on CplxCalPro.

The screenshot on the left shows
how you can define your own
function. User-defined functions
can take up to four arguments.
User-defined functions are first
defined using the CplxCalPro
function function f(x){ }, then
invoked. The screenshot on the
right shows how the derivative of a
function can be calculated with the
definition of a derivative of f at x,
returning the same value for a
given x as der1(f,x,h) does.

User-defined functions can also be
used when plotting functions using
the plot function worksheet. The
function f(x) is defined at the top,
then invoked as y1. Notice that y2
uses der2(f,x,h).

Please don’t forget that the first three lines in a program, the scratchpad, are processed
differently than the rest of the program. To review, when you press [EXE] only the
scratchpad is evaluated. When you press [RUN] first the scratchpad is evaluated, then
CplxCalPro runs the loaded program. So how does this relate to user-defined functions?
It means that when you define a function in the scratchpad and use it in the program, you
CANNOT change the function in the scratchpad, press [RUN], and get the correct result.
You have to change the function in the program, then reload the program. Just press
[EDIT], change the function, then load the program and press [RUN].

www.adacs.com page 33/72

Chapter 6

Graphics on CplxCalPro

Graphics on CplxCalPro allows you to see how input has been transformed to output.
The visual display of quantitative information1 makes large amounts of data or complex
data understandable. On CplxCalPro it allows you, among other things, to investigate the
behavior of functions, to see patterns in data, or to draw diagrams that illustrate concepts.
Below is CplxCalPro’s graphics screen:

pixel (0, 0)

pixel (0,160)

pixel (160, 0)

pixel (160,160)

CplxCalPro Graphics Screen and The Palm Touchscreen Coordinate System
Superimposed in red is CplxCalPro’s angular coordinate system (see the

garc(x,y,r,a1,a2) example in Appendix D).

 Graphics are created by turning pixels on the touch screen off or on; those that are
turned on are set to a gray tone or color. The touch screen has an area of 160x160 pixels.
CplxCalPro uses the entire touch screen as its graphics screen, and it follows the palm
platform convention for defining pixel coordinates. Pixel (0, 0) is the uppermost left
pixel, pixel (0,160) is the lowermost left pixel, pixel (160,160) is the lowermost right
pixel; and pixel (160, 0) is the uppermost right pixel.
 CplxCalPro has many graphics functions to render objects on the graphics screen.
These objects include lines, arcs, circles, rectangles, axes, and text. You can create
interactive graphics on CplxCalPro with graphics functions like gvtap() and gtapx(),
which, as their names suggest, process stylus taps on the touch screen.
CplxCalPro uses a table of 16 colors. Colors are set using gsetcol(idx,r,g,b). idx
indicates the index in the table.

1 Yes, this phrase is lifted from the title of the book, The Visual Display of Quantitative Information, by
Edward Tufte, whose 3-volume treatment on rendering information into visuals is highly recommended.

http://www.amazon.com/exec/obidos/ASIN/0961392142/qid=1006204002/sr=1-1/ref=sr_1_2_1/103-8792904-4329446

 CplxCalPro user manual. V3.52

Default Colors on CplxCalPro

On startup, CplxCalPro sets these colors for
its color table. you can change them using

gsetcol(idx,r,g,b)
idx color r b g
0 white 255 255 255
1 red 255 0 0
2 green 0 210 0
3 blue 0 0 255
4 cyan 0 255 255
5 magenta 255 0 255
6 yellow 255 255 0
7 gray 180 180 180
8 light blue 210 210 255
9 light gray 210 210 210
10 black 0 0 0
11 unassigned

(black)

12 unassigned
(black)

13 unassigned
(black)

14 unassigned
(black)

15 unassigned
(black)

By default, gline(x1,y1,x2,y2) takes the color whose index = 1 and renders a line in

the graphics screen of that color, gline2(x1,y1,x2,y2) takes the color whose index = 2, and
so on. Five lines that can be made and manipulated independently of each other using
gmove(), glin() and gline(). You select colors in the color table using selcol(idx). See the
fft example program.

Graphics Examples

Let’s draw some graphics, if only to get the feel of CplxCalPro’s graphics capabilities.
Bring up the Prog. menu item, select Edit program; and in the program database
display, choose New. A blank text file comes up. In the first line write the name that you
want to call this file (I’ve called mine “GraphicsFun”, one word, no spaces). Leave the
next 3 lines blank. On the fifth line, write greset(); and on the next line, write
gcir(80,80,60). Press [Load] at the bottom of the screen. If everything went ok,
CplxCalPro will print “Program loaded successfully”. Press [RUN] and watch as
CplxCalPro draws this:

info@adacs.com http://www.adacs.com 35/72

 CplxCalPro user manual. V3.52

Okay, so maybe I misnamed the file; but, hey: great things are built from small

parts. We’ll see these functions later in the next chapter.

greset() Resets the graphics mapping to the default of 160 by 160 pixels.
gcir(x,y,r) Draw circle at x,y with radius r.

The graphics functions used in “GraphicsFun”

Let’s spruce it up a bit by adding lines and color (even if your palm PDA doesn’t

support color, you might want to walk through these enhancements). Edit the “Graphics
Fun” file. Press [EDIT] on the text screen and enter these lines at the end of the file:

gline(80,80,0,0)
gline2(80,80,0,80)
gline3(80,80,0,160)
gline4(80,80,80,160)
gline5(80,80,160,160)

Press [Load]. Once CplxCalPro returns you to the text screen, press [RUN]. On a color
palm PDA, you should see:

Going counterclockwise from palm touchscreen coordinates (0,0), CplxCalPro draws
lines from the center of the circle out. Notice that lines are drawn through the buttons

info@adacs.com http://www.adacs.com 36/72

 CplxCalPro user manual. V3.52

[Cancel] and [Ready]. This is because we have not set the device coordinates for the
graph; making all pixels on the touchscreen available.
 How do we fix this? With the gstdc(x1,y1,x2,y2) function. For illustrative
purposes, let’s give our graph a title with the gtitl('StrV',v) function, as well as draw an
axis with gaxis(x1,y1,x2,y2,gx,gy).

Between greset() and gcir(80,80,60), if you enter:

gstdc(10,10,160,160)
gaxis(10,10,160,160,80,80)
gtitl('Graphics Fun',0)

you get:

In this example, we shifted the graph down and right by defining device coordinates
Xmin and Ymin as 10 pixels down and 10 right. Ten down was necessary to write the title.
But we didn’t get the output we’d hoped for; the buttons [Cancel] and [Ready] are still
exposed to our graphics objects, and it’s obvious with the axes drawn that we have an
offset that we didn’t expect.
 Fixing this requires that we further change the device coordinates for the graph.
Let’s try:

gstdc(10,10,140,140)

Then, to center the axes, we use Xmax-Xmin and Ymax-Ymin:

gaxis(10,10,140,140,65,65)

Finally, we change the coordinates of our graphics objects:

gcir(75,75,60)
gline(75,75,0,0)
gline2(75,75,0,75)
gline3(75,75,0,150)
gline4(75,75,75,150)
gline5(75,75,150,150)

info@adacs.com http://www.adacs.com 37/72

 CplxCalPro user manual. V3.52

And this is what we get:

 Other functions used in graphics on CplxCalPro include:

garc(x,y,r,a1,a2)

Draws an arc angle, beginning at a start angle a1, and ending at angle
a2. The angle can be in radians or degrees. Use strad() or stdeg() to
set for radians or
degrees.

gaxis(x1,y1,x2,y2,gx,gy) Set axis with minimum values x1 and y1 and maximum value x2 and
y2 with grid lines at gx and gy.

gclrs() Clear graphics screen. The following functions only appear in the
dropdown function list on the main screen.

gcont() Wait until continue button is pressed.
gcprt(x,y,'StrV',v) Draw text 'StrV' and value v at centered at x,y position.
gfcir(x,y,r) Fills a circle at x,y with radius r.
ghlin(y) Draw horizontal line at y position.
grect(x1,y1,x2,y2) Draw rectangle.
grprt(x,y,'StrV',v) Draw text 'StrV' and value v at right x,y position.
gvlin(x) Draw vertical line at x position.
gvprt(x,y, 'StrV',v) Print text on graphical screen vertical.

gxlbl(t,w,p,l) Set the x-axis labeling. t,w,p are the type, width and precision of the
numbers displayed on the axis.

gylbl(t,w,p,l) Same as gxlbl for the y-axis.

gselcol(idx) Select a color from the color table. V.2

gsetcol(idx,r,g,b) Sets a color in the color table. The line colors used in the graphs use
idx 1-5. Index 0 is white and index 15 is black. V.2

For a complete list of graphics functions, refer to Appendix D.

Because the power and usefulness of graphics on CplxCalPro become apparent either

when graphing functions or programming, we will put off doing other graphing examples
until the next chapter, which deals with programming on CplxCalPro. However, as we
saw when plotting functions earlier, we think it is important to stress once again that on a
graphing calculator, seeing is not always believing.

info@adacs.com http://www.adacs.com 38/72

 CplxCalPro user manual. V3.52

Chapter 7

Programming CplxCalPro

This is programming…You are able to push what the computer can do.
You control every single small detail…You’re twelve, thirteen, fourteen,
whatever. Other kids are playing soccer. Your grandfather’s computer is
more interesting. His machine is its own world, where logic rules.

― Linus Torvalds, Just For Fun

Before you start writing your own programs, you should look at:

http://www.adacs.com/CplxCalPro/downloads.htm. We encourage this for two reasons:
first, our online library of programs is teeming with examples of how other programmers
solved problems specific to the strengths and limits of CplxCalPro. Learning from others
saves you time and effort. Second, a program might already exist to meet your needs, or
could with some tweaking. Changing others’ programs, then running them to see what
happens, is another way to learn programming (proper attribution, however, must always
be respected).

Let’s say a program exists in our library whose description suggests it seems close to
what you’re looking for. Download it. Inspect its comments and algorithm. Once you
understand what the program does, and you believe you know how to modify it to meet
your needs; edit it on your PDA, change the program name (the first line); save the result,
and run it. After everything works please do not forget about other users of CplxCalPro.
If your edits result in a program that either solves another set of problems than the
original or significantly improves upon the original, you might want to consider
uploading it to our website. If you have not registered CplxCalPro yet, this might make
you eligible to receive the registration code for free. See our web page for more
information.

A Programming Primer

What is a program?* For the purposes of this manual, let's define programming as a
set of instructions run on CplxCalPro, some or all of which are executed, one at a time,
during a run. The instructions that are executed transform input to output in a manner that
could be done with pencil and paper. The set of instructions must stop running in a finite
length of time.

So if we can carry out these instructions by hand, with pencil and paper, what use is a
program? Simply put: speed and accuracy in repetition. Let’s say your program solves a
certain kind of problem that takes 20 steps on CplxCalPro to perform (CplxCalPro

info@adacs.com http://www.adacs.com 39/72

* We’ve scoured our references in search of the concise, comprehensive, yet witty definition to enlighten
those CplxCalPro users who, though like all CplxCalPro users demonstrate good taste and sound judgment
in using our product, are nonetheless new to the joys of programming. We have returned empty-handed.
This surely saddens us as much as it does you; for where we'd hoped to cut-and-paste we must now think
and write, and where you've anticipated reading sweetness and light you must now read what we write.

http://www.adacs.com/CplxCalPro/downloads.htm

 CplxCalPro user manual. V3.52

programs can hold as many as 1200 steps). Once you’ve ensured that your program gives
correct output, you can use your program as often as you need. Running it takes as few as
one step to do (let’s say putting in new values for the variables is another step); and your
20-step problem is solved much faster than you could do it by hand; and with every run
you’re confident that the results are not affected by missteps in the calculation.∇

CplxCalPro’s programming language is simple yet powerful. It lacks the GOTO
statement and so requires programs to be structured. Structured programming simplifies
the order in which instructions are executed, which is called program flow. In structured
programming there are only three kinds of flow control: sequence, selection, and
repetition.

A program that has only sequential flow starts at the top, executes all of its
instructions in the order they're written; and after it executes the last instruction, it stops.

A program that has one selection point in its flow runs sequentially until it reaches
that point. The branch can have only one selection (two paths); but it can also have many.
At the selection point the program evaluates a condition; which path of instructions the
program follows depends on the outcome of that evaluation.

A program that has one repetitive loop in its flow runs sequentially until it reaches the
loop's entry point. At the loop's exit point the program evaluates a condition; it continues
running in the loop until the exit condition is satisfied.

these pictures are intended to show program flow only. the program lines themselves are
nonsense. real CplxCalPro programs that use the concepts illustrated here are in the
programming examples section below.

sequential flow: all steps are
executed, one at a time, and
in the order written.

selection flow: at the
selection point, a condition
is evaluated; the
evaluation decides which
steps will be evaluated,
and which not.

repetition flow: program
flow enters a loop, where it
stays until an exit condition is
satisfied.

note: sequential flow is the most basic. even in a selection path or repetitive loop program
lines are executed one at a time, in the order they’re written, until program flow reaches the
end of the path or loop.

info@adacs.com http://www.adacs.com 40/72

∇ Again, this assumes that you’ve ensured the soundness of your program. Later in the primer we’ll touch
upon points to consider when testing for soundness.

 CplxCalPro user manual. V3.52

CplxCalPro’s Programming Commands:

Let’s look briefly at CplxCalPro’s programming commands and operators before we
tackle some sample programs:

COMMAND REMARK

if(cond)\n{\n}\n
If (condition) is true, execute program lines within the curly brackets. note that
when the if command is used by itself, the condition decides only if additional
program lines in your program (those within the curly brackets) will be executed.

else\n{\n}\n

optional to the if command. executes the commands between brackets when the
condition for the if statement is false. note that the selection flow of an if-then-else
statement lets the condition decide which of two sets of program lines (those within
the curly brackets following the if(cond) or those within the curly brackets following
the else will be executed.

while(cond)\n{\n}\n
while (condition) is true, execute the program lines between the curly brackets.
program flow enters the while-loop, and continues flowing through it in a loop until
the exit condition is met (that is, the while(condition) becomes false).

init() returns one only the first time after executing a program.used mainly for initializing
variables.

exit(n) terminates program. n = 0 normal termination. n = 1 termination due to error.
sleep(n) wait until n seconds have passed, then continue program execution.
wait(n) wait until user presses a key before continuing program execution.
Yea, yea, we know: use of the backslash-n (\n) to denote newline is UNIX convention.

What are these conditions whose values decide program flow? On CplxCalPro, they can
be relational (meaning that CplxCalPro tests one data value against another to decide
action) or interactive (meaning that CplxCalPro waits for input from the user).

Here are CplxCalPro’s relational operators:*

OPERATOR REMARK
!= Not equal to
&& Logical and operation.
|| Logical or operation.
< Less than
<= Less than or equal to
== Equal to
> Greater than
>= Greater than or equal to

And here are some of the interactive functions whose values can decide program flow:

COMMAND REMARK
iskey('StrV') Returns 1 when button

'StrV' is pressed.
gcont() Wait until continue

info@adacs.com http://www.adacs.com 41/72

* OK; the typography of these operators is decidedly UNIX, whence comes C, C++, Java, and Perl, all of
which use the same typography for their relational operators. Can you tell which language CplxCalPro is
written in? (Hint: those of you who answer correctly earn an A++.)

 CplxCalPro user manual. V3.52

button is pressed.

gvtap()

Valid tap. Returns 1 if
user tapped in graph.
Returns false if outside
graph.

gwtap()

Wait until user taps on
the screen. The
functions gtapx() and
gtapy() can be used to
return the x and y
coordinates of the last
drawn graph.

OK, you’ve slogged through enough talk. Let’s look at some simple programs to see how
we can put this knowledge to use.

Programming Examples:

More Graphics Fun! This time we want to draw concentric circles, evenly spaced, on the
graphics screen, like in this screenshot:

I can think of several ways to do this. One is to go back to the Graphics Fun file we wrote
in the chapter on graphics, and write the gcir(x,y,r) function 8 times, keeping x and y
constant while increasing the value of r by 8 in each consecutive gcir(x,y,r), like this:

greset()
gcir(80,80,8)
gcir(80,80,16)
gcir(80,80,24)
gcir(80,80,32)
gcir(80,80,40)
gcir(80,80,48)
gcir(80,80,56)
gcir(80,80,64)
Remember, a CplxCalPro program starts with its name on line 1 and scratchpad variables
(that is, variables whose values can be changed after the program has successfully loaded
and before a program run) on lines 2,3, and 4. The code, therefore, starts on line 5. If you

info@adacs.com http://www.adacs.com 42/72

 CplxCalPro user manual. V3.52

wish to enter this program and run it, you must at least give the program a name on line
1, and start writing the code from line 5.
 But I don’t know why you’d bother. This code is an example of sequential flow,
but it’s not a very good one. Why? Because seven lines are essentially repeats of one line,
gcir(80,80,8), varying only in their radius values.

Such repetition of code begs casting the gcir(x,y,r) function in repetition flow.
Few (actually, none) would argue that it isn’t more efficient to write a small program in
which we write the gcir(x,y,r) function once, but in such a way that it gets executed as
many times as we want concentric circles.

For repetition flow on CplxCalPro, we use:

while(cond)
{
}

Between the curly brackets {} we’ll put the kernel of this program, gcir(x,y,r), which we
already know is going to draw those eight concentric circles. Because x and y are
constant, let’s put their value in gcir(x,y,r), so that it becomes gcir(80,80,r). The
condition to keep program flow in the loop, executing gcir(x,y,r) over and over, will be
r <= 64.

Now we have a while loop that looks like this:

while(r<=64)
{
 gcir(80,80,r)
}

And we’re missing two things. What is the value of r before we enter the loop? Right
now it’s not set. On the line above the while loop, we write r=0. And what’s the other
thing we’re missing? Reading the program aloud might help us find out. Reading aloud,
we might say something like, “We set r equal to zero. Now while r is less than or equal to
64, draw a circle with center at 80,80, and radius of…” Here is the second thing we’re
missing: a statement that changes the value of r each time we go through the loop. As the
code is written now, program flow will never leave the while loop as CplxCalPro
endlessly draws circles of radius zero. A common programming mistake is writing
repetitive structures that either terminate abnormally or not at all. How to fix this?
We write the statement that changes the value of r at the bottom of our while loop.

 Here’s a program that will meet our specs:

r=0
while(r<=64)
{
 gcir(80,80,r)
 r=r+8

info@adacs.com http://www.adacs.com 43/72

 CplxCalPro user manual. V3.52

}

Let’s go ahead and clear the graphics screen each time we run it. Put greset() above r=0.
Reading the program aloud, we might now say something like, “We clear the graphics
screen and set r equal to zero. Now while r is less than or equal to 64, draw a circle with
center at 80,80, and radius of r. Increase r by 8 each time after a circle is drawn.”

Let’s look at each way we’ve decided to draw our concentric circles.
greset()
r=0
while(r<=64)
{
 gcir(80,80,r)

 r=r+8
}

greset()
gcir(80,80,8)
gcir(80,80,16)
gcir(80,80,24)
gcir(80,80,32)
gcir(80,80,40)
gcir(80,80,48)
gcir(80,80,56)
gcir(80,80,64)

This brings us to yet another advantage of programming: flexibility. Let’s say we
want next to draw concentric circles with radii 4n*r, 0 <= r <= 64, instead of what we
have now, 8n*r, 0 <= r <= 64. Had we drawn our concentric circles by the program on
the right, not only would we have to change our value of r on each line, we’d have to add
another 8 lines. But because we are using the program on the left, this change to the
program specs requires only that we change 8 to 4 in the statement r=r+8.

And because you love Graphics Fun so much, I know you’ll let me flog away at it
a bit more. Could the program on the left be written yet another way, and yield the same
result? Sure! We could have an index variable, x, such that its value is tested as the
conditional and its value is multiplied by a constant to yield r. It would look like the code
on the right.

greset()
r=0
while(r<=64)
{
 gcir(80,80,r)
 r=r+8
}

greset()
x=0
while(x<=8)
{
 r=x*8
 gcir(80,80,r)
 x=x+1
}

Now we have three programs, all yielding the same result. Programs or parts of

programs that yield the same output given the same input are called functionally
equivalent. So which of these is preferred? Well, of course the one that’s all sequential
flow is least preferred. Index values are used like x is in the code on the right, but when it
is called or used more than once in the repetitive loop; here it only adds one more line of
code, and that slows down code execution (by only a bit, to be sure). In general, the
simpler the code, the better. The code on the left is preferred.

info@adacs.com http://www.adacs.com 44/72

 CplxCalPro user manual. V3.52

We know Graphics Fun runs and outputs what we want, but have we finished
with it? A minimalist would say yes; but we’re missing documentation. We use
documentation in code to explain, even to ourselves, what the code is doing. It seems
overmuch in such a small program, I admit; but we’re using this program for learning
purposes. Documentation comes in two forms: self-documenting code and comments.

Self-documenting code is code whose parts the programmer gives names to,
names that explain what those parts are or what they do. In our example, the name
“Graphics Fun” is less descriptive than “DrawBullseye” so that’s what we’ll write on line
one. Also, r as a variable name here is fine, since r stands for “radius” in math; but to be
explicitly self-documenting, we’ll change the name. Comments follow double-slash (//)
and are used to explain what the code is doing.

DrawBullseye

//initialize
greset()
radius=0

//draw concentric circles
//making each circle’s radius
//8 pixels > than last
while(radius<=64)
{
 gcir(80,80,radius)

 radius=radius+8
}

As written, our program requires editing if we want to change any of its

parameters; and once running, accepts no input from the user. CplxCalPro gives the user
greater flexibility for changing program variables, and allows user interaction during
program run. The next two changes to our program show how.

Let’s start with program interaction: once the user runs the program, we want it to
wait until the user taps the [Continue] button on the graphics screen before drawing any
circles. To do that, we simply put the command gcont() after the initialization lines.

And finally, one last requirement: we want the user to be able to change by how
much the radius grows (or, delta-r) with each circle as often as the user likes without
having to edit the code. To meet the requirement, we must create another variable; let’s
call it deltar (for delta-r, of course).

DrawBullseye
deltar = 8

info@adacs.com http://www.adacs.com 45/72

 CplxCalPro user manual. V3.52

//initialize
greset()
radius=0

//wait for user to press continue button
gcont()

//draw concentric circles
//making each circle’s radius
//8 pixels > than last
while(radius<=64)
{
 gcir(80,80,radius)

 radius=radius+deltar
}

After this program successfully loads, the scratchpad on the textscreen shows

deltar = 8. Now the user can change the value by how much the radius grows by
changing the value of deltar in the scratchpad.

We wish to end this primer with an observation: all programs have parameters.

Within their parameters, their writers try to ensure that they work properly and do not
give bad output. After you write a program on CplxCalPro, you should test it for
soundness. This means finding values for your program’s variables that will cause the
program to fail, or give bad output; and once you find them, either having your program
catch the errors, or document what causes errors as your program’s parameters.

A valid example for a CplxCalPro program would be to determine if any variable
causes a divisor to become zero while your program runs. Because division by zero is
undefined, if it happens in your program, your program will terminate abnormally and
CplxCalPro will display:

How to prevent this? If the value of the divisor variable is set by the user, you can

document your program with a comment like this:
// if varFoobar = 0, program will terminate abnormally!

If the value of the divisor variable changes during the program run, you might be able to
catch the error in such a way that the program still gives good output. Look at the
following example:

info@adacs.com http://www.adacs.com 46/72

 CplxCalPro user manual. V3.52

if (divisor != 0)
{
 test = 12/divisor
}
else
{
 test = 0
}

In this example we catch the error by testing for the value of the variable (cleverly named
divisor) before performing the division, test = 12/divisor. The else clause says what to
do ― instead of letting the program terminate abnormally ― if divisor = 0. In this
example, setting test = 0 meets program specs.

info@adacs.com http://www.adacs.com 47/72

 CplxCalPro user manual. V3.52

Appendix A

Technical specifications

This NON-RPN calculator has the following technical specifications:

• IEEE-754 64-bit Double Precision, a floating point format ranging from
-2.2250738585072014E-308 to 1.7976931348623157E+308.

• 190 built in functions.
• 30 Graphical functions.
• 30 built in constants.
• Drop down lists for constants and functions.

• Display formats: Float, Engineering, Symbol, Hexadecimal, Binary, Octal,

Polar, Date and Sexagesimal.
• Angular units: Radians and Degrees (Grad was not added since we did not receive

any requests for it).

Due to the complex memory structures used, the next three values are depending
on the program used but are within 1% tolerance.

• Maximum number of strings: 150
• Maximum number of function steps: 1200
• Maximum number of characters in a program: 8096

• Built in, memopad like, database.
• Built in help.
• Financial functions.
• Statistical functions.
• Fully supported clipboard.
• Variable list and ability to change variables in list.

• Graphical output screen.
• Syntax checking on programs.
• Total memory allocation screen.
• User-configurable main screen keyboard
• Most functions, including trigonometry functions, accept complex arguments.

info@adacs.com http://www.adacs.com 48/72

 CplxCalPro user manual. V3.52

Appendix B

Data Formats

Float: The native data format of CplxCalPro.

Engineering: When a number cannot be displayed using width and precision

settings, it is displayed in engineering format. Enter 5.11e8 for
example in the scratchpad and press [exe]. CplxCalPro will display
511E6. The exponent, in this case 6, will always be a multiple of
three. The symbol format will show an SI postfix instead of E6.

When a number cannot be displayed using the width and precision
settings, it is displayed in symbol format. This is especially important
when numbers are rendered on the graph screen in order to make sure
all numbers are printed using the same space.

Name SI Postfix Power of 10
femto f -15

pico p -12

nano n -9

micro u -6

milli m -3

kilo K,k 3

mega M 6

giga G 9

Symbol:

tera T 12

info@adacs.com http://www.adacs.com 49/72

 CplxCalPro user manual. V3.52

Hexadecimal: Positive integers rendered in base 16 format

Binary: Positive integers rendered in base 2 format.

Octal: Positive integers rendered in base 8 format.

Polar: Complex values converted to magnitude and angle.

Date: Positive values are converted to dates.

Sexagesimal: Mixed decimal fractions rendered in H.M.S format.

info@adacs.com http://www.adacs.com 50/72

 CplxCalPro user manual. V3.52

Appendix C

Display format

Considerations on Width, Precision, Accuracy, and Round-Off
CplxCalPro uses the IEEE-754 specification for 64-bit Double Precision floating-
point numbers. As you know or should appreciate, floating-point numbers are not
ideal numbers; rather, they are representations of ideal numbers. Somewhere to
the right of the decimal point, floating-point numbers become inexact. The 64-bit
Double Precision specification was chosen for CplxCalPro to ensure that that
inexactitude would not show up in the results of most calculations that require the
precision of engineering applications (say, no more than 12 significant digits).
However, CplxCalPro was designed to be a power user’s calculator. It puts the
power of explicitly specifying the width and precision of numbers in the user’s
hands; this power can expose the inexactitude of these numbers to those users, as
well as affect the accuracy of results. Furthermore, not understanding width and
precision when changing their values can lead to answers that are simply wrong
and don’t make sense.

Most users should have no practical need to push CplxCalPro to the limits of its
accuracy simply because the accuracy of numerical results are determined by how
many significant digits there are in the input. In general, the number of significant
digits in the output that is meaningful is equal to the least number of significant
digits in the input.

info@adacs.com http://www.adacs.com 51/72

http://grouper.ieee.org/groups/754/

 CplxCalPro user manual. V3.52

Appendix D

Functions, Operators, and Commands

'StrV' -- This can be either a string or a variable.
 // -- Anything behind the // is ignored by the program and can be used to
 add remarks in the program.

Base conversion:

EXAMPLE OPERATOR
or
FUNCTION

REMARK ARG YIELDS

Input Output

Enter in hexadecimal format real real #A9C3 43,459
& Enter value in binary format real real &1010 10

Basic:

EXAMPLE OPERATOR
or
FUNCTION

REMARK ARG YIELDS

Input Output

50% 0.5

%

If only percent is evaluated,
returns decimal equivalent of
percent. If percent is second
part of arithmetic
expression, takes percent of
first part as second part,
then evaluates expression.

real real

10 + 7.5% 10.75

real abs(x) abs(-5) 5
abs(x)

Returns absolute value if x is
real and returns magnitude if
x is complex. cplx mag(x) abs(sqrt(-1)) 1

cbrt(x) Returns cube root. real real cbrt(-5) -1.71

ceil(x) Returns x if x is int, else
returns next int > x

real real ceil(-2.5) -2

exp(x) Returns e^x. For complex z=x+jy, exp(z) = exp(x)*(cos(y)+j*sin(y)).

floor(x) Returns x if x is int, else
returns next int < x

real real floor(-3.2) -4

frac(x) Returns fractional part of x real real frac(-3.2) -0.2

round(x)

Returns next int < x if
fractional part of x between
.0 and .49-bar, else next int
> x

real real round(-3.7) -4

real real sqr(-9) 0+j3 sqr(x) Returns square root.
cplx cplx sqr(-5+j12) 2+j3

ln(x) Returns natural logarithm of x.
log(x) Returns common logarithm (base 10) of x.

info@adacs.com http://www.adacs.com 52/72

 CplxCalPro user manual. V3.52

max(a,b) if a > b returns a else b.
min(a,b) if a < b returns a else b.
mod(x,y) Returns x modulo y.

Calculus:
FUNCTION REMARK
int(f,x1,x2) Solves a definite integral
der1(f,x,h) Returns the first derivative of function f at x.
der2(f,x,h) Returns the second derivative of function f at x.

Color:
FUNCTION REMARK

gselcol(idx) Select a color from the color table. V.2
gsetcol(idx,r,g,b) Sets a color in the color table. The line colors used in the graphs use idx 1-5.

Index 0 is white and index 15 is black. V.2

Complex:
FUNCTION REMARK ARG YIELDS EXAMPLE
 Input Output
arg(x) Returns the angle of x. cplx real arg(1-j) -45
conj(x) Returns conjugate of x. cplx cplx conj(3-j4) conj(3+j4)
pol(r,a) Returns rectangular value of

radius r and angle a.
real cplx pol(3, 45) 2.12+j2.12

Im(x) Returns imaginary of x. cplx real Im(3-j4) -4
Re(x) Returns real of x. cplx real Re(3-j4) 3

Conversion:

EXAMPLE OPERATOR
 or
FUNCTION

REMARK

Input Output

cel(t) Convert t from Fahrenheit to Celsius. cel(75) 23.889
deg(a) Convert a from radians to degrees. deg(pi) 180
dms(deg,mm,ss) Converts degrees, minutes and seconds to

degrees.
dms(10,30,0) 10.5

fah(t) Convert t from Celsius to Fahrenheit. fah(23.889) 75

met(Yr,Ft,Inch, p) Convert Yards, Feet, Inches and part of
inches to meters.

met(1,2,3,1/1
6)

1.6018

rad(a) Convert a from degrees to radians. Rad(180) 3.1416

Date:
FUNCTION REMARK

info@adacs.com http://www.adacs.com 53/72

 CplxCalPro user manual. V3.52

date(mm,dd,yy,'StrV')

Returns seconds between 1904 and selected date. When the string 'StrV' is
used it will popup a date selection window. When 'StrV' equals zero the
month mm, day dd and year yy are used.

days(sec) Returns the number of days.
time() Returns the current time in seconds since 1904.
weeks(sec) Returns the number of weeks.

info@adacs.com http://www.adacs.com 54/72

 CplxCalPro user manual. V3.52

Financial:

FUNCTION REMARK

fv(rate,nper,pmt,pv,type) Returns the future value of an investment based on periodic, constant

payments and a constant interest rate.
inter(nper,pmt,pv,fv,t) Returns the interest for an investment based on number of periods,

periodic constant payments.
nper(rate,pmt,pv,fv,type) Returns the number of periods for an investment based on periodic,

constant payments and a constant interest rate.

pmt(rate,nper,pv,fv,type)

Calculates the payment for a loan based on constant payments and
a constant interest rate. The following formula returns the monthly
payment on a $10,000 loan at an annual rate of 7 percent that you
must pay off in 10 months:

pmt(7%/12, 10, 10000, 0, 0) equals -$1,032.36. For the same loan, if
payments are due at the beginning of the period, the payment is:
pmt(7%/12, 10, 10000, 0, 1) equals -$1,026.38.

pv(rate,nper,pmt,fv,type)

Returns the present value of an investment. The present value is the
total amount that a series of future payments is worth now. For
example, when you borrow money, the loan amount is the present
value to the lender.

Flow Control:
COMMAND REMARK
else\n{\n}\n Executes the commands between brackets when the condition for the

ifstatement is false.
exit(n) Terminate program.n=0 normal termination.n=1 termination due to error.
if(cond)\n{\n}\n If (condition) is true, execute the commands between brackets.
init() Returns one only the first time after executing a program.This is mainly used

for initializing variables.
sleep(n) Wait until n seconds are passed.
wait(n) Wait until user presses a key.
while(cond)\n{\n}\n While (condition) is true, execute the commands between brackets.

Format:
FUNCTION REMARK

fmt(t,w,p,tr)

Set display format
t: 0-float, 1-eng, 2-sym, 3-hex, 4-bin, 5-oct, 6-pol, 7-date, 8-sexagesimal
w: width of number (0-15)
p: precision of number (0-15)
tr: trailing zeros. (0 or 1)

info@adacs.com http://www.adacs.com 55/72

 CplxCalPro user manual. V3.52

Graphics:
OPERATOR or
FUNCTION

REMARK EXAMPLE
NOTE: in these examples angles
entered as radians.

garc(x,y,r,a1,a2)

Draws an arc angle. Use strad() or
stdeg() to set radians or degrees.

x, y: x, y-coordinates of vertex.
r: radius of arc
a1: start angle
a2: end angle

garc(80,80,40,0,0.5*pi)

gaxis(x1,y1,x2,y2,g
x,gy)

x1,y1: min values of axis
x2,y2: max values of axis
gx,gy: values to draw gridlines

gcir(x,y,r) Draw circle at x,y with radius r.
gclrs() Clear graphics screen. The following functions only appear in the

dropdown function list on the main screen.
gcont() Wait until continue button is pressed.

gcprt(x,y,'StrV',v)
x, y: center values of string,
value
StrV, v: string, value to display

gcprt(80,80,'value = ',2.7183)

gfcir(x,y,r) Fills a circle at x,y with radius r.
ghlin(y) Draw horizontal line at y position.
glin(x,y) Draw line from previous position to x,y (line 1).
glin2(x,y) Draw line from previous position to x,y (line 2).
glin3(x,y) Draw line from previous position to x,y (line 3).
glin4(x,y) Draw line from previous position to x,y (line 4).
glin5(x,y) Draw line from previous position to x,y (line 5).
gline(x1,y1,x2,y2) Draw line from x1,y1 to x2,y2.

info@adacs.com http://www.adacs.com 56/72

 CplxCalPro user manual. V3.52

gline2(x1,y1,x2,y2) Draw line from x1,y1 to x2,y2.
gline3(x1,y1,x2,y2) Draw line from x1,y1 to x2,y2.
gline4(x1,y1,x2,y2) Draw line from x1,y1 to x2,y2.
gline5(x1,y1,x2,y2) Draw line from x1,y1 to x2,y2.
glprt('StrV',v) Draw text 'StrV' and v add next line.
gmove(x,y) Move to start position x,y (line 1).
gmove2(x,y) Move to start position x,y (line 2).
gmove3(x,y) Move to start position x,y (line 3).
gmove4(x,y) Move to start position x,y (line 4).
gmove5(x,y) Move to start position x,y (line 5).
gpnt(x,y,t) Draw symbol t at x,y.

gprbar(x,Min,Max,Y
)

Use this function to plot a process bar. First initialize the bar with the
minimum and maximum values and Y which determines the position on
the screen. For updating the process bar use zero as the minimum,
maximum and Y value.

gprt(x,y,'StrV',v) Draw text 'StrV' and value v at x,y position.
grect(x1,y1,x2,y2) Draw rectangle.
greset() Resets the graphics mapping to the default of 160 by 160 pixels.
grprt(x,y,'StrV',v) Draw text 'StrV' and value v at right x,y position.
gstdc(x1,y1,x2,y2) Set device coordinates for graph all values must be between 1 and 160.

gtadd('StrV',v)

Add 'StrV' and v to last drawn text.

gcprt(30,20,'value = ',2.7183)
gtadd(' pi = ',3.14159)

gtapx() Returns the x value of the last time you tapped on a graph. Use this

function after the gcont() or the gwtap() function.
gtapy() Same as gtapx() but returns the y value.
gtitl('StrV',v) Draw title 'StrV' and v to graph.
gvlin(x) Draw vertical line at x position.

gvprt(x,y, 'StrV',v)

Print text on graphical screen
vertical.

x,y: uppermost pixel of text

gvprt(80,20, 'StrV ',5)

gvtap() Valid tap. Returns 1 if user tapped in graph. Returns false if outside graph.
gwtap() Wait until user taps on the screen. The functions gtapx() and gtapy() can

be used to return the x and y coordinates of the last drawn graph.

info@adacs.com http://www.adacs.com 57/72

 CplxCalPro user manual. V3.52

gxlbl(t,w,p,l)
Set the x-axis labeling. t,w,p are the type, width and precision of the
numbers displayed on the axis. When the last argument equals one a
logarithm scale will be drawn.

gylbl(t,w,p,l) Same as gxlbl for the y-axis.

Interactive:
COMMAND REMARK
clra() Clear all buffers and program.
clrinp() Clears the scratchpad. (Top three lines on main screen)
inp('StrV') Put up dialog box with 'StrV' message.A value can be entered in the dialog

box which value is returned.
inpcat('StrV','StrV') Put the two 'StrV'-string/var. at the end of the text in the scratchpad.

inpv('StrV',v)
Put up dialog box with the first 'StrV' message. The second argument v is
the default value. A value can be entered in the dialog box which value is
returned.

iskey('StrV') Returns 1 when button 'StrV' was pressed.
key(n,'StrV') Set text in button at location n.
keybrd('rec') Read keyboard settings out of record 'rec'
mess('title','mess') Pop up a message box with title and message.
mode1('StrV','StrV') Overwrites the version string on the status line with the strings str and

thevariable v.
mode2('StrV','StrV') Overwrites the date string on the status line with the strings str and

thevariable v.
result('StrV','StrV') Writes the string str and the variable to the result line on the main

screen,line four.

Logical:

EXAMPLE FUNCTION REMARK
Input Output

and(h,h) Bitwise and. and(4,6) 4
not(x) Returns 0 if x!=0 else 1 .
or(h,h) Bitwise or or(4,6) 6
shl(h,b) Bitwise shift left shl(4,1) 8
shr(h,b) Bitwise shift right shr(4,1) 2
xor(h,h) Bitwise exclusive or xor(4,6) 2

Relational:
OPERATOR REMARK
!= Not equal to
&& Logical and operation.
|| Logical or operation.
< Less than
<= Less than or equal to
== Equal to
> Greater than
>= Greater than or equal to

info@adacs.com http://www.adacs.com 58/72

 CplxCalPro user manual. V3.52

Special:
FUNCTION REMARK
root(f,x) Return the value of x at which the expression of function f(x) is equal to

zero. This is a special function that CAN NOT be used within an other
function. See example program Root function

beta(n,m) Beta function
betai(a,b,x) Returns the incomplete beta function.
erf(x) Error function of x.

fft(r1, r2)

Calculates the fourier transform of the rows starting at row r1 till row r2.
Column one should contain the real values and the second column
should contain the imaginary values. Make sure the second column
contains zeros when using only real numbers. See FFT example.

gamma(x) Gamma function
gcd(x,y) Greatest common divider.

ifft(start,end)

Calculates the inverse fourier transform of the rows start till end. Column
one should contain the real values and the second column should
contain the imaginary values. Make sure the second column contains
zeros when using only real numbers.

linint(x1,y1,x2,y2,x) Linear interpolation. Calculates (y2-y1)/(x2-x1)*(x-x1)+y1
lngam(x) Ln of gamma function
perc(a,b) Percentage change. Calculates (b-a)/a*100
pval(x,p1,p2,p3,p4,p5) Returns poly values (p1*x+p2*x^2+p3*x^3+p4*x^4+p5*x^5).

proot(x,p1,p2,p3,p4,p5)
Returns the poly root for function
f(x)= p1*x+p2*x^2+p3*x^3+p4*x^4+p5*x^5
X is the guess value. This is where proot() start searching for a root.

res(r,tol) Finds the closed resistor value r with tolerance tol.
sat(x,min,max) Returns x if min < x < max else max or min.
sinc(a) sin(pi*x)/(pi*x) returns 1 if x=0

Probability & Statistics:
FUNCTION REMARK
! Factorial
fac(n) Factorial

ftest(c1,n1,c2,c2)

Returns the result of an F-test. An F-test returns the one-tailed
probability that the variances in column c1 and column c2 are not
significantly different. Use this function to determine whether two
samples have different variances. The arguments n1 and n2 indicate
the number of data points in column c1 and c2. See F-test.pdb user
program.

nCr(n,m) Combination
nPr(n,m) Permutation
rnd() Generates a random number in the range [0, 1] with a uniform

distribution and good statistical properties.
rndn() Uses the Polar Method to return a random number with a normal

distribution and a mean of zero.
sadd(r,c,v) Store value v at row r and column c. When v is a complex use

scadd(r,c,v) instead!!
scadd(r,c,v) Store value v at row r and column c. When v is a complex value the real

part will be stored in column c , and the imaginary part.

info@adacs.com http://www.adacs.com 59/72

 CplxCalPro user manual. V3.52

scget(r,c)
Returns a complex value from the array. After a scadd(3,2,v) the
function v=scget(3,2) will return the complex value. Column two is used
for the real values and column three is used for the imaginary values.

schi(c1,c2)
Chi-squared function.
c1 - column of expected values.
c2 - column of observed values.

scnorm(x,mu,sig) Returns the cumulative standard normal distribution. (m=mu, sig=stdev)
scorr(c) Returns the correlation between the values in column 1 and the

valuesin column r.
sdata('rec') Clear statistical variables and fill array with values of record 'rec'.
serre(c) Returns the standard error of estimate.
serrr(c) Returns the standard error of regression.
sget(r,c) Get value at row r and column c.
smax(c) Maximum value in column c.
smean(c) Returns the mean. (Sum / N) of column c.
smin(c) Minimum value in column c.
snorm(x,mu,sig) Returns the standard normal distribution. (m=mu, sig=stdev)
splot(c1,c2,T) Plot values in column c1 versus values in column c2 using T. T=0 line,

T=1 diamonds, T=2 plus-signs.
sqrc(c) Returns the coefficients for the quadratic regression. A=sqrc(3)

B=sqrc(2) B=sqrc(1) See QuadReg.prc user program for an example.
sqrv(x) Returns the value for the quadratic regression Y=A*X^2 + B*X + CSee

QuadReg.prc user program for an example.
sregc(c) Returns the regression coefficient of column 1 and column c.
sregl(c) Plots the regression line for column 1 and column c.

srplot(Col,r1,r2,Type)

Plot the range starting at row r1 to row r2 of column Col. Type specifies
the type of plot 0-line 1-diamond points 2-cross points 3-plus points.
This function will clear the screen use the maximum size to draw the
plot and use autoaxis labeling.

ssum(c) Sum of values in column c.
stclr() Clear statistical variables.
stdev(c) Returns the population standard deviation sqr(var()) of column c.
Stdev(c) Returns the sample standard deviation sqr(Var()) of column c.
svar(c) Returns the population variance (1/N * (A(n)-mean)^2) of column c.
sVar(c) Returns the sample variance (1/(N-1) * (A(n)-mean)^2) of column c.
sxy(c) Returns A(1,n) * A(c,n) .
syint(c) Returns y-intersect.

ttest(c1,n1,c2,n2,tail,ty
pe)

Returns the probability associated with a Student's t-Test. Use ttest to
determine whether two samples are likely to have come from the same
two underlying populations that have the same mean. The arguments
n1 and n2 indicate the number of data points in column c1 and c2. Tail
specifies the number of distribution tails. If tails = 1, ttest uses the one-
tailed distribution. If tails = 2, ttest uses the two-tailed distribution. Type
is the kind of t-Test to perform and should be set to two. See
Student_ttest.pdb user program.

String:
FUNCTION REMARK
str(s1,s2,s3,s4,s5,s6) Returns the concatenated strings. See String.prc example.
strcat('str','str') Concatenates string s2 to string s1.

info@adacs.com http://www.adacs.com 60/72

 CplxCalPro user manual. V3.52

strcpy('str','str') Copies string s2 into string s1.

info@adacs.com http://www.adacs.com 61/72

 CplxCalPro user manual. V3.52

Trigonometric:
FUNCTION REMARK
acos(a) Arccosine
acosh(a) Inverse hyperbolic cosine.
asin(a) Arcsine
asinh(a) Inverse hyperbolic sine.
atan(a) Arctangent
atan2(y,x) Returns the four quadrant arctangent of the real parts of the elements of X

and Y.
atanh(a) Inverse hyperbolic tangent.
cos(a) Cosine
cosh(a) Hyperbolic cosine.
sin(a) Sine
sinh(a) Hyperbolic sine.
stdeg() Set angular format to degrees.
strad() Set angular format to radians.
tan(a) Tangent
tanh(a) Hyperbolic tangent.

info@adacs.com http://www.adacs.com 62/72

 CplxCalPro user manual. V3.52

Appendix E

Constants

Constant Name Value on CplxCalPro Dimensions
pi 3.1415926535897932 none
e 2.7182818284590452 none
c speed of light in vacuum 2.99792458E8 m s-1
G Newtonian constant of gravitation 6.67259E-11 m3 kg-1 s-2
g standard gravitational acceleration 9.80665 m s-2
me electron mass 9.1093897E-31 kg
mp proton mass 1.6726231E-27 kg
mn neutron mass 1.6749286E-27 kg
u atomic mass unit (unified) 1.6605402E-27 kg
q electron charge 1.60217733E-19 10-19 C
h Planck constant 6.6260755E-34 J s
k boltzmann constant 1.380658E-23 J K-1
u0 magnetic permeability 1.2566370614E-6 H m-1
e0 dielectric permittivity 8.854187817E-12 F m-1
re classical electron radius 2.81794092E-15 m
al fine structure constant 7.29735308E-3 none
a0 Bohr radius 5.29177249E-11 m
R Rydberg constant 1.097373153E7 m-1
Fq Fluxoid quantum 2.06783461E-15 Wb
ub Bohr magneton 9.2740154E-24 J T-1
ue Electron magnetic moment 9.2847701E-24 J T-1
uN Nuclear magneton 5.0507866E-27 J T-1
uP Proton magnetic moment 1.41060761E-26 J T-1
un Neutron magnetic moment 9.6623707E-27 J T-1
Lc Compton wavelength (electron) 2.42631058E-12 m
Lcp Compton wavelength (proton) 1.32141002E-15 m
sig Stefan-Boltzmann constant 5.67051E-8 W m-2 K-4
Na Avogadro's constant 6.0221367E23 mol-1
Vm Ideal gas volume at STP 2.24141E-2 m-3 mol-1
R Universal gas constant 8.31451 J mol-1 K-1
F Faraday constant 9.6485309E4 C mol-1
RH Quantum Hall resistance 2.58128056E4 Ohm

info@adacs.com http://www.adacs.com 63/72

 CplxCalPro user manual. V3.52

Appendix F

Sample Programs

Graph demo:
Graph demo
min=0
max=2
step=0.05
gstdc(65,10,159,70)
gxlbl(0,1,1,0)
gylbl(0,1,1,0)
gaxis(min,-
1,max,1,0.5,0.5)
x=min
gmove(0,0)
while(x<=max)
{
 y=sin(x/max*360)
 glin(x,y)
 x=x+step
}

gstdc(2,75,80,145)
gxlbl(0,1,0,0)
gylbl(0,1,0,0)
gaxis(-max,-max,max,max,1,1)
x=min
gmove(0,0)
while(x<=max)
{
 angle=x/max*720
 radius=x
 glin(pol(radius,angle),0)
 x=x+step
}
gprt(10,10,'The power of ',0)
gprt(15,25,'CplxCalPro',0)
gprt(90,80,'This spiral
was',0)
glprt('generated with',0)
glprt('the function:',0)
glprt('pol(radius,angle)',0)

FFT example program:

Let’s take a look at the “FFT calculate” program. This program is included in the
database of programs and is located in the electronics category. The functions shown in
green either set a color or draw using a color.

FFT calculate

Phase=60

stdeg()
fmt(0,6,6,0)
gtitl('Fourier calculation',0)
Xmin=0 ;Xmax=360
Ymin=-1 ;Ymax=1
gstdc(0,15,159,100)
gx=(Xmax-Xmin)/6
gxlbl(0,3,0,0)
gy=(Ymax-Ymin)/4
gylbl(0,3,2,0)
gaxis(Xmin,Ymin,Xmax,Ymax,gx,gy)
N=100
Step=(Xmax-Xmin)/N
x=Xmin

greset()
x=80
y=125
mul=25
Real=Real/(N/2)
Imag=Imag/(N/2)
gfcir(x,y,mul)
yMul=y-Imag*mul
xMul=x+Real*mul
gline(x,y,x,yMul)
gline2(x,y,xMul,y)
gline3(x,y,xMul,yMul)
fmt(0,3,2,0)

// Select color of line 2
gselcol(2)
grprt(30,105,'Real=',Real)

// select color of line 1

info@adacs.com http://www.adacs.com 64/72

 CplxCalPro user manual. V3.52

Real=0
Imag=0
while(x<=Xmax)
{
 y3=sin(x+Phase)
 y1=sin(x)
 Imag=Imag+y1*y3
 y2=cos(x)
 Real=Real+y2*y3
 if(x==0)
 {
 gmove(x,y1)
 gmove2(x,y2)
 gmove3(x,y3)
 }
 else
 {
 glin(x,y1*y3)
 glin2(x,y2*y3)
 glin3(x,y3)
 }
 x=x+Step
}

gselcol(1)
grprt(30,130,'Imag=',Imag)

v=Real+j*Imag

// Select color of line 3
gselcol(3)
grprt(140,105,'Angle=',arg(v))
grprt(140,130,'Mag=',abs(v))

For more information about fourier transforms please visit our website.

info@adacs.com http://www.adacs.com 65/72

 CplxCalPro user manual. V3.52

FFT built-in functions:

FFT function
datafile='fft_data'

N=sdata(datafile)
srplot(1,1,N,0)
gtitl('Raw data',0)
gprt(44,146,'Wait for cont.=>',0)
fft(1,N)

i=1
while(i<=N)
{
 sadd(i,3,abs(scget(i,1)))
 i=i+1
}
gcont()
srplot(3,1,N/2,0)
gtitl('Magnitude',0)
gcprt(100,125,'Frequency',0)

The sdata(datafile) returns the number of rows read from the data file. The function
srplot(1,1,N,0) plots the raw data. Notice that there is not need to setup anything for the
labeling of the plot since that is all done for you by the srplot() function.

After starting the program make sure you wait till the text in the stop button changes to
continue to indicate the fft calculation is ready.

Quadratic regression example:

info@adacs.com http://www.adacs.com 66/72

Quad_regression
// Quadratic_regression
x1=0 ;x2=100 ;sx=25 ;xStep=10
y1=-25 ;y2=100 ;sy=25

n=sdata('Data02')

gxlbl(0,2,0,0)
gylbl(0,2,0,0)
gtitl('Quadratic regression',0)
gstdc(5,15,158,145)
gaxis(x1,y1,x2,y2,sx,sy)
x=sget(1,1)
y=sget(1,2)
gmove(x,y)

// next three lines are not needed when
// sqrv(x) function is used.
a=sqrc(3)
b=sqrc(2)
c=sqrc(1)

// Show the fitting
first=1
x=x1+xStep
while(x<x2)
{
 y=sqrv(x) // same as y=a*x^2+b*x+c
 if (first==1)
 {
 gmove2(x,y)
 first=0

 CplxCalPro user manual. V3.52

// Plot data points
i=2
while(i<=n)
{
 x=sget(i,1)
 y=sget(i,2)
 gpnt(x,y,2)
 i=i+1
}

// Wait for user to press
// continue.
gcont()

 }
 else
 {
 glin2(x,y)
 }
 x=x+xStep
}

gcont()
gclrs()

gcprt(80,30,'Quadratic regression',0)
gprt(5,50,'',a)
gtadd('*X^2 + ',b)
gtadd('*X + ',c)

Chi-square test:

The chi-square test compares a sample of data to a statistical hypothesis (probability
distribution). The chi-square is a “goodness of fit” test that is applicable to nominal scale
data (discrete functions). The data are tallies of observations in categories.

To perform the chi-square test, observed values from an experiment are compared to the
expected values based on the probability model. The following statistic is calculated and
compared to a table of chi-square critical values:

ected
ectedobserved

exp
)exp(2

2 −
∑=χ

Fig. 1

Fig. 2

The expected values in Fig. 1 are in the first column and the observed values in the
second column.

Fig. 2 shows how the Chi-square test can be calculated using only three functions.

info@adacs.com http://www.adacs.com 67/72

 CplxCalPro user manual. V3.52

Opamp:
Opamp
R1=1K ;R2=2.7K
R3=499 ;R4=860
U1=3.36 ;U2=1.2
gline(20,20,120,20)
fmt(2,1,1,0)
gprt(8,15,'U1',0)
gprt(25,15,'R1=',R1)
gprt(75,15,'R2=',R2)
gline(70,20,70,40)
gline(70,40,80,40)

// minus sign
gline(82,40,84,40)
gline(80,35,80,65)
gline(20,60,80,60)

// plus sign
gline(82,60,84,60)
gline(83,59,83,61)

gprt(25,55,'R3=',R3)
gprt(8,55,'U2',0)
gline(80,35,110,50)
gline(80,65,110,50)
gline(110,50,135,50)
gprt(140,45,'Out',0)
gline(120,20,120,50)
gline(70,60,70,90)
gcprt(70,70,'R4=',R4)
gline(65,90,75,90)

fmt(1,4,3,0)
gprt(10,90,'U1=',U1)
gprt(10,100,'U2=',U2)

// Start calculations
b=(R4/(R4+R3))*((R2+R1)/R1)
gprt(10,110,'Out=-U1*',R2/R1)
gtadd('+U2*',b)
gprt(10,120,'Out=',-
U1*R2/R1+U2*b)

Root function:
Root function
function f(x) {x^3-10*x+2}
x1=-4 ;x2=4 ;y1=-20 ;y2=20 ;N=50

gtitl('Root function.',0)
s=(x2-x1)/N
gstdc(1,20,159,110)
gxlbl(0,2,0,0)
gylbl(0,2,0,0)
gaxis(x1,y1,x2,y2,2,5)
x=x1
gmove2(x,f(x))
while(x<=x2)
{
 glin2(x,f(x))
 x=x+s
}

gprt(70,84,'f(x) {x^3-10*x+2}',0)

x=-2 ;x=root(f,x) ;gpnt(x,f(x),2)
gcprt(80,110,'x=-2 ;x=root(f,x) ',x)

x=0 ;x=root(f,x) ;gpnt(x,f(x),2)
gcprt(80,120,'x=0 ;x=root(f,x) ',x)

x=3 ;x=root(f,x) ;gpnt(x,f(x),2)
gcprt(80,130,'x=3 ;x=root(f,x) ',x)

Notice the guess values,
second argument in root
function.
The root function will start
searching at this point for
a solution.

info@adacs.com http://www.adacs.com 68/72

 CplxCalPro user manual. V3.52

Appendix G

The Palm® OS (POS) Emulator

 This appendix has been added because we understand the need for fast
development of CplxCalPro programs. Let’s face it: entering a maximum of 1200
program steps with Graffitti can be daunting; and touch-typists, which most who deal a
lot with computational devices by necessity become, are more efficient typing in data
than stroking it in by stylus. The Palm OS Emulator makes program development easier
if only because it allows you to type in your program. Yes, other keyboard options exist,
given the rise in popularity of keyboards for PDAs*; but we feel that their use is rather
straightforward and so doesn’t need to be explained here.

 This is the Palm OS Emulator:

To use it, you need to download both the emulator and at least one ROM image
for it from the Palm website http://www.palmos.com/dev/tools/emulator. As is
explained at the site, you can download the emulator immediately; You can use
the rom transfer program to transfer the ROM image from your palm to your PC
or MAC. To download other ROM images for the emulator, you must Join the

Palm OS Developer Program. Membership that gives you access to the ROM
images is free; however, until you enter the password the Palm Developer
Program emails to you when entering the Resource Pavilion (your email address
will be your user name), the resource pavilion web page will not have hyperlinks
to the ROM images on it. It does take about a day for your request for
membership to be processed.

info@adacs.com http://www.adacs.com 69/72

* In fact, we use Palm keyboards.

http://www.palmos.com/dev/tools/emulator
http://www.palmos.com/dev/programs/pdp/join.html
http://www.palmos.com/dev/programs/pdp/join.html

 CplxCalPro user manual. V3.52

Appendix H

Curve Sketching

This appendix is intended only as a reference in curve sketching. The points to consider
are not fully illustrated, as doing so falls outside the scope of a calculator user manual.
However, just as we did in the main body of this manual, we wish to point out that good,
instructive websites exist to allow you to learn or review the skill. Just type “curve
sketching” into the textbox of your favorite Internet search engine, and browse the
results. There’s bound to be at least one website that meets your tastes and needs.

Know an equation by its curve. The curves of functions have general
characteristics. Knowing those characteristics for the functions you’re working
with saves time when sketching them.

•

•

•

•

•

•

•

•

•

Define the domain: values of x that let the denominator in your equation = 0 are
excluded

Define the range: this means solving for x

Find all x-intercepts: set y = 0 in your equation and solve

Find all y-intercept(s): set x = 0 in your equation and solve

Find vertical asymptote: these are the values of x that let the denominator in your
equation = 0

Find horizontal asymptote: let /x/ tend to infinity. if y approaches zero, horizontal
asymptote @ y=0. if y approaches a nonzero number b, horizontal asymptote @
y=b.

Find concavity: take f’(x) of f(x). for any given x, the larger the value of /f’(x)/,
the steeper the slope of f(x). positive f’(x) means upward slope. negative f’(x)
means downward slope.

Find minmax: take f’(x) of f(x). set y=0 for f’(x) and solve.

info@adacs.com http://www.adacs.com 70/72

 CplxCalPro user manual. V3.52

Appendix I

Useful Web Links

URL what you’ll find there
http://www.adacs.com us!

The NIST Reference on Constants, Units, and
Uncertainty, including in-depth information on
the metric system

http://mathworld.wolfram.com/ Eric Weisstein's World of Mathematics
Possibly the best mathematics reference work
on the World Wide Web

http://ieee.org/ The IEEE, for electrical engineers and those of
you curious about the standards that hardware,
software (including CplxCalPro!), and
firmware adheres to.

http://www.acm.org/ ACM Association for Computing Machinery,
the world's first educational and scientific
computing society.

http://physics.nist.gov/cuu/index.html

info@adacs.com http://www.adacs.com 71/72

http://www.adacs.com/
http://mathworld.wolfram.com/
http://ieee.org/
http://www.acm.org/

 CplxCalPro user manual. V3.52

Afterword

 This manual is intended to serve as a tutorial and reference to CplxCalPro. Effort
has been made to make the manual readable while ensuring conciseness, accuracy, and a
thoroughness over the basics of calculator use to allow a user to start quickly applying
CplxCalPro to problem-solving. In other words, this manual is intended to serve you. If
you find errors in the manual, or a passage difficult to understand, or what you consider
to be a glaring omission, please let us know. We will consider all constructive criticism.

info@adacs.com http://www.adacs.com 72/72

	Table of contents
	Chapter 1
	Introduction
	A Gallery of Programs and Graphics

	Chapter 2
	Basics
	The Main Screen
	Basic calculations
	Modifying Key Assignments
	The Menu Items
	Options
	Preferences
	Display formats

	Variables
	Clear all
	Clear memory
	Default Keyboard
	Memory
	Register

	Edit
	Prog.
	Load program
	Edit program
	Plot function
	Solve Equation
	Copy text program
	Delete text program
	Create text program

	Help
	Functions:
	Constants:
	Site licenses:
	Legal agreement

	Chapter 3
	Putting It All Together

	Chapter 4
	Built-In Functions on CplxCalPro
	Complex:
	Basic:
	Trigonometric:
	Calculus:
	Financial:
	Logical:
	Base conversion:
	Probability & Statistics:

	Chapter 5
	User-Defined Functions

	Chapter 6
	Graphics on CplxCalPro
	Graphics Examples

	Chapter 7
	Programming CplxCalPro
	A Programming Primer
	CplxCalPro’s Programming Commands:
	Programming Examples:

	Appendix A
	Technical specifications

	Appendix B
	Data Formats
	Float:
	Engineering:
	Symbol:
	Hexadecimal:
	Binary:
	Octal:
	Polar:
	Date:
	Sexagesimal:

	Appendix C
	Display format

	Appendix D
	Functions, Operators, and Commands
	Base conversion:
	Basic:
	Calculus:
	Color:
	Complex:
	Conversion:
	Date:
	Financial:
	Flow Control:
	Format:
	Graphics:
	Interactive:
	Logical:
	Relational:
	Special:
	Probability & Statistics:
	String:
	Trigonometric:

	Appendix E
	Constants

	Appendix F
	Sample Programs
	Graph demo:
	FFT example program:
	FFT built-in functions:
	Quadratic regression example:
	Chi-square test:
	Opamp:
	Root function:

	Appendix G
	The Palm® OS \(POS\) Emulator

	Appendix H
	Curve Sketching

	Appendix I
	Useful Web Links

	Afterword

