

Direct Optimizer
Technical Reference

DRAFT

Version: October 23, 2004.

© 2004 Jorma Kuha. All rights reserved.

http://www.directoptimizer.com

 1

1. Introduction __ 2

2. Spreadsheet-program as an optimization platform ___________________________________ 3

2.1. Built-in efficiency __ 3

2.2. Practical issues with Microsoft Excel __ 7

3. Hooke-Jeeves algorithm __ 8

3.1. The original algorithm__ 8

3.2. Suggested modifications__ 10

4. Berserk-mode __ 11

4.1. Description __ 11

4.2.
����� �

-parameter__ 13

5. Computational experiments___ 14

5.1. Extended Rosenbrock function (21) __ 14

5.2. Extended Powell Singular function (22)___ 15

5.3. Griewank's function___ 16

6. Discussion __ 18

6.1. Observed sublinearity in time complexity ___ 18

6.2. Not a silver bullet ___ 18

6.3. About nonlinear optimization in general __ 19

Appendix A: References ___ 21

Appendix B: Installation Guide ___ 22

Appendix C: Quick Start ___ 23

Appendix D: Using Direct Optimizer from VBA programs ______________________________ 24

Accessing DOSolve via Application.Run__ 24

Accessing DOSolve directly __ 25

A simple multistart example__ 26

Known problems ___ 27

Appendix E: Handling constraints ___ 28

First version: September 1, 2004 released at http://www.directoptimizer.com as part of Direct
Optimizer release 0.9.

 2

1. Introduction

Direct Optimizer is a nonlinear optimization Add-In for Microsoft Excel, in many ways similar to
the Solver Add-In shipped with Excel. They both optimize the contents of the target cell by varying
other cells, which have been defined as variables for this purpose. The main differences to the
Solver are:

1. Direct Optimizer can be (and has been) applied to problems even with million variables, but
is often slow on small problems. Solver restricts the number of variables to 100, but is
usually fast on small problems.

2. Direct Optimizer is based on modification of the Hooke-Jeeves direct search algorithm.
Solver is based on dynamic quadratic models.

3. Direct Optimizer supports at the moment only simple bounds for the variables. Solver has
sophisticated constraint support.

4. Direct Optimizer stores information about variable bounds to Data Validation of the variable
cells. Solver has a proprietary method for storing constraint information.

5. Direct Optimizer has been designed for nonlinear optimization only. Solver can deal also
with linear and integer problems.

As a convention, in the rest of this document we speak of “minimization” instead of “optimization".
Our problem is to minimize a real-valued function)(xf when n

nxxx Rx ∈=),,,(21 � .

 3

2. Spreadsheet-program as an optimization platform

2.1. Built-in efficiency

The key idea behind a spreadsheet-program is to organize numerical data into a sheet of cells. The
program keeps track of dependencies between cells. When some data is changed, the program
computes automatically the cells, which contain formulas utilizing the recently changed data.

This approach leads to a highly intuitive user interface, which is now a "de facto" standard for
various numerical tasks in a typical office. However, this approach allows also implementing many
multivariate mathematical functions in such a way that when one variable is changed, calculating
the effects of the change is often significantly less demanding than calculating the entire function
from scratch.

As an example, consider the famous Extended Rosenbrock test function for n variables (n is even)
[MGH81]:

)()(
1

2 xx ∑
=

=
n

i
iff

where

122

2
12212

1)(
)(10)(

−

−−

−=
−=

ii

iii

xf

xxf

x
x

A straightforward implementation of this test function with conventional C-programming language
looks like this:

double ExtendedRosenbrock(const long n, const double* x)
{
 double result = 0;
 double temp1, temp2;
 long i;
 long uplimit = n-1;
 for (i = 0; i < uplimit; i += 2)
 result += 100*(temp1 *= (temp1 = (x[i+1] - x[i]*x[i])))
 + (temp2 *= (temp2 = 1-x[i]));
 return result;
}

Now, every time we wish to explore the effect of changing one variable, as when estimating the
gradient of the function with finite differences for example, we need to compute the entire function.
This results in a lot of repeated computation.

There are some possibilities to speed up the computation. The main alternatives are:

• Not estimating the effects of varying the variables with this function at all, but by
implementing the gradient-function (or the "explorer"-function) separately.

 4

• Keeping track of "computation history", and when requesting a new value, first checking
what actually needs to be computed.

The first approach increases problem preparation effort, and is not always feasible. The second
approach requires us first to compare the new variable values to the stored history - a check, which
typically requires)(nO time, and does not necessarily result in actual savings in computation time.
We do not want to change the interface of the function for example by giving special parameters
indicating the variables that have been changed (because this would not allow other, existing
optimization algorithms to utilize the modified interface).

On the other hand, consider implementing the Extended Rosenbrock test function in a spreadsheet
program. An experienced programmer might implement it in a way similar to the C-function
approach above, but a non-programmer would most likely start with an approach like below, first
implementing the function for 2 variables only:

Here the first, coloured row contains only textual headlines for the columns. The contents of the
other cells are:

A2: -1.2 (initial value for variable 1x)
B2: 1 (initial value for variable 2x)
C2: =10*(B2-A2*A2) (formula for calculating 1f)
D2: =1-A2 (formula for calculating 2f)
E2: =C2*C2 + D2*D2 (formula for calculating f)

 5

Updating this spreadsheet so that it handles more, say for example 38 variables instead of 2, is done
like this:

• select cells A2:D2
• drag and drop the selection to row 20 with the computer's mouse
• update the formula in cell E2

The formula in cell E2 is updated to:

=SUMSQ(C:C)+SUMSQ(D:D)

so that it does not need to be changed if further changing the number of variables.

Now, consider what happens if we change the contents of the cell A2 in order to explore the effect
of changing this variable. The spreadsheet program recalculates cells C2, D2 and E2, but values of
cells C3:C20 and D3:D20 are used without re-computation.

In this simple example the amount of computation required when one variable changes is still

)(nO , but by adding handling of partial sums it can be reduced as shown below. It is then assumed
that internally in the spreadsheet-program, utilizing the dependencies between cells does not require
a walk-through through all the cells. This is not true with all spreadsheet-programs in all situations.

Consider the case when n variables and computed data from them are organized into rows as
follows:

 6














+−+−+−+−

+++

),,,(

),,,(
),,,(

 :rows

2121

22121

21121

nmnmnmnmnmn

mmmm

mm

xxxfxxx

xxxfx

xxxfxxx

m
n

��

		

�

Each row has m variables and a function defined on those variables, the computation of which is
assumed to take O(m) time. We wish to minimize the sum of the squares of the functions, but
instead of calculating the sum of the squares directly, we calculate partial sums first, grouping the
functions into groups of k functions each:

∑
+

=
=

kj

ji
ij fp 2

and then computing the function to be minimized:

∑
=

=
k

m
n

j
jpf

/

1

Now, when one variable changes, we need to compute the function if for that row (O(m) time), one
new partial sum (requiring k numbers to be squared and summed) and the new value for f

(requiring k
m
n

/ numbers to be squared and summed).

Therefore the total number of operations required is

mk
n

kbamkh
2

2)(+++=

with suitably selected constants a and b. If we wish to select k so that the number of these
operations is minimized, we differentiate this formula with respect to k obtaining

2

2
2)(

mk
n

kh −=′

thus finding out that)(kh is minimized when
m
n

k = and)(kh is then)(nO .

This can still be improved by arranging the data into a tree with more depth than above. That way it
is possible to achieve a theoretical time complexity of)(log nO for examining the effect of varying
one variable, but in practice with current spreadsheet-programs this might not allow greater
problems to be solved (as discussed in the next chapter).

It must be emphasized that this technique exploits the structure of the function to be optimized in
order to implement its computation in a more efficient way. Sometimes this is possible (perhaps
more often so with artificial test functions), sometimes not. However, it imposes no changes to the
interface between the function to be optimized and the optimization algorithm - the optimization
routine still needs to know only the variables and the function value.

 7

In addition, a spreadsheet program typically offers extensive support for graphics, multiple file
formats, exotic mathematical functions - all appealing features for an optimization platform.

2.2. Practical issues with Microsoft Excel

In this discussion we consider only Microsoft Excel versions 97 and later.

Excel only tracks 65536 dependencies to unique references for automatic re-calculation. After the
workbook has passed this limit, Excel no longer attempts to recalculate only the changed cells. It
recalculates all the cells at each calculation instead. For more information on this limitation, see the
discussion at http://www.decisionmodels.com/. This limit was apparently not reached with the tests
described later in this document, even with one million variables on the Extended Rosenbrock test
function.

 8

3. Hooke-Jeeves algorithm

3.1. The original algorithm

The original Hooke-Jeeves algorithm has two phases, pattern search and exploratory search. First a
relatively large step size δ is selected. Then exploratory search tries if the value of the function can
be decreased by increasing or decreasing each variable by δ. If increasing a variable by δ has the
desired effect, it is left to its new value and the effect of decreasing a variable is not examined
anymore. It is indeed possible that exploratory search leaves all the variables unchanged.

Based on the current iteration ix and previous iteration 1−ix pattern search establishes a “guess”

)(1−−+ iii xxx even if the function value would increase there. After an exploratory search is
performed from the point)(1−−+ iii xxx , the value of the function in the resulted point is compared
to)(if x . If the value of the function in the new point is less than in ix , then it is accepted as a next
iteration point 1+ix and the computation is continued with a new pattern search. Otherwise, an
exploratory search is performed in the point ix . If this also fails in decreasing the function value,
then the step size is decreased from δ to a new value ρδ / , where 1>ρ (typically 2=ρ)
[HoJ61] [WiB67, p. 307-313] [Him72, p. 142-148].

The algorithm has been visualized in figure 1. The numbering of the points indicates the order in
which the function evaluations are done. First an exploratory search is done, but all trials are
abandoned. Then step size is reduced, leading next exploratory search to point 7, which is the
second iteration point. From here a pattern search step is taken to point 8, and an exploratory search
from there produces point 11 to be the third iteration point. Finally, at the point 18 function value is
greater than in the previous iteration point 14, so pattern search step is cancelled, and exploratory
search from point 14 produces point 20.

 9

18

20

1914

1312

11

7

10 8 9 3

4

2 6 50

16

17

15

1

1x

2x

Figure 1: Example iterations 0-4 of the Hooke-Jeeves algorithm

More formally, exploratory search creates from a point x given to it as a parameter a new point
y as:











<−
≥+−
<++

=
+−+−

+−+−

+−+−

otherwise,
),,,,),,,,and
),,,,),,,,if,
),,,,),,,,if,

111111

111111

111111

j

njjjnjjj

njjjnjjjj

njjjnjjjj

j

x

xxx,y,yf(xxx,y,yf(

xxx,y,yf(xxx,y,yf(x

xxx,y,yf(xxx,y,yf(x

y ����
����
����

δ
δδ
δδ

for each nj ,,1

�
= . Let us assume that a function)(xE returns as its value the point, which is

created from point x by applying exploratory search. Iterations of the algorithm are marked as ix ,
0≥i . We define two points, ie1 and ie2 for each iteration as:





>−+
=

= − 0 when))((
0 when

1 i

i
iii

i
i

xxxE
e2

e1

 10





=
<

=
otherwise/ assignment anafter calculated

)())((if)(
ρδδi

iii
i ff

e2
xxExE

e2

Note the recursive definition of ie2 . The iterations of the Hooke-Jeeves algorithm are then:



 <

=+

otherwise
)()(if1

i

iii
i ff

e2
xe1e1

x

The algorithm is stopped when the step length δ becomes less than a pre-set value (typically square
root of the machine epsilon) when reducing it. Point ie2 is not calculated on every iteration of the
algorithm, but only when it is needed.

Some distinct features of the algorithm are:

• Only a step is taken to the search directions. No line searching is done.
• It is adaptive in the sense that the distance between successive iterations (when measured with

infinity norm) may become even thousands of times larger than the step size used in the
exploratory search.

• While gradient-based algorithms always explore the effect of varying the variables with an
infinitesimal amount, Hooke-Jeeves algorithm explores the effect of varying the bits of a
floating-point number in the direction from most significant to least significant.

• Because the algorithm takes the pattern search –step even when the value of the function
increases, it is efficient in following a curved route towards optimum [Pow70, p.86]

• No multiplications or divisions between floating-point numbers are done (when δ is an integer),
so it is easy to implement the algorithm in a machine-independent way with no danger of a
floating-point overflow. The algorithm is numerically very stable.

• Its convergence has been proven [Céa71] [Yu79] [Tor97] [CoP01].

3.2. Suggested modifications

The exploratory search performed after the pattern search may produce the current iteration point,
but because of rounding errors it may seem better than the current iteration point. This may even
cause the algorithm to loop forever, but it can be avoided by verifying that the algorithm advances
at least half the step size used in the exploratory search in every iteration [BeP66, p. 685]:





 >−<

= ∞+

otherwise

2/ and)()(if1

i

iiiii
i ff

e2
xe1xe1e1

x
δ

and by adding a check into the computation of the vector ie2 :







=
>−<

= ∞

otherwise/ assignment anafter calculated

2/)(and)())((if)(

ρδδ
δ

i

iiiii
i ff

e2
xxExxExE

e2

After these modifications the algorithm is in practice immune to rounding errors.

 11

A summary of other suggested modifications has been presented in [Kuh93]. In short, the key ideas
have been

• Various methods for adjusting the step size δ (often individually for each variable).
• Adding "curvature estimation" by using more information from the previous iteration points.
• Adding randomness to the algorithm, for example by performing the exploratory search into

random directions.
• Adding line minimizations to exploratory search or to pattern search.

No single modification has gotten very popular among practitioners. Typically the modifications are
also supported with very few experimental results and without proofs of convergence.

Simple constant bounds for the variables can be incorporated into the algorithm by simply setting a
variable to its bound whenever a bound is violated. However, this leads to a small problem when
combined with the numerical stableness modification: when projecting a variable to the boundary, it
might well cause the algorithm to progress less than the required amount of half the step size used
(when measured with infinity norm), so this step would then be rejected. As a result, when the
optimum occurs at the boundary, the algorithm may sometimes stop to a distance less than half of
the final step size used from the boundary. This should not be a big problem in practice.

4. Berserk-mode

4.1. Description

In [Kuh93] the Hooke-Jeeves algorithm was applied to all (except one) such Moré-Garbow-
Hillstrom test problems, which were generalized to n-dimensions. One notably difficult problem
was the test function 25 Variably dimensioned function. No explanation could be given there why
the problem was so difficult for the Hooke-Jeeves algorithm. However, when implementing Direct
Optimizer in Microsoft Excel and watching the computation in action on computer screen led to a
intuitive explanation: when optimizing this function, typically many variables remain unchanged for
a long period of time. Exploratory search spends a lot of time examining the effect of varying
variables, which have remained unchanged for even hundreds of iterations.

This same problem was later discovered even more dramatically when examining the behaviour of
the Hooke-Jeeves algorithm in the extended version of the well-known Rosenbrock "banana valley"
test function (Moré-Garbow-Hillstrom test function 21) using a non-conventional starting point (1,
1, 2, 4, 3, 9, 4, 16, ...). This seems to be pathologically difficult starting point for the original
Hooke-Jeeves algorithm. The greater the initial values of the variable pairs are, the smaller the step
size δ has to be in order to start changing the variables at all.

It would seem at first natural to increase the efficiency of the computation in cases like this by
individual step size control for each variable. It would indeed keep more variables changing in early
stages of the computation, but it would also add a lot of unnecessary computation to the late stages
of the computation for example in the case of the extended Rosenbrock test function.

 12

Therefore a new strategy was designed in this research based on the idea that if a variable has not
changed for many iterations, the effect of changing it is not examined in the exploratory search
which is done after the pattern search. If pattern search is then cancelled and exploratory search is
done in the previous iteration point, we again ignore the "non-interesting" variables at first. Only if
the function value is not decreased with this search we examine also the rest of the variables.
Whenever the step size δ is reduced, the "change history" of each variable is reset.

More formally, let us assume a constant
 for indicating the number of iterations a variable must
remain unchanged before we start ignoring it (the "temper"). Let also � indicate the number of
iterations that have passed since the last change of the step size δ.

We'll define a function)(xB to return a point y based on an iteration point ix as follows:



 ===≥

=
−−

otherwise of ncomputatio thein as
 and if 1

Ej

i
j

i
j

i
j

i
j

j y

xxxx
y

ττκ �

for each nj ,,1 �= . We also define a function)(~ xB which "explores the rest", returning a point
y based on a point x (not necessarily an iteration point) as follows:



 ===≥

=
−−

otherwise
 and if of ncomputatio thein as 1

j

i
j

i
j

i
jj

j x

xxxy
y

ττκ �E

The motivation for functions)(xB and)(~ xB is that in this way we can explore the variables in two
phases: first by ignoring the variables, which have not been recently changing (by applying function

)(xB), and then by exploring the rest with))((~ xBB .

We now define points ib1 and ib2 for each iteration as:





>−+
=

= − 0 when))((
0 when

1 i

i
iii

i
i

xxxB
b2

b1









=
<≥

<
=

otherwise/ assignment anafter calculated
)()))((~(and)())((if))((~

)())((if),(

ρδδi

iiiii

iii

i ffff

ff

e2
xxBBxxBxBB

xxBxB
b2

Note the usage of (recursive) definition of ie2 on the definition of ib2 . The iterations of the Hooke-
Jeeves algorithm utilizing Berserk-mode are then:



 <

=+

otherwise
)()(if1

i

iii
i ff

b2
xb1b1

x

Proof of convergence is not presented in this version of this paper.

 13

It is not self-evident that this modification increases the performance of the algorithm, as seen in the
next chapter.

4.2. ����� � -parameter

In the tables below, the effect of value of � is seen on various test functions. The value "infinity"
refers to the original Hooke and Jeeves algorithm (no variables are ever ignored). These tests are
run on a 266 MHz Pentium II machine with Direct Optimizer version 0.9, Windows 98 and
Microsoft Excel 2000. Default parameter values for Direct Optimizer (other than �) were used. The
measured time is only approximative "calendar time", not the CPU-time used.

�
time

(hh:mm:ss) iterations func evals
func val at

result
1 15:51:24 1752144 34164258 6.53E-11
2 11:42:16 1362429 25531894 3.50E-11
3 10:17:49 1193167 22450088 4.06E-11
4 5:07:46 682587 12130558 2.65E-11
5 3:29:39 481288 8196858 3.90E-11
6 1:16:00 205975 2919183 2.83E-11
7 6:34 10934 250464 3.00E-11
8 6:35 10934 251232 3.00E-11
9 6:35 10934 252000 3.00E-11

10 6:36 10934 252772 3.00E-11
20 6:47 10934 260464 3.00E-11
30 6:55 10934 268124 3.00E-11
40 7:03 10934 274948 3.00E-11
50 7:10 10934 279592 3.00E-11
60 7:14 10934 283672 3.00E-11
70 7:18 10934 286600 3.00E-11
80 7:22 10934 289020 3.00E-11
90 7:24 10934 291060 3.00E-11

100 7:26 10934 293100 3.00E-11
1000 11:02 10934 465824 3.00E-11

infinity 18:53 10934 847572 3.00E-11

Table 1: Extended Rosenbrock test function from starting point (1,1,2,4,3,9,4,16,....) for ������� ��!#" $ %'&#(*)+)-,/.�0

1
time

(mm:ss) iterations func evals
func val at

result
1 5:41 13387 203277 3.10E-10
2 7:19 13801 271674 1.16E-10
3 8:21 14723 314307 3.02E-10
4 10:58 18811 414245 3.23E-10
5 10:13 16377 388082 1.78E-10
6 10:05 15734 384875 6.52E-11
7 11:09 16916 428882 2.85E-10
8 10:42 15548 408054 3.09E-10
9 12:04 17740 468346 1.73E-10

 14

10 10:44 15320 418916 3.36E-10
20 13:45 16315 544686 2.85E-10
30 18:57 19721 761113 2.20E-10
40 17:43 16168 718266 3.80E-10
50 18:33 15348 740862 2.85E-10
60 19:59 14798 804224 1.73E-10
70 23:05 17411 931060 5.56E-11
80 20:30 13866 828238 1.09E-10
90 22:43 15238 922183 2.33E-10

100 24:08 16287 984053 2.08E-10
1000 30:19 15420 1263829 1.25E-10

infinity 29:35 15420 1263829 1.25E-10

Table 2 24365�7�8 5�9;:=<?>@8 ACBED;FG8IH�D#B*JLKMB*FMK�NPO#D#Q�KM8 H�DRNSH�7UT�5�7�8 H�O#FWVYX'Z#B*D+D-[/\�]

As these two test functions react to the value of ^ in very different ways, we select a conservative
default value of 100 for ^ for the Direct Optimizer.

5. Computational experiments

The test functions are implemented in the file "testfunctions.xls" distributed with Direct Optimizer.
Only three test functions have been chosen for presentation here. The main reasons for this limited
experimentation are:

• Testing is very time-demanding and ongoing at the moment. This document is upgraded
gradually.

• An overview how the Hooke-Jeeves algorithm behaves on those Moré-Garbow-Hillstrom
test problems which have been generalized to n dimensions has already been given in
[Kuh93].

5.1. Extended Rosenbrock function (21)

The function to be minimized is [MGH81]:

)()(
1

2 xx ∑
=

=
n

i
iff

where

122

2
12212

1)(
)(10)(

−

−−

−=
−=

ii

iii

xf

xxf
x

x

and the starting point is (-1.2, 1, -1.2, 1, ...). A typing error in [MGH81] in the definition of this
function has been corrected.

The minimum is 0)(=xf at (1, ..., 1).

 15

The results are:1

n time iters f evals f val dist dif
100 0:11 67 20048 1.85E-13 2.98E-08 1.85E-13

1000 1:58 67 197798 1.85E-12 2.98E-08 1.85E-12
10000 20:56 67 1975298 1.85E-11 2.98E-08 1.85E-11

100000 5:01:40 67 19750298 1.85E-10 2.98E-08 1.85E-10
1000000 170:16:32 67 197500298 1.85E-09 2.98E-08 1.85E-09

During the computation, Berserk-mode was allowed with the default temper-value of 100, but did
not become active. The columns are:

n: number of variables
time: calendar time used in hours:minutes:seconds
iters: number of iterations of the algorithm
f evals: number of function evaluations
f val: function value at returned point
dist: distance of returned point from the minimum point as infinity-norm
dif: difference of returned function value to the minimum value

The number of function evaluations required (shown in the "f evals" column) depends on the
number of variables as shown with the difference equation :

2682)(10)10(−= nFnF

The goodness of the solution when measured with the distance of the returned point from the
minimum point as infinity norm remains the same.

5.2. Extended Powell Singular function (22)

The function to be minimized is [MGH81]:

)()(
1

2 xx ∑
=

=
n

i
iff

where

1 Direct Optimizer 1.0 on an Intel Celeron 2.4GHz PC with 512 MB of memory, Windows 98 SE and Excel 2000 SP-3.

 16

2
4344

2
142414

41424

243434

)(10)(
)2()(
)(5)(

10)(

iii

iii

iii

iii

xxf

xxf

xxf

xxf

−=
−=

−=
+=

−

−−−

−−

−−−

x
x
x
x

and the starting point is),,(00 nx ξξ _= , where

1
0
1
3

4

14

24

34

=
=

−=
=

−

−

−

j

j

j

j

ξ
ξ
ξ
ξ

The minimum is 0)(=xf at (0, ..., 0).

Initial step size for the algorithm was changed from the default value of 1 to 0.31. The results are:2

n time iters f evals f val dist dif
100 0:46 494 102114 4.22E-10 1.72E-03 4.22E-10

1000 07:40 494 1006614 4.22E-09 1.72E-03 4.22E-09
10000 1:24:18 494 10051614 4.22E-08 1.72E-03 4.22E-08

100000 22:05:50 494 100501614 4.22E-07 1.72E-03 4.22E-07

During the computation, Berserk-mode became active in every run. The columns are as with the
Rosenbrock test function.

The number of function evaluations required (shown in the "f evals" column) depends on the
number of variables as shown with the difference equation :

14526)(10)10(−= nFnF

The goodness of the solution when measured with the distance of the returned point from the
minimum point as infinity norm remains the same.

5.3. Griewank's function

The function to be minimized (as presented in [ALR03]) is:






−+= ∏∑

== i
x

d
x

f i
n

i

n

i

i cos1)(
11

2

x

2 Direct Optimizer 1.0 on an Intel Celeron 2.4GHz PC with 512 MB of memory, Windows 98 SE and Excel 2000 SP-3.

 17

where 10=d . The starting point is chosen by selecting a random number uniformly distributed
between -100 and 100 for each ix . The global minimum is 0)(=xf at (0, ..., 0).

This function has several local minima, and is often used when testing global optimization software.
The results are:3

n time iters f evals f val dist dif
100 0:26 35 19269 3.77E-15 4.04E-08 3.78E-15

1000 4:12 42 204087 4.75E-14 4.50E-08 4.75E-14
10000 1:09:38 80 2814244 4.80E-13 4.56E-08 4.80E-13

100000 86:07:30 191 50018481 4.83E-12 4.62E-08 4.83E-12

During the computation, Berserk-mode became active only in the run with 100000 variables. The
columns are as with the Rosenbrock test function.

3 Direct Optimizer 0.9c on an Intel Pentium II 266 MHz PC with 328 MB of memory, Windows 98 SE and Excel 2000
SP-3.

 18

6. Discussion

6.1. Observed sublinearity in time complexity

It requires less function evaluations to solve the Extended Rosenbrock or the Extended Powell
Singular test function with 10n variables than solving ten times the same test function with n
variables only.

This can be explained as follows. Let us assume that the algorithm has been implemented in such a
way that exploratory search receives as its parameter the function value in the starting point.
Therefore pattern search step computes the function value once. Let us further assume that when
optimizing a function)(xf from a starting point n

nxxx Rx ∈=),,,(00
2

0
1

0 ` we need ff ep ++1

function value evaluations in total. Here fp is the total number of function value evaluations done

in pattern search steps, fe is the total number of function value evaluations done in exploratory
searches, and one evaluation is done in the beginning of the algorithm. Let us now construct a new
function nF 2),(Rzz ∈ as)()()(yxz ffF += . Optimizing the function)(zF from a starting point

n
nn xxxxxx 200

2
0
1

00
2

0
1

0),,,,,,,(Rz ∈= `` requires ff ep 21 ++ function value evaluations, which is

always less than)1(2 ff ep ++ (even if fp was zero). If rounding errors are absent, the distance of

the returned point from the optimum when measured with
∞

 -norm remains the same.

When applying this analysis to the results of Extended Rosenbrock test function, it would seem that
the optimization algorithm has performed 297 pattern search steps. This is counter-intuitive, as the
algorithm has performed only 67 iterations. This can be explained as follows:

• Direct Optimizer counts every function evaluation, even if it would result only in returning
the value of the target cell (without any calculation).

• Exploratory search in Direct Optimizer has been implemented so that it does not get the
function value in the starting point as its parameter, therefore it evaluates it there.

• Also the result of the exploratory search is found out by evaluating the function in the main
body of the algorithm.

This is insignificant from performance point of view, but the above analysis needs to be modified a
bit when applied to the results of Direct Optimizer. As this is considered to be an uninteresting
implementation detail, it is not presented here.

6.2. Not a silver bullet

The success of Direct Optimizer may seem almost phenomenal on selected problems, but even the
Berserk-mode modification did not solve the difficulties it faces for example with the Variably
dimensioned function (25) of More et al [MGH81]. At the time of writing this, Direct Optimizer has

 19

spent 430 hours solving it on a 300 MHz Pentium II PC for one thousand variables applying
Berserk-mode with the temper-value of 1, and is almost ready.

Although Berserk-mode helps on problems like this, further research is needed in order to
understand why these problems are so difficult for it and if the algorithm can be modified to solve
also these in an efficient way.

6.3. About nonlinear optimization in general

Nonlinear optimization has been dominated with the "dynamic quadratic models" paradigm. This,
in turn, is based on the well-known results on how to optimize quadratic functions with no
constraints on the variables. Several methods exist, which give exact solutions assuming the
rounding errors have no effect. Some features of typical algorithms are summarized in the table
below. We assume

• rounding errors have no effect on computation
• evaluating the gradient requires)(nO function evaluations
• there are no constraints on the variables

Algorithm:

St
ee

pe
st

de

sc
en

t

Fl
et

ch
er

-
R

ee
ve

s

Po
la

k-
R

ib
ie

re

B
ro

yd
en

-
Fl

et
ch

er
-

G
ol

df
ar

b-
Sh

an
no

N
ew

to
n

L
ev

en
be

rg
-

M
ar

qu
ar

dt

Number of function
evaluations for
minimizing a quadratic
function exactly:

unlimited)(2nO)(2nO)(2nO)(2nO)(2nO

Time requirement for
minimizing a quadratic
function exactly:

unlimited)(2nO)(2nO)(2nO)(3nO)(3nO

Space requirement:)(nO)(nO)(nO)(2nO)(2nO)(2nO
Does it always converge
to a stationary point
when applied to a twice
continuously
differentiable function,
which is bounded from
below?

yes yes

no ? no yes

Type of the algorithm: line
searcher

line
searcher,
conjugate
gradient

line
searcher,
conjugate
gradient

line
searcher,
Quasi-
Newton

both line
search
and no-
search
variations

trust
region

In addition,

• General quadratic optimization with linear constraints on the variables is NP-hard [Vav91].

 20

• If ε -approximate solutions are allowed, complexity of unconstrained quadratic optimization
is not known. Research has focused to algorithms aiming for exact solutions. Yet often ε -
approximate solutions are easier to find, as in linear programming for example.

 21

Appendix A: References

[BeP66] Bell, M., Pike, M.: Remark on Algorithm 178 [E4] Direct Search. Communications

of the ACM, Vol. 9, No. 9 (September 1966), 684-685.

[Céa71] Céa, J.: Optimisation: théorie et algorithmes. Dunod, 1971.

[CoP01] Coope, L., Price, C.: On the Convergence of Grid-Based Methods for Unconstrained

Optimization. SIAM Journal on Optimization, Vol. 11, No. 4 (2001), p. 859-869.

[Him72] Himmelblau, D.: Applied Nonlinear Programming. McGraw-Hill, 1972.

[HoJ61] Hooke, R., Jeeves, T.A.: Direct Search Solution of Numerical and Statistical

Problems. Journal of the ACM, Vol. 8, No. 2 (April 1961), 212-229.

[Kuh93] Kuha, J.:Nonlinear optimization based on comparison of function values (in finnish).

Master's thesis, University of Helsinki, Department of Computer Science, 1993.

[ALR03] Appel, M., Labarre, R., Radulovic, D.: On Accelerated Random Search. SIAM

Journal on Optimization, Vol. 14, Number 3 (March 2003), p. 708-731.

[MGH81] Moré, J., Garbow, B., Hillstrom, K.: Testing Unconstrained Optimization Software.

ACM Transactions on Mathematical Software, Vol. 7, No. 1 (March 1981), 17-41.

[Pow70] Powell, M.: A Survey of Numerical Methods for Unconstrained Optimization. SIAM

Review, Vol. 12, No. 1 (January 1970), 79-97.

[Tor97] Torczon, V.: On the Convergence of Pattern Search Algorithms. SIAM Journal on

Optimization, Vol. 7, No. 1 (February 1997), p. 1-25.

[Vav91] Vavasis, S.: Nonlinear Optimization - Complexity Issues. Oxford University Press,

1991.

[WiB67] Wilde, B., Beightler, C.: Foundations of Optimization. 6th p., Prentice-Hall, 1967.

[Yu79] Yu, W.: Positive basis and a class of direct search techniques (in chinese). Scientia

Sinica, Special Issue on Mathematics, 1 (1979), p. 53-67.

 22

Appendix B: Installation Guide

In order to install Direct Optimizer:

1. Copy the files directoptimizer.xla and directoptimizer.hlp to a directory of your choice.
2. Add the Add-In to Excel's list of Add-Ins. You may need to refer to Excel's Help-system.

For Excel 97, the procedure is:
- Choose Tools, Add-Ins to display the Add-Ins dialog box
- Click Browse and navigate to your copy of directoptimizer.xla
- Click Open
Note: In some versions of Windows, you will be asked if you want to copy the Add-In to the
"Library". Do not do so, as the help file will not be copied with the Add-In.

3. A license-window opens. Read the license carefully. If you feel you can accept the license,
click the button "I accept this license". Otherwise, click the button "I don't accept this
license" and stop the installation.

4. The Direct Optimizer Add-In should now appear in the list of Add-Ins. Make sure the check
box next to its entry is selected. A new "Direct Optimizer" menu entry to the Tools-menu
has now been created. Choose it in order to activate Direct Optimizer.

If you are using Excel XP and your Macro security is set to "High", then the Add-In won't load and
you won't get a warning. Go to Tools menu, Macro submenu, and click "Security" to change it to
"Medium".

 23

Appendix C: Quick Start

After installing Direct Optimizer as described in Appendix B, open the file testfunctions.xls
distributed with Direct Optimizer. Select the "Rosenbrock" sheet. Click the button "Setup problem".
Enter for example 100 as the problem size, and "1" as the starting point (-1.2, 1,-1.2, 1, ...).

You have now defined a problem with 100 variables to be solved. Start Direct Optimizer from the
Tools-menu. Click "Target Cell:". Click the red cell (D1) with your mouse, and then click "OK" in
the message box. Click "Guess" in the Direct Optimizer main window. Click "Solve". You will see
a "Direct Optimizer - computing" window with a progress indicator. Wait for a while, until the
result of computation window opens. Click OK.

Congratulations, you have solved your first problem with Direct Optimizer!

 24

Appendix D: Using Direct Optimizer from VBA programs

Assuming that Direct Optimizer has been installed (as instructed in Appendix B), you can use
Direct Optimizer from your own programs and macros. A function called DOSolve is offered for
this purpose. It has been declared within the Direct Optimizer Add-In as:

Public Function DOSolve(_
 TargetCell As String, _
 MaxMinVal As Integer, _
 ValueOf As Double, _
 VariableCells As String, _
 Unconstrained As Boolean _
) As Boolean
'
' Parameters:
' TargetCell - cell to be optimized or solved
' MaxMinVal - problem type: 1=Max, 2=Min, 3=Val
' ValueOf: if MaxMinVal=3, then this gives the target value
' VariableCells: if <> "", then the variables, otherwise precedents are used
' Unconstrained: handle the problem as unconstrained or not
'
' this function returns FALSE if computation resulted in error,
' TRUE otherwise

DOSolve assumes, that:

• It is OK to project variables violating the bounds to the feasible region.
• It is OK to ignore non-valid bounds.
• It is OK to activate the worksheet containing the target cell.

Other settings than those given as parameter may be adjusted by starting Direct Optimizer
interactively on the sheet in question, then modifying the desired options (such as the initial step
size of the algorithm), and then pressing either Exit or Retain on the main screen. This causes these
sheet-specific settings to be saved, and DOSolve reads them when it starts. DOSolve does not
modify these settings by itself. The parameters given to DOSolve override the corresponding sheet-
specific settings.

There are two main ways to access the procedure DOSolve: via Application.Run and referencing it
directly. Both ways are described below. You can find these examples also from the file
testfunctions.xls - open the Visual Basic Editor (in Excel 2000: Tools-Macro-Visual Basic Editor),
and then see the module DO_VBA. Run the examples as you would run any other macro in Excel.

Note: it is a common practice to learn Excel programming with its Macro Recorder. You can learn
how to call the Solver Add-In from your programs with it, but the same does not apply to Direct
Optimizer. You need to follow the instructions below instead.

Accessing DOSolve via Application.Run

The procedure below uses DOSolve to minimize the Extended Rosenbrock test function found in
the file testfunctions.xls (distributed with Direct Optimizer):

Sub DirectOptimizerBatchExample_1()

 25

 ' in this example we are going to
 ' optimize the extended Rosenbrock test
 ' function from our program

 ' first we activate the sheet of interest:
 Application.Workbooks("testfunctions.xls").Worksheets("Rosenbrock").Activate

 ' then we optimize
 Dim success As Boolean
 success = Application.Run("directoptimizer.xla!DOSolve", "D1", _
 2, 0, "", True)

End Sub

Here the target cell has been given ("D1"), the problem is a minimization problem (2), the value of
ValueOf parameter is insignificant, the variables have been specified with an empty string so that
they will be guessed (to those precedents of the target cell which do not contain formulas), and
finally the problem is considered as unconstrained.

The advantage of this approach is that you only need to install the Direct Optimizer Add-In in order
to run your program - less work, if distributing your programs to other persons. The disadvantage of
this approach is that the parameters have to be given without specifying the name of the parameter,
thus requiring special attention that no mistakes are made.

Accessing DOSolve directly

The procedure below refers to DOSolve directly in order to minimize the Extended Rosenbrock test
function. Before this program can be run, you need to open the Visual Basic Editor (in Excel 2000:
Tools-Macro-Visual Basic Editor), then access the Tools-References menu and add a check-mark
next to DirectOptimizer.

Sub DirectOptimizerBatchExample_2()

 ' in this example we are also going to
 ' optimize the extended Rosenbrock test
 ' function from our program
 '
 ' NOTE: THIS EXAMPLE REQUIRES THAT YOU HAVE
 ' USED THE TOOLS-REFERENCES COMMAND IN THE
 ' VISUAL BASIC EDITOR TO ENABLE REFERENCES
 ' TO THE DIRECT OPTIMIZER ADD-IN!

 ' first we activate the sheet of interest:
 Application.Workbooks("testfunctions.xls").Worksheets("Rosenbrock").Activate

 ' then we optimize
 Dim success As Boolean
 success = DOSolve(_
 TargetCell:="D1", _
 MaxMinVal:=3, _
 ValueOf:=10, _
 VariableCells:="", _
 Unconstrained:=False)

End Sub

 26

Here the target cell has been given ("D1"), the problem requires this time solving (we want a value
of 10 to the target cell), the variables have been specified with an empty string so that they will be
guessed, and finally the bounds for the variables, if given in the Data Validation of the variable
cells, will be taken into account.

A simple multistart example

Below is an example how to write a program which calls Direct Optimizer from randomized
starting points. This example optimizes the Extended Rosenbrock test function one thousand times
from different starting points and gives an error message, if the optimization run does not give a
satisfactory result or results in an error. You can find also this example from the included file
testfunctions.xls, module DO_VBA.

Sub DirectOptimizerStressTest()

 ' first we activate the sheet of interest:
 Application.Workbooks("testfunctions.xls").Worksheets("Rosenbrock").Activate

 MsgBox "This macro performs a stress test on Extended " & vbCrLf & _
 "Rosenbrock test function with 20 variables." & vbCrLf & _
 "Set it up so first!"

 ' initialize random number generator
 Randomize

 Const upcount As Long = 1000
 Dim counter As Long
 counter = 0

 While (counter < upcount)
 counter = counter + 1
 Dim c As Range
 Dim a As Range

 Set a = Application.Range("G1:Z1")

 For Each c In a
 'randomize contents
 c.Value = 40 * Rnd - 20
 Next c

 ' then we optimize
 Dim success As Boolean

 success = Application.Run("directoptimizer.xla!DOSolve", "D1", _
 2, 0, "", False)
 ' target is D1, we minimize , valueof is dummy,
 ' guess variables, obey possible constraints

 If (success = False) Then
 MsgBox "Optimization run failed!"
 Exit Sub
 ElseIf (Application.Range("D1").Value > 0.00000001) Then
 MsgBox "Problem in stress test with the returned value!"
 Exit Sub
 End If

 27

 Wend

 MsgBox "Stress test OK!"

End Sub

Known problems

Problem:

If you change the constant "upcount" in the DirectOptimizerStressTest from 1000 to 10000 and run
it on Win98/Excel 2000 SP-3, the following symptoms occur:

• When you open in Windows Start-Programs-Accessories-System Tools-Resource Meter and
follow the "GDI resources" during the stress test, the given percentage gradually decreases
(this may take hours to become evident).

• The command buttons "Setup problem" and "Evaluate solution" will finally not show.
• Before the test is complete, Excel and/or Windows becomes non-stable and may crash.

Work-around:

Run DOSolve in a loop only on a sheet not containing Command Button controls (such as the
"Setup problem"-button on the Extended Rosenbrock test function sheet). If you want to use such
buttons, locate them on a different sheet than the model to be optimized and link them to your
model. Just remember to keep the entire model (both the variables and the target cell) on a single
sheet.

This way you can call DOSolve in a loop and the GDI resources remain the same.

Discussion:

This is most likely caused by a memory leak in the Command Button control. It is possible that
other controls contain similar problems. This problem is less evident in Windows 2000/XP than in
Windows 95/98/Me, as they handle the GDI resources differently, but problems could occur also
there.

At the time of writing this, it is not known if this problem has been corrected in later versions of
Excel.

This problem is relevant only when calling DOSolve hundreds of times. With "casual usage" it does
not matter.

 28

Appendix E: Handling constraints

Direct Optimizer has built-in support for simple box-like constraints only - that is, for each variable

ix you can define constants ia and ib so that

iii bxa ≤≤

Often this is not enough. You would like to have something more complicated, for example

0102 2
321 ≥−++ xxx

for variables 21, xx and 3x .

One straightforward method for problems like these is to apply either penalty- or barrier-techniques.
Any standard textbook on nonlinear optimization should describe these and their usage.

As a concrete example, if your Excel-sheet contains in the cell C1 your complicated constraint so
that it should remain non-negative, you can define to cell P1 a "penalty term" like this:

=MIN(C1, 0)^2

You do need to square the penalty term. An attempt to use absolute value may cause the target
function to be non-differentiable, and typically results in premature convergence to a non-optimal
point.4

Then you can define to cell M1 a "penalty multiplier" for example like this:

=100

Let us say the cell T1 is your target cell to be minimized. Then the penalty should increase the value
of your target cell when violating the bound. The new target cell T2 would look like this:

=T1+M1*P1

The value of the cell M1 has great effect on computation. The larger it is, the more accurate the
solution is, but the more difficult the optimization is. You should fine-tune its value yourself via a
couple of trials.

Penalty functions are only one of the many possible techniques. In the ideal case the user should not
need to consider details like these. If in doubt, Solver has sophisticated constraint support and it
should be utilized when applicable. Possibly in the future Direct Optimizer will offer more
advanced built-in constraint support.

4 Note also that we assume that Windows has been configured to use comma as a list separator symbol. For example
finnish regional settings introduce semicolon as such by default, and this example will result in a parsing error on Excel
in such computers.

