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AMMI MODEL

At the end of the tutorial, the user should be able to

e perform genotype by environment (GxE) analysis
e generate cross-site and stability analysis and AMMI models

I. Sample Problem: Mean Yield Data Set generated by Single Site Analysis

The mean yield dataset MYIELD94.SYS generated by the single-site analysis example
will be used to illustrate the use of CropStat in running an additive main effects and
multiplicative interaction (AMMI) model analysis. This file contains the following

variables:

Variable Description

SET$ Contains the location identification

VTYNO Contains the genotype levels

VARIETYS Contains the genotype names

NOS Contains the number of non-missing observations for each
genotype in each environment

YIELD Mean yield across replications

e Open the data file MYIELD94.SYS from the CROPSTAT7.2\TUTORIAL)\
TUTORIAL DATASETS folder.

e Select File = Save-as. Click the Save in box and go go inside working folder
C:\MY CROPSTAT. Create a subfolder AMMI then click Save
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I1. Genotype by Environment (GxE) Analysis

The input data file may be a raw data file with replicate observations for each
genotype x environment (GXE) cell, or a file of means or adjusted means saved from
a single site analysis. In the former case, arithmetic means are computed as the data
are read into the GxE table. CropStat takes account of missing observations when
forming means.

The advantages of using the means file outputted by single site-analysis are:

1. Means are adjusted especially if design is augmented or one of the lattices. If raw
data are used, arithmetic means are computed. Thus, the outputs will be different.

2. Single-site analysis also saves the EMS of individual ANOVA and thus AMMI
will provide LSD values for each site. Using the raw data will not give LSD
values.

Treatment by variate tables must have less than 120 treatments (NROW) and 100
variates (NCOL) and (NROW+4) * (NCOL+1) must be less than 8200. Treatment x

site tables are similarly restricted (where NCOL is the number of sites) but in addition
NROW+NCOL must be less than 126.

The following are the steps in performing a GxE analysis in CropStat.

e Seclect Analysis|Cross Site Analysis from the Main Window.

K3 CropStat for Windows
File Edit Data BEGEEEN Lblities  Window  Help

E’,‘: n % Summary Statiskics
Scatter Plots

Balanced AMOYA (BAOW)
Unbalanced Analysis (GLM)
Mixed Maodel Analysis (REMLY ¥
Regression Analysis L4

Single Site Analvsis

ross Site Analysis h
Pattern Analysis
axE Plots

QTL Analysis
Log-Linear Analysis

e C(Click the Look In box and select drive C:\MY CROPSTAT\AMMI folder.

e In the File Name box, type MYIELD94 as the name of the command file. Click
Open.
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e Since no command file called MYIELD94.GXE exists, CropStat will display a

message box confirming if you want to create one. Click Yes.

o Enter MYIELD94 as the name of the data file to be used in this analysis. Click
Open. The Cross Site Analysis dialog box will appear.

Crop5tat: Cross Site Analysis

{Cioss Site Tabliaion Y Stability Analpsis and AMMI Madel | Dptions |
Command File : Data File : «f oK,
(> Open \MYIELDS4.GXE IMYIELDS4.5Y5
x Cancel
Data File Variables: © Traatment: Treatment Marnes:
SETH ¥ Hel
WTYNO | —'—pl
VARIETYS: Add | Heml:we| Add | HEITID'\"E|
MNOS iter .
VIELD IE"tE— =R Save
add | Remove
Treatment by
ariable Table
- Yariable to zort means:
<<
add | Remove
niars : 5 nRecs : 132 Wiarking directary

e Specify the treatment variate defining the row factor levels, usually genotypes.
Select VTYNO from the Data File Variables list box. Click Add button under the
Treatment edit box.

(Note: Treatment variate may be a character variate or a numeric variate, but it must
specify unique row levels for the GXE matrix. Clarity of graphical output is
enhanced if the first two characters of the treatment factor are unique.)
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To specify a variate containing treatment names, select VARIETY$ from the Data
File Variables list box. Click Add button under the Treatment Names edit box.
These names are printed adjacent to the levels specified by the row factor in
output tables. If the row factor is a numeric variate, this allows inclusion of names
as well as numbers for treatments. If the row factor is a character variate, the
names variate effectively extends the length of the treatment names by 12
characters although the first part of the name (contained in the row factor variate)
must uniquely define all the row factor levels. Treatment names need not uniquely
define all treatment levels.

TREATMENT MEANS AND COUNTS OVER SITES FOR EACH VARIATE. FILE MYIELD94 12/ 2/ 4
13:21

: PAGE 2
VARIETY\SITE |YIELD |
_________________________ I____________
11 W56-50 | 1.528 11|
3 GUAR | 1.484 11|
7 UPL5 | 1.413 11|
6 0s6 | 1.326 11|
9 W181-18 | 1.299 11|
I I
12 W96-1-1 | 1.286 11|
5 OL5 | 1.273 11|
1 AZU | 1.211 11|
8 VAND | 1.195 11|
4 IT146 | 1.182 11|
| I
10 W56-125 | 1.140 11|
2 BGORA | 1.006 11|
_________________________ | ———
SITE MEANS | 1.278  132]

It is useful to include variate containing treatment names in addition to the treatment variate
containing levels so that output is well annotated. These names are printed adjacent to the levels
specified by the treatment variate in output tables.
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e To specify site variate, select SET$ from the Data File Variables list box. Click
Add button under the Site edit box. This variate may be a character variate or a
numeric variate but it must specify unique column levels for the GXE matrix.

INTERACTION BIFLOT FOR THE AmMMI2 MODEL

204 Tnaa 003 064 T2
PG

VARIATE YIELD DATAFILE: MYIELD34 MODEL FIT: BE.0% OF GXE S

Clarity of graphical output is enhanced if the first two characters of the
treatment and site factors are unique and the site codes are different from
the codes for the treatment factor. If there are fewer than 100 rows or
genotypes, digits 01 to 99 are useful first characters for the row factor,
similarly the letters A...Z, AA...ZZ, etc. form suitable characters for the
columns or environments. These abbreviations are useful to distinguish
entities on the AMMI biplots.
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e To request a summary table of treatment means, averaged over sites, for variate
yield, select YIELD from the Data File Variables list box. Click Add button
under the Treatment by Variable Table list.

CropStat: Cross Site Analysis
Crass Site T abulation ] Stability nalysis and AMMI Model | Dptions |

Comrand File : D ata File :
(= Open MYIELD34. GXE IMYIELDS4.5Y5
Drata File Y ariables | Traatment: Treatment Mames:
SET$ | WTYNDO | VARIETYS
WTYNO
YARIETYS Add | HEI‘nDVEl &dd | HEITID\"E|
MOS Site:

i1ELD SETS
Add | Hemnvel

Treatment by
Yariable T able
YIELD s " ariable to zort means:

=<

i Hemnvel

If the user requires a summary table of treatment means, averaged
over sites, for several variates, the list of variates is specified in the
Treatment by Variable list. The user may also specify one of the
variates in the treatment by variate means table on which to sort the
rows of all tables of means produced.

e To request for stability and AMMI model analysis, click the Stability Analysis
and AMMI Model tab. This will bring you to Stability Analysis and AMMI
model page.
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e To specify a model, click New.

CropStat: Cross Site Analysis

Crozz Sike Tabulation  Stability Analvziz and Akdk] Model l Options ]
Ak bModels:
Responze Site Index Weighted |PCA awes
X Cancel
Mew [:
@ Hel
Femove —‘—pl
D ata File Y ariables Fespornse: 5 ave
SETH |
YTvMO
"-.-"."1".H|ETY$ Add Remaove
HOS ; .
“IELD Site [ndex:
Add | Hemnve|
Weighted Analyziz: [
Mumber of 1] =
|IPCa anes to
b adel:
mars ;5 nRecs ; 132 ‘Wharking direckary

e Select YIELD from Data File Variables list box. Click Add button under
Response edit box.

e To specify the variate whose average per site you wish to use as site index in the
stability regression, select YIELD from Data File Variables list box. Click Add
under Site Index edit box. (Nete: Site index is usually the response variate but
any numeric variate may be specified.)

e To specify the number of IPCA axes to be included in the AMMI model, click on
the Number of IPCA axes to Model box. Increase the number to 3.
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Crop5tat: Cross Site Analysis

Ak Models:

Crozs Site T abulation Stal:llllt_lr' .-'f-.nal_l,lsis and Ak | Model l Dptigng l

Hesponze Site ndex WWieighted

IPCA awes

Drata File W ariables

Responze:
g [
VARIETY'S Add | Remove
KOS ) :
YIELD Site [ndes:
YIELD
Add | Hemwe|
Weighted &nalpsiz: [
Mumber of 3 =
IPCA axes to
b odel:

Click OK to run the analysis.

MHew

Remove
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ITII. Sample Output

The following output will be displayed in the Text Editor. This is saved in
MYIELD.OUT.

1. List of treatment and site levels

PBGXE - CROSS SITE ANALYSIS FILE MYIELD94 12/ 2/ 4 10:33

—————————————————————————————————————————————————————————————————— : PAGE 1
12 VTYNO CODES::
11 AZU 2 2 BGORA 33 GUAR
4 4 IT146 55 OL5 6 6 0s6
77 UPL5 8 8 VAND 9 9 W1l81-18
10 10 W56-125 11 11 W56-50 12 12 wWo96-1-1
11 SETS$ CODES:
1 BH 2 CR 3 CVv 4 EL 5 MA
6 MB 7 MD 8 ML 9 NT 10 sG
11 sy

TREATMENT BY VARIATE MEANS HAVE BEEN REQUESTED FOR 1 VARIATES:
YIELD

ROWS OF MEANS TABLES TO BE SORTED ON VARIATE YIELD

GXE ANALYSIS HAS BEEN REQUESTED FOR 1 VARIATES

2. Treatment x variate table of means

TREATMENT MEANS AND COUNTS OVER SITES FOR EACH VARIATE. FILE MYIELD94 12/ 2/
4 10:33
:PAGE 2
VARIETY\SITE |YIELD
_________________________ ‘ —————
11 W56-50 | 1.528 11]
3 GUAR | 1.484 11|
7 UPL5 [ 1.413 11]
6 0S6 | 1.326 11|
9 wW181-18 [ 1.299 11]
\ \
12 Wo6-1-1 | 1.286 11|
5 OL5 | 1.273 11|
1 AZU [ 1.211 11]
8 VAND | 1.195 11|
4 IT146 [ 1.182 11|
\ \
10 W56-125 [ 1.140 11]
2 BGORA | 1.006 11|
_________________________ ‘ ——————— e —
SITE MEANS | 1.278 132]
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Treatment x environment table of means

12 X 11 MATRIX OF TREATMENT BY SITE MEANS FOR VARIATE  YIELD FILE MYIELD94 12/ 2/ 4 10:33
:PAGE 3
SECTION 1
VARIETY\SITE |BH 1= |EL |MB IMD |ML
I I I I I
1 W56-50 | 1.568 | 2.687 10.9503 | 2.886 10.6622 | 1.118
3 GUAR | 1.296 | 2.999 1.202 | 2.315 10.9897 | 1.270
7 UPL5 | 1.468 | 1.922 10.9427 10.6325 | 1.922 | 2.324
6 0s6 | 1.388 | 2.995 10.7097 10.1328 10.6000 | 1.250
9 Wis1-18 | 1.576 | 2.281 | 1.674 | 2.252 10.3625 10.9295
I I I I I I
12 W96-1-1 | 1.012 | 3.272 | 1.543 | 1.001 10.7757 | 1.174 I
5 oLs | 1.524 | 1.422 | 1.025 | 2.414 10.7732 | 1.665
1 azu | 1.344 | 1.097 10.7437 10.7377 | 2.270 | 1.421
8 VAND | 1.752 | 2.079 10.1192E-06 | 2.408 | 1.393 | 1.470
4 IT146 10.6880 | 2.079 10.9647 | 2.782 | 1.501 | 1.366
| I I I I I I
10 W56-125 | 1.080 | 1.508 10.5073 10.5350 | 1.820 | 2.662 10.5667 | 1.09
2 BGORA 10.8480 10.8477 10.2168 | 1.520 10.7500 | 1.578 | 1.058 | 1.244
I I I I I I
SITE MEANS | 1.295 | 2.099 | 1.001 | 1.379 | 1.817 | 1.073 | 1.361
SITE INDEX | 1.295 | 2.099 0.3288 | 1.001 | 1.379 | 1.817 | 1.073 | 1.361
SE OF MEANS 10.1336 10.2363 10.5772E-01  ]0.1717 10.1811 10.2563 10.2499 10.2417
I I I I I I
5D (5%) 10.3844 10.6931 10.1661 10.5036 10.5211 10.7375 10.7190 10.6953
SECTION 2
VARIETY\SITE INT 156 1Y |TRT MEANS
I I I
1 W56-50 | 1.791 | 1.347 | 1.495 1
3 GUAR | 1.501 | 1.590 | 1.260 | 1.484
7 UPLS | 1.326 10.9150 | 1.667 |1
6 0s6 | 1.812 | 1.188 | 1.670 1
9 wis1-18 | 1.236 | 1.825 | 1.076 1 I
I I I |
12 W96-1-1 | 1.271 10.8950 | 1.497 | 1.286
5 oLs 10.5510 | 1.860 | 1.087 | 1.273
1 azu | 1.565 | 1.140 | 1.418 | 1.211
8 VAND | 0.0000 | 1.883 10.9123 | 1.195
4 IT146 | 1.234 10.7925 10.9420 | 1.182
I I I I
10 W56-125 10.7120 | 1.027 | 1.024 | 1.140
2 BGORA 10.6473 | 1.898 10.4563 | 1.006
| I I
SITE MEANS | 1.137 | 1.363 | 1.209 | 1.278
SITE INDEX | 1.137 | 1.363 | 1.209 | 1.278
SE OF MEANS 10.2917 10.3215 10.2177 [
| I I I
LSD (5%) 10.8554 10.9249 10.6386 I
ANALYSIS OF RESIDUAL VARIATION WITHIN SITES
POOLED ERROR MEAN SQUARES FOR 11 SITES WITH 319 D.F.= 0.18736
BARTLETT'S STATISTIC=  93.79 P-VALUE (CHI*2 WITH 10 D.F.) = 1.000
PREDICTED TREATMENT AND ENVIRONMENT MEANS FILE MYIELD94 12/ 2/ 4 10:33
- - - - - - - - - :PAGE 4
PREDICTED MEANS, SES AND MULTIPLE COMPARISONS
ENVIRONMENT MEAN SE DUNCAN GROUPS LSD TESTS
CR 2.0991 0.16070 | .
MB 1.8167 0.16070 [ .
MA 1.3792 0.16070 [ 2..
SG 1.3634 0.16070 [l 21..
ML 1.3608 0.16070 [l 21...
BH 1.2953 0.16070 | 31....
SY 1.2087 0.16070 | 32.....
NT 1.1372 0.16070 | 32......
MD 1.0728 0.16070 [ 32.......
EL 1.0008 0.16070 [ 33........
cv 0.32879 0.16070 3333333322.
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b) Treatment means

PREDICTED MEANS, SES AND MULTIPLE COMPARISONS
TREATMENT MEAN SE DUNCAN GROUPS LSD TESTS
11 W56-50 1.5277 0.16785
3 GUAR 1.4842 0.16785
7 UPL5 1.4130 0.16785
6 0s6 1.3264 0.16785
9 wW181-18 1.2986 0.16785 | .....
12 Wo6-1-1 1.2856 0.16785 | ...,
5 OL5 1.2726 0.16785 | ...
1 AZU 1.2105 0.16785 | ...
8 VAND 1.1953 0.16785 | ...
4 IT146 1.1818 0.16785 | ...
10 W56-125 1.1399 0.16785 | ...,
2 BGORA 1.0058 0.16785 R
5. Analysis of residuals from the main effects model
a) Table of studentized residuals
RESIDUALS FROM THE ADDITIVE TREATMENT BY SITE MODEL
(ENTRIES ARE SIZE OF RESIDUAL IN STANDARD ERRORS,
ROWS AND COLUMNS SORDED ACCORDING TO MARGINAL MEANS)
!
!
!
!
!
| T
| —
| E
| F
| C
c MM S M B S N M E C | T
R B A G L H Y T D L V| S
11 W56-50 o 1 0 0 O O O O0-1 0 0| 1
3 GUAR 1 0 0 0O 0 0O 0O 0O 0O 0 o0 1
7 UPL5 0-2 1-1 1 0 0 0 1 0 0| 0
6 0s6 1-3 2 0 0 O O 1 -1 0 O] 0
9 W181-18 o o0-1 0 O O O O0-1 1 0| 0
12 Wo96-1-1 2-1 0 0 0 O 0 O 0 1 0| 0
5 OL5 -1 1. 0 0 0 O O0-1 0 0 O] 0
1 AZU -1-1. 0 0 O O O 0 2 0 0| 0
8 VAND o 1 0 1 0 1 0-2 0-1 0| 0
4 IT1l46 0 2-1 0 0-1 0 0 1 0 O] 0
10 W56-125 601 1 0 0 O 0O 0O 0 0 O 0
2 BGORA -1 0 0 1 0 O O O O 1 0| -1
SITE EFFECTS 5 3 0 0 0 0 0 0-1-1 -6 26
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b) Box plot of studentized residuals

BOX PLOT OF 132 STUDENTIZED RESIDUALS FROM LPLT= -3.408 TO ULPT= 2.490
NO.<LPLT
NO.>UPLT
0 * * e I + T * 0

MEDIAN= 0.2354E-01 ANDERSON-DARLING STATISTIC= 0.474

c) Analysis of variance for the additive model

ANALYSIS OF VARIANCE FOR THE ADDITIVE MODEL

SOURCE D.F S.S M.S F FPROB
TREATMENTS 11 2.63722 0.239747

LOCATIONS 10 24.4041 2.44041

TREATMENT X SITES 110 34.0890 0.309900

POOLED ERROR(PER MEAN) 319 16.4361 0.515238E-01

TOTAL 131 61.1303

ESTIMATED MAXIMUM STRUCTURAL CONTENT OF TREATMENT X SITE SS IS 83.37%

d) Table of raw residuals from the additive site x treatment additive model

RESIDUALS FROM THE ADDITIVE SITE X TREATMENT MODEL FILE MYTELD94 12/ 2/ 4 10:33
tPAGE 5
SECTION 1
VARIETY\SITE |BH ICR Icv |EL |MA |MB IMD IML
| | | | | | | |
11 W56-50 10.2340E-01 |0.3386 10.1103 10.8198 1-.6599 |-.4915
3 GUAR |-.2050 10.6938 |-.2207 10.2926 |-.2888 1-.2960
7 UPL5 10.38158-01  |-.3120 10.6358 1-1.319 *10.7146 10.8282
6 056 10.44738-01 |0.8483 .2498E-01 |-.3391 | 1.067 *]-1.732  ***|-.5208 1-.1590
9 W181-18 10.2605 10.1617 L2255E-01 |0.6530 1-.6979 10.4154 1-.7305 |-.4514
| | | | | | | | |
12 W96-1-1 1-.2905 | 1.166 *10.3009E-02 0.5350 |-.24938-01 |-.8229 |-.3043 1-.1935
5 OL5 10.2345 1-.6712 10.2969E-01 |0.1689 10.6034 1-.2937 10.3103
1 AZU 10.1166 1-.9342 1-.1893 1-.2166 1-1.011 *| 1.265 *10.1286
8 VAND 10.5398 10.6338E-01 1-.9177 |-.2581 10.6742 10.4033 10.1926
4 IT146 |-.5106 10.7691E-01 |-.7860E-01 |0.6052E-01 |-.7860 | 1.062 *10.5246 10.1017
| | | | | | | | |
10 W56-125 |-.7684E-01 |-.4523 10.3170 1-.3273 10.5793 10.9838 1-.3676 1-.1260
2 BGORA 1-.1747 1-.9788 10.1606 10.7922 |-.3565 10.3370E-01 [0.2576 10.1559
| | | | | | |
SITE EFFECTS 10.1689E-01 [0.8207  ***|-.9497  ***|-.2776 10.1008 10.5383  ***|-.2056 10.8233E-01
SECTION 2
VARIETY\SITE INT 156
| |
11 W56-50 10.4045 |-.26
3 GUAR 10.1577 10. .
7 UPL5 10.54598-01 | -.5829 0 0.1345
6 056 10.6268 1-.2238 10.4131 10.4793E-01
9 W181-18 10.7829E-01 |0.4415 |-.1532 10.2015E8-01
| | | | |
12 W96-1-1 10.1266 1-.4756 10.2815 10.7199E-02
5 oL5 1-.5804 10.5025 1-.1158 |-.5862E-02
1 AZU 10.4960 |-.1555 10.2772 |-.6790E-01
8 VAND 1-1.054 *10.6028 |-.2132 |-.8316E-01
1 IT146 10.1938 |-.4742 1-.1700 |-.9669E-01
| | | | |
10 W56-125 |-.2867 1-.1974 |-.4584E-01 |-.1385
2 BGORA |-.2172 10.8068 1-.4797 1-.2727
| | | |
SITE EFFECTS 1-.1412 10.8493E-01 |-.6978E-01 | 1.278  ***
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6. Table of fitted values from the additive site x treatment model

FITTED VALUES FROM ADDITIVE SITE X TREATMENT MODEL FILE MYIELD94 12/ 2/ 4 10:33
:PAGE 6
SECTION
VARIETY\SITE IBH ICR Icv IEL 1MA 1MB 14D 1ML
1 [} I I I I I I
11 W56-50 | 1.545 | 2.348 10.5781 | 1.250 | 1.628 | 2.066 | 1.322 | 1.610 |
3 GUAR | 1.501 | 2.305 10.5345 | 1.207 | 1.585 | 2.022 | 1.279 | 1.566 1
7 UPL5 | 1.430 | 2.234 10.4633 | 1.135 | 1.514 | 1.951 | 1.207 | 1.495 |
6 0s6 | 1.343 | 2.147 10.3767 | 1.049 | 1.427 | 1.865 | 1.121 | 1.409 |
9 W181-18 |1 1.315 1 2.119 10.3489 | 1.021 | 1.399 | 1.837 | 1.093 | 1.381 |
1 1 1 1 I I I I 1
12 W96-1-1 | 1.303 | 2.106 10.3360 | 1.008 | 1.386 | 1.824 | 1.080 | 1.368 |
5 OL5 | 1.289 | 2.093 10.3229 10.9950 | 1.373 | 1.811 | 1.067 | 1.355 |
1 AZU | 1.227 | 2.031 10.2609 10.9329 | 1.311 | 1.749 | 1.005 | 1.293 |
8 VAND | 1.212 | 2.016 10.2456 10.9177 | 1.296 | 1.734 10.9897 | 1.278 ]
4 IT146 |1 1.199 | 2.002 10.2321 10.9041 | 1.283 | 1.720 10.9761 | 1.264 |
1 [} I I I I I I |
10 W56-125 1 1.157 1 1.961 10.1903 10.8623 | 1.241 | 1.678 10.9343 | 1.222 |
2 BGORA | 1.023 | 1.826 10.5611E-01 10.7282 | 1.107 | 1.544 10.8002 | 1.088 1
1 1 1 I I I I I
SITE ESTS. |1 1.295 | 2.099 10.3288 | 1.001 | 1.379 | 1.817 | 1.073 | 1.361 |
SECTION 2
VARIETY\SITE INT 185G 1sY | T-ESTS |
11 W56-50 } 1.386 } 1.613 } 1.458 } 1.528 I
3 GUAR | 1.343 | 1.569 | 1.414 | 1.484 I
7 UPL5 1 1.272 | 1.498 | 1.343 | 1.413 |
6 0s6 | 1.185 | 1.411 1 1.257 | 1.326 |
9 W181-18 1 1.157 | 1.384 | 1.229 | 1.299 I
1 1 1 I I
12 W96-1-1 | 1.144 | 1.371 | 1.216 | 1.286 I
5 OL5 1 1.131 | 1.358 | 1.203 1 1.273 I
1 AZU | 1.069 |1 1.295 | 1.141 | 1.211 I
8 VAND | 1.054 | 1.280 | 1.126 | 1.195 I
4 IT146 | 1.041 | 1.267 | 1.112 | 1.182 I
1 1 I I
10 W56-125 10.9987 | 1.225 | 1.070 | 1.140 I
2 BGORA 10.8645 | 1.091 10.9360 | 1.006 I
1 [} I [}
SITE ESTS. 1 1.137 | 1.363 | 1.209 | 1.278 I
7. Stability analysis
ANOVA AND STABILITY REGRESSIONS FILE MYIELD94 12/ 2/ 4 10:33
—————————————————————————————————————————————————————————————————— : PAGE 7
REGRESSIONS OF YIELD FOR EACH VARIETY ON MEANS OF YIELD AT EACH SITE
VARIETY MEAN SLOPE SE MS-TXL MS-REG MS-DEV R**2 (%
1 AZU 1.21 0.094* 0.357 0.40 1.67 0.26 42
2 BGORA 1.01 0.457 0.346 0.28 0.60 0.24 21
3 GUAR 1.48 1.422* 0.180 0.10 0.36 0.07 38
4 IT146 1.18 1.221 0.370 0.26 0.10 0.28 4,
5 OL5 1.27 1.090 0.305 0.17 0.02 0.19 1.
6 0S6 1.33 0.974 0.567 0.59 0.00 0.65 0.
7 UPL5 1.41 0.593 0.445 0.40 0.34 0.40 8.
8 VAND 1.20 1.409 0.407 0.34 0.34 0.34 10.
9 Wigl-18 1.30 1.117 0.340 0.21 0.03 0.23 1.
10 W56-125 1.14 1.048 0.330 0.20 0.00 0.22 0.
11 W56-50 1.53 1.415 0.282 0.18 0.35 0.16 19
12 Wo96-1-1 1.29 1.159 0.392 0.29 0.05 0.31 2.
SLOPE - SLOPES OF REGRESSIONS OF VARIETY MEANS ON SITE INDEX.
* INDICATES SLOPES SIGNIFICANTLY DIFFERENT FROM THE
SLOPE FOR THE OVERALL REGRESSION WHICH IS 1.00
MS-TXL - CONTRIBUTION OF EACH VARIETY TO INTERACTION MS
MS-REG - CONTRIBUTION OF EACH VARIETY TO THE REGRESSION
COMPONENT OF THE TREATMENT BY LOCATION INTERACTION
MS-DEV - DEVIATIONS FROM REGRESSION COMPONENT OF INTERACTION
R**2 - SQUARED CORRELATION BETWEEN RESIDUALS FROM THE MAIN
EFFECTS MODEL AND THE SITE INDEX.
VARIATE YIELD WAS SITE INDEX WITH OVERALL MEAN 1.278
THE FOLLOWING SITE MEANS OF YIELD WERE USED AS X-VARIATES
1.295 2.099 0.3288 1.001 1.379 1.817 1.073 1.361 1.137 1.363
1.209
ANOVA FOR VARIABLE YIELD WITH SITE REGRESSIONS ON YIELD
SOURCE D.F S.S. M.S F FPROB
TREATMENTS 11 2.63722 0.239747
LOCATIONS 10 24.4041 2.44041
TREATMENT X SITES 110 34.0890 0.309900
TRT X SITE REG 11 3.85730 0.350664 1.148 0.333
DEVIATIONS 99 30.2317 0.305370
TOTAL 131 61.1303
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8. AMMI models
a) Singular values and IPCA scores

AMMI ANALYSIS FILE MYIELD94 12/ 2/ 4 10:33
—————————————————————————————————————————————————————————————————— :PAGE 8
SINGULAR VALUES OF INTERACTION MATRIX (CONDITION= 0)

3.7189 2.9465 2.0665 1.8115 1.4686 1.0853 .59530 .53873 .17090

.12911
SCORES FOR FIRST 4 AMMI COMPONENTS FOR TREATMENTS
11 AZU 0.484989E+00 0.894846E+00-0.341668E+00-0.260893E+00
2 2 BGORA -0.347714E+400 0.542918E+00-0.542124E+00 0.633119E+00
3 3 GUAR -0.112153E+00-0.485549E+00-0.203158E+00-0.906262E-01
4 4 IT146 -0.472739E+00 0.101247E-01-0.427652E+00-0.855010E+00
5 5 OL5 -0.457565E+00 0.248741E+00 0.335581E+00 0.440063E+00
6 6 0S6 0.113068E+01-0.456813E+00 0.352428E+00 0.292901E+00
77 UPL5 0.818176E+00 0.600134E+00 0.195874E+00-0.158178E+00
8 8 VAND -0.523923E+00 0.310660E+00 0.673755E+00-0.486120E-01
9 9 wW181-18 -0.399933E+00-0.425652E+00-0.461328E+00 0.460309E+00
10 10 W56-125 -0.413494E+00-0.532487E-01 0.556074E+00-0.105940E+00
11 11 W56-50 -0.253762E+00-0.579493E+00 0.223528E+00-0.268181E+00
12 12 wWo96-1-1 0.547436E+00-0.606668E+00-0.361309E+00-0.389522E-01
SCORES FOR FIRST 4 AMMI COMPONENTS FOR ENVIRONMENTS
BH BH -0.441225E-01 0.131777E+00 0.352211E+00 0.293306E+00
CR CR 0.383300E+00-0.114499E+01 0.288672E-01-0.286554E+00
cv cv -0.273747E-01 0.690729E-01-0.291638E-01 0.282094E-01
EL EL -0.668252E-01-0.164046E+00-0.938567E+00 0.477560E+00
MA MA 0.590848E+00-0.728330E-01 0.827118E+00 0.226515E+00
MB MB -0.159586E+01-0.293058E+00 0.211775E+00-0.450511E+00
MD MD 0.180824E+00 0.102976E+01-0.248242E+00-0.614023E+00
ML ML 0.134380E+00 0.560760E+00 0.158012E+00-0.554201E-01
NT NT 0.492593E+00-0.272652E+00-0.479483E+00-0.288764E+00
SG SG -0.456540E+00 0.208176E+00-0.236278E-02 0.820922E+00
SY SY 0.408781E+00-0.519706E-01 0.119835E+00-0.151240E+00

b) Residuals and AMMI ANOVA for the specified model

RESIDUALS FROM THE AMMI-3 MODEL
(ENTRIES ARE SIZE OF RESIDUAL IN UNITS OF ROOT (RESIDUAL GXE MS), ROWS AND COLUMNS SORDED ACCORDING TO
MARGINAL MEANS)
|
|
|
|
|
| T
| -
| E
| F
| C
¢ MM S M B S N M E C| T
R B A G L HY T D L V| S
11 W56-50 o0 0 0 0 0 0 1 0 0 01 26
3 GUAR 60 0 0 0 0 0 0 0 0 01 26
7 UPLS 60 0 0 0 0 0 0 0 0 01 26
6 0s6 60 0 1 0 0 0 0 0 0 01 26
9 wlgl-18 o0 0 0 0 1 0 0 0 0 01 26
12 wo6-1-1 6 0 0 0 0 0 0-1 0 0 01 26
5 OL5 6 o0 0 0 0 0 0 0-1 0 01 26
1 AZU 6 0 0 0-1 0 0 0 0 0 01 26
8 VAND 1 0-1 0 0 0 0-1 0 0 01 26
4 ITl46 6 1 0-1 0-1 0 0 1 -1 01 26
10 W56-125 -1 0 0-1 0 0O O O O O O 26
2 BGORA 0o 0 0 1 0 0O 0 O0-1 0 01 26
BOX PLOT OF 132 STANDERSIZED RESIDUALS FROM LPLT= -1.919 TO ULPT= 1.662
NO.<LPLT NO.>UPLT
o*  mmmmm—e—————— I + I-————mmmmm e 0
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c) Analysis of variance for the AMMI model

3.072
3.000
2.046
2.446

ANALYSIS OF VARIANCE FOR THE AMMI MODEL
SOURCE D.F. S.S. M.S. F
TREATMENTS 11 2.63722 0.239747
LOCATIONS 10 24.4041 2.44041
TREATMENT X SITES 110 34.0890 0.309900
AMMI COMPONENT 1 20 13.8302 0.691510
AMMI COMPONENT 2 18 8.68165 0.482314
AMMI COMPONENT 3 16 4.27033 0.266896
AMMI COMPONENT 4 14 3.28167 0.234405
GXE RESIDUAL 42 4.02510
TOTAL 131 61.1303

o O oo

d) Map of best genotypes

MAP OF BEST GENOTYPES OVER THE RANGE AMMI-2 ENVIRONMENT SCORES FILE MYIELD94 12/ 2/ 4 10:33
IPAGE 9

GENOTYPE MAP SHOWING BEST GENOTYPES OVER THE RANGE OF AMMI-2 SITE SCORES (2 CHRS/PIXEL
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e) AMMI residuals, additive effects, and multiplicative scores

AMMI RESIDUALS, ADDITIVE EFFECTS AND MULTIPLICATIVE SCORES FILE MYIELD94 12/ 2/ 4 10:33
tPAGE 10
SECTION 1
VARIETY\SITE IBH ICR v |EL |MA |MB |MD |ML I
I I I I I | |
11 W56-50 10.9838E-02 |- 1-.2020 10.3310E-01  [0.1976 10.3826E-01 |-.1678 |
3 GUAR |-.7446E-01 |0, |-.8237E-01 |-.2176E-01 |0.1431E-01 |0.1810 10.2346E-01 |
7 UPL5 |-.7382E-01 |0, 10.1443 10.3403E-01 10,1213 |-.2667E-02 |0.3508 |
6 0s6 10.3069E-01 |- |-.7704E-02 |0.7376E-01 |-.1360 1-.1673 |-.1104 |
9 wig1-18 10.4614 1-.1590 .2755E-01 |0.1235 I-.1110 1-.2499 |-.3344 |-.8610E-01 |
| | | | | | | |
12 W96-1-1 |-.5918E-01 10,2717 L4936E-01 0.1329 1-.9372E-01 |-.5057E-01 |0.1318 10.1303 |
5 oLs 10.6337E-01  |-.2207 .2081 10.3549 10.1798 1-.1250 1-.3838 10.1793 |
1 AZU 10.1404 |-.8566E~ 1644 1-.3307 |-.1554 10.9750E-01 0.1713 |-.3843 |
8 VAND 10.2385 10.6005 4929E-01 |-.2694 |-.4832 1-.2136 10.3454 |1-.1763E-01 |
4 17146 1-.3822 10.2820 1047 1-.3708 1-.1523 10.4011 10.4935 10.2271 |
I I I I I | | |
10 W56-125 1-.2839 1-.3708 .3255 10.1582 10.3598 10.1905 |-.9994E-01 |-.1285 |
2 BGORA |-.7060E-01 |-.2082 .9781E-01 |0.3492 10.3368 1-.2473 1-.3732 |-.16158-01 |
I I I I | | |
SITE EFFECTS 10.1689E-01 10.8207 9497 *xx|-.2776 10.1008 10.5383 1-.2056  ***|0.8233E-01 |
AMMI1 SITE |-.4412E-01 10.3833 2737E-01 |-.6683E-01 |0.5908 1-1.596  **%|0.1808  ***|0.1344 |
AMMI2 SITE 10.1318  ***|-1.145 .6907E-01 |-.1640 |-.7283E-01 |-.2931 | 1.030 10.5608 |
I I I I I | | | |
AMMI3 SITE 10.3522  ***]0.2887E-01 |-.2916E-01 |-.9386 10.8271 10.2118  ***|-.2482  ***|0.1580  **%|
SECTION 2
VARIETY\SITE INT 156 IsY | T-EFCTS |AMMI1 TRT  |AMMI2 TRT  |AMMI3 TRT |
| I I I I | |
11 W56-50 10.4787 1-.2598 10.8390E-01 0.2493  ***|-.2538 1-.5795  **%|0.2235  **x|
3 GUAR |-.1682E-01 |0.7031E-01 |-.1098 10.2057 1-.1122  ***|-,4855 *rx|
7 UPLS 1-.9089E-01 |-.3338 |-.3255E-02  10.1345 10.8182  **%]0.6001 *rx
6 0s6 10.1143 10.3883 1-.1151 10.4793E-01 | 1.131  ***|-.4568 b
9 W181-18 |-.6196E-01 |0.3464 10.4349E-01 |0.20158-01 |-.3999 1-.4257 *xx|
I I I I I | | |
12 W96-1-1 1-.4817 1-.1002 10.6945E-01 |0.7199E-02 [0.5474 1-.6067 *rx|
5 oL5 1-.1262 10.2426 10.4395E-01 |-.5862E-02 |-.4576  ***|0.2487  ***|0. b
1 AZU 10.3373 1-.1212 10.1664 |-.6790E-01 |0.4850 10.8948 *xx|
8 VAND 1-.3882 10.3005 |-.6360E-01 |-.8316E-01 [-.5239  ***|0.3107 wrx|
4 IT146 10.2244 1-.6931 10.7504E-01 |-.9669E-01 |-.4727  ***|0.1012E-01 [-.4277  ***|
| I I I I | | |
10 W56-125 10.1691 1-.3738 10.5379E-01 [-.1385  ***|-.4135  *%%|-.5325E-01 [0.5561  ***|
2 BGORA 1-.1578 10.5338 1-.2443 1-.2727 1-.3477 10.5429  ***|-.5421  ***|
I I I I I I |
SITE EFFECTS |-.1412 10.8493E-01 |-.6978E-01 | 1.278  ***| . | | |
AMMI1 SITE 10.4926  ***|-.4565 10.4088 | | | | |
AMMI2 SITE 1-.2727 10.2082  ***|-.5197E-01 | | | | |
I I I I I I | |
AMMI3 SITE 1-.4795 1-.2363E-02 0.1198  ***| | | | |
FITTED VALUES FROM THE AMMI MODEL FILE MYIELD94 12/ 2/ 4 10:33
tPAGE 11
SECTION 1
VARIETY\SITE IBH ICR lcv IEL MR |MB |MD ML |
I I I I I | | |
11 W56-50 | 1.558 | 2.921 10.5385 | 1.152 | 1.706 | 2.688 10.6240 | 1.286 |
3 GUAR | 1.370 | 2.812 10.5100 | 1.484 | 1.386 | 2.301 10.8087 | 1.247 |
7 UPL5 | 1.542 | 1.866 10.4767 10.7984 | 2.115 10.5112 | 1.925 | 1.973 |
6 056 1 1.357 | 3.114 10.3039 10.7174 | 2.420 10.2688 10.7673 | 1.360 |
9 W181-18 1 1.115 | 2.440 10.3439 | 1.551 10.8125 | 2.502 10.6969 | 1.016 |
I I I I I | | | |
12 W96-1-1 | 1.071 | 3.000 10.2896 | 1.410 | 1.455 | 1.052 10.6440 | 1.044 |
5 oL5 | 1.461 | 1.643 10.3429 10.6698 | 1.362 | 2.539 | 1.157 | 1.486 |
1 AzZU | 1.204 | 1.183 10.3194 | 1.074 I 1.250 10.6403 | 2.099 | 1.806 |
8 VAND | 1.514 | 1.479 10.2618 10.2694 | 1.521 | 2.621 | 1.048 | 1.488 |
4 1T146 | 1.070 1 1.797 10.2582 | 1.335 10.6488 | 2.381 | 1.007 | 1.139 |
I I I I I | | | |
10 W56-125 | 1.364 1 1.879 10.1817 10.3768 | 1.460 | 2.471 10.6667 | 1.225 |
2 BGORA 10.9186 | 1.056 10.1189 | 1.171 10.4132 | 1.825 | 1.431 | 1.260 |
| | | | | | | |
SITE ESTS. 1 1.295 | 2.099 10.3288 | 1.001 | 1.379 | 1.817 | 1.073 | 1.361 I
AMMI1 SITE |-.4412E-01 10.3833 1-.2737E-01 |-.6683E-01 [0.5908 1-1.596 10.1808 10.1344 |
AMMI2 SITE 10.1318 I)-1.145 110.6907E-01 I|-.1640 I|-.7283E-01 I|-.2931 I| 1.030 110.5608 1|
| | | | | | | | |
AMMI3 SITE 10.3522 1/0.2887E-01 I|-.2916E-01 I|-.9386 110.8271 110.2118 I1-.2482 110.1580 1|
SECTION 2
VARIETY\SITE INT 156 IsY | T-ESTS. |AMMI1 TRT  |AMMI2 TRT  |AMMI3 TRT |
I I I I I I |
11 W56-50 | 1.312 | 1.607 | 1.411 | 1.528 1-.2538 I- .2235 Il
3 GUAR 1 1.517 | 1.520 | 1.369 | 1.484 1-.1122 - 2032 1|
7 UPLS | 1.417 | 1.249 | 1.670 | 1.413 10.8182 10. 11959 1|
6 086 | 1.698 10.7992 | 1.785 | 1.326 1 1.131 - .3524 Il
9 wig1-18 | 1.298 | 1.479 | 1.032 1 1.299 1-.3999 I- .4613 Il
| | | | | | |
12 W96-1-1 1 1.753 10.9952 | 1.428 | 1.286 10.5474 - 3613 1|
5 oLs 10.6772 | 1.617 | 1.043 1 1.273 1-.4576 10. .3356 Il
1 AZU | 1.228 | 1.261 | 1.252 | 1.211 10.4850 10. 3417 Il
8 VAND 10.3882 | 1.582 10.9759 1 1.195 1-.5239 10.3107 110.6738 1|
4 17146 | 1.010 | 1.486 10.8670 | 1.182 1-.4727 10.1012E-01 L4277 Il
I I I I I I | |
10 W56-125 10.5429 | 1.401 10.9705 | 1.140 |-.4135 |-.5325E-01 I]0.5561 Il
2 BGORA 10.8052 | 1.364 10.7007 | 1.006 1-.3477 10.5429 I|-.5421 1|
I I I I I | |
SITE ESTS. 1 1.137 | 1.363 | 1.209 | 1.278 | | | |
AMMI1 SITE 10.4926 |-.4565 10.4088 | | | | |
AMMI2 SITE 1-.2727 1/0.2082 I|-.5197E-01 I| | | | |
I I I I I | | |
AMMI3 SITE 1-.4795 I|-.2363E-02 110.1198 1| | | | |

AMMI Models 257




IV. Graphical Output

CropStat will also output the following AMMI plots.

1. Genotypes
a. IPCA2 x IPCA1

S[=/ed
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b. IPCA3 x IPCALI
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c. IPCA3 x IPCA2
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2. Environment
a. [PCA2 x IPCA1

S[=/ed
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b. IPCA3 x IPCALI
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c. IPCA3 x IPCA2
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3. AMMII
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4. AMMI2

VK AMMI Plots M=
File Edit Wiew Abaout
x RS

GEﬂDt}'pes] Emfir-:-nment] Akl 1 AMMI 2
INTERALCTION BIPLOT FOR THE Ahdn2 MODEL

[ AWM Bi-Plats

IPC a2

04 48 iIE 06a T2
IPCA

VARIATE: YIELD DATAFILE: MYIELD34 MODEL FIT: 66.0% OF GXE S

You can also produce the AMMI plots by running the PBGXEPLT.CMD, a command
file outputted by CropStat when running the Genotype x Environment in the
Analysis-GxE plots. AMMI also outputs a SYS file Pbstbplt.sys which graphs the
result of the stability analysis.
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PATTERN ANALYSIS

At the end of the tutorial, the user should be able to

I.

II.

e perform pattern analysis

Sample Problem

The mean yield data file MYIELD94.SYS produced by single-site analysis using the
upland rice GxE data will be used.

e Open the data file MYIELD94.SYS from the CROPSTAT7.2\TUTORIAL)\
TUTORIAL DATASETS folder.

e Create a subfolder PATTERN ANALYSIS inside your working directory C:\MY
CROPSTAT. Save MYIELDY94.SYS inside this created folder by selecting File =
Save-as.

Pattern Analysis

The input data file may be a raw data file with replicate observations for each GxE
cell, or a file of means or adjusted means saved from a single-site analysis. In the
former case, means are computed as the data are read into the GxE table. CropStat
takes account of missing observations when forming means.

The GXE matrix must have less than 180 rows (usually genotypes) and less than 100
columns (usually environments), but in total, it must not have more than about 8000
entries (NROWS*(NCOLS+2)<8200). Also, if the GXE matrix has more than 4000
entries, the ordination cannot be performed.

e Select Analysis|Pattern Analysis from the Main Window.
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KL CropStat for Windows
File Edit Data FEGEREEN Utlities ‘Window Help

E’; E % Surmary Statiskics
Scatter Ploks

Balanced AMOYA (BACY)
IUnbalanced Analwsis (GLM)
Mixed Model Analysis (REML)  *
Regression analysis L4
Single Sike Analysis

Cross Sike Analysis

G3%E Ploks t!

QTL Analysis
Log-Linear Analysis

In the Open Command file dialog box, click the Look In box and select drive
C:\MY CROPSTAT\PATTERN ANALYSIS.

In the File name box, enter MYIELD94. Click Open. Since MYIELD94.PTN
does not exist, a message box will ask if you want to create this command file.
Click Yes.

Specify the data file to be used by entering MYIELD94 as File name in the Open
Data File dialog box. Click Open.

The Pattern Analysis dialog box will appear.
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Crop5Stat: Pattern Analysis for GxE Interaction

: l Pattern Mu:udel] Elptiu:uns]
Cormmatd File : Data File - ~/ ok
& Open MYIELDS4 PTN IMYIELDS4.5YS
; i x Cancel
Data File Variables : Treagtment: Treatrment Mames: _
SETS | ? Hel
YTYND | add | 5 | i o
YARIETYS Add | Hemu:uve| EINOVE
HOS -
YIELD Site: Pattern Analpziz Rezponze: Save
Add | Rermove
Add | Hemu:we|
nifars ; 5 nRecs ; 132 WWorking direckory

Specify the treatment variate (row factor) by selecting VTYNO from Data File
Variables list, then click the Add button under the Treatment edit box.
Treatment variate may be a character variate or a numeric variate but it must
specify unique row levels for the GxE matrix. Clarity of graphical output is
enhanced if the first two characters of the treatment factor are unique.
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BIPLOT OF G & E MEANS WITH FIRST ORDINATION SCORES
(VARIATE: YIELD DATA FILE: MYIELD94 MODEL FIT: 32.1% OF TABLE SS
PLOT LABELS ARE CLUSTER ANALYSIS GROUP NUMBERS)
130 oA
14 7
078 I coe ol o
A 14
N
NS
026 - *
_ 40 WOA
>
< 186 A 15
-026 - -8 13 _
Al
A 12 A 15
o 14
-078 - 34
N
14 012
INLe)
130 ! ! p 12 ! !
03 0B 09 12 156 18 2.1
MEANS

Clarity of graphical output is enhanced if the first two characters of
the treatment factor are unique.

Specify the variate containing row factor or treatment names in addition to the
factor levels specified by treatment variate. Select VARIETYS from Data File
Variables list box, then click the Add button under Treatment names edit box.
These names are printed adjacent to the levels specified by the treatment factor in

the output tables.

GENOTYPE X ENVIRONMENT MEANS FOR VARIATE YIELD FILE MYIELD94 4/10/ 4 16:52

:PAGE 2
SECTION 1
VARIETY\SITE |BH ICR |cv |EL |MA |MB |MD |
| | | | | | | |
1 AZU | 1.344 | 1.097 10.4838 10.7437 | 1.095 10.7377 | 2.270 |
2 BGORA 10.8480 10.8477 10.2168 | 1.520 10.7500 | 1.578 | 1.058 |
3 GUAR | 1.296 | 2.999 10.3392 | 1.402 | 1.364 | 2.315 10.9897 |
4 IT146 10.6880 | 2.079 10.1535 10.9647 10.4965 | 2.782 | 1.501 |
5 OL5 | 1.52 | 1.422 10.1348 | 1.025 | 1.542 | 2.414 10.7732 |
| | | | | | | |
6 0S6 | 1.388 | 2.995 10.3518 10.7097 | 2.494 10.1328 [0.6000 |
7 UPLS | 1.468 | 1.922 10.2748 10.9427 | 2.149 10.6325 | 1.922 |
8 VAND | 1.752 | 2.079 10.2125 10.1192E-06 | 1.038 | 2.408 | 1.393 |
9 W181-18 | 1.576 | 2.281 10.3715 | 1.674 10.7015 | 2.252 10.3625 |
10 W56-125 | 1.080 | 1.508 10.5073 10.5350 | 1.820 | 2.662 10.5667 |
| | | | | | | |
11 W56-50 | 1.568 | 2.687 10.5608 10.9503 | 1.739 | 2.886 10.6622 |
12 W96-1-1 | 1.012 | 3.272 10.3390 | 1.543 | 1.362 | 1.001 10.7757 |
| | | | | | | |
SITE MEANS | 1.295 | 2.099 10.3288 | 1.001 | 1.379 | 1.817 | 1.073 |

It is useful to include variate containing treatment names in addition to the treatment
variate containing levels so that output is well annotated. These names are printed
adjacent to the levels specified by the treatment factor in the output tables. If the
treatment factor is a numeric variate, this allows inclusion of names as well as numbers
for treatments. If the treatment factor is character variate, the names variate effectively
extends the length of the treatment names by 12 characters although the first part of the
name (contained in the row factor variate) must uniquely define all the row factor levels.
Treatment names need not uniquely define all treatment levels.
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e To specify the variate defining sites or environment (column factor), select SET$
from Data File Variables list box, then click the Add button under Site edit box.
The site variate may be a character or a numeric variate but it must specify unique
column levels for the GXE matrix. Clarity of graphical output is enhanced if the
first two characters of the site factor are unique and different from the codes for

the treatment factor.

e Specify the variate to be analyzed. Select YIELD from Data File Variables list
box, then click the Add button under Pattern Analysis Response edit box.

Crop5tat: Pattern Analysis for GxE Interaction

Fattern Analysiz l Fattern M-:u:[%] Elptiu:uns]
Comrnant Fils : D ata File :
(= Dpen | \MYIELDS4.FTN \MYIELD34. 55
Data File Yaniables ©  Traatment: Treatment Marnes:
SETS | WTYNO | VARIETYS
YTYMHO
l'\"‘."j'-HlET\rI$ ,I':'l'dd | HEmD\:‘E| 'ﬁ'dd | HEmDVE|
NOS
YIELD Siter Pattern Analysis FBesponse:
| SETS YIELD
Add | Remove |
Remowve

e To specify the model, click Pattern Model tab. In the Pattern Model page, click
Entities to classify box and select BOTH from the drop-down list. Both genotype

and environment will be classified in the analysis.
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Crop5tat: Pattern Analysis for GxE Interaction

Pattern Analysiz  Pattern Model l Dptinns]

H pcune Entities to clazsify; |Eh:|th s/ k.

L4

Tranzformation; x Cancel

Location Standardized

Y Hel
Clazzification kMethod far ; ﬂ
Genotypes: |Incremental 55 [w'ard]

Save |

Erwvironments: | Incremerntal 55 [ward)

L4

Ll Lo

Analyzsiz of Group Variance] Mumber of Groups  Jptions l

v Produce table and plots from transformed data:
write zimilarity matrix for;
[ Genolypes I Ervdironmnents:

Beta Value for flesible sorting cluster bMethod:

Genotypes: 0 E rvironments: 1

niars ; 5 nRecs : 132 Working directory :

e To select the transformation, click the Transformation box from the list.
LOCATION STANDARDIZED is the default transformation. This is the

standardization technique that will be applied to the GXE matrix before pattern
analysis.

The following transformation techniques are available in CropStat:

—_—

Raw data -- no standardization

2. Location centered -- column means subtracted for each entry

3. Location standardized -- subtraction of column means and division by column standard
deviations (default)

4. Mean polish -- residuals after fitting row and column main effects by least squares

(same ordination as AMMI analysis)

Column standardized mean polish-- mean polish residuals divided by standard deviations of
the residuals in each column

e To specify the classification method for genotype and environment classification,
click Classification Method for Genotype box and select INCREMENTAL SS
(WARD) from the drop-down list. Click also the Environment box and select

Pattern Analysis 271



INCREMENTAL SS (WARD) from the drop-down list. (Note: INCREMENTAL SS
(WARD) is the default classification method.)

Several methods of hierarchical, agglomerative cluster analysis are available in pattern
analysis. The choice of method depends on the purpose of the analysis and the type of data
being classified. Each choice corresponds to different measures of distance between entities
being classified (genotypes or environment levels). The methods available are as follows:

Flexible sorting (WPGMA)
Flexible sorting (UPGMA)
Incremental SS (Ward) — default

1. None -- omit classification
2. Nearest neighbor

3. Farthest neighbor

4. Group average

5. Median

6. Centroid

7.

8.

9.

e To produce tables and plots from transformed data, click the Produce Table and
Plots from Transformed Data option. This instructs CropStat to generate tables
of genotype group by environment group means from raw or transformed data.
Fusion plots and response plots are also produced from the same data.

e To request for printing of similarity matrix for both genotypes and environments,
click Genotype and Environment boxes in Write Similarity Matrix group. The
similarity matrix between all pairs of genotypes or/and between all pairs of
environments will be printed. Specify the beta value if flexible sorting methods
(WPGMA & UPGMA) are chosen as classification method for genotype and/or
environment. In our example there is no need to change the default beta values.

Analyziz of Group "»-’arianu:e] Mumnber of Groups  Options l

[v Produce table and plots from tranzformed data:

Wfrite similarity matrix for:
v Genotypes:

e Leave the remaining components of the model page unchanged.
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Analysiz of Group Yariance | bumber of Groups ] O ptionz ]

Ranges of group numbers
Bazic Detailed

Lo: Hi: Lo Hi.
Genohypes: |E ﬂ ||:| ﬂ Genotypes: |IJ ﬂ |E| ﬂ
E rvironments: ||:| ﬂ ||:| ﬂ Ervironments: ||:| ﬂ ||:| ﬂ

&nalysiz of Group Vaiance  Number of Groups l Optionz ]

Contributions Analysis: Group Means Table:

Genotypes: i = Genotypes: 0

-

Ervironmentz: | & Ervironmentz: g &

e
-

In the Analysis of Group Variance and Number of Groups tabs, the user can
specify the final number of genotype and environment groups to be used in the
presentation of group means of standardized and raw data. Zeroes are default
values which are the minimum limits for group ANOVAs.

Click Options tab. This will bring you to the Options page.

In the heading box, type GXE INTERACTIONS BETWEEN BREEDING SITES/94
RESULTS. STANDARD AMMI AND PATTERN ANALYSIS MATERIAL FOR
BANGLADESH.

Click Environmental Index Option box. Select GROUP MEANS OF
ORDINATION AXIS-1 SCORES from the drop-down list. This is the index that
will be used as x-axis in response and fusion plots.

Click Scale for X-axis of the dendogram box to specify the values we wish to
put on the x-axis of the dendogram. Select FUSION LEVEL from the drop-down
list. Fusion number results in dendograms with equal steps which sometimes
corrects for crowding at the low fusion levels. Square root fusion level should
represent error differences at the lower fusion levels.
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e The Output width box allows the user to specify the width of the output device
in number of print characters. The default is 132 but any value between 80 and
225 is acceptable. Wider output lines (which maybe printed by using compressed
printing) allow large GxE matrices to be printed in fewer sections.

example, the default value 132 will be used.

e Leave the Check Records box blank since no special treatment check varieties is

implemented in pattern analysis.

e Click OK to run the analysis.

Crop5tat: Pattern Analysis for GxE Interaction

Pattern .-i'-.nal_l,lsis] Fattern Model  Optiot: l
Heading:

& 0K

GxE INTER&CTION3 BEETWEEN BEREEDING SITES /34 FE3ULTS.
STANDARD AMMI AND PATTEERN ANALYIIS MATERIALL FOR

EANGLADESH

£ >
Line 1 Cal1

E nviromental Index Optian: Scale for #-awiz of the dendagram:

Group Means of ordination axis-1 su:u:urj |Fusi|:|n Level ﬂ

Output *idth: 132 = Sort Character Factor, [

X Cancel

7 Heb |
Save

D ata Selection

i:

Treatment Levels: Check Fecords:

1 ”
2
3 Add
4
5 Remove
g Remove|
7 w

niars ; 5 nRecs : 132 Working directory :
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I11.

Sample Output

The following output will appear in the Text Editor. This is saved in
MYIELD.OUT.

1. Analysis specifications

GEBET PATTERN ANALYSIS FOR VARIATE YIELD FILE MYIELD94

4/10/ 4 16:52
tPAGE 1

GXE INTERACTIONS BETWEEN BREEDING SITES/94 RESULTS.

STANDARD AMMI AND PATTERN ANALYSIS MATERIAL FOR BANGLADESH.

THE GEBEI PROGRAM HAS BEEN ADAPTED FROM RESEARCH PROGRAMS OF DR. IAN DELACY, UNIVERSITY OF QUEENSLAND, AUSTRALIA

GXE MATRIX FOR YIELD: 12 GENOTYPES AND 11 ENVIRONMENTS

12 VTYNO CODES:

1 2 BGORA 3 GUAR

4 5 oLs 6 056

7 U; 8 VAND 9 W181-18
10 W56-125 11 W56-50 12 W96-1-1
11 SET$ CODES :

BH CR v EL MA

MB MD ML NT s6

sY

DATA TRANSFORMATION: Location standardised

DISTANCE MEASURE: SED

CLASSIFICATION METHOD FOR GENOTYPES: Incremental SS (Ward) 0.0000

WRITE GENOTYPE SIMILARITY MATRIX: Ye:

CLASSIFICATION METHOD FOR ENVIRONMENTS: Incremental SS (Ward) 0.0000

WRITE ENVIRONMENT SIMILARITY MATRIX: Yes

ANALYSE GROUP VARIANCE FOR 4 TO 12 GENOTYPE AND 4 TO 11 ENVIRONMENT GROUPS
DETAILED GROUP ANOVA FOR 9 TO 9 GENOTYPE AND 8 TO 8 ENVIRONMENT GROUPS
CONTRIBUTIONS ANALYSIS DOWN TO 0 GENOTYPE AND 0 ENVIRONMENT GROUPS

GROUP MEANS TABLES FOR 9 GENOTYPE AND 8 ENVIRONMENT GROUPS

2. Table of means

GENOTYPE X ENVIRONMENT MEANS FOR VARIATE YIELD FILE MYIELD94  4/10/ 4 16:52
tPAGE 2
GXE INTERACTIONS BETWEEN BREEDING SITES/94 RESULTS.
STANDARD AMMI AND PATTERN ANAL MATERTAL FOR BANGLADESH.
SECTION
VARIETY\SITE IBH ICR lcv IEL [N |MB |MD ML |
| | | | | | | |
1 AZU | 1.344 1 1.097 10.4838 10.7437 1 1.095 10.7377 | 2.270 | 1.421 I
2 10.8480 10.8477 10.2168 I 1.520 10.7500 | 1.578 | 1.058 | 1.244 I
3 | 1.296 1 2.999 10.3392 | 1.402 | 1.364 | 2.315 10.9897 | 1.270 |
4 10.6880 | 2.079 10.1535 10.9647 10.4965 | 2.782 | 1.501 | 1.366 |
5 | 1.524 | 1.422 10.1348 | 1.025 | 1.542 | 2.414 10.7732 | 1.665 |
I I I I I I | | |
6 | 1.388 | 2.995 10.3518 10.7097 | 2.494 10.1328 10.6000 | 1.250 |
7 | 1.468 | 1.922 10.2748 10.9427 | 2.149 10.6325 | 1.922 | 2.324 |
8 1 1.752 1 2.079 10.2125 10.1192E-06 | 1.038 | 2.408 1 1.393 | 1.470 |
9 | 1.576 | 2.281 10.3715 | 1.674 10.7015 | 2.252 10.3625 10.9295 I
10 | 1.080 | 1.508 10.5073 10.5350 | 1.820 | 2.662 10.5667 | 1.096 |
| | | | | | | | |
11 W56-50 | 1.568 | 2.687 10.5608 10.9503 1 1.739 | 2.886 10.6622 | 1.118 |
12 W96-1-1 | 1.012 I 3.272 10.3390 | 1.543 | 1.362 | 1.001 10.7757 | 1.174 |
| I I I I | | |
SITE MEANS I 1.295 | 2.099 10.3288 | 1.001 | 1.379 | 1.817 | 1.073 | 1.361 |
SECTION 2
VARIETY\S INT 156 IsY ITRT MEANS |
I I | I
1 AzU | 1.565 | 1.140 | 1.418 I 1.211 |
2 BGORA 10.6473 | 1.898 10.4563 | 1.006 |
3 GUAR | 1.501 | 1.590 | 1.260 | 1.484 |
4 17146 | 1.234 10.7925 10.9420 | 1.182 |
5 oLs 10.5510 | 1.860 | 1.087 1 1.273 |
| | | | |
6 | 1.812 | 1.188 | 1.670 | 1.326 |
7 | 1.32 10.9150 | 1.667 | 1.413 |
8 I 0.0000 | 1.883 10.9123 1 1.195 |
9 | 1.236 | 1.825 | 1.076 1 1.299 |
10 10.7120 | 1.027 | 1.024 | 1.140 |
I I | I I
11 1 1.791 | 1.347 | 1.495 | 1.528 |
12 | 1.271 10.8950 | 1.497 | 1.286 |
| | | |
SITE MEANS 1 1.137 | 1.363 1 1.209 | 1.278 |
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3. Matrix of transformed means

TRANSFORMED GXE MATRIX FOR VARIATE YIELD FILE MYIELD94  4/10/ 4 16:52
tPAGE 3
GXE INTERACTIONS BETWEEN BREEDING SITES/94 RESULTS
STANDARD AMMI AND PATTERN ANALYSIS MATERIAL FOR BANGLADESH
SECTION 1
VARIETY\SITE IBH ICR lcv IEL MR |MB ML
I I I I I | |
1 AzZU 10.1505 1-1.277 1 1.123 1-.5336 1-.4707 1-1.128 10.1691
2 BGORA 1-1.38 1-1.594 8117 | 1.078 |-1.041 1-.2499 1-.3251
3 GUAR 10.2061E-02 | 1.146 10.7576E-01 10.8323 |-.2478E-01 |0.5211 |-.2514
4 17146 1-1.878 1-.2520E-01 |-1.270 |-.7504E-01 |-1.461 009 10.1386E-01
5 oLs 10.7071 1-.8627 1-1.406 10.4945E-01  0.2697 10.6249 10.8478
| I I I I | |
6 0s6 10.2866 | 1.142 10.1663 |-.6041 | 1.844 1-1.761 1-.3091
7 UPL5 10.5339 1-.2261 1-.3915 1-.1207 | 1.274 1-1.238 | 2.68
8 VAND | 1.412 |-.2520E-01 |-.8424 1-2.077 |-.5646 10.6181 10.3048
9 wig1-18 10.8679 10.2317 10.3094 1 1.397 1-1.121 10.4555 1-1.201
10 W56-125 1-.6659 1-.7527 1 1.293 1-.9665 10.7293 10.8840 |-.7366
I I I I I | |
11 W56-50 10.8432 10.7490 | 1.680 |-.1048 10.5949 | 1.118 |-.6746
12 W96-1-1 |-.8762 | 1.494 10.7395E-01 | 1.125 1-.2933E-01 |-.8531 |-.5187
| | | | | |
SECTION 2
VARIETY\SITE INT 156
I I
1 AzZU 10.7783 1-.5230
2 BGORA 1-.8906 | 1.251
3 GUAR 10.6607 10.5306
4 17146 10.1765 1-1.337
5 oLs 1-1.066 1 1.163
| | |
6 086 | 1.227 |-.4118 |
7 UPL5 10.3438 1-1.050 I
8 VAND 1-2.067 | 1.217 |
9 wi81-18 10.1790 | 1.081 |
10 W56-125 1-.7730 |-.7864 |
I I I I
11 W56-50 | 1.188 1-.3717E-01 10.7954
12 W96-1-1 10.2432 1-1.097 10.8019
| |

4. Proximity matrix and fusion table for genotypes

CLUSTER ANALYSIS FOR VARIATE YIELD FILE MYIELD94  4/10/ 4 16:52

: 4
GXE INTERACTIONS BETWEEN BREEDING SITES/94 RESULTS
STANDARD AMMI AND PATTERN ANALYSIS MATERIAL FOR BANGLADESH

SECTION 1 DISSIMILARITY MATRIX FOR GENOTYPES
1 2 3

4 5 6
1
2 0.2498162E+01
3 0.1640048E+01 0.1802566E+01
4 0.1971440E+01 0.1486083E+01 0.1379180E+01
5 0.2264308E+01 0.1228961E+01 0.1126540E+01 0.1886261E+01
6 0.1963476E+01 0.3989616E+01 0.1254960E+01 0.3227008E+01 0.2458570E+01
7 0.1306940E+01 0.3893648E+01 0.2098171E+01 0.2814254E+01 0.2059137E+01
8 0.2528595E+01 0.2265742E+01 0.2053825E+01 0.2513581E+01 0.8532936E+00
9 0.2401554E+01 0.1506533E+01 0.5462394E+00 0.2174337E+01 0.1289922E+01
10 0.1780632E+01 0.1979573E+01 0.1312945E+01 0.1684661E+01 0.1549019E+01
11 0.1813547E+01 0.3408041E+01 0.5980002E+00 0.2594474E+01 0.2061062E+01
12 0.1862951E+01 0.2490697E+01 0.5753903E+00 0.1484679E+01 0.2151486E+01
SECTION 2 DISSIMILARITY MATRIX FOR GENOTYPES
7 8 9 10 11 12
5
8 0.3042713E+01
9 0.3739393E+01  0.2247032E+01
10 0.2872392E+01 0.1930903E+01 0.1657462E+01
11 0.2654386E+01 0.2734167E+01 0.1086459E+01 0.1058775E+01
12 0.2078122E+01 0.3291159E+01 0.1340913E+01 0.1597767E+01 0.1268786E+01

Classification of Genotypes

GpI + GpJ = GpIJ at Fusion level NO ELEMENTS NAMES OF FUSING ELEMENTS

3+ 13 .54624 2 3 GUAR +9 W181-18
5+ 14 85329 2 s oLs + 8 VAND

13 + 15 94089 3 Gep 13 + 11 W56-50
6+ 16 .96432 2 s 0s6 +12 WI-1-1
1+ 17 1.3069 2 1 AzU +7 UPLS
2+ 18 1.4861 2 2 BGORA + 4 IT146
15 + 19 1.6428 4 GGp 15 + 10 W56-125
19 + 20 2.1736 6 GGp 19 + GGp 16

18 + 21 2.7776 4 GGp 18 + GGp 14

17 + 22 4.0947 8 GGp 17 + GGp 20

22 + 23 5.2136 12 Gep 22 + GGp 21

1662592E+01
3401126E+01
2354961E+01
1970366E+01
1216101E+01
9643190E+00
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5. Proximity matrix and fusion table for environments

SECTION 1 DISSIMILARITY MATRIX FOR ENVIRONMENTS
Bl CR cv EL MA MB
BH
CR 0.1558574E+01
cv 0.1484759E+01 0.1506712E+01
EL 0.2463628E+01 0.1513462E+01 0.1933183E+01
MA 0.1202815E+01 0.1256456E+01 0.1222160E+01 0.2371763E+01
MB 0.1845556E+01 0.1978637E+01 0.1902356E+01 0.1940587E+01 0.2646384E+01
MD 0.1949919E+01 0.2580480E+01 0.2128765E+01 0.2415456E+01 0.2126291E+01 0.2442856E+01
ML 0.1474122E+01 0.2281367E+01 0.2604685E+01 0.2309487E+01 0.1238110E+01 0.2465593E+01
NT 0.1943328E+01 0.9416354E+00 0.8662494E+00 0.1205791E+01 0.1199660E+01 0.2523885E+01
5G 0.1007389E+01 0.2295856E+01 0.2334562E+01 0.1647418E+01 0.2393805E+01 0.1266714E+01
sY 0.1166117E+01 0.7747416E+00 0.1032728E+01 0.1971058E+01 0.5286838E+00 0.2795747E+01
SECTION 2 DISSIMILARITY MATRIX FOR ENVIRONMENTS
D ML T 56 SY
MD
ML 0.6511404E+00
NT 0.1822207E+01 0.2051208E+01
5G 0.2386561E+01 0.2183672E+01 0.2755997E+01
sY 0.1643255E+01 0.1320395E+01 0.5305052E+00 0.2835927E+01
Classification of Environments
GpI + GpJ = GpIJ at Fusion level NO ELEMENTS NAMES OF FUSING ELEMENTS
5+ 11 12 .52868 2 MA + SY
7+ 8 13 .65114 2 MD + ML
3+ 14 .86625 2 cv + NT
1+ 15 1.0074 2 BH + SG
2+ 16 1.1779 3 CR + LGp 12
16 + 17 1.3710 5 LGp 16 + LGp 14
15 + 18 1.7391 3 LGp 15 + MB
18 + 19 2.3392 4 LGp 18 + EL
19 + 20 3.7466 6 LGp 19 + LGp 13
20 + 21 4.5583 11 LGp 20 + LGp 17
6. Basic group ANOVA
COMBINED ANOVA FOR RAW DATA VALUES OF YIELD FILE MYIELD94 4/10/ 4 16:52
:PAGE 5
GXE INTERACTIONS BETWEEN BREEDING SITES/94 RESULTS.
STANDARD AMMI AND PATTERN ANALYSIS MATERIAL FOR BANGLADESH. 1
SOURCE DF SUM OF SQUARES MEAN SQUARES % OF TOT.
ENVS. 10 24.404085 2.440408 39.9% OF TOTSS
GENS. 11 2.637222 0.239747 4.3% OF TOTSS
GEN X ENV 110 34.088966 0.309900 55.8% OF TOTSS
HET 11 3.857300 0.350664 11.3% OF GESS
DEV 99 30.231667 0.305370 88.7% OF GESS
TOTAL 131 61.130272
TOT GSS 36.726189 60.1% OF TOTSS
REORDER S5 12.889073 35.1% OF TGSS
37.8% OF GESS
NON REO SS 23.837103 64.9% OF TGSS
TOT ESS 58.493050 95.7% OF TOTSS
BASIC GROUP ANOVA FOR TRANSFORMED VALUES OF VARIATE YIELD FILE MYIELD94 4/10/ 4 16:52
1 PAGE 6
GXE INTERACTIONS BETWEEN BREEDING SITES/94 RESULTS.
STANDARD AMMI AND PATTERN ANAL IS MATERIAL FOR BANGLADESH.
BETWEEN GROUP SS AS A PERCENTAGE OF TOTAL SS (BSS%), WITHIN GROUP DF (WDF) AND MS (WMS)
FOR A RANGE OF DATA ARRAYS REDUCED FROM THE ORIGINAL 12 GENOTYPE BY 11
ENVIRONMENT ARRAY ( 132 CELLS) BY CLUSTER ANALYSIS (TOTAL SS = 121.00 )
NO. OF 1 NO. OF ENVIRONMENT GROUPS
GEN GPS | 4 5 6 7 8 9 10 11
] 1 1 1 I I I I |
BSS%| 41.85 1 44.80 1 47.21 [} 50.07 [} 53.32 | 53.95 I 54.53 I 54.94 I
4 WDF | 116 ] 112 1 108 1 104 1 100 I 9 I 92 I 88 [}
WMS | 0.6065 | 0.5963 | 0.5914 | 0.5809 | 0.5648 | 0.5804 | 0.5980 | 0.6196 I
] 1 1 1 I I I I |
BSS%| 48.04 1 52.23 1 56.24 | 59.11 [} 62.44 | 63.79 I 64.39 I 64.82 I
5 WDF | 112 1 107 1 102 1 97 1 92 I 87 I 82 I 77 [}
WMS | 0.5614 | 0.5403 | 0.5191 | 0.5101 | 0.4940 | 0.5036 | 0.5254 | 0.5529 I
] 1 1 1 I I I I |
BSS%| 51.49 1 56.55 1 60.57 | 64.45 [} 67.79 | 70.44 [} 71.05 I 72.28 I
6 WDF | 108 ] 102 1 96 1 90 1 84 I 78 I 72 I 66 [}
WMS | 0.5435 | 0.5154 | 0.4970 | 0.4779 | 0.4640 | 0.4585 | 0.4865 | 0.5081 I
] 1 1 1 I I I I |
BSS%| 53.54 1 60.77 1 64.92 | 69.14 | 73.38 I 76.51 [} 77.16 I 79.04 I
7 WDF | 104 ] 97 1 90 1 83 1 7 I 6! I 62 I 55 [}
WMS | 0.5406 | 0.4894 | 0.4716 | 0.4499 | 0.4239 | 0.4119 | 0.4457 | 0.4612 I
] 1 1 1 I I I I |
BSS%| 54.57 ] 61.80 1 68.22 | 72.45 [} 76.85 | 80.23 I 82.87 I 84.98 I
8 WDF | 100 ] 92 1 84 1 76 1 6! I 60 I 52 I 44 [}
WMS | 0.5497 | 0.5024 | 0.4578 | 0.4387 | 0.4119 | 0.3987 | 0.3985 | 0.4131 I
] 1 1 1 I I I I |
BSS%| 56.71 1 64.87 1 71.29 [} 76.16 | 80.62 | 84.16 I 86.85 I 89.36 I
9 WDF | 96 ] 87 1 78 1 69 1 60 I 51 I 42 I 33 [}
WMS | 0.5456 | 0.4886 | 0.4453 | 0.4180 | 0.3909 | 0.3758 | 0.3787 | 0.3901 I
] 1 1 1 I I I I |
BSS%| 59.67 1 68.08 1 74.63 [} 79.85 [} 84.73 I 88.42 I 91.11 I 93.64 I
10 WDF | 92 ] 82 1 72 1 62 1 52 I 42 [} 32 I 22 [}
WMS | 0.5305 | 0.4710 | 0.4264 | 0.3933 | 0.3553 | 0.3337 | 0.3360 | 0.3499 I
] 1 1 1 I I I I |
BSS%| 61.74 1 70.20 1 76.74 | 82.58 [} 87.55 I 91.74 I 94.97 I 97.52 I
11 WDF | 88 1 77 1 66 1 55 1 44 I 33 [} 22 I 11 [}
WMS | 0.5261 | 0.4684 | 0.4265 | 0.3833 | 0.3424 | 0.3028 | 0.2769 | 0.2731 I
] 1 1 1 I I I I |
BSS%| 63.60 1 72.22 1 79.02 | 84.86 | 89.85 | 94.15 [} 97.38 I 100.00 I
12 WDF | 84 ] 72 1 60 1 48 1 36 [} 24 [} 12 I 0 I
WMS | 0.5244 | 0.4669 | 0.4231 | 0.3817 | 0.3410 | 0.2950 | 0.2643 I
] 1 1 1 I I I I |
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(continuation of Basic Group ANOVA)

PERCENTAGES OF ENVIRONMENT S.S. RETAINED AMONG ENVIRONMENT GROUPS (3ESS),
GENOTYPE 5.5. RETAINED AMONG GENOTYPE GROUPS (%GSS), AND INTERACTION §.S.
RETAINED IN AMONG X AMONG GROUPS (%GXESS) FOR A RANGE OF REDUCED DATA ARRAYS
PRODUCED BY CLUSTER ANALYSIS

+ + + + + + + + +
$ESS + 0.00 + 0.00 + 0.00 + 0.00 + 0.00 + 0.00 + 0.00 + 0.00 +
+ + + +

%GXESS

NO. ENVIRONMENT GROUPS
6 7

3GSS 4 5 9 10 11

bbb

+ + + + + + + + + + +
+ 62.63 + 4+ 39.33 + 42.64 + 45.34 + 48.55 + 52.19 + 52.90 + 53.55 + 54.00 +
+ + + + + + + + + + +
e,

+ + + + + + + + + + +
+ 63.02 + 5 + 46.22 + 50.92 + 55.42 + 58.63 + 62.37 + 63.88 + 64.56 + 65.03 +
+ + + + + + + + + + +
e,

+ + + + + + + + + + +
+ 83.95 + 6 + 47.55 + 53.23 + 57.74 + 62.09 + 65.83 + 68.80 + 69.49 + 70.87 +
+ + + + + + + + + + +
e,

+ + + + + + + + + + +
+ 84.47 + NO. 7 + 49.79 + 57.89 + 62.55 + 67.28 + 72.03 + 75.55 + 76.28 + 78.38 +
+ + + + + + + + + + +
e,

+ + + + + + + + + +
+ 89.01 + GEN 8 + 50.40 + 58.50 + 65.70 + 70.44 + 75.38 + 79.17 + 82.13 + 84.49 +
+ +

+ + + + + + + + +
e,

+ + + + + + + + + + +
+ 90.68 + GPS 9+ 52.59 + 61.74 + 68.94 + 74.40 + 79.40 + 83.37 + 86.39 + 89.20 +
+ + + + + + + + + + +
e,

+ + + + + + + + + + +
+ 96.03 + 10 + 55.26 + 64.69 + 72.03 + 77.88 + 83.36 + 87.49 + 90.52 + 93.35 +
+ + + + + + + + + + +
e,

+ + + + + + + + + + +
+97.13 + 11 + 57.44 + 66.93 + 74.27 + 80.81 + 86.39 + 91.09 + 94.70 + 97.56 +
+ + + + + + + + + + +
e,

+ + + + + + + + + + +
+100.00 + 12 + 59.18 + 68.85 + 76.47 + 83.02 + 88.62 + 93.44 + 97.06 + 100.00 +
+ + + + + + + + + + +
bR

7. Detailed group ANOVA

DETAILED ANOVA OF TRANSFORMED DATA FOR 9 GENOTYPE GROUPS (VTYNO) AND 8 ENVIRONMENT GROUPS (SET$

SOURCE £ DF MS ss DF 1S ss DF Ms
GEN 0.1309E+02 11 0.1190E+01 VARIABILITY BEFORE CLUSTERING

AMG GEN GPS 0.1187E+02 8 0.1483E+01 VARIABILITY RETAINED BY CLUSTERING

W/I GEN GPS 0.1219E+01 3 0.4064E+00 VARIABILITY LOST WITHIN CLUSTERS

W/I GEN GP I 0.1075E+01 2 0.5376E+00 0.1440E+00 1 0.1440E+00

GEN x ENV .1079E+03 110 0.9810E+00 VARIABILITY BEFORE CLUSTERING
AMG GEN GPSxAMG ENV GPS0.8568E+02 56 0.1530E+01 VARIABILITY RETAINED BY CLUSTERING

2MG ENV GPS0.1058E+02 24 0.4408E+00 VARIABILITY LOST WITHIN CLUSTERS
AMG GEN GPSxW/I ENV GPJO.4285E+01 8 0.5356E+00 0.3261E+01 8 0.4076E+00 0.3034E+01 8 0.3792E+00

2MG ENV GPSxW/I GEN GPS0.9956E+01 21 0.4741E+00 VARIABILITY LOST WITHIN CLUSTERS
AMG ENV GPSxW/I GEN GPI0.6690E+01 14 0.4779E+00 0.3266E+01 7 0.4666E+00

.1885E+00 VARIABILITY LOST WITHIN CLUSTERS
L1502E+00 0.5527E-02 2 0.2764E-02 0.1080E+00 2 0.5399E-01

W/I GEN x W/I ENV GPS 0.1697E+01
W/I G GP 15 xW/I E GP JO0.3003E+00

o

W/I G GP 14 xW/I E GP J0.6122E+00 1

L6122E+00 0.6403E+00 1 0.6403E+00 0.3047E-01 1 0.3047E-01

TOTAL (TRANSFORMED DATA)(0.1210E+03 131 0.9237E+00

ORDER OF GEN GROUPS (I) IN OUTPUT ABOVE: 15 14 12 10 7 6 4 2 1
ORDER OF ENV GROUPS (J) IN OUTPUT ABOVE: 14 13 12 10 6 4 2 1
*, ** INDICATE COMPONENT MSs SIGNIFICANTLY LARGER THAN CORRESPONDING POOLED MS AT THE 5% AND 1% LEVELS

% TOTAL SS IN AMONG,AMONG*AMONG GPS 80.62
% GEN SS IN AMONG GEN GROUPS 90.68
% G*E IN AMONG GEN GPS * AMONG ENV GPS 79.40
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(continuation of detailed group ANOVA)

INTO AMONG- AND WITHIN- GROUP COMPONENTS FOR (1) VTYNO (2) SET$
AND (3) TWO-WAY VTYNO BY SET$ CLASSIFICATION
PARTITION OF
SS AMG & W/I
VTYNO (V) 11 13.09 1.19 -
AMONG V GROUPS 8 11.87 1.48 90.68
WITHIN V GROUPS 3 1.22 0.41 9.32
(1) SET$ (8) 10 0.00 0.00 -
VTYNO * SET$ 110 107.91 0.98 -
AMONG V GROUPS * S 80 96.26 1.20 89.20
REMAINDER 30 11.65 0.39 10.80
VTYNO (V) 11 13.09 1.19 -
SET$ S) 10 0.00 0.00 -
AMONG S GROUPS 7 0.00 0.00 95.25
(2) WITHIN S GROUPS 3 0.00 0.00 4.75
VTYNO * SET$ 110 107.91 0.98 -
V * AMONG S GROUPS 77 95.64 1.24 88.62
REMAINDER 33 12.28 0.37 11.38
VTYNO (V) 11 13.09 1.19 -
AMONG V GROUPS 8 11.87 1.48 90.68
WITHIN V GROUPS 3 1.22 0.41 9.32
T (5) 10 0.00 0.00 -
AMONG S GROUPS 7 0.00 0.00 95.25
(3) WITHIN S GROUPS 3 0.00 0.00 4.75
VTYNO * SET$ 110 107.91 0.98 -
AMONG V GRPS * AMONG S GRPS 56 85.68 1.53 79.40
REMAINDER 54 22.23 0.41 20.60
AMONG V GRPS * WITHIN S GRPS 24 10.58 0.44 9.80
WITHIN V GRPS * AMONG S GRPS 21 9.96 0.47 9.23
WITHIN V GRPS * WITHIN S GRPS 9 1.70 0.19 1.57
TOTAL SUM OF SQUARES 121.00
TOTAL SUM OF SQUARES AMONG GROUPS 97.55
PERCENTAGE OF TOTAL SUM OF SQUARES RETAINED AMONG GROUPS 80.62
PARTITION OF VARIATION IN SEVERAL DATA ARRAYS AFTER REDUCTION OF THE
ORIGINAL 12 VTYNO X 11 SETS$ ARRAY ( 132 CELLS) BY
CLUSTER ANALYSIS
PORTION OF S.S. RETAINED AMONG GROUPS (%)
NO. VTY NO. SE ARRAY % TOTAL VTYNO SET$ VXT
GRPS. GRPS. SIZE REDUCTION S5.8. S5.8 S5.8. S5.8.
9 8 72 45.45 80.62 90.68 0.00 79.40
8. Ordination analysis
ORDINATION ANALYSIS OF TRANSFORMED GXE MATRIX FILE MYIELDS94 4/10/ 4 16:52
:PAGE 7
GXE INTERACTIONS BETWEEN BREEDING SITES/94 RESULTS.
STANDARD AMMI AND PATTERN ANALYSIS MATERIAL FOR BANGLADESH.
SINGULAR VALUES OF TRANSFORMED GXE MATRIX (CONDITION= 0)
6.2285 5.1433 4.4085 3.4863 3.0238 2.6726 2.1749 1.3769 1.0137 .46688
.73792E-01
SCORES FOR FIRST FOUR ORDINATION AXES FOR GENOTYPE
11 AZU -0.409547E+00-0.705356E+00-0.408650E+00-0.710545E+00
2 2 BGORA 0.125028E+01 0.464686E-03-0.632042E+00 0.313403E+00
3 3 GUAR -0.123719E+00 0.523727E+00-0.673063E-02 0.372324E+00
4 4 IT146 0.518712E+00-0.130193E+00-0.116774E+01-0.321888E+00
5 5 OLS 0.642778E+00-0.387686E+00 0.590299E+00 0.613573E+00
6 6 0s6 -0.118927E+01 0.160810E+00 0.289844E+00 0.336052E+00
707 UPL5 -0.905027E+00-0.132677E+01-0.116595E+00 0.449869E+00
8 8 VAND 0.838857E+00-0.702505E+00 0.110945E+01-0.198939E+00
9 9 wW181-18 0.410367E+00 0.982292E+00 0.251954E+00 0.408401E+00
10 10 W56-125 0.130100E+00 0.274233E+00 0.180312E+00-0.113816E+01
11 11 W56-50 -0.600708E+00 0.767450E+00 0.547153E+00-0.530933E+00
12 12 W96-1-1 -0.562822E+00 0.543533E+00-0.637254E+00 0.406838E+00
SCORES FOR FIRST FOUR ORDINATION AXES FOR ENVIRONMENTS
BH BH -0.272028E+00-0.184497E+00 0.139028E+01 0.247390E+00
CR CR -0.746269E+00 0.728574E+00 0.170469E+00 0.505290E+00
cv cv -0.698756E+00 0.599622E+00 0.238038E+00-0.104332E+01
EL EL 0.672760E-01 0.770525E+00-0.774261E+00 0.981226E+00
MA MA -0.998056E+00-0.205041E+00 0.605187E+00 0.929833E-01
MB MB 0.779411E+00 0.525896E+00 0.352672E+00-0.589932E+00
MD MD -0.960675E-01-0.118379E+01-0.519460E+00-0.325744E+00
ML ML -0.254757E+00-0.128000E+01 0.191592E-01 0.498115E+00
NT NT -0.104189E+01 0.464368E+00-0.492668E+00 0.293082E-01
SG SG 0.836051E+00 0.206871E+00 0.868494E+00 0.620184E+00
SsY SsY -0.128163E+01-0.914453E-01 0.180604E+00 0.148577E+00

ANOVA FOR THE PCA ORDINATION OF THE TRANSFORMED DATA

SOURCE D.F. 5.8, % TABLE SS
PCA COMPONENT 1 20 38.7943 32.1
BCA COMPONENT 2 18 26.4532 21.9
PCA COMPONENT 3 16 19.4352 16.1
PCA COMPONENT 4 14 12.1542 10.0
RESIDUAL AFTER 2 94 55.7526

TOTAL MATRIX 132 121.000
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9. Residual matrix

RESIDUALS FROM THE PCA-2 MODEL

(ENTRIES ARE SIZE OF RESIDUAL IN UNITS OF ROOT (RESIDUAL GXE MS

B CCEMUMMMNSS

H RV LABDILTG Y
1 AZU 0-1 1 0-1 0 1-1 0 0 0
2 BGORA -1 001 0-100 00 0
3 GUAR 000000000000
4 17146 -2 0-1 0-1 0 0 0 1-2 0
5 oLs 100 01 0-1 00 00
6 056 0000 0-100 000
7 UPLS 0000 10000 0O0O0
8 VAND 110-2 000 0-10 0
9 W181-18 1000 00000 00
10 W56-125 0-1 1-1 1.0 0 0 0-1 0
11 W56-50 10100100000
12 W96-1-1 -1 0 0 0 0 0 00 O0 0 0

132 STANDERSIZED RESIDUALS FROM LPLT= -2.,287 TO ULPT= 1.962
NO.>UPLT
0
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10. Group membership and group means

GROUP MEMBERSHIP FOR

Location standardised VALUES OF YIELD FILE MYIELD94  4/10/ 4 16:52
:PAGE

Membership at the 9

Membe:

Group Number
name

in Gp.

[FRTE CR=SEPAF I

W e e e
W o e e
=

Membership at the 8

NO. NAMI

8
GXE INTERACTIONS BETWEEN BREEDING SITES/94 RESULTS
STANDARD AMMI AND PATTERN ANALYSIS MATERIAL FOR BANGLADESH

group level

rs of group
E

AZU
BGORA
IT146
0s6
UPLS
W56-125
W96-1-1
oLs
GUAR

VAND
W181-18

©o
©o

11 11 W56-50

group level

Group Number Members of group
name  in Gp. NO. NAME
1 1 BH
1 2 CR
1 4 EL
1 6 MB
110 SG
2 5 MA 11 sy
2 7 MD 8 ML
» 2 3 cv NT
GENOTYPE GROUP MEANS FOR Location standardised VALUES OF YIELD FILE MYIELD94  4/10/ 4 16:52
: 9
GXE INTERACTIONS BETWEEN BREEDING SITES/94 RESULTS
STANDARD AMMI AND PATTERN ANALYSIS MATERIAL FOR BANGLADESH
Genotype group means - Section 1
Group  Group Location
Mean IBH ICR Icv IEL [0S 1MB IMD IML
| I | | | | | | |
0.083 | 0.150 | -1.277 | 1.123 | -0.534 | -0.471 | -1.128 | 2.043 | 0.169
-0.553 | -1.383 | -1.594 | -0.812 | 1.078 | -1.041 | -0.250 | -0.026 | -0.325
-0.441 | -1.878 | -0.025 | -1.270 | -0.075 | -1.461 | 1.009 | 0.730 | 0.014
0.187 | 0.287 | 1.142 | 0.166 | -0.604 | 1.844 | -1.761 | -0.807 | -0.309
0.412 | 0.534 | -0.226 | -0.391 | -0.121 | 1.274 | -1.238 | 1.449 | 2.681
-0.286 | -0.666 | -0.753 | 1.293 | -0.967 | 0.729 | 0.884 | -0.863 | -0.737
-0.013 | -0.876 | 1.494 | 0.074 | 1.125 | -0.029 | -0.853 | -0.507 | -0.519
-0.128 | 1.060 | -0.444 | -1.124 | -1.014 | -0.147 | 0.621 | 0.018 | 0.576
0.290 | 0.571 | 0.709 | 0.689 | 0.708 | -0.184 | 0.698 | -0.685 | -0.709
I I I I I I | | |
0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000
Genotype group means - Section 2
Group  Group Location
Name  Mean INT 156 IsY
| | | |
0.083 | 0.778 | -0.523 | 0.582
-0.553 | -0.891 | 1.251 | -2.090
-0.441 | 0.177 | -1.337 | -0.741
0.187 | 1.227 | -0.412 | 1.281
0.412 | 0.344 | -1.050 | 1.272
-0.286 | -0.773 | -0.786 | -0.512
-0.013 | 0.243 | -1.097 | 0.802
-0.128 | -1.566 | 1.190 | -0.581
0.290 | 0.676 | 0.525 | 0.189
1 [ I
ean | 0.000 | 0.000 | 0.000 | 0.000
LOCATION GROUP MEANS FOR Location standardised VALUES OF YIELD FILE MYIELD94  4/10/ 4 16:52
:PAGE 10
GXE INTERACTIONS BETWEEN BREEDING SITES/94 RESULTS
STANDARD AMMI AND PATTERN ANALYSIS MATERIAL FOR BANGLADESH
Location group means - Section 1
Group  Group Genotype
Name  Mean 11 12 13 14 5 16 17 18
|azU | BGORA |GUAR 117146 1015 1056 1UPLS | VAND
| | I | | | | | |
ep_1 | 0.000 | 0.150 | -1.383 | 0.002 | -1.878 | 0.707 | 0.287 | 0.534 | 1.412 |
6p_2 | 0.000 | -1.277 | -1.594 | 1.146 | -0.025 | -0.863 | 1.142 | -0.226 | -0.025
Gp_4 | 0.000 | -0.534 | 1.078 | 0.832 | -0.075 | 0.049 | -0.604 | -0.121 | -2.077
1Gp_6 | 0.000 | -1.128 | -0.250 | 0.521 | 1.009 | 0.625 | -1.761 | -1.238 | 0.618
LGp_10 | 0.000 | -0.523 | 1.251 | 0.531 | -1.337 | 1.163 | -0.412 | -1.050 | 1.217
L6p_12 | 0.000 | 0.055 | -1.566 | 0.058 | -1.101 | -0.034 | 1.562 | 1.273 | -0.694
1Gp_13 | 0.000 | 1.106 | -0.175 | -0.197 | 0.372 | 0.168 | -0.558 | 2.065 | 0.426
1Gp_14 | 0.000 | 0.950 | -0.851 | 0.368 | -0.547 | -1.236 | 0.696 | -0.024 | -1.455
| | | | | | | | | |
| 0.000 | 0.083 | -0.553 | 0.317 | -0.441 | -0.047 | 0.187 | 0.412 | -0.209
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(continuation of group membership and group means)

Location group means - Section 2

Group  Group Genotype
Name  Mean 19 111 112
1W181-18 1W56-125 1W56-50 1W96-1-1
| | | |
0.000 | 0.868 | -0.666 | 0.843 | -0.876
0.000 | 0.232 | -0.753 | 0.749 | 1.494
0.000 | 1.397 | -0.967 | -0.105 | 1.125
0.000 | 0.455 | 0.884 | 1.118 | -0.853
0.000 | 1.081 | -0.786 | -0.037 | -1.097
0.000 | -0.745 | 0.109 | 0.695 | 0.386
0.000 | -1.206 | -0.800 | -0.688 | -0.513
0.000 | 0.244 | 0.260 | 1.434 | 0.159
| | | | |
0.000 | 0.056 | -0.286 | 0.496 | -0.013

GXE GROUP MEANS FOR Location standardised VALUES OF YIELD FILE MYIELD94  4/10/ 4 16352
:PAGE 11

GXE_INTERACTIONS BETWEEN BREEDING SITES/94 RESULTS
STANDARD AMMI AND PATTERN ANALYSIS MATERIAL FOR BANGLADESH

Genotype group by location group means

Group  Group Location group
Name ~ Mean  LGp_1 LGp_2 1LGp_4 1Gp_ 6 LGp_10 LGp_12 LGp_13 LGp_14

GGp__1 0.083  0.150 ~-1.277 -0.534 -1.128 =-0.523 .055  1.106  0.950
GGp__2 -0.553 -1.383 -1.594 1.078 =-0.250 1.251 -1.566 =-0.175 =-0.851
GGp__4 -0.441 -1.878 -0.025 -0.075 1.009 =-1.337 -1.101 0.372 -0.547
GGp__6 0.187 287  1.142 -0.604 ~-1.761 -0.412 .562 -0.558  0.696

0
1
1
. 0 1
GGp_7  0.412  0.534 -0.226 -0.121 ~-1.238 -1.050 1.273  2.065 -0.024
GGp_10  -0.286 -0.666 -0.753 -0.967 0.884 -0.786 0.109 -0.800  0.260
GGp_12  -0.013 -0.876 1.494 1.125 -0.853 -1.097 0.386 -0.513  0.159
GGp_14  -0.128  1.060 -0.444 -1.014 0.621 1.190 -0.364  0.297 -1.345
GGp_15  0.290 0.571  0.709 0.708 0.698 0.525 0.003 -0.697 0.682

Mean 0.000 0.000 0.000 0.000 0.000
Location index -0.272 -0.746 0.067  0.779

.000  0.000 0.000 0.000
.836 -1.140 -0.175 -0.870

GXE GROUP AND MEMBER MEANS FOR Location standardised VALUES OF YIELD FILE MYIELD94  4/10/ 4 16:52
iPAGE 12

GXE INTERACTIONS BETWEEN BREEDING SITES/94 RESULTS
STANDARD AMMI AND PATTERN ANALYSIS MATERIAL FOR BANGLADESH

GXE GROUP AND MEMBER MEANS - SECTION 1

Genotype Location or location group

NAME IBH 116p__1 11CR 116p__2 I1EL 116p__4 I 1MB I11Gp__6
| I I | n | ni |

1 AzZU 1 0.150 | 0.150 || -1.277 | -1.277 11 -0.534 | -0.534 || -1.128 | -1.128

GGp__1 | 0.150 | 0.150 |1 -1.277 | -1.277 11 -0.534 | -0.534 || -1.128 | -1.128
| | Il | Il | ni |

2 BGORA 1 -1.383 | -1.383 1| -1.594 | -1.594 || 1.078 | 1.078 |1 -0.250 | -0.250

GGp__2 1 -1.383 | -1.383 || -1.594 | -1.594 || 1.078 | 1.078 |1 -0.250 | -0.250
| [ I I I I I I

4 11146 1 -1.878 | -1.878 || -0.025 | -0.025 || -0.075 | -0.075 |1 1.009 | 1.009

GGp__4 1 -1.878 | -1.878 |1 -0.025 | -0.025 || -0.075 | -0.075 11 1.009 | 1.009
I I 1l I I | ni |

6 0s6 | 0.287 | 0.287 |1 1.142 | 1.142 || -0.604 | -0.604 || -1.761 | -1.761

GGp__6 1 0.287 | 0.287 |1 1.142 | 1.142 |1 -0.604 | -0.604 || -1.761 | -1.761
| I I | I | ni |

7 UPLS I 0.534 | 0.534 || -0.226 | -0.226 || -0.121 | -0.121 || -1.238 | -1.238

GGp__7 | 0.534 | 0.534 || -0.226 | -0.226 || -0.121 | -0.121 || -1.238 | -1.238
| I Il | Il | ni |

10 W56-125 1 -0.666 | -0.666 || -0.753 | -0.753 11 -0.967 | -0.967 |1 0.884 | 0.884

GGp_10 I -0.666 | -0.666 |1 -0.753 | -0.753 || -0.967 | -0.967 || 0.884 | 0.884
| | [l | nl | Il |

12 W96-1-1 1 -0.876 | -0.876 |1 1.494 | 1.494 || 1.125 | 1.125 || -0.853 | -0.853

GGp_12 1 -0.876 | -0.876 |1 1.494 | 1.494 || 1.125 | 1.125 |1 -0.853 | -0.853
I I I I I | ni |

5 oL5 1 0.707 | 0.707 1|1 -0.863 | -0.863 || 0.049 | 0.049 || 0.625 | 0.625

8 VAND 1 1.412 | 1.412 || -0.025 | -0.025 || -2.077 | -2.077 |1 0.618 | 0.618

GGp_14 1 1.060 | 1.060 |1 -0.444 | -0.444 || -1.014 | -1.014 || 0.621 | 0.621
I I I I I | ni |

3 GUAR | 0.002 | 0.002 |1 1.146 | 1.146 |1 0.832 | 0.832 || 0.521 | 0.521

9 W181-18 1 0.868 | 0.868 |1 0.232 | 0.232 || 1.397 | 1.397 |1 0.455 | 0.455

11 W56-50 1 0.843 | 0.843 || 0.749 | 0.749 |1 -0.105 | -0.105 || 1.118 | 1.118

GGp_15 I 0.571 | 0.571 |1 0.709 | 0.709 1|1 0.708 | 0.708 |1 0.698 | 0.698
| | I | Il | Il |

MEAN 1 0.000 | 0.000 |1 0.000 | 0.000 |1 0.000 | 0.000 |1 0.000 | 0.000
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(continuation of group membership and group means)

GXE GROUP AND MEMBER MEANS -

SECTION 2

Genotype Location or location group
NAME Is 116p_10 | ua IsY I16p_12 | 1MD ML 11Gp_13
[ [ I I I I I I
1 Azy 1 -0.523 | -0.523 |1 -0.471 | 0.582 | 0.055 || 2.043 | 0.169 | 1.106
GGp__ 1 1 -0.523 | -0.523 || -0.471 | 0.582 | 0.055 |1 2.043 | 0.169 | 1.106
I I 1l I I Il | |
2 BGORA 1 1.251 | 1.251 |1 -1.041 | -2.090 | -1.566 || -0.026 | -0.325 | -0.175
GGp__2 1 1.251 | 1.251 |1 -1.041 | -2.090 | -1.566 || -0.026 | -0.325 | -0.175
I I I I | n | |
4 17146 1 -1.337 | -1.337 || -1.461 | -0.741 | -1.101 || 0.730 | 0.014 | 0.372
GGp__4 1 -1.337 | -1.337 1| -1.461 | -0.741 | -1.101 || 0.730 | 0.014 | 0.372
I I Il | | nl | |
6 0s6 1 -0.412 | -0.412 || 1.844 | 1.281 | 1.562 |1 -0.807 | -0.309 | -0.558
GGp__6 1 -0.412 | -0.412 || 1.844 | 1.281 | 1.562 |1 -0.807 | -0.309 | -0.558
[ [ I I I I I I
7 UPLS 1 -1.050 | -1.050 || 1.274 | 1.272 | 1.273 |1 1.449 | 2.681 | 2.065
GGp__7 1 -1.050 | -1.050 |1 1.274 | 1.272 | 1.273 11 1.449 | 2.681 | 2.065
I I 1l I I Il | |
10 W56-125 1 -0.786 | -0.786 || 0.729 | -0.512 | 0.109 |1 -0.863 | -0.737 | -0.800
GGp_10 [ -0.786 | -0.786 || 0.729 | -0.512 | 0.109 |1 -0.863 | -0.737 | -0.800
I | I I | i | |
12 Wo6-1-1 1 -1.097 | -1.097 1|1 -0.029 | 0.802 | 0.386 |1 -0.507 | -0.519 | -0.513
GGp_12 1 -1.097 | -1.097 11 -0.029 | 0.802 | 0.386 |1 -0.507 | -0.519 | -0.513
I I Il | | I | |
5 oL5 1 1.163 | 1.163 |1 0.270 | -0.338 | -0.034 || -0.511 | 0.848 | 0.168
8 VAND 1 1.217 | 1.217 |1 -0.565 | -0.823 | -0.694 || 0.546 | 0.305 | 0.426
GGp_14 1 1.190 | 1.190 |1 -0.147 | -0.581 | -0.364 || 0.018 | 0.576 | 0.297
I I Il | | I | |
3 GUAR 1 0.531 | 0.531 |1 -0.025 | 0.142 | 0.058 |1 -0.142 | -0.251 | -0.197
9 Wi81-18 1 1.081 | 1.081 || -1.121 | -0.369 | -0.745 || -1.212 | -1.201 | -1.206
11 W56-50 1 -0.037 | -0.037 || 0.595 | 0.795 | 0.695 || -0.701 | -0.675 | -0.688
GGp_15 [ 0.525 | 0.525 |1 -0.184 | 0.189 | 0.003 |1 -0.685 | -0.709 | -0.697
I | I | | i | |
MEAN [ 0.000 | 0.000 |1 0.000 | 0.000 | 0.000 |1 0.000 | 0.000 | 0.000
GXE GROUP AND MEMBER MEANS - SECTION 3
Genotype Location or location group
NAME Ic INT I1Gp_14 Il MEAN
I I | Il Il
1 2z 1 1.123 | 0.778 | 0.950 |1 0.083 |
GGp__1 1 1.123 | 0.778 | 0.950 |1 0.083 |
[ [ I I I
2 BGORA 1 -0.812 | -0.891 | -0.851 || -0.553 |
GGp__ 2 1 -0.812 | -0.891 | -0.851 || -0.553 |
I I I 1l I
4 17146 1 -1.270 | 0.177 | -0.547 || -0.441 |
GGp__4 1 -1.270 | 0.177 | -0.547 11| -0.441 |
I | | I n
6 0s6 1 0.166 | 1.227 | 0.696 |1 0.187 |
GGp__6 1 0.166 | 1.227 | 0.696 |1 0.187 |
I I | Il nl
7 UPLS 1 -0.391 | 0.344 | -0.024 || 0.412 |
GGp__7 1 -0.391 | 0.344 | -0.024 || 0.412 |
[ [ I I I
10 W56-125 1 1.293 | -0.773 | 0.260 || -0.286 |
GGp_10 1 1.293 | -0.773 | 0.260 |1 -0.286 |
I I I 1l I
12 W96-1-1 1 0.074 | 0.243 | 0.159 || -0.013 |
GGp_12 1 0.074 | 0.243 | 0.159 |1 -0.013 |
I I | I I
5 oL5 1 -1.406 | -1.066 | -1.236 || -0.047 |
8 VAND 1 -0.842 | -2.067 | -1.455 || -0.209 |
GGp_14 1 -1.124 | -1.566 | -1.345 || -0.128 |
I I | I I
3 GUAR 1 0.076 | 0.661 | 0.368 || 0.317 |
9 W181-18 [ 0.309 | 0.179 | 0.244 || 0.056 |
11 W56-50 1 1.680 | 1.188 | 1.434 || 0.496 |
GGp_15 1 0.689 | 0.676 | 0.682 |1 0.290 |
I I I 1l I
MEAN [ 0.000 | 0.000 | 0.000 |1 0.000 |
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IV. Graphical Output

CropStat will also output the following plots.

1. Cluster

a. Cluster dendogram for genotypes

CLUSTER DEMDOGREAM FOR GEMOTYFES

12

GEMOTYPE CLUSTERS

10

i

086 202 RE 434
FLISION LEVEL

LABELS OM THE LEFT ARE GEMOTYPE CODES
LABELS IM THE DEMDROGRAM ARE CLUSTER MUMBERS

5.5
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b. Cluster dendogram for environments

CLUSTER DEMDOGRAM FOR EMNWIROMMEMT
oy
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BH g

1k
5G
072 174 276 378 48
FLISION LEVEL
LABELS OMN THE LEFT ARE ENVIRONMENT CODES
LABELS IM THE DEMDROGRAM ARE CLUSTER MUMBERS
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2. Ordination

a. Genotypes

1. AX2 x AX1
PCA QRDIMATION FOR GENOI‘&"PES
1
13
052t L 1r
P
g
004} z
o 4
&
1{5.
044}
1 14
ez}
g 1 1 L 1
143 078 026 0.26 078 13
A¥1
VARIATE :YIELD  DATAFILE: MYIELDA MODEL FIT: 70.0% OF GXE S
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. AX3 x AX1

PCA QRDINATION FOR GEMOTYPES
14
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g 15
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% 15
7
018} #
1
1
-05af é 8
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13 078 026 026 078 13
831
YARIATE YIELD DATAFILE: MYIELDS MODELFIT:; F0.0% OF GXE 5
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1. AX3 x AX2

PCA ORDIMNATION FOR GEMOTYPES
1.4
14
0.3
14 15
0361
1 3
- L
I 15
7
IR 1=
1
]
063t 3 é
. . 1 .
A4 0.4z 044 0.04 052 1
AM2
VARIATE :YIELD  DATAFILE: MYIELDA MODEL FIT: 70.0% OF GXE 5
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b. Environment

1. AX2 x AX1
FCA QRDIMATION FOR ENVIRORMMEMNT
1
2 4
14
£
g2t 14 =
18
004}
12
o 1
2 2 b
-n.44]
nazf
13
13
143 orE 026 026 078 T3
I
VARIATE - YIELD  DATAFILE: MYIELDG MODEL FIT: 70.0% OF GXE S
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1. AX3 x AX1

PCA, DRDINATIQN FOR ENVIROMMEMT
14
088 19
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0.36] » g
- ¥ 3
I 13
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14 13
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4
13 078 026 026 078 13
a1
VARIATE -YIELD  DATAFILE: MYIELDS MODEL FIT: 70.0% OF GXE S
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1. AX3 x AX2

PCA QORDIMNATIOMN FDRFNWRONMENTS
14
088 19
12
0.36] @14
- ¢ © 3
I 13
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i3 14
0|
3
14 04z 044 004 052 1
A2
VARIATE -YIELD  DATAFILE: MYIELDS MODEL FIT: 70.0% OF GXE S
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C.

Means

A

1.3

BIFLOT OF & & E MEANS WITH FIRST ORDINATION SCORES

e
14 10
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13 15
-0.26F 1
L
12 15
14 ;
078t
1 A
14 é
g
.1 Em] 1 1 12 1 1
~ 066 102 133 174 21
MEANS

YARIATE: WIELD DATAFILE: MYIELDS4 MODELFIT: 32.1% OF TABLE S
PLOT LABELS ARE CLUSTER AMALYSIS GROUP MUMBERS
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d. Ordination Scores

BIFLOT OF FIRST WO DRDIN;&TIDN@CDRES

0.52
0.04 2
1
(]
I
-0.44
092
4
14 : - : :
A3 078 0.26 0.26 0.7 13

A1

VARIATE: YIELD DATAFILE: MYIELD94 MODEL FIT: 53.9% OF GXE S
FLOT LABELS ARE CLUSTER AMALYSIS GROUP MUMBERS

These plots can also be produced if you run the GEBEIPLT.CMD, a command file
outputted by CropStat when running pattern analysis in the Analysis —GxE Plots.
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ANALYSIS OF QUANTITATIVE TRAIT LOCI

At the end of the tutorial, the user should be able to

perform analysis of quantitative trait loci

1. Introduction

The QTL Analysis Item on the Analysis Menu of CropStat performs analysis of
phenotypic and molecular marker data to provide information on the location and
magnitude of QTLs on a genetic map and on the interaction of QTLs at different
locations.

The basic methodology for mapping QTLs involves arranging a cross between two
inbred strains differing substantially in a quantitative trait, then segregating progeny are
scored for the trait and for a number of genetic markers. This leads to three types of data,
a marker map which gives numbers, names and positions of molecular markers on
chromosomes, marker data for a set of progeny from the cross and measurement data on
phenotypic traits for the same progeny.

For this tutorial the segregating progeny was produced by doubling gamete
chromosomes from the F; plants. Such plants have been referred to as DHL progeny.
Occasionally in the tutorial a different origin will be assumed for the sake of illustration
of the methods.

II. Data preparation

Create a subfolder QTL ANALYSIS inside your working folder C:\MY
CROPSTAT

Import the marker map data OTLMAP.ASC stored in
CROPSTAT7 2\TUTORIAL\TUTORIAL DATASETS folder. Save this data as
QTLMAP.SYS inside your working folder C:\MY CROPSTAT\QTL ANALYSIS. To
read an ASCII file into CropStat follow the procedure given in the Data and File
management module.

The next step is to input the marker data. Import the QTLMKR.ASC file and save as
OTLMKR.SYS inside your working folder C:\MY CROPSTAT\QTL ANALYSIS.
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The data for markers on chromosomes 1 and 9 of the rice genome is shown in
Figure 2. The data are for DHL progeny so in principle only two genotypes are
possible for each marker. These are represented as 1 and 3 in the data set. In fact,
an indeterminate class is also apparent and these have been scored as 0 in the data
set.

H RFLP MAP OF CHROMOSOMES 1 AND 9 OF THE RICE GENOME
V001 MKRNO MARKER NUMBER
V002 MARKERS MARKER NAME
V003 CHRMSM CHROMOSOME NUMBER
V004 ORDER MARKER ORDER WITHIN CHROMOSOME
V005 DIST DISTANCE ON CHROMOSOME FROM PREVIOUS MARKER
(0 INDICATES THE FIRST KNOWN MARKER ON A CHROMOSOME)

1177

049 RG331 11 0.0
082 RG810 1 2 9.2
133 RZ801 1 3 9.5
131 RZ730 1 4 35.4
076 RG690 1 5 12.3
093 RZ19 1 6 9.1
054 RG381 1 7 22.1
051 RG345 1 8 3.4
100 RZ276 1 9 36.6
028 RG146X 1 10 1.6
035 RG173 111 14.4
067 RG532 112 31.5
044 RG246 113 16.7
063 RG472 114 20.0
078 RG757 9 1 0.0
010 CDO590 9 2 3.5
094 RZ206 9 3 21.4
112 RZ422 9 4 38.6
097 RZ228 9 5 16.0
090 RZ12 9 6 4.9
075 RG667 9 7 7.8
060 RG451 9 8 18.3
132 RZ792 9 9 6.0
111 RZ404 9 10 0.9

Figure 1. Marker Map Data for QTL Analysis

e The next step is to input the phenotypic data. Import the QTLYLD.ASC file and save
as QTLYLD.SYS inside your working folder C:\MY CROPSTAT\QTL ANALYSIS.

The phenotypic data stored in QTLYLD.ASC is data from a RCB design with two
reps are shown in Figure 3. In this case plant number, PN, is NOT nested within
block or REP since replicate plant genotypes have been produced by collecting
gametes from F, plants, doubling the chromosomes and generating homozygote
plants which are selfed to produce replicate seeds. Hence plant 1 in rep 1 has the
same genotype as plant 1 in rep 2. Convert this data to the CropStat file
QTLYLD.SYS with the Import function of the Data Editor.
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Figure 2. RFLP marker data for 94 plants
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Figure 3 Phenotypic data for QTL analysis

H PHENOTYPIC DATA FOR QTL MAPPING OF RICE YIELD COMPONENTS
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16.5 19.5
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Figure 3
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The next step in data preparation is to merge the marker and phenotypic data. The
Merge Data Files Item on the CropStat Data menu requires that both files contain
a common key variate and that they are sorted in ascending order of values of the
key variate. From Figures 2 and 3 it is clear that the QTLMKR and QTLYLD
data sets have a common variate PN which is suitable for a key variate, and
QTLMKR is sorted on this variate, but QTLYLD is not.

e To sort QTLYLD, first open the file in the Data Editor, and then select the Sort from
the Options Menu.

e Under Data File Variables select PN. Then click Add under the Sorting Key

Variables box.
CropStat: Sort Data

Diata File Yariables  Sorting Key Variahles
<= Primary Key

TIL4G
HGT
ExZ
FAM W
MBEFAN
TILMAT

PANWGT b Add | Bemowe

o 0K X Cancel ‘ ? Help |

e Click Ok then save the changes to the original file and close the Data Editor.

e To merge QTLMKR and QTLYLD select the Merge two Data Files item from the
Data menu using the CropStat Main Window.

¥ CropStat for Windows
File Edit BsEEN Analysis  Utilities  Window Help

o H Lisk Yariable Mames
Lisk Diata Values

Parallel to Serial Corvversion
Serial to Parallel Conveersion

Merge bwo Data Files

Transpose Murmeric Yariates

e Select QTLMKR.SYS from the list of data files. Click Open.
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Open first data file to be merged

Lookin: |22 QTLANALYSIS =]

ok Ev
E QTLMAP
§ B
My Recent QTLYLD
Documents
Desktop
>
My Documents
My Computer

Wy N elwo rk

i E QTLMKR b Open |
Places File name | J p
Files oftype: |Cr0p8tat Data Files [ sys) ﬂ Cancel

Select QTLYLD.SYS as the second data file to be merged. Click Open.

Open first data file to be merged

Lookin: | QTLANALYSIS B o
QTLMAP
& QTLMKR
My Recent [=|QTLYLD
Documents
Desktop
\ N,
My Documents
My Computer
My Networl-( . . aQTLYLD 5
Places File name: | ﬂ oen |
Files oftype: |CropStat Data Files (.sys) ﬂ &

Enter QTLMRG in the File name textbox as the name for the output file. Click
Save.
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Open second data file to be merged

Lookin: | £3 QTL ANALYSIS =i i Ev
L QTLMAP
% QTLMKR
My Recent = QTLYLD
Documents
Desktop

My Documents

&

My Computer

Lﬂ

My Jletwork File name: laTLMRG| | Open |
Files of type: |CropStat Data Files [ sys) ﬂ Cancel

e Under the Variables on First Input File select PN and click Key->. Do the same
for the Second Input Data File.

ﬁ& Parameter Specification for Merge of two Data Files

First Input Data File Second Input Data File

[C:\bY CROPSTATVOTLANALY  Browse [CAMY CROPSTATVOTLANAL  Browse

Marne of Merged Output Data File

WeliEtdEe e Al e CTLMRG Browse ‘“ariables on Second Input

File
File

e PN Key Wariable from Each File PM
RG3H 3 REF o 0K
RGB10 | PN | <Kkey || DUR
RZ&01 TIL4R
RZ730 “ariahles on Merged File HGT X Cancel
RGE490 EXS
RZ14 PAN
RG331 NEFAN
RG345 el TILMAT 7 el
RZ276 PAMNWGET
RiG146% < Remove MNBG
RG173 STR
RGE32 WETI0
RG246 TGW
RG472 —_ WETCOR
RG?57 <-Add
COO530
RZ206 b
Rzd2z =5 M
RZ2z8
RZ12 Change Mame
RGEE7 v

Filn ks |MERGE FILES OTLMKR AND QTLYLD

(41

e Under the Variables on First Input File select all variates then click Add->.
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Yariables on Firzt [nput File IQTLMHG

~ K.ep Y ariable frn
Foey - I FH
Yariables an b
Add -»
<- Remove
v

For the Second Input Data File, select variates 2 to 15 (excluding PN) than click <-
Add. PN was excluded since it is already selected from the First Input Data File.

AL Browse | Yarables on Second Input File

~ey Y ariable fram Each File

REP B
N | PN < Key | DUR
TIL45

Yanables on Merged File

RG3AN -
RGE10 =
RZ8M =
RZ730
RGE30
RZ14
RG3

£

<-&dd

o
Remaove ->|
ezt

Change Mame

Click OK.
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K.ep Variable from Each File

PH PH - Ke_lrl |

Yariables an Merged File

RG331 v
> | | R
RZBO1
RZ730
ave| | RGEID
RZ19
RG361 v

REP -
DUR

T&é? Remowve ->|

E=S

FAN Change Mame
HEFAM »
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The merged file will open in the Data Editor. Note that each line of the QTLMKR
data has been duplicated for the second replication of the QTLYLD data. Note also
that where marker data is available for plants without phenotypic data, missing
values have been entered for the phenotypic data.

kg Crop5tat Data Editor - [C:\Program Files\CropStatiTutori... [ZI[E|E|
- 5| X

T File  Edit Options Window Help
EEDSE & £ B2@R
1 £ 3 4 5 ~
Ria331 Rag10 RZ801 RLF3E0 Raa90
1 1.00000 1.0000a0 3.00000 3.00000
2 1.0000a0 1.00000 1.0000a0 3.00000 3.00000
3 1.0000a0 1.00000 1.0000a0 1.00000 1.0000a0
4 1.0000a0 1.00000 1.0000a0 1.00000 1.0000a0
= 3.00000 3.00000 3.00000 3.00000 3.00000
& 3.00000 3.00000 3.00000 3.00000 3.00000
i 1.00000 1.00000 1.00000 1.00000 1.00000
g 1.0000a0 1.00000 1.0000a0 1.00000 1.0000a0
9 100N 1.00nnn 100N 1.00nnn 100N ¥
4 >
Fow: 1 Cali 1 Records: 175 Mariables: 35 Z:\Program Files\Cropskat) Tukoria
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III. Model Selection

The factors classifying the phenotypic data for each marker or marker pair are: block or
replication (BLK), marker (MKR) and genotype within marker (PN). We can consider
blocks as a fixed effect since we are not interested in estimating responses over a
population of possible blocks, the markers are fixed since there is no question of their
being a random sample of possible markers in this case, and finally the plant genotypes
are random since they represent a sample of the possible gamete genotypes derived from
the F; through recombination and mutation and we are interested in the effects of any
QTL over the population of such genotypes.

Possible effects in any linear model of marker on phenotypic response are BLK,
MKR, BLK.MKR (block by marker interaction), PN/MKR (genotype in marker) and
BLK.PN/MKR. The last term represents interactions between plant genotypes and
blocks and is assumed to be due to measurement and experimental error. It does not
therefore need to be explicitly stated in a model and is usually computed as a
RESIDUAL effect. The BLK.MKR effect could be similarly omitted.

The interest in QTL analysis is in testing the effect MKR, or sub-effects of it. We
therefore need to decide on the appropriate error term for comparisons between marker
means. From a logical point of view it is clear that even if there is no MKR effect,
differences between plant genotypes will be included in differences between marker
class means (since one plant genotype cannot be represented across marker classes
except perhaps by construction of isogenic lines). The BLK.PN/MKR or RESIDUAL
effect does not contain differences between plant genotypes and is hence not suitable as
an error term.
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IV. QTL location by single marker ANOVA

e To detect QTLs by single marker ANOVA select QTL Analysis from the Analysis
menu.

%3 CropStat for Windows
File Edit Data BEGEFEEEN Lblities  Window  Help

E’,‘: H % Summary Statiskics
Scatter Plots

Balanced AMOYA (BAOW)
Unbalanced Analysis (GLM)
Mixed Madel Analysis (REMLY  #
Regression Analysis L4

Single Site Analvsis
ross Site Analysis
Pattern Analysis
axE Plots

Log-Linear Analysis !

e C(lik the Look in box and go inside you working folder C:\MY CROPSTAT QTL
ANALYSIS, specity QTLA.QTL as command file name and click Open.

Open Command File

Loak, ir: |b Samplel ata ﬂ I'fF "

3

My Recent
Documents

)

Dezktop

hY
by Documents

ty Computer

My Metwark.  File name: |DTL!1'-1 ﬂ Open

Places :
Files af type: |I]TL Apalyzis Cornrmand Files [ qH) j Cancel
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e Since the file QTLA.QTL does not exist CropStat will ask if you wish to create the
file. Click Yes.

e In the Open file with marker genotypes and phenotype values dialog box, select
QTLMRG.SYS as data file. Click Open.

e To specify the Type of Analysis to perform, select Single Marker ANOVA from the
list.

Crop5tat: Qualitative Trait Loci Analysis

Llualitative Loci Analysis l I:Iptinns]

Command File : Diata File :

oK
_@open | [ATLAGTL [OTLMRG.5YS v
D ata File Tvpe of Analysis : | ﬂ X Cancel
P Heb |

TRGEN A Make Variates FEETTIETEINEY i
RGA10

R=801
R=7a0 B
RGEI0 i Save
RFZ19

RG=e1

e add |R | hdd '

RZ276 EMOYE Select tvpe of
Rl 46 Replicate : [Genob yp

RG173 | | analysis from the
RGE22 i ;

iyt list provided.
RGa72 Add | Hemu:uve| Add | Hemu:uve|
RG767 _
COO530 Map File :

Rz v | G gpen

niars : 3G nRecs : 178 Warking direckory

Flanking karker Beareszio
tdarker Pair Interaction
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e Select the marker variates RG331 to RZ404 from the Data File and add them to the
Marker Variates List.

Crata File Type of Analysis : |EHA TV IOREANSI

Marker Variates:  Analpsis Variates

.&dd[}iﬁemwﬂ Add |Fiem|:|ve|
Fiepliu:artg : Genatype :

| |
Add |F|emu:uve| Add |Hemu:uve|

b ap File :
| &

e Select the phenotypic variates, DUR to WGTCOR and add them to the Phenotypic
Analysis Variates List.

Data File Type of nalysis | Single Marker ANOWA = |
Marker Variates:  Analysis Variates
RGEIN A
RG#0  —
RZam
R=Z730
RGEID

Add |Hemu:-ve| .ﬁ.dd[\l Hemm-'e|
Feplicate : Eenn%e :

| |
Add |Fiem|:|ve| Add |Fiem|:|ve|

b ap File :
| &0

e Add REP to the Replicate Box and PN to the Genotype Box to specify the variate
which identifies genotypes in markers since the data is from replicated double
haploid plants.

Feplicate : Genotype :
| REP | PN
Add | Fiemcuve|

Map File :

| (== Open [:
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e C(Click the Open button adjacent to the Map File box to specify the Data file
containing the marker map. Select QTLMAP.SYS from the list of files then click
Open.

Open Marker map file

Lock in; |@' SampleD ata j =
__2_ CTLMAR, 5vs
" TLMER. sys

My Recent QTLMRG.5YS
Documents QTLYLD. svs

L

Dezktop

=

\$

by Documents

=

by Computer

@

My Metwork. File name: |DTLM.-‘-‘-.F'.S}'S j Een
Places
Filez of twpe: |Ern:||:|5tat D ata Files [svs) j Lancel
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e Then on the Options page enter QTL Analysis Tutorial in the Title Box and Add 1
and 3 to the list of Marker levels for Analysis.

e Click OK to execute the analysis. A sample output is shown in the next section.

Crop5tat: Qualitative Trait Loci Analysis

Hualitative Loci Analysiz  Options l

Heading: ¢ DK,

x Cancel

¥ Help

s

d%

= Save

Line1 Cal1 ]
Marker Levels : karker Levels for Analysis ; Data Selection

0 1
1 3
3

"I Bemove

i

miars : 39 nRecs ; 178 ‘Wharking directary
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V. Sample Output

312

Partial output from single marker ANOVA

QTLA - SINGLE MARKER QTL ANOVA FILE QTLMRG 5/10/ 4 16: 5

—————————————————————————————————————————————————————————————————— : PAGE 1

QTL LOCATION BY ANOVA FOR MARKER RG331 166 OBSERVATIONS

FACTOR RG331 HAS 2 LEVELS

FACTOR REP HAS 2 LEVELS

FACTOR PN HAS 38 LEVELS WITHIN LEVEL 1 OF FACTOR RG331

FACTOR PN HAS 45 LEVELS WITHIN LEVEL 3 OF FACTOR RG331

ANOVA RESULTS FOR 13 VARIATES WITH MARKER GENOTYPE DEFINED BY RG331

SOURCE : REPSS MKRSS REP*MKR PINMKR1 PINMKR2 RESIDUAL
DF: 1 1 1 37 44 81

DUR 0.6024 92.64 2.154 4520. 5025. 267.2

TIL45 11.61 18.53 11.12 291.0 234.5 128.9

HGT 170.0 0.2130E+05 68.39 0.2060E+05 0.3631E+05 2221.

EXS 1.320 221.9 0.1546 1280. 735.5 101.5

PAN 0.2169 202.4 0.3024E-02 443.6 840.6 45.81

NBPAN 0.6897 58.44 5.245 531.5 320.5 179.1

TILMAT 0.5789E-01 129.6 7.934 822.4 343.8 213.7

PANWGT 2.352 1.107 0.9231E-02 64.78 57.38 13.47

NBG 892.9 1077. 305.9 0.1628E+06 0.1248E+06 0.2767E+05

STR 345.5 182.1 5.424 7231. 9608. 3644.

WGT10 0.1550E+05 2596. 0.1591E+05 0.2369E+06 0.3597E+06 0.1482E+06

TGW 7.524 302.4 13.07 594.6 1084. 106.6

WGTCOR 0.2293E+05 2161. 0.2509E+05 0.2921E+06 0.4247E+06 0.1877E+06

QTLA - SINGLE MARKER QTL ANOVA FILE QTLMRG 17/ 2/ 4 8:59

****************************************************************** : PAGE 2

QTL LOCATION BY ANOVA FOR MARKER RG810 170 OBSERVATIONS

FACTOR RG810 HAS 2 LEVELS

FACTOR REP HAS 2 LEVELS

FACTOR PN HAS 42 LEVELS WITHIN LEVEL 1 OF FACTOR RG810

FACTOR PN HAS 43 LEVELS WITHIN LEVEL 3 OF FACTOR RG810

ANOVA RESULTS FOR 13 VARIATES WITH MARKER GENOTYPE DEFINED BY RG810

SOURCE : REPSS MKRSS REP*MKR PINMKR1 PINMKR2 RESIDUAL
DF: 1 1 1 41 42 83

DUR 0.1471 289.4 0.7185 5518. 3941. 277.6

TIL45 13.05 2.097 3.872 296.7 248.7 138.1

HGT 160.1 0.2535E+05 81.84 0.2424E+05 0.2961E+05 2236.

EXS 1.237 287.9 0.1103 1257. 764.3 102.1

PAN 0.2562 180.3 0.1312 471.3 841.0 45.82

NBPAN 0.3488 91.64 15.90 488.4 340.2 181.3

TILMAT 0.2118E-02 176.9 19.24 774.5 352.1 217.1

PANWGT 2.362 1.476 0.3270E-03 62.04 60.77 13.49

NBG 927.1 29.16 618.8 0.1554E+06 0.1351E+06 0.2737E+05

STR 302.6 145.0 5.319 8209. 9201. 3744.

WGT10 0.1380E+05 82.44 0.1915E+05 0.2717E+06 0.3288E+06 0.1492E+06

TGW 6.696 217.9 18.23 802.3 974.8 103.1

WGTCOR 0.2039E+05 0.7738 0.2905E+05 0.3350E+06 0.3859E+06 0.1900E+06

MEAN

129.6
8.931
104.3
1.070
26.05
11.82
12.38
3.481
154.0
22.28
161.3
26.64
181.1

MEAN

129.6
8.911
104.6
1.143
26.08
11.85
12.41
3.469
153.7
22.40
161.7
26.60
181.6

QTLEFF

0.7497
0.3353
11.37
1.160
1.108
-0.5955
-0.8869
0.8194E-01
-2.556
1.051
3.969
1.355
3.621

QTLEFF

1.305
0.1111
12.21
1.301
1.030
-0.7342
-1.020
0.9320E-01
-0.4142
0.9237
0.6964
1.132
-0.6747E-01

SE FPROB MARKER
0.8456 0.382 RG331
0.1984 0.091 RG331

2.065 0.000 RG331
0.3886 0.004 RG331
0.3102 0.001 RG331
0.2526 0.020 RG331
0.2955 0.004 RG331
0.9566E-010.399 RG331

4.642 0.590 RG331

1.123 0.355 RG331

6.685 0.562 RG331
0.3546 0.000 RG331

7.327 0.628 RG331

SE FPROB MARKER
0.8188 0.111 RG810
0.1966 0.581 RG810

1.954 0.000 RG810
0.3786 0.001 RG810
0.3050 0.001 RG810
0.2423 0.003 RG810
0.2826 0.001 RG810
0.9330E-010.322 RG810

4.538 0.925 RG810

1.111 0.413 RG810

6.524 0.912 RG810
0.3549 0.002 RG810

7.149 0.989 RG810
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Since there are more than twenty pages of output in QTLA.OUT it is convenient to zero
in on the significant tests. To do this list the most significant results from the SYS format
output in file QTLA.SYS. Select List Data Values from the CropStat Data Menu, enter
QTLA for file name, add MARKERS, TRAITS$, FPROB, QTLEFF, SE, CHRMSM and
POSN to the list of Output data Variables. Click Ok to view the results as in Figure 5.

KZ Parameter Specification for Data Listing [Z”E|rz|

Input Drata File |E:'\F'n:ugram Filez“Crop5 tat\T utanial2070 CropStat_GTL AnalysishS ample Browse
Title

|D.-'-‘-.T.-’-‘-. LISTING FROM FILE QTLA .

Iput 01ata Y ariables Output Data Y ariables:
SETS MaREERE Lines per page B0 =
REF33 TRAITE
MKRSS FPROE
Eﬁﬁﬂﬂ&? BTSLIE FF Characters per line 132 :l
PIMMERZ CHEMSH
RESIDLAL POSN I Delmited ASCIl Dump
DFGEM1
DFGEMZ
DFRESID

<- Remaove

W O
X Cancel

? Help

Drata Selection
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Figure 5. Selected records from single marker ANOV A output

HEADINGS AND VARIATE DESCRIPTIONS FILE QTLA 5/10/ 4 16: 9

DATA LISTING FROM FILE QTLA

H SINGLE MARKER QTL LOCATION FOR DATA IN FILE QTLMRG

V00l SET$ SELECTION SET ID (CMD FILE NAME / NNN)

V002 MARKERS MARKER NAME

V003 TRAITS$ NAME OF THE PHENOTYPIC TRAIT ANALYSED

V004 REPSS BLOCKS SS OR ZERO IF NO REP VARIATE

V005 MKRSS SS BETWEEN MARKER CLASSES

V006 REP*MKR REP BY MARKER SS

V007 PINMKR1 SS BETWEEN PLANTS WITHIN MARKER CLASS 1
ZERO IF NO PLANT IDENTIFIER SPECIFIED

V008 PINMKR2 SS BETWEEN PLANTS WITHIN MARKER CLASS 2

V009 RESIDUAL RESIDUAL SS

V010 MEAN MEAN VALUE OF THE PHENOTYPIC TRAIT

V01l GENEFF LS DEVIATION OF MARKER CLASS 1 FROM MEAN

V012 SE STANDARD ERROR OF THE GENOTYPE DEVIATION

V013 FPROB F TEST OF GEN-MS/ (PN-GEN1+PN GENZ2)

V014 DFGEN1 DF WITHIN MARKER CLASS 1

V015 DFGEN2 DF WITHIN MARKER CLASS 2

V016 DFRESID RESIDUAL DF

V017 CHRMSM CHROMOSOME NUMBER OF MARKER

V018 POSN POSITION OF MARKER ON CHROMOSOME

DATA LISTING FILE QTLA 5/10/ 4 16: 9

DATA LISTING FROM FILE QTLA

MARKERS TRAITS FPROB QTLEFF SE
RG331 DUR 0.38165 0.74971 0.84556
RG331 TIL45 0.90873E-01 0.33534 0.19839
RG331 HGT 0.14764E-05 11.369 2.0646
RG331 EXS 0.38309E-02 1.1602 0.38859
RG331 PAN 0.71459E-03 1.1082 0.31016
RG331 NBPAN 0.19819E-01-0.59547 0.25262
RG331 TILMAT 0.36753E-02-0.88686 0.29555
RG331 PANWGT 0.39862 0.81937E-01 0.95658E-01
RG331 NBG 0.59025 -2.5558 4.6419
RG331 STR 0.35473 1.0510 1.1231
RG331 WGT10 0.56162 3.9686 6.6846
RG331 TGW 0.34110E-03 1.3545 0.35459
RG331 WGTCOR 0.62821 3.6210 7.3273

1.

—_

[

T

:PAGE 1

: PAGE 2

POSN

.00000
.00000
.00000
.00000
.00000

loloNeoNeNe] [eNoRoNe)

o o
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ANALYSIS OF CATEGORICAL DATA

1. Introduction

II.

Statistical methodology for categorical data has only recently reached the level of
sophistication achieved early in the century by methodology for continuous data. The
recent development of methods for categorical data was stimulated by the increasing
sophistication of techniques used in the social and biomedical sciences. Though
categorical scales are most common in the social and biomedical sciences, they are by
no means restricted to those areas. They also occur frequently in other areas
including agriculture.

Definition of Categorical Data

A categorical variable is one for which the measurement scale consists of a set of
categories. For instance, gender can be classified as male or female; plant type can
be classified as traditional or modern; and plant variety can be resistant, moderately
resistant or susceptible to a particular disease; farmers can be classified as owner-
operator, share-rent farmer or fixed-rent farmer.

II1. Levels of measurement

There are four levels of measurement - nominal, ordinal, interval, and ratio.

Nominal scale

Measurement at its weakest level exists when numbers or other symbols are used
simply to classify observations. The levels or values of nominal variables do not
have a natural ordering. The statistical analysis should be in variant to the order of
listing of categories.

Example: Brand of fertilizer
Weeding method (hand-weeding, mechanical weeding)
Method of planting (direct-seeded, transplanted)
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Ordinal scale

Categorical variables which have ordered values are called ordinal. However, the
distances between categories are not defined or are unknown.

Example: Social class (upper, middle, lower)
Maturity class (early, medium, late)
Severity of infection (0, 1, 3, 5,7, 9)

Interval scale

When a variable has all the characteristics of an ordinal scale but in addition, the
distances between any two values on the scale are known then the variable is said to
have an interval scale. Interval measurement is considerably stronger than ordinal,
however, the zero point and the unit of measurement are arbitrary.

Example: Temperature

IQ
Ratio scale

When a scale has all the characteristics of an interval scale and in addition has a true
zero point as its origin, it is called a ratio scale. A variable with this characteristic is
called continuous variable.

Example: Annual Income
Grain yield
Number of years in farming

IV. Contingency Tables

316

A contingency table displays the joint distribution of two or more variables. They are
usually presented in a matrix format. Whereas a frequency distribution provides the
distribution of one variable, a contingency table describes the distribution of two or
more variables simultaneously. Each cell shows the number of respondents that gave
a specific combination of responses.

Contingency tables are frequently used because:

1. They are easy to understand. They appeal to people that do not understand the
more sophisticated measures.

2. They can be used with any level of data: nominal, ordinal, interval, or ratio —
contingency tables treat all data as if they are nominal

3. A table can provide greater insight than single statistics
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The following is an example of a 2 x 2 contingency table. The variable “Level of
education” has two categories: low and high. The other variable “Adoption of
Nitrogen fertilizer” has also two categories: No and Yes. Each cell gives the number
of farmers falling under the combination of categories.

[ .
Level of Adoption
Education flioial
Yes No
High 21 6 27
Low 22 51 73
Total 43 57 100

These data are relevant to address the question: ‘Does the level of education of the
farmers affect their decision to adopt nitrogen fertilizer?” To answer such question,
the most frequently used statistical tool is the Chi-square test for independence. The
Chi-square test calculates, for each cell in the table, the frequency that is expected for
each category, assuming no difference between low and high level of education. A
comparison is then made between the observed frequencies and the expected
frequencies; and the further these two are apart, the more convincing evidence there
is to reject the hypothesis.

Totals are included in the table above, to show how expected values can be
calculated. The table of expected values is given below — calculated as follows: If

there is no effect of education, then the proportion of non-adopters is%. Hence we

would expect that of the 73 farmers with low level of education, 73 x % would be

non-adopters.

Analysis of Categorical Data 317



Expected frequencies:

Level of Adoption
evel o
education Total
Yes No
High M:u.m M=15.39 27
100 100
Low M:31.39 57—73:41.61 73
100 100
Total 43 57 100

The Chi-square value is then computed as follows:

, <« (0-E)
% —Z—E
~18.25

This value is compared with the tabular Chi-square value with (r-1)(c-1) degrees of
freedom, where r and c are the number of rows and columns, respectively. For this
example, the tabular Chi-square value is 3.84 which is very much less than the
computed Chi-square value. Hence, we may conclude that there is some association
between level of education and adoption of nitrogen fertilizer. However, aside from
this conclusion, the Chi-square statistic does not tell as anything more. Most likely
what we really want to know about is the nature of the association. Presenting the data
in percentages may help as see the nature of this association.

Note: One limitation of the chi-square test is that the expected value of a particular cell
in the contingency table should not be too small. As a rule, the test will be valid
provided that fewer than 20% of the cells have an expected count below 5, and none
are below 1.
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Percentage data:

! Level of Adoption
education Mot
Yes No
High w =77.8 w =22.2 27
27 27
tow |22 190 _ 30 4| 3100 99|
73 73
Total 43 57 100

From the table above we could see easily that there are more non-adopters among
farmers with low level of education and more adopters among farmers with high level
of education. However, we still do not know how strong the association is.

What we would like to have for categorical data analysis are additional measures that
tell us

1. Is there evidence of association?

2. If so, how strong is it?

V. Measuring the Strength of Association
In the case of continuous variables we use r and r* to measure the strength of the

relationship between variables. Measuring the strength of association between
categorical variables is not quite simple.
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Odds and Odds Ratios

As an example of using odds and odds ratio to measure the strength of association,
we look back at the two-way table for level of education and adoption of nitrogen
fertilizer.

Adoption
Level of education
Yes No
High a b
Low C d

and the

For high level of education, the estimated probability of adoption is b
a-+

estimated probability of non-adoption is . Therefore for high level of education,

a+b
the odds favoring adoption are given by

a

odds = probability of success [a +bj _a _ number of successes
probability of failure [ b j b number of failures

a+b

where “success” represents adoption. For low level of education, the odds favoring

adoption are similarly calculated to be% . Generally we look at the ratio of odds from

two rows, which we denote by 6 . In this example,

% _ad

odds ratio =0 ===
7 bc
d
For our example

5 _ odds(High) _ 21 35 13
- 22/ 043
odds(Low) A | 043

This indicates that the odds in favor of adoption if the farmer has high level of
education are eight times the odds in favor of adoption if the farmer has low level of
education.
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Significance of the Odds Ratio

To get information about the strength of association between two categorical
variables we would like to test the significance of the odds ratio®. First we must

know the distribution of® when the true odds ratio is 1 (null hypothesis). We can
work out the asymptotic distribution of the odds ratio, but it is much easier to work
out the distribution of the natural logarithm of the odds ratio. Note that the values of

the odds ratio range from zero to very large positive numbers, that is 0 < 6 <oo, and
the values of § are highly skewed to the right. When the odds of success are equal in
the two rows being compared, 6=1, indicating no association between the variables.
By taking the natural logarithm of 6, we pull in the tail. It turns out that, for large

samples, the logarithm of the odds ratio, that is ln(é), is approximately normally
distributed with standard error

Hence the quantity QEGI —éO has a distribution that is approximately standard normal
n

for large values of n.

For our example, we determine whether the odds ratio 6=8.13 differs significantly
from what we would expect if there were no difference in the odds of adoption for
farmers with high level of education and for farmers with low level of education.
Note that if there were no difference in the odds for the two groups, the odds ratio
would be exactly equal to one. Thus, under the null hypothesis of no difference, the
natural logarithm of the odds ratio would be equal to zero. Based on our example

In(é) =In(8.13)=2.096.  The standard error  of In(é) is  given

by\/l+l+l+l= i+l+i+i:0.528534. Hence, we can do a z-test
a b c d 21 6 22 51
using z as our test statistic

_In(6)-0  2.096-0
z=—pl = =3.
SE|In(6)]  0.528534

Since this is a two-sided test z-values larger than 2 are generally considered
significant. For our example, we could conclude that the odds ratio is significantly
greater than one. This would indicate that the odds in favor of adoption if the farmer
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has high level of education are significantly higher than the odds in favor of adoption
if the farmer has low level of education.

Effect of Sample Size

Consider the following table. In each table, 49% of group X and 51% of group Y
favor the adoption of a certain agricultural practice.

A B C
Yes | No | Total Yes | No | Total Yes No Total
X | 49 | 51 | 100 98 | 102 | 200 4900 | 5100 | 10000
Y | 51 | 49 | 100 102 | 98 | 200 5100 | 4900 | 1000
Total | 100 | 100 | 200 200 | 200 | 400 10000 | 10000 | 20000
v’ 0.08 0.16 8.0
p 0.78 0.69 0.005
0 0.92 0.92 0.92
z -0.29 -0.42 -2.95

Note that the chi-square value increases from a value that is not statistically
significant to a value that is highly significant as the sample size increases from 200
to 400 to 20,000. Since the P-value for this test of association is very sensitive to the
sample size, we need other measures to describe the strength of the relationship. In
every table above, the odds ratio is 0.92. Since the odds ratio is very close to one, this
indicates that there is not very much going on in any of these situations. The
association is very weak. This example illustrates that we should not simply depend
on a test of significance. Increasing sample size can always make a test statistically
significant.
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ANALYSIS OF CATEGORICAL DATA
USING LOGISTIC REGRESSION

At the end of the, tutorial the user should be able to

e Analyze categorical data using logistic regression

1. Introduction

II.

The problem with the Chi-square test is that they are only applicable for simple two-
way tables involving categorical data. However, most often survey data involve more
than 2 variables. When one of these variables could be regarded as a response
variable and that this variable is categorical then logistic regression could be used.
Logistic regression is used to predict the outcome of the dependent variable on the
basis of the independent variables. In logistic regression, the independent variables
can be categorical or quantitative or a mixture of both. When the response variable
involves only 2 categories it is called a binary logistic regression. On the other hand,
if the response variable involves more than 2 categories it is called multinomial
logistic regression. When the multiple categories of the dependent variable can be
ranked then it is called ordinal logistic regression. We will only discuss binary
logistic regression in this course. But one approach to analyzing multinomial
response variables is to analyze each category against all the others pooled together
with binary logistic regression.

Binary Logistic Regression

To illustrate the use of binary logistic regression, we use the 2x2 table for level of
education and adoption of nitrogen fertilizer given below:

[ :
Level of Adoption
Education Total
Yes No
High 21 6 27
Low 22 51 73
Total 43 57 100
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The odds in favor of adoption can be modeled as follows

In(L]:oHBx
I-p

where p is the probability of adoption and x=1 for high level of education and x=0 for
low level of education. This equation is called the logit model. If we solve for p in
this equation we arrive at the following logistic model.

_exp(a.+px) or b= 1
1+ exp(a + Bx)

1+ exp(- o —px)

o and [ are estimated using logistic regression.

ITI. Running binary logistic regression in CropStat
Data for Logistic Regression can be entered as counts of individuals.
A. Input data are frequency counts

Prepare input data file as follows:

a. a column for the independent variable. In this example the independent
variable is level of education which has two levels. Hence our file should have
two rows.

b. a column for the frequency count of the favorable response of the dependent
variable for each level of the independent variable. In this example, since we
are more interested on the adopters then we have to input the number of
responses for the adopters for each education level.

c. acolumn for the total number of responses for each level of the independent
variable.
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The CropStat file should look as follows:

%6 CropStat Data Editor - [E:\Training\Mater... E\@@

B File Edit Options Window Help -8 %
FEDOS & £ 2@

1 2 & [%

EDUCE MNADOPT MRESF
1 Z1.00000 2700000
z 1] 22.00000 73, 00000

Fow: 1 Col: 1Records: 2 Variables: 3 E:NTrainingyMaterials\cateqoricalirristatylogistichad

Note:
1. Always define the independent variable as character.

2. Remember that CropStat estimates coefficients relative to the last level.
Hence, if you want to make the low (0) level of education as the reference
level then you have to input this level in the second row. The idea here is
similar to a control treatment in a controlled experiment.

B. Input raw data file is on a per response basis
Prepare input data file as follows:
a. acolumn for the independent variable. Define this variable as character.

b. a column for the response variable
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"d CropStat Data Editor =]
B File Edit Options Window Help _8 x
EEHEDNE & 2R

1 2 -
ADORT 5 | EDUCS _

1 1

z 0.00000 O

3 000000 0

r 0.00000 O

3 0.00000 O

& 000000 0

7 0.00000 O

5 0.00000 O

5 000000 0

10 0.00000 O 3

Fow: 1 Col: 1Records: 100 Yariables: 2 Data

e We use the first input file to illustrate the use of CropStat for logistic regression.

e Open the data file LOGREGEX.SYS from the CROPSTAT7.2\TUTORIAL)\
TUTORIAL DATASETS folder.

e Select File = Save-as. Click the Save in box and go go inside working folder
C:\MY CROPSTAT. Create a subfolder LOGISTIC REGRESSION then click Save.

e Choose Analysis/Regression Analysis/Generalized Linear Models from the
Analysis menu.
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¥d CropStat for Windows
File Edit Cata BEGEREEN Utlites Window Help
=EH & 4 Surnmary Statistics
Welcome to Crop3tat Scatter Plots
For copyright and € palanced ANOVA (BAOV)
Unbalanced Analysis (GLM)
Mixed Model Analysis (REML] P

Regression Analysis Linear Regression and Correlation
Single Site Analysis
Cross Site Analysis
Pattern Analysis
5xE Plots

QTL Analysis
Log-Linear Analysis

I.ier']eralizaj Linmear Models

The Open dialog box will prompt you to enter a name for the command file.
Click the Look In box to go to your working drive C:\MY CROPSTAT\
LOGISTIC REGRESSION.

Enter LOGREGEX in the File name box. Click Open button.

Since LOGREGEX.GLM does not exist, a message box will appear confirming if
you want to create the file. Click Yes to create new Command File.

Enter the name of the data file to be used. Enter LOGREGEX.SYS in the File
name box.

Click Open. The Generalized Linear Models dialog box will appear for you to
fill-in the details of the analysis.
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CropStat: Generalized Linear Models X

GL Modsl lﬂptions] bodel Specification]
Command File : Data File :
& Open | [LOGREGEX.gim [LOGREGEX 575 | ook
x Cancel
[1ata File Yaniables: Sosmares Ve
EDUCE ? Help
NADDPT Add | |NADOPT
MRESP
Factors:
EDUCE
Add
Covariates:
Add
Biromial Tatals:
INRESP
Vars 3 Chs .2 \Working Directory (EATRAININGYMATERIALSNCATEGOR]

e Click the Model Specification tab. The Generalized linear models model
specification window will appear.

e From the Data File Variable list, highlight the response variable then add to the

Response Variate box; highlight the independent variable then add to the Factors
box.

e If your data file contains the frequency counts of the favorable response for each
level of the independent variable do the following:

- From the Data File Variable list, highlight the variable NRESP, which
contains the total number of responses for each level of the independent
variable then click ‘Add’ to add the Binomial Totals. Otherwise, go to the
next step.
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e Click the down-arrow key then choose Binomial (Logistic).
CropStat: Generalized Linear Models &|
GL Mgdell Options  Model 5pecification I
Madel: Distribution [link function) || j ¢ ok
Paizzon [Exponential) x Cancel
hodel 5 pecification: Meqative Binomial (Logistic) —_—
Logarithric [Logistic
Binomial [Logiztic) ? Help
Binornial [Probit) k
Binarmial [Log-log)
Model Option | J Create Model Remove
Yars i3 Chs 2 Wiarking Directory (BN TRAININGYMATERIALSYCATEGOR]
Click Create Model.

hodel: Distibution (link function) | j “ ak

Model Specification:

CropStat: Generalized Linear Models E|

GL Mudell Options  Model Specification l

x Cancel

? Help

Madel Optian | J

Remove

ars i3 Chbs 2

VWiorking Directory :ENTRAININGYWMATERIALSNCATEGOR]
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e The Specify terms for the Model dialog box will appear.

e Select EDUCS and add into the model.

i Specify terms for the Model \: E|E|

Factors Terms in Model

EDUCE EDUCE

todel Maotation: |EDUE$
Option |Heduced output j

W OF | x Cancel |

7 e |

e Click the Ok and the Generalized linear model specification window will

appear again.

CropStat: Generalized Linear Models

GL Mu:u:lell Options  Model Specification l

Model: Digtribution [link, function) |B inornial (Logistic) j

Madel Specification:
EDUC%

i Create Model: Remove

Model Option |Feduced output |

x|

W 0K

x Cancel

? Help

arg 13 Chs 12 Working Directory (E N TRAINIMNGMATERIALSVCATEGOR]

e C(Click OK.
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CropStat Output

GENERALIZED LINEAR MODEL ANALYSIS FILE LOGREGEX 13/ 6/ 7 9: 5

FACTOR EDUCS$ HAS 2 LEVELS:

MODEL FOR VARIATE 2 (NADOPT) WITH 2 COEFFICIENTS:
Binomial with Logistic link, exp(g)/(l+exp(g)) where

g = EDUCS
Log-likelihood -252.5181
Coefficient Statistics
Standard Asymptotic Asymptotic
Coefficient Error Z-statistic P-value
1 -0.841 0.255 -3.296 0.001
2 2.094 0.529 3.961 0.000

From the output the logistic regression model can be written as:

~0.841+2.094X
e

= 1+ e70.841+2.094X
This equation simplifies to

_(0.43128)(8.1773)"
1+(0.43128)(8.1773)"

If we want to predict the probability of adoption when farmer has low education level
then we just substitute zero for x and we get p=.3013. The same way if we want to
predict the probability of adoption when farmer has high education level then we just
substitute one for x and we get p=.7778. Hence, we can conclude that the probability
of adoption is higher if farmer has high level of education. The odds ratio could be
estimated as the In(B) which is In(2.094)=8.1773. This value is the same as what we

have gotten earlier.
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IV. Binary Logistic Regression with More Than One Independent Variable

Consider the study on the effect of insecticide usage (low, high) and smoking history

on the incidence of pulmonary ailments in farm workers.

Data for the 10,919 farmers who had never smoked are provided in the following

table.
Insecticide - ulmonary Ailment
Rate Total
Yes No
High 96 5392 5488
Low 55 5376 5431

A chi-square test to determine whether there is association between having a
pulmonary ailment and using high rate of insecticide results in y°=10.86 and p-value
less than .001. Thus we can conclude that there is strong evidence that high rate of
insecticide has an effect on pulmonary ailment.

The highly significant chi-square value does not give information about the direction
or strength of the association. The odds ratio of the group who had never smoked is

6=1.74. Thus these data indicate that the odds in favor of having a pulmonary
ailment if using high rate of insecticide are 1.74 times the odds in favor of having a
pulmonary ailment if using low rate of insecticide for the group who have never
smoked.

Data for farmers who were past smokers are provided in the following table.

The odds ratio for this group is 6=1.68.

Insecticide Pulmonary Ailment
Rate Total
Yes No
High 105 | 4276 | 4381
Low 63 4310 4373
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Data for farmers who were current smokers are provided in the following table.

Insecticide |-Lulmonary Ailment
Rate Total
Yes No
High 37 1188 | 1225
Low 21 1192 | 1213

The odds ratio for this group is 6=1.77. Note that the odds ratios are similar for all
groups, indicating a negative effect of high rate of insecticide to farmers’ health, but
not indicating an interaction with smoking.

To get more information from these data, we can look at the logistic regression model
for the entire group of 22,000 participating farmers. In this model there were two
explanatory variables, high or low rate of insecticide and smoking status. The model
will have the form

In(odds) =b, +b,R+b,P+b,C

The response variable is whether or not the farmer had pulmonary ailment. All
variables are coded as 0 or 1. For example, letting R represent the rate of insecticide,
R=1 indicates high rate and R=0 indicate low rate. There are two variables for
smoking status. We let P represent past smoker and code P=1 to indicate that the
farmer is a past smoker. If P=0 then the farmer is not a past smoker. Similarly C=1
indicates that the farmer is a current smoker, while C=0 indicates that the subject is
not a current smoker. A farmer who has never smoked would be indicated by having
the values of C and P both zero.
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Running binary logistic regression with more than 1 independent variable in
CropStat

e For our example, we use the file PULMONRY.SYS.

id CropStat Data Editor - [E:\Traini... E‘@‘B|
g X

B File Edit Options  Window Help E
EEHD0E & £ B@R
1 2 3 4 5 A
RATES PASTE CURREMTS PAl MRESP
1 1 1 37.00000 1225,00000
2 1 1 0 10500000 4351,00000
3 1 0 0 96,00000  S483,00000
4 0 1 1 2100000 1213.00000
5 0 1 0 53,00000 4373,00000
& 0 0 0 55.00000 5431,00000 2
< >
Fow: 1 Col: 1Records: 6 Varigbles: 5 ENTrainingMaterialshcateqoricaly

e Open the data file PULMONRY.SYS from the CROPSTAT7.2\TUTORIAL\
TUTORIAL DATASETS folder.

e Select on File = Save as. Click the Save in box and go inside the directory
C:\MY CROPSTAT\ LOGISTIC REGRESSION and save LOGREGEX.SYS.

Note:

1. the independent variables, Rate, Past, and Current are defined as character
variables.

2. The zero levels of all independent variables are to be used as reference and
hence were inputted as the last levels.

e Follow the same steps as in the previous section until you reach the Generalized
Linear Models dialog box. Provide the necessary information.
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CropStat: Generalized Linear Models E|
l Optiors ] Model S pecification ]
Carnmand File : D ata File :
& Open | [PULMONRY.GLM IPULMONRY.5Y5 E

x Cancel
[ ata File W anables:

Responze Variate:
RATE P Hel
N add | [Pat _ P eb |

PASTS
CURREMT%
=T Factors:
MRESP RATES
PASTE
CURREMT%
Ciovariates:

Binormial Tokals:

dd | |MRESP

Yars 5 Chbs 5 Wiorking Directory (E:NTRAININGYWATERIALSWCATEGDR]

b |
L
_td |
L

e Choose Binomial (Logistic) for the Model: Distribution (link function).

e Enter Model as follows:

id Specify terms for the Model B@

Factorz Terms in kodel
RATES RATES:
PASTSE

CURRENT%

Model Motation: |F|,£\TE$ +P45T$ + CURRENTS
Opticn |F|educed autput L% ﬂ

f (1] 4 | x Cancel | ? Help
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e The Generalized Linear Models window should be as follows:

CropStat: Generalized Linear Models §|

GL MDdE|] Options  Model Specification l

Maodet Distribution (link function] |Binnmia| [Logiztic) j J ] 4

x Cancel
Model 5 pecification: -

RATES + FASTS + CURRENTS ? Help

Miodel Option |F|eu:|uu:eu:| autput j i Create Model: Remove

Mars |5 obs 6 \Working Directory :E:HTRMNIHWQTERMLSHCATEGOR]
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CropStat Output

GENERALIZED LINEAR MODEL ANALYSIS FILE PULMONRY 13/ 6/ 7 13:51

———————————————————————————————————————————————————————— : PAGE 1
FACTOR RATES HAS 2 LEVELS:
1 0
FACTOR PASTS HAS 2 LEVELS:
1 0
FACTOR CURRENTS HAS 2 LEVELS:
1 0
MODEL FOR VARIATE 4 (PAl) WITH 4 COEFFICIENTS:
Binomial with Logistic link, exp(g)/ (l+exp(g)) where
g = RATES$ +PASTS$ +CURRENTS
Log-likelihood -396.7880
Coefficient Statistics
Standard Asymptotic Asymptotic

Coefficient Error Z-statistic P-value
1 -4.57 0.11 -42.96 0.00
2 0.54 0.11 5.02 0.00
3 0.33 0.11 2.96 0.00
4 0.22 0.15 1.42 0.16

From the output the logistic regression model can be written as:

e —4.57+0.54R+0.33P+0.22C

_1+e

—4.57+0.54R+0.33P+0.22C

This equation simplifies to

~(0.0103)(1.7177%)(1.3977 )(1.2448°)
1+(0.0103)(1.7177%)(1.3977 )(1.2448°)

Hence if we want to predict only for the non-smokers, we substitute zero to P and C
and arrive at the following equation

_(0.0103)(1.7177%)
1+(0.0103)(1.7177%)

The odds ratio for non-smokers is 1.7177. The probability of having pulmonary
ailment for non-smokers using low rate of insecticide is .0102. Comparing this value
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to the actual probability % =.0101 which is very close, we can say that the model

fits well for this particular cell. If we do the same thing for the other cells and
summarize the result we get the following table.

Conditions R P C Est.p Actual p
EzgvlztrR Sasoked ! 0 0 0.0174 0.0175
E{fth Siiiier U L 0.0242 0.0240
I({ljlile}r?tagemoker 1 0 1 0.0299 0.0302
;Zyeﬁgﬁoked 0 0 0 0.0102 0.0101
Il;;):: ;{nit)eker 0 1 0 0.0142 0.0144
Low Rate 0 0 . 0.0126 0.0173

Current Smoker

From the result, we can say that on the average, the expected probability of having
pulmonary ailment is higher for those who use high rate of insecticide. The
probability is further increased if the farmer is a past or current smoker.
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V. Binary Logistic Regression with Independent Variable with More Than Two
Categories

The examples we had so far had independent variables with only two categories.
Consider the data below taken from a study on the effect of two types of treatment on
disease incidence. Here we want to estimate the probabilities of getting the disease
for each of the treatments.

Treatment With Disease No Disease Total
A 5 15 20
B 6 14 20
Control 17 3 20
Total 28 32 60

CropStat will create two dummy independent variables. The number of dummy
variables is one less than the number of categories of that particular independent
variable. For this example, the dummy variables may be:

Ty=1 if Treatment=A and 0 otherwise
To,=1 if Treatment=B and 0 otherwise
T,=T,=0 corresponds to the Control treatment.

With T, and T, as the independent variables we now have the logit model

In[%) —b, +bT, +b,T,
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Running binary logistic regression with categorical independent variable(s) in
CropStat

e Asan example we use the CropStat file DISEASE.SYS

"d CropStat Data Edit... E‘@‘E|

¥ File Edit Options Window Help -
(=1 4
SHOE & @
=1 z 3 ”
TRT% DISEASE M
1 5.00000 20.00000
2 B &.00000 20.00000
3 Contraol 17.00000 20.00000
W
< >
Row: 1 Col: 1Records: 3 Variables: 3 [Create E

e Open the data file DISEASE.SYS from the CROPSTAT7.2\TUTORIAL\
TUTORIAL DATASETS folder.

e Save DISEASE.SYS inside your working folder C:\MY CROPSTAT\LOGISTIC
REGRESSION by selecting File = Save-as

Note: CropStat will create dummy variables for TRT before doing the logistic
regression. The dummy variable is as discussed above wherein the reference level
is the last level inputted.

e Perform logistic regression as discussed in previous sections. The Generalized

Linear Models dialog box and Model Specification window should be as
follows:
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CropStat: Generalized Linear Models E\

l Dptions ] Model Specification ]

Command File : D ata File :
= Open | [DISEASE.GLM DISEASE.SYS :‘/ oK
x Cancel
Data File Y anables:

Response YWariate:
TRT ¥ Hel
y add | [DIsEASE _ Pt |
DI%&SE
M

Factors:
TRT%

Covanates:

_bad |
Fiemore)
_bad |
feere

Binomial Totals:

ars 13 ohs 13 Working Directory (B TRAINING MATERIALSNCATEGCOR]

CropStat: Generalized Linear Models E\

GL Model | Options

Model: Distribution (iink function] |Binomial [Lagistic) ~| LV OK

x Cancel
b odel S pecification: I —

TRATS % _ Pt |

tadel Option |F|eu:|uu:eu:| output j Create Model Remove

ars 13 ohs 13 Working Directory (B TRAINING MATERIALSNCATEGCOR]
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CropStat Output

GENERALIZED LINEAR MODEL ANALYSIS FILE DISEASE 13/ 6/ 7 16:11
———————————————————————————————————————————————————————— :PAGE 1
FACTOR TRTS HAS 3 LEVELS:

A B Control

MODEL FOR VARIATE 2 (DISEASE) WITH 3 COEFFICIENTS:

Binomial with Logistic link, exp(g)/(l+exp(g)) where
g = TRTS
Log-likelihood -418.3134
Coefficient Statistics
Standard Asymptotic Asymptotic

Coefficient Error Z-statistic P-value
1 1.658 0.610 2.718 0.007
2 -2.738 0.798 -3.433 0.001
3 -2.540 0.783 -3.243 0.001

From the output the logistic regression model can be written as:

g 638-2.738T,-2.540T,

_1+e

1.658-2.738T,~2.540T,

This equation simplifies to

_(5.2488)(0.06477)(0.0789™)
1+(5.2488)(0.06477)(0.0789™)

If we estimate the probability of getting the disease for each treatment we have the
following result.

Treatment T, T, Expected Probabilities
A 1 0 0.25
B 0 1 0.29
Control 0 0 0.84

From the result we say that the probability of a disease incidence is higher if no
treatment is applied. However, probability of a disease incidence is slightly higher if
treatment B was used than if treatment A was used.
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VI. Binary Logistic Regression with Quantitative Independent Variable

In all our previous examples, we have looked at models containing categorical
independent variables, but there is no reason to restrict the independent variables to
just categorical ones. Quantitative variables can also be included. To show this,
consider the study on the effect of farm size on the adoption of improved fallow
where the response variable is adoption with values 1 or 0 and independent variable
farm size.

A point plot of the raw data is not informative, as demonstrated below. The points
come on two horizontal lines, but there is too much overlap to get a good impression
of any relationship, or lack of relationship.

1  G0ENIN0 OMO IS0 DOIDNNGGOS & L 4 L 4 L 4

Use of improve fallow

0 1 2 3 4 5 6 7 8 9

Farm Size

How can we model this to draw some firm conclusions? Our raw data are binary and
so simple linear regression is clearly inappropriate. A straight line would not fit the
points of the graph of the raw data at all as shown below.
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R 24 22 222 2 2 222 K4 L 4 2 *

Use of improve fallow

0 1 2 3 4 5 6 7 8 9

Farm Size

Moreover, we do not want the model to give values that are negative or are greater
than 1, which would be meaningless in the context. The model should be such that for
very small farms the probability goes asymptotically towards 0, whereas for very
large farms it reaches asymptotically 1, in other words a flattened S-shaped curve,
confined between 0 and 1 as shown below.

0.75 +

Probability
o
(&)}

0.25 +

0 1 2 3 4 5 6 7 8 9

Farm Size

This model could be represented by the following equation

_exp(a+Bx)
1+ exp(o + BX)
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which is the same logistic model we have used before. Hence the logit model could
be used to estimate the parameters.

Running binary logistic regression with quantitative independent variable in
CropStat

e For our example we will use the CropStat file FARMSIZE.SYS.

i CropStat Data Ed... E‘@IE|

¥ File Edit Options Window Help -
g x
EEDOSE & & B@R
1 2 -
FARMSIZE PRESIFZ9
1 0.00000
2 0,24000 1.00000
3 0.25000 0.00000
4 0.25000 0.00000
5 0.25000 0.00000
& 0.25000 0.00000
7 0.25000 0.00000
g 0.25000 0.00000
St
a n 2E0nn [pMninininlnl
% >
Fow: 1 Col: 1Records: 1469 “arishles: 2 E:NTr:

e Open the data file FARMSIZE.SYS from the CROPSTAT7.2\TUTORIAL\
TUTORIAL DATASETS folder.

e Select on File = Save as. Click the Save in box and go inside the directory
C:\MY CROPSTAT\ LOGISTIC REGRESSION and save FARMSIZE.SYS.

e Follow the same steps as in previous sections until you reach the Generalized
Linear Models dialog box.
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Provide the inputs of the analysis as follows:

CropStat: Generalized Linear Models

]D dons | Model Specication] Continuous
Options | Model 5pecification Independent
Cornrnand File : [rata File : & variables should be
= Open | [FARMSIZE GLM IFARMSIZE.5YS .
X defined as
DFi.taH ;i!enlal‘-szariahles: %espnnse Y ariate: - covariates.
PRESIFSS Add | |PRESIFI3 2
Factars:
&dd
Covariates:
FARMSIZE
&dd
Binarmial Tatals:
Add ||
Wars .2 Chs 11469 Morking Directory (B ATRAININGYWATERIALSNCATEGOR]|

CropStat: Generalized Linear Models

GL Mudell Optiohs  Model Specification l

The Model Specification window should be as follows:

X/

todel: Distribution [link. function) |B inornial [Logistic)

todel Specification:

=] o 0K

x Cancel

FARMSIZE

i Create Model:

[

todel Option |F|ec|ucec| output

Femove

? Help

Yars 12 Chs 1469

Warking Directary (E:\TRAINING\MATERIALSNCATEGCRN
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CropStat Output

GENERALIZED LINEAR MODEL ANALYSIS FILE FARMSIZE 14/ 6/ 7 8:51
———————————————————————————————————————————————————————— :PAGE 1

MODEL FOR VARIATE 2 (PRESIF99) WITH 2 COEFFICIENTS:
Binomial with Logistic 1link, exp(g)/ (l+exp(g)) where
g = FARMSIZE

Log-likelihood -608.5726
Coefficient Statistics
Standard Asymptotic Asymptotic
Coefficient Error Z-statistic P-value
1 -2.50 0.13 -18.93 0.00
2 0.45 0.05 8.40 0.00

From the CropStat output the logistic regression model could be presented as follows:

B (e—Z.SO )(eO.4SX )
p_1+(eamxemw)

~(0.0821)(1.568")
1+(0.0821)(1.568%)

Hence if we want to estimate the probability of adoption if farm size=5 acres, then we
just substitute x=5 and get p=0.44. That is, the probability that the farmer is an
adopter is 0.44 when farm size is 5 acres.
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VII. Modeling Responses with More than Two Categories

We have seen that contingency tables could only handle two-way tables and that the
chi-square test provided a way of making some inference from these tables. While
this is suitable for a response variable with any number of categories, a limitation to
the method was the rather limited applicability. We could only deal with one single
independent variable.

Next we learned that binary logistic models can deal with more complex models
containing several independent variables, and they can have both categorical and
quantitative independent variables. A drawback of the binary logistic model in the
overall discussion of analyzing categorical response data is that the model is only
suitable for responses that contain only two categories.

A simple, and often satisfactory, way of dealing with several categories of response is
to reorganize the categories or ignore some of them temporarily to reduce it to a
binary problem. This is often a logical way of dealing with the data where there is
some hierarchy in the responses, e.g. “poor/good/very good” could be reorganized to
“poor/(very)good”. Lumping or ignoring of categories could also be a satisfactory
solution when very few cases have been recorded for a certain category. Sometimes it
could also be informative to look at only the two extreme categories, e.g. in

understanding an answer that can be either “negative”, “neutral” or “positive”, most
informative cases will be the one that answered “negative” or “positive”.

Another strategy is to divide a response variable with several categories into a series
of binary categories or use the multinomial or ordinal logistic regression, which
unfortunately are not covered in this tutorial.

In the particular case of all independent variables being categorical, so that we can
build a multi-way frequency table with all the data, a solution is to use log-linear
models. This is also part of the larger family of generalized linear models, just like
the logistic model.
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ANALYSIS OF CATEGORICAL DATA
USING LOG-LINEAR MODELS

At the end of the, tutorial the user should be able to
e Use log-linear models in the analysis of categorical data

I. Introduction

Log linear models describe association patterns among categorical variables. They
are introduced to bring the familiar linear model structure to the analysis of
categorical data and to extend the chi-square analysis to higher dimensions in a more
structured way than is otherwise possible. With the log linear approach, the cell
counts are modeled in a contingency table in terms of linear functions of cell
probabilities where coefficients explain the association among the variables. In this
sense log linear models analysis is like correlation analysis for continuous variables.

Three sampling models are commonly used to describe cross-classified frequency or
count data. These are the Poisson, Multinomial and Product Multinomial models.

Cross classified count data comprises a series of counts or frequencies corresponding
to level combinations of one or more explanatory factors. These level combinations
define cells of a contingency table for example, counts of insects may be classified
according to species and position on a plant where they are found.

The Poisson model results from assuming that the count in each cell is the realization
of an independent Poisson process observed for some fixed time without any prior
knowledge of the total number of possible observations.

The Multinomial model arises when we have a fixed number of subjects which are
classified into the different cells according to their values of the explanatory factors.

The Product Multinomial distribution arises when we have several sets of subjects,
each belonging, a priori, to some sub-classification of the contingency table, one set
for each row for example. Members of each set are then classified according to their
values of the remaining explanatory factors according to a Multinomial model.

The important result concerning these different sampling situations is that they all
lead to the same expected values for cell frequencies and the same tests for
association between classifying factors because the tests are conditional on the
marginal frequencies whether fixed in advance or randomly observed.
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II. Two-way Contingency Tables

We will begin with the simplest example of a 2x2 contingency table. As an example
we will use the 2x2 table for level of education and adoption of nitrogen fertilizer
given below.

[ .
Level of Adoption
Education Total
u Yes No
. 21 6
khsh (11.61) (15.39) 2l
2 51
Low (31.39) (41.61) L
Total 43 57 100

Note: figures in () are expected frequencies assuming the classifying factors are
independent.

The standard Pearson Chi-square test on these data gives the following result with
P<.001.

(G, -F)

ij

=18.25

. ZZ(O—EE)Z -y

The second formula represents a change in notation, substituting f;; for the observed
frequency in cell ij and F;; for the expected frequency in that cell. This is instituted to
bring the notation in line with the standard notation used with log-linear analysis.

If we calculate the likelihood ratio statistic based on the Poisson distribution with
independent and dependent cell frequencies instead of the Pearson’s Chi-square, we

would have
2225f h
X = Zij F
j
=2(21xIn 21 +6xIn 6 +22xIn 22 +51><Ini
11.61 15.39 31.39 41.61
=18.704

Analysis of Categorical Data Using Log-linear Models 351



This is also approximated by the (1% distribution with 1 degree of freedom. Again we
would reject the null hypothesis of independence of rows and columns. We would
conclude that the level of farmer’s education is associated with the decision to use
nitrogen fertilizer or not.

The use of the chi-square test, whether Pearson’s statistic or the likelihood ratio
statistic, focuses directly on hypothesis testing. But we can look at these data from a
different perspective — the perspective of model building.

To do this we consider possible models for a two-way table.

Equiprobability Model

At the simplest level, we might hypothesize that respondents distribute themselves
among the four cells at random. In other words, p(low, adopter)=p(low, non-
adopter)=p(high, adopter)=p(high, non-adopter)=0.25. This model basically says that
nothing interesting is going on in this study and one-quarter of the
subjects (0.25x100 = 25) would be expected to fall in each cell.

Using the likelihood ratio yto test this model, we have

Adoption
E%ii\;ealtfn Total

Yes No
21 6

High (25) (25) 27
22 51

Low (25) (25) 73

Total 57 43 100

Likelihood ratioy* = 2| 21xIn 21 +6xIn S +22xIn 22 +51xIn o1
25 25 25 25

=42.648

This can be evaluated as 3’ on 4-1=3 df (we lose one degree of freedom due to the
restriction that the cell totals must sum to N). From the y* table we find that
Yeos(3)=7.82. Clearly, we can reject Hy and conclude that this model does not fit
the data. In other words, the individual cell frequencies cannot be fit by a model in
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which all cells are considered equally probable. Notice that rejection of Hy is
equivalent to rejection of the underlying model.

Conditional Equiprobability Model

A second model might hold that the individual cell frequencies represent differences
due to level of education alone, because there were more low-educated than high-
educated farmers. Under this model 73/100 =73% of the observations fall in row 1
and 27% fall in row 2. Beyond that, however, observations are assumed to be equally
likely to fall in columns 1 and 2. In other words, the null hypothesis states that once
we have adjusted for the fact that more farmers are low-educated than high-educated,
adoption and non-adoption is equally probable. Put another way, adoption is
equiprobable, conditional on level of education. By this model, we would have the
expected frequencies (shown in parenthesis) in the table below.

Adoption
Elﬁgt::; Total
Yes No
21 6
High (13.5) (13.5) 27
22 51
Low (36.5) (36.5) 73
Total 43 57 100
Likelihoodratioy® = 2| 51xIn S 20w 22 4 6xi =& |+ 200 21
36.5 36.5 13.5 13.5

=20.67

This model has 4-2=2 degrees of freedom because we have imposed two restrictions
— the cell frequencies in each row must sum to the expected frequency for that row.

Sincey ¢ s (2) = 5.99, we will again reject H, and conclude that the model does not fit
the observed data either.

A second conditional equiprobability model could be created by assuming that cell
frequencies are affected only by differences in levels of adoption. In this case
probabilities are equal within each adoption level but different between them. The
expected frequencies are given below.
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Adoption
Level .Of Total
Education Yes No
21 6
High (21.5) (28.5) 27
22 51
Low (21.5) (28.5) 73
Total 43 57 100
Likelihood ratioy? = 2{ 21 xIn| —2 |+ 6xIn[ O |+ 22xIn( 22 |+ 51xIn[ 2L
21.5 28.5 21.5 28.5
=40.682

Thisy > again has 2 degrees of freedom and is significant. Thus, we have so far

concluded that the data cannot be explained by assuming that observations fall in the
four cells are "at random. Nor can they be explained by positing differences due
simply to an unequal distribution across either level of education or adoption.

In fact these marginal tests of individual factors are not usually interesting — whether
significant or not because they either reflect natural frequencies in the sampled
population or they are chosen by the sampling scheme. In either case interest usually
centers on whether the marginal frequencies alone account for difference or not.

The next step would be to propose a model involving both level of education and
adoption operating independently of one another. This is the standard null model
routinely assumed for a chi-square test on a contingency table.

Mutual Independence Model

We now assume that the two factors operate jointly, but independently, to produce
expected cell frequencies. If the two variables are independent then

F _ RTXCT _ fi_ Xf_j
" GT f

where RT stands for the row total, CT for the column total, GT for the grand total,
and the “dot notation” is used to show that we have summed frequencies across that
dimension. This is the same formula for expected frequencies that we saw in the case
of Pearson’s y” test.
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We began this section by testing this hypothesis of independence. The expected
frequencies and the likelihood ratio were then given. From those calculations we
found that

x’ =3.84

which is significant on 1 df. Thus, we can further conclude, and importantly so in this
case, that a model that posits independence between level of education and adoption
also does not fit the data. The only conclusion remaining is that the probability of
adoption is associated with his/her level of education. That is, there is an interaction
between level of education and adoption of nitrogen fertilizer.

Saturated Model

This is a model in which every expected frequency is forced to be exactly equal to
every obtained frequency, and ¥’ will be exactly 0. A saturated model always fits the
data perfectly. In log-linear analysis, this model is not tested directly. The saturated

model in the RxCcase is basically the model that we adopt if the mutual
independence model is rejected.

ITI. Introduction to Log-linear models

The models discussed above can be represented algebraically and can be compared

with the analysis of variance model. In an analysis of variance we may have a model
like:

Yijk =R+ +Bj +a’Bij + €

In the simplest equiprobability model, all cell frequencies are explained by a single
parameter T, where t is estimated by the geometric mean of the expected cell
frequencies given by the model. That is,

F,=1

A geometric mean is the nth root of the product of n terms, so in this case the
geometric mean of the four expected frequencies is:

1/(25)(25)(25)(25) = 25

For the first conditional equiprobable model we again define T as the geometric
mean of the expected cell frequencies in that model:

t=4/(13.5)(13.5)(36.5)(36.5) = 22.19797
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We also define 1" (where the superscript “E” stands for Education) as the ratio of the

geometric mean of the expected frequencies for the high level of education to the
geometric mean of all the cells (7). Hence,

13.5)(13.
i = (L3 SA)( 35) 135 508164
7 22.19797

% is similar to treatment effect (B ;) in the analysis of variance. However in the
analysis of variance, B3;is the amount that is added to the grand mean to obtain the
row mean. In log-linear models %} is the amount by which we multiply % to obtain

the row’s expected frequency.

For the low level of education,

e _VB0.5)365) 365 L ciin04

2 = ~

2 ©22.19797

Then we show that for this model

_ anE
Fij =11

For cell 1,1 we would have 22.19797x0.608164=13.5, which is the same expected
frequency as what we have in the table.

If we go a little bit further, we can consider the independence model which contained
both education and adoption effects but not their interaction. Here we need both 7

and 1/ to account for both education and adoption effects.

t=4/(11.61)(15.39)(31.39)(41.61) = 21.97936
. _ J(I1.61)(15.39) _13.36705

£ = ’ ~0.608164
t 21.97936
1. 41.61
wo _JBI3NEL6) 3614053 4 o),
t 21.97936
11.61)(31.
oo _J1L6DE139) _19.09026 _ o o0,
? 21.97936
15.39)(41.61
s _15:39)(3161) 2530569, 10
t 21.97936
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Thus for our example,
F, =%t5t! =21.97936x0.608164 x 0.868554 = 11.61

which agrees with the actual expected value for the independence model. In the
general case, for the independence model, the expected frequency for cell ij is

This is a multiplicative model, unlike in the analysis of variance wherein the model is
additive. However, if we transform the preceding equation using the natural
logarithm, we have

In(F; ) =In(7) + In(%iE)+In(%JA)
If we substitute A for In(7) we have
E A
In(F;) =2 +A7 + 1]

which is an additive linear expression directly analogous to the analysis of variance
model. This model is linear in the logs, hence the name log-linear models.

Given this notation, we can now express the different models using log-linear models:

Equiprobability model: In(F;) =2

Conditional equiprobability model 1: In(F;) = + A
.. . J . . A

Conditional equiprobability model 2: In(F;) =% + 2

Mutual independence model: In(F;) =2 +25 +27

Saturated model: In(F;) =2 + AT+ k’? + kﬁ.A

A e
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Testing Models

The central issue in log-linear analysis is the issue of choosing an optimal model to fit
the data. Within the example we have been discussing we have five possible models.
We have computed the y* value, degrees of freedom and test of significance of the

different models and this is summarized below.

Model 2 df Test
1.In(F,)=2 42.648 3 *
2.In(F, )= % +2E 20.670 2 *
3.0n(F, )= %+ 2% 40.682 2 *
4.1n(F, )= A+ 28 + 24 18.704 1 *
5.1n(F, )= 1 +25 24 425 0.00 0 -

We have seen that the first four models all have significant x ? values. This means that
for each of these models there is a significant difference between observed and
expected values; none of them fits the obtained data. From such results we must
conclude that only a model that incorporates the interaction term can account for the
results. Thus, as we have previously concluded, level of education and adoption of
nitrogen fertilizer interact and hence we cannot model the data without taking this
interaction into account. In view of the above results, we may conclude that

In(F, )=+ A5 432 4258

fits the obtained data.
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However, as in the analysis of variance we may want to know whether the main
effects of education and adoption are significant. We can do this in two ways:

1.

Perform chi-square tests on the marginal totals.

a. Effect of education

Level of Education
High Low
£ 27 73
Fj 50 50
2 fij
Y= 22 fij In| —
,
=2/ 27In—+ 73In7—3
50 50
=21.978
b. Effect of adoption
Adoption
Yes No
£ 43 57
Fj 50 50
2 fiJ’
X = 22 fIn| —
Fij

=2 43In£+57|nﬂ
50 50

=1.966
2. Get difference of y > values of concerned models
a. Effect of education
v?=~*(Model 1) - y *(Model 2)

% =42.648 —20.670 = 21.978
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b. Effect of adoption
v =y*(Model 1) - x*(Model 3)
v =42.648 — 40.682 = 1.966

We have found that the simplest model [In(Fij)= 2] produces a y *=42.648. When we

added A" to this model,. x > dropped to 20.670, reflecting the variation in cell
frequencies attributable to level of education. This drop (42.648-20.670) is the y * for
level of education, and its degrees of freedom equal the difference between the
degrees of freedom in the two models (3 — 2 = 1). This is exactly the same value we
obtained in Method 1a, when we compare the marginal frequencies.

By a similar line of reasoning, we can note that taking adoption into account and
going from In(Fij)zk to In(Fij):K+k? reduces y > from 42.648 to 40.682, for a

decrease of 1.966. This is the same as the marginal x* on adoption that we obtained in
Method 1b.

Finally, we should note that when we go from a model of In(Fij): A+AS +7\4/? to
In(Fij)z A+AS +7fj\ + ijA, v % drops from 18.704 to 0. This drop (18.704) is the same

as the y* for the interaction based on marginal frequencies. This equality will not
generally hold for more complex designs unless we are looking at the highest-order
interaction.

One other feature of log-linear models should be mentioned. The minimal model
In(Fij): A produced x *=42.648. The individual components of the saturated model

had XZ values of 21.978, 1.966, and 18.704. These sum to 42.648. In other words,
these likelihood ratio y * values are additive. This would not have been the case had
we computed the Pearson chi-square statistic instead, which is one good reason to
concentrate on likelihood ratio XZ.

IV. Three-way Tables

We now have all the concepts that are necessary to move to more complex designs.
Log-linear models come into their own once we move to contingency tables of more
than two dimensions. These are the situations in which standard chi-square analyses
are not able to reveal a full understanding of the data. In this section we will
concentrate on three-way tables because they illustrate all of the essential points.
Extrapolation to tables of higher dimensionality is direct.

One of the pleasant things about log-linear models is the relative absence of
assumptions. Like the more traditional chi-square test, log-linear analysis does not
make assumptions about population distributions, although it does assume, as does

360  Analysis of Categorical Data Using Log-linear Models



Pearson’s chi-square, that observations are independent. You may apply log-linear
analysis in a wide variety of circumstances, including even the analysis of badly
distributed (ill-behaved) continuous variables that have been classified into discrete
categories.

The major problem with log-linear analysis is the same problem that we encountered
with traditional chi-square: the expected frequencies have to be sufficiently large to
allow the assumption that frequencies in each cell are approximately normally
distributed over repeated sampling. In the case of chi-square, we set the rule that all
(or at least most) of the expected frequencies should be at least 5. We have a similar
situation with log-linear analysis. Once again we require at least that all cells have
expected frequencies greater than 1 and that no more than 20% of the cells have
expected frequencies less than 5. The biggest problem comes with what are called
sparse matrices, which are contingency tables with a large number of empty cells. In
these cases you may wish to combine categories on the basis of some theoretical
rationale, increase sample sizes, collapse across variables, or do whatever you can to
increase the expected frequencies. Regardless of the effects such small cells have on
the level of Type I errors, you are virtually certain to have very low levels of power.

Hierarchical and Nonhierarchical Models

Most, but not all, analyses of log-linear models involve what are called hierarchical
models. You can think of a hierarchical model as one for which the presence of an
interaction term requires the presence of all lower-order interactions and main effects
involving the components of that higher-order interaction. For example, suppose that
we had four variables, A, B, C, and D. If you included in the model the three-way
interaction ACD, a hierarchical model would also have to include A, C, D, AC, AD,
and CD, because each of these terms is a subset of ACD. Similarly, if your model
included ABC and ABD, the model would actually include A, B, C, D, AB, AC, BC,
AD and BD. It need not include CD, ACD, BCD, or ABCD, because those are not
components of either of the three-way interactions.

One of the convenient things about hierarchical designs is that they allow us to
specify models very clearly and simply. Assume that we have four variables (A, B, C,
and D). The notation ABC specifies a model that includes the ABC interaction, and,
because we are speaking about hierarchical models, also includes A, B, C, AB, AC,
and BC. We do not have to write out the latter to specify the model — ABC will
suffice. Similarly, the label AB stands for a model that includes A, B, and AB, but not
C or any interactions involving C. Finally a model written as AB, ACD is really the
model that involves A, B, C, D, AB, AC, AD, CD, and ACD, but not BC, BD, ABC,
ABD, or BCD. We will characterize models by the interactions that define them
(sometimes called their defining set, or generating class).
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V. Three-Way Example

As an example, we consider a study whose objective is to determine the relationship
between level of education, income and adoption of a new technology.

Adoption of Level of Income
h Jucati Total
New Tech. Education High | Medium | Low
High 42 79 32 153
Yes Low 23 65 17 105
Total 65 144 49 | 258
High 4 12 8 24
Low 11 41 24 76
No
Total 15 53 32 100
Column Total 80 197 81 358

Examining the Saturated Model

In considering two-way tables, we defined a saturated model as one that includes all
possible effects. The same holds for three-way and higher-order tables. Consider the
model that can be designated as AEI or written as

IN(F,) = A+ A7 +25 + ) + 055 + 040+ A5 + A

This is the saturated model for our data. It includes all possible effects and exhausts
the degrees of freedom available in the data. (One degree of freedom goes to
estimating A, one each for estimating the As associated with effects A, E, and AE, and
two each to estimating those associated with I, Al, EI, and AEL I has three levels and
thus two degrees of freedom (independent Ag) for it and its interactions). There are 12
As to estimate and since we have 12 cells there are no degrees of freedom left. If we
knew the values of the various lambdas, and eventually we will, the resultant
expected frequencies would equal the observed frequencies, leaving nothing else to
be explained. For this reason we know without even looking at the data that the
likelihood ratio * for this model will be exactly 0. We should not be happier with this
perfect fit than we are when we draw a straight line to fit perfectly any two points,
and for the same reason — the model exhausts the degrees of freedom.

We do not fit a saturated model to data just because we hope that it will fit — we know
that before we start. We usually fit it hoping that it will help us identify simpler
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models by revealing non-significant effects. If we could show, for example, that we
could do about as well by eliminating the three-way interaction and two of the two-
way interactions, we would be well on our way to representing the data by a
relatively simple model.

One of the reasons for starting with the saturated model is that you can then ask
whether various levels of interaction are needed in the model.

Choosing the Most Parsimonious Log-linear Model in CropStat

To illustrate how to perform log-linear analysis in CropStat, we use the sample data
set LOGEX.SYS.

¥d CropStat Data Editor - [E:\Trai... g@§|
-0 X

B File Edit Options  Window Help
EEHDOE & 2@
1 z 3 4 ~
ADOPTION  [EDUCATIO INCOME COUNT
1 1.00000 3.00000 4200000
Z 1.00000 1. 00000 Z,00000 79.00000
3 1.00000 1.00000 1.00000 32.00000
4 1.00000 0.00000 3.00000 23.00000
5 1.00000 0.00000 2.00000 £5.00000
6 1.00000 0.00000 1.00000 17.00000
7 0.00000 1.00000 3.00000 4,00000
3 0.00000 1.00000 2.00000 12.00000
9 0.00000 1.00000 1.00000 .00000 2
< wm 0 " 7T T >
Fow: 1 Col: 1Records: 12 Yarisbles: 4 E:\TrainingyMaterials\cateqoric

e Open the data file LOGEX.SYS from the CROPSTAT7.2\TUTORIAL\ TUTORIAL
DATASETS folder.

e Select File = Save-as. Click the Save in box and go inside your working folder
C:\MY CROPSTAT. Create a subfolder LOG LINEAR then click Save.

e Choose Log-Linear Analysis from the Analysis menu.

A data file for log-linear analysis must contain factors for each categorical
variable in the contingency table. These factors may be character variables or
numeric but contain discrete levels for each categorical variable. The combination
of level values over all factors in a row of the data file identifies a cell in the
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contingency table. The data file may also contain a numeric variable containing
frequencies of observations in each cell — a count variable. If not, the frequencies
are derived by counting the number of rows with the same factor level
combinations. Even when there is a count variable the frequencies in the table are
obtained by summing the counts over rows with the same level combinations.
This allows tables to be collapsed by simply omitting factors defining the
categories to be collapsed without having to re-compute the counts.

M=]p3

=E & % summary Statistics
Scatter Plots
Balanced AMNOWA (BACV)
Unbalanced Analysis (GLM)
Mixed Model Analysis (REML) ¥
Redression Analysis 4
Single Site Analysis
Cross Site Analysis
Pattern Analysis
(5xE Plots
OTL Aralysis

Log-Linear Analysis

Log-linear analysis

e The Open dialog box will prompt you to enter a name for the command file.
Click the Look In box to go to your working drive C:\MY CROPSTAT\LOG
LINEAR.

e Enter LOGEX in the File name box. Click Open button.

e Since LOGEX.LLN does not exist, a message box will appear confirming if you
want to create the file. Click Yes to create new Command File.

e Enter the name of the data file to be used. Enter LOGEX.SYS in the File name
box.

e Click Open. The Log-Linear Analysis dialog box will appear for you to fill-in
the details of the analysis.

¢ From the Data File Variable list, highlight all factors included in the analysis
then add to the Factors box.
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e If your data file contains the frequency counts for each cell of your contingency

table, highlight the variable in the Data File Variables then click ‘Add’ to add
the Frequency Variate. Otherwise, go to the next step.

CropStat: Log-Linear Analysis

l Optiong ] Model Specification ]

Command File : D ata File :
& Open | [ 0GEXLLN |LOGEX.5VS v K

x Cancel
[Drata File Variables: Factors: -
ADOPTION ADOPTION ? Help
ECUCATIO Add EDUCATIO
INCOME IMCOME

COUNT

Frequency VW ariate:

&dd |EEIUNT

Wiorking Directory (B Y TRAININGYMATERIALSACATEGOR]

Vars 4 Ohs 12

Click the Model Specification tab. The Log-linear model specification window
will appear.

Click Add. The Specify terms for the Log-Linear Model dialog box will
appear.

Select all factors and add into the model. This defines the saturated model.

¥d Specify terms for the Log-Linear...[Z:E]S]

Model ]

Factors Termz in Log-Linear Maodel
ADOPTION ADOPTIONEDUCATIOAMNCOME
EDUCATIO

IMCOME

Madel Natation:  |4D0PTION*EDUCATIOANCOME T
Optian |Detai|edu:|ut|:uut j

J ak. ‘ x Cancel | ? Help
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e Click the Ok and the Log-linear model specification window will appear again.

CropStat: Log-Linear Analysis

LDg-Iineall Optionz  Model Specification l

Log-Linear Madel 5pecifization: “ 0k
ADOPTIONEDUCATIO*INCOME
x Cancel

? Help

Model Option | Summary output j Edit | Hemove‘

Wars 14 Chs 112 VWorking Directory (E:\TRAININGYMATERIALSNCATEGCR]

e You may add another model by clicking Add. But for now click Ok to analyze
the saturated model.
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CropStat Output

Table A. Factor Description

FACTOR A INCOME HAS 3 LEVELS:
1 2 3

FACTOR B EDUCATIO HAS 2 LEVELS:
0 1

FACTOR C ADOPTION HAS 2 LEVELS:
0 1

CropStat assigns the letter A to the first factor, B to the second, etc.

Table B. Observed Counts

TABLE OF OBSERVED COUNTS
EDUCATIO 0 0 1 1
ADOPTION 0 1 0 1
INCOME
1 COUNT 24.0 17.0 8.0 32.0
2 COUNT 41.0 65.0 12.0 79.0
3 COUNT 11.0 23.0 4.0 42.0

Table C. Partial Association Statistics

Partial Association Statistics

Omitted Degrees of Marginal
Effect Chi-Square Freedom P-value Zeros
A 70.75 2.0 0.0000 0.0
B 0.04 1.0 0.8326 0.0
C 72.19 1.0 0.0000 0.0
A*B 2.56 2.0 0.2785 0.0
A*C 8.41 2.0 0.0149 0.0
B*C 36.99 1.0 0.0000 0.0
A*B*C 0.26 2.0 0.8801 0.0

Table D. Test for all k and higher interactions are zero

Chi-square statistics for testing that all k and higher interactions are zero.
Likelihood Degrees of
k Ratio P-Value Freedom Pearson P-Value
1 191.92 0.0000 11.0 200.91 0.0000
2 48.93 0.0000 7.0 49.02 0.0000
3 0.26 0.8801 2.0 0.26 0.8802
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Table E. Test for all k-factor interactions are simultaneously zero

Chi-square statistics for testing that all k-factor interactions are
simultaneously zero.
Likelihood Degrees of
k Ratio P-Value Freedom Pearson P-Value
1 142.99 0.0000 4.0 151.88 0.0000
2 48.68 0.0000 5.0 48.77 0.0000
3 0.26 0.8801 2.0 0.26 0.8802

The first item of interest in the output is the section showing the simultaneous test on
main effects and interactions (Tables D and E). Either of the two tables is quite
valuable in determining how complex a model is needed to fit the data. Pooled chi-
square tests (both Pearson and Likelihood ratio) are performed to inform you whether
any k-way (one-way, two-way, etc.) effects are significant. Of the two tables, Table E
provides a more direct summary, although the same conclusions can be derived from
Table D. For example, in Table E, the row where k is 2 tests whether any two-way
interactions are significant. The corresponding row in Table D tests whether any two-
way or three-way interactions are significant. From either table we would conclude
that there is no significant three-way interaction, but there is at least one significant
two-way interaction.

The next step in identifying a model is shown in Table C. From Tables D and E we
have concluded that the 3-factor interaction is not significant. Hence the next model
to consider is a model containing all three 2-factor interactions. This model as shown
in Tables D and E has a y* value 0.26 which indicates that the model fits the data
well. But the question is: Are all two-factor interactions significant? From Table C
we can see that removing A*B (IxE) from the model the y* value 2.56 is not
significant indicating that the model without the IxE term also fits the data. But this
is not true with the AxI and A xE interactions. Excluding any of these terms from the
model will result to significant y* values. Since the objective of log-linear analysis is
to fit the most parsimonious model, then we conclude that

IN(F,) =&+ 25 + 25 + X, + 255 + 1.

The defining set of effects for this model is AE and Al.

Estimating Predicted Frequencies and Residuals

After choosing the most parsimonious model, we have to estimate the predicted
frequencies and examine residuals.

e Choose Log-Linear Analysis from the Analysis menu.

e Open the LOGEX.LLN command file we have created earlier.
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e Click the Model Specification tab. Highlight the model defined earlier then click
Remove.

e Click Add. The Specify terms for the Log-Linear Model dialog box will

appear. We need only to specify the defining set of effects to specify the model
we want.

e Highlight Adoption and Education then click Add. Highlight Adoption and
Income then click Add.

e Click the down arrow key for option then choose Detailed output.

¥d Specify terms for the Log-Linear... EHE|E|

Modsl l Stepwise selection |

Factars Terms in Log-Linear Model
ADOPTION ADOPTION=EDUCATIO
EDUCATIO ADOPTION*IMCOME

IMNCOME Add -»

Model Motatian: |¢’-‘~DDF‘TIDN“EDLIEATID +ADAPTIONANCOME

Option |(BE0ET] DS Aol

J ak x Cancel | ? Help

e Click the Ok and the Log-linear model specification window will appear again.
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CropStat: Log-Linear Analysis

LDQ-HHBEII Optione  Model Specification ]

Log-Linear Model 5pecifization:

ADOPTION*EDUCATIO + ADOPTIONNCOME

Model Option |Detailed autput = |

Edit | Hemove‘

" O

x Cancel

? Help

Vars 4 Ohs 12 Wiorking Directory (EATEAININGYATERIALSNCATEGOR]

e Click OKk to run the model.

CropStat Output

Goodness of Fit Statistics

MODEL: EDUCATIO*ADOPTION +INCOME*ADOPTION HAS
FITTING STATISTICS
Log-Likelihood 3.660
Likelihood ratio 2.812

Degrees of Freedom 4.

p-Value 0.5898

8 COEFFICIENTS
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Parameter Estimates

PARAMETER ESTIMATES

NO. PARAMETER

1 INTERCEPT

2 INCOME (1)

3 INCOME (2)

4 EDUCATIO

5 ADOPTION

COEFFICIENT

3.083

-0.1846

0.6067

0.1941

-0.5520

6 INCOME.ADOPTION(1l) 0.2689

7 INCOME.ADOPTION(2) -0.1777E-01

8 EDUCATIO.ADOPTION 0.3823

0.

S.E ASYMPTOTIC Z
.7343E-01 41.98
.9347E-01 -1.97
.8113E-01 7.48
.6656E-01 2.92
.7343E-01 -7.52
.9347E-01 2.88

8113E-01 -0.22
.6656E-01 5.74

P-VALUE

.0000

.1195

.0017

.0434

.0017

.0451

.8373

.0046

For each effect the parameter estimate, standard error, z statistic, and P-value are
given. For income there are two dummy variables created with high income as the
reference income. That is the variable Income(1) compares low with high income and
Income(2) compares medium with high income. Result shows that Income(1) is not
significant indicating that a farmer is equally likely to be in the low and high income
bracket. On the other hand, Income(2) is significant and the sign of the coefficient is
positive. This result indicates that a farmer is more likely to be from the middle than
high income bracket. Both education and adoption are significant. However, the signs
of their coefficients are different. This means that a farmer is more likely to have a
low than a high education level and more likely to be an adopter than a non-adopter.
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Table of Predicted Frequencies

ADOPTION
INCOME EDUCATIO
1 0 OBSERVED
FITTED
1 1 OBSERVED
FITTED
2 0 OBSERVED
FITTED
2 1 OBSERVED
FITTED
3 0 OBSERVED
FITTED
3 1 OBSERVED
FITTED

TABLE OF FITTED FREQUENCIES

24.
24.32

7.68
41.
40.28
12.
12.72
11.
11.40

3.60

17.
19.94
32.
29.06
65.
58.60
79.
85.40
23.
26.45
42.
38.55
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Table of Residuals

INCOME

EDUCATIO

ADOPTION

ROOT CHISQ
LIKELIHOOD
F-T RESIDS
RESIDUALS

ROOT CHISQ
LIKELIHOOD
F-T RESIDS
RESIDUALS

ROOT CHISQ
LIKELIHOOD
F-T RESIDS
RESIDUALS

ROOT CHISQ
LIKELIHOOD
F-T RESIDS
RESIDUALS

ROOT CHISQ
LIKELIHOOD
F-T RESIDS
RESIDUALS

ROOT CHISQ
LIKELIHOOD
F-T RESIDS
RESIDUALS

.06
.64
.01
.32
.12
.65
.20
.32
11
.45
.15
.72
.20
.40
.13
.72
.12
.79
.05
.40
.21
.84
.31
.40

TABLE OF FOUR FORMS OF RESIDUALS

-0.66
-5.43
-0.62
-2.94

0.55
6.17
0.57
2.94
0.84
3.46
0.84
6.40

-0.69

-12.30

-0.68
-6.40
-0.67
-6.44
-0.64
-3.45

0.56
7.21
0.58
3.45

CropStat outputs four types of residuals

Root ChiSq is the standardized residuals. Here the raw residual is divided by

the estimated standard deviation of observed counts

\/Ei

. Significant

standardized residuals have absolute values greater than 1.96 and such cells
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may be considered “model outliers.” As a rule of thumb, more than one model
outlier per 20 table cells may cause the researcher to seek a different model.

e Likelihood residuals are the deviance residuals and are also called
“studentized deviance residuals”. They indicate how much each cell
contributes to the likelihood ratio. Likelihood ratio chi-square is the sum of
squared cell deviances. These residuals also have a mean of 0 and a standard
deviation of 1 for large samples. They are computed as:

f
2f, log| —
=M

e F-T Resids are the Freeman-Tukey deviates. They are computed as
\/ﬁ+\/fl +1 —\/4Fi +1.
This is derived by considering the variance-stabilizing transformation
o= f 4T

In the event that f; follows a Poisson distribution with mean F;, we use the
result that y; is approximately normally distributed, with approximate mean

VAaF +1

and variance 1.

e Residuals: : Observed minus expected frequency (fi - Fi)
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