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1. Introduction 
 
 
Direct Optimizer is a nonlinear optimization Add-In for Microsoft Excel, in many ways similar to 
the Solver Add-In shipped with Excel. They both optimize the contents of the target cell by varying 
other cells, which have been defined as variables for this purpose. The main differences to the 
Solver are: 
 

1. Direct Optimizer can be (and has been) applied to problems even with million variables, but 
is often slow on small problems. Solver restricts the number of variables to 100, but is 
usually fast on small problems. 
 

2. Direct Optimizer is based on modification of the Hooke-Jeeves direct search algorithm. 
Solver is based on dynamic quadratic models. 
 

3. Direct Optimizer supports at the moment only simple bounds for the variables. Solver has 
sophisticated constraint support.  
 

4. Direct Optimizer stores information about variable bounds to Data Validation of the variable 
cells. Solver has a proprietary method for storing constraint information.  
 

5. Direct Optimizer has been designed for nonlinear optimization only. Solver can deal also 
with linear and integer problems. 

 
As a convention, in the rest of this document we speak of “minimization” instead of “optimization". 
Our problem is to minimize a real-valued function )(xf when n

nxxx Rx ∈= ),,,( 21 � . 
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2. Spreadsheet-program as an optimization platform 
 

2.1. Built-in efficiency 
 
The key idea behind a spreadsheet-program is to organize numerical data into a sheet of cells. The 
program keeps track of dependencies between cells. When some data is changed, the program 
computes automatically the cells, which contain formulas utilizing the recently changed data.  
 
This approach leads to a highly intuitive user interface, which is now a "de facto" standard for 
various numerical tasks in a typical office. However, this approach allows also implementing many 
multivariate mathematical functions in such a way that when one variable is changed, calculating 
the effects of the change is often significantly less demanding than calculating the entire function 
from scratch.  
 
As an example, consider the famous Extended Rosenbrock test function for n variables (n is even) 
[MGH81]: 
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A straightforward implementation of this test function with conventional C-programming language 
looks like this: 
 
double ExtendedRosenbrock( const long n, const double* x) 
{ 
 double result = 0; 
 double temp1, temp2; 
 long i; 
 long uplimit = n-1; 
 for (i = 0; i < uplimit; i += 2) 
  result += 100*(temp1 *= (temp1 = (x[i+1] - x[i]*x[i]))) 
      + (temp2 *= (temp2 = 1-x[i])); 
 return result; 
} 

 
Now, every time we wish to explore the effect of changing one variable, as when estimating the 
gradient of the function with finite differences for example, we need to compute the entire function. 
This results in a lot of repeated computation.  
 
There are some possibilities to speed up the computation. The main alternatives are: 
 

• Not estimating the effects of varying the variables with this function at all, but by 
implementing the gradient-function (or the "explorer"-function) separately. 
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• Keeping track of  "computation history", and when requesting a new value, first checking 
what actually needs to be computed.  

 
The first approach increases problem preparation effort, and is not always feasible. The second 
approach requires us first to compare the new variable values to the stored history - a check, which 
typically requires )(nO  time, and does not necessarily result in actual savings in computation time. 
We do not want to change the interface of the function for example by giving special parameters 
indicating the variables that have been changed (because this would not allow other, existing 
optimization algorithms to utilize the modified interface).   
 
On the other hand, consider implementing the Extended Rosenbrock test function in a spreadsheet 
program.  An experienced programmer might implement it in a way similar to the C-function 
approach above, but a non-programmer would most likely start with an approach like below, first 
implementing the function for 2 variables only: 
 
 

 
 
Here the first, coloured row contains only textual headlines for the columns. The contents of the 
other cells are: 
 
A2: -1.2    (initial value for variable 1x ) 
B2: 1     (initial value for variable 2x ) 
C2: =10*(B2-A2*A2)  (formula for calculating 1f ) 
D2: =1-A2   (formula for calculating 2f ) 
E2: =C2*C2 + D2*D2 (formula for calculating f ) 
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Updating this spreadsheet so that it handles more, say for example 38 variables instead of 2, is done 
like this: 

• select cells A2:D2 
• drag and drop the selection to row 20 with the computer's mouse 
• update the formula in cell E2 

 
 
 

 
The formula in cell E2 is updated to: 
 

=SUMSQ(C:C)+SUMSQ(D:D) 
 
so that it does not need to be changed if further changing the number of variables. 
 
Now, consider what happens if we change the contents of the cell A2 in order to explore the effect 
of changing this variable. The spreadsheet program recalculates cells C2, D2 and E2, but values of 
cells C3:C20 and D3:D20 are used without re-computation.  
 
In this simple example the amount of computation required when one variable changes is still 

)(nO , but by adding handling of partial sums it can be reduced as shown below. It is then assumed 
that internally in the spreadsheet-program, utilizing the dependencies between cells does not require 
a walk-through through all the cells. This is not true with all spreadsheet-programs in all situations. 
 
Consider the case when n variables and computed data from them are organized into rows as 
follows: 
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Each row has m variables and a function defined on those variables, the computation of which is 
assumed to take O(m) time. We wish to minimize the sum of the squares of the functions, but 
instead of calculating the sum of the squares directly, we calculate partial sums first, grouping the 
functions into groups of k functions each: 
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and then computing the function to be minimized: 
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Now, when one variable changes, we need to compute the function if  for that row (O(m) time), one 
new partial sum (requiring k numbers to be squared and summed) and the new value for f  

(requiring k
m
n

/  numbers to be squared and summed).  

 
Therefore the total number of operations required is  

mk
n

kbamkh
2

2)( +++=   

with suitably selected constants a and b. If we wish to select k so that the number of these 
operations is minimized, we differentiate this formula with respect to k obtaining 

2

2
2)(
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n

kh −=′  

thus finding out that )(kh  is minimized when 
m
n

k =  and )(kh  is then )( nO . 

 
This can still be improved by arranging the data into a tree with more depth than above. That way it 
is possible to achieve a theoretical time complexity of )(log nO  for examining the effect of varying 
one variable, but in practice with current spreadsheet-programs this might not allow greater 
problems to be solved (as discussed in the next chapter). 
 
It must be emphasized that this technique exploits the structure of the function to be optimized in 
order to implement its computation in a more efficient way. Sometimes this is possible (perhaps 
more often so with artificial test functions), sometimes not. However, it imposes no changes to the 
interface between the function to be optimized and the optimization algorithm - the optimization 
routine still needs to know only the variables and the function value.  
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In addition, a spreadsheet program typically offers extensive support for graphics, multiple file 
formats, exotic mathematical functions - all appealing features for an optimization platform. 
 

2.2. Practical issues with Microsoft Excel 
 
In this discussion we consider only Microsoft Excel versions 97 and later.  
 
Excel only tracks 65536 dependencies to unique references for automatic re-calculation. After the 
workbook has passed this limit, Excel no longer attempts to recalculate only the changed cells. It 
recalculates all the cells at each calculation instead. For more information on this limitation, see the 
discussion at http://www.decisionmodels.com/.  This limit was apparently not reached with the tests 
described later in this document, even with one million variables on the Extended Rosenbrock test 
function. 
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3. Hooke-Jeeves algorithm 
 

3.1. The original algorithm 
 
 
The original Hooke-Jeeves algorithm has two phases, pattern search and exploratory search. First a 
relatively large step size δ is selected. Then exploratory search tries if the value of the function can 
be decreased by increasing or decreasing each variable by δ. If increasing a variable by δ  has the 
desired effect, it is left to its new value and the effect of decreasing a variable is not examined 
anymore. It is indeed possible that exploratory search leaves all the variables unchanged. 
 
Based on the current iteration ix  and previous iteration 1−ix   pattern search  establishes a “guess”  

)( 1−−+ iii xxx even if the function value would increase there. After an exploratory search is 
performed from the point )( 1−−+ iii xxx , the value of the function in the resulted point is compared 
to )( if x . If the value of the function in the new point is less than in ix , then it is accepted as a next 
iteration point 1+ix  and the computation is continued with a new pattern search. Otherwise, an 
exploratory search is performed in the point ix . If this also fails in decreasing the function value, 
then the step size is decreased from δ  to a new value ρδ / , where  1>ρ   (typically 2=ρ ) 
[HoJ61] [WiB67, p. 307-313] [Him72, p. 142-148].  
 
The algorithm has been visualized in figure 1. The numbering of the points indicates the order in 
which the function evaluations are done. First an exploratory search is done, but all trials are 
abandoned. Then step size is reduced, leading next exploratory search to point 7, which is the 
second iteration point. From here a pattern search step is taken to point 8, and an exploratory search 
from there produces point 11 to be the third iteration point. Finally, at the point 18 function value is 
greater than in the previous iteration point 14, so pattern search step is cancelled, and exploratory 
search from point 14 produces point 20. 
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Figure 1: Example iterations 0-4 of the Hooke-Jeeves algorithm 

 
 
 
 
More formally, exploratory search creates from a point x  given to it as a parameter a new point 
y as: 
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for each nj ,,1

�
= . Let us assume that a function )(xE returns as its value the point, which is 

created from point x by applying exploratory search. Iterations of the algorithm are marked as ix , 
0≥i .  We define two points, ie1  and ie2  for each iteration as: 
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Note the recursive definition of ie2 . The iterations of the Hooke-Jeeves algorithm are then: 
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The algorithm is stopped when the step length δ  becomes less than a pre-set value (typically square 
root of the machine epsilon) when reducing it. Point ie2 is not calculated on every iteration of the 
algorithm, but only when it is needed. 
 
Some distinct features of the algorithm are: 
 
• Only a step is taken to the search directions. No line searching is done. 
• It is adaptive in the sense that the distance between successive iterations (when measured with   

infinity norm) may become even thousands of times larger than the step size used in the 
exploratory search. 

• While gradient-based algorithms always explore the effect of varying the variables with an 
infinitesimal amount, Hooke-Jeeves algorithm explores the effect of varying the bits of a 
floating-point number in the direction from most significant to least significant. 

• Because the algorithm takes the pattern search –step even when the value of the function 
increases, it is efficient in following a curved route towards optimum [Pow70, p.86] 

• No multiplications or divisions between floating-point numbers are done (when δ  is an integer), 
so it is easy to implement the algorithm in a machine-independent way with no danger of a 
floating-point overflow. The algorithm is numerically very stable. 

• Its convergence has been proven  [Céa71] [Yu79] [Tor97] [CoP01]. 
 

3.2. Suggested modifications 
 
The exploratory search performed after the pattern search may produce the current iteration point, 
but because of rounding errors it may seem better than the current iteration point. This may even 
cause the algorithm to loop forever, but it can be avoided by verifying that the algorithm advances 
at least half the step size used in the exploratory search in every iteration [BeP66, p. 685]: 
 





 >−<

= ∞+

otherwise

2/ and)()( if1

i

iiiii
i ff

e2
xe1xe1e1

x
δ

 

 
and by adding a check into the computation of the vector ie2 : 
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After these modifications the algorithm is in practice immune to rounding errors. 
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A summary of other suggested modifications has been presented in [Kuh93]. In short, the key ideas 
have been  
 

• Various methods for adjusting the step size δ  (often individually for each variable).  
• Adding "curvature estimation" by using more information from the previous iteration points. 
• Adding randomness to the algorithm, for example by performing the exploratory search into 

random directions. 
• Adding line minimizations to exploratory search or to pattern search. 
 

No single modification has gotten very popular among practitioners. Typically the modifications are 
also supported with very few experimental results and without proofs of convergence. 
 
Simple constant bounds for the variables can be incorporated into the algorithm by simply setting a 
variable to its bound whenever a bound is violated. However, this leads to a small problem when 
combined with the numerical stableness modification: when projecting a variable to the boundary, it 
might well cause the algorithm to progress less than the required amount of half the step size used 
(when measured with infinity norm), so this step would then be rejected. As a result, when the 
optimum occurs at the boundary, the algorithm may sometimes stop to a distance less than half of 
the final step size used from the boundary. This should not be a big problem in practice.  
 

4. Berserk-mode 
 

4.1. Description 
 
In [Kuh93] the Hooke-Jeeves algorithm was applied to all (except one) such  Moré-Garbow-
Hillstrom test problems, which were generalized to n-dimensions. One notably difficult problem 
was the test function 25 Variably dimensioned function. No explanation could be given there why 
the problem was so difficult for the Hooke-Jeeves algorithm. However, when implementing Direct 
Optimizer in Microsoft Excel and watching the computation in action on computer screen led to a 
intuitive explanation: when optimizing this function, typically many variables remain unchanged for 
a long period of time. Exploratory search spends a lot of time examining the effect of varying 
variables, which have remained unchanged for even hundreds of iterations.  
 
This same problem was later discovered even more dramatically when examining the behaviour of 
the Hooke-Jeeves algorithm in the extended version of the well-known Rosenbrock "banana valley" 
test function (Moré-Garbow-Hillstrom test function 21) using a non-conventional starting point (1, 
1, 2, 4, 3, 9, 4, 16, ...).  This seems to be pathologically difficult starting point for the original 
Hooke-Jeeves algorithm. The greater the initial values of the variable pairs are, the smaller the step 
size δ has to be in order to start changing the variables at all. 
 
It would seem at first natural to increase the efficiency of the computation in cases like this by 
individual step size control for each variable. It would indeed keep more variables changing in early 
stages of the computation, but it would also add a lot of unnecessary computation to the late stages 
of the computation for example in the case of the extended Rosenbrock test function.  
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Therefore a new strategy was designed in this research based on the idea that if a variable has not 
changed for many iterations, the effect of changing it is not examined in the exploratory search 
which is done after the pattern search. If pattern search is then cancelled and exploratory search is 
done in the previous iteration point, we again ignore the "non-interesting" variables at first. Only if 
the function value is not decreased with this search we examine also the rest of the variables. 
Whenever the step size δ  is reduced, the "change history" of each variable is reset. 
 
More formally, let us assume a constant 
  for indicating the number of iterations a variable must 
remain unchanged before we start ignoring it (the "temper"). Let also �  indicate the number of 
iterations that have passed since the last change of the step size δ. 
 
We'll define a function )(xB  to return a point y based on an iteration point  ix  as follows: 
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for each nj ,,1 �= . We also define a function )(~ xB  which "explores the rest", returning a point 
y based on a point x  (not necessarily an iteration point) as follows: 
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The motivation for functions )(xB  and )(~ xB is that in this way we can explore the variables in two 
phases: first by ignoring the variables, which have not been recently changing (by applying function 

)(xB ), and then by exploring the rest with ))((~ xBB . 
 
We now define points ib1  and ib2  for each iteration as: 
 





>−+
=

= − 0 when))((
0 when

1 i

i
iii

i
i

xxxB
b2

b1  

 









=
<≥

<
=

otherwise/ assignment anafter  calculated 
 )()))((~( and)())(( if))((~

)())(( if),(

ρδδi

iiiii

iii

i ffff

ff

e2
xxBBxxBxBB

xxBxB
b2  

 
Note the usage of (recursive) definition of ie2 on the definition of ib2 . The iterations of the Hooke-
Jeeves algorithm utilizing Berserk-mode are then: 
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Proof of convergence is not presented in this version of this paper. 
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It is not self-evident that this modification increases the performance of the algorithm, as seen in the 
next chapter. 
 

4.2. ����� � -parameter 
 
In the tables below, the effect of value of � is seen on various test functions. The value "infinity" 
refers to the original Hooke and Jeeves algorithm (no variables are ever ignored). These tests are 
run on a 266 MHz Pentium II machine with Direct Optimizer version 0.9, Windows 98 and 
Microsoft Excel 2000. Default parameter values for Direct Optimizer (other than � ) were used. The 
measured time is only approximative "calendar time", not the CPU-time used. 
 
 

�  
time 

(hh:mm:ss) iterations func evals 
func val at 

result 
1 15:51:24 1752144 34164258 6.53E-11 
2 11:42:16 1362429 25531894 3.50E-11 
3 10:17:49 1193167 22450088 4.06E-11 
4 5:07:46 682587 12130558 2.65E-11 
5 3:29:39 481288 8196858 3.90E-11 
6 1:16:00 205975 2919183 2.83E-11 
7 6:34 10934 250464 3.00E-11 
8 6:35 10934 251232 3.00E-11 
9 6:35 10934 252000 3.00E-11 

10 6:36 10934 252772 3.00E-11 
20 6:47 10934 260464 3.00E-11 
30 6:55 10934 268124 3.00E-11 
40 7:03 10934 274948 3.00E-11 
50 7:10 10934 279592 3.00E-11 
60 7:14 10934 283672 3.00E-11 
70 7:18 10934 286600 3.00E-11 
80 7:22 10934 289020 3.00E-11 
90 7:24 10934 291060 3.00E-11 

100 7:26 10934 293100 3.00E-11 
1000 11:02 10934 465824 3.00E-11 

infinity 18:53 10934 847572 3.00E-11 

Table 1: Extended Rosenbrock test function from starting point (1,1,2,4,3,9,4,16,....) for ������� ��!#" $ %'&#(*)+)-,/.�0  

 
 

1  
time 

(mm:ss) iterations func evals 
func val at 

result 
1 5:41 13387 203277 3.10E-10 
2 7:19 13801 271674 1.16E-10 
3 8:21 14723 314307 3.02E-10 
4 10:58 18811 414245 3.23E-10 
5 10:13 16377 388082 1.78E-10 
6 10:05 15734 384875 6.52E-11 
7 11:09 16916 428882 2.85E-10 
8 10:42 15548 408054 3.09E-10 
9 12:04 17740 468346 1.73E-10 
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10 10:44 15320 418916 3.36E-10 
20 13:45 16315 544686 2.85E-10 
30 18:57 19721 761113 2.20E-10 
40 17:43 16168 718266 3.80E-10 
50 18:33 15348 740862 2.85E-10 
60 19:59 14798 804224 1.73E-10 
70 23:05 17411 931060 5.56E-11 
80 20:30 13866 828238 1.09E-10 
90 22:43 15238 922183 2.33E-10 

100 24:08 16287 984053 2.08E-10 
1000 30:19 15420 1263829 1.25E-10 

infinity 29:35 15420 1263829 1.25E-10 

Table 2 24365�7�8 5�9;:=<?>@8 ACBED;FG8IH�D#B*JLKMB*FMK�NPO#D#Q�KM8 H�DRNSH�7UT�5�7�8 H�O#FWVYX'Z#B*D+D-[/\�]  

 
As these two test functions react to the value of ^ in very different ways, we select a conservative 
default value of 100 for ^  for the Direct Optimizer.  
 

5. Computational experiments 
 
 
The test functions are implemented in the file "testfunctions.xls" distributed with Direct Optimizer. 
Only three test functions have been chosen for presentation here. The main reasons for this limited 
experimentation are: 

• Testing is very time-demanding and ongoing at the moment. This document is upgraded 
gradually. 

• An overview how the Hooke-Jeeves algorithm behaves on those Moré-Garbow-Hillstrom 
test problems which have been generalized to n dimensions has already been given in 
[Kuh93]. 

 

5.1. Extended Rosenbrock function (21) 
 
 
The function to be minimized is [MGH81]: 
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and the starting point is (-1.2, 1, -1.2, 1, ...). A typing error in [MGH81] in the definition of this 
function has been corrected. 
 
The minimum is 0)( =xf   at (1, ..., 1). 
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The results are:1 
 

n time iters f evals f val dist dif 
100 0:11 67 20048 1.85E-13 2.98E-08 1.85E-13 

1000 1:58 67 197798 1.85E-12 2.98E-08 1.85E-12 
10000 20:56 67 1975298 1.85E-11 2.98E-08 1.85E-11 

100000 5:01:40 67 19750298 1.85E-10 2.98E-08 1.85E-10 
1000000 170:16:32 67 197500298 1.85E-09 2.98E-08 1.85E-09 

 
During the computation, Berserk-mode was allowed with the default temper-value of 100, but did 
not become active. The columns are: 
 
n: number of variables 
time: calendar time used in hours:minutes:seconds 
iters: number of iterations of the algorithm 
f evals: number of function evaluations 
f val: function value at returned point 
dist: distance of returned point from the minimum point as infinity-norm 
dif: difference of returned function value to the minimum value 
 
The number of function evaluations required (shown in the "f evals" column) depends on the 
number of variables as shown with the difference equation : 
 

2682)(10)10( −= nFnF  
 
The goodness of the solution when measured with the distance of the returned point from the 
minimum point as infinity norm remains the same. 
 
 
 

5.2. Extended Powell Singular function (22) 
 
 
The function to be minimized is [MGH81]: 
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where 
 

                                                
1 Direct Optimizer 1.0 on an Intel Celeron 2.4GHz PC with 512 MB of memory, Windows 98 SE and Excel 2000 SP-3. 
 



 16 

2
4344

2
142414

41424

243434

)(10)(
)2()(
)(5)(

10)(

iii

iii

iii

iii

xxf

xxf

xxf

xxf

−=
−=

−=
+=

−

−−−

−−

−−−

x
x
x
x

 

 
and the starting point is  ),,( 00 nx ξξ _= , where  
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The minimum is 0)( =xf   at (0, ..., 0). 
 
Initial step size for the algorithm was changed from the default value of 1 to 0.31. The results are:2 
 
 

n time iters f evals f val dist  dif 
100 0:46 494 102114 4.22E-10 1.72E-03 4.22E-10 

1000 07:40 494 1006614 4.22E-09 1.72E-03 4.22E-09 
10000 1:24:18 494 10051614 4.22E-08 1.72E-03 4.22E-08 

100000 22:05:50 494 100501614 4.22E-07 1.72E-03 4.22E-07 
 
 
During the computation, Berserk-mode became active in every run. The columns are as with the 
Rosenbrock test function. 
 
The number of function evaluations required (shown in the "f evals" column) depends on the 
number of variables as shown with the difference equation : 
 

14526)(10)10( −= nFnF  
 
The goodness of the solution when measured with the distance of the returned point from the 
minimum point as infinity norm remains the same. 
 
 

5.3. Griewank's function 
 
 
The function to be minimized  (as presented in  [ALR03]) is:  
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2 Direct Optimizer 1.0 on an Intel Celeron 2.4GHz PC with 512 MB of memory, Windows 98 SE and Excel 2000 SP-3. 
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where 10=d . The starting point is chosen by selecting a random number uniformly distributed 
between -100 and 100 for each ix . The global minimum is 0)( =xf  at (0, ..., 0). 
 
 
This function has several local minima, and is often used when testing global optimization software. 
The results are:3 
 

n time iters f evals f val dist dif 
100 0:26 35 19269 3.77E-15 4.04E-08 3.78E-15 

1000 4:12 42 204087 4.75E-14 4.50E-08 4.75E-14 
10000 1:09:38 80 2814244 4.80E-13 4.56E-08 4.80E-13 

100000 86:07:30 191 50018481 4.83E-12 4.62E-08 4.83E-12 
 
 
During the computation, Berserk-mode became active only in the run with 100000 variables. The 
columns are as with the Rosenbrock test function. 
 
 
 

                                                
3 Direct Optimizer 0.9c on an Intel Pentium II 266 MHz PC with 328 MB of memory, Windows 98 SE and Excel 2000 
SP-3. 
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6. Discussion 
 

6.1. Observed sublinearity in time complexity 
 
It requires less function evaluations to solve the Extended Rosenbrock or the Extended Powell 
Singular test function with 10n variables than solving ten times the same test function with n 
variables only. 
 
This can be explained as follows. Let us assume that the algorithm has been implemented in such a 
way that exploratory search receives as its parameter the function value in the starting point. 
Therefore pattern search step computes the function value once. Let us further assume that when 
optimizing a function )(xf from a starting point  n

nxxx Rx ∈= ),,,( 00
2

0
1

0 ` we need ff ep ++1  

function value evaluations in total. Here fp  is the total number of function value evaluations done 

in pattern search steps, fe  is the total number of function value evaluations done in exploratory 
searches, and one evaluation is done in the beginning of the algorithm. Let us now construct a new 
function nF 2),( Rzz ∈ as )()()( yxz ffF += . Optimizing the function )(zF  from a starting point 

n
nn xxxxxx 200

2
0
1

00
2

0
1

0 ),,,,,,,( Rz ∈= `` requires ff ep 21 ++  function value evaluations, which is 

always less than )1(2 ff ep ++  (even if  fp was zero). If rounding errors are absent, the distance of 

the returned point from the optimum when measured with 
∞

 -norm remains the same. 
 
When applying this analysis to the results of Extended Rosenbrock test function, it would seem that 
the optimization algorithm has performed 297 pattern search steps. This is counter-intuitive, as the 
algorithm has performed only 67 iterations. This can be explained as follows: 
 

• Direct Optimizer counts every function evaluation, even if it would result only in returning 
the value of the target cell (without any calculation). 

• Exploratory search in Direct Optimizer has been implemented so that it does not get the 
function value in the starting point as its parameter, therefore it evaluates it there. 

• Also the result of the exploratory search is found out by evaluating the function in the main 
body of the algorithm. 

 
This is insignificant from performance point of view, but the above analysis needs to be modified a 
bit when applied to the results of Direct Optimizer. As this is considered to be an uninteresting 
implementation detail, it is not presented here. 
 
 

6.2. Not a silver bullet 
 
The success of Direct Optimizer may seem almost phenomenal on selected problems, but even the 
Berserk-mode modification did not solve the difficulties it faces for example with the Variably 
dimensioned function (25) of More et al [MGH81]. At the time of writing this, Direct Optimizer has 
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spent 430 hours solving it on a 300 MHz Pentium II PC for one thousand variables applying 
Berserk-mode with the temper-value of 1, and is almost ready.  
 
Although Berserk-mode helps on problems like this, further research is needed in order to 
understand why these problems are so difficult for it and if the algorithm can be modified to solve 
also these in an efficient way. 
 
 

6.3. About nonlinear optimization in general 
 
Nonlinear optimization has been dominated with the "dynamic quadratic models" paradigm. This, 
in turn, is based on the well-known results on how to optimize quadratic functions with no 
constraints on the variables. Several methods exist, which give exact solutions assuming the 
rounding errors have no effect. Some features of typical algorithms are summarized in the table 
below. We assume 
 

• rounding errors have no effect on computation 
• evaluating the gradient requires )(nO  function evaluations 
• there are no constraints on the variables 
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Number of function 
evaluations for 
minimizing a quadratic 
function exactly: 

unlimited )( 2nO  )( 2nO  )( 2nO  )( 2nO  )( 2nO  

Time requirement for 
minimizing a quadratic 
function exactly: 

unlimited )( 2nO  )( 2nO  )( 2nO  )( 3nO  )( 3nO  

Space requirement: )(nO  )(nO  )(nO  )( 2nO  )( 2nO  )( 2nO  
Does it always converge 
to a stationary point 
when applied to a twice 
continuously 
differentiable function, 
which is bounded from 
below? 

yes yes 
 

no ? no yes 

Type of the algorithm: line 
searcher 

line 
searcher, 
conjugate 
gradient 

line 
searcher, 
conjugate 
gradient 

line 
searcher, 
Quasi-
Newton 

both line 
search 
and no-
search 
variations 

trust 
region 

 
 
In addition,  

• General quadratic optimization with linear constraints on the variables is NP-hard  [Vav91]. 



 20 

• If ε -approximate solutions are allowed, complexity of unconstrained quadratic optimization 
is not known. Research has focused to algorithms aiming for exact solutions. Yet often ε -
approximate solutions are easier to find, as in linear programming for example. 
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Appendix B: Installation Guide 
 
In order to install Direct Optimizer: 
 

1. Copy the files directoptimizer.xla and directoptimizer.hlp to a directory of your choice. 
2. Add the Add-In to Excel's list of Add-Ins. You may need to refer to Excel's Help-system. 

For Excel 97, the procedure is: 
- Choose Tools, Add-Ins to display the Add-Ins dialog box 
- Click Browse and navigate to your copy of directoptimizer.xla 
- Click Open 
Note: In some versions of Windows, you will be asked if you want to copy the Add-In to the 
"Library". Do not do so, as the help file will not be copied with the Add-In. 

3. A license-window opens. Read the license carefully. If you feel you can accept the license, 
click the button "I accept this license". Otherwise, click the button "I don't accept this 
license" and stop the installation. 

4. The Direct Optimizer Add-In should now appear in the list of Add-Ins. Make sure the check 
box next to its entry is selected.  A new "Direct Optimizer" menu entry to the Tools-menu 
has now been created. Choose it in order to activate Direct Optimizer. 

 
If you are using Excel XP and your Macro security is set to "High", then the Add-In won't load and 
you won't get a warning. Go to Tools menu, Macro submenu, and click "Security" to change it to 
"Medium". 
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Appendix C: Quick Start 
 
After installing Direct Optimizer as described in Appendix B, open the file testfunctions.xls 
distributed with Direct Optimizer. Select the "Rosenbrock" sheet. Click the button "Setup problem". 
Enter for example 100 as the problem size, and "1" as the starting point (-1.2, 1,-1.2, 1, ...).  
 
You have now defined a problem with 100 variables to be solved. Start Direct Optimizer from the 
Tools-menu. Click "Target Cell:". Click the red cell (D1)  with your mouse, and then click "OK" in 
the message box. Click "Guess" in the Direct Optimizer main window. Click "Solve". You will see 
a "Direct Optimizer - computing" window with a progress indicator. Wait  for a while, until the 
result of computation window opens. Click OK.  
 
Congratulations, you have solved your first problem with Direct Optimizer! 
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Appendix D: Using Direct Optimizer from VBA programs 
 
Assuming that Direct Optimizer has been installed (as instructed in Appendix B), you can use 
Direct Optimizer from your own programs and macros. A function called DOSolve is offered for 
this purpose. It has been declared within the Direct Optimizer Add-In as: 
 
Public Function DOSolve( _ 
    TargetCell As String, _ 
    MaxMinVal As Integer, _ 
    ValueOf As Double, _ 
    VariableCells As String, _ 
    Unconstrained As Boolean _ 
    ) As Boolean 
' 
' Parameters: 
' TargetCell - cell to be optimized or solved 
' MaxMinVal - problem type: 1=Max, 2=Min, 3=Val 
' ValueOf: if MaxMinVal=3, then this gives the target value 
' VariableCells: if <> "", then the variables, otherwise precedents are used 
' Unconstrained: handle the problem as unconstrained or not 
' 
' this function returns FALSE if computation resulted in error, 
' TRUE otherwise 

 
DOSolve assumes, that: 

• It is OK to project variables violating the bounds to the feasible region. 
• It is OK to ignore non-valid bounds. 
• It is OK to activate the worksheet containing the target cell. 

 
Other settings than those given as parameter may be adjusted by starting Direct Optimizer 
interactively on the sheet in question, then modifying the desired options (such as the initial step 
size of the algorithm), and then pressing either Exit or Retain on the main screen. This causes these 
sheet-specific settings to be saved, and DOSolve reads them when it starts. DOSolve does not 
modify these settings by itself. The parameters given to DOSolve override the corresponding  sheet-
specific settings. 
 
There are two main ways to access the procedure DOSolve: via Application.Run and referencing it 
directly. Both ways are described below. You can find these examples also from the file 
testfunctions.xls - open the Visual Basic Editor (in Excel 2000: Tools-Macro-Visual Basic Editor), 
and then see the module DO_VBA.  Run the examples as you would run any other macro in Excel. 
 
Note: it is a common practice to learn Excel programming with its Macro Recorder. You can learn 
how to call the Solver Add-In from your programs with it, but the same does not apply to Direct 
Optimizer. You need to follow the instructions below instead. 
 

Accessing DOSolve via Application.Run 
 
The procedure below uses DOSolve to minimize the Extended Rosenbrock test function found in 
the file testfunctions.xls (distributed with Direct Optimizer): 
 
Sub DirectOptimizerBatchExample_1() 



 25 

 
    ' in this example we are going to 
    ' optimize the extended Rosenbrock test 
    ' function from our program 
 
    ' first we activate the sheet of interest: 
    Application.Workbooks("testfunctions.xls").Worksheets("Rosenbrock").Activate 
 
    ' then we optimize 
    Dim success As Boolean 
    success = Application.Run("directoptimizer.xla!DOSolve", "D1", _ 
                               2, 0, "", True) 
 
End Sub 

 
Here the target cell has been given ("D1"), the problem is a minimization problem (2), the value of 
ValueOf parameter is insignificant, the variables have been specified with an empty string so that 
they will be guessed (to those precedents of the target cell which do not contain formulas), and 
finally the problem is considered as unconstrained.  
 
The advantage of this approach is that you only need to install the Direct Optimizer Add-In in order 
to run your program - less work, if distributing your programs to other persons. The disadvantage of 
this approach is that the parameters have to be given without specifying the name of the parameter, 
thus requiring special attention that no mistakes are made. 
 

Accessing DOSolve directly 
 
The procedure below refers to DOSolve directly in order to minimize the Extended Rosenbrock test 
function. Before this program can be run, you need to open the Visual Basic Editor (in Excel 2000: 
Tools-Macro-Visual Basic Editor), then access the Tools-References menu and add a check-mark 
next to DirectOptimizer. 
 
Sub DirectOptimizerBatchExample_2() 
 
    ' in this example we are also going to 
    ' optimize the extended Rosenbrock test 
    ' function from our program 
    ' 
    ' NOTE: THIS EXAMPLE REQUIRES THAT YOU HAVE 
    ' USED THE TOOLS-REFERENCES COMMAND IN THE 
    ' VISUAL BASIC EDITOR TO ENABLE REFERENCES 
    ' TO THE DIRECT OPTIMIZER ADD-IN! 
 
    ' first we activate the sheet of interest: 
    Application.Workbooks("testfunctions.xls").Worksheets("Rosenbrock").Activate 
 
    ' then we optimize 
    Dim success As Boolean 
    success = DOSolve( _ 
        TargetCell:="D1", _ 
        MaxMinVal:=3, _ 
        ValueOf:=10, _ 
        VariableCells:="", _ 
        Unconstrained:=False) 
     
End Sub 
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Here the target cell has been given ("D1"), the problem requires this time solving (we want a value 
of 10 to the target cell), the variables have been specified with an empty string so that they will be 
guessed, and finally the bounds for the variables, if given in the Data Validation of the variable 
cells, will be taken into account.  
 

A simple multistart example 
 
Below is an example how to write a program which calls Direct Optimizer from randomized 
starting points. This example optimizes the Extended Rosenbrock test function one thousand times 
from different starting points and gives an error message, if the optimization run does not give a 
satisfactory result or results in an error. You can find also this example from the included file 
testfunctions.xls, module DO_VBA. 
 
Sub DirectOptimizerStressTest() 
 
    ' first we activate the sheet of interest: 
    Application.Workbooks("testfunctions.xls").Worksheets("Rosenbrock").Activate 
     
    MsgBox "This macro performs a stress test on Extended " & vbCrLf & _ 
        "Rosenbrock test function with 20 variables." & vbCrLf & _ 
        "Set it up so first!" 
         
    ' initialize random number generator 
    Randomize 
     
    Const upcount As Long = 1000 
    Dim counter As Long 
    counter = 0 
     
    While (counter < upcount) 
        counter = counter + 1 
        Dim c As Range 
        Dim a As Range 
     
        Set a = Application.Range("G1:Z1") 
     
        For Each c In a 
            'randomize contents 
            c.Value = 40 * Rnd - 20 
        Next c 
         
        ' then we optimize 
        Dim success As Boolean 
         
        success = Application.Run("directoptimizer.xla!DOSolve", "D1", _ 
                                  2, 0, "", False) 
        ' target is D1, we minimize , valueof is dummy,  
        ' guess variables, obey possible constraints 
         
        If (success = False) Then 
           MsgBox "Optimization run failed!" 
           Exit Sub 
        ElseIf (Application.Range("D1").Value > 0.00000001) Then 
           MsgBox "Problem in stress test with the returned value!" 
           Exit Sub 
        End If 
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    Wend 
     
    MsgBox "Stress test OK!" 
     
End Sub 
 

Known problems 
 
Problem: 
 
If you change the constant "upcount" in the DirectOptimizerStressTest from 1000 to 10000 and run 
it on Win98/Excel 2000 SP-3, the following symptoms occur: 
 

• When you open in Windows Start-Programs-Accessories-System Tools-Resource Meter and 
follow the "GDI resources" during the stress test, the given percentage gradually decreases 
(this may take hours to become evident). 

• The command buttons "Setup problem" and "Evaluate solution" will finally not show. 
• Before the test is complete, Excel and/or Windows becomes non-stable and may crash. 

 
 
Work-around: 
 
Run DOSolve in a loop only on a sheet not containing Command Button controls (such as the 
"Setup problem"-button on the Extended Rosenbrock test function sheet). If you want to use such 
buttons, locate them on a different sheet than the model to be optimized and link them to your 
model. Just remember to keep the entire model (both the variables and the target cell) on a single 
sheet. 
 
This way you can call DOSolve in a loop and the GDI resources remain the same. 
 
Discussion: 
 
This is most likely caused by a memory leak in the Command Button control. It is possible that 
other controls contain similar problems. This problem is less evident in Windows 2000/XP than in 
Windows 95/98/Me, as they handle the GDI resources differently, but problems could occur also 
there.  
 
At the time of writing this, it is not known if this problem has been corrected in later versions of 
Excel. 
 
This problem is relevant only when calling DOSolve hundreds of times. With "casual usage" it does 
not matter. 
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Appendix E: Handling constraints 
 
Direct Optimizer has built-in support for simple box-like constraints only - that is, for each variable  

ix  you can define constants ia  and ib  so that 
 

iii bxa ≤≤  
 
Often this is not enough. You would like to have something more complicated, for example 
 

0102 2
321 ≥−++ xxx  

 
for variables 21, xx  and 3x . 
 
One straightforward method for problems like these is to apply either penalty- or barrier-techniques. 
Any standard textbook on nonlinear optimization should describe these and their usage.  
 
As a concrete example, if your Excel-sheet contains in the cell C1 your complicated constraint so 
that it should remain non-negative, you can define to cell P1 a "penalty term" like this: 
 
=MIN(C1, 0)^2 
 
You do need to square the penalty term. An attempt to use absolute value may cause the target 
function to be non-differentiable, and typically results in premature convergence to a non-optimal 
point.4  
 
Then you can define to cell M1 a "penalty multiplier" for example like this: 
 
=100 
 
Let us say the cell T1 is your target cell to be minimized. Then the penalty should increase the value 
of your target cell when violating the bound. The new target cell T2 would look like this: 
 
=T1+M1*P1 
 
The value of the cell M1 has great effect on computation. The larger it is, the more accurate the 
solution is, but the more difficult the optimization is. You should fine-tune its value yourself via a 
couple of trials. 
 
Penalty functions are only one of the many possible techniques. In the ideal case the user should not 
need to consider details like these. If in doubt, Solver has sophisticated constraint support and it 
should be utilized when applicable. Possibly in the future Direct Optimizer will offer more 
advanced built-in constraint support.  
 

                                                
4 Note also that we assume that Windows has been configured to use comma as a list separator symbol. For example 
finnish regional settings introduce semicolon as such by default, and this example will result in a parsing error on Excel 
in such computers. 


