DocumentBurster
- Advanced report
delivery scenarios

MaNUAI CONVENTIONS ...ttt e e ettt e e e e e e e bbb e e e e e e e eennreen s %
I V7= Y= 1
B VAV o T L (T o = X S 1
1.2. DOCUMENEBUISLEr SCHPLING ...eeiiiiieeeii et e e eees 1
I o 0 | I 101 (T = o] o PN 1
1.4. Quick & Professional SUPPOITcccuuuuiiiiii e 2
1.5. We Need Feedback! ... 2
2. USiNg SCripts t0 ACNIEVE IMOTE ...ouiiiiiii et 3
b S Yol) 1] o TS o =Y g - U [0 1 3
2.1.1. File Related Capabilitiescoouuiiiiiiiiieii e 3
2.1.2. Execute EXternal Programscccouioiiiiiiiii i e e 4
2.1.3. Publish Reports to Microsoft SharePoint Portalcccoocoeiiiiiiiinieiennnn, 5
2.1.4. Distribute by SMS and Faxooiiiiiiiiiiici e 5
2.1.5. PriNt REPOIS ..coeuiiiiiii ettt e e 6
2.1.6. Mail, FTP, FTPS @Nnd SFTP ...ttt 6
2.1.7. Upload Reports to a Shared LOCAtiONoceviuiiiiiiiiiiieeiiiieeeei e 6
2.1.8. Encrypt or Stamp the Output REPOISccvuiiiiiiiiii e 6

2.2. Introduction to the BUrst LifECYCIEcoeiiiiiiiiiiiiie e 7
A T = 101 =) 11T @] | 1= PN 7

2.3, SAMPIE SCIIPLS ...ttt et e 12
A T 4 o o | (0701 Y 12
2.3.2. NCIYPL.GIOOVY ...eriiiii et e et ettt et e e e et e e e e e enans 13
2.3.3. OVEIAY.OrO0OVY ..oviiiiiieii e 17
2.3.4. exec_pdftk_background.groovyccooeeeiiiiiiiiiiii 18

b T T o 1] e (010 Y A 20
2.3.6. copy_shared_folder.groOVyovciieiiieieii e 22
2.3.7. ANE_FIP.GIOOVY oeniiiiiiii et 23
2.3.8. aNt_SCP_STP.GIrOOVY ...ovneiiiiii e 25
ARG IS I T o Y £ 7o [£ 0 1Y S 26
2.3.10. add_and_format_page _NUMDErs.groOVYcceeeeeruieeeiiineeeiiineeeennnnnnns 28
2.3.11. merge_with_external_fileS.groovyccooviiiiiiiiiiiii e, 31
2.3.12. aNt_MAILGIrOOVYuiiiiiiiei it 34
2.3.13. skip_current_file_distribution_if.groovycccoooiiiiiiiiiiiii e, 36
2.3.14. batch_pdf_print.groOVyc...uiiiiiiiiiii e 39
2.3.15. fetch_distribution_details_from_database.groovycccocccoiveiineinnnc. 41
2.3.16. fetch_distribution_details_from_csv_file.groovyccccooiviiiiiiinniiinnnnnn. 44

b e U= g = L= Vo L] Vo 46
3. CURL INTEGTALION ittt e et e ettt e e e e et e e eera e aeees 49
3.1. DocumentBurster / CURL sample SCIPLSccvvviiiiiieiiiieiiieee e 51
.11 CUIL_FEPGIOOVY et 51
3.1.2. CUIL_STP.OIOOVY .o 55

Manual Conventions

1. Path Separator
This document uses slash character (/) to display directory and file components of a path.

Microsoft Windows can accept either the backslash (\) or slash (/) characters to separate directory
and file components of a path, while the Microsoft convention is to use a backslash (\). Since
DocumentBurster™ is intended to work on multiple operating systems (e.g. Windows, Linux), the
convention for this manual is to use the slash character (/) to display the components of a path.

vi

Chapter 1.

Overview

The scope of this document is to show how DocumentBurster™ can be used to achieve more
complex report delivery scenarios.

1.1. What to Expect

In this document, you'll learn how to

« Script DocumentBurster™ to achieve complex use cases
» Get yourself familiar with the sample scripts provided with DocumentBurster™
» Upload reports using cURL

From time to time, some report distribution requirements might need to execute an external
program during the report bursting lifecycle, distribute SMS messages, upload reports to
enterprise portals, send reports by Fax or to print the output burst reports. In other situations it
might be required to upload the reports using more secure protocols such as FTPs, SFTP or SCP.
Before sending the reports, it is also possible to encrypt the output reports or stamp the distributed
reports in much the same way that it is applied a rubber stamp to a paper document.

1.2. DocumentBurster™ scripting

If required, DocumentBurster™ can be scripted in order to support advanced customized report
distribution needs.

While it might look like an overkill to write scripts for doing report distribution, it is actually a
powerful and flexible approach for implementing very specific requirements. Furthermore the
default DocumentBurster™ software package is coming with a set of already written scripts which
can be used almost out of the box.

In most of the real life situations, just taking an existing script (appropriate for the task in hand)
and doing very small adjustments (for example giving FTP host, user name and password) will
be all that is required to achieve complex requirements.

1.3. cURL integration

DocumentBurster™ does not reinvent the wheel and it integrates with cURL in order to achieve
the most complex document distribution situations.

http://curl.haxx.se/

DocumentBurster™ does offer close integration with cURL, a command line tool for transferring
data with URL syntax, supporting DICT, FILE, FTP, FTPS, GOPHER, HTTP, HTTPS, IMAP,
IMAPS, LDAP, LDAPS, POP3, POP3S, RTMP, RTSP, SCP, SFTP, SMTP, SMTPS, TELNET

http://curl.haxx.se/

Chapter 1. Overview

and TFTP. cURL supports SSL certificates, HTTP POST, HTTP PUT, FTP uploading, HTTP form
based upload, proxies, cookies, user+password authentication (Basic, Digest, NTLM, Negotiate,
kerberos...), file transfer resume, proxy tunneling and a busload of other useful tricks.

1.4. Quick & Professional Support

If you have any questions that aren't answered here or you need some special script to be
developed, feel free to contact us: <support @df bur st . com>

1.5. We Need Feedback!

If you find a typographical error in this manual, or if you have thought of a way to make this manual
better, we would love to hear from you!

If you have a suggestion for improving the documentation, try to be as specific as possible when
describing it. If you have found an error, please include the section number and some of the
surrounding text so we can find it easily.

Email address: <suppor t @df bur st . con»

Now let’s get started.

Chapter 2.

Using Scripts to Achieve More

Scripts can help in squeezing more tailored functionality from DocumentBurster™ . For example,
there is no GUI command to archive the output burst reports in a single compressed file, while
with few lines of scripting it is easy to zip all the output files together.

DocumentBurster™ supports scripts written in Groovy, a scripting language for the Java platform.
DocumentBurster™ Groovy scripts can make use of any existing Java code and library.

This chapter shows how to use the scripting capabilities of the software and how to customize
DocumentBurster™ using some existing sample scripts which are provided with the package.

2.1. Scripting Scenarios

DocumentBurster™ has support for injecting tailored behavior during the normal bursting lifecycle.
There are a set of predefined exit points in which, using scripting, it is possible to implement
custom logic. For example there is an endBursting lifecycle phase in which, with few lines of code,
it is possible to zip together all the burst files, which otherwise would have come separated in
the output folder.

Following should give some ideas of the kind of things which are possible using
DocumentBurster™ scripting capabilities:

2.1.1. File Related Capabilities

» Copy - Copy a file or a set of files to a new file or directory.

» Delete - Deletes a single file, all files and sub-directories in a specified directory, or a set of files
specified with an wildcard (*) like file pattern.

« Mkdir - Creates a directory. Non-existent parent directories are created, when necessary.
* Move - Moves a file to a new file or directory, or a set(s) of file(s) to a new directory.
 Archive - Zip, GZip, BZip2 or Tar the burst reports.

« Other file related capabilities - Change the permissions and/or attributes of a file or all files
inside the specified directories, generate or verify a checksum for a file or set of files and also
touch the files.

Sample

For an example on how to zip or delete files, please see the existing scripts/burst/samples/
zip.groovy sample script.

Chapter 2. Using Scripts to A...

2.1.2. Execute External Programs

While integrating DocumentBurster™ with existing software, following capability will be of interest.
It is possible to call any external executable in some pre-defined points during the report bursting
and report distribution flow.

Exec - Execute a system command. When the OS attribute is specified, the command is only
executed on one of the specified operating systems.

Sample

The external program to be demonstrated is Pdftk [http://www.pdflabs.com/tools/pdftk-the-pdf-
toolkit/]

pdftk or the pdf toolkit is a cross-platform tool for manipulating PDF documents.

It is easy to execute pdftk from within DocumentBurster™ in order to achieve a wide range of
additional powerful capabilities.

pdftk is capable of splitting, merging, encrypting, decrypting, uncompressing, recompressing, and
repairing PDFs. It can also be used to manipulate watermarks, metadata, and to fill PDF Forms
with FDF Data (Forms Data Format) or XFDF Data (XML Form Data Format).

Install Pdftk

» Please download pdftk from this location - http://www.pdflabs.com/tools/pdftk-the-pdf-toolkit/
#download

» Make sure to download the binaries which are specific to the target operating system.

e Copy the pdftk.exe and libiconv2.dll in the folder where DocumentBurster™ was
installed, next to the Docunent Bur st er . exe file.

|| changelog
|| commercial-license
5] decurnentburster

4 DocumentBurster

%] libiconz, di
Epdftk.exe

Under Microsoft Windows, pdftk.exe and libiconv2.dll should be placed next to the

Document Bur st er . exe file.

For an example on how to execute pdftk during the report bursting lifecycle, please see the existing
scripts/burst/samples/exec_pdftk_background.groovy sample script.

http://www.pdflabs.com/tools/pdftk-the-pdf-toolkit/
http://www.pdflabs.com/tools/pdftk-the-pdf-toolkit/
http://www.pdflabs.com/tools/pdftk-the-pdf-toolkit/
http://www.pdflabs.com/tools/pdftk-the-pdf-toolkit/#download
http://www.pdflabs.com/tools/pdftk-the-pdf-toolkit/#download

Publish Reports to Microsoft SharePoint Portal

2.1.3. Publish Reports to Microsoft SharePoint Portal

Using scripting, it is possible to publish reports directly to enterprise portals. Think to the use case
where there are few hundreds or thousands of customers and dealers and, with a single click, the
relevant individual reports can be made available to each one of them on the portal.

DocumentBurster™ is distributing the reports to portals using the WebDAV protocol. Following
products, they all support WebDAV, so that DocumentBurster™ s capable to distribute reports
to the following:

Microsoft SharePoint
IBM WebSphere Portal
Oracle Portal

SAP NetWeaver

Tibco PortalBuilder
Samsung ACUBE Portal

Liferay Portal, Hippo portal, JBoss Enterprise Portal, eXo and Apache Portal

2.1.4. Distribute by SMS and Fax

SMS messages can be delivered, via email, through an online SMS gateway service. In such a
scenario DocumentBurster™ is configured to send an email to the SMS gateway in which the
text of the message and the destination number are specified. The SMS gateway will transform
the email message and will deliver it further, using SMS, to the specified number. Using scripting,
DocumentBurster™ can send configured SMS messages to any gateway service. For a list
of available online SMS gateways just Google for ‘list of SMS gateways' . The SMS which is
best fitting the needs can be selected and DocumentBurster™ will distribute SMS messages
using it.

Fax the reports
There are various ways of sending documents by fax using the computer.

The simplest way is to use an existing fax online gateway to which the reports are sent as an
email attachment. The gateway will further forward the reports by fax to the specified number.
For a list of available online fax gateways just Google for 'list of fax gateways' .

As an alternative, it is possible to send faxes by configuring a dial-up modem to work with
specialized fax software. Microsoft Fax can be used as a fax software service on Windows. For
instructions on enabling Microsoft Fax, please consult the appropriate Microsoft knowledgebase
article from the Microsoft website. HylaFAX or AsterFax™ - Asterisk Fax are valid fax software
solutions which can be used on UNIX/Linux systems. Using scripting, it is possible to integrate
DocumentBurster™ with any of the previously enumerated fax products and this requires some
customization effort to integrate with the specific fax vendor APIs.

Chapter 2. Using Scripts to A...

2.1.5. Print Reports

DocumentBurster™ can print the output burst reports directly to physical printers.
Sample

For an example on how to print the output burst reports, please see the existing scripts/burst/
samples/print.groovy sample script.

2.1.6. Mail, FTP, FTPs and SFTP

With a little bit of scripting it is possible to send reports by email, upload to FTP or FTPs and copy
files to SFTP using SSH.

While sending the burst reports by email is available through the GUI interface, sometimes more
flexibility can be achieved with the help of DocumentBurster™ scripting. One example is that
using scripting it is possible, if required, to send emails without attachments to any SMS gateway
- by default, through the GUI interface, all the emails which are sent will have a corresponding
burst report attached.

Mail Sample

For an example on how to send an ad-hoc email during the report bursting flow, please see scripts/
burst/samples/ant_mail.groovy sample script.

FTP/FTPs/SFTP Samples

For examples on how to FTP, FTPs or SFTP reports using scripting, please see Chapter 3, cURL
Integration .

2.1.7. Upload Reports to a Shared Location

DocumentBurster™ can upload the generated reports to a network shared location.
Sample

For an example on how to upload the burst reports to a shared location, please see the existing
scripts/burst/samples/copy_shared_folder.groovy sample script.

2.1.8. Encrypt or Stamp the Output Reports

Using scripting, DocumentBurster™ can encrypt the output reports. This feature is commonly
used to prevent unauthorized viewing, printing, editing, copying text from the document and doing
annotations. It is also possible to ask the user for a password in order to view the report.

Sample

For an example on how to encrypt and password protect the burst reports, please see the existing
scripts/burst/samples/encrypt.groovy sample script.

Introduction to the Burst Lifecycle

DocumentBurster™ can stamp the distributed reports in much the same way that it is applied
a rubber stamp to a paper document. If required, it is possible to apply bates stamping, page
numbering, text stamping, logo insertion or add headers/footers and watermarks to the reports.

Sample

For an example on how to stamp the burst reports, please see the existing scripts/burst/samples/
overlay.groovy sample script.

2.2. Introduction to the Burst Lifecycle

During the report processing DocumentBurster™ defines a set of exit points which can be used
to customize the default software behavior. The DocumentBurster™ bursting lifecycle defines
the following sequentially ordered phases (exit points):

startBursting - event triggered when the burst is starting

 startParsePage - event triggered before a page text is parsed

« endParsePage - event triggered after a page text was parsed

* startExtractDocument - event triggered before a burst report is extracted

« endExtractDocument - event triggered after a burst report was just extracted

- startDistributeDocument - event triggered before a burst report is distributed

« endDistributeDocument - event triggered after a burst report was just distributed

« quarantineDocument - event triggered whenever a report failed to be distributed and it is being
quarantined

» endBursting - event triggered when the burst is finishing

2.2.1. Bursting Context

Bursting context is an object which is implicitly available for scripting throughout all the bursting
lifecycle phases. The bursting context is available during scripting as a variable named ctx.

Following is the information which is available through the bursting context.

public List<String> burstTokens;
public String inputDocurentFil ePat h;
public String configurationFil ePat h;
public Settings settings;

public Variabl es vari abl es;
public Scripts scripts;

Chapter 2. Using Scripts to A...

public int currentPagel ndex;
public String currentPageText;
public String previousPageText;
public String token;

public String output Fol der;
public String backupFol der;
public String quarantineFol der;

public String extractFil ePat h;

public int nunber O Pages;

public int nunber O ExtractedFil es;
public int nunberOf Di stributedFil es;
public int number OF Ski ppedFi | es;
public int nunber Of Quaranti nedFil es;

publ i c bool ean skipCurrentFileDistribution = fal se;

public List<String> attachnents = new ArrayList<String>();
public String archiveFil ePat h;

public Object additionallnformation;

 ctx.inputDocumentFilePath - file path to the report which is being processed.
Lifespan - Available for all of the bursting lifecycle phases.
« ctx.configurationFilePath - file path to the configuration template which is being used.

Lifespan - Available for the startExtractDbocument, endExtractDocument,
startDistributeDocument, endDistributeDocument, quarantineDocument and endBursting
lifecycle phases/events.

e ctx.settings - contains the settings used to process the current report. Following settings
fields might present interest while scripting burstFileName, outputFolder, backupFolder,
guarantineFolder, sendFiles, deleteFiles, quarantineFiles - with the last three fields being of
type boolean.

Lifespan - Available throughout all the bursting lifecycle starting with the first startBursting phase
and up to the last endBursting.

e ctx.variables - Map<String, Object> which contains both the built-in and the user defined
variables.

The built-in variables are accessible using the ctx.variables.get(variableName) syntax.

Bursting Context

For instance, the syntax

ctx.variables.get("input_document_name")

will return the file name of the input report.

The values for the following built-in variables can be returned similarly:

input_document_name, burst _token, burst_index, output folder, extracted_file_path, now,
now_default_date, now_short_date, now_medium_date, now_long date, now_full _date,
now_default_time, now_short_time, now_medium_time, now_long_time, now_full_time and
now_quarter.

User defined variables are populated and are available per each
separate burst token. The syntax to access the user variables is
ctx.variables.getUserVariables(ctx.token).get(variableName).

For example the code,
ctx.variables.getUserVariables("clyde.grew@northridgehealth.org").get("var0")
will return the first user variable for the token clyde.grew@northridgehealth.org.
While the code,

ctx.variables.getUserVariables(ctx.token).get("var0")

will return the first user variable for the current burst token.

Lifespan - Beside the burst_token, burst_index, output_folder and extracted_file_path all the
other built-in variables are available throughout all the bursting lifecycle starting with the first
startBursting phase up to the last endBursting.

burst_token, burst_index and output folder are populated during the time the burst
reports are generated and are available in startExtractDocument, endExtractDocument,
startDistributeDocument, endDistributeDocument and quarantineDocument.

extracted_file_path is populated after each report is extracted and is
available in endExtractDocument, startDistributeDocument, endDistributeDocument and
quarantineDocument.

User variables are progressively populated during the time the report pages are being
parsed and them become fully available for the startExtractDocument, endExtractDocument,
startDistributeDocument, endDistributeDocument, quarantineDocument and endBursting
phases.

ctx.scripts - keeps track of the Groovy scripts to be executed for each of the bursting phases.
DocumentBurster™ is coming with nine empty script templates found under the scri pts/
bur st folder. The existing templates are suitable to be used for most of the scripting situations.

9

Chapter 2. Using Scripts to A...

For example, in order to put some custom behavior when the bursting is finished, than the
simplest way to do this is to write the tailored logic by editing the existing empty template
endBursting.groovy script.

However, there might be cases in which it will be a need to associate totally new Groovy scripts
to be executed when some bursting events are happening.

The syntax to specify a custom script is ctx.scripts.eventName = script_name.groovy
For example

ctx.scripts.endExtractDocument = my_custom_script.groovy

will assign the my_cust om scri pt. groovy to be executed after each report is extracted.
Following are all the phases/events for which custom scripts can be associated:

* ctx.scripts.startBursting

* ctx.scripts.endBursting

 ctx.scripts.startParsePage

 ctx.scripts.endParsePage

* ctx.scripts.startExtractDocument

* ctx.scripts.endExtractDocument

* ctx.scripts.startDistributeDocument

* ctx.scripts.endDistributeDocument

* ctx.scripts.quarantineDistributeDocument

Lifespan - Available throughout all the bursting lifecycle phases/events.

 ctx.currentPagelndex, ctx.currentPageText, ctx.previousPageText - the index of the current
page which is being parsed and the text of the current and of the previous pages.

Lifespan - Available for the startParsePage and endParsePage phases/events.
» ctx.token - the token used to extract and process the current burst report

Lifespan - Available for the startExtractDocument, endExtractDocument,
startDistributeDocument, endDistributeDocument and quarantineDocument phases/events.

« ctx.outputFolder, ctx.backupFolder, ctx.quarantineFolder - the output folder, backup folder and
quarantine folder for the burst reports.

10

Bursting Context

Lifespan - Available for the startExtractDocument, endExtractDocument,
startDistributeDocument, endDistributeDocument, quarantineDocument and endBursting
phases/events.

ctx.extractFilePath - the path for current file which is being extracted

Lifespan - Available for the startExtractDocument, endExtractDocument,
startDistributeDocument, endDistributeDocument and quarantineDocument phases/events.

ctx.numberOfPages - number of pages of the report which is being processed.
Lifespan - Available for all the bursting lifecycle phases.
ctx.numberOfExtractedFiles - number of extracted documents/reports.

Lifespan - Available during the endBursting report bursting phase.
ctx.numberOfDistributedFiles - number of distributed documents/reports.

Lifespan - Available during the endBursting report bursting phase.
ctx.numberOfSkippedFiles - number of skipped from distribution documents/reports.
Lifespan - Available during the endBursting report bursting phase.
ctx.numberOfQuarantinedFiles - number of quarantined documents/reports.
Lifespan - Available during the endBursting report bursting phase.

ctx.skipCurrentFileDistribution - should the current file be skipped from distribution? Default
value is false.

Lifespan - Available during endExtractDocument report bursting phase.

For an example on how to use skipCurrentFileDistribution, please see scripts/burst/samples/
skip_current_file_distribution_if.groovy sample script.

ctx.attachments - list with the path(s) to the attachment(s) which are about to be distributed
Lifespan - Available for scripting during startDistributeDocument report bursting phase.

ctx.archiveFilePath - path to the archive file which is generated and is about to be distributed.
Available if the configuration to archive the attachments is enabled

Lifespan - Available for scripting during startDistributeDocument, endDistributeDocument and
guarantineDocument report bursting phases.

ctx.additionallnformation - additional information which might be required to store and use while
scripting DocumentBurster™ .

11

Chapter 2. Using Scripts to A...

2.3. Sample Scripts

DocumentBurster™ is coming with a number of sample scripts which can be used as a starting
point for implementing other different custom requirements. All the sample scripts are available
in the scri pt s/ bur st/ sanpl es folder.

2.3.1. zip.groovy

By default DocumentBurster™ is not archiving the output burst reports. By running few lines of
script during the endBursting phase, it is possible to capture and zip together all the burst files
in a single file.

Edit the script scri pt s/ bur st/ endBur sti ng. gr oovy with the content found in scri pts/ burst/
sanpl es/ zi p. gr oovy and then burst a new report. Now, every time a report is burst, the output
files will be archived together in a single zip file.

Similarly, if required, the output files can be archived with different formats and algorithms such
as gzip, bzip or tar. For a complete list and documentation of the available options please consult
the help page of Ant Archive Tasks [http://ant.apache.org/manual/tasksoverview.html#archive]

The following code should be self explanatory. For customizing the name of the zip output file
please change the value of the variable zipFilePath as per the needs.

/~k

* 1. This script should be used for zipping the output burst files
* in asingle file.

* 2. The script should be executed during the endBursting report
* bursting |ifecycle phase

* 3. Please copy and paste the content
* of this script into the existing

* scri pts/ burst/endBursting. groovy script.

* 4. The script is doing basic archiving of all the output

* PDF files in a single zip file
* Running nultiple times the sane input report wll
* override the output zip file between the consecutive runs

* 5. More conplex archiving requirenments can be achi eved
* by nodi fying this starting script.

*/

i nport com sour cekraft. docunent burster.variabl es. Vari abl es

12

http://ant.apache.org/manual/tasksoverview.html#archive
http://ant.apache.org/manual/tasksoverview.html#archive

encrypt.groovy

/'l zi pFi |l ePath vari abl e keeps the nane of the zip file.

/I When bursting a report burst. pdf

[/the output zip file will be named burst.pdf.zip and will
//contain inside all the generated reports

def zipFilePath = ctx. output Fol der+"/" +\

ctx. vari abl es. get (Vari abl es. | NPUT_DOCUMENT _NAME) +". zi p"

def ant = new Ant Bui |l der ()

[1zip together all the individual burst reports
ant. zi p(destfile: zipFilePath,

basedi r: ctx. out put Fol der,

i ncludes: "**/* pdf, **/*. xls, **/* x|sx")

//finally, delete the individual burst reports
ant . del ete {

fileset(dir:ctx.outputFol der,

i ncludes: "**/*_ pdf, **/*. xls, **/* x|lsx")

}

2.3.2. encrypt.groovy

By default DocumentBurster™ is not encrypting or password protecting the output burst reports.
By placing few lines of script during the endExtractDocument phase, it is possible to encrypt and
password protect all the output files.

http://en.wikipedia.org/wiki/Portable_Document_Format#Security _and_signatures

Edit the script scri pt s/ bur st / endExt r act Document . gr oovy with the content foundinscri pt s/
bur st/ sanpl es/ encrypt . gr oovy and then burst a new report. Now, every time a report is burst,
the output files will be encrypted to have both an owner and an user password.

The default user and owner passwords have the same value which is the value of the $burst_token
$ variable. For example, when bursting the sample report sanpl es/ bur st . pdf two output files
will be generated docl. pdf and doc2. pdf . The password for the first report is docl and for the
second one is doc2 with both passwords being generated from the $burst_token$ variable.

Similarly, if required, the output files can be encrypted with the following additional possibilities:

* Certification file

» Set the assemble permission
« Set the extraction permission
 Set the fill in form permission

* Set the modify permission

13

http://en.wikipedia.org/wiki/Portable_Document_Format#Security_and_signatures

Chapter 2. Using Scripts to A...

Set the modify annots permission

Set the print permission
» Set the print degraded permission
e The number of bits for the encryption key

For a complete list and documentation of the available encrypt options please consult the help
page of the PDFBox Command Line Tools [http://pdfbox.apache.org/commandline/]

The following code should be self explanatory. For customizing the passwords,
following syntax should be wused to access the value of a variable -
ctx.variables.getUserVariables(ctx.token).get(variableName) .

/*

* 1. This script should be used for achieving PDF report
* encryption capabilities.

* 2. The script should be executed during the endExtract Docunment
* report bursting |ifecycle phase.

* 3. Please copy and paste the content of this sanple script
* into the existing scripts/burst/endExtract Docunent. groovy

* script.

* 4. Foll owi ng PDF encryption scenarios are possi bl e:

* 4.1 - Set the owner and user PDF passwords. Default is none.
* 4.2 - Digitally sign the report with a X 509 cert file.

* Default is none.

* 4.3 - Set the assenble perm ssion. Default is true.

* 4.4 - Set the extraction permission. Default is true.

* 4.5 - Set the fill in formperm ssion. Default is true.

* 4.6 - Set the nodify perm ssion. Default is true.

* 4.7 - Set the nodify annots perm ssion. Default is true.

* 4.8 - Set the print permission. Default is true.

* 4.9 - Set the print degraded perm ssion. Default is true.

* 4.10 - Sets the nunber of bits for the encryption key.

* Default is 40.

*

* 5. For a full list and docunentation of the various PDF encryption
* capabilities please see

* htt p: // pdf box. apache. or g/ conmandl i ne/

*/

14

http://pdfbox.apache.org/commandline/
http://pdfbox.apache.org/commandline/

encrypt.groovy

i mport com sour cekraft.docunent burster. variabl es. Vari abl es

/*

*

*/

V\r ni ng:
1. Normally it should not be any need for you to nodify
t he val ue of pdf BoxC assPat h.
2. You shoul d only doubl e check that the val ues of
the hard-coded jar paths/versions are still valid.
Wth new rel eases of new software the jar paths/versions
m ght becone obsol ete.
3. If required, nodify the paths/versions with care.
Havi ng t he pdf BoxCl assPath wong will result in the
foll owi ng ant. exec/ pdfbox call to fail.

def pdf Boxd assPat h="1i b/ burst/pdfbox-1.8.2.jar"

pdf Boxd assPat h+="; i b/ burst/jcl-over-slf4j-1.7.5.jar;lib/burst/slf4j-
api-1.7.5. jar"
pdf Boxd assPat h+="; | i b/ burst/j enpbox-1.8.2.jar"
pdf Boxd assPat h+="; | i b/ burst/fontbox-1.8.2.jar"
pdf Boxd assPat h+="; | i b/ burst/bcnai |l -j dk15-1.44.jar"
pdf Boxd assPat h+="; | i b/ bur st/ bcprov-j dk15-1.44.jar"
/*
* 1. encryptOptions are the argunents which are passed for

PDF encrypti on.

By default the encryptOptions is defining the
owner (-O and user (-U) passwords having the sane
val ue of the $burst _token$ system vari abl e.

You can custom ze for different user and owner
passwords whi ch can be fetched fromthe val ues
of any user variable such as $var0$, $varl$, etc.

def burst Token = ctx.token

/*

*

*

Following is an exanple to access the value of the first
user defined variable $var0$.

15

Chapter 2. Using Scripts to A...

*
* def password = ctx.variabl es. get UserVari abl es(ct x. t oken) . get ("var0")
*/

def password = burst Token

def inputFile = ctx.extractFilePath

* 1. By changi ng the encrypt Options argunents you can

* achi eve nore PDF encryption features such as applying

* certification files, nmodifying the perm ssions on the report
* and nodi fying the | ength of the key which is used

* during encryption.

*

* 2. For a full list and docunentation of the various

* PDF encryption capabilities please see

* htt p: // pdf box. apache. or g/ conmandl i ne/

* 3. CGotchas: Take care if you want to pass an argunent

* that contains white space since it will be split into
* nmul tiple argunents. This is the reason why
* in encryptOptions all the string argunents are
* surrounded with the \" character.
* For nore details please read
* htt p://groovy. codehaus. or g/ Execut i ng%20Ext er nal ¥20Pr ocesses%20Fr om
%20G oovy
*/
def encryptOptions = "-O \"$password\" -U \"$password\" \"$inputFile\""

| 0og.info("encryptOptions = $encrypt Opti ons")

def ant = new Ant Buil der ()

ant . exec(out put property: "cndQut ",
errorproperty: "cmdErr",
resul tproperty: "cmlExit",
failonerror: "fal se",
executable: 'java') {
arg(line:"-cp $pdfBoxd assPath org. apache. pdf box. Encrypt
$encrypt Opti ons")
}

println "return code: ${ant.project.properties.cndExit}"

16

overlay.groovy

println "stderr: ${ant.project.properties.crmdErr}"
println "stdout: ${ant . project.properties.cndQut}"

2.3.3. overlay.groovy

Using this sample script, DocumentBurster™ can stamp the output burst reports. The script
should be executed during the endExtractDocument report bursting lifecycle phase. The script
is using the sanpl es/ St anp. pdf to overlay the output burst reports. It is easy to customize the
overlay with a different custom stamp.

Edit the script scri pt s/ bur st/ endExt r act Docunent . gr oovy with the content found inscri pt s/
bur st/ sanpl es/ over | ay. gr oovy and then burst a new report. Now, every time a report is burst,
the output files will be stamped with the sanpl es/ St anp. pdf file.

The following code should be self explanatory. For customizing the overlay document please
replace the existing sanpl es/ St anp. pdf with a a different file.

/*

* 1. This script should be used as a sanple to overlay one docunent
* as a stanp on top of the burst reports.

* 2. The script should be executed during the endExtract Docunent
* report bursting lifecycle phase

* 3. Please copy and paste the content of this sanple script
* into the existing scripts/burst/endExtract Docunent. groovy

* script.

* 4. For a full documentation of the PDF overlay capability

* pl ease see

* ht t p: / / pdf box. apache. or g/ commandl i ne/
*

*/

i nport com sourcekraft. docunent burster.variabl es. Vari abl es
/*
*

* \Mrni ng:

* 1. Normally it should not be any need for you to nodify
* t he val ue of pdf BoxC assPat h.

* 2. You should only double check that the val ues of

17

Chapter 2. Using Scripts to A...

* t he hard-coded jar paths/versions are still valid.
* Wth new rel eases of new software the jar paths/versions
* m ght becone obsol ete.

* 3. If required, nodify the paths/versions with care.

* Havi ng t he pdf BoxCl assPath wwong will result in the
* foll owi ng ant.exec/ pdfbox call to fail.
*/

def pdf Boxd assPat h="1i b/ burst/pdfbox-1.8.2.jar"

pdf BoxCd assPat h+="; | i b/ burst/jcl-over-slf4j-1.7.5.jar;lib/burst/slf4j-
api-1.7.5.jar"

pdf Boxd assPat h+="; | i b/ burst/j enpbox-1.8.2.jar"

pdf BoxC assPat h+="; | i b/ burst/fontbox-1.8.2.jar"

pdf Boxd assPat h+="; | i b/ burst/bcnai | -j dk15-1.44.jar"

pdf BoxC assPat h+="; | i b/ bur st/ bcprov-j dk15-1.44.jar"

[l apply the sanpl es/ Stanp. pdf as overl ay
/[/for the extracted report
def inputFile = ctx.extractFilePath

def overlayOptions = "sanples/Stanp. pdf \"S$inputFile\" \"$inputFile\""

| og.info("overlayOptions = $overl ayOptions")

def ant = new Ant Buil der ()

ant . exec(out put property: "cndQut ",
errorproperty: "cmdErr",
resul tproperty:"cndExit",
failonerror: "false",
executable: 'java') {
arg(line:"-cp $pdfBoxd assPath org.apache. pdf box. Overl ay
$overl ayOpti ons")

}
println "return code: ${ant.project.properties.cndExit}"
println "stderr: ${ant.project.properties.cndErr}"
println "stdout: ${ant. project.properties.cndQut}"

2.3.4. exec_pdftk_background.groovy

Using this sample script, DocumentBurster™ can apply a PDF watermark to the background
of the output burst reports. The script should be executed during the endExtractDocument report
bursting lifecycle phase. The script is using the sanpl es/ St anp. pdf to be applied as a background

18

exec_pdftk_background.groovy

to the output burst reports. It is easy to customize the background operation with a different custom
stamp.

Edit the scriptscri pt s/ bur st/ endExt r act Docunent . gr oovy with the content found inscri pt s/
bur st/ sanpl es/ exec_pdf t k_background. groovy and then burst a new report. Now, every
time a report is burst, the output files will be stamped with the sanpl es/ St anp. pdf file.

The following code should be self explanatory. For customizing the background stamp please
replace the existing sanpl es/ St anp. pdf with a different custom file.

/*

* 1. This script should be used:

* 1.1 - As a sanple script to call an external executable
* during the report bursting life cycle.

* 1.2 - As a sanple for applying a PDF waternmark to the
* background of the burst reports.

* 2. The external programto be denpbnstrated is pdftk
* http://ww. pdf | abs. com t ool s/ pdf t k-t he- pdf -t ool ki t/

* 3. pdftk or the pdf toolkit is a cross-platformtool for

* mani pul ati ng PDF docunents. pdftk is basically a front

* end to the i Text library (conpiled to Native code using GCJ),
* capabl e of splitting, nmerging, encrypting, decrypting

* unconpr essi ng, reconpressing, and repairing PDFs

* It can also be used to mani pul ate wat ermarks, netadata,

* and to fill PDF Forns with FDF Data (Forns Data Fornat)

* or XFDF Data (XM. Form Data Format).

* 4. The script should be executed during the endExtract Docunment
* report bursting lifecycle phase.

* 5. Please copy and paste the content of this sanple script

* into the existing scripts/burst/endExtract Docunent. groovy
* script.

* 6. For a full docunentation of the PDF background capability

* pl ease see
* http://ww. pdf | abs. coni docs/ pdf t k- man- page/ #dest - op- backgr ound

i nport com sour cekraft. docunent burster.variabl es. Vari abl es

def extractFilePath = ctx.extractFilePath

19

Chapter 2. Using Scripts to A...

def stanpedFilePath = ctx.extractFilePath + "_stanped. pdf"

[l apply the sanpl es/ Stanp. pdf as a background

//to the extracted report

def execOptions = "\"$extractFilePath\" background sanpl es/ St anp. pdf
execOptions += "output \"$stanpedFilePath\""

* 1. Please download and install pdftk fromthis |ocation
* http://ww. pdf | abs. conl t ool s/ pdft k-t he-pdf-tool kit/

* 2. Make sure to downl oad the binaries which are
* specific to the target operating system

* 3. Move the pdftk.exe and |ibiconv2.dll in the fol der
* wher e Docunent Burster was installed, next
* to Docurnent Burster.exe file.
*/
def ant = new Ant Bui |l der ()
| og.i nfo("Executing pdftk.exe $execOpti ons")
[/ http://groovy. codehaus. or g/ Execut i ng%20Ext er nal %20Pr ocesses%20Fr on?20G oovy
ant . exec(append: "true",
failonerror: "true",
out put: "l ogs/ pdftk. | og",

executabl e: 'pdftk.exe') {
arg(line:"$execOptions")

ant. move(file:"$stanpedFil ePath", tofile:"$extractFilePath")

2.3.5. print.groovy

Using this sample script, DocumentBurster™ can send the output burst reports to the printer.
The script should be executed during the endExtractDocument report bursting lifecycle phase.

Edit the script scri pt s/ bur st/ endExt r act Document . gr oovy with the content foundinscri pt s/
bur st/ sanpl es/ print. groovy and then burst a new report. Now, every time a report is burst,
the output files will be sent to the printer.

Using the -silentPrint switch it is possible to print the PDF reports without prompting for a printer.

The following code should be self explanatory.

20

print.groovy

/*

* 1. This script should be used as a sanple to print the burst reports.

* 2. The script should be executed during the endExtract Docunment
* report bursting lifecycle phase.

* 3. Please copy and paste the content of this sanple script
* into the existing scripts/burst/endExtract Docunent. groovy

* script.

* 4. For a full docunmentation of the PDF print capability

* pl ease see

* htt p: // pdf box. apache. or g/ conmandl i ne/
*

*/

i mport com sour cekraft.docunent burster. variabl es. Vari abl es
/*
*

* W\r ni ng:

* 1. Nornally it should not be any need for you to nodify
* t he val ue of pdf BoxC assPat h.

* 2. You should only doubl e check that the val ues of

* t he hard-coded jar paths/versions are still valid.
* Wth new rel eases of new software the jar paths/versions
* m ght becone obsol ete.

* 3. If required, nodify the paths/versions with care.

* Havi ng t he pdf BoxCl assPath wong will result in the
* foll owi ng ant. exec/ pdf box call to fail.

*

*/

def pdf Boxd assPat h="1i b/ burst/pdfbox-1.8.2.jar"

pdf Boxd assPat h+="; i b/ burst/jcl-over-slf4j-1.7.5.jar;lib/burst/slf4j-
api-1.7.5. jar"

pdf Boxd assPat h+="; | i b/ burst/j enpbox-1.8.2.jar"

pdf Boxd assPat h+="; | i b/ burst/fontbox-1.8.2.jar"

pdf Boxd assPat h+="; | i b/ burst/bcnail -j dk15-1.44.jar"

pdf Boxd assPat h+="; | i b/ bur st/ bcprov-jdk15-1.44.jar"

def extractFilePath = ctx.extractFilePath

21

Chapter 2. Using Scripts to A...

[l-silentPrint can be used to print the PDF without pronpting for a printer.
def printOptions = "\"$extractFilePath\""

| og.info("printOptions = $printOptions")

def ant = new Ant Bui |l der ()

ant . exec(out put property: "cndQut ",
errorproperty: "cmdErr",
resul tproperty:"cndExit",
failonerror: "fal se",
executable: 'java') {
arg(line:"-cp $pdfBoxCl assPath org. apache. pdf box. Pri nt PDF
$print Opti ons")

}
println "return code: ${ant.project.properties.cndExit}"
println "stderr: ${ant.project.properties.crmdErr}"
println "stdout: ${ant. project.properties.cndQut}"

2.3.6. copy_shared_folder.groovy

Using this sample script, DocumentBurster™ can copy each individual output burst file to a
shared folder (as long as the shared drive is mounted). The script should be executed during the
endExtractDocument report bursting lifecycle phase.

Edit the script scri pt s/ bur st/ endExt r act Docunent . gr oovy with the content found inscri pt s/
bur st/ sanpl es/ copy_shar ed_f ol der. groovy and then burst a new report. Now, every time a
report is burst, the output files will be uploaded to the shared folder.

By default the script is getting the shared location path from the content of $var0$ user variable
(e.g //IVBOXSVR/shareit).

The following code should be self explanatory.

/*

* 1. This script should be used for copying each individual
* output burst file to a shared fol der
* (as long as the shared drive is nounted).

* 2. The script should be executed during the endExtract Docunment
* report bursting lifecycle phase.

* 3. Please copy and paste the content of this sanple script
* into the existing scripts/burst/endExtract Docunent. groovy

22

ant_ftp.groovy

* script.

* 4. Ant copy task is used to upload the reports to the
* shared | ocation
* - http://ant.apache. or g/ manual / Tasks/ copy. ht

*

*/

i mport com sour cekraft.docunent burster.variabl es. Vari abl es

def ant = new Ant Buil der ()

/*
* By default the script is getting the shared |ocation path
* fromthe content of $var0$ user variable (e.g //VBOXSVR/ shareit)

*

*/

def sharedLocati onPath = ctx. vari abl es. get User Vari abl es(ct x.t oken).get ("var0")

[lant.copy(file:ctx.extractFilePath, todir:"'//VBOXSVR shareit",

overwite:true)

ant.copy(file:ctx.extractFilePath, todir:"$sharedLocati onPath", overwite:true)

2.3.7. ant_ftp.groovy

Using this sample script, DocumentBurster™ can copy all the output burst files at once to a
remote FTP server location.The script should be executed during the endBursting report bursting

lifecycle phase.

Edit the script scri pt s/ bur st/ endBur st i ng. gr oovy with the content found in scri pt s/ burst/
sanpl es/ ant _ftp. groovy and then burst a new report. Now, every time a report is burst, the

output files will be uploaded to the FTP server location.

By default the script is fetching the values of the FTP connect session, such as user, password
and host from the values of $var0$, $varl$ and $var2$ user report variables. If the burst reports
are configured as such, then there is nothing more to do, and the FTP upload will work without

any modification to the script. Otherwise, the FTP script should be modified as per the needs.

The following code should be self explanatory.

/ *

* 1. This script should be used for copying all the output burst
* files at once to a renote FTP server | ocation.

23

Chapter 2. Using Scripts to A...

* 2. The script should be executed during the endBursting report
* bursting lifecycle phase.

* 3. Please copy and paste the content of this script into the
* exi sting scripts/burst/endBursting.groovy script.

* 4. The scope of this script is to copy all the *.pdf files

* generated in the | ast burst session.

* Thus, in order for this script to really upload only

* the | ast generated files, it is requi red that each burst
* session will generate a new and uni que burst output fol der.

* 5. Ant FTP task is used to upload the reports
* - http://ant.apache. or g/ manual / Tasks/ft p. ht m

*

*/

i nport com sour cekraft.docunent burster.variabl es. Vari abl es

/*

* By default the script is getting the required FTP session information
* fromthe foll owi ng sources:

*

* userNane - fromthe content of $varO0$ user variable

* password - fromthe content of $varl$ user variable

*

* host Nane - fromthe content of $var2$ user variable

*

*/

def user Nane
def password

ctx. vari abl es. get User Vari abl es(ct x. t oken). get ("var0")
ctx. vari abl es. get User Vari abl es(ct x. t oken). get ("var1")

def hostNanme = ctx.vari abl es. get User Vari abl es(ct x. t oken). get ("var2")

ant = new Ant Bui | der ()

/*

* Copy all the *.pdf files generated in the |ast burst session.
* Thus, in order for this script to really upload only

* the | ast generated files, it is requi red that each burst

* session will generate a new and uni que burst output folder.

*

*/

ant.ftp(server: "$host Nanme",
userid: "$user Nane",
password: "$password",

passive: 'yes',
ver bose: 'yes',
bi nary: 'yes') {

24

ant_scp_sftp.groovy

fileset(dir:ctx.outputFolder,includes: '**/*. pdf")

2.3.8. ant_scp_sftp.groovy

Using this sample script, DocumentBurster™ can copy each individual output burst file to a
remote SCP/SFTP server location. The script should be executed during the endExtractDocument
report bursting lifecycle phase.

Edit the script scri pt s/ bur st/ endExt r act Docunent . gr oovy with the content found inscri pt s/
bur st/ sanpl es/ ant _scp_sftp. groovy and then burst a new report. Now, every time a report
is burst, the output files will be uploaded to the SFTP/SCP server location.

By default the script is fetching the values of the SCP/SFTP connect session, such as user,
password, host and path from the values of $var0$, $varl$, $var2$ and $var3$ user report
variables. If the burst reports are configured as such, then there is nothing more to do, and the
SFTP/SCP upload will work without any modification to the script. Otherwise, the SCP/SFTP script
should be modified as per the needs.

The following code should be self explanatory.

/~k

* 1. This script should be used for copying each individual output burst file
* to a renote SCP/ SFTP server | ocation.

* 2. The script should be executed during the endExtract Docunent
* report bursting |ifecycle phase.

* 3. Please copy and paste the content of this sanple script
* into the existing scripts/burst/endExtract Docunent. groovy
* script.

* 4. Ant SCP task is used to upload the reports
* - http://ant.apache. or g/ manual / Tasks/ scp. ht m

*

*/
i mport com sour cekraft. docunent burster.variabl es. Vari abl es

/*

*

* By default the script is getting the required SCP/ SFTP sessi on
* informati on fromthe foll ow ng sources:

*

25

Chapter 2. Using Scripts to A...

* userName - fromthe content of $var0$ user variabl e

* password - fromthe content of $varl$ user variable

*

* host Name - fromthe content of $var2$ user variable

* absol utePath - fromthe content of $var3$ user variable

*/
def userName = ctx.vari abl es. get User Vari abl es(ct x. t oken) . get ("var0")
def password = ctx.variabl es. get User Vari abl es(ct x. t oken) . get ("var1")

def hostName = ctx.variabl es. get User Vari abl es(ct x. t oken). get ("var2")
def absol utePath = ctx.vari abl es. get User Vari abl es(ct x. t oken) . get ("var 3")

ant = new Ant Bui | der ()

ant.scp(file: ctx.extractFilePath,
todir: "$user Nanme@host Nane: $absol ut ePat h",
password: "$password”,
trust:'true')

2.3.9. ant_vfs.groovy

DocumentBurster™ can distribute the output burst reports by using Commons Virtual File
System. [http://commons.apache.org/vfs/index.html]

By scripting Commons VFS, DocumentBurster™ can upload the reports to any of the Commons
VFS supported file systems such as FTP, Local Files, HTTP and HTTPS, SFTP, WebDAV and
CIFS.

For example, following use cases are all achievable:

e Using HTTP POST, upload the burst reports to a cloud storage provider such as Box.net [http://
www.box.net/] or Dropbox. [https://www.dropbox.com/]

e Using HTTP POST or WebDAYV, upload the burst reports to a corporate portal such as Microsoft
SharePoint, IBM WebSphere Portal, Oracle Portal, SAP NetWeaver, Tibco PortalBuilder or
Samsung ACUBE Portal.

» Using CIFS, upload the burst reports to a CIFS server such as a Samba server, or a Windows
share.

This script is showing how to copy the burst reports using the file:// protocol and, with minimum
effort, it can be adapted for any of the above listed protocols.

The script should be executed during the endExtractDocument report bursting lifecycle phase.
Edit the script scri pt s/ bur st/ endExt r act Document . gr oovy with the content found inscri pt s/

26

http://commons.apache.org/vfs/index.html
http://commons.apache.org/vfs/index.html
http://commons.apache.org/vfs/index.html
http://www.box.net/
http://www.box.net/
http://www.box.net/
https://www.dropbox.com/
https://www.dropbox.com/

ant_vfs.groovy

bur st/ sanpl es/ ant _vfs. groovy and then burstanew report. Now, every time a report is burst,
the output files will be copied to the configured folder path.

By default the script is fetching the value of the destination folder from the value of $var0$ user
report variable. If the burst reports are configured as such, then there is nothing more to do, and
the script will work without any other additional modification. Otherwise, the VFS script should be
modified as per the needs.

The following code should be self explanatory.

/*

* 1. This script should be used as a sanple

* for copying/ upl oadi ng each i ndividual output burst file

* by using the Apache Commons VFS library.

* Commons VFS provides a single APl for accessing various different

* file systens. It presents a uniformview of the files from various

K di fferent sources, such as the files on |ocal disk, on an HTTP server,
* or inside a Zip archive

* htt p: // comons. apache. or g/ vf s/ i ndex. ht ni

* 2. Commons VFS currently supports the following file systens:
* http://comons. apache. org/vfs/fil esystens. ht m

* 3. This script is denonstrating the use of the V-Copy
* Commons VFS Ant task

* http://comons. apache. or g/ vf s/ ant t asks. ht m #V- Copy

* 4. The script should be executed during the endExtract Docunment
* report bursting |ifecycle phase

* 5. Please copy and paste the content of this sanple script
* into the existing scripts/burst/endExtract Docunent. groovy
* script.

i mport com sourcekraft. docunent burster.variabl es. Vari abl es

/*

*

* By default the script is getting the destination folder fromthe content
L of $var0$ user variable

*

*/

27

Chapter 2. Using Scripts to A...

/le.g. destDir = "file:///C/test"
def destDir = ctx.variabl es. getUserVari abl es(ctx.token).get("var0")

ant = new Ant Bui | der ()

ant . sequenti al {
t askdef (nane: "vfs_copy"”, classnane:"org. apache. commons. vfs2.tasks. CopyTask")
vfs_copy(src: ctx.extractFil ePath,

destdir: "S$destDir",
overwite:'true')

2.3.10. add_and_format_page_numbers.groovy

As the name of the file suggests, this script can be used to add page numbers to the output burst
reports. The script is numbering the pages of the output reports consecutively.

Each page of the output burst reports is stamped with the correct page number and both of the
following two situations are supported:

« Add new page numbers when the initial input report does not have the pages numbered

» Replace and fix the existing page numbers when existing page numbering of the input reports
becomes incorrect after the report is burst

The script should be executed during the endExtractDocument report bursting lifecycle phase.
Edit the script scri pt s/ bur st/ endExt r act Document . gr oovy with the content found inscri pt s/
bur st/ sanpl es/ add_and_f or mat _page_nunbers. groovy and then burst a new report. Now,
every time a report is burst, the pages of the output files will be properly stamped with a label
similar with Page i of n ; where i is the index of the current page and n is the total number of pages.

The text, the font and the location of the page numbering label can be customized by doing small
changes to the existing script. For example the following line of script will place the location of the
numbering label at the bottom-left corner of the page.

over.set Text Matri x(30, 30);

The location of the label can be changed by altering the above coordinates. Please check the
inline code comments for further details.

The following code should be self explanatory.

28

add_and_format_page_numbers.groovy

* 1.

i mport
i nport

i mport
i mport
i nport
i mport
i mport
i mport
i nport

/*

*

/*

This script should be used for applying page nunbers to
the output burst files.

The script can:

1.1 - Place new nunbers for pages of output burst reports
whi ch are not initially nunbered.

1.2 - Replace and fix the nunbers for pages of burst reports
for which the existing page nunbering becones incorrect
after the report is split

The text, the font and the | ocation of the page nunbering
| abel can be custom zed by doing snall changes to this script.

Pl ease check the inline code comments for further details.

The script should be executed during the endExtract Docunent
report bursting |ifecycle phase.

Pl ease copy and paste the content of this sanple script
into the existing scripts/burst/endExtract Docunent. groovy
script.

java.io. Fi |l eCut put Stream
java. awt . Col or;

or g. apache. commons. i o. Fi | enameUti | s;
com | owagi e. t ext . El ement ;

com | owagi e. t ext . pdf . BaseFont ;

com | owagi e. t ext . pdf . Pdf Cont ent Byt e;
com | owagi e. t ext . pdf . Pdf Reader ;

com | owagi e. t ext . pdf . Pdf St anper ;

com | owagi e. t ext . pdf . Pdf GSt at e;

Font of the |abel. Default value is BaseFont.HELVETI CA
O her possible val ues are:

BaseFont . COURI ER

BaseFont . COURI ER_BOLD

BaseFont . COURI ER_BOLDOBLI QUE
BaseFont . COURI ER_OBLI QUE

29

Chapter 2. Using Scripts to A...

* BaseFont . HELVETI CA

* BaseFont . HELVETI CA BOLD

* BaseFont . HELVETI CA_BOLDOBLI QUE
* BaseFont . HELVETI CA_OBLI QUE

* BaseFont . SYMBOL

* BaseFont . TI MES BOLD

* BaseFont . TI MES_BOLDI TALI C

* BaseFont . TI MES | TALI C

* BaseFont . TI MES_ROVAN

* BaseFont . ZAPFDI NGBATS

S
BaseFont bf = BaseFont. createFont (BaseFont. HELVETI CA,
BaseFont . W NANSI , BaseFont . EMBEDDED) ;

def nunberedFil ePath = ctx. out put Fol der +
Fil enaneUti| s. get BaseNane(ct x. extract Fi | ePath) +
" _nunber ed. pdf "

Pdf Reader reader = new Pdf Reader (ctx.extractFil ePath);

/1 get the nunber of pages
int n = reader.get Nunber O Pages() ;

Pdf St anper stanp = new Pdf St anper (r eader,
new Fi | eQut put St r ean(nunber edFi | ePat h)) ;

Pdf Cont ent Byt e over;

Pdf GSt ate gs = new Pdf GStat e();

/1 100% opacity
gs.setFill Qpacity(1.0f);

[/ current page index
int i = 0;
while (i < n) {

i ++;
over = stanp.getOverContent(i);
[l draw an "opaque" and white rectangle
[Iwhich is used to hide the ol d wong page nunbering
over.set GState(gs);

over.set Col orFi || (Col or. WHI TE) ;

//the default | abel location is at the bottom | eft-corner

30

merge_with_external_files.groovy

/1 of the page

I1x, y, width, height
over.rectangl e(30, 30, 60, 20);

over.fill();
over. begi nText () ;
[/ Default text color is black

/] ot her possible color val ues
[/ http://downl oad. oracl e. conl j avase/ 1. 4. 2/ docs/ api / j ava/ awt / Col or . ht m

over.set Col orFi | | (Col or. BLACK) ;

//the default size of the font is 12
over . set Font AndSi ze(bf, 12);

//the default | abel location is at the bottom | eft-corner
/1 of the page

[1x, y
over.set Text Matri x(30, 30);

/1l abel text
over. showText (" Page $i of $n");

over.endText ();

st anp. cl ose();
def ant = new Ant Buil der ()

[lreplace the original burst report

/[/wi th the nunbered one

ant.del ete(file:ctx.extractFil ePath)

ant. nove(file:"$nunberedFi |l ePath", tofile:ctx.extractFilePath)

2.3.11. merge_with_external_files.groovy

This script can be used to merge each of the output PDF burst files which is generated by
DocumentBurster™ with other external reports. There isn't any restriction and the external reports
can be generated by any of the existing proprietary reporting tools like Oracle Hyperion or Crystal
Reports/SAP Business Objects.

31

Chapter 2. Using Scripts to A...

Once the reports are merged, DocumentBurster™ flow will continue as normal.

By default the script is merging the external report first and the DocumentBurster™ output burst
report second. Please see the inline script comments for details about how to change the merging
order.

By default, for demonstration purposes, the script is merging as an external report the hard-coded
sanpl es/ | nvoi ces- Dec. pdf . With the help of user variablesitis possible to define a configurable
and dynamic external report to merge with.

For example, the external report to merge with can be dynamically defined with the help of the
$var0$ user variable.

def external FilePath = ctx.vari abl es. get User Vari abl es(ct x. t oken). get ("varQ0")

The script should be executed during the endExtractDocument report bursting lifecycle phase.
Edit the script scri pt s/ bur st/ endExt r act Document . gr oovy with the content found inscri pt s/
burst/sanpl es/ merge_wi th_external _files.groovy and then burst a new report. Now,
every time a report is burst, the output files will be formed by merging the sanpl es/ | nvoi ces-
Dec. pdf with the original output burst files.

The following code should be self explanatory.

/*

* 1. This script can be used for nerging the output PDF burst files
* with other external reports.

* The script can:

*

* 1.1 - Merge each of the output burst files with other
* external and configurable report.

* 1.2 - By default the external report is nmerged first

* and the burst report is appended second.

* 1.3 - The nerge order can be changed. Pl ease see the
* inline code conments for further details.

* 1.4 - Once the reports are nerged, DocunentBurster

* flow wi ||l continue as nornal

* 2. By default the script is nerging as an external report
* t he hard-coded sanpl es/ | nvoi ces- Dec. pdf.

* 3. By using user variables it is possible to define a

* configurabl e and dynam c external report to nerge wth.
* For exanple, the external report to nmerge with can be
L dynamically defined with the help of the $var0$ user vari able.

32

merge_with_external_files.groovy

*/

Pl ease check the inline code corments for further details.

The script should be executed during the endExtract Docunment
report bursting |lifecycle phase.

Pl ease copy and paste the content of this sanple script
into the existing scripts/burst/endExtract Docunent. groovy
script.

i mport com sour cekr af t . docunent bur st er. engi ne. pdf . Mer ger
i mport org. apache. conmons.io. Fil enaneUtils;

def nergedFil eNane = Fil enanelUti | s. get BaseNane(ct x. extractFil ePat h)+"_nerged. pdf"

/*

*

*

*/

External report to merge with. The default external report is
defined to be "sanpl es/ | nvoi ces- Dec. pdf "

The external report can be dynamically defined with the help
of user vari abl es.

For exanpl e

def external Fil ePath = ctx. vari abl es. get User Vari abl es(ct x. t oken). get ("varQ0")

def external FilePath = "sanpl es/ | nvoi ces- Dec. pdf "

[larray with the two files to nerge
def filePaths = new String[2]

[/by default the external file is nerged first
filePaths[0] = external Fil ePath

//and the burst report is nerged second
filePaths[1] = ctx.extractFilePath

def nerger = new Merger(ctx.settings)

mer ger . doMer ge(fil ePat hs, mnergedFi | eNane)

def ant = new Ant Buil der ()

[l replace the original burst report
//wi th the nerged one
ant.del ete(file:ctx.extractFil ePath)

33

Chapter 2. Using Scripts to A...

ant.copy(file: merger.getQutputFolder() + "/$nmergedFil eNanme"

tofile:ctx.extractFilePath)

/lclean the tenporary folders/files

//this code assunes that the default program output/backup | ocation
//is not changed

ant . del ete(dir: "output/$nmergedFil eNane", fail onerror:fal se)

ant . del ete(dir: "backup/ $nergedFi |l eNane", fail onerror:fal se)

2.3.12. ant_mail.groovy

This script can be used for sending various ad-hoc emails during the report bursting flow. Based
on your needs, the script can be executed in any of the existing report bursting lifecycle phases
(e.g. endBursting, endExtractDocument etc).

For example, this sample script can be used almost out of the box for sending an email notification
when the bursting is successfully finished. To achieve this, please copy and paste the content of
this sample script into the existing scri pt s/ bur st/ endBur st i ng. gr oovy Script.

How to customize the script

» Change the first uncommented line of the script (def to = "your.address@here.com”) with the
email address where you need the email to be sent

« Optionally, the subject and the message of the notification email can be also changed

The following code should be self explanatory

/ *

This script can be used for sending various ad-hoc
emai ls during the report bursting flow.

Based on your needs, the script can be executed in any of the existing
report bursting lifecycle phases (e.g. endBursting, endExtractDocunent

For exanple, this script can be used al nost out of the box for sending
an email notification when bursting is successfully finished

To achieve this, please copy and paste the content of this sanple script
into the existing scripts/burst/endBursting.groovy

script.

How to custonize the script

4.1. Please change the first unconmented |ine of the script

34

ant_mail.groovy

* (def to = "your.address@ere.com') with the enmail address where

* you need the ermail to be sent.

* 4.2. Optionally you can change the subject and the nessage of the
* emai | .

* 5. Ant Mail task is used
* - http://ant.apache. org/ manual / Tasks/ mai | . ht

*

*/

//give a valid emai|l address
def to = "your.address@ere. cont

def host
def port

ct x. settings. get Enai | Server Host ()
ctx.settings. get Email ServerPort ()

def user = ctx.settings.getEmail ServerUserld()
def password = ctx.settings. get Enail Server User Passwor d()

def from = ctx.settings.get Email ServerFrom()

/1 Optionally the subject can be changed
def subj ect = "DocunentBurster finished"

/1 The message can be al so changed
def nmessage = "Input file: " + ctx.inputDocunmentFilePath +"\n\n"

nessage = nessage + "Nunmber of pages: +ct x. nunber Of Pages + "\ n\n"

message = nessage + "Nunber of files extracted: "
nmessage = nessage + ctx. nunber Of Extract edFil es+"\ n"

nessage = nessage + "CQutput folder: + ctx. out put Fol der +"\ n\ n"
nmessage = nessage + "Nunber of files distributed: "

nmessage = nessage + ctx.nunber O Di stri but edFil es+"\ n\n"

nmessage = nessage + "Nunmber of files skipped fromdistribution: "
nmessage = nessage + ctx.nunber O Ski ppedFi | es+"\ n"
nmessage = nessage + "Nunber of files quarantined: "
nmessage = nessage + ctx.nunber Of Quar anti nedFi | es+"\ n"

nessage = nessage + "Quarantine fol der: + ct x. quar anti neFol der +"\ n\ n"
def ssl="no"

if (ctx.settings.isEmail ServerUseSSL())

35

Chapter 2. Using Scripts to A...

ssl ="yes"

def enabl eStart TLS="no"

if (ctx.settings.isEmail ServerUseTLS())
enabl eSt art TLS="yes"

ant = new Ant Bui | der ()

ant. mai | (mai | host : " $host ",
mai | port: "$port™",
user: "$user",
passwor d: " $passwor d",
subj ect: " $subj ect ",
from"$front,

tolist:"$to",
message: " $nessage”,
ssl:"$ssl ",

enabl eStart TLS: " $enabl eSt art TLS")

| og.info("Notification email sent successfully to email address $to ...")

2.3.13. skip_current_file_distribution_if.groovy

This sample script can be used to achieve complex conditional report delivery scenarios.

DocumentBurster™ has built-in support for implementing conditional report delivery and this is
described in How To Implement Conditional Report Distribution? [https://www.pdfburst.com/docs/
html/userguide/appendix.howto.html#appendix.howto.conditional]

DocumentBurster™ 's built-in support for conditional report distribution requires using a
<skip>true</skip> instruction (or the shorter form <s>true</s>) for the reports which should not be
distributed. Based on the specific business requirements, the report writer engine is expected to
properly fill the skip instructions and this will be done by using a report formula (which will decide
if the report should be distributed or not).

DocumentBurster™ 's built-in capabilities (skip instruction) can be used to achieve
many conditional distribution scenarios while this sample script, scri pts/burst/sanpl es/
skip_current _file_distribution_if.groovy, should be used for achieving the remaining
and more complex situations which cannot be implemented using the simple skip instruction
approach.

This sample script can be used to achieve conditional report distribution in situations similar with
the following

» The condition to skip the distribution cannot be achieved using a report formula (e.g. skip the
delivery for files which are bigger than 20MB)

36

https://www.pdfburst.com/docs/html/userguide/appendix.howto.html#appendix.howto.conditional
https://www.pdfburst.com/docs/html/userguide/appendix.howto.html#appendix.howto.conditional
https://www.pdfburst.com/docs/html/userguide/appendix.howto.html#appendix.howto.conditional

skip_current_file_distribution_if.groovy

« The condition to skip the distribution is too complex and it might be more convenient to describe
this in scripting than with a report formula

« For whatever reason the input report cannot be modified to accommodate the <skip>true</skip>
instructions

The general code structure of the script is the following

[/ Pre-condition hel per code

/1 The condition based on which the distribution will be skipped
i f (skip-condition){

/1 Skip the delivery of the current report
ctx. skipCurrentFil eDistribution = true

/I & her code which might be required

* ctx.skipCurrentFileDistribution = true is the line of code which is enabling DocumentBurster™
to skip the distribution for the current report

« skip-condition is the condition based on which the report will be skipped for distribution (will be
different for each business scenario)

The sample scripts/burst/sanpl es/skip_current_file_distribution_if.groovy has
the same code structure and is skipping the distribution for reports which are bigger than the
configurable 20MB file size threshold.

[/ configurable FILE SI ZE THRESHOLD
final def FILE_SIZE THRESHOLD = 20

The script must be executed during the endExtractDocument report bursting lifecycle phase.
Please copy and paste the content of this sample script into the existing scri pts/burst/
endExt r act Document . gr oovy Script.

37

Chapter 2. Using Scripts to A...

/*

* 1. This script can be used to inplenent nore advanced conditi onal
* report delivery scenari os.

* 2. Wiile the current script is a sanple on how to skip the

* report distribution for reports > 20 MB (this is a configurable

* threshol d si nce M5 Exchange wi || bounce back for reports

* which are so big), simlarly it is possible to skip the distribution
* based on any custom busi ness situation which your organization

* m ght have.

* 3. "ctx.skipCurrentFileDistribution = true" is the |line of code which

* i s enabling DocunentBurster to skip the distribution
* for the current report.

* 4. The script nust be executed during the endExtract Docunent
* report bursting lifecycle phase.

* 5. Please copy and paste the content of this sanple script
* into the existing scripts/burst/endExtract Docunent. groovy
* script.

* 6. How to custom ze the script to achi eve other conditional
* report delivery scenarios

* 6.1. Replace the "if (currentFileSize >= FILE_SI ZE THRESHOLD) "

* with any custom condition which is appropriate for your

* scenari o.

*

* 6.2. Beside the "ctx.skipCurrentFileDistribution = true"

* the rest of the code which is found in the |IF block is just copying
* to quarantine the offending report (>20MB threshol d).

*

* Optionally you might want to change the code fromw thin the |IF bl ock
* with sonething el se which is better fitting your needs.

*

*/

i nport com sourcekraft. docunmentburster.utils. Uils

i mport org.apache. conmons.io. Fileltils
i mport org. apache. cormons.io. Fil enaneUtils

/'l configurable FILE_ SI ZE THRESHOLD
final def FILE SIZE THRESHOLD = 20

38

batch_pdf print.groovy

def currentFile = new Fil e(ctx. extractFil ePat h)

//get the size (in MEGABYTE) of the current report
def currentFileSize = Utils.getFileSize(currentFile.length(),
Utils.FileSizeUnit. MEGABYTE);

/1if the report is bigger than the defined threshold
if (currentFileSize > FILE SIZE THRESHOLD) {

//skip the distribution
ctx.skipCurrentFileDistribution = true

/lstart - copy the report to quarantine
File quarantineDir = new Fil e(ctx. quaranti neFol der);

if ('quarantineDir.exists())
FileUils.forceMdir(quarantineDir);

File quarantineFile = new Fil e(ctx. quaranti neFolder + "/" +
Fil enaneWUtil s. get Nane(ct x. extract Fi |l ePath));

if (!quarantineFile.exists())
FileUtils.copyFile(new File(ctx.extractFilePath), quarantineFile);

ct x. nunber O Quar ant i nedFi | es++;
//end - copy the report to quarantine

| og.warn("The followi ng fil e was ski pped for distributionsinceits size- "+
currentFileSize + " MB - is bigger than the " +
FILE_SI ZE THRESHOLD + " MB file size threshol d")

| og. war n(" Associ ated burst token for the skipped file: " +
ctx.token +", file path: '") + ctx.extractFilePath + """

| og. warn("The file was quarantined")

2.3.14. batch_pdf print.groovy

Silent PDF batch printing
Using this sample script DocumentBurster™ can silently print the output burst reports.
Foxit Reader

This script is using Foxit Reader in order to print the reports. Foxit Reader should be installed on
your machine in order for this script to work properly.

39

Chapter 2. Using Scripts to A...

http://www.foxitsoftware.com/

Foxit Reader - Command Line Switches

» Print a PDF file silently to the default printer : " Foxit Reader.exe" /p <PDF Pat h>

» Print a PDF file silently to an alternative printer: "Foxit Reader.exe" [/t <PDF Path>
[Printer]

The script should be executed during the endExtractDocument report bursting lifecycle phase.
Edit the script scri pt s/ bur st/ endExt r act Document . gr oovy with the content found inscri pt s/
bur st/ sanpl es/ bat ch_pdf _print.groovy and then burst a new report. Now, every time a
report is burst, the output files will be sent to the default printer.

The following code should be self explanatory.

/*

* 1. This script should be used as a sanple to silently batch
* print the burst (PDF) reports.

* 2. The script should be executed during the endExtract Docunment
* report bursting lifecycle phase.

* 3. Please copy and paste the content of this sanple script
* into the existing scripts/burst/endExtract Docunent. groovy

* script.

* 4. This script is using Foxit Reader in order to print the reports.

* Foxit Reader should be installed on your machine in order for
* this script to work properly.

*

* - http://ww. foxitsoftware.com

* 5. Foxit Reader - Command Line Switches

* 5.1 Print a PDF file silently to the default printer:

*

* "Foxit Reader.exe" /p <PDF Pat h>

*

* 5.2 Print a PDF file silently to an alternative printer:
*

* "Foxit Reader.exe" /t <PDF Path> [Printer]

*

*/

import java.io.File

def extractFilePath = (new File(ctx.extractFilePath)).getCanonical Path()

40

http://www.foxitsoftware.com/

fetch_distribution_details_from_database.groovy

def execOptions = "/p \"$extractFilePath\""
def ant = new Ant Bui l der ()
| og.info("Executing 'Foxit Reader.exe $execOptions'")

/11f required, change the path to point to your installation of Foxit Reader
ant . exec(append: "true",
failonerror: "true",
output:"logs/foxit.log",
executable: "C /Program Files (x86)/Foxit Software/Foxit Reader/Foxit
Reader . exe") {
arg(line:"$execOptions")

2.3.15. fetch_distribution_details_from_database.groovy

Fetch Bursting and Distribution Details from Database

Using this sample script, DocumentBurster™ can fetch the bursting and distribution details
from an external database. Once fetched, the details are populated into the varO, varl, etc. user
variables in order to be further used by DocumentBurster™ .

This sample script is demonstrating how to connect to an HSQLDB database, however you can
modify the connection details to point to an:

Oracle database

Microsoft SQL Server, Microsoft Access or Microsoft FoxPro database

IBM DB2 or IBM AS/400 database

PostgreSQL, MySQL, SQLite, Apache Derby or FireBird database

Teradata database

Important

In order for this script to work it is mandatory to copy the correct JDBC driver jar
file (corresponding to your database) into the existing | i b/ bur st folder.

Important

In the following script it is required to change the SQL query to meet your own
need. In order to avoid sending confidential information to the wrong employee/

41

Chapter 2. Using Scripts to A...

customer check carefully that your customized SQL query is correct and it is

properly returning the unique details for the appropriate employee or customer.

The following code should be self explanatory

/*

* 1. This script should be used as a sanple to fetch the
* bursting/distribution neta-data details froman external database.

* 2. The script can be executed (depending on the need) in either
K start Extract Docunent, endExtract Docunment or startDi stri buteDocunent
* report bursting |ife-cycle phases.

* 3. Please copy and paste (if this is what you need) the content
* of this sanple script into the existing

* scripts/burst/startExtract Docunment. groovy script.

* 4. This sanple script is connecting to an HSQLDB dat abase, however

* you can nodi fy the connection details to point to an
*

* O acl e,

* M crosoft Access,

K M crosoft SQ. Server,
* M crosoft FoxPro,

* | BM DB2,

* | BM AS/ 400,

* MySQL,

* Post greSQL,

* Ter adat a,

* SQLi te,

* Apache Derby or

& FireBird SQ. dat abase

* 5. In order for this script to work it is mandatory to copy the correct
* JDBC driver jar (corresponding to your database)
* file into the existing |ib/burst fol der

* 6. Goovy SQL resources

*

* 6.1 Groovy SQ - http://groovy. codehaus. org/ Tutorial %206%20- 920G oovy
9%20SQL

* 6.2 Practically Goovy: JDBC programm ng with G oovy -

* http://ww. i bm com devel operworks/javal/library/j-pg01115/i ndex. ht m

*

*/

42

fetch_distribution_details_from_database.groovy

i mport groovy.sqgl. Sql
/I HSQLDB sanpl e

/'l Repl ace | ocal host with your host
/I Repl ace xdb with your own dat abase nane
// Replace sa and '' with your own database login details

def sqgl = Sqgl.new nstance('jdbc: hsql db: hsql ://1 ocal host/xdb',
"sa', '','org.hsqgldb.jdbcDriver')

/1 Oracl e sanmpl e

/I Repl ace | ocal host with your host
/' Repl ace usernane and password with your database login details
/I Change to your own database instance

[/ def sqgl = Sgl.newl nstance(']jdbc:oracle:thin: @ocal host: 1521: orcl ',
I 'usernanme', 'password',
Il "oracl e.jdbc. pool . Oracl eDat aSour ce')

[/ The burst token is used as a key to identify the details
/1 of the appropriate enpl oyee or custoner
def token = ctx.token

/] Change the SQL to your own need

/ / Doubl e check your custom zed SQL is correct and is

[l properly returning the unique details for the appropriate
/I enpl oyee/ cust oner (otherwi se the risk is to send
//confidential information to the wong enpl oyee or customer)

def enpl oyeeRow = sql . firstRowm' SELECT enpl oyee_id, enmil _address,' +
"first_nane, |ast_name FROM enpl oyees WHERE enpl oyee_id = ?',
[token])

def enmil Address = enpl oyeeRow. enui | _addr ess

def firstNanme = enpl oyeeRow. first_nane
def | astName = enpl oyeeRow. | ast _nane

println "Enpl oyee: enployee_id = ${enpl oyeeRow. enpl oyee_i d} and " +
"emai | _address = ${emil Address} and first_nanme = ${firstNane} " +
"and | ast _nane = ${Il ast Nane}"

/1 Popul ate the fetched information into var0O, varl, etc user variables.
ct x.vari abl es. set User Vari abl e(Stri ng. val uet (" ${t oken}"), "var 0",
String. val uedr ("${emai | Address}"))

43

Chapter 2. Using Scripts to A...

ctx.vari abl es. set User Vari abl e(Stri ng. val ued (" ${t oken}"), "var1",
String.val ued ("${firstNane}"))

ctx.vari abl es. set User Vari abl e(Stri ng. val ueX ("${t oken}"), "var 2",
String. val uedr ("${I ast Nane}"))

2.3.16. fetch_distribution_details_from_csv_file.groovy

Fetch Bursting and Distribution Details from an External (CSV) File

Using this sample script, DocumentBurster™ can fetch the bursting and distribution meta-data
details from an external (CSV) file. Once fetched, the details are populated into the var0O, varl,
etc. user variables in order to be further used by DocumentBurster™ . This script is reading the
information from a CSV file, however you can modify the script to parse and read other plain text
files which have a more custom format.

Following is a sample with how this script is expecting the CSV file
enpl oyee. csv >

employee id,email address,first name, last name
1,emaill@addressl.com, firstHamel, lastHamel
2,emailZ@address2.com, firsctHame?, lastHame?2
3,email3faddress3.com, firstHame3, lastName3

4, emaild4ifaddress4.com, firstHame4, lastHame4

The first column from the file is the employee identifier. The script is using this column to find the
row which contains the details for each employee. Following is the code which is doing this

/[*The burst token is used as a key to identify the
details of the appropriate enployee or custoner*/
i f (enpl oyeeRow 0] == t oken)

{

If you have a file with a different structure then the script should be modified accordingly.

44

fetch_distribution_details_from_csv_file.groovy

Important

Most probably you will modify this script accordingly to your own custom file format.
In order to avoid sending confidential information to the wrong employee/ customer
check carefully that your customized code is correct and it is properly returning the
unigue details for the appropriate employee or customer.

The following code should be self explanatory

/*

* 1. This script should be used as a sanple to fetch the
* bursting/distribution neta-data details froman external (CSV) file.

* 2. The script can be executed (depending on the need) in either
* start Extract Docunent, endExtract Docunent or startDistributeDocunent
* report bursting life-cycle phases.

* 3. Please copy and paste (if this is what you need) the content
* of this sanple script into the existing
* scripts/burst/startExtract Docunment. groovy script.

* 4. This sanple script is reading the information froma CSV file, however
* you can nodify the script to parse and read other plain text files

* (whi ch have your own custom format).

* 5. Following is a sanple with how this script is expecting the CSV file

* enpl oyee_id, emai |l _address, first_nane, | ast _nane
K 1, emui | 1@ddressl. com firstNanel, | ast Nanmel
* 2, enui | 2@ddress2. com first Name2, | ast Nane2
td 3, emui | 3@ddress3. com first Nane3, | ast Nane3
td 4, emai | 4@ddr ess4. com first Nane4, | ast Nane4

* 6. If you have a file with a different structure then the script should
* be nodified accordingly.

*

*/

// The burst token is used as a key to identify the details
[l of the appropriate enpl oyee or custoner
def token = ctx.token

//Load and parse the CSV file - Change with the path of your own CSV file
def enpl oyees = new File("src/test/resources/input/unit/other/" +

45

Chapter 2. Using Scripts to A...

"enpl oyees. csv").readLines()*.split(",")
println "Processed ${enpl oyees. size()} Lines"
def enpl oyeeld, email Address, firstNane, |astNane
for (enployeeRow i n enpl oyees) {

/1 The burst token is used as a key to identify the details
/1 of the appropriate enpl oyee or custoner
i f (enployeeRow 0] == token)
{
enmpl oyeel d = enpl oyeeRow 0]
emai | Address = enpl oyeeRow 1]
firstName = enpl oyeeRow 2]
| ast Nane = enpl oyeeRow 3]

println "Enpl oyee: enployee_id = ${enpl oyeeld} and" +
' emai | _address = ${email Address} and" +
" first_name = ${firstNanme} and" +
" last_name = ${| ast Nane}"

[/ Popul ate the fetched information into var0, varl, etc.
ctx.vari abl es. set User Vari abl e(Stri ng. val uet (" ${t oken}"), "var 0",

String. val uedr ("${emni | Address}"))

ctx.vari abl es. set User Vari abl e(Stri ng. val ued (" ${t oken}"), "var1",
String.val ueX ("${firstNane}"))

ctx.vari abl es. set User Vari abl e(Stri ng. val ueX ("${t oken}"), "var 2",
String. val uedr ("${I ast Nane}"))

2.4. Further Reading

« Groovy documentation [http://groovy.codehaus.org/] - general Groovy docs which will help for

writing better DocumentBurster™ scripts.

e Ant documentation [http://ant.apache.org/manual/tasksoverview.html] - In case there is a need
to copy, mkdir, move, delete files and folders. Ant can also be used for sending emails from

within scripts or to FTP and SCP files using SSH.

« AntBuilder documentation [http://groovy.codehaus.org/Using+Ant+from+Groovy] - Using Ant

from Groovy.

46

http://groovy.codehaus.org/
http://groovy.codehaus.org/
http://ant.apache.org/manual/tasksoverview.html
http://ant.apache.org/manual/tasksoverview.html
http://groovy.codehaus.org/Using+Ant+from+Groovy
http://groovy.codehaus.org/Using+Ant+from+Groovy

Further Reading

e Commons VFS documentation [http://commons.apache.org/vfs/filesystems.html] - WebDAV
scripting, in case there is a need to upload reports to Microsoft SharePoint or to other portal
product. Commons VFS can also be scripted to copy reports to a network shared drive or to
upload the reports to FTP and SFTP servers.

47

http://commons.apache.org/vfs/filesystems.html
http://commons.apache.org/vfs/filesystems.html

48

Chapter 3.

cURL Integration

The current chapter is related with both of the previously presented topics

» Chapter 2, Using Scripts to Achieve More

e Chapter 3. Distributing Reports [https://www.pdfburst.com/docs/html/userguide/
chapter.distributing.html]

from DocumentBurster™ User Guide

This chapter is related with the previous two topics in the sense that it shows how to use
DocumentBurster™ scripting as a means of achieving very specific (non-standard) report
distribution requirements.

DocumentBurster™ closely integrates with cURL, a Swiss-army knife for doing data transfer.
Through cURL, DocumentBurster™ can distribute reports via HTTP or FTP with or without
authentication, it works over SSL, and it works without interaction. Actually cURL (and thus
DocumentBurster™) supports distributing files and data to a various range of common Internet
protocols, currently including HTTP, HTTPS, FTP, FTPS, SCP, SFTP, TFTP, LDAP, LDAPS,
DICT, TELNET, FILE, IMAP, POP3, SMTP and RTSP.

CURL - http://curl.haxx.se/
Cross platform

cURL is portable and works on many platforms, including Windows, Linux, Mac OS X, MS-DOS
and more.

On Windows, DocumentBurster™ package distribution is bundling together a recent version of
cURL. So, if your organization is running DocumentBurster™ under Windows, there is nothing
more to download or install in regards with cURL.

For other UNIX like systems, such as Linux and Mac OS X, the appropriate cURL binaries
distribution should be properly downloaded and installed. In addition, the cURL groovy scripts
which are bundled together with DocumentBurster™ are written for Windows usage and should
support small adjustments to be made ready for usage under Linux/UNIX.

Command line cURL examples

cURL is atool for getting or sending files using URL syntax. The URL syntax is protocol-dependent.
Along with the URL for the required protocol, cURL can take some additional options in the
command line.

For complete cURL documentation you can follow

e cURL Manual [http://curl.haxx.se/docs/manual.html]

49

https://www.pdfburst.com/docs/html/userguide/chapter.distributing.html
https://www.pdfburst.com/docs/html/userguide/chapter.distributing.html
https://www.pdfburst.com/docs/html/userguide/chapter.distributing.html
http://curl.haxx.se/
http://curl.haxx.se/docs/manual.html
http://curl.haxx.se/docs/manual.html

Chapter 3. cURL Integrat...

e cURL Man Page [http://curl.haxx.se/docs/manpage.html]
* CURL Frequently Asked Questions [http://curl.haxx.se/docs/fag.html]

Following are some sample cURL invocations to upload a file to a remote server (from cURL
manual)

1. FTP/FTPS/SFTP / SCP

Upload data from a specified file, login with user and password

curl -T uploadfile -u user:passwd ftp://ftp.upload. com nyfile
Upload a local file to the remote site, and use the local file name remote too
curl -T uploadfile -u user:passwd ftp://ftp.upload. conl

cURL also supports ftp upload through a proxy, but only if the proxy is configured to allow that
kind of tunneling. If it does, you can run cURL in a fashion similar to

curl --proxytunnel -x proxy:port -T localfile ftp.upload.com
--ftp-create-dirs
When integrated with DocumentBurster™ , following cURL option will be of interest

--ftp-create-dirs-(FTP/SFTP) When an FTP or SFTP URL/operation uses a path that doesn't
currently exist on the server, the standard behavior of cURL is to fail. Using this option, cURL will
instead attempt to create missing directories.

2. HTTP
Upload data from a specified file
curl -T uploadfile http://ww. upl oad. com nyfile

Note that the http server must have been configured to accept PUT before this can be done
successfully.

Debugging and tracing cURL - VERBOSE / DEBUG

If cURL fails where it isn't supposed to, if the servers don't let you in, if you can't understand the
responses: use the -v flag to get verbose fetching. cURL will output lots of info and what it sends
and receives in order to let the user see all client-server interaction (but it won't show you the
actual data).

curl -v ftp://ftp.upl oad. conl

To get even more details and information on what cURL does, try using the --trace or --trace-ascii
options with a given file name to log to, like this

curl --trace trace.txt ww. haxx. se

50

http://curl.haxx.se/docs/manpage.html
http://curl.haxx.se/docs/manpage.html
http://curl.haxx.se/docs/faq.html
http://curl.haxx.se/docs/faq.html

DocumentBurster / cURL sample scripts

3.1. DocumentBurster™ /cURL sample scripts

While it is great to know that so many protocols are supported, DocumentBurster™ is coming
with sample scripts to do cURL report distribution through the most commonly used protocols such
as FTP, SFTP and FILE. Any other cURL supported protocol should be achievable by doing little
changes to the scripts which are provided in the default DocumentBurster™ package distribution.

3.1.1. curl_ftp.groovy

curl _ftp. groovy scriptis an alternative to the FTP Upload [https://www.pdfburst.com/docs/html/
userguide/chapter.distributing.html#chapter.distributing.uploading.ftp] GUI capability which was
introduced in DocumentBurster™ User Guide. While through the GUI it is possible to achieve
common FTP report distribution use cases, using this FTP script is recommended for more
advanced FTP scenarios which require the full cURL FTP capabilities. For example, using this
script it is possible to instruct DocumentBurster™ to automatically create a custom hierarchy of
directories on the FTP server, before uploading the reports.

Edit the script scri pt s/ bur st/ endExt r act Docunent . gr oovy with the content found inscri pt s/
burst/sanpl es/curl _ftp.groovy. By default the script is fetching the values for the FTP
connection , such as user, password, host and path from the values of $var0$, $varl$, $var2$
and $var3$ user report variables. If the burst reports are configured as such, then there is nothing
more to do, and the FTP upload will work without any modification to the script. Otherwise, the
FTP script should be modified as per the needs.

While the script might look long, there are actually only few simple lines of active code - most of
the content of the script are the comments which are appropriately describing the scope of each
section of the script.

/ *

* 1. This script should be used:

* 1.1 - As a script to upload reports by FTP using cURL.
* 1.2 - As a sanple and starting script to invoke cURL during the
* report bursting life cycle.

* 2. curl is atool to transfer data fromor to a server, using one of the
* supported protocols (DI CT, FILE, FTP, FTPS, GOPHER, HTTP, HTTPS, | NAP,
* | MAPS, LDAP, LDAPS, POP3, POP3S, RTMP, RTSP, SCP, SFTP, SMIP, SMIPS,
* TELNET and TFTP).

* The command is designed to work w thout user interaction.
* 3. curl offers a busload of useful tricks |ike proxy support,

* user authentication, FTP upload, HTTP post, SSL connections, cooki es,
* file transfer resume and nore.

51

https://www.pdfburst.com/docs/html/userguide/chapter.distributing.html#chapter.distributing.uploading.ftp
https://www.pdfburst.com/docs/html/userguide/chapter.distributing.html#chapter.distributing.uploading.ftp
https://www.pdfburst.com/docs/html/userguide/chapter.distributing.html#chapter.distributing.uploading.ftp

Chapter 3. cURL Integrat...

* 4. The URL syntax is protocol-dependent. You'll find a detail ed description

* in RFC 3986.

* 5. The script should be executed during the endExtract Docunment
* report bursting lifecycle phase

* 6. Please copy and paste the content of this sanple script
* into the existing scripts/burst/endExtract Docunent. groovy
* script.

* 7. For a full docunmentation of the cURL and FTP pl ease see

* 7.1. http://curl.haxx. se/ docs/ manual . ht m
* 7.2. http://curl.haxx.sel/ docs/ manpage. ht ni

*

*/

i mport com sour cekraft. docunent burster.variabl es. Vari abl es

/*

*

* The file to be uploaded is the file which has
* just been burst.

*
*/
def uploadFilePath = ctx.extractFilePath

/*

* By default the script is extracting the required FTP

* session information fromthe foll owi ng sources

*

* userNane - fromthe content of $var0$ user variable

* password - fromthe content of $varl$ user variable

*

t host Nane - fromthe content of $var2$ user vari abl e

* absol utePath - fromthe content of $var3$ user variable
*

*/

def userName = ctx.vari abl es. get User Vari abl es(ct x. t oken) . get ("var0")
def password = ctx.variabl es. get User Vari abl es(ct x. t oken) . get ("var1")

def hostName = ctx.variabl es. get User Vari abl es(ct x. t oken). get ("var2")
def absol utePath = ctx. vari abl es. get User Vari abl es(ct x. t oken) . get ("var 3")

/*

*

* $execOptions is the command line to be sent for execution to cURL
* - see http://curl.haxx.se/ docs/ manpage. ht i

52

curl_ftp.groovy

--ftp-create-dirs -

(FTP/ SFTP) When an FTP or SFTP URL/operation uses a path that
doesn't currently exist on the server, the standard behavi or
of curl is to fail.

Using this option, curl will instead attenpt to create the

nm ssing directories.

-T, --upload-file <file>

This transfers the specified local file to the renpote URL.
If there is no file part in the specified URL, Curl w Il
append the local file nane.

NOTE that you nust use a trailing / on the last directory
toreally prove to Curl that there is no file nane or curl
will think that your last directory name is the renote file
name to use. That will nost |ikely cause the upl oad
operation to fail.

If this is used on a HTTP(S) server, the PUT conmand

wi |l be used.

-u, --user <user:password>

Specify the user name and password to use for server authentication.
--trace <file>

Enabl es a full trace dunp of all incom ng and outgoi ng data,

i ncl udi ng descriptive information, to the given output file.

Use "-" as filenane to have the output sent to stdout.

Thi s option overrides previous uses of -v, --verbose or --trace-ascii.

If this option is used several tines, the |last one will be used.

--trace-ascii <file>

Enabl es a full trace dunp of all incom ng and outgoi ng data,
i ncl udi ng descriptive information, to the given output file.
Use "-" as filenane to have the output sent to stdout.

This is very simlar to --trace, but |eaves out the hex part
and only shows the ASCI|I part of the dunp. It nmakes smaller

out put that mght be easier to read for untrained humans.

This option overrides previous uses of -v, --verbose or --trace.
If this option is used several tines, the last one will be used.

--trace-tinme

Prepends a tine stanp to each trace or verbose line that curl displays.
Added in curl 7.14.0)

53

Chapter 3. cURL Integrat...

* -v, --verbose

*

* Makes the fetching nore verbose/tal kati ve.

* Most |y useful for debugging. Aline starting with ">

K nmeans "header data" sent by curl, '<' neans "header data"

* received by curl that is hidden in normal cases, and a

* line starting with '*' nmeans additional info provided

* by curl .

* Note that if you only want HTTP headers in the output,

* -i, --include m ght be the option you're |ooking for.

* If you think this option still doesn't give you enough details,
* consider using --trace or --trace-ascii instead.

* Thi s option overrides previous uses of --trace-ascii or --trace.
* Use -s, --silent to nake curl quiet.

*

* FTPS

*

* It is just like for FTP, but you may al so want to specify and use
* SSL-specific options for certificates etc.

* Note that using FTPS:// as prefix is the "inmplicit" way as

* described in the standards while the recommended "explicit" way is
* done by using FTP:// and the --ftp-ssl option.

* SFTP / SCP

* This is simlar to FTP, but you can specify a private key to use

* i nstead of a password.

* Note that the private key may itself be protected by a password that is
* unrel ated to the | ogin password of the renote system

* If you provide a private key file you nust al so provide a public key file.
*

* For nore details see:

*

* 1. http://curl.haxx.se/docs/ manual . ht m

* 2. http://curl.haxx.sel/ docs/ manpage. ht m

*

*/

def execOptions = "--ftp-create-dirs"

execOptions += " -T \"S$upl oadFi | ePat h\""

execptions += " -u $user Name: $passwor d”

execOptions += " ftp://$host Nane/ $absol ut ePat h"

def ant = new Ant Bui l der ()

/*

* The command executed by curl will be |ogged in
* the | ogs/ Docunment Burster.log file

*/

54

curl_sftp.groovy

| og. i nfo("Executing conmand: curl.exe $execOptions")

/*

*

* 1. http://groovy. codehaus. or g/ Execut i ng¥20Ext er nal 20Pr ocesses%0Fr om
%20G oovy

* 2. cURL is printing its logging operations to the logs/cURL.log file

*/
ant . exec(

append: "true",

failonerror: "true",

out put: "l ogs/cURL. | og",

executable: 'curl/w n/curl.exe') {
arg(line:"$execOptions")

3.1.2. curl_sftp.groovy

curl _sftp. groovy script can be used to upload the burst reports through Secure File Transfer
Protocol or Secure FTP.

With minimum modifications to $execOpt i ons, the script can be adapted to use other protocols
such as FTPs or SCP. You can check cURL Manual - cURL usage explained [http://curl.haxx.se/
docs/manual.html] for more details.

Edit the script scri pt s/ bur st/ endExt r act Docunent . gr oovy with the content found inscri pt s/
bur st/ sanpl es/ curl _sftp. groovy. By default the script is fetching the values for the SFTP
connection , such as user, password, host and path from the values of $var0$, $varl$, $var2$ and
$var3$ user report variables. If the burst reports are configured as such, then there is nothing more
to do, and SFTP uploading will work without any additional modification to the script. Otherwise,
this script should be modified as per the needs.

While the script might look long, there are actually only few simple lines of active code - most of
the content of the script are the comments which are appropriately describing the scope of each
section of the script.

/~k

* 1. This script should be used:

* 1.1 - As a script to upload reports by SFTP using cURL.
* 1.2 - As a sanple and starting script to invoke cURL during the
* report bursting life cycle.

55

http://curl.haxx.se/docs/manual.html
http://curl.haxx.se/docs/manual.html
http://curl.haxx.se/docs/manual.html

Chapter 3. cURL Integrat...

* 2. curl is atool to transfer data fromor to a server, using one of the
K supported protocols (DI CT, FILE, FTP, FTPS, GOPHER, HTTP, HTTPS, | VAP,
* | MAPS, LDAP, LDAPS, POP3, POP3S, RTMP, RTSP, SCP, SFTP, SMIP, SMIPS

* TELNET and TFTP)

* The command is designed to work w thout user interaction

* 3. curl offers a busload of useful tricks |ike proxy support,

td user authentication, FTP upload, HITP post, SSL connections, cookies

* file transfer resume and nore

*

* 4. The URL syntax is protocol -dependent. You'll find a detailed description
t in RFC 3986

* 5. The script should be executed during the endExtract Docunment
* report bursting lifecycle phase

* 6. Please copy and paste the content of this sanple script
* into the existing scripts/burst/endExtract Docunent. groovy

* scri pt.

* 7. For a full documentation of the cURL and FTP pl ease see

* 7.1. http://curl.haxx. se/ docs/ manual . ht m
* 7.2. http://curl.haxx.se/docs/ manpage. ht m
*
*/

i mport com sour cekraft.docunent burster. variabl es. Vari abl es

/*

* The file to be uploaded is the file which has
* just been burst.

*
*/
def upl oadFil ePath = ctx.extractFil ePath

/*
* By default the script is extracting the required SFTP
* session information fromthe foll ow ng sources
*
* userNane - fromthe content of $var0$ user variable
* password - fromthe content of $varl$ user variable
*
* host Nane - fromthe content of $var2$ user variable
* absol utePath - fromthe content of $var3$ user variable

56

curl_sftp.groovy

*/
def userName = ctx.variabl es. get User Vari abl es(ct x. t oken). get ("var0")
def password = ctx.variabl es. get User Vari abl es(ct x. t oken). get ("var1")

def hostNanme = ctx.vari abl es. get User Vari abl es(ct x. t oken). get ("var2")
def absol utePath = ctx.vari abl es. get User Vari abl es(ct x. t oken) . get ("var3")

/*

*

* $execOptions is the command line to be sent for execution to cURL
* - see http://curl.haxx. se/ docs/ manpage. ht m

*

* --ftp-create-dirs -

*

* (FTP/ SFTP) Wen an FTP or SFTP URL/operation uses a path that
* doesn't currently exist on the server, the standard behavi or
* of curl is to fail.

* Using this option, curl will instead attenpt to create

* m ssing directories.

*

td -T, --upload-file <file>

*

* This transfers the specified local file to the remote URL.

* If there is no file part in the specified URL, Curl wll

* append the local file nane.

* NOTE that you nust use a trailing / on the last directory

* toreally prove to Curl that there is no file nane or curl

* will think that your last directory nane is the renote file
* name to use. That will nost |ikely cause the upl oad

* operation to fail.

* If this is used on a HTTP(S) server, the PUT conmand

* will be used.

*

* -u, --user <user:password>

*

* Speci fy the user nanme and password to use for server authentication.
*

K --trace <fil e>

*

* Enabl es a full trace dunmp of all incom ng and outgoi ng data,
* i ncl udi ng descriptive information, to the given output file.
* Use "-" as filenane to have the output sent to stdout.

* Thi s option overrides previous uses of -v, --verbose or --trace-ascii.
* If this option is used several tines, the last one will be used.
*

* --trace-ascii <file>

*

* Enabl es a full trace dunmp of all incom ng and outgoi ng data,
* i ncl udi ng descriptive information, to the given output file.

57

Chapter 3. cURL Integrat...

Use "-" as filenane to have the output sent to stdout.

This is very simlar to --trace, but |eaves out the hex part

and only shows the ASCI| part of the dunp. It nakes smaller

out put that mght be easier to read for untrai ned hunans

This option overrides previous uses of -v, --verbose or --trace.
If this option is used several tines, the last one will be used

--trace-tinme

Prepends a tine stanp to each trace or verbose line that curl
di spl ays.
Added in curl 7.14.0)

-v, --verbose

Makes the fetching nore verbose/tal kative

Most |y useful for debugging. Aline starting with ">

nmeans "header data" sent by curl, '<' neans "header data"
received by curl that is hidden in normal cases, and a

line starting with '*' neans additional info provided by curl
Note that if you only want HTTP headers in the output,

-i, --include m ght be the option you're |ooking for.

If you think this option still doesn't give you enough details
consider using --trace or --trace-ascii instead

This option overrides previous uses of --trace-ascii or --trace.
Use -s, --silent to nmake curl quiet.

FTPS

It is just like for FTP, but you may al so want to specify and use
SSL-specific options for certificates etc

Note that using FTPS:// as prefix is the "inplicit" way as
described in the standards while the recommended "explicit" way is
done by using FTP:// and the --ftp-ssl option.

SFTP / SCP

This is simlar to FTP, but you can specify a private key to use

i nstead of a password.

Note that the private key may itself be protected by a password that
unrel ated to the | ogin password of the renote system

If you provide a private key file you nust al so provide

a public key file.

For nore details see

1. http://curl.haxx.se/docs/ manual . ht n
2. http://curl.haxx.sel/ docs/ manpage. ht n

is

58

curl_sftp.groovy

*/

def execOptions = "-T \"$upl oadFi | ePat h\""
execOptions += " -u $user Nane: $passwor d”
execOptions += " sftp://$host Nane/ $absol ut ePat h"

def ant = new Ant Buil der ()

/*

*

* The command executed by curl will be |ogged in
* the | ogs/ Docunment Burster.log file

*/

| og. i nfo("Executing conmand: curl.exe $execOptions")

/*

*

* 1. http://groovy. codehaus. or g/ Execut i ng¥20Ext er nal ¥20Pr ocesses%20Fr om
%20G oovy

* 2. cURL is printing its |logging operations to the logs/cURL.log file

*

*/
ant . exec(

append: "true",

failonerror: "true",

out put: "l ogs/cURL. | og",

executable: "curl/win/curl.exe') {
arg(line:"$execOptions")

59

60

	DocumentBurster - Advanced report delivery scenarios
	Table of Contents
	Manual Conventions
	Chapter 1. Overview
	1.1. What to Expect
	1.2. DocumentBurster scripting
	1.3. cURL integration
	1.4. Quick & Professional Support
	1.5. We Need Feedback!

	Chapter 2. Using Scripts to Achieve More
	2.1. Scripting Scenarios
	2.1.1. File Related Capabilities
	2.1.2. Execute External Programs
	2.1.3. Publish Reports to Microsoft SharePoint Portal
	2.1.4. Distribute by SMS and Fax
	2.1.5. Print Reports
	2.1.6. Mail, FTP, FTPs and SFTP
	2.1.7. Upload Reports to a Shared Location
	2.1.8. Encrypt or Stamp the Output Reports

	2.2. Introduction to the Burst Lifecycle
	2.2.1. Bursting Context

	2.3. Sample Scripts
	2.3.1. zip.groovy
	2.3.2. encrypt.groovy
	2.3.3. overlay.groovy
	2.3.4. exec_pdftk_background.groovy
	2.3.5. print.groovy
	2.3.6. copy_shared_folder.groovy
	2.3.7. ant_ftp.groovy
	2.3.8. ant_scp_sftp.groovy
	2.3.9. ant_vfs.groovy
	2.3.10. add_and_format_page_numbers.groovy
	2.3.11. merge_with_external_files.groovy
	2.3.12. ant_mail.groovy
	2.3.13. skip_current_file_distribution_if.groovy
	2.3.14. batch_pdf_print.groovy
	2.3.15. fetch_distribution_details_from_database.groovy
	2.3.16. fetch_distribution_details_from_csv_file.groovy

	2.4. Further Reading

	Chapter 3. cURL Integration
	3.1. DocumentBurster / cURL sample scripts
	3.1.1. curl_ftp.groovy
	3.1.2. curl_sftp.groovy

