
Deploying EGL CE programs

���

ii Deploying EGL CE programs

Contents

Deployment of EGL CE applications . . 1
Deploying an EGL application using the EGL
deployment descriptor 2

Adding Web service deployment information to
the deployment descriptor 5

Creating and using a shared protocol 7

Index 9

iii

iv Deploying EGL CE programs

Deployment of EGL CE applications

After developing EGL applications in the workbench, deploy them to the
environment where they are used.

You develop EGL applications in one or more EGL projects, then deploy them to
dynamic Web projects. Although the deployment project is in the workbench, you
configure the project to match the characteristics of the environment where you
plan to deploy your application. If you need to run the application in different
environments, you can deploy a single EGL project to multiple dynamic Web
projects. For example, you might create an application to run on two different local
area networks, each of which uses a different version of Tomcat. You can create a
dynamic Web project for each network, and deploy your application to both
projects.

An additional benefit of deployment is that you can elect to remove all EGL source
code from your deployed application. Once you have deployed your application,
you can package the deployed files (for example, in an archive file) and ship them
to customers.

During the development process, EGL automatically generates code (JavaScript
from Rich UI programs, and Java from services) each time you save a source file.
When you deploy that code, EGL performs the following additional actions:
v Packages the .js JavaScript files into HTML files
v Adds server specific code to project files

Services

If your code accesses any services, the declaration of the Service or Interface part
for that service must include one of the following complex properties:

@RESTBinding
Binds a service reference to a REST service at generation time.

@WebBinding
Binds a service reference to a SOAP service at generation time.

@bindService
Binds a service reference to a REST, SOAP, or EGL service at runtime,
using the information in the EGL deployment descriptor specified by the
bindingKey property field.

Related concepts

Overview of EGL
Enterprise Generation Language (EGL) is a technology to help you write
professional software quickly. EGL is effective because it shields you from the
details of other software technologies. Even developers who are new to those
technologies can create Web-based logic, as is supported in Rational® EGL
Community Edition, and other kinds of logic, as is additionally supported in
Rational Business Developer, Rational Business Developer for System z®, and
Rational Business Developer for i for SOA Construction.
Related tasks

1

“Deploying an EGL application using the EGL deployment descriptor”
The EGL deployment descriptor controls the details of deployment.
Related reference

Deploying an EGL application using the EGL deployment descriptor
The EGL deployment descriptor controls the details of deployment.

The actual deployment process is virtually automatic. To deploy an EGL CE
application:
1. Locate the EGL deployment descriptor for one of the application projects. The

EGL deployment descriptor is located in the EGLSource folder and has the file
extension .egldd. By default, the base name is the same as that of the current
project.

2. Right click the project name in the workbench and click Deploy.

EGL then deploys the application automatically, based on information in the
deployment descriptor.

Use the EGL deployment descriptor editor to make changes to the deployment
descriptor. To launch the editor, double click the deployment descriptor file.

The following sections describe the information you need for each page of the EGL
deployment descriptor.

Overview

The overview page combines the information from the various pages of the file,
and provides links to take you to each page that you might need to change.

Service client bindings

Service client bindings give the client of a service the information it needs to access
that service. You can either provide that information here, or in a complex property
associated with the declaration of the Service or Interface part. The @RESTBinding
complex property contains binding information for REST services, and the
@WebBinding complex property contains binding information for SOAP services.
Both properties bind the associated service at generation time.

If the Service or Interface part includes the @bindService complex property instead
of @RESTBinding or @WebBinding, EGL uses the deployment descriptor for
binding information at run time.

If you use the deployment descriptor for service client binding, the information
you need depends on the type of service you access:

SOAP Web Binding
A simple object access protocol (SOAP) service typically uses HTTP for
transmission and XML for its message format. A SOAP service always uses
a Web Services Description Language (WSDL) file as in interface to the
client. You need the following information to access a SOAP service:
v The name of a WSDL file in your workspace.
v An EGL Interface part to use with the service.

2 Deploying EGL CE programs

v A Web Binding Name, which must match the value of the bindingKey
property field of the @bindService complex property for the associated
service.

v A WSDL URI, if you want to override the WSDL file name (for example,
if you need a different version of the service for production or testing).

REST Web Binding
For the purposes of EGL CE, a representational state transfer (REST)
service provides a single unit of business data for each request. Requests
specify a uniform resource identifier (URI), typically a base URL for a Web
site, followed by qualifiers for the requested data. For example, the URI
www.example.com/employee/123 requests data for an employee with the
number 123. REST services do not use WSDL files. You need the following
information to access a REST service:
v A REST Binding Name, which must match the value of the bindingKey

property field of the @bindService complex property for the associated
service.

v A Base URL that qualifiers will be added to.
v A Session Cookie ID that allows you to keep a session open with the

host for the service. The default value is JSESSIONID, which is always
the session ID when your application runs on Apache Tomcat.

EGL Binding
An EGL service is based on an EGL Service part. The service may be local
to your server or accessible through one of several standard protocols. You
need the following information to access an EGL service:
v An EGL Binding Name, which must match the value of the bindingKey

property field of the @bindService complex property for the associated
service.

v A Service Name, which is the name of the EGL Service part.
v An alias, if the Service part uses one.
v A protocol type. If the EGL service is not local, you can choose one of

the listed protocols, or click Choose from protocols to display a list of
available options.

Native binding
This binding provides access to a System i service program. You need the
following information to access a System i service:
v A Native Binding Name, which must match the value of the

bindingKey property field of the @bindService complex property for
the associated service.

v A protocol type. You can choose one of the listed protocols, or click
Choose from protocols to display a list of available options.

Web Service Deployment

After you have coded an EGL Service part that you want to expose as a Web
service, you must add information to the deployment descriptor that tells EGL to
generate the necessary Web service wrapper. For more information, see “Adding
Web service deployment information to the deployment descriptor” on page 5

EGL Rich UI Deployment

An EGL application can consist of multiple Rich UI Handlers, although the
Handlers must all be in the same project. On this page, you can select the various

Deployment of EGL CE applications 3

Rich UI handlers that make up an application so that EGL can deploy them
together. In the EGL Rich UI Application table, click Add to create an application.
The editor automatically assigns the name new_application, followed by a number
if you have more than one in the table. For each application, provide the following
information:

EGL Rich UI Handlers
The editor displays all available Rich UI Handlers in the project. Select the
check boxes for the Handlers you want to include in the application.

Locale Settings
The editor displays all locales that you have configured. Select the check
boxes for the locales to which you wish to deploy the application. Click
Configure to go to the Rich UI Preferences page and add or remove
locales.

Deployment Targets
The editor displays all dynamic Web projects that you have configured on
the Deployment Targets page of the EGL deployment descriptor. Select the
check boxes for the target projects you want to deploy to. Click Configure
to go to the Deployment Targets page and add or remove Web projects.

Additional Artifacts
The editor displays all artifacts for all projects. Note that the following
projects are included:
v The source project (containing the deployment descriptor)
v The base Rich UI project (com.ibm.egl.rui)
v The Dojo widgets project (com.ibm.egl.rui.dojo)

All artifacts are automatically selected. Clear the check boxes for any
artifacts you do not want included in the deployment.

Protocols

Shared protocols are reusable definitions of a service connection that you can apply
to one or more of the entries in an EGL deployment descriptor file. For more
information, see “Creating and using a shared protocol” on page 7.

Deployment Targets

Deployment targets are typically dynamic Web projects. If you do not use any
services in your application, you can also deploy your project to a File System
Directory (folder).

To add a deployment target to the table, click New.

In the Add Deployment Targets window, you can take the following actions:
v Move existing Web projects in and out of the list of deployment targets.
v Create a new project in your workspace. To do this, you need a name for the

project and a target runtime, such as Apache Tomcat v6.0.
v Add a file system directory to the list of deployment targets.

The deployment targets you configure on this page are available on the EGL Rich
UI Deployment page.

4 Deploying EGL CE programs

Imports

You can import the information from another deployment descriptor, adding the
service bindings, sharable protocols, and other information to your current
deployment descriptor. Click Add and choose the deployment descriptor from the
navigator panel.

Related concepts

Overview of EGL
Enterprise Generation Language (EGL) is a technology to help you write
professional software quickly. EGL is effective because it shields you from the
details of other software technologies. Even developers who are new to those
technologies can create Web-based logic, as is supported in Rational EGL
Community Edition, and other kinds of logic, as is additionally supported in
Rational Business Developer, Rational Business Developer for System z, and
Rational Business Developer for i for SOA Construction.
Related tasks

“Adding Web service deployment information to the deployment descriptor”
After you have coded a service part that you want to expose as a Web service,
you must add information to the deployment descriptor that tells EGL to
generate the necessary Web service wrapper.
“Creating and using a shared protocol” on page 7
Shared protocols are reusable definitions of a service connection that you can
apply to one or more of the entries in an EGL deployment descriptor file.
Related reference

Adding Web service deployment information to the
deployment descriptor

After you have coded a service part that you want to expose as a Web service, you
must add information to the deployment descriptor that tells EGL to generate the
necessary Web service wrapper.

Prerequisites
v An EGL project
v A Service part
v An EGL deployment descriptor file

Adding the deployment information
1. Open the EGL deployment descriptor file and go to the Service Deployment

tab.
2. Click Add.
3. In the Add Web Services window, select the service parts to be exposed as a

Web service by moving them from the EGL service parts found list to the EGL
service parts to be generated as Web services list.

4. Click Finish. Each service part that you chose is listed on the Services
Deployment page.

5. Select a service part in the list on the left:
v In the Generate column, indicate whether you want EGL to generate the

Web service each time you generate the deployment descriptor; and if so,
whether you want the service generated as a SOAP (Web) service, a REST

Deployment of EGL CE applications 5

(Web) service, or both. Avoid the overhead of generating the Web service if
you are not changing the service part when you generate the deployment
descriptor.

v To access the service logic, double-click an entry in the Implementation
column; or highlight the service-binding name and click Open.

6. Additional information varies by service type:
v For a SOAP (Web) service, indicate whether you want to identify the service

characteristics with an existing WSDL file. If you check Use Existing WSDL
file, you can specify the WSDL file and, within that file, the WSDL service
and port elements. If you intend to create the WSDL file later, specify a value
in the Style field; select document-wrapped unless the requesters need rpc.
If you intend to run the SOAP (Web) service on CICS®, you also may need to
specify the access details under Platform-Specific Properties; specifically, the
access protocol, as well as the URI used to access the service.
In the CICS URI field, assign the low-level qualifier for the address used to
access the SOAP service. The full address is as follows:
http://domain:portNumber/URI

domain
The domain name; for example, www.example.com.

portNumber
The number of the server-machine port that receives the request.

URI
The qualifier you are specifying. By default, the value is as follows,
where serviceName is the name of the Service part:
services/serviceName

v For a REST (Web) service, you can select or clear the Stateful checkbox to
indicate whether the service is providing access to a stateful host program on
IBM® i. The issue is explained in Accessing IBM i programs as Web services.
Also, in the URI field, assign the low-level qualifier for the address used to
access the REST service. The full address is as follows:
http://domain:portNumber/contextRoot/restservices/URI

domain
The domain name; for example, www.example.com.

portNumber
The number of the server-machine port that receives the request.

contextRoot
A setting in the Web project. The default is the name of the Web project.
In relation to WebSphere® Application Server, the value is in the JEE EAR
deployment descriptor (application.xml).

URI
The qualifier you are specifying.

7. Save the deployment descriptor, which in most cases causes an automatic
generation of output from that file.
Related concepts

topics/pegl_serv_elements_cpt.dita

Accessing IBM i programs as Web services: overview

topics/pegl_serv_overview.dita

6 Deploying EGL CE programs

Related tasks

topics/pegl_serv_exposing_tsk.dita

Creating and using a shared protocol
Shared protocols are reusable definitions of a service connection that you can apply
to one or more of the entries in an EGL deployment descriptor file.

To create and use a shared protocol:
1. Open the EGL deployment descriptor file for your project. If your project does

not have a deployment descriptor file, see topics/
pegl_serv_create_deployment_descriptor_tsk.dita.

2. In the deployment descriptor editor, go to the Protocols tab.
3. Under Sharable Protocols, click Add. The Add Protocol window opens.
4. In the Protocol Name, enter a mnemonic for the new protocol.
5. Under Choose protocol type, select a type of protocol. Use Local for services in

the same project.
6. Under Attributes, set the options for the protocol. These options differ for each

type of protocol. See Deployment descriptor options for service clients.
7. Click Finish. The new protocol is listed under Sharable Protocols, and you can

use that protocol when you create a new service client binding or Web service
binding.
Related tasks

topics/pegl_serv_using_service.dita

topics/pegl_serv_calling_local_tsk.dita

topics/pegl_serv_add_client_binding_wsdl_tsk.dita

Deployment of EGL CE applications 7

8 Deploying EGL CE programs

Index

Special characters
1, 2

D
deployment descriptors

adding information 5

deployment descriptors (continued)
shared protocols 7

S
services

shared protocols 7

shared protocols 7

W
Web services

deployment information 5
shared protocols 7

9

	Contents
	Deployment of EGL CE applications
	Deploying an EGL application using the EGL deployment descriptor
	Adding Web service deployment information to the deployment descriptor
	Creating and using a shared protocol

	Index
	Special characters
	D
	S
	W

