
Format a Rich UI login page

���

ii Format a Rich UI login page

Contents

Format a Rich UI logon page. 1
Lesson 1: Design your Web page 1

Chart the page structure 3
Lesson checkpoint 4

Lesson 2: Meet the Rich UI widgets and handlers . . 5
Widget properties. 5
Essential widgets 6
The Rich UI Handler 6
Lesson checkpoint 7

Lesson 3: Create an EGL framework 7
Create an EGL Rich UI project 7
Create a Rich UI Handler 9
Lesson checkpoint 10

Lesson 4: Use box widgets to lay out a page . . . 10
Use box widgets for layout 10

Add controls to the layout 14
Lesson checkpoint 17

Lesson 5: Use columns to lay out a page 17
Use columns for layout 17
Lesson checkpoint 20

Lesson 6: Format the page 20
Use properties to format boxes 21
Use properties to format content 22
Use CSS to format content 23
Lesson checkpoint 24

Lesson 7: Work with EGL source code 24
Create a text field in source code 24
Bind a simple function to the Submit button . . 26
Lesson checkpoint 28

Summary 28

iii

iv Format a Rich UI login page

Format a Rich UI logon page

In this tutorial, you will learn how to plan a simple Rich UI page and create the
page by using the EGL Rich UI editor.

Learning objectives

In this tutorial, you will learn how to complete these tasks:
v Design a Web page for Rich UI
v Create an organization chart for the elements on the page
v Understand widgets
v Understand the Rich UI Handler
v Create an EGL Rich UI project
v Create a Rich UI Handler
v Structure a page by using box widgets
v Structure a page by using columns only
v Format the elements on the page by using EGL properties
v Format the elements on the page by using cascading style sheets (CSS)
v Add widgets to the page by writing EGL code rather than by using the

graphical interface
v Trigger a function by pressing a button

Time required

60 minutes
Other EGL tutorials:

Introducing EGL
Create a hello world program with EGL
Create a hello world service with EGL
Build a JSF search page with EGL
Access relational databases with EGL

Lesson 1: Design your Web page
Before you begin to write code, carefully plan both the overall appearance of the
page and the way you might divide the page into self-contained regions.

About this task

The first step in creating any Web page is to sketch the finished product. To create
the sketch, you must answer a few basic questions:
v What does the page need to accomplish?
v What elements does the page need to do this work?
v How should you arrange those elements to make using the page as easy as

possible?

1

v Do you want to add graphics, such as logos, photos, decorative borders, or other
purely visual elements, such as colored backgrounds, to make the page more
appealing?

The target Web page that you will build in this tutorial is simple: a logon screen
with ID and password fields and a Submit button.

When you use EGL Rich UI to design a page, each element in the page must be
inside a container called a box. A box can contain multiple elements, including
other boxes. On the target Web page, you can see the following page elements:
v Text labels
v Text input fields
v Buttons and other controls (such as a Submit button)

You use boxes to help control the layout of the page. There are few rules for how
to design with boxes; most needs have multiple solutions, some of them equally
″correct.″ You typically use boxes to align elements on the page. You need to use
boxes because Rich UI has the following limitations:
v No tab characters. You cannot use tabs to align elements inside a box.
v No newline characters. You cannot artificially break a row of elements inside a

box.
v No trailing spaces. You cannot pad text fields with spaces.

Text label

Text input field

Button

2 Format a Rich UI login page

The following illustrations show several valid solutions to the problem of laying
out the target page.

Chart the page structure
About this task

A useful intermediate step between the sketch and the code is the construction of a
sort of genealogical chart that shows all the boxes and elements for your page in
hierarchical order. Again, this is something you can draw on a piece of scratch
paper or a marker board.

In keeping with the idea of a family tree, two metaphors are typically used in
describing such charts:
v The tree. In this case, the tree is upside down, with the root on top and leaves

on the bottom.

Format a Rich UI logon page 3

v The family. When an element on the screen is contained within another element,
the container is the parent and the element inside the container is the child.

All such charts begin with a box that encloses all the other boxes and elements.
This box is the root of the tree and represents the browser window.

Draw a box for each container and element on the page:
v Each element has exactly one parent, except for the root element, which has

none.
v An element can have siblings, that is, other elements with the same parent.
v An element can have one or more children.
v An element with no children is called a leaf (going back to the tree metaphor).

For example, here is the second version of the target page layout in family tree
form.

You may encounter the term Document Object Model (DOM) in connection with
such a family tree. The DOM uses standard terms to name each element in an
HTML or XML page, organizes the elements in the same kind of hierarchical chart,
and provides an interface for changing such a page. The charts that you just
created use the same organizational principles as the DOM.

In EGL Rich UI, each element on the page is called a widget. You will learn about
widgets in the next lesson.

Lesson checkpoint
You have now sketched several different approaches to coding the target Web
page.

In this lesson, you learned the following principles:
v A Rich UI Web page is composed of elements.
v Elements must be enclosed by containers.
v The containers must be in a hierarchical order, starting with the root.
v The root element is the browser window.

overall container

button box

submit

field box

name field password fielduser name password

label box

4 Format a Rich UI login page

Lesson 2: Meet the Rich UI widgets and handlers
The elements in an EGL Rich UI page are called widgets. Widgets work with a type
of program called an EGL Rich UI Handler.

About this task

Now that you have a family tree for the target Web page that you are designing,
you can add some information about the way the individual elements, also known
as nodes, should behave.

Widget properties
About this task

In this tutorial, widget means ″window gadget.″ In EGL Rich UI, a widget is a
reusable user interface component such as a button, a text input field, or a box.
The elements in your target Web page are all widgets in the standard Rich UI
palette.

In EGL, properties describe the behavior of elements in a program. A property is a
name-value pair; in the code, the properties are enclosed in braces:
outerBox com.ibm.egl.rui.widgets.Box{ padding=8,
children = [upperBox, lowerBox],
columns = 1 };

In this example, padding, children, and columns are properties.

All widgets have properties, though the properties that are available depend on
the specific widget. This tutorial uses the following properties that are associated
with a box widget:

backgroundColor
Specifies a color to be applied to the background of a box.

borderColor
Specifies a color for a decorative border around the box.

borderStyle
Specifies the shape of the border.

borderWidth
Specifies the width of the decorative border, in pixels.

children
Lists all of the elements that appear inside the box. This might include
buttons, text, entry fields, or other boxes.

class References a class in a cascading style sheet (CSS) that determines the
formatting of elements within the box, such as the style of a font.

columns
Specifies the number of columns that divide the box, as an integer. You use
columns to align elements.

padding
Specifies a distance, in pixels, between the contents and the border of a
box.

Other properties specify further information about the box, such as:

Format a Rich UI logon page 5

v its location
v its ID
v its visibility

Essential widgets
About this task

In addition to the box widget, you will use the following widgets in this tutorial:

TextLabel
Defines a string that the user cannot change. You need the following
TextLabel property for this tutorial:

text Specifies the string to be displayed.

TextField
Defines a text box in which a user can type a single line of input. (For
lengthy input, Rich UI provides a TextArea widget.) You will not need any
TextField properties for this tutorial.

PasswordTextField
Defines a text box where a user can type a single line of input. The value
of the field is displayed as a string of bullet characters (v). You will not
need any PasswordTextField properties for this tutorial.

Button
You can bind a function to a button; when the user clicks the button, the
bound function is called. You need the following Button property for this
tutorial:

text A string to be displayed on the button.

The Rich UI Handler
About this task

In EGL, a handler is a special kind of program with functions that are tied to
specific events that occur when someone uses an interface. Technically, a Rich UI
Handler is an EGL Handler part with the RUIHandler stereotype. In a Rich UI
Handler, the widgets typically provide the events that are bound to the handler
functions. The Rich UI Handler has the following properties:

initialUI
Specifies an array of widgets that makes up the initial display for the Web
page.

onConstructionFunction
Specifies a function to call when the interface is first created.

cssFile
Specifies a cascading style sheet (CSS) to assign to the file. By default, EGL
creates a CSS with the same name as the Rich UI Handler, and defines a
few basic styles. To customize the appearance of the page, you can modify
this file or assign a different one to the cssFile property.

The widget code that is included with EGL describes a set of abstract entities,
which are like blueprints for controls on a page. To create the actual control,
declare a variable that has the type of the widget you want to create. These

6 Format a Rich UI login page

declarations go in the Rich UI Handler. For example, if you create a Box widget,
you must assign a name to it, such as topBox. The declaration for this widget is
included in the Rich UI Handler:
topBox com.ibm.egl.rui.widgets.Box;

You can create a Rich UI program by coding a Rich UI Handler one line at a time,
or you can drag visual elements onto a representation of the Web page using the
EGL Rich UI editor. That editor is the subject of the next lesson, in which you
begin to build a working interface.

Lesson checkpoint
In this lesson, you learned about widgets and handlers. This is the last section of
the tutorial that focuses on the concepts of Rich UI.

You learned the following concepts:
v What a widget is
v The important properties of each widget
v The types of widgets you will use in the tutorial and their important properties
v What a Rich UI Handler does

Lesson 3: Create an EGL framework
Use the graphical interface in the Rich UI editor to familiarize yourself with the
components you need to create a Web page.

About this task

First, create an EGL Rich UI project where you can use the Rich UI editor. Next,
create a Rich UI Handler for the project. When you open the Rich UI Handler in
the Rich UI editor, you can drag widgets onto the virtual page and bind them to
functions.

Create an EGL Rich UI project
About this task

You can use projects:
v To organize your EGL source files.
v To provide shortcuts and defaults tailored to a particular type of work.

When you create a Rich UI project, EGL sets up only the folders and source files
that are appropriate for this type of programming.

The following demonstration shows the steps involved in this task:

Show Me

To create an EGL Rich UI project:
1. Click File → New → Project. Expand EGL, click EGL Project, and click Next.
2. In the New EGL Project wizard, enter the following information:

a. In the Project name field, type the following name:
PasswordWindow

b. Under EGL Project Types, select Rich UI Project.

Format a Rich UI logon page 7

c. Click Next.
3. On the advanced settings page, clear the Create an EGL service deployment

descriptor check box. In this tutorial, you do not use services. Click Finish.

Results

EGL creates a new project named PasswordWindow. There are two folders inside
the directory: one for EGL source code and one for the Web content that you will
create.

8 Format a Rich UI login page

Create a Rich UI Handler
About this task

Now that you have a project that will hold your files, create a source file for your
Rich UI application.

The following demonstration shows the steps involved in this task:

Show Me

To create a Rich UI Handler:
1. Right-click the PasswordWindow project, then click New → Rich UI Handler.
2. In the New Rich UI Handler part wizard, enter the following information:

a. Make sure the Source folder field specifies PasswordWindow\EGLSource.
b. For the package name, enter ruihandlers. EGL will create a folder that has

this name in the EGL source folder.
c. For the file name, enter logon1. EGL will create a source file that has this

name and the .egl extension.
d. Click Finish.

Results

EGL displays the new Rich UI Handler in the Design view of the Rich UI editor. In
the Design view, you can use visual tools to edit the page. Note the tabs at the
lower left of the display:

Format a Rich UI logon page 9

Later you will use the Source tab to create functions to bind to the widgets. Before
that, you will create two different page layouts, one that uses columns and another
that uses boxes.

Lesson checkpoint
You created a project that will hold your source files, and a source file for your
logon screen.

You learned how to perform the following tasks:
v How to create an EGL project
v How to create an EGL Rich UI Handler; Rich UI Handlers are described in

Lesson 2.

Lesson 4: Use box widgets to lay out a page
Use the EGL Rich UI editor to create a logon page using box widgets to control
formatting.

About this task

EGL Rich UI follows the Visual Formatting Model of the World Wide Web
Consortium (W3C). This recommendation discusses concepts such as containing
boxes, default positioning, and the flow of objects on the page. For more
information, see http://www.w3.org/TR/CSS2/visuren.html.

In this lesson, you build the page without using absolute positioning of the boxes.
This best practice allows the page to adapt more easily to different screen
resolutions, browsers, fonts, and other factors that affect display.

In Rich UI, you typically use boxes to create rows, and then use columns to divide
those rows.

Use box widgets for layout
About this task

Refer to the sketches that you made in Lesson 1. Your first version of the logon
screen will use boxes for formatting.

First you will create a single box to hold everything, called outerBox. Next, you
will divide outerBox in half by creating an upperBox to contain the text fields and
the labels associated with them, and a lowerBox to contain the Submit button.
Next, you will create separate boxes within the upperBox for the text fields and the
labels. Finally, you will add the label, text field, and button widgets to the
appropriate boxes.

In this way, the hierarchy of the elements is clear:
v outerBox has two children:

– upperBox

– lowerBox

v upperBox has two children:
– upperLeftBox

– upperRightBox

10 Format a Rich UI login page

http://www.w3.org/TR/CSS2/visuren.html

And so on. The following chart shows the complete hierarchy:

When you construct the layout that follows, you add boxes moving from left to
right and top to bottom. By adding boxes in this order, you can be sure that you
are not leaving areas of the outer box orphaned and inaccessible.

The following demonstration shows the steps in this task:

Show Me

To create a layout by using boxes:
1. Make sure you are in the Design view for your Rich UI Handler (logon1.egl).

Drag a Box widget from the EGL Widgets palette onto the screen. By default,
the Palettes view is located to the left of the editor pane. The entire editor
pane turns green, indicating that you can drop the widget anywhere on the
surface. When you release your mouse button, the New Variable window
appears.

2. In the New Variable window, in the Variable name field, enter the following
string:
outerBox

3. Click OK. A thin, long box appears on the screen.

outerBox

lowerBoxupperBox

upperRightBoxupperLeftBox submitButton

uidLabel pwdLabel uidField pwdField

Format a Rich UI logon page 11

EGL creates a new variable in your Rich UI Handler named outerBox that is
based on the Box widget type. Because this is the first container that you
created for this program, EGL also sets outerBox as the value for the initialUI
property.

4. Drag a second box widget onto the first. The outerBox surface turns green:

5. In the New Variable window, in the Variable name field, enter the following
string:
upperBox

6. Click OK.
7. Drag a third box onto the outerBox widget, to the right of upperBox.

Study this picture for a moment. The yellow regions indicate locations where
you can place a new box. The following locations are available:
v The thin yellow line at the top of the screen. This indicates a position that is

outside of the outerBox widget and that precedes it in the visual design.
v The thin yellow line to the left of upperBox. This indicates a position that is

inside the outerBox widget, but that precedes upperBox in the hierarchy.
v The larger green area to the right of upperBox. This position is also inside of

the outerBox widget, but comes after upperBox in the hierarchy.
v The thin yellow line at the bottom of upperBox. This position is the same as

that of the large yellow box at the bottom of the display. Both positions are
outside of outerBox and after it in the hierarchy.

After you click the Box icon in the Palette, try dragging it to various locations
in the layout without releasing the mouse button. Watch the pop-up box to
see how the green line that represents the new box moves in relation to the
other widgets.

12 Format a Rich UI login page

You can also see the hierarchy of widgets in the Outline view, located in the
lower left corner of the workbench by default. In this view, you can use your
mouse to move the widgets; you can even drag widgets from the Palette onto
the outline.

8. In the New Variable window, in the Variable name field, enter the following
string:
lowerBox

Note that upperBox and lowerBox are displayed side by side. Later, you will
use the columns property to adjust the positions of the boxes.

9. Click OK.
10. Drag a new box onto upperBox.

11. Enter the following string as the Variable name:
upperLeftBox

12. Click OK.
13. Drag a second box onto upperBox, to the right of upperLeftBox. Your target is

a narrow line to the right of upperLeftBox. The pop-up box should show that
your new box, which is represented by the green line, is a child of upperBox
and a sibling of upperLeftBox.

14. Enter the following string as the Variable name:
upperRightBox

15. Click OK. You now have all the boxes you need to lay out the page. The next
step is to arrange them.

16. Select the outerBox widget by clicking inside the box until the outline of the
box is displayed as a dotted line. Locate the Properties view, which is located
by default in the lower left corner of the workbench. Enter 1 in the columns
field.

Format a Rich UI logon page 13

When the columns property is blank, EGL places all objects one after another,
left to right. When you set the columns property to 1, you tell EGL to place
elements in a single column, with each element below the previous.

Although the shape is small, it should look familiar; this is one of the layout
patterns that you sketched in Lesson 1. Next, you will fill in the page
elements.

17. Press Ctrl+S to save the file.

Add controls to the layout
About this task

Now that you have a layout defined by three separate boxes, you can add
appropriate widgets to perform the work of the page.

The following demonstration shows the steps in this task:

Show Me

14 Format a Rich UI login page

To add widgets to the layout:
1. Drag a TextLabel widget onto the upperLeftBox widget.
2. In the New Variable window, in the Variable name field, enter the following

string:
uidLabel

3. Click OK. The label is displayed on the page with the name TextLabel.
4. Make sure that uidLabel is selected and go to the Properties view. Change the

text property to the following string:
User name:

5. Press Ctrl+S to save the file.
6. Drag a second TextLabel widget onto the upperLeftBox widget.
7. Enter the following string as the Variable name:

pwdLabel

8. Click OK. The label is displayed on the page with the name TextLabel.
9. With the uidLabel selected, go to the Properties view and change the text

property to the following string:
Password:

The label is displayed on the same line with the previous label.
This is not the behavior you want; however, you can control it with the

columns property of the containing box.
10. Click the white space surrounding the label to select the upperLeftBox widget.

In the Properties view, set the columns property to 1.
11. Press Ctrl+S to save the file.
12. Drag a TextField widget onto the upperRightBox widget.
13. Enter the following string as the Variable name:

uidField

14. Click OK. A text entry field is displayed on the page as a small rectangle.

Format a Rich UI logon page 15

15. Drag a PasswordTextField widget onto the upperRightBox widget and enter
the following name as the Variable name:
pwdField

16. Click OK. As with the text label, the second widget appears next to the first.
17. Click the white space surrounding the label to select the upperRightBox

widget. In the Properties view, set the columns property to 1.
18. Press Ctrl+S to save the file.
19. Drag a Button widget to the lowerBox widget.
20. In the New Variable dialog, in the Variable name field, enter the following

string; then click OK:
submitButton

21. Click OK.
22. Make sure that the new button is selected and go to the Properties view view.

Change the text property to the following string:
Submit

23. Press Ctrl+S to save the file.
24. Click the Preview tab at the bottom of the editor window. The completed UI

is displayed.

25. Compare this version of the logon window with the original sketch. Note the
following issues:
v The labels do not line up horizontally with their related fields.
v The Submit button does not line up vertically with the labels.
v The label font does not match the font on the button.

16 Format a Rich UI login page

You can resolve the font issue by using widget properties, but the other issues
are more difficult. The next lesson offers a different approach to laying out the
page, one that addresses the first two issues.

26. Close the file by clicking the X icon on the tab that shows the file name
(logon1.egl).

Results

Lesson checkpoint
You created a layout by using boxes, and then added widgets to those boxes.

You learned how to perform the following tasks:
v How to create boxes in a hierarchy
v How to select objects
v How to use the Properties view

Lesson 5: Use columns to lay out a page
Use the EGL Rich UI editor to create a logon page that uses the columns property
to control formatting.

About this task

In the previous lesson, you forced elements to line up on the page by confining
them in containers. This ultimately proved inefficient, as it took too much effort to
control every aspect of the page. In this lesson, you will use the built-in behavior
of the widgets to more efficiently accomplish the same task.

Use columns for layout
About this task

In a new file, you will create a version of the page that uses only a single box
widget, which is required to hold the other elements. You will use less code to end
up with a better result.

The following demonstration shows the steps in this task:

Show Me

To create a layout by using columns:
1. Create a second Rich UI Handler named logon2.egl:

a. Right-click the PasswordWindow project, then click New → Rich UI
Handler.

b. For the package name, specify ruihandlers. For the file name, type logon2.
Click Finish.

The new file eventually opens in the Rich UI editor.
2. Make sure that you are in the Design view for your Rich UI Handler

(logon2.egl). Drag a Box widget from the EGL Widgets palette onto the
screen.

3. In the New Variable window, in the Variable name field, enter the following
string:
outerBox

Format a Rich UI logon page 17

Note: Names must be unique within a handler only.
4. Click OK.
5. Drag a TextLabel widget onto the outerBox widget.
6. In the New Variable window, in the Variable name field, enter the following

string:
uidLabel

7. Click OK. The label is displayed on the page with the name TextLabel.
8. Make sure that uidLabel is selected and go to the Properties view. Change the

text property to the following string:
User name:

9. Drag a TextField widget onto the outerBox widget, after the uidLabel.

10. Enter the following string as the Variable name:
uidField

11. Click OK. A text entry field is displayed on the page as a small rectangle
immediately after the label.

12. Press Ctrl+S to save the file.
13. Drag a second TextLabel widget onto the outerBox widget.
14. Enter the following string as the Variable name:

pwdLabel

The label is displayed on the page with the name TextLabel. The label
appears on the same line with the previous two widgets.

18 Format a Rich UI login page

Before you correct this problem, update the label text and add the other
input field.

15. In the Properties view, change the text property to the following string:
Password:

16. Click OK.
17. Drag a PasswordTextField widget onto the upperRightBox widget in the

upper right quadrant of the page.
18. Enter the following string as the Variable name:

pwdField

19. Click OK. All four widgets are displayed on the same line.

20. Click the white space surrounding the four new elements to select the original
outerBox widget. In the Properties view, set the columns property to 2. The
text entry fields (the empty rectangles) are now left aligned, though the entry
field for the user name is uncomfortably close to the label.

21. Press Ctrl+S to save the file.
22. Drag a Button widget to the outerBox widget.
23. Enter the following string as the Variable name:

submitButton

24. Click OK.
25. Make sure that the new button is selected and go to the Properties view.

Change the text property to the following string:

Format a Rich UI logon page 19

Submit

26. Press Ctrl+S to save the file.
27. Click the Preview tab at the bottom of the editor window. The completed UI

is displayed.

Notice that the labels are better aligned with the corresponding input fields.
The left margin of the second column, which holds the input fields, begins at
the right edge of longest element in the first column.
The page can still be improved. For example, the uidLabel is too close to the
uidField and the Submit button is too close to the field labels. Also, the font
on the labels does not match the font on the button. You can fix these and
other issues by using various widget formatting properties, which you will
learn about in the next lesson.

28. Close the file by clicking the X icon on the tab that shows the file name
(logon1.egl).

Lesson checkpoint
You just recreated the logon page, using columns to format the elements on the
page.

You learned more about the way EGL uses columns to format a page:
v In a two-column format, EGL places elements alternately in each column.
v The default width of a column is determined by the widest element within it.
v You can use columns to solve many basic layout problems, giving you smaller

programs than you would have if you used boxes for formatting.

In this case, using columns alone proved to be a better solution than using boxes.
However, you might find other situations where boxes are necessary to format the
page properly.

Lesson 6: Format the page
You can use the EGL Rich UI editor Properties view to format the elements in
your Rich UI Handler.

About this task

Most of these properties have CSS equivalents. After you experiment with page
formatting by using the Rich UI editor properties, try to make changes to the
PasswordWindow project CSS file to accomplish the same effects.

This lesson uses the following properties:

20 Format a Rich UI login page

v backgroundColor
v border
v fontSize
v fontStyle
v padding

Use properties to format boxes
About this task

When you use properties, be aware of which widget you have selected in the
editor. For example, if you change the font for a box, you change all text elements
within the box to the new font. If you meant to change the font for a label only,
you might end up with a surprise.

The first exercise use the logon1 program. The multiple boxes in this program
make some aspects of the formatting clearer.

The following demonstration shows the steps involved in this task:

Show Me

To format boxes using properties:
1. Open logon1.egl in the EGL Rich UI editor.
2. In the Design view, select the upperLeftBox widget.
3. In the Properties view, click the button for backgroundColor. In the Color

selection window, click Name format to choose a color by name from the
center section of the window. Select a pastel color such as AliceBlue and click
OK. To remove the color, you must click Custom and not enter a value.

4. Expand the Border group and make the following changes:
a. Click the borderColor button. In the Color selection window, click Name

format to choose a color by name. Select Black and click OK.
b. For borderWidth, enter the number 3. This represents 3 pixels; unlike other

properties that take a unit of measure, such as fontSize, borderWidth
accepts numerals only.

c. For borderStyle, select Solid.
d. Switch to Preview mode, where you should see the following layout:

5. Save and close the file.

Format a Rich UI logon page 21

Use properties to format content
About this task

Be aware of your selection border. Your selection determines whether you change
the format of a single element on the page or all elements within a container.

The following demonstration shows the steps in this task:

Show Me

To format content by using properties:
1. Open logon2.egl in the EGL Rich UI editor if it is not already open.
2. Select the uidLabel widget (″User name:″), then specify an easily recognizable

typeface such as monospace for the font property. To see what fonts are
available on your system, open a word processor such as Lotus Symphony and
look at the Font menu. The EGL Rich UI editor accepts font family designations
like ″serif″, ″sans-serif″, and ″monospace″ as well as specific font names like
″Courier New.″ Before you get too creative, remember that if the user’s system
does not have the specified font installed, the browser will use its default,
which is typically Times New Roman.

3. Select the outerBox widget and specify sans-serif for the font property. The
font for the pwdLabel widget changes to the default sans serif font for the
browser, which is typically Arial. The font for the uidLabel widget does not
change because, as you would expect, more specific formatting overrides more
general formatting.

4. Select the uidLabel widget and clear the font name. The label changes to the
default sans serif font for the browser.

5. Select the outerBox widget and specify a fontSize of 10 pt. The fontSize
property defaults to pixels (px), so to use point sizes, you must specify that
unit of measure (pt). You can also specify relative sizes, as you can in CSS,
from xx-large to xx-small. The font in the labels now matches the font on the
Submit button.

6. Select the uidLabel widget, expand the Spacing group, and set the
paddingRight field to 6. There is now a reasonable space between the labels
and the input fields.

7. Select the pwdLabel widget, expand the Spacing group, and set the
paddingBottom field to 20. This moves the Submit button to a more
comfortable distance from the labels.

8. Save the file and click Preview. The completed page layout is easy to read and
use:

22 Format a Rich UI login page

Results

You have finalized the layout for the logon page. In the next lesson, you will learn
how to bind a function to the Submit button that validates the name and
password you enter. But first, here is a brief introduction to using style sheets with
Rich UI.

Use CSS to format content
About this task

This tutorial is not intended as a course in cascading style sheets (CSS). However,
one example should give you an idea of how to use CSS with the EGL Rich UI
editor.

The following demonstration shows the steps in this task:

Show Me

To format content by using CSS:
1. In your PasswordWindow project, open the file WebContent/css/

PasswordWindow.css.
2. In the right pane of the CSS editor, add the following lines to the end of the

file:
.sans {

font-family:sans-serif;
font-size:10pt
}

This defines a class named ″sans″ that specifies the same font characteristics
that you had previously specified by using properties. Save the file; the left
pane should now show the new style:

3. Close PasswordWindow.css and open logon2.egl again.
4. Select the outerBox widget and clear the font and fontSize properties. Both

labels revert to the default font (typically Times New Roman) and size.
5. For the class property, specify sans.

Format a Rich UI logon page 23

6. Save the file and click Preview. The labels display in 10-point Arial again.

Lesson checkpoint
You learned several different ways to format EGL Rich UI widgets.

Working with boxes, you changed the following properties:
v Background color
v Borders

Working with elements within a container, you changed the following properties:
v Font style and size
v Padding

You also saw how you can use cascading style sheets instead of properties to
format content.

Lesson 7: Work with EGL source code
In this lesson you will bind a simple function, written in EGL source code, to the
Submit button.

About this task

The EGL Rich UI Handler is entirely composed of EGL code. The Rich UI editor
provides shortcuts that you can use to create code in the program, but you can
easily write the equivalent code yourself. In this lesson, you will learn how to
create a text field widget and write a function in the Source mode of the editor.
Then you will bind the function to the Submit button to test it.

Create a text field in source code
About this task

The EGL Rich UI widgets that you see on a Web page are specific examples of
general widget types. Those types are found in the com.ibm.egl.rui project that
was automatically placed in your workspace when you created the Rich UI project.
To create a new example of one of these types, write a statement with the
following syntax:
msgField com.ibm.egl.rui.widgets.TextField;

msgField is the name of the field that you are creating, and
com.ibm.egl.rui.widgets.TextField specifies the model that the new field is based

24 Format a Rich UI login page

on. When you drag a TextField widget from the palette and assign a name to it,
EGL writes code that is similar to this declaration.

You can shorten a type name by using an EGL import statement. The import
statement tells EGL to look in the specified location to resolve unqualified
references. For example, you can add the following statement to the beginning of
the source file, after the package statement, but before the handler declaration:
import com.ibm.egl.rui.widgets.*;

With this statement in place, you can use the types without qualifying them:
uidField TextField{};

If you have the import statement in your code, EGL also omits the qualifiers for
the widget declarations that it generates.
1. Open logon2.egl in the Rich UI text editor, if it is not already open.
2. Click Source. Note the various sections of the code:

v The first line identifies the package that contains the program.
v The first line of the handler declaration specifies a Rich UI Handler and lists

the properties of the handler, in braces.
v The next lines list the variables for the program and their properties, in

braces.
v After the list of variables there is a list of function declarations. Unlike a

main EGL program, a handler does not require a main() function.
3. On a new line at the end of the list of variables, declare a new variable:

msgField com.ibm.egl.rui.widgets.TextField{ color = "red" };

The following screen shot shows that section of code:

Although you have created the variable, you have not placed it on the screen.
To do that, you must list the variable as a child of an existing container.

4. Locate the outerBox declaration in the source code and find the children
property. Add msgField to the end of the list, after submitButton. Be sure to
separate msgField from submitButton with a comma. The following screen shot
shows that section of code:

5. Save the file.
6. Switch to Preview mode. You can now see the new text field.

Format a Rich UI logon page 25

Bind a simple function to the Submit button
About this task

Functions that bind to elements of the interface respond to events that take place in
that interface. EGL uses standard terms for these events, such as ″onClick″ or
″onKeyDown″, all of which are specific examples of the EGL Event type. When
you create a function to handle one of these events, you must include the event as
a parameter for the function:
function logon(e Event in)

In this example, e is an arbitrary name for an Event type variable, and in indicates
that the function reads the parameter for input only.

The onClick property is actually an array; you can use it to call multiple functions,
in order. You will only call one function, but you must still use the proper syntax
for an array:
onClick ::= functionName

This adds functionName() to the end of the list of arrays to call. In a Rich UI
Handler, you can add to this array, but you cannot replace it. The following code
causes EGL to throw an exception:
onClick = [functionName] // does not work in RUIHandler

In this task, you will use the EGL Rich UI editor to automatically create a stub
function, which contains no executable code, and then bind that function to a
widget.

The following demonstration shows the steps in this task:

Show Me

To bind a function to a widget:
1. With the logon2.egl file still open in the Rich UI text editor, switch to Design

mode.
2. Click the Submit button to select it. The button is surrounded by a dotted line.
3. In the Properties view, click the Events tab, which is next to the Properties tab.

Locate the onClick event in the list. Double-click the corresponding table cell in
the Function column to release the dropdown list. The list shows all of the
available event-handling functions. In this case the list is blank because you

26 Format a Rich UI login page

have not created any functions to handle events.

4. Locate the plus sign in the far right column for the onClick event. You might
have to scroll to the right to see it. Click the plus sign to add a stub function.

5. In the New Event Handler window, type the following name for the new
function:
logon

6. Click OK. The Rich UI editor switches automatically to Source mode and
positions the cursor in the stub logon() function.

7. Type the following text to complete the function:
msgField.text = "Button clicked";

Note that the editor automatically added the onClick property to submitButton:

Format a Rich UI logon page 27

submitButton com.ibm.egl.rui.widgets.Button{ text = "Submit", onClick ::= logon };

On the Events page of the Properties view, logon is now available in the
drop-down function list.

8. Save the file.
9. Switch to Preview mode. Type a name and password; note that the password is

displayed as bullet characters. Click Submit. The new text field displays the
notification message:

Lesson checkpoint
You saw how changes in the Rich UI editor are reflected in the EGL code, and you
bound a simple function to the Submit button.

You learned how to perform the following tasks:
v How to create a widget in the EGL code
v How to write a function to handle an event
v How to bind the function to a widget

Summary
This is the end of the Format a Rich UI logon page tutorial.

Beyond giving you some basic practice at creating and formatting widgets in the
EGL Rich UI editor, this tutorial was intended to demonstrate the following
principles:
v Designing your work on paper is a useful preparation for coding the pages.
v There may be multiple design solutions that are equally valid. However, using

columns in preference to boxes can reduce application overhead.
v While the Rich UI editor can simplify your coding, understanding the

underlying EGL gives you additional programming options.

Lessons learned
v Design a Web page for Rich UI
v Create an organization chart for the elements on the page
v Understand widgets
v Understand the Rich UI Handler
v Create an EGL Rich UI project
v Create a Rich UI Handler
v Structure a page by using box widgets

28 Format a Rich UI login page

v Structure a page by using columns only
v Format the elements on the page by using EGL properties
v Format the elements on the page by using cascading style sheets (CSS)
v Add widgets to the page by writing EGL code rather than by using the

graphical interface
v Trigger a function by pressing a button

You can continue learning by working with the tutorial application. Try adding
more complex functionality to the Submit button. For example, if you have taken
the Introducing EGL tutorial, you could combine that database with the tutorial
application and validate user IDs based on the information in the database.

Additional resources

EGL Rich UI follows the Visual Formatting Model of the World Wide Web
Consortium (W3C). For more information, see http://www.w3.org/TR/CSS2/
visuren.html.

Other EGL tutorials:

Introducing EGL
Create a hello world program with EGL
Create a hello world service with EGL
Build a JSF search page with EGL
Access relational databases with EGL

Format a Rich UI logon page 29

http://www.w3.org/TR/CSS2/visuren.html
http://www.w3.org/TR/CSS2/visuren.html

	Contents
	Format a Rich UI logon page
	Lesson 1: Design your Web page
	Chart the page structure
	Lesson checkpoint

	Lesson 2: Meet the Rich UI widgets and handlers
	Widget properties
	Essential widgets
	The Rich UI Handler
	Lesson checkpoint

	Lesson 3: Create an EGL framework
	Create an EGL Rich UI project
	Create a Rich UI Handler
	Lesson checkpoint

	Lesson 4: Use box widgets to lay out a page
	Use box widgets for layout
	Add controls to the layout
	Lesson checkpoint

	Lesson 5: Use columns to lay out a page
	Use columns for layout
	Lesson checkpoint

	Lesson 6: Format the page
	Use properties to format boxes
	Use properties to format content
	Use CSS to format content
	Lesson checkpoint

	Lesson 7: Work with EGL source code
	Create a text field in source code
	Bind a simple function to the Submit button
	Lesson checkpoint

	Summary

