
1

CPU Scheduling Simulator (CPUSS)

Granville Barnett

April 3
rd

, 2008

1 Overview

This document is a set of brief notes about what CPUSS offers and how to use the CPUSS framework,

and associated tools.

CPUSS is a framework that allows you to gather metrics on algorithms used to schedule the next

process to utilize the CPU. CPUSS can be extended so you can implement your own algorithms and

harness the metrics engine offered by CPUSS so you can perform further analysis on your algorithm.

The distribution of CPUSS includes three items of note: Cpuss.dll (core framework),

Cpuss.Strategies.dll (implementations of established and research strategies), and finally cpussrg.exe,

the latter of which is a command line tool used for generating reports for load generated scenarios

against your strategy.

CPUSS 1.0 is built using C# 3.0 and makes extensive use of property initializers, and lambda

expressions, there are no plans to support earlier versions of the language.

The actual source code contains six projects: Cpuss, Cpuss.Tests, Cpuss.Console,

Cpuss.Console.Tests, Cpuss.Strategies, and Cpuss.Strategies.Tests. The test projects have a

dependency on NUnit
1
, if building from scratch I advise that you download the project, build it and

then run all the tests in debug mode before compiling release builds. I strongly recommend using the

precompiled binaries especially if you are creating plugins as described later as you will need to build

against the latest release version of Cpuss.dll.

2 Using the CPUSS Framework

The CPUSS framework is very simple to use and provides many hooks for further extension.

 I will only cover a very brief amount that the CPUSS framework offers as I have ensured that the

CPUSS core is very well documented, so for a more comprehensive description of the API please see

the compiled help file that ship’s with every release.

2.1 IStrategy interface

In order to plug your algorithm into the CPUSS framework you must implement the IStrategy

interface, this interface contains only two methods.

Figure 1: IStrategy interface

namespace Cpuss
{
 public interface IStrategy
 {
 void Execute(Runner runner);

1
 http://www.nunit.org

This document applies to CPUSS version 1.0

http://www.nunit.org/

2

 string ToString();
 }
}

The more important of the two methods is the Execute method. This method should contain the logic

for your algorithm.

2.2 Setting up the execution environment

If you are purely using CPUSS for research into development of your own scheduling algorithm then

you need really only be familiar with the IStrategy interface and the Runner type.

The Runner type provides the black box for which all computation takes place in terms of metrics

tracking of each process; it also provides supplementary functionality like events and functions to aide

with rapid data analysis.

 A Runner instance expects only two arguments: processes for the algorithm to schedule, and

finally the algorithm to schedule those processes.

Figure 2: Runner type

Runner runner = new Runner(processLoad, new FirstComeFirstServed());

The first argument is a collection of type ProcessLoad, this collection is rather self explanatory it is a

collection of processes, the strategy to use must implement the IStrategy interface.

 The Runner type is actually overloaded, the overloaded constructor takes four parameters, the

first three of which represent the number of small, medium and large processes respectively to run.

These processes have varying properties that are randomized, e.g. the burst time of a medium sized

process will lie between two set boundary points, the arrival time will be within two fixed points as

well, and similarly the priority of the process will be randomized between the available values. This is

particularly useful when wanting to gather results on your algorithm that represent a more broad and

varying set of processes, it can be further enhanced by using the RepeatRunner type which will

aggregate key data from each of a series of runs.

2.3 Invoking a simulation

In order to attain metrics for your scheduling algorithm you need to have invoked and completed the

simulation, this is done by calling the Run method on a valid Runner object.

Figure 3: Invoking a simulation

using Cpuss;
using Cpuss.Strategies;

namespace ConsoleApplication1
{
 class Program
 {
 static void Main()
 {
 // ...
 ProcessLoad processLoad = new ProcessLoad();
 Runner runner = new Runner(processLoad, new ShortestJobFirstExpert(10,
20));
 runner.Run();
 // ...
 }
 }

3

}

2.4 Data associated with each process

The following is a brief list of properties exposed by the Process type.

 Arrival Time

 Start Time

 Completion Time

 CPU Activity

 Id

 Priority

 Wait Time

 Response Time

 Turnaround Time

All of this data is valid after the simulation has completed.

Figure 4: Inspecting some properties of a process

using System;
using System.Collections.Generic;
using Cpuss;
using Cpuss.Strategies;

namespace ConsoleApplication1
{
 class Program
 {
 static void Main()
 {
 Runner runner = new Runner(10, 10, 40, new ShortestJobFirstExpert(10,
20));
 runner.Run();
 foreach (KeyValuePair<int, Process> process in runner.Metrics)
 {
 Console.WriteLine("PID: {0}", process.Value.Id);
 Console.WriteLine("Wait Time: {0}ns", process.Value.WaitTime);
 }
 }
 }
}

2.5 Hooking into key process lifetime events

There may be times when you want to see what happens to what process and when during the

simulation, or record the data for further analysis afterwards, e.g. you may want to keep note of the

number of context switches that your algorithm has coerced from its processes. CPUSS offers four

events, specific to processes these include:

 ProcessStarted

 ProcessPreempted

4

 ProcessResumed

 ProcessCompleted

These events are all exposed by the Runner which keeps track of key moments of a Process’

lifetime.

Figure 5: Key process lifetime events

using System;
using Cpuss;
using Cpuss.Strategies;

namespace ConsoleApplication1
{
 class Program
 {
 static void Main()
 {
 Runner runner = new Runner(10, 2, 13, new ShortestJobFirstExpert(1,
25));
 runner.ProcessStarted += (o, e) => Console.WriteLine("PID{0} Started",
e.Id);
 runner.ProcessPreempted += (o, e) => Console.WriteLine("PID{0}
Preempted", e.Id);
 runner.ProcessResumed += (o, e) => Console.WriteLine("PID{0} Resumed",
e.Id);
 runner.ProcessCompleted += (o, e) => Console.WriteLine("PID{0}
Completed", e.Id);
 runner.Run();
 }
 }
}

Events are specific to the CPUSS framework in that they are exposed as hooks for extracting

further custom data for further analysis, and also as a means to provide hooks for other tooling that

you may require in your research work.

3 CPUSS Report Generator (CPUSSRG)

CPUSSRG allows you to perform a load test scenario using a specified strategy. The test can be

repeated n times.

 The strategies available to use with CPUSSRG are located in the Plugins subfolder. All valid

algorithms are those that implement the IStrategy interface as described before. In order to use

CPUSSRG with your strategies all you need to do is place the assembly that defines your algorithms

into the Plugins folder and they will be loaded at runtime and available for selection.

3.1 Valid Flags

Below is a list of flags, and the expected argument types each flag expects.

Table 1: CPUSSRG flags

Flag Argument

/strategy Strategy Name<Type>,arg1<Int32>,arg2<Int32>,...,argN<Int32>
/report String<name of file>
/small Int32<number of small processes>
/medium Int32<number of medium processes>

5

/large Int32<number of large processes>
/repeat Int32<number of times to repeat simulation>
/outdir String<name of output directory>
/window Int32<window timeframe to use for throughput>

Figure 6: Example CPUSSRG usage

> cpussrg /strategy:ShortestJobFirstExpert,1,25 /report:sjfe /repeat:25 /small:33

/large:15

 Figure 6 shows an example where the strategy specified requires two parameters for its

constructor, both of which are Int32’s (Int32’s are the only type supported from CPUSSRG, after

research I have found that no strategies require a more complex integer data type). The parameter

values are associated with its respective constructor parameters in a left-to-right manner, that is if the

ShortestJobFirstExpert constructor had two parameters, the first of which was called pollTime,

the second threshold then the value of pollTime would be 1, and the value of threshold would be

25 respectively. Strategies with default, parameter less constructors need not bother with the

additional syntax; all that is required is the short type name of the strategy.

3.2 Generated Reports

CPUSSRG presents the data collected from the simulation runs as a HTML file containing tabular

data and visualizations of that data in the form of graphs.

Figure 7: Report

CPUSSRG is not the only tool that can create reports; if you are using the CPUSS framework directly

you can create a report by using the HtmlReport type.

