Provided by EPO Consulting
EPO Consulting E-Mail info@epoconsulting.com
Internet www.epoconsulting.com

EPO XML Connector

for SAP

Version 30A SP3

DEPLOYMENT, CONFIGURATION &
DEVELOPMENT DOCUMENTATION

SA P Ce rt | ﬁ e d Status: ?gfgspeg

Version:
Powered by SAP NetWeaver* Last updated: October 2009

SAP, ABAP and SAP NetWeaver are the trademarks or registered trademarks of SAP AG in Germany
and in several other countries.

EPO XML CONNECTOR FOR SAP

Short table of contents — Configuration & Development documentation

1 General, FUNCIONS, Ar€a MENU.......coiiiiiiiiiiiiiiiei e 6
1.1 INEFOTUCTION ettt 6
1.2 SyStemM rEQUINEMENTSoouuiiiiiiieeeeeieeiiiiie e e ettt e e e e e e eeeaba s e e e e e e eeeennnnns 8
1.3 Architecture, scalability, performance and stability..............cccccceeeiiiiiirnnnnnnn, 8
1.4 EPO XML Connector Area Menu /epol/S0a7.........ccccceeeiieeiiiiiiiiiiiiiiaaaeeeeene. 10
1.5 FUNCLONS @nd fEATUIES.......uuuiiiiiiiiiii s 12

2 Initial CONFIQUIALION.coiiiiiiiiie et e e e e eeeaeaees 19
0 R U o] (o T= o [[oT =] g K= = Y/ 19
2.2 Create NUMDEr range(S) .. .ccoeveeeiiiiiiie e 19
2.3 ACHVALE SEIVICES ...cooiiiiiieie e 20

3 EPO XML Connector services configuration & development................cccoeeennees 21
3.1 Definition of Services (Inbound & Outbound)coovvviiiiiiiieeiiiie. 21
3.2 AUthOriSAtiON ODJECT... .. 23
3.3 Inbound: EPO RUNIMEoooiiiiiii 24
3.4 INDboUNd: SAP TUNTIME ...t 40
3.5 Outbound: EPO ClEeNt......ccoooiiiiiiiie 54
3.6 Outbound: SAP CHENT.....cci i 68

4 Generic function module call (implemented in EPO runtime)ccccovvvuennn... 77
4.1 Set up: Service for Generic Function Module Call.............cccoooiiiiiiiiiiiinnnnn. 77
4.2 WSDL generation in XML Transmitter for SAP function module................. 80
4.3 Testing the WSDL (the SAP function) in XML Transmitter..............ccccce..... 82

5 Public function modules - request/reSpoNSe APlccoeeiiiiiiiiiiiiiiiee e 84
5.1 epol/exc_store_request INtErfaceuuuuiiiiiii e 84
5.2 epol/exc_store_response interfacecccccceeveeeieieeiieiiiiiiee e 85

6 Monitoring FUNCHONANILYuueiiii e eeaaeees 86
6.1 Setting up MONItOriNgG ProfileS.........evueiiei i 87
6.2 EPO XML CoNNECtor MONITOYuuuuiiiieeeeeeeeeeiiiiiee e e e e eeeaenes 92

7 Message data maintenance (Inbound & Outbound)cccoovviiiiiiiii e, 94
7.1 (Re) Process a stored XML request MeSSAge.......coeueeeeeeeeeriinniieeeeeeeeeeennenns 94
7.2 Download and edit a stored XML MeSSAQe..........ceveeeeeerereeiiiiiiieeeeeeeeeennnnnns 94
7.3 Upload a stored XML MESSAQEcuuuuuiiiiieeeiiiiiiiiiiiiaa e e e eeeeeeiiiine e e e e eeeeeesnenns 95
7.4 File upload of a new XML request message (instead of using http) 96

8 Administration of the EPO XML CONNECLONccevuiiiiiiieiieeeieeeiiiiiee e 97
8.1 ArChiVINg XML MESSAQEScceveerrruiieeeeeeeeeeiiiiieaeeeeeeeeeaasasnaeeeeeeeeeennnnnns 97
8.2 Ad-hoC data Operationscouuuuiiiiii i 98
8.3 Other administrative fUNCLIONScoooiiiiiiii 100

9 Integration solutions based 0N EXCcooiiiiiiiiiiiiiiii e 101
9.1 XHTML interactive TOrMSooooiiiiiiii 101
9.2 Metastorm BPM / SAP INtegration..........cooueuiuuiiiiiinieeeeeeeeiiieiee e 105
9.3 MS EXCel / SAP INtEQratiONccevuiiiiiie e eeeeaeeees 105

10 Appendix 1: Using XML Transmitter for testing and deploying Web Services. 107

11 Appendix 2: Demonstration of ABAP Serialisationcccoovvveiiiiiiinnneeeeee, 108

12 Appendix 3: XSL Transformations (XSLT).....cceeeeeeiiiiieiiiiiiee e 112
12.1 Creating transformMatioNsSooooiiiiiiiiiiiiie e 112
12.2 Debugging XSLT iN SAP ... e e e 113
12.3 Links to XSLT dOCUMENTALION........cceeiuiiiiiieeee ettt 114

EPO XML Connector for SAP - Configuration & Development Documentation © EPO Consulting

Full table of contents — Configuration & Development documentation

1 General, FUNCIONS, Ar€a MENU.......ccoiiiiiiiiiiiiiiiiie e 6
1.1 INEFOTUCTION Lottt 6
1.1.1 Whatis the EPO XML Connector? — SOA layer.........cccuuuuiiiiiieeeiieennnnnns 6
1.1.2 Important naming termiNOlOgYcccoeevvvieiiiiie e 6
1.1.2.1 Inbound (calling & SAP SEIVICE).......cccueriiuuiiiiiieeeeeeieeeiiiiiee e e eeeiienes 6
1.1.2.2 Outbound (calling an external SErviCe)cccceeevvveerviiiieeeeeeeeeeennnnns 7
1.1.2.3 Overview of functionality (SAP Integration)ccccccceiieniieiiiieennnns 7

1.2 SyStemM reqUINEMENTSeuvieiii e e e eee et e e e e e ettt e e e e e e e e e eeenaaa e e e e e e e eeeannnnes 8
1.3 Architecture, scalability, performance and stability.............ccccccoeiiiiiiinninninnn. 8
1.3.1 ATCRITECIUIE . 8
1.3.2 SCAIADIITY .. 9
1.3.3 PerformanCe. ... 10
1.3.4 StADIIY .o s 10
1.4 EPO XML Connector Area Menu /epol/S0a7........ccccceeeeeeeeereeeiiiiiiiiiaaeaeenn, 10
1.5 FUNCtionS and fEALUIES.........uuiii et 12
151 INDOUNG ... 12
1.5.2 OUIDOUN ... 13
1.5.3 Mapping & Interface structure definition...........ccccevviiiiiieeeeeeeee. 13
154 Feature: Central data Storageceuuvviiiiniiiiiiieeiceee e 14
155 Feature: Reprocessing Of SEIVICES........uuviiiieeeieiveeiiiiiiee e e e 15
1.5.6 Feature: XSL Transformations (XSLT)cooieiiiiiiiiiiiiiiiee e 15
1.5.7 Feature: SAP authorisation by Servicecccccvvviiiiiiie e 15
1.5.8 Concept of XML to ABAP and ABAP to XML transformation
(ST =11 EST= 11 0] o) I SPPSURR 16
159 Concept of other data format to ABAP transformation and vice versa 18
1.5.9.1 SAP Inbound data conversion using EPO runtime 18
1.5.9.2 SAP Outbound data conversion using EPO Client 18

2 Initial CoNfIQUIALION.........ceeeiiiiiie e e e e e e e e e e e e e eeaannne 19
2.1 UPIOAd lICENSE KEYeueiieiieeieeeee ettt 19
2.2 Create NUMDEr raNgE(S) .. .ccvvvieeeeiiii e e e e e e e e 19
2.3 ACHVALE SEIVICES ..coeiiiiiiiie et e et e e e e e e aeaa s 20
3 EPO XML Connector services configuration & development................cccceevueees 21
3.1 Definition of Services (Inbound & Outbound)coooviiiiiiiiiiiiiiiii. 21
T2 XUt (o 41T 1o] o) <o S 23
3.3 Inbound: EPO RUNLIMEcoiiiiiiiiie e 24
3.3.1 Stateful (s€sSion) handler..........cccooviiiiiiiiii e 24
3.3.2 USING NEEP(S) ceeevvrrnneee e ettt e e 24
3.3.2.1 Important http headers...........ccoovvviiiiiie e 25
3.3.3 USING Tl TED oo 25
3.3.4 Creating EPO runtime - Integration guide for HTTP protocol.............. 25
3.3.4.1 Define interfaces - request and response XML messages............... 25
3.3.4.2 Create EPO runtime SEIVICEciiuuuummmiiiiiies 26
3.3.4.3 Configure EPO runtime SEIVICEuuiiiiieeeiiiiiiiiiiiiee e eeeeeiiiies 27
3.3.4.4 Create processing function modulecccevvviiiiii i, 31
3.3.4.5 Create WSDL for Service using XML Transmitterccccceeennn.. 33
3.3.5 Creating EPO runtime - Integration guide for FILE protocol................ 36
3.3.6 Testing an EPO runtime SErVICE...........uuuiiiiieeiiiiiiiiiiiiee e 36
G0 70 Tt R U 1 o T 11 o 36

3.3.6.2 USING flle, TP .eueii e 38

3.3.7 EPO runtime error XML MESSAQEccuuuuuiieiieieiieiiiiiiiee e e e e eeeeiiiines 38

3.3.8 EPO runtime example SErVICESccuuuuiiiiee e 38
3.4 INDboUNd: SAP TUNTIME ... 40
3.4.1 SAP Runtime (Web Service SOAP) - inboundccceeevvrviriinnnnnnn. 40
3.4.2 Creating SAP runtime - Integration guide...............uviiiiniiiieieeiiiiienn. 41
3.4.2.1 Create a Web service from a function module..................cccoeeeinnnnns 41
3.4.2.2 Create reference (alias) to the web service under the srthandler 44
3.4.2.3 Release the reference using transaction WSCONFIG..................... 45
3.4.2.4 Create SAP runtime service for EPO XML Connector..................... 47
3.4.2.5 Configure SAP runtime SErVICE..........uceeeeeeeeieieiiiiiiiieeeeeeeeeeenennae s a7
3.4.2.6 Set additional HTTP headers for (re-)processingcccccevvvvunnnnnn. 49
3.4.2.7 WSDL 0Of the Web SErvVICe ... 49
3.4.2.8 Testing a SAP runtime SEIVICEuuuiiiiiiiiiiiiiiiiiiiae e 51
3.4.2.9 SAP runtime example SErVICES.........cceiiiieeiiiieiiiiiiee e e 53

3.5 Outbound: EPO CHENL.......ccoiiiiiiiiiee e 54
3.5.1 USING HTTP(S) wurtuiiii i ettt e e e e e e e e e e e e e e 54
3.5.2 USING FILE, FTPociiiiiiiiiiiiiiiiiiiieeeeeeeeeeeee ettt eaeeeeeeeeeeees 54
3.5.3 Using UM - SAP Mail, E-Mail via SCOT and Customer defined.......... 55
354 epol/epoclient function module interface.............ccccoviviiiiiiiii v, 56
3.5.5 Creating EPO Client - integration guidecccevvuiiieeeeeeerreeiiinnnnn 59
3.5.5.1 Create EPO ClieNnt SEIVICEcciviiiiiiiiieee e 59
3.5.5.2 Configure EPO ClieNt SEIVICEuuuuiiiiieeeieiieeiieee e 59
3.5.5.3 Set additional HTTP headers if needed..........ccccccceeiiiiiiiiiiiiiiiicinnnn. 63
3.5.5.4 Create program to call /epol/epoclient function module.................. 63
3.5.5.5 Testing an EPO Client SEIVICEuuuuiiiiiiiiiiiiiiiciie e 67

3.6 Outbound: SAP ClIENtcooiiiiiieieeee 68
3.6.1 Creating SAP Client - integration guide............ccceuvvviiiinieeeeeeeiiiiinn. 68
3.6.1.1 Generate ABAP ClIeNt ProXYccovvuviiiiiiieeeeeeeeeeiee e e e 68
3.6.1.2 Create Logical Port for Generated Client Proxy.........cccceeveevvvvvnnnnnnn. 71
3.6.1.3 Create SAP ClIeNt SEIVICEuuuuuuuiiiiiii s 71
3.6.1.4 Configure SAP CleNt SEIVICEccuuuuiiiiiiiiiiiieeiiiiiee e 72
3.6.1.5 Create program to call SAP Client.......ccccceeviiiiiiiiiiiiee e 73
3.6.1.5.1 epol/sapclient method interfaceccccvvvvviiiiiiiiiiiieeeiiienn 75
3.6.1.6 Testing a SAP ClieNt SEIVICEcceevvuviiiiee e e e e e 76

4 Generic function module call (implemented in EPO runtime)coouvvunnn... 77
4.1 Set up: Service for Generic Function Module Call.............ccccoovvvriiiiiiinnnn.. 77
4.2 WSDL generation in XML Transmitter for SAP function module 80
4.2.1 Structure of the EXC GFMC WSDLS:.......cuuvviiiiiiiiiiiiiiiiiiieieeeeeeeeeeeeeenes 81
4.3 Testing the WSDL (the SAP function) in XML Transmitter..............ccccce..... 82
5 Public function modules - request/reSpoNSe APlccoveiiiiiiiiiiiiiiieee e 84
5.1 epol/exc_store_request INtErfaceouuuiiiiiiiei i 84
5.2 epol/exc_store_response interfacecccccoeeveeeeeieeieeiiiiiiee e 85
6 Monitoring FUNCHONANILYuueiiii e eeaaeees 86
6.1 Setting up MoONItOring ProfileS..........uveoiiee i 87
6.1.1 Monitoring custom exit function modulesviiiiiiiiiiiiiiiiiien. 90
6.2 EPO XML CoNNECIOr MONITOK ... 92
7 Message data maintenance (Inbound & Outbound)ccccoeviiiiiiiiiiiiieecennnn. 94
7.1 (Re) Process a stored XML request MeSSAQe.......cceeeeeeeereererriiiieeeeeeeeeennnnns 94
7.2 Download and edit a stored XML MeSSaQe.........ucveiiiieiiiieiiiiiiiiieeeeeeeeeeiienns 94
7.3 Upload a stored XML MESSAQEuuuuuiieieeeiereeiiiiiiiieeeeeeeeeeesnnnnnaseeeeeeeennnnnns 95

7.4 File upload of a new XML request message (instead of using http) 96

8 Administration of the EPO XML CONNECLOTcueneeieeeeeeeee e 97

8.1 ArChiViNg XML MESSAQESceeeevrrriiieeeeeeeeeeiiiiieaeeeeeeeeeeaaasnaaeeeeeeeeennnnnns 97
8.2 Ad-hoC data Operationsoouuuiiiiiiiee e 98
8.2.1 Download XML messages to dir€CtOry..........ccovvvvevvviiiieeeeeeeeeeiiiieenn 98
8.2.2 Upload XML messages from dir€Ctorycooevvevvvviiiinneeeeeeeeiiiiennn 98
8.2.3 Insert new XML messages from direCtorycccvvvvvviiiiieeeeeeveeeninns 98

8.3 Other administrative fUNCLONScoii i 100

9 Integration solutions based 0N EXCcooiiiiiiiiiiiiiiiiie e 101
9.1 XHTML interactive fOrMScoooiiiiiiiie e 101
9.1.1 xHTML Output for EPO Runtime and Client..............cccceeeeieeeerverennnn. 101
9.1.2 XHTML Output Configuration............coeeeiuuiuiiine e eeeeeiieees 101
9.1.3 xHTML Output Prefill FM Interface.........cccccoveeeiiiiiiiiiiiicieee e 102
9.1.4 xHTML Output Prefill FM Creationccoooeeeeiiiiiiiiiiiiiee e 103

9.2 Metastorm BPM / SAP INtegration..........cccouvvuuuiiiiiiie e e eeeeeanenns 105
9.2.1 Integration of Metastorm BPM using Web Services.............ccccceeee. 105
9.2.2 Integration of Metastorm BPM using file interfaces..............cccc....... 105
9.2.3 Using B2B Integrator for Metastorm BPMccoiiiiiiiiiiiiiieeeiin, 105

9.3 MS EXcel / SAP INteQratioNccuvuueiieeeeeeeeieeiiiee e e e e e e e e e e e e e eeeaannns 105
10 Appendix 1: Using XML Transmitter for testing and deploying Web Services. 107
11 Appendix 2: Demonstration of ABAP Serialisationccccoevvvvviiiiiiiieeeeee, 108
12 Appendix 3: XSL Transformations (XSLT)......coeeeiiiiiiiiiiiiiiee e 112
12.1 Creating transformationsScooiiiiiiiiiiiie e e e 112
12.2 Debugging XSLT iN SAP ... 113

12.3 Links to XSLT dOCUMENTALION.oueeee e 114

1 GENERAL, FUNCTIONS, AREA MENU

1.1 INTRODUCTION

This documentation is intended to provide:

v instructions on using the EPO XML Connector to exchange information
between SAP and any other third-party system

v describing the scope of the integrations, which can be done with the EPO XML
Connector

v explaining how existing and new integrations have to be set up

For installation of the EPO XML Connector please refer to the “Installation
Documentation”.

1.1.1 WHAT 1S THE EPO XML CONNECTOR? — SOA LAYER

The EPO XML Connector is an SAP ABAP add-on software product, which enables
easy and standardised integration from SAP R/3 to any third-party system and vice
versa.

The communication between these two systems is based on sending and receiving
XML messages (Web Services) or alternatively you can use file protocol functionality
for XML or other file format communication.

It creates a service layer (SOA), where communication messages can be viewed and
edited. The communication layer is separated from the functionality of the SAP
system and the integrated third-party systems. This is a very important concept of
this connector, because it brings great advantages during development and
productive usage. Especially changes of one system can be handled much easier.

It creates direct integration between systems with a communication layer.
Technically the EPO XML Connector is an ABAP add-on product. There are no

modifications of the SAP system. It is developed in namespace /EPO1/.

1.1.2 IMPORTANT NAMING TERMINOLOGY

For the EPO XML Connector we always take the look of SAP, when describing (web)
services.

1.1.2.1 INBOUND (CALLING A SAP SERVICE)

v SAP provides the service: This can be a web service of a function
module (published) or any other service from SAP, which can be accessed
from outside using the HTTP(S) protocol.

71114

An external application consumes the SAP service

The request XML comes from outside, the response XML is from SAP
Request XML has direction IN

Response XML has direction OUT

AN

1.1.2.2 OUTBOUND (CALLING AN EXTERNAL SERVICE)

<

Service is provided external: This can be a web service or any other service
outside SAP using the HTTP(S) protocol.

SAP consumes the external (web) service

The request XML comes from SAP, the response XML is sent to SAP

Request XML has direction OUT

Response XML has direction IN

AN

1.1.2.3 OVERVIEW OF FUNCTIONALITY (SAP INTEGRATION)

Technical view

Web Services

v’ Integrate external Web Service

v" Provide Web Services

File Interfaces/FTP/...

v' Create Files (XML and others) and store it or send it out

v" Receive (Upload) files into SAP

IDOC interfaces

v Currently only supported with API for monitoring. Full IDOC support only with
additional programming. Please contact EPO Consulting, if you want to use
EPO XML Connector for IDOC interfaces.
Will be fully, integrated supported with next major release of the EPO XML
Connector

Business view

Third-party software integration

v' Tested and SAP certified with Metastorm BPM (using Microsoft Web Service
technology = .NET Web Service technology)

v Integrates any web service enabled software

.NET developments

v' Enables direct web service integration using SOAP and WSDL. Significant
advantage to .NET Connector from SAP (using proprietary RFC)

Java developments

v' Enables direct web service integration using SOAP and WSDL. Significant
advantage to .Java Connector (JCO) from SAP (using proprietary RFC)

Application integration

v" Web service integration

v File integration

Document integration

v" XML document integration (Adobe Interactive Forms, MS Excel XML
documents etc.)

v" Microsoft Excel integration

8/114

v Other structured document integration (CSV etc.)

SAP Portal integration

v" Web service integration instead of JCO integration (using proprietary RFC)
Portal and Website integration

v' Web service integration

v" XxHTML interactive forms with basic workflow functionality

Adobe products integration

v" Adobe forms integration

There will be new and existing applications, which will have SAP integration
provided by the EPO XML Connector.

1.2 SYSTEM REQUIREMENTS

v Any SAP system with SAP NetWeaver Application Server (ABAP) 6.20, 6.40,
7.00 or newer. See SAP menu: System — Status — Component version. See
component SAP_ABA.

(WAS 6.20 needs patch level 29 for EPO XML Connector. It uses cl_abap_gzip class to
compress XML messages)

Note: The EPO XML Connector is an official SAP component. So you can see it
after installation in the SAP menu: System — Status — Component version. See
component EPO1.

1.3 ARCHITECTURE, SCALABILITY, PERFORMANCE AND STABILITY

1.3.1 ARCHITECTURE

The EPO XML Connector is written 100% within the ABAP workbench. It can be
installed on any SAP NetWeaver ABAP server.

It can handle any incoming message and forward it to the SAP function (SAP
Inbound). It can also take a message for sending out and send it (SAP Outbound).
The protocol used (http, file, ftp,...) does not influence the interface within the EPO
XML Connector. Therefore protocols for interfaces can be changed anytime with little
effort.

9/114

Image: EPO XML Connector architecture

Web service call (http) Web service (http)
or file push (network, ftp, ...) or file destination (network, ftp, ...)
Server xy n
Ef::leest Response
(http)
SAP SAP
Response Request
Inbound | {http) or file | Outbound
Web Service EPO XML Connector (EXC) EPO Client
LG UL ELE an ABAP add-on solution

SAP NetWeaver® (ABAP®) Server

1.3.2 ScaLABILITY

The architecture allows endless scalability. Scaling up the solution at any time is
easily possible.

Setting up http listener processes can be done with setting a profile parameter
(number of parallel threads per application server). All other settings influencing the
performance of the EPO XML Connector are SAP NetWeaver Web Application
Server settings (including logon procedures), too.

Central SAP system installation

The EPO XML Connector can be installed on the central SAP system. This is often
SAP ERP (ECC 6.0). Load balancing can be achieved with standard load balancing
(1 message server, several application servers — load balancing also works with http,
same like rfc). The SAP Web Dispatcher is another option for load balancing and
security settings (can be setup in DMZ).

Central SAP system installation on dedicated server

The EPO XML Connector can also be installed on a separated, dedicated SAP
NetWeaver application server. The communication from this “middleware / EAI”
server (which is a SAP NetWeaver runtime) to the back-end SAP systems is easily
achieved with RFC calls.

Another option would be using SAP Solution Manager or another central SAP
system.

Decentralised SAP system installation

The EPO XML Connector can be installed on any SAP solution running on SAP
NetWeaver ABAP. It can be used to allow direct connections to each of those SAP
systems.

10/114

1.3.3 PERFORMANCE

The EPO XML Connector was designed and implemented for highest performance.
Because of its architecture allowing direct integrations it outpaces all other solution.
There is virtually no overhead, which would slow down integrations. The actual
function is either a standard SAP function module or a custom program, which must
be called anyway.

In fact, because of using 100% ABAP it reaches almost same performance values as
users experience within the SAP GUI.

1.3.4 StaBILITY

The EPO XML Connector uses SAP NetWeaver application server without modifying
anything. It just uses standard functionality (which is often completely unknown) of
SAP NetWeaver. This is the SAP server used for all SAP solution based on ABAP
technology (like SAP ERP, ECC 6.0, SCM...). It is almost needless to say, that this is
one of the most stable servers.

The EPO XML Connector is used on SAP production systems with millions of
transactions per year.

1.4 EPO XML CONNECTOR AREA MENU /EPO1/SOAT

Access area menu with transaction code: /n/[EPO1/SOA7

Note: For WAS 6.20 version the area menu is /n/epol/soa and contains only functionality available on
WAS 6.20.

Note: For some reason it is necessary to enter the transaction code for the area menu twice, because
it gives an error message the first time (error message: transaction code does not exist).

The area menu is designed to help you navigate through the functionality of EPO
XML Connector. It is divided into three main sections. Each main section will be used
by different groups of users:

e “Data maintenance”,
e “Configuration” and
e “Administration”.

“Data maintenance” and “Configuration” section then divide into “Inbound” and
“Outbound” subsections hierarchically to help you choose the right option. Finally the
“Administration” section comprises universal file handling functions, archiving object
manipulation and set of transaction for the Connector maintenance.

Tip: Authorisation roles can be directly created from sections or subsections of area menus.

11/114

= | BAP menu
=) EPO XML Connectar Data Maintenance
= 4 Inbound XML Meszages (call of SAP Services)
@ JEFOUEPORTIMPROC - In: (ReIFrocess EFO Runtimme XML message
@ JEFOIMSIMNPROC - In: (Re)Process SAF Runtime XML message
@ JEPOTIDOWRLOADEMLIN - 10 Download XL message
@ JERPOIUPLOADEMLIM - In: Upload a Xkl message
@ JEFOUIMSERTEMLIN - [n: Insert new =ML message
= i Outhound XML Messages (call of external Services)
@ JEFOEPORTOUTPROC - Out: (RelProcess ERPO Client XML message
@ JERFOIMISOUTPROC - Qut: (RelProcess SAP Client XML message
@ JEPODOWPRLOADKMLOUT - Out: Download XML message
@ JEPOIUPLOADSMLOUT - Qut: Upload XML message
@ JEPOUIMNSERTEMLOLUT - Out: Insert new XML message
@ TEPC1MESSAGESLIST - List and viewe stored messages
= | EPO XML Connectar Configuration
@ FEPOC1ISERVICEST 2 - Maintain EFQ XML Connector sefvices
@ TEPC1ISERVICESS - Display EPO XML Contectar senices
= 4 Inbound Service Canfiguration (SAP Services)
= | EPO Runtime
@ EFOUEPORTIMNG 2 - In: Maintain EFQ Runtime service canfiguratian
@ [EFPCUEPORTIMG - In: Display EPO Runtime service configuration
@ ERPOTIPEM - In: Display pracessing function module templates (SE3T)
) JEPO1IGEMCFM 2 - GFMC: Change FM setting
) JEPOIGFMOCFME - GFMC: Display FM setting
E},a ERFOUFILERT - In: EPO Runtime File loading
=) SAP Runtime (SAP Web Services)
E},a ERPOTMSIMA 2 - In: Maintain SAFP Runtime service configuration
&3 ERP OISR G - In: Display SAP Runtime service configuration
&3 ERPOTMISIMHT Z - In: Maintain SAP Runtime service HTTP headers
&3 EROTIMISIMHS - In: Display SAP Runtime service HTTP headers
@ EFPOERIT WS - Display SAP Runtime custamer exits (SE37)
E},a SICF - HTTF Service Hierarchy Maintenance
&3 WSCOMFIG - Release Weh Services
&3 WiSADMIMN - Web Service Administration
= Quthound Service Configuration (External Services)
=) EPO Client
ISEJ EFOUEPORTOQUT 2 - Out: Maintain EFO Client service confinuration
Gﬁ [EFCUEPORTOUTS - Qut: Display EFQ Client senice configuratian
2 [EPO1EPORTOUTHY 2 - Out: Maintain EPO Client HTTP headers
) JEPO1EPORTOUTHS - Out: Display EPO Client HTTP headers
Gﬁ [EFCUIERPQCLIEMNT - Display EFQ Client function module
= | BAP Client (SAP generated ABAFP Client proad
EB EFPCIMISOUITT 2 - Out: Maintain SAP Client service configuration
@ [EFPOIMISOUTS - Out: Display SAP Client service canfiguration
E},a LPCOMFIG - Maintain Logical Ports
&3 IERPOTIERIT _WS - Display SAF Client custamer exits (SE3Y)

Area menu continues on the next page.

12 /114

= 2 Monitaring
@ ERPOTMORMITORT 2 - CreatedChange monitaring profiles
Gﬁ ERPO1MORNITORS - Display monitaring profiles
GEJ EFOTMONITOR - EFOQ XML Connectar Manitor
Gﬁ EFCTIMOR - Maintain default number range JEPO1MOR
i) SMROD - Mumber Range Objects
) SE20- Ohject Mavigator
@ SE3T - ABAP Function Modules
= o Templates
@ fEFPO1IPFM - ERPO Runtime function module templates (SE3T)
&3 IEROTEBCE_ACTUAL WEA - EPO Client template - Actual weather
Gﬁ IEFOVECH_CITIES_BY - EFQ Client template - Cities by country
2 IEPOUECK_CITY_TIME - EPOQ Client template - Get city time
Gﬁ IEFCUECE_FILE_BBGD - EFQ Client file protocaol template - bapi_bank_oetdetail
e JEPO1IECH_MBPM_TAKEC - EPO Client ternplate - Metastarm BPM
E{ﬁ EFC1TTMP_TRAMSFORM - ABAP Serialisation demo program
= T EPO XML Connector Administration
= | Download / Insert Upload files from fto directony
&3 [ERO1IDOWY M LOADEML - Download ML messages to directary
Gﬁ EFOTUPLOADEMLDIR - Upload XML messages from directory
I'&:fl EFOUINSERTEMLDIR - Insert new XML messanes from directory
= Archiving XML messages
Gﬁ [EFO1ISARAT - Archive Administration for ohject IEFPOT LEMLT
Gﬁ ADB - Archiving object definition
E{ﬁ FILE - Cross-client file names | paths
EE ERPOTMOMNITOR - EFQ XML Connectar Manitor
Gﬁﬂ ERPOTISETETATLIS - Set status of XML message manually
(2 SMICM - |CM monitar
ISEJ SICF - HTTP service hierarchy maintenance
Gﬁ [EFCISETLICERMSE - Load license key for EFQ XML Connector
@ [EFOUTEMPLATESLIMCOM - Lincomment ! comment template programs

1.5 FUNCTIONS AND FEATURES

Common functionality

Synchronous and asynchronous processing and reprocessing
Logging transactions, storing XML request and response messages
XSLT transformations of request and response messages
Customer exits where it is not possible to enter the process directly
Using file(s) (FILE protocol) as request(s).

Downloading and uploading XML messages to/from files
Synchronous and asynchronous monitoring of transactions

AN NN

1.5.1 InBOUND

“Inbound” in EPO XML Connector stands for integration where your SAP system
provides the service, therefore primary connection is made from outside by
“incoming” request. There are two options to implement such scenario in the
connector: EPO runtime and SAP runtime.

13/114

1.5.2 OuTBOUND

The outbound part of the EPO XML Connector represents scenarios where there is
an existing web service “outside” your SAP system, which you want to use in SAP.
Thus your system needs to send out the request in order to receive the response.
Like in the inbound part there are two options to implement this scenario in the
connector: The unique EPO Client and the generated ABAP client proxy (enhanced
SAP standard). The EPO Client also allows writing request messages down to a file
system or to send it out using ftp (ftp target folder must be mapped like a network
drive).

1.5.3 MAPPING &. INTERFACE STRUCTURE DEFINITION

Starting from EXC 17E (O7E on WAS 6.20) support package one we have enabled
you to create mapping and structure function modules for your services. Although
you do not need to use this functionality, it is recommended to do so. The
configuration input parameters are only informative, no functions are called
automatically, and you need to call them yourself in your service code. The main
reason for doing this is having central storage for your XML interfaces, both inbound
and outbound, and ability to choose from existing interfaces rather then writing a new
one for each service. There are two types of function modules available — structure
and mapping. Structure FM we use for converting XML into ABAP variables,
structures, or tables and vice versa. In mapping FM we change output or prepare
input variables for structure FM. Of course this is only how we used it in our
examples, as | said before; the notations in configurations do not really do anything,
SO you can use these functions for other purposes.

Example: You use the same XML request message for several services, each with
different functionality. So, you wrote CALL TRANSACTION ID SOURCE XML... for
getting the ABAP variables out of the XML. You may or not put in into function
module to be able to use it again, but now you can make a note into your service
configuration, that it uses this particular FM. To be able to do this you only need to
put the FM into package /EPO1/EXC_REPOSITORY and corresponding Function
Group.

Available function groups are: (in package /EPO1/EXC_REPOSITORY)

- EPO Runtime (inbound)

/EPO1/IN_REQUEST_STRUC (XML to ABAP)
/EPO1/IN_REQUEST_MAP (ABAP to ABAP)
/EPO1/IN_RESPONSE_MAP (ABAP to ABAP)
/EPO1/IN_RESPONSE_STRUC (ABAP to XML)

- EPO Client (outbound)
/EPO1/OUT_REQUEST_MAP (ABAP to ABAP)
/EPO1/OUT_REQUEST_STRUC (ABAP to XML)

JEPO1/OUT_RESPONSE_STRUC (XML to ABAP)
JEPO1/OUT_RESPONSE_MAP (ABAP to ABAP)

14 /114

Image: Structure and mapping FMs in EPO Runtime service configuration

Change View "Configuration for EPO Runtime inbound services": Details

%2 | New Entries | (3 & = & & B

Service name er_hapi_bhank_ogetdetail
Operation er_hapi_bhank_ogetdetail
Wersion

Configuration for EFO Runtime inbound services
MR ohject fEPOT/NOR

Subohjectvalue

Mumber Range Mumber 00

[Inactive

Frotacal O HTTF

Processing type S Synchronous

Store XhL B store request and response information including XML meszage
[w] Compress

Frocessing FM JEPD1JERY_BAPI_BANWE_GETDETAIL
RFC Destination

HELT in JEPOT/SOAP_DOC_TO_ABSXML

HELT out FEPOT S ASXML_TO_SOAP_DOC
In.Redq.Structure Fid fEPD1 G IRS_BAPI_BANE_GETDETAIL
In.Req.Mapping Fh JEPO1/IRM_BAPI_BANKE_GETDETAIL
In.Res.Mapping Fh fJEPOT1/TSM_BAPI_BANK_GETDETAIL
In.Res.Structure Fhi fEPO1 /IS5 _BAPI_BAMK_GETDETAIL

[]FILE na impart twice
FILE custorm exit Fh
Manitoring prafile EFOTEST

Description EF O Runtime service confuguration example

il il

L]

1.5.4 FEATURE: CENTRAL DATA STORAGE

There is an option for each scenario to store
- header data and
- message data

For synchronous services (web services) this storage can be done for request and

response.

Header data (logging)
All header data is stored in table /EPO1/XMLHEAD

Message data
All message data is stored in table /EPO1/XMLDATA. The data is stored
format.

This feature creates a central place for monitoring of the integration. Independently
from the type of the integration (file upload/download up to web services) all data is

stored in 1 central place.

in binary

15/114

It enables
- logging (who, what, when,)
- reprocessing
- display of messages
- editing of message

1.5.5 FEATURE: REPROCESSING OF SERVICES

When a service is set up to store message data, it can be reprocessed.
Reprocessing is only possible, if the status of the message to be reprocessed is less
than 53.

Asynchronous services
Processing must be done to fulfil the purpose of the service. Jobs can be scheduled
to automate this. Reprocessing can be done in error cases.

Synchronous services
Reprocessing can be done in error cases.

1.5.6 FEATURE: XSL TRANSFORMATIONS (XSLT)

Since Release 6.10 of the SAP Web Application Server (SAP Web AS), XSL
Transformations (XSLT) have been integrated in ABAP via the CALL
TRANSFORMATION command. XSLT is the most powerful and advanced
technology available for the transformation of XML documents. XML data can be
transformed into ABAP data structures and vice versa; however, XSLT is not limited
to those types of output. You can also generate HTML documents or plain text files
that are made available as loadable assets to other applications. XSLT is widely used
and well documented, we don't intend to give all the information in this document —
just a brief start point - you can find useful links in the end of this appendix. In EXC
we use these transformations for formatting input and output XML messages and for
XML to asXML conversion.

We recommend using your own transformation software to develop your XSLT
transformations. You can also get professional service from EPO Consulting for this
task. Or you can use SAP transaction XSLT and XSLT_TOOL to develop XSLT
transformations.

XSLT can be applied to services in the EPO XML Connector for inbound and
outbound messages in the configuration.

You must store all XSLT as “Transformations” in data dictionary using the object
browser (SE80). See “Others — Transformations”.

1.5.7 FEATURE: SAP AUTHORISATION BY SERVICE

With EXC release 30A SP3 you can switch on authorisation check for services. This
allows you to control the authorisation for any integration with standard SAP security.
Technical details are described in chapter 3.2 Authorisation object.

16 /114

1.5.8 ConcePT oF XML 1O ABAP AND ABAP TO XML TRANSFORMATION
(SERIALISATION)

XML messages must be transformed to ABAP variables or ABAP variables must be
transformed into XML messages. In the EPO XML Connector we are using the
standard ABAP command

CALL TRANSFORMATION

This is an implementation of the standard XSLT transformations as defined from
W3C (www.w3.0rg).

You can find a demo program in the EPO XML Connector area menu (EPO XML
Connector Configuration - Templates). The documentation including the source code
of the demo program can be found in _Appendix 2: Demonstration of ABAP
Serialisation.

asXML format

SAP has defined asXML as an internal XML format for ABAP transformations. asXML
can be transferred with the internal “ID” transformation to ABAP variables. Also when
transferring ABAP variables into an XML string using the ID transformation, asXML
will be the result.

Important: asXML can only contain XML elements in capital letters. For example
<MESSAGE> is allowed, but not <Message>.

XML transformation into ABAP

When transforming a XML document into ABAP it can be done in 2 steps:

First transform the XML document into asXML and then transform it into ABAP using
the ID transformation. Obviously these 2 steps can be combined into 1. But for
understanding the concept the first transformation is decisive.

Step 1. XML to asXML

CALL TRANSFORMATION yourxslt
SOURCE XML sourcexml
RESULT XML asXML

Step 2: asXML to ABAP variables
CALL TRANSFORMATION ID

SOURCE XML asXML
RESULT XMLElementl = ABAPVariablel
ComplexXMLElementl = ABAPDeepStructureVariablel.

Orin 1 step: XML to ABAP variables
CALL TRANSFORMATION yourxslt
SOURCE XML sourcexml
RESULT XMLElementl ABAPVariablel
ComplexXMLElementl ABAPDeepStructureVariablel.

http://www.w3.org/�

17 /114

The EPO XML Connector uses the 2 step technique for EPO runtime and EPO
Client. This enables you to assign the XSLT in the configuration and do only the ID
transformation in your custom ABAP programming.

For SOAP XML to asXML transformation a generic XSLT is provided with the EPO

XML Connector:

/EPOL1/IN_SOAP_TO_ASXML SOAP XML to asXML transformation translating all
XML elements into uppercase.

ABAP into XML transformation
This is achieved again with the ABAP command CALL TRANSFORMATION and can
also be done in 1 or 2 steps.

Step 1: ABAP variables to asXML
CALL TRANSFORMATION ID

SOURCE XMLElementl = ABAPVariablel
ComplexXMLElementl = ABAPDeepStructureVariablel
RESULT XML asXML.

Step 2: asXML to XML

CALL TRANSFORMATION yourxslt
SOURCE XML asXML
RESULT XML targetxml.

Or in 1 step: ABAP variables to XML
CALL TRANSFORMATION yourxslt

SOURCE XMLElementl = ABAPVariablel
ComplexXMLElementl = ABAPDeepStructureVariablel
RESULT XML yourxml.

The EPO XML Connector uses the 2 step technique for EPO runtime and EPO
Client. This enables you to assign the XSLT in the configuration and do only the ID
transformation in your custom ABAP programming.

For asXML to SOAP XML transformation a generic XSLT is provided with the EPO

XML Connector:

[EPO1/ASXML_TO_SOAP asXML to SOAP XML transformation. It uses
a XML element <RESPONSEOPERATION> to
determine the name of the operation (the child of
<body>). This allows the XML Transmitter to create
a valid WSDL file. Example:
<RESPONSEOPERATION>BAPIUserGetDetail</R
ESPONSEOPERATION> will lead to
<body><BAPIUserGetDetailResponse>...
If <KRESPONSEOPERATION> is not created with
CALL TRANSFORMATION, the xml element will be
named just <Response>.

18/114

Creating a web service for SOAP XML for SAP Inbound (SAP provides the web
service)

This means, that the request XML will be a SOAP message posted to SAP. So you
will apply XSLT /EPO1/IN_SOAP_TO_ASXML in the configuration for direction | (In).
For the response XML you will apply XSLT /EPO1/ASXML_TO_SOAP for direction O
(Out).

1.5.9 CONCEPT OF OTHER DATA FORMAT TO ABAP TRANSFORMATION AND
VICE VERSA

All messages are kept in binary format in the EPO XML Connector. Therefore any
message format can be handled.

1.59.1 SAP INBOUND DATA CONVERSION USING EPOQ RUNTIME

EPO runtime requires using a processing function module for processing the data in
SAP. The message data is provided with IMPORTING parameter
| REQUESTXML TYPE XSTRING

Now you can use any technique available in ABAP to use this binary data. Beside
XML data handling with ABAP command CALL TRANSFORMATION there are
various function modules etc. available.

Examples:

“Upload” or http(s) receipt of Microsoft Excel files (.XLS)

“Upload” or http(s) receipt of text files, CSV files or other structured files
“Upload” or http(s) receipt of IDOC files

1.5.9.2 SAP QuTBOUND DATA CONVERSION USING EPQ CLIENT

EPO Client needs the request data in binary format. It must be provided to
IMPORTING parameter
| REQUESTXML TYPE XSTRING

Now you can use any technique available in ABAP to produce this binary data.
Beside XML data handling with ABAP command CALL TRANSFORMATION there
are various function modules etc. available.

Examples:

“Send” or download of Microsoft Excel files (.XLS)

“Send” or download of text files, CSV files or other structured files
“Send” or download of IDOC files

19/114

2 INITIAL CONFIGURATION

There are few things you have to do before you can start working with EPO XML
Connector. First you need the software license key for the connector to operate, next
you create number ranges for your services and finally you must activate connector
services for inbound calls.

2.1 UPLOAD LICENSE KEY

In order to use EPO XML Connector on SAP production systems you need to upload
the license key file into your system, which you can obtain from EPO Consulting. To
try out our product first, there are evaluation licenses available as well.

Area menu: EPO XML Connector Administration — Load license key for EPO
XML Connector
Transaction: /EPO1/SETLICENSE

Image 1: Screenshot from license program

Load License key for EPO XML Connector
&

License File Path to license file you obtained from EPO Cansulting| @

FProduction mode
Testmode (-1

You must upload the license key in “Production mode”!

2.2 CREATE NUMBER RANGE(S)

The numbers generated by number range(s) are used to identify each
transaction=message (TransactionID) for services used with the EPO XML
Connector. You can create your own number range object using transaction SNRO
(also in EPO area menu - EPO XML Connector Configuration—~ Number Range
Objects) or can use predefined “/EPO1/NOR” number range object, but in that case
you need to set up at least one number range — default “00” range, although you can
have different number range for each service eventually (see example on image
below). We recommend using at least 2 different number ranges for inbound and
outbound services.

Note: Default number range number ‘00’ (identifier of number range) is used when nothing is set in the
service configuration.

Area menu: EPO XML Connector Configuration — Maintain number range for
EPO XML Connector messages
Transaction: /EPO1/NOR

20/114

Image: Number ranges example

Display Number Range Intervals

MR Ohject Mo.Ranges EPO XML C.
Intervals
[+, |Fr|:|m numhber To nurmber Current numkber |E}{t @
00 po000o00000000L! 000000009993999 0 I [+]
0l 000000010000000 000000019999999 1] | g

2.3 ACTIVATE SERVICES

Since it is not possible to deliver active services, you are required to activate
epolsoa service and all subsequent children of it (images below). The inbound part
of the EPO XML Connector depends on these services.

Area menu: EPO XML Connector Administration — HTTP Service Hierarchy
Maintenance (ICF)

Transaction: SICF

Virtuelle Hosts I Services

[EPOea

I sap

b
z_http_ql
z_http_rs
7_http_se

T

@ Do ywou wwant to activate service fdefault_hostrepolsoa?

Image: Service activation in SICF

Diocumentation

YIRTUAL DEFALLT HOST

MNew Sub-Element
Display Service
Delete Service
Eename Service

ctar from EPOQ Consulting

Activate Service

Test Service

TestLoad Balancing

" 1S OBLIGED NOT T DELIVER ANY SERWICES OF THE HTTP FRAMEW..

N Fields

Image: Activate all subsequent children of a service
Activation of ICF Sermvices

|ﬁgg ves | Info " 3% Cancel

21/114

3 EPO XML CONNECTOR SERVICES CONFIGURATION &
DEVELOPMENT

3.1 DEFINITION OF SERVICES (INBOUND & QUTBOUND)

Every operation (= integration scenario) of EPO XML Connector we call a service
and every one of these services must be defined in the “services” table. Although the
service record contains more information, basically it is just name and direction,
which you use to create “service configuration”. This enables you to use different

operations and versions of the same service.

Area menu: EPO XML Connector Configuration — Maintain Services EPO

XML Connector
Transaction: /EPO1/SERVICES12

Area menu: EPO XML Connector Configuration — Display Services EPO

XML Connector
Transaction: /EPO1/SERVICES3

Image: EPO XML Connector service setting

Service name |erd_hapi_bank_getdetsil

|"E_F'D ML Connector services
[I to SAP, call 8 SAF semvice El

Direction of service
Fartner number
F'artnert_y'pe

[Inactive

] operation mandatary
[JAuthorisation check
IN:}{E_LT Dpe_ratil:un_
[]IM: use hitp header
[]IM: use guery string
Message farmat

FILE directory

FILE narmme

Descript@nn I_EF'D Huntime exampln_a SEMice
[v] Callstack in errors

JEPONSGETHAIMFIELDS _EXAMPLE

Service name: For inbound services the service name is determined by

the name of web service you are using.

For outbound services you can freely define a unique
service name.

Direction of service: Inbound (IN to SAP), outbound (OUT of SAP)

22 /114

Partner number and type: Partner definition for the service. The fields will also be

Inactive:

Operation mandatory:

Authorisation check:

IN: XSLT operation:

In: Use http header:

In: Use query string:

used for IDOC monitoring and / or integration.
You can turn off the service by setting it to inactive.

This setting makes sure that no processing takes place if
passed operation does not exist in service's configuration
table. In opposite situation (operation mandatory not set)
the configuration with empty operation, if exists, will be
used for any non-existing operations.

When this is enabled, EXC always checks user
authorisation for object /EPO1/ECS for service being
processed.

Used only for inbound.

This field is optional. XML transformation which extracts
* operation,

* version and

* foreign keys (FKEY1-FKEY4) out of the request XML
message. Foreign keys (if used) are stored in the
message header table (if configured to store). So you
don’t need to store the whole xml messages, if you want to
log just up to 4 parameters from it.

Extract the “operation” of a web service here, if the web
service has got more then 1 operation and http header
“*SOAPaction” is not used for the call.

Note: This applies to FILE protocol as well (Inbound only)

Used only for inbound.

This field is optional and will only be used, if “XSLT
operation” (see above) does not provide the “operation”.
The handler will get

*operation — http header: “SOAPaction”,

* version — http header: “version” and

* foreign keys - http header: “fkeyl” to “fkey4”

from HTTP header if you set this checkbox.

Note: If you both use “XSLT operation” and set “Use http header”
then using HTTP header has lower priority and will only be
processed, if “operation” was not retrieved with “XSLT operation”.

Used only for inbound.
This field is optional and will only be used if “XSLT
operation” and “HTTP Header” (see above) functions (if
set) does not provide the “operation”.
The handler will get

- operation variable “operation”

- version variable “version” and

- foreign keys variable “fkeyl” to “fkey4”
from URL (http://server/service?operation=something).

http://server/service?version=something�

23 /114

Note: If you use all “XSLT operation”, “Use http header” and “Use
query string” then using Query string has the lowest and will only be
processed, if “operation” was not retrieved using the other two
methods.

Message format: This field is optional
Format of a service message. By default the value is XML
even when this entry is left empty. This format is used as
filename extension in file handling programs and UM
protocols of EPO XML Connector.

FILE directory: Directory for file reading (EPO Runtime - inbound) or
storing (EPO Client - outbound) used in FILE protocol.

FILE name: File name for FILE and UM protocols. For EPO Runtime
(inbound) files this field can contain search pattern. The
search is using ABAP logical expression “CP”. Masking
signs are ¥ and ‘+’ and search is not case-sensitive.
Hint: 1t will read first always all files in the specified
directory and then reduce it to the number of matching
files. So keep you directories as clean as possible.

Description: Your description of the service.

Callstack in errors: Set this flag to include ABAP call stack in /epol/callstatus
error messages for the service.

3.2 AUTHORISATION OBJECT

Authorisation check can be enabled in service configuration. It allows you to create
and assign authorisations for each service.

The authorisation object is /EPO1/ECS (class EPO1), authorisation /EPO1/EXSAQO,
and field name /EPO1/SNAM — name of service being used. Like with any other
authorisation object, you can use transactions PFGC, SU01, SU02, SU03 to maintain
and assign authorisation profiles and roles. When authorisation check fails, the error
message is given back in callstatus parameter.

Example: You could create a communication SAP user, which is authorised only for 1
specific SAP Inbound service. In ICF you could then create an alias (or ICF service),
where you enter this user and password. This way you get a trusted service, which
can be used in your intranet without logon data required.

Next chapters:

Inbound (calling a SAP service)
The inbound section is guiding you through creation and setting up EPO runtime and
SAP runtime services of the EPO XML Connector (providing a Web Service).

24 /114

Outbound (calling an external service)

The outbound section describes how to create and use services for communication
with web services “outside” of SAP. There are two options for implementing outbound
services in the EPO XML Connector: EPO Client and SAP Client (consuming a Web
Service).

3.3 INBOUND: EPO RUNTIME

EPO runtime provides a unique HTTP(s) handler, which is represented by the URL
address sap_default_host/epolsoa/xmlhandler. XML messages can be posted to this
URL. When the handler receives the request message it is able (in order) to store,
XSLT transform, and process it. (Re)Processing is done by calling customer-
developed function modules. This XML handler can store or log and XSLT transform
the response message as well. The same thing can be done using files stored on
your file system rather then HTTP(s) requests. In this case we call it EPO FILE
runtime or FILE protocol.

A WSDL file can be created easily using the “WSDL create” functionality of the XML
Transmitter (freeware from EPO Consulting).

The unique EPO runtime is one option creating an inbound integration with SAP. The
other option for inbound integration is using the SOAP runtime of the EPO XML
Connector. You can decide service by service, which option is appropriate. We
recommend using EPO runtime as it returns far better error messages.

Overview: Steps for creating inbound integrations using EPO runtime:
e Define XML messages (request and response)
e Configure the service in the EPO XML Connector
e Write the custom function module for processing the request and response
XML message (e.g. map the XML elements to the internal used BAPI).
e Create WSDL using XML Transmitter
e Test your integration

3.3.1 STATEFUL (SESSION) HANDLER

On the top of previously described handler (xmlhandler), there is also a stateful
handler available (sap_default_host/epolsoa/apphandler), which you can use to
create server sessions for EPO Runtime services. When the session is created after
successful logon, server sends identification cookie (‘set-cookie’ header) which you
need to use (‘cookie’ header) to be able to access the opened session. Sending any
value in HTTP header named ‘exc-terminate’ will close the session. Read more info
about stateful communication at help.sap.com.

3.3.2 USING HTTR(S)

The EPO runtime is implemented as a HTTP handler for SAP NetWeaver Application
server (WAS). In the SAP service tree (transaction SICF) it is located in

http://help.sap.com/saphelp_nw04/helpdata/EN/72/c730f8c06511d4ad310000e83539c3/frameset.htm�

25/114

sap_default_host/epolsoa/xmlhandler. The call of such an inbound service is done
by posting (HTTP POST) a XML request message to this handler.

Example call: http://vepo2005:8000/epolsoa/xmlhandler/BAPI BANK GD ERT?
Explanation of this call:

The host “vepo2005” and port “8000” are from the SAP WAS.
“lepolsoa/xmlhandler/” is the EPO runtime HTTP handler on SAP WAS.

The URI “BAPI_BANK_GD_ERT” is the service name, which must be configured.

3.3.2.1 IMPORTANT HTTP HEADERS

SOAPaction (optional): The operation of the service.

Hint: The operation of a service can also be defined in the XML of the service itself
(first child element of <soap:Body>

Sap-client (optional): SAP logon client (Web logon, not an RFC logon)
Sap-language (optional): Logon language to SAP

ContentType: For example text/xml or text/plain

ContentLength: Normally automatically added

Method: POST

3.3.3 USING FILE, FTP

You can use file(s) as a runtime request(s) by setting up job which runs
lepol/exc_fileruntime program. This program checks specified service and
configuration and then reads files from directory specified in service settings and
processes them as requests similarly to HTTP requests. For ftp access you can use
the same thing by mapping ftp site to your file system.

3.3.4 CREATING EPO RUNTIME ~ INTEGRATION GUIDE FOR HTTP PROTOCOL

3.3.4.1 DEFINE INTERFACES ~ REQUEST AND RESPONSE XML MESSAGES

Request XML definition example (BAPI_BANK_GD_ERT service)

<?xml version="1.0" encoding="UTF-8"?>
<soap:Envelope xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmins:xsd="http://www.w3.0rg/2001/XMLSchema"
xmins:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<mO0:BAPI_BANK_ GETDETAIL xmIns:mO0="urn:sap-com:document:sap:rfc:functions">
<BANKCOUNTRY>AT</BANKCOUNTRY>
<BANKKEY>00100</BANKKEY>
</m0:BAPI_BANK_GETDETAIL>
</soap:Body>
</soap:Envelope>

Response XML message example (BAPI_BANK_GD_ERT interface)

<?xml version="1.0" encoding="utf-8"?>
<asx:abap xmins:asx="http://www.sap.com/abapxml" version="1.0">
<asx:values>
<BANKADDRESS>

http://vepo2005:8000/epo1soa/xmlhandler/BAPI_BANK_GD_ERT�

26 /114

<BANK_ NAME>Oesterreichische Nationalbank</BANK_NAME>
<REGION />
<STREET />
<CITY>1011 WIEN</CITY>
<SWIFT_CODE />
<BANK_GROUP />
<POBK_CURAC />
<BANK_NO>00100</BANK_NO>
<POST_BANK />
<BANK_BRANCH />
<ADDR_NO />

</BANKADDRESS>

<BANKDETAIL>
<CREAT_DATE>1999-04-01</CREAT_DATE>
<CREATOR>&It;UEBERNAHME></CREATOR>
<METHOD />
<FORMATTING />
<BANK_DELETE />

</BANKDETAIL>

<RETURN>
<TYPE />
<ID />
<NUMBER>000</NUMBER>
<MESSAGE />
<LOG_NO />
<LOG_MSG_NO=>000000</LOG_MSG_NO>
<MESSAGE_V1 />
<MESSAGE_V2 />
<MESSAGE_V3 />
<MESSAGE_V4 />
<PARAMETER />
<ROW>0</ROW>
<FIELD />
<SYSTEM />

</RETURN>

</asx:values>
</asx:abap>

3.3.4.2 CrEATE EPO RUNTIME SERVICE

The service creation is described in Definition of Services (Inbound & Outbound).

Area menu: EPO XML Connector Configuration — Maintain Services EPO
XML Connector
Transaction: /[EPO1/SERVICES12

Image: EPO Runtime service example

27 /114

Senicename enc bapi_bank getdetal

[1M to SAP, call 2 SAP service

JEPO1/GETHMATINFIELDS_EXAMPLE

Parnernumper

Parnertpe

U

U

JISEENEREIS SN /c°01/GETHAINF IELDS_EXAPLE |
(|

(|

EFCQ Runtime example semice

3.34.3 ConFiGURE EPO RUNTINE SERVICE

Area menu: EPO XML Connector Configuration — Inbound service configuration

(SAP Services) — EPO runtime — In: EPO runtime maintain service configuration
Transaction: /EPO1/EPORTIN12

Image: EPO runtime configuration example

Service name
Cperation
Yersian

28/114

erx_hapi_hank_getdetail
erx_bapi_bank_getdetail

Configuration for EPO Runtime inbound services

MR object
Suhaobjectwvalue

[Inactive

Protocal
Processing type
Store XL

[+] Compress
Processing Fi
RFC Destination
HELTin

HSLT out
In.Req.Structure Fh
In.Req.Mapping Fhd
In.Res.Mapping Fhi
In.Res.Structure Fh

Monitaring profile
Description

Humber Range Mumber

[_IFILE na impart teice
FILE custorm exit Fi

EFC Runtime service confuguration example

{EPO1/MNOR

]

O HTTF
S Synchronous

. A 1. |

L.}

B store request and response information including XML message

{EPO1/ERY_BAPI_BANE_GETDETAIL

AEPOTASOAP_DOC_TO_ASXHL
FEPOT S ASHML_TO_S0AaP_DOC
JEPOTAIRS_BAPT_BANK_GETDETAIL
JEPOTSIRM_BAPI_BAME_GETDETAIL
JEPO1SISM_BAPI_BAME_GETDETAIL
JEPO1SIS5_BAPI_BAME_GETDETAIL

EPOTEST

Service name:

Operation:

Version:

NR object:

Subobject value:

No Range No:

The name of service as it is set in service table described in
section 3.1.

Operation of the service - you can create / use more
operations of one service or leave it empty.

Version of the service / operation. Using the version parameter
you can implement changes to existing services and handle
new and old versions of XML requests.

Number range object used for creating transaction identifiers
(TransactionID). You can define your own object in transaction
SNRO or use default /EPO1/NOR”.

Number range sub object value for the configuration.

Number range number: It is used to create a unique
“TransactionID” for each service call. It is used throughout the
EPO XML Connector for requests and responses when
storing. Creation of number ranges is described in section 2.2.

29 /114

Protocol: Protocol used to acquire request XML. Default is HTTP. When
you set this to FILE, you can get the request from file(s). In
that case you will also need to fill the fields ‘FILE directory’ and
‘FILE name’ in service’s settings.

Processing type: Synchronous — the processing is done when the request is

received.

Asynchronous — nothing is done processing-wise but you can
configure the connector to save the xml message and
reprocess it later on (storing is described below in Store XML
field).

Store XML: This field offers several possibilities for storing HTTP request

and XML message:

0 Do not store any information: Obviously, the connector does not store any
information in this case. Suitable for synchronous processing when you do not
want to keep any data. Do not use for asynchronous services or for disabling
them.

1 Store request information: (only table /epol/xmlhead): The connector in this
case stores everything except XML message itself, but for (in this inbound
case) request only. This option you can use for logging HTTP requests to your
service when processing synchronously, but beware, you won’'t be able to
reprocess the request when using asynchronous processing.

2 Store request information including XML message: The request in this case
is stored including the XML message and you are able to reprocess it. This is
the solution for asynchronous processing when you do not need to log or store
responses. You can use this also when processing synchronously to be able
to reprocess the request in error cases.

3 Store response information (only table /epol/xmlhead): Response logging
could be the name for this option. The connector stores response information
except the XML which is given out. The request message itself is not stored
after processing.

4 Store response information including XML message: Complete response
storing is done when you choose this option. You can choose it to be able to
check the responses of your service.

5 Store request and response information (only /epol/xmlhead): Use this
option when you want to be able to check both request and response parts of
transactions of your service but you don’t care about the data transferred.

6 Store request and response information including XML message: Finally,
this is the “keep everything” choice. Use it when you require total control over
your service.

Note: Depending on service usage, stored XML messages could occupy quite some
database space. They are stored in database table [EPO1/XMLDATA.

Compress:

Processing FM:

RFC Destination:

XSLT in:

XSLT out:

In.Req.Structure FM
In.Req.Mapping FM
In.Res.Mapping FM
In.Res.Mapping FM

FILE no import twice:

FILE custom exit FM:

Monitoring profile:

Description:

30/114

If you check this checkbox, the XML messages are
compressed before storing (if configured to store).

Processing function module: This is the function module
which is called to process the request. Function module
structure (interface) and development of those function
modules is described below in detail.

The processing FM is called using RFC destination set in this
field, otherwise the FM is called locally.

XSLT transformation of request XML message. It takes part
in request handling right after the request XML message is
stored (if configured to do so) and before the message is
processed (by calling processing function module).

XSLT transformation of response XML message. This
happens after the message is stored, before sending out.

Section 1.4.3 of this document describes these fields in
detail.

FILE protocol only. Set this to disable importing the same file
twice for the configuration, which is done by storing filename
in /epol/files.

FILE protocol only. User-exit function module which is called
after the file is read and before it is processed. Interface of
this function module can be found in example
/epol/file_in_user_exit. You can use this FM to rename the
file after it has been successfully read into the EPO XML
Connector. Also you can disable processing of the file, if
renaming fails (e.g. because file is still written or changed).

This field sets monitoring profile for the service. Monitoring is
closely described in section 5.

Describe the version, operation, service or anything, but you
can leave it empty if you don’t need it.

31/114

3.3.4.4 CREATE PROCESSING FUNCTION MODULE

Processing function modules are used in the EPO runtime for
e receiving the XML request
transforming it into ABAP data structures
calling the function (BAPI, Call transaction Bl, RFBI* program, IDOC, ...)
preparing the response
transforming the response into XML
All processing function modules must have the same interface, thus you can
copy an example function module. We strongly recommend doing so.
Use transaction SE37 or SE80 to implement it.
Your own processing function modules will be in the Z* or Y* name space.

Processing function module example (naming convention of example function
modules for EPO Runtime is /epol/erx*).

function /epol/erx_bapi_bank getdetail .

"*Local Interface:

" IMPORTING

" VALUE(1_REQUESTXML) TYPE XSTRING
REFERENCE(I_SERVICENAME) TYPE /EPO1/SERVICE OPTIONAL
REFERENCE(I_OPERATION) TYPE /EPO1/0PERATION OPTIONAL

' REFERENCE(I_VERSION) TYPE /EPO1/VERSION OPTIONAL

' REFERENCE(I_TRANSACTIONID) TYPE /EPO1/TRANSACTIONID OPTIONAL

' REFERENCE(I_MESSAGEDIRECTION) TYPE /EPO1/MESSAGEDIRECTION

OPTIONAL
EXPORTING
' REFERENCE(E_XML) TYPE XSTRING
' REFERENCE (E_RESPONSEMESSAGE) TYPE /EPO1/MESSAGE
CHANGING

REFERENCE(C_REQUESTSTATUS) TYPE /EPO1/STATUS OPTIONAL
REFERENCE(C_REQUESTMESSAGE) TYPE /EPO1l/MESSAGE OPTIONAL

' REFERENCE(C_FKEY1) TYPE /EPO1/FKEY1 OPTIONAL

' REFERENCE(C_FKEY2) TYPE /EPO1/FKEY2 OPTIONAL

' REFERENCE(C_FKEY3) TYPE /EPO1/FKEY3 OPTIONAL
REFERENCE(C_FKEY4) TYPE /EPO1/FKEY4 OPTIONAL

*& Company: EPO Consulting

*& 1P Rights: Intellectual Property Rights and all other rights are

*& held by EPO Consulting

*& Copying or Modifying this program is only allowed with
*& written consent of EPO Consulting.

*& Author: WK

*& Date: March 2007

-

data: xml_bankcountry type string.

data: xml_bankkey type string.

data: 1 _bankkey type bapilOll key-bank key.
data: I_bankcountry type bapil01ll_key-bank_ctry.

data: | _bank address type bapilOll address.

32/114

data: | _bank detail type bapilOll detail.
data: I_return type bapiret2.

* Transform asXML to ABAP variables

try.
* CALL TRANSFORMATION id
- SOURCE
* XML i_requestxml
* RESULT
* xmlelemtentl = abapvariablel
* xmlelemtent2 = abapvariablel
* Tip 1: define abapvariable as strings. This avoids conversion
* errors, when the XML element contents is too long
* Tip 2: XML elements "tables™ can passed to internal ABAP tables
call transformation id
source
xml i_requestxnml
result
bankcountry = xml_bankcountry
bankkey = xml_bankkey.
catch cx_root.
C_requeststatus = "51°.
C_requestmessage = “XML wrong format”.
* write your own error message here
exit.
endtry.
if xml_bankcountry is initial or xml_bankkey is initial.
exit.
endif.

1 _bankcountry = xml_bankcountry.

1_bankkey xml_bankkey.
call function "BAPI BANK GETDETAIL"
exporting
bankcountry = 1_bankcountry
bankkey = 1_bankkey
importing

bank_address
bank detail
return

1_bank_ address
1 _bank detail
1 _return.

i

T l_return-type = "E".
C_requeststatus = "51°.

* write your own error message here
else.
C_requeststatus = "53". "processed successfully
endif.

c_requestmessage = |_return-message.

K AEAEAAAAAAXAXAAAAXAAAXAAAAAAXAXAAXAXAAAXAXAAXAAAAXAAA XA AKX ANK *AhKx

* use call transformation ID instead!
Transform asXML to ABAP variables

*

try.
* CALL TRANSFORMATION id

* SOURCE

* XML i_requestxnml
*

RESULT

33/114

* xmlelemtentl = abapvariablel
* xmlelemtent2 = abapvariablel
* Tip 1: define abapvariable as strings. This avoids conversion
* errors, when the XML element contents is too long
* Tip 2: XML elements "tables™ can passed to internal ABAP tables
call transformation id
source
bankaddress = 1_bank_address
bankdetail = 1_bank _detail
return = 1_return
result
xml e xml.
catch cx_root.
C_requeststatus = "51".
C_requestmessage = “XML wrong format®.
* write your own error message here
endtry.
endfunction.

3.34.5 CrEATE WSDL FOR SERVICE USING XML TRANSMITTER

To be able to use a web service in other programming environments you will
need to provide a WSDL. The XML Transmitter (freeware from EPO Consulting)
provides “Create WSDL” functionality.

The steps needed to create a WSDL are described here.

1. Step.

Define a request message on client side and response message on the server
side. You can “generate” the response message by testing your EPO XML
Connector service (use POST). Messages must be in SOAP format, it means,
they must have format from the schema definition
xmins:soap=http://schemas.xmlsoap.org/soap/envelope/.

Schema definition template for the request:

<?xml version="1.0" encoding="UTF-8"?>
<soap:Envelope xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmins:xsd="http://www.w3.0rg/2001/XMLSchema"
xmins:soap="http://schemas.xmlsoap.org/soap/envelope/">

<soap:Body>

< ... own structure ... />

</soap:Body>

</soap:Envelope>

Schema definition for the response:

<?xml version="1.0" encoding="UTF-8"?>
<soap:Envelope xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmins:xsd="http://www.w3.0rg/2001/XMLSchema"
xmins:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<...own structure ... />

</soap:Body>
</soap:Envelope>

(Same as for the request)

B XML Transmitter 1.9.3 Registered for EPO Consulting

| Fie

20 </soap:Bodyr
21 </sosp:Enveloper

Hame Value LChange headers
CartentType texthanl

Methiod POST

CartertLength 79

soapAction hitp: fiwnens epoconsuliing orgicomplexPerson

Current file:E:\Wobs\EPO4S ource_codetMLT ransmitter\bin<MLhabtacch0-83ca-453c-9d0d-907 372360240, %

2. Step.

Actions Options Help
) -
Destination: g, //localhost 2277 AwebS ervice T est2/Service. asms
Usermname: Password Part 2277 Timeout(s) 10
1] AddRML A ImpotwSDL % Create wSDL -5 Open config [Save config [Z] clear
client W W B Protocok SO4P - POST -
Directary |12
®

1 <?xml version="1.0" encoding="UTF-3"7>

2 <soap:Envelops xulns:xsi='heep://wne w3, org/Z001/0LSchens-instance” xmlns:zs

3 <soap:Bodys

4 <complexPerson xmlns="http://wvww. epoconsulting. org/ ">

5 “uyPersonls

[<uyName >

7 “namerstrings/nanes

5 <surnamerstring</surnane>

9 < juylauer

10 <myhdress>

11 <townrstring</towns

1z <countryrstring/counsry>

13 </myhdress>

14 “uyStates

15 <narriedrstring</marrieds

16 <frserstrings/freer

17 </myState>

18 </myPersonl>

19 </complexPersons

Configuation filzource_code'XMLT ransmitter' binteonfighast_configuration.sml Desiption

34/114

=la] x|
EPO Consulting
*4 History
<
D cer 9 posT BrosTal B View
Server] B B
Server 1]
]
L <7xml version="1.0" encoding="UTF-8"1=
2 <soap:Enwelope xmlns:xsi="hetp: // wmmw.w3.org/Z001/IL5chena-instance"” xmlns:xsd="ht
5 ssoap:Bodys
4 <complexPersonBesponse xmlns="http://www. epoconsulting. org/ ">
5 “complexPersonResults
3 <nyName>
7 <nawerstring</names
8 <surnamesstrings/surnamer
] < fuyHauer
1o <nyhdress>
11 <townrstring</towns
1z <zountrystrings/coumtry
13 </mykdress>
14 “myStates
15 “merriedsstrings/married
16 <freserstring</frees
17 </myStater
16 «/complexPersonBesule>
19 <fcomplexPersonBesponses
20 </soap:Bodys
21 </zosp:Enveloper
o | i
Name Value

Make sure the URL and http headers are correct.

Then push the button Create WSDL file

Function “Create WSDL file” starts the wizard for the creation. In

the first form

window will be definition for the destination and definition for the SOAP action

Create WSDL file Step 1 X

header.

Welcome to a WSDL file creation wizard

Flease specify below the location of the ‘wWeb Service Description location

URL:

soapAction:

http: /Alocalhost: 8000/zapsbedsitdifefsap 2w _BaP_BANE_GETDETAIL Psap-client=000

Cancel MNext =3

Second form shows definition for the request and response messages.

35/114

Create W5DL file Step 2

Select aweb service request and response messages

Fequest =L:

=7xml wersion="1.0" encoding="UTF-8"7>
“zoap: Envelope xmlns:xsi="http: /fwwr. w3, org /2001 XMLEchena-instance"”
xmlns: xsd="http: /fwww. w3 org/Z001 /HMLEchema"
xmlns: soap="http: //schemas. xnlsoap org/soap/enwvelope/">
=soap: Body=
<BankGetdetail xmlns="urn:sap-con:dooument: sap:soap: functions me-styla" =

“Bankcountryrstring</Bankcount ry-
“Bankkeyrstring< /Bankkey>

< /BankGetdetail>
=/=oap:Body>
“/zoap: Enwelopes

Responze #ML:

|-<? xml

“<soap:
xmlns:
xmlns:

warsion="1.0" encoding="UTF-8"7=

Envelope xmlns:xsi="http:/ /fwvww. w3 org/EZ001/ X LE8chena-instance"
xsd="http: /fwmmr w3 org/Z001 XML3chena”

soap="http: f/schenas xmlsoap. org/soap/envelopes ">

<soap:Body=
<BankGetdetailBesponse xmlhns="urn:sap-con: document:sap:soap: functions:me-style" >

“Bankhddress:
=BankName=string</BankNane>
=Regionrstring</Regions-
=Z8trestrstring</Strest>
=Cityrstring/City=
=EwiftCodesstring</SwifcCodex

=l

Cancel << Back Finish

To finish the action press the “Finish” button.

The created

WSDL file will be in the client side window. For checking the

correctness of the WSDL file it is possible to start “Import WSDL" file. After import

request and

response messages will be created, which must be same as a

source request and response messages.

[B o Transmitter 1.9 Registered for LPD Consulting
Heipr

| Fie Adics Cptiors

=18 x]

—
EPO Consulting
‘"“-—-._,—-/

m Distrialiont i ocabrost S000 s b sl sa/2WS_BAF_BANF_GE TDE TAIL eschent =000 4 Hisloy
Usemanne: Password Pl EDO0 Trmerou|} 10 <
(G AL . Il WL . Ciealr WL 5 0pen vony Ll v iy [E] Gox 3 s P rost Prosia B v
chient o W B B B Polocok s0F = FUST - server B B
Duectors| 1 [Sewver [
] H
1 <Tzml versions®1.0°7» - -
z . ® rming: gaspethEtp: /fechanat, rulsoap, argiuedl) saap /™ raine: z inEEanca” Tuine:reds’ |
3 ewsdlimypess 3
1 <a:achens wlemwntForsDelaults"gualified” targerNasespaces urn: sap-con:: 1 <BarkCotdetaillusponse ralussusn; sap-com: docusent:sap: soap: funct fons me-aty
5 crizenplexTyps nanessclass-Jaddiiis-421a- 4a06- adUb-2T0sI2ET0LE 5 S
5 2! acquansar 5 aHlankRABaP TG4 ARk e
1 <51 elenent 1° name Type=ty 7 “Degionsstrings/Reglons
8 names"Banklkey® typestaiat] <ELrewtratiings/Teets
3 3 AP ARG CaEy
10 10 <fui friodersurings GuiteCodes
11 11 <Bank e oupest 2 ing< BarkCroups
12 12 <PobkCur st s dnge PobkCuracs
13 13 allankRor SR ing 4/ IAnENE
14 Iy 1* name= Typer 14 <PostBani»string=/Foshan>
15 <s:element minDeeurss"l" mazDecurss®l” names"Bankkey® Cypestsi: 15 “BakBr mnche 3t e ing BankBranchs
15 R magaansar 5 AAdTRAY ST ing £ A4AE N
17 /31 complexTypes < Barihddresss 0
18 /st elenenms e —
19 <3:evmplezTypy names®class-93eTdIbT- FATZ-4500-3600-5d (6alul (341> <CrestDatusstsing/CreaDatex
20 “r: paip ACrastaT) EEEARTCCrastors
2 mindecurs="0" max0esurs="1* Method=strings Mechods
minDecurss®0” zaxlecurss®l® P — rat e b/ Formatt Lnge
1 Jrp trangd/lanke L atar
i » y 1= n ey typas T
nindocurs=*0" maxQeeurs="1" name="fuiftiode® cyp. 2 <Tewuen>
minDecurss®0” zaxlecurssl® names"BaskCroup” “Typurateings Trpa
1 n as ey €146 prrang/ 1dr -
1 »
Lhree braders LE Value

36/114

3.3.5 CREATING EPO RUNTIME - INTEGRATION GUIDE FOR FILE PROTOCOL

Basically you can convert any HTTP runtime service (guide above) into FILE
protocol one by changing the protocol in configuration of such service. The
processing will then require the ‘FILE directory’ and ‘FILE name’ fields in service’s
settings to be filled with reasonable values. Also you can use ‘FILE no import
twice’ check box in configuration to make such service not to process the same
file twice when reading the same directory and/or you can rename, move or
delete imported file in user exit function module. The interface of this user exit FM
and example of how to rename the file using system command you can find in
JEPO1/FILE_IN_USER_EXIT.

To automate such services, you can schedule program /epol/exc_fileruntime as
a SAP job.

3.3.6 TESTING AN EPO RUNTIME SERVICE

3.3.6.1 USING HTTP

In order to test an EPO runtime service, you must http post a request xml to the
URL of the service. We recommend using XML Transmitter from EPO Consulting

for testing such services.

Options for testing EPO runtime inbound services:

1. Post request XML messages from your integrated application

2. Post request XML messages from XML Transmitter

3. Post request XML messages from any other tool (SAP Java test tool, XML
editor with POST functionality, ...)

4. Upload a request XML file directly in SAP into the EPO XML Connector
and process it (using upload and (re-)processing programs of the EPO
XML Connector)

5. Use a stored XML message and (re-)process it (using the (re-)processing
program of the EPO runtime of the EPO XML Connector).

Example: Testing service BAPI_BANK_ GD_ERT with XML Transmitter:

“Configuration” (can be stored) with URL, user, password, http headers, XML
request. With button “POST” the test will start.

Image: Testing

ML Transmitter 1.7 Registered for EPO Consulting

EPO Runtime service using

37/114

XML Transmitter — before post

File Actions Options Help /——“—\
URL: hitp://sapserver B080/epal soa/smihandier/BAPI_BANK_GD_ERT? = History w
Usemame: KROISS Password: o Fort a0s0 Timeout{s). 10 <€
o] AddXML 2 Import WSDL 0penconfiy i Save canfig [F] clear QET Qrost @ rostal & view X Est
Client H || B3 &) El Protocal: S04P - PC Server | El (&) E]
Ditectory | BAPLEANK_GETDE.. | Server |
4] id]
=7xml version="10" encoding="UTF-8"7= -~
=g0ap Envelope xmins:xsi="htt e w3 .0rgl2001 MLSchema-instance”
wiminE: xec="Ftt e a3 .0rg 2001 IKMLSchema”
=ining soap="http: fechemas xmlsosp orgisoapienvelopers
=goapBody=
=m:BAPI_BANK_GETDETAIL xmins:mO="urn sap-com: document: sap:rfc:functiong"=
=BANKCOUNMTRY =AT=/BANKCOUNTRY=
=BANKKEY=00100=/8ANKKEY =
=/mi0:BAPI_BANK_GETDETAIL=
=jsoap Body=
=iz0ap Envelopes= e
Name Value Change headers
ContertType textiplain
hiethod POST
sEp-languace en
zap-client /10
< i
Ranl: | Send Received Diff | Description Response -
9 23.08.2007 14:18:34 23082007 14:18:34 028125 hitp://eapqua8080/epol soa/emihandler/BAPI_BAMK_GD_ERT? Completed
2 23.08.2007 14:16:59 23.08.2007 1416:59 028125 http://sapqua 8080/epol soalsmihandier/BAPI BANK GD ERT? Completed b
< >
Configuration file: 04 otebook. DatabEPO =ML Connectort arketing'Prasentatic Desription

Current file:D-\Motebook DatstEPO XML Connectorkarketing

Image: Testing EPO Runtime service using XML Transmitter — after post — successful response

BB XML Transmitter 1.7 Registered for EPO Consulting

EBX

Fle Actions Options Help /-‘_"‘—"-\
URL: hitp: /s apserver8080/epal soa/smihandier/BAPL_BANK_GD_ERT? 4 History W
Usemame: KROISS Password: = Fort 8080 Timeout{s) 10 <€
o] AddXML 2 Import WSDL 0penconii el Save config [Z) clear BET Qrost @ rosTal & view X Est
Client = | Piotocol S04P - PC Server |
Ditectory | BAPIBANK_GETDE... | Server | ta6L1T |
=7xml vergion="1.0" encoding="UTF-8"7= e =7wml version="1.0" encoding="utf-3"7> A
=goap Envelope xmins:xsi="hitp: ey w3 0rgi2001 ML Schema-instance" =a3x:ahap xming asx="rttp: Moy sap comfabapsml version="1.0"=
xmins:xsd="http: S e 3.orgf2001 XMLSchema” =asx values=
=minzsoap="tttp: fzchemas xmisoap orgfsospienvelope= =BANKADDRESS=
«g08p: Body= =BANK_NAME=Cesterreichische Nationakbank=BaM{_MNLME=
=m:BAPI_BAMNK_GETDETAIL xmins: mO="urn: sap-com: document: sap:rfc: functions"s =REGION f=
=BAMKCOUMTRY =AT<BAMKCOUNTRY = =STREET #=
=BANKKEY =001 00=/BANKKEY= =CITY =107 WAEN=ICITY =
=/mO:BAPI_BANK_GETDETAIL= =SWIFT_COCE /=
=tsoap Body= <=BANK_GROUP /=
=izoapEnvelopes) =POBK_CURALC = T
BN MO AN AT R
Name Yalue Change headers Name Yalue
ContentType textialain Set-Cookie sap-usercontext=sap-language=en&sap-client=910; path=F
Method POST content-type textieml, charset=utf-5
sap-language en content-lencth E31
sap-client 10 SErver SAPWeb Application Server (1.0,7001
< 2
R ank. | Send Received Diff | Description | Response ~
g 23.08.2007 14:18:34 23.08.2007 14:18:34 028125 http://sapqua:B0B0/epol soafsmihandler/BAPI_BANK _GD_ERT? Completed
2 23.08.2007 14:16:59 23.08.2007 14:16:59 028125 http:d/sapqua:BDE0/epoT soadsmihandler/BAPI BANK GD ERT? Complated b
< >
Configuration file:D:%M atebook DatahEPD ML Connector'M ark eting'Prasentatic Desription:

Current file:Dr:\Matebook. DatshEPO XML Connectorshd ark eting

Debugging your service:
You can set an external break point in your processing function module. When

posting a request XML, the SAP debugger will start. Make sure to set your “timeout”
to a maximum. The SAP debugger will close on timeout.
Another easy way for testing is reprocessing the service with a stored message in

SAP.

38/114

3.3.6.2 USING FILE, FTP

The file protocol can be tested by manually running /epol/exc_fileruntime
program (also in /EPO1/SOA menu EPO XML Connector Configuration
Inbound Service Configuration— EPO Runtime — /EPO1/FILERT - In: FILE
protocol runtime program) and debugging it if necessary.

3.3.7 EPO RUNTIME ERROR XML MESSAGE

In case that you send a wrong XML request, use non-existing service (example)
or something else is not what it should be, you will receive an error XML
message generated by the EPO XML Connector with the following structure. You
will only receive this message, if there is no response message from the
processing function module.

<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope xmlIns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<STATUSINFO>
<CODE>900</CODE>
<TYPE>E</TYPE>
<SUBJECT>Service name not found in /EPO1/SERVICES</SUBJECT>
<DESCRIPTION>ZEPO1_BAPI_BANK_GETDETAIL not configured in table
/EPO1/SERVICES</DESCRIPTION>
<TRANSACTIONID>
</TRANSACTIONID>
</STATUSINFO>
</soap:Body>
</soap:Envelope>

Note: Quite obviously this does not apply for FILE protocol, where there is no
response sent back. You can see the job log for errors when using file protocol.

3.3.8 EPO RUNTIME EXAMPLE SERVICES

There are many different examples available for using EPO runtime. Examples
are delivered as processing function modules for EPO runtime. All examples are
delivered commented. You can copy it and create your own integration. If you
want to use an example function module (e.g. for demonstration or first
connection tests), you can uncomment it using the comment/uncomment
program /EPO1/COMMENTUNCOMMENT (transaction
/EPO1L/TEMPLATESUNCOM, area menu: EPO XML Connector Administration).

All examples follow the naming convention /epol/erx*.
You can find it using transaction SE37 or SE80.

List of processing function module examples:
Function group: /EPO1/ERX_EXAMPLES
JEPO1/ERX_BAPI_ACC_DOC_POST

JEPO1/ERX_BAPI_EMPLOYEE_GETD
JEPO1/ERX_BAPI_EMPLOYEE_GETD_ T

/EPO1/ERX_FBO1_RFBIBLOO

Function group: /EPO1/ERX_EXAMPLES_MINISAP
/EPO1/ERX_BAPI_BANK_CREATE_T
/EPO1/ERX_BAPI_BANK_GETDETAIL

Function group: /EPO1/MBPM_PROCESSINGFM
/EPO1/ERX_MBPM_BAPI_ACC_DOC_PO
/EPO1/ERX_MBPM_BAPI_AGR_ASSIGN
/EPO1/ERX_MBPM_BAPI_BANK_ CREA
/EPO1/ERX_MBPM_BAPI_BANK_GETL
/EPO1/ERX_MBPM_BAPI_USER_GETD

39/114

40/114

3.4 INBOUND: SAP RUNTIME

The SAP runtime takes advantage of the SAP standard SOAP web service runtime
of the SAP NetWeaver Application server. You can publish any function module as
web service in SAP standard and use it then in the SAP runtime of the EPO XML
Connector.

In the SAP service tree (transaction SICF) it is located In
sap_default_host/epolsoa/srthandler. The call of such an inbound service is done by
posting (HTTP POST) a XML request message to this handler.

Example call: http://vepo2005:8000/epolsoa/srthandler/BAPI_BANK GD?
Explanation of this call:

The host “vepo2005” and port “8000” are from the SAP WAS.
“lepolsoa/srthandler/” is the SAP runtime HTTP handler on SAP WAS.
The URI “BAPI_BANK_GD” is the service name, which must be configured.

Important http headers:

SOAPaction (optional): The operation of the service.

Hint: The operation of a service can also be defined in the XML of the service itself
(first child element of <soap:Body>

Sap-client (optional): SAP logon client (Web logon, not an RFC logon)
Sap-language (optional): Logon language to SAP

ContentType: For example text/xml or text/plain

ContentLength: Normally automatically added

Method: POST

3.4.1 SAP RUNTIVE (WEB SERVICE SOAP) - INBOUND

The SAP runtime provides a web service handler identical to SAP standard SRT
(SOAP runtime), but it includes more features like enabling you to use asynchronous
processing, full control over service processing, transformation of XML messages
and file handling programs. Implementation of that integration is fairly simple and not
much different to publish a SAP standard web service: You must publish a web
service from a RFC-enabled function module or BAPI and put an alias (in SICF)
under the srthandler service, release the alias (WSCONFIG) and configure the EPO
XML Connector service. This enhances the standard SAP web service functionality
with all functions of the EPO XML Connector (store, log, reprocess, XSLT
transform,).

The SOA runtime is one option creating an inbound integration with SAP. The other
option for inbound integration is using the unique EPO runtime of the EPO XML
Connector. You can decide service by service, which option is appropriate. We
recommend using EPO runtime as it returns far better error messages.

Steps for creating inbound integrations using EPO runtime:
e Publish a web service (a BAPI or RFC function module)
e Create an alias in SICF and release the alias in WSCONFIG
e Configure the service in the EPO XML Connector
e Test your integration

Note: Web Service SOAP runtime is not available on WAS 6.20.

http://vepo2005:8000/epo1soa/srthandler/BAPI_BANK_GD�

41 /114

3.4.2 CREATING SAP RUNTIME -~ INTEGRATION GUIDE

You will find all relevant transactions in the area menu /EPO1/SOAY.

3.4.2.1 CREATE A WEB SERVICE FROM A FUNCTION MODULE

In this chapter it is described, how to publish a web service in SAP standard. You
can also refer to SAP help (http://help.sap.com).

You can create Web service for RFC-enabled function modules, BAPIs and for
function groups. The service definition is created using a wizard. Subsequently it
can be checked and processed in the ABAP workbench.

1.

In the Object Navigator (SE80), select the name of the package in which you
want to create a Web service. From the context menu, choose Create —

Enterprise Services — Web Services — Web Service.

To create a Web service from a function group or function module, you can
call the Creation Wizard from the Function Builder (SE37). Choose the
function module, display it, and then choose Utilities — More Utilities —

Create — Enterprise Services — Web Services — Web Service

Note: The function group must contain at least one RFC-enabled function module.

Image: Web service creation in Object Navigator (SE80)

Function Group]

o1 £ara

<)

) [%]2 (% [ma[@)] ()

Chiject Marme
= (71011
= 3 Function Modules

Description

Business Chject Bank

ALE_BAME_CHAMNGE
ALE_BAME_CREATE
ALE_BAME_GET_COMSYSTEM
ALE_BAME_SAVEREFLICA
BAPI_BANK_CHAMGE
BAPI_BANK_CREATE

<]

BAP|-= |Doc: ALE_BANK_CHARMGE
BAP|-= |Doc: ALE_BAMNK_CREATE

Get Consolidation Systemn

BAF|-= |Doc: ALE_BAMEK_SAVEREFLICA
Change Bank

Create Ban

—- —

BAPI_BANK GETUST | Oreate
BAPI_BANK_SAVEREPLI Change
IDOC_IMPUT_BAMK_CH{ .
IDOC_INPUT_BANK_cRI D SP13
IDOC_IMPUT_BANK_S& Check

FOST_BAME_IMSERT

&rtivato

r Eunction Module

YWieh Service
e L |_DH|“P_'_"'_|H|“UE
DOC_INPUT_BAME_CREATE
DOC_IMNPUT_BANE_SAVEREPLICA
dank Data far Single Bank

2. Perform the steps indicated in the wizard.

42 /114

2.1 Create Service - Enter a name and description for the service definition
and choose an end point type.

-

Z_EPQ1_BAPI_BAMNK_GETDETAIL
Wehservice for EPO XML Connector example

2.2 Choose Endpoint — Choose the object that you want to offer as a Web
service. For business objects, enter the application. If the checkbox Name
Mapping is checked, the wizard accepts the existing names for the end
point. Initial letters are in uppercase and underscores are removed if this is
not required, the service definition is created using the names in the
endpoint.

43 /114

2.3 Choose Operations — For BAPIs and function groups, choose operations
for which the Web service is to be created.

Note: There is no image in here because in this example service there is only one operation
involved and that’s why the wizard skipped this window.

2.4 Configure Services — The features you can assign here to the Web service
relate to security of data transfer and type of communication. You can
choose a predefined feature set from the profiles. By checking the
“Release Service for Runtime” checkbox the Web service is release
immediately when it is complete. Otherwise you need to release the Web
service manually using WSCONFIG transaction (Release Web services for

e

Basic Authorization: SOAP Praofile g
Secure SOAFP Profile
B e

2.5 Complete — The Web service definition is created.

3. Assign transport requests (including a Customizing request to configure the
SOAP runtime) appropriate to the system configuration

When you finish Web service creation process, the service location in service tree
should be
“Sap_default_host/sap/bc/srtirfc/sap/Z_EPO1_BAPI_BANK_GETDETAIL".

44 /114

3.4.2.2 CREATE REFERENCE (ALIAS) TO THE WEB SERVICE UNDER THE SRTHANDLER

In order to use the SAP runtime handler of the EPO XML Connector you have to
create a reference (an internal alias) to the service you created before under the
“srthandler” service. You can create sub trees under the “srthandler” tree for
organising your services.

How to create an internal alias service:

In transaction SICF (HTTP Service Hierarchy Maintenance (ICF)) you right click
on the “srthandler” service in “epolsoa” and choose “New Sub-Element” (Image
10).

Tip: You could also use the wizard for creating services in SICF for creating this
reference (alias). Menu: Service/Host — Wizard: Create Service

Image: Creating reference to existing Web service step 1

KA BN =T
iruelle Hosts / Senvices Documentation Referenz Service
= I default_host YIRTUAL DEFALILT HOST

=~ fgi epolsoa EPQ ¥ML Connectar fram EPO Consulting. ...

Connection Test

ot e s i A ME a s EPO 5.
Wew Sub-Element lih the corres...

Display Service fdefault_hostisapib
%:” BA Delete Service fdefault_hostisapib
amihandle poooe gerice Jests, EPO spe...
[EPOeWark frarm EPO Cons...
> sap BLIGED MOTT...
[¥ Deactivate Service
Z_hitp_guery | Test Service s
z_http_report Test Load Balancing
z_hitp_service
ﬁ References to Service

Then you name the service you are creating and more importantly you need to
select “Reference to Existing Service” radio button.

Image: Creating reference to existing Web service step 2

Create a Service Element

Hame of Service Element to Be Created: EIAF'I_EIANK_GETD|

Type of Service Mode to Be Created:

(_JIndependent Service

5 &)

@ Reference to Existing Service

45 /114

The last step is to point the reference to the service you created. Click “Alias Trgt”
tab and then find the service you wish to use. Services created in wizard as
above are located in "sap_default_host/sap/bc/srt/rfc/sap/”. You can configure the
reference parameters the same way you can configure web services.

Image: Creating reference of Web service for EPO SOAP runtime handler
Create/Change a Service Call

palis
Fath Jdefault_hostlepol soarsnhandler
Service Mame BAPTI_BANE GETD Qf* Service Reference (Inactive)
Alias Target: fdefauli_hostrsapthofsiife/sapfZ_EPO1 _BARI_BANK_GETDETAIL
Lang. Enalish B (Mot maintained) |l$ Other Languages
Description
Description 1 Wieb service using ERPO S0AF runtime handler (srthandler) example

Description 2

Description 3

Senice Data h Logon Data ' Alias Trat k Error Pages h Adrinistration

[ittuelle Hosts f Senices Documentation
' TEST_WEBSERWICE_WRITE Web Semice TEST_WEBSERUICE_‘-;E
WDYBLUILDINBOR Wieb Semice WDYBLUILDINBOK E|
WOYGETDC Web Semice WDYGETDC [
WOYGETTF Web Semice WDYGETTF
WOYSETDC Web Semwice WDYVSETDC
WOYLIPDATETF Web Sermice WDYUPDATETF
¥mila WML far Analysis
Z_EPO1_BAPI_BAMNK_GETDETAIL ‘Web Service Z_EPO1_BAPI_BAMK_1| |
wsil WiSIL Description of SOAFP Runtime |||
[¥ip SOAP Runtime for ¥l Message Interf:
[testzone Senices for TestZone L
wappush Handler far WAF PLISH []
5l saertairt HTTP Santire Wiew Macinnar IE'
[4][»]

3.4.2.3 RELEASE THE REFERENCE USING TRANSACTION WSCONFIG

When creating Web service Z EPO1_BAPI_BANK_GETDETAIL the release was
done automatically by selecting “Release service for Runtime” checkbox in the
creation wizard. For the reference you need to do the release manually.

Transaction WSCONFIG:

Fill in the name of the Web service and variant (the same as Web service) into
“Release Web Services for SOAP Runtime” program (transaction WSCONFIG),
then press the “Create” button.

46 /114

Image: Released Web service example
Release Weh Services for SOAP Runtime

O & & T &

Service Definition Z EPO]1_BAPI BANE GETDETAIL Websemice for EPQ XML Connector example
Wariant Z_EP01_BAPT BANK GETDETAIL

Feleased Web Services for Selected Definition Access Address

Then you need to change the URL to point to the reference you created before.

Image: Release reference to Web service example
Release Web Services for SOAF Runtime

go

Weh Semice Definiton
Marme £ EPO1 BAPI BAME GETDETAIL

SOAP Application UEn: Sap-com: Soap: runtime: application: rEc
Security: Authentication Level : Basic

Security: Transport Guarantee Level : Mane

Weh Service Settings k Operations |

Felease Text Web Service BARIL_BANK_GETD
Call Details
Yirtual Host default_host [
LIRL IepmsnarsrthandlerIEIAPI_EIANK_GETD|

| ICF Details

Hint; If you forget to release the web service or the reference (alias), you will get an error message
when testing your service “500 internal server error”.

471114

3.4.2.4 CrREATE SAP RUNTIME SERVICE FOR EPO XML CONNECTOR

The service creation is described in section 3.1.

Area menu: EPO XML Connector Configuration — Maintain Services EPO

XML Connector
Transaction: /EPO1/SERVICES12

IMPORTANT: The service name MUST BE the name of the ALIAS (the
reference) you created before in transaction SICF

For the example the alias was BAPI_BANK_GETD. It must be used as the name
of the service in the EPO XML Connector. The service name is also part of the
URL.

Image: EPO XML Connector SAP runtime service example
Semvice name =ni_hank_getd

EPCQ ML Connectar services
Direction of service [IM to SAP, call 3 SAP service

(]

Partner numhber
Partner type

[Inactive

[] operation mandatory
I ®ELT operation
[]IM: use hitp header
[]IM: use guery string
Message format

FILE directory

FILE name

Description SAP Funtime service example
[¥] Callstack in errars

3.4.2.5 CONFIGURE SAP RUNTIME SERVICE

Area menu: EPO XML Connector Configuration — Inbound service configuration
(SAP Services) — SAP runtime (SAP Web Services) — In: Maintain SAP runtime

web service configuration
Transaction: /EPO1/WSIN12

Service name sr_hank_getd
Cperation
Yersion

48 /114

Image: EPO XML connector SAP runtime configuration example

Configuration for S0AF Runtime inbound services
MR object
Suhohjectwvalue

FEFOT/MOR
Mumber Range Mumber
[Inactive

]
Processing type
Stare =ML

[+] Compress

S 8ynchronous

In custamer exit fm
#SLT in

Cut custamer exit fim

B store request and response information including XML message
HSLT out

HTTF LIRI

L.

L.

HTTP tirmeout

Haost Mumber

Maonitaring profile

EPOTEST
Description

SAP Runtime service configuration example

“Monitoring profile”

configuration. For description of these fields please see section 3.2.3.3.
In customer exit fm:

Fields “Service name”, “Operation”, “Version”, “NR object”, “Subobject value”,
“Number Range Number”, “Inactive”, “Processing type”, “Store XML", “Compress”,
and

“Description” are common for every EPO service

Function module which is called in pre-processing stage of
XSLT in:

the request message (inbound), right after the message is
saved, before the “XSLT in” transformation takes place. As
module provided in delivery.

a template you can use /epol/exit_requestxml function

service).
Out customer exit fm:

XSLT transformation of request XML message. It takes part
in request handling right after the “In customer exit fm” call

and before the message is processed (by calling Web

Function module called in post processing stage of the
XSLT out:

service after the response is stored and before the “XSLT

out” transformation is done. You can copy template function
module /epol/exit_responsexml for this purpose.

XSLT transformation of response XML message. This

happens after “Out customer exit fm” is called. Actually it is
the last operation of the post processing method.

49 /114

Path (Uri): The URI path to the service itself. It must be correct if you
plan to use reprocessing functionality. The message is sent
to the service using this URI when reprocessed. It is only
used for reprocessing.

HTTP timeout: Timeout parameter for reprocessing of messages only. It's
the amount of time in seconds for which the reprocessing
program tries to send the request XML message and get
the response to it.

Host number: SAP virtual host number. Default_host is used, if you leave
it empty.

3.4.2.6 SET ADDITIONAL HTTP HEADERS FOR (RE~)PROCESSING

You can add any number of HTTP headers to the request message when
(re)processing a stored message in SAP. Those HTTP headers are not used for
synchronous services at the initial processing. They will be used only, when the
request XML message is stored in SAP and the (re)processing is done with
transaction /EPO1/WSINPROC = In: (Re) Process SAP runtime XML message.

Image: EPO XML Connector SAP runtime additional HTTP header example
Change View "HTTP headers for (re) processing of services /EPO1/CONFIGI

% NewEnties [B @ @ B EF

Service narme BARE_GET_DETAILS
Cperation BankGetdetail
Yersion

Sort number a

HTTP headers for {rejprocessing of semices IEPO1/CORNFIGIMNG
HTTF header name RequestedEly
HTTF headerwvalue bratislavaly s

3.4.2.7 \NSDL OF THE WEB SERVICE

For deploying the web service on the integrated system, you will need the WSDL
of the web service. Here it is described, how you get the WSDL in SAP standard.
Please note, that you can get the WSDL only from the originally published web
service. It is not possible to get the WSDL from the reference (alias) you created
in the tree /epolsoa/srthandler/.

Another option to generate a WSDL is using the XML Transmitter. EPO
Consulting XML Transmitter allows you to create a WSDL from a request and
response XML message, which can be used directly in Microsoft .NET and Java
developments. All details about this you can find in chapter 3.2.3.5.

50/114

Transaction /nWSADMIN

Open the tree in WSADMIN and select the web service. Press the button WSDL
and generate the WSDL. You can choose between different options for the

WSDL.

Image: Generating WSDL for SAP runtime service — WSDL button

=
Web Service Edit Goto Systerm Help

& B AUeER BEEIE DO EE @D

Web Service Administration for SOAP Runtime

AEHES!

=[2] [@[SE]) [SnE
SOAP ApplicationtService Definition®ariantieb Service Description
= [50AP Application far RFC-Compliant Fids

= [J ZEPO1_BAPI_BANK_GETD_SRT

¥ QUZEPOL BAPLBANK GETD SR
: st apibCiaintis apiZEPO1_BAP| BANK_

Weh Service ZEPO1_BAPI_BANK_GETD_SRT Alias BAPI_BANK_GDSRT default_hostlepolsoalsnthandletexamplesiBAPI_BA

= [J ZEFO1_BAPI_BANK_TABLE
I (7 ZEPO1_BAPI_BANK_TABLE

Access Address

Image: Generating WSDL for SAP runtime service — WSDL style
=[] s0AP Application for RFC-Compliant Fus
=[] ZEPO1_BAPI_BAMK_GETD_SRT
= 23 ZEFO1_BAFI_BANK_GETD_SRT

o] ll W B = =t B =0 T ol] e Y Y o]

EEE gemcj@ﬁemnga for'WsDL Generation
eh Servic

= (J ZEPO1_BAPI_BANN [V]Include S4P FeaturesinWisDL
[(3 ZEPC1_BAPI_H [Style Definition in WSDL
® Document Style

O RPC Style

v]|x]

This should open your web browser. You need to login using your SAP user and
password. Then you can save the WSDL file from here (Menu: File — save as).
Another option is to use the URL, which you can see in your web browser now.

51/114

Image: WSDL for SAP runtime service in IE

ﬁ http:/fsapqua.oeamtc.at: B0B0/sap/be/srtirfcfsap/ZEPO1_BAPI_BANK_GETD_SRT?sap-client=%108wsdl=1. - Windows Internet Explorer

£ http:fsapqua. 8080 sapibc/stt/rfc/sap{ZEPO1_BAPI_BANK_GETD_SRT?sap-cient=0108wsdl=1.18mode=sap_sd| ||| x Peats

Datei Bearbeiten Ansicht Favoriten Extras 7

Google |G~ v Losgeht'sl 4 62 M v B v | ¥ Lesszsicheny PRk L %55 poctbcchreibprifung v > (0) Einstelungen~ ~ Links @ | Kostenlose Hotmall @ | Links anpassen @ | Windows
W4 B3| | @Epo Consuling GrbH (@ http:jjsapoua.osamtc. at... P f v B ® v [hsete - GrEdres - @+

<tuml version="1.0" encoding="utf-g" 7=
- <wsdlidefinitions targetMamespace="urn:sap-com:document:sap:soap:functions:mc-style" xmins:http="http://schemas.xmlsoap.org/wsdl/http/" wmins:n0="urn:sap-
com:document:sap:rfc:functions” zmins:n1="http://www.sap.com/webas/630/soap/features/authentication/"
#mins: sap="http:/ /www.sap.com/webas/630/wsdl/features" xmins: soap="http://schemas.xmlsoap.org/wsdl/soap/" xmins: tns="urn:sap-
com:document :sap:soap:functions:mc-style" umins:wsdl="http:/ /schemas . xmlsoap.org/wsdl/" umins: zsd="http:/ /www.w3.org/2001/XMLSchema">
- awedl:types>
- «xsdischema zmins: xsd="http:/ fwww.n3.0rg/2001/XMLSchema" zmins: tns="urn:sap-com:document :sap:rfc:functions” targetNamespace="urn:sap-
com:document:sap:rfc:functions' elementFormDefault="unqualified" attributeFormDefault="qualified">
- «rsd:simpleType name="charl">
- <xsdirestriction base="xsd:string">
=usdimaxlength value="1" /=
</wsdirestrictions
<fusdisimpleTypes
- «rsd:simpleType name="char10">
- «redirestriction base="xsd:string">
<usdimaxlength value="10" />
</wsdirestrictions
<fusdisimpleTypes
+ <rsdisimpleType name="charl1">
- «rsd:simpleType name="char12">
- «xsdirestriction base="xsd:string">
=usdrmaxlength value="12" /=
</wsdirestrictions
<fusdisimpleTypes
- «xsd:simpleType name="char15"x
- «redirestriction base="xsd:string">
<wsd:maxlength value="15" />
</wsdirestrictions
<fusdisimpleTypes
- =xsd:simpleType name="char1e">
- «redirestriction base="xsd:string">
<xsdimaslength value="16" />
</wsd:restrictions
<fusdisimpleTypes

Note: For consuming this web service with the EPO XML Connector, you must replace the URL given
in this WSDL with the URL of the EPO XML Connector
sap_default_host/epolsoa/xmlhandler/<service name>? If you are using the URL from the WSDL,
your web service should also work — only you loose all features of the EPO XML Connector (storing
the message, applying a XSLT, (re-)processing etc.).

3.4.2.8 TESTING A SAP RUNTIME SERVICE

In order to test an SAP runtime service, you must http post a request xml to the
URL of the service. We recommend using XML Transmitter from EPO Consulting
for testing such services.

Options for testing SAP runtime inbound services:

1. Post request XML messages from your integrated application

2. Post request XML messages from XML Transmitter. We strongly
recommend using the “Import WSDL” functionality to create a valid XML
instance.

3. Post request XML messages from any other tool (SAP Java test tool, XML
editor with POST functionality, ...)

4. Upload a request XML file directly in SAP into the EPO XML Connector
and process it (using upload and (re-)processing programs of the EPO
XML Connector).

5. Use a stored XML message and (re-)process it (using the (re-)processing
program of the EPO runtime of the EPO XML Connector).

Example: Testing service BAPI_BANK_GETD with XML Transmitter:

“Configuration” (can be stored) with URL, user, password, http headers, XML
request. With button “POST” the test will start.

Image: Testing SAP Runtime service using XML Transmitter — before post

B XML Transmitter 1.7 Registered for EPO Consulting

52/114

=]

File Actions Options Help /"—‘—‘-\
URL: hitp://sapqua:080/epot soafstthandler/examples/BAPI_BANK_GETD? " History W
Username: kroiss Passwaord; s Port: 8080 Timeout(sk 1000 £es
Sl adddML % ImportwSDL S0penconfi; | Save config 5] Cear B GET 3 FﬁT @ rosTal B Wiew ¥ Esit
Client = B] B Pratocol: SDAR - POST - Server =) B 2] B
Dirsctory | BAPI_BANK_GETDE] Server]
] i
=#xml version="1 0" encoding="LITF-3"?= ~
=soap Envelope xmins: <si="http: Mo we 3or2001 HMLSchema-instance
xming: xsd="http: v w3 orgi2001 HMLSchema”
wming:soap="http: ¥schemsas xmisoap orafsoapienvelope™-
=soap:Body=
=ml: BankGetoetail xmins:m0="urn:sap-com: document: sap: soap: functions:mo-style"s
«Bankcourtry=AT=Bankcourtrys
<Bankkey-00100</Bankkey>
=im0:BankGetdetail=
=fzoap:Bocky=
=fzoamEnvelope=
v

Current file:D: M atebook, Data"EPOD =ML Connector'MarketingPrasentationenExamples

Name Yalue Change headers

ContentType text/plain

Method POST

ContentLencth 447

Authorization TE4GIN3HT JIEITISS0AYE591HYE

sap-language En

sap-client 210

Rank | Send | Received ‘ Diff | Description ‘ Response
2 24.08.2007 15:32:53 24.08.2007 15:32:54 084375 http:/#sapqua:B080/epol soassithandler/exsamples/BAPI_BANK_GETD? Completed
1 24.08.2007 15:32:40 24.08.2007 15:32:44 367188 hitp://eapqua:B080/epol soalsthandler/examples/BAPI_BANK_GDSRT? Completed

Configuration file:C:\Programme\EPD Consulting'2$MLT ransmittersconfighlast_co Desription:

Image: Testing

ML Transmitter 1.7 Registered for EPO Consulting

EPO Runtime service using

XML Transmitter — after

post — successful response

File Actions Options Help /'—‘—‘-\
URL! hitp:/sapauar8080/epal soafsrthandler/examples/BAP_BANK_GETD? 4 Histoy W
Usemame: kraiss Password, Fart 8080 Timeout(sl: 1000 €«
] AddsML 4 Impor WSDL 0penconfig | Save canfig [E] clear @ oer @rost 9 POST al B View ¥ Esit
cClient = B B B Protocal: SO0AP - POST ~ Server | E] B
Diectory | BAPLLBANK_GETDE .. | Server | tab1 |
i]
«7xml versian="1 0" encoding="UTF-5"7= ~| =soap-envEnvelope xmins soap-env="http: /schemas xmisoap arg/soaplenvelopess ~
=z0ap:Envelope xmins:xsi="hitp: MAoeevew w3.org/2001 HMLSChema-instance” =s0ap-eny:Bochy=
smins: xsd="http: v w3 org/2001 (ML Schema =ni):BanketdetaiResponse xmins:n0="urn:sap-com:document: sap:soap: functions:me-style"s
Amins: soap="Http fschemas xmlsoap oraisoapenveopes =Bank&diresss
=soap Body= =BankName>Oesterreichische Nationalbank=/BankMName:>
=ml:BankGetdetail xmins: m0="urn sap-com: document: sap sosp: functions: mo-style's <=Region=
<Bankcourntry=ATBankcountry= =/Region=
<Bankkey=001 00=/Bankkey= =Strest-
=in:BankGetdetail= =/Streets
=/z0ap Body= =City>1011 WIEN=/City>
«izaap Envelopes =SwiftCodes
Fe =/SwittCode 3
Mame Value Change headers Name Value
ConterdType textiplain Set-Cookie sap-usercontext=sap-language=endsap-client=910; path=r
hethact POST content-type tesxthanl; charset=utf-&
Contentlength 447 caontent-length 870
Authorization TE4QMIHTJSITISSMNASS1 1Y E sap-srt_id 20070824/ 535271 00_final_6.40/44D4CE4GESATOCHAET D000000ADATE
sap-kEnguace en Server SAP Weh Application Server (1.0,700)
sap-client]
Fiank | Send | Fiecsived | Diff | Deseription | Response
3 24.08.2007 15:35:18 24.08.2007 15:3%:18 032812 hittp://sapqua8080/epol soa/sthandler/examples/BAPI_BANK_GDSAT? Completed
2 24.08.2007 15:32:63 24.08.2007 15:32:54 084375 hitp://sapquarB080/epol soadsthandler/examples/BAP]_BANK_GETD? Completed
1 24.08.2007 15:32:40 24.08.2007 15:32:44 367188 hitp://sapqua8080/epol soalsthandler/sxamples/BAPI_BANK_GDSAT? Completed

Cunent file D \Notebook DatabEPD XML Connectorst arkelingPrasentationen'E xamples

Configuration file:C:\ProgrammeSEPO Consulling'é3tL Transmittertconfighlast_co D esniption:

Common errors:

When testing your web service, you might encounter some error messages initially.
Unfortunately you will get often the undistinguished error message “The remote
server returned an error: (500) Internal Server Error.
This error message is raised by the SOAP runtime and it cannot be changed from the
EPO XML Connector. The 2 most common reasons for this error message are:

The URL (host, port and URI/tree) you are posting to, does not exists.
The XML request message format is wrong (case sensitive, underscores

are maybe removed). Create an example instance using the WSDL. (The
XML Transmitter from EPO Consulting is tested with such WSDL.)

53/114

Tables of BAPIs/FM in WSDL and XML request:

Table parameters in function modules can be either import or export parameters. In
the WSDL it is not defined, if a table parameter is an import or export parameter.
When testing a SAP web service with table parameters you must always send the
table XML elements with the request XML. For export tables these XML elements
must be empty (e.g. <tablebapiret2/>).

Note: Table parameters should not be used anymore in function modules. Instead
you should define a table type in the data dictionary and use this either in export or
import of the function module interface.

Example for XML request of BAPI_USER_GET_DETAIL:

<?xml version="1.0" encoding="UTF-8"?>
<soap:Envelope xmlIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmins:xsd="http://www.w3.0rg/2001/XMLSchema" xmiIns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<mO0:UserGetDetail xmIns:m0="urn:sap-com:document:sap:soap:functions:mc-style">
<Activitygroups />
<Addcomrem />
<Addfax />
<Addpag />
<Addprt />
<Addrfc />
<Addrml />
<Addsmtp />
<Addssf />
<Addtel />
<Addtlx />
<Addttx />
<Adduri />
<Addx400 />
<Extidhead />
<Extidpart />
<Groups />
<Parameter />
<Parameterl />
<Profiles />
<Return />
<Systems />
<Uclasssys />
<Username>KROISS</Username>
</m0:UserGetDetail>
</soap:Body>
</soap:Envelope>

Debugging your service:
Debugging of SAP web services is not useful. You might debug the customer exits of
the EPO XML Connector, if you are using it.

3.4.2.9 SAP RUNTIME EXAMPLE SERVICES

There are no examples delivered with the EPO XML Connector for the SAP
runtime. This is because you can publish any BAPI or RFC-enabled function
module in SAP standard and use it directly with the SAP runtime of the EPO XML
Connector.

54 /114

3.5 QUTBOUND: EPO CLIENT

The EPO Client is an easy to use function module called “/EPO1/EPOCLIENT".
When used for HTTP(s) protocol it dynamically creates a client proxy to be able to
send given request XML message to a web service and receive response. Like all
the other services you can use this one asynchronously, store or log and XSLT
transform request and response messages. Using FILE protocol, it stores a file to the
location specified in service’s settings and with UM protocols you can send a SAP-
Mail, E-Mail or other message to configured or dynamic list of recipients.

The unigue EPO Client is one option creating an outbound integration with SAP. The
other option for outbound integration is using a generated ABAP client proxy within
the EPO XML Connector (see next chapter). You can decide service by service,
which option is appropriate. We recommend using EPO Client as it works for any
web service and is more flexible and easy to implement.

Usage of outbound EPO Client (compare with outbound generated ABAP client
proxy)
e Integrations, where the XML format and structure is defined by a partner
system (but does not have a WSDL or is not a full web service)
e Integrations, where SAP defines request and response XML messages (for
outbound!)
e Integrations, where the request and response XML is relatively simple
e Integrations, where you do not want to use the overhead of generated ABAP
proxies

Overview: Steps for creating outbound integrations using EPO client:
e Call the function module /epol/epoclient (e.g. from your custom Z program)
e Configure the service in the EPO XML Connector
e Test your integration

3.5.1 Using HTTPR(S)

EPO Client is simple to use function module /epol/epoclient to which you pass the
XML message you want to post to Web service. The Protocol field in service
configuration is set to HTTP in this case.

3.5.2 UsinG FILE, FTP

You can use the same call as if using HTTP(s) protocol to make EPO client write a
file to a location specified in service's fields. The Protocol field in service
configuration must be set to FILE to make this happen. The file directory and name
parameters are set in service’s settings.

55/114

3.5.3 Using UM - SAP MaiL, E-MAIL via SCOT AND CUSTOMER DEFINED

Unified messaging (UM) protocols have been designed for sending messages using
EPO Client function module to other common message end points — SAP Mail, E-
Mail via SCOT and Customer defined (function module customer exit). XML data
passed to the EPO Client FM could be sent within the message body or as an
attachment. When sending attachment, the file nhaming routine from file protocol is
used. File name and extension (message format) are taken from service settings and
file name additions - client number (MANDT), transaction ID, date and time — are set
based on setting in services configuration.

After sending the message, the success information or error message is given back
to you in both e_callstatus and e_responsexml| export parameters, e_responsexml
contains transformed e _callstatus information.

The customer defined function module call is shown below; most of the parameters
are taken from configuration as they are, recipients and CC recipients can be added
dynamically from EPO Client FM import parameters; i_um_body, i_um_packing_list
and i um_att cont are filed the same way Ilike we use them with
SO_OBJECT_SEND function module for first two UM protocols - SAP Mail and E-
Mail via SCOT. The body already contains text from text object specified in
configuration.

try.
call function me->um_customexitfm
exporting

i_protocol = me->protocol
i_um_sender = me->um_sender
i_um_recipients = me->um_recipients
i_um _ccrecipients = me->um_ccrecipients
i_um _subject = me->um_subject
i_um_textname = me->um_textname
i_um_textid = me->um_textid
i_um_contenttype = me->um_contenttype
i_um_attachtype = me->um_attachtype
i_um_body = me->um_body
i_um_packing_list = me->um_packing_list
i_um_att cont = me->um_att cont
i_testmode = me->testmode.

exit.

catch cx_root. "#EC CATCH_ALL

raise um_customexit call.
endtry.

56/114

3.5.4 /EPO1/EPOCLIENT FUNCTION MODULE INTERFACE

Image: Function module /EPO1/EPOCLIENT interface
Function module [EPD1/EPOCLIENT | Active
 Aftributes | Impot |, Export | Changing | Tables | Exceptions dECRITCRnE

1: Efonction fepolfepoclient .

o Lo I e e o e e e e ey o b ey b o b i o e oy e i e oy e /ey o o s e e
3 wtENgnal Tuterfides

4 *M IMDORTTING

5) VALUE (I REQUESTAML) TY¥PE XNSTRING ODTTIONAL

6 £ VALUE (X SERVICENAME) TYDE SEPOLSEERVICE

7 o) VALUE(I_DPERRTION} TYFPE AEPOISOPERATTON OPTTONAL

g # VALUE (I VERSTON) T¥DE AEDO1AVERSTON ODTTONAL

a *r VALUE (I FXEY1) T¥DE FEPOLSFEEY1 OPTIONAL

10 Eatid VALUE (T FEEYZ) TYDE FEDOLSFEEYzZ OPTTONAL

il s VALUE (T FREY.R) 'T¥DE FEPO1/FEEY3 OFPTIONAL

12 ol VALUE (T FEEY4) T¥PE AEDOLSFEEYY OPTTONAL

13 Pl VALUE (I REPROCESS) T¥YDE FLAG OPTIONAL

14 el VALUE (I TRANSACTIONID) T¥DE AEROL/TRANSACTIONTID ODTTONAT

i5 i VALUE (I NEYEAR) TY¥PE FEPO1/NRYEAR DEFAULT "agoodr

16 it VALUE (I PATH) TYPE: SETRING ODPTTONAT

B o VALUE (T HTTOHOEADERS) TEPE SEPO1 AHTTEOEANERTABLE (OPTTONAL
15 L VALUE (I UMRECIDIENTS) TYDE /EPDI;”UM_RECIPIENTS OrPTTONAL

do il VALUE (I UMCCRECIDIENTE) TYEPE fEPOlfUM_CCRECIPIENTS' OPTTONAL
20 A CEXPORTTING

il A VALUE (E RESDONSEXML) TYDE XETRTHG

& i VALUE(E CALLSTATUS) T¥PE FEPOLSCATLSTATUS

23 i VALUE (E TRANSACTIONID) TYDE AEDO1 TRANSACTIONTD

=4 B R R

Import
e i_requestxml type xstring optional
Request XML message can be left empty when reprocessing using
i_transactionid. In all other cases the request XML (a valid XML string) must
be given to this parameter.

e i_servicename type /epol/service

Service name from /epol/services table. Please see section 3.4.4.1.

e i_operation type /epol/operation optional

Operation of the service is checked against service’s configuration. This can
be left empty, but in that case configuration with empty operation must exist in
configuration table for used service. Please see section 3.4.4.2.

e i_version type /epol/version optional

Version of used service. Rules for this variable are the same as for
i_operation.

57 /114

i_fkeyl — 4 type /epol/tkeyl — 4 optional

The foreign key 1,2,3 and 4 are stored in header table with all the transaction
information except the message itself, which is stored in data table, of course
only if the service is set to store such information. These keys you can use to
store additional information about specific transaction. Usage of such
information can be variable e.g. logging, search capability, statistics etc.

i_reprocess type flag optional

Flag domain can have values ‘X’ or ‘ ‘. By setting this flag to ‘X’ you make the
function module to reprocess stored XML message. You will need to set
i_transactionid to TransactionlID of transaction you wish to reprocess as well.
i_transactionid type /epol/transactionid optional

TransactionID is unique identifier of EPO XML Connector transaction made
from number range object (see section 2.2). You only need to set this
parameter when you want to reprocess stored message by setting i_reprocess
parameter to ‘X'.

i_nryear type /epol/nryear optional default '0000'

Year parameter for number range object. Overrides actual date used by
default.

i_path type string optional

This parameter overwrites ‘Path (URI)’ value taken from service configuration.
See section 3.4.4.2.

i_httpaddress type /epol/httpheadertable optional

Additional HTTP headers. This parameter is very useful when you need to set
some HTTP header dynamically. These headers are added after the HTTP
headers from static headers table (see section 3.4.4.3) so you can use it to
overwrite static headers as well.

i_umrecipients type /epol/um_recipients optional

Additional recipients for UM, semicolon separated list (string). These recipients
are added after the recipients from EPO Client service configuration. Only
used for UM protocols (SAP-Mail, E-Mail, or customer defined).

i_umccrecipients type /epol/um_ccrecipients optional
Additional carbon copy recipients for UM. These CC recipients are added after

the CC recipients from EPO Client service configuration. Only used for UM
protocols (SAP-Mail, E-Mail, or customer defined).

58/114

Export
v' e_responsexml type xstring

Response XML message returned from the web service or the web server in
error cases.

v' e_callstatus type /epol/callstatus
Status of processing message with EPO XML Connector. It does only return
the callstatus of the generated call in SAP (e.g. if connection cannot be
established or path is wrong). It does not give any information, which is
returned from the web service itself. For successful web service calls the
callstatus code will be empty (check field callstatus-code).
Structure description:

v~ code type /epol/statuscode (numc 3)
callstatus with status code equal or greater than 200 is error message

v" type type /epol/statustype (char 1)
‘E’ = error message, ‘I' = information, ‘S’ = success message, ‘W’ =
warning message

e subject type /epol/statussubject (char 50)
subject of callstatus message

e description type /epol/statusdesc (string)
description of callstatus message

e TransactionlD type /epol/transactionid (char 15)
unique identifier of transaction raising message

v/ e_transactionid type /epol/transactionid

Unique identifier of transaction being processed.

59/114

3.5.5 CREATING EPO CLIENT - INTEGRATION GUIDE

3.5.5.1 CRrEATE EPO CLIENT SERVICE

Description of service creation is in section 3.1. Image below shows an example
of such service which can use FILE protocol as well.

Image: EPO Client service example
Service name ecx_file_hank_getdetail

EPO XML Connector semices

(i

Direction of service QO OUT of SAP, call an external service

Partner numhber

Fartner type

[]Inactive

[operation mandatary
In: HSLT operation
[]IM: use hitp header
[]IM: use guery string

Message format ®ml

FILE directory ftmp

FILE name EPO_ecx_hank_getd

Description Template for EFO Client file protocol

[[]callstack in errars

3.5.5.2 CoNFIGURE EPQ CLIENT SERVICE

Area menu: EPO XML Connector Configuration — Outbound service
configuration (external services) — EPO Client — Out: Maintain EPO Client

service configuration
Transaction: /EPO1/EPORTOUT12

Image: EPO Client service configuration example for http

60 /114

Senice name ecx_get weather
Cperation net_weather
Yersion

'Cnnﬂguratinn for ERFQ Client outhound semvices
! N.I-Q.nhjéngt-” o
Suhohject value
Murmber Range Burmber |00

[]Inactive

Protocaol OHTTF T
Processing type S'S'ﬁ;nchrunnua i
Store XML B store request and response information including XML message e
Compress

[] Special charta enti

Source codepace

HELT out

HELTin

CutReg.Mapping Fhd /EPO1/ORM_ACTUAL_WEATHER

Cut Reg. Structure Fid fEPOTSORS_ACTUAL_WERTHER

Dt Res. Structure Fh fEPDT/0S5_ACTUAL_WERTHER

Out Res.Mapping Fhi fEPOTAOSHM_ACTUAL_WEATHER

HTTP host [www webservicexnet

HTTF part 8o

HTTP LIRI http:mww.wehsewicex.neﬁglnhalweather.aam}{

HTTF content type textteml; charset=utf-g

HTTF progy host

HTTF proxy port

HTTF S5L 10

HTTP scherme 1HTTP g
HTTF timeaout

LIFILE include MANDT

[]FILE include TranslD

CIFILE include DATE

[JFILE include TIME

FILE custarm exit Fi

LIl sender (SAF user

LIM recipients

LM CC recipients

LM subject

LM body text name

LI body text 1D

LM content type El
LM attachement type
M custormer exit Fhd
Maonitoring profile EPOTEST
Description

Protocol:

Special char to enti:

Source codepage:

In customer exit fm:

XSLT out:

XSLT in:

In.Req.Structure FM
In.Req.Mapping FM
In.Res.Mapping FM
In.Res.Structure FM
HTTP host:

HTTP port:

HTTP URI:

HTTP Content type:

HTTP proxy host:

61/114

Fields “Service name”, “Operation”, “Version”, “NR object”, “Subobject value”,
“Number Range Number”, “Inactive”, “Processing type”, “Store XML”, “Compress”,
“Monitoring profile” and “Description” are common for every EPO service
configuration. For description of these fields please see section 3.2.3.3.

HTTP or FILE. When set to HTTP, EPO Client sends
request using HTTP(s) protocol to a Web Service,
otherwise it stores it in a file. The directory and name of
the file are set in service’s fields.

Special character are converted to HTML (XML) entity
character codes (e.g. ,€" to ,€" etc.) in messages.

Code page being used for character conversion, when
Special char to enti is set.

Function module which is to be called in pre-processing
stage of the request message (inbound), right after the
message is saved, before the “XSLT in” transformation

takes place. As a template you can use
/lepol/exit_requestxml function module provided in
delivery.

XSLT transformation of request XML message.

XSLT transformation of request XML message. It takes
part in request handling right after the “In customer exit
fm” call and before the message is processed (by calling
Web service).

Chapter 1.4.3 of this document describes these
fields in detalil.

Host name (domain name) of server hosting the service.

Port number on which the host server accepts messages.
The default value is 80 for HTTP services.

The URI path to the service itself. The message is sent to
the service using this URI when (re)processed.

The HTTP header named ‘Content-type’ is given this value
when this configuration is used. You will need to set it to
‘text/xml"” for calling all the Web services which receive
XML message in HTTP body. Most of the Web services,
particularly SOAP ones will not work if this header is not
there or is set differently.

Name of proxy server to use for communication.

HTTP proxy port:

HTTP SSL ID:

HTTP Scheme:

HTTP timeout:

FILE include MANDT:

FILE include TransID:

FILE include DATE:

FILE include TIME:

FILE custom exit FM:

UM sender (SAP User):

UM recipients:

UM CC recipients:

UM subiject:

UM body text name:

UM body text ID:

UM content type:

62 /114

Port number of proxy server.

By specifying the SSL client identity, you define the client
certificate with which the SAP system logs on to the HTTP
server.

HTTP or HTTPS for non-secure or secure HTTP
communication.

Parameter for (re)processing of messages. It's the amount
of time in seconds for which the (re)processing program
tries to send the request XML message and get the
response.

FILE protocol only. Processing program will append SAP
Client number (SY-MANDT) to file name.

FILE protocol only. Same as above but TransactionID is
appended.

FILE protocol only. Date (SY-DATUM) appended to file
name.

FILE protocol only. System time (SY-UZEIT) appended to
file name.

Name of customer (Z) function module which is called
after the file is written and closed. You can use this FM to
rename / move the file when stored successfully.

UM protocols only. SAP user name used as sender for UM
messages.

UM protocols only. Semicolon separated list of recipients.

UM protocols only. Semicolon separated list of carbon
copy recipients.

UM protocols only. Subject text for message.
UM protocols only. Text for body of UM message. This is
name of text object created using transaction SO10 (SAP

standard texts).

UM protocols only. Text ID of a SAP standard text object
(S010).

UM protocols only. TXT (text/plain) or HTM (text/html)
content type for UM message body.

63/114

UM attachment type: UM protocols only. XML data attachment can be ‘inline’ —
within body of message or ‘as attachment’ — file attached
to the message.

UM customer exit FM: UM protocols only. Name of customer exit function module
for implementing other or own message sending system.

3.5.5.3 SETADDITIONAL HTTP HEADERS IF NEEDED

Area menu: EPO XML Connector Configuration — Outbound service configuration
(external services) — EPO Client — Out: Maintain EPO Client HTTP headers
Transaction: /EPO1/EPORTOUTH12

You can add any number of HTTP headers to the request message. When the Web
service is called — the request message is to be sent — the headers are used in HTTP
communication, therefore they can be extracted and used on the other side.

All the fields of this dialog should be self explanatory but the ‘Sort number’. It is the

last part of the key of table holding all the headers and so you need to use it if you
are adding more than one header to the service.

HTTP header ‘SOAPaction’

This header is used only when calling SOAP Web service. This header must contain
the name of operation as it is listed in WSDL description of the Web service.

Image: EPO XML Connector - EPO Client HTTP header example

Service name ecx_oet_weather
Cperation et _weather
Yersion

Sort number 1]

HTTF headers far EFQ Client authound senvices
HTTF header name SoapAction
HTTF header value hitp:ihanans websernicerx METIGetWeather

3.5.5.4 CREATE PROGRAM TO CALL /EPOL/EROCLIENT EUNCTION MODULE

Finally you have to call the function module for sending the request XML message.
So you need to create an ABAP program. The service in this example is calling the
same Web service as the example in the next chapter (generated proxy client), so
that you can see the differences between these two implementations.

Note: We have created XML request string in outbound request structure function module by calling
XSLT transformation /epol/tecx_out_actual weather, which you can find (including all the
FMs used here) in [EPO1/EXC_REPOSITORY package installed with EXC.

*&
*&
*&
*&
*&
*&
*&
*&
*&
*&
*&
*&
*&
*&
*&
*&
*&
*&
*&
*&
*&
*&
*&
*&
*&
*&
*&
*&
*&
*&
*&
*&
*&
*&
*&
*&
*&
*&
*&
*&
*&
*&
*&
*&
*&
*&
*&
*&
*&
*&
*&
*&
*&
*&
*&

RE

Example program for calling EPO Client function module

64 /114

*
Report /EPO1/ECX ACTUAL_WEATHER *
*
Company: EPO Consulting *
IP Rights: Intellectual Property Rights and all other rights are *
held by EPO Consulting. *
Copying or Modifying this program is only allowed with *
written consent of EPO Consulting. *
Author: MH *
Date: September 2008 *
Desc.: Call external Web service using EPO Client *
*
>> In order to use this example you need to create EPO Client
service using following settings (selection screen default):
Service name: ecx_get_weather
Direction of service: OUT of SAP, call an external service
IN: XSLT operation:
IN: use http header: Checked
Message format: xml
Description: EPO Client service example
>> The service configuration is:
Service name: ecx_get_weather
Operation: get_weather
Version:
Processing type: Synchronous
Store XML: store request and response information
including xml message
Number Range Number: 00
Compress: Checked
Special char to enti: Not checked
XSLT out:
XSLT in:
Hostname: www .webservicex.net
Port:
Path (URI): http://www.webservicex.net/globalweather.asmx
Content type:
Proxy hostname:
Proxy port:
SSL ID:
HTTP scheme: HTTP
Timeout:
Description: Get actual weather using EPO Client - example
>> Also you need to add special HTTP header for SOAP
Service name: ecx_get_weather
Operation: get_weather
Version:
Sort number: 0
HTTP header name: SoapAction

HTTP header value: http://www.webserviceX_NET/GetWeather

PORT /epol/ecx_actual weather.

DATA: 1 _requestxml TYPE xstring,

1_responsexml TYPE xstring,

Is_requestxml
Is_responsexnml
Is city
Is_country

1 _callstatus
1 _convo
1_convi
Is_location
Is_time
Is_wind
Is_visibility

Is_skyconditions

Is_temperature
Is_dewpoint

65/114

TYPE string,

TYPE string,

TYPE string,

TYPE string,

TYPE /epol/callstatus,

TYPE REF TO cl_abap conv_out_ce,
TYPE REF TO cl_abap conv_in_ce,
TYPE string,

TYPE string,

TYPE string,

TYPE string,

TYPE string,

TYPE string,

TYPE string,

Is_relativehumudity TYPE string,

Is_pressure
Is_status

TYPE string,
TYPE string,

1_weather_response TYPE /epol/ecx_weather_response.

SELECTION-SCREEN BEGIN OF BLOCK sel WITH FRAME TITLE text-001.
PARAMETERS: p_ctry(50) TYPE c DEFAULT "SLOVAKIA®,
p_city(50) TYPE c DEFAULT "BRATISLAVA®.
SELECTION-SCREEN SKIP 1.
PARAMETERS: p_serv TYPE /epol/service DEFAULT "ecx get weather”,
p_oper TYPE /epol/operation DEFAULT "get weather”,
_vers TYPE /epol/version.
SELECTION-SCREEN END OF BLOCK sel.

* 1. Call outbound request mapping function module
CALL FUNCTION "/EPO1/0RM_ACTUAL_WEATHER®

EXPORTING
i_cityname
i_countryname

IMPORTING
e_cityname
e_countryname

CHANGING
c_callstatus =

p_
p_

city
ctry

Is city
Is_country

callstatus.

* 2. Call outbound request structure function module
CALL FUNCTION "/EPO1/0RS_ACTUAL_WEATHER™®

EXPORTING
i_cityname =
i_countryname =

IMPORTING
e _xmlrequest

CHANGING
c_callstatus =

Is _city
Is_country

requestxml

callstatus.

* 3. EPO Client processing - send request, receive response
IF 1_callstatus-code < 500.
CALL FUNCTION "/EPO1/EPOCLIENT™®

EXPORTING
i_requestxml

i_servicename

i_operation
i_version

IMPORTING
e_responsexnml
e_callstatus

ENDIF.

1 _requestxml
p_serv
p_oper
p_vers

1 _responsexml
1 _callstatus.

* 4_ Call outbound response structure function module

66 /114

CALL FUNCTION "/EPO1/0SS_ACTUAL_WEATHER™®
EXPORTING
i_responsexml
IMPORTING
e_location

e _time
e_wind

e visibility

e_skyconditions
e_temperature

e_dewpoint
e_relativehumidity
e_pressure

e_status

CHANGING

c_callstatus

1_responsexml

Is_location

Is_time

Is_wind
Is_visibility
Is_skyconditions
Is_temperature
Is_dewpoint
Is_relativehumudity
Is_pressure
Is_status

1 _callstatus.

* 5. Call outbound response mapping function module
CALL FUNCTION "/EPO1/0SM_ACTUAL_WEATHER™®

EXPORTING
_location

_time
_wind

“visibility

_skyconditions
_temperature

_dewpoint
_relativehumidity
i_pressure

_status

IMPORTING
e_weather_response
CHANGING

c_callstatus

IF 1 _callstatus-code <

5

Is_location

Is_time

Is_wind
Is_visibility
Is_skyconditions
Is_temperature
Is_dewpoint
Is_relativehumudity
Is_pressure
Is_status

1_weather_response
1 _callstatus.

00.

* In this exapmle we just view the response on screen

WRITE:/"Location

ELSEI

“Visibility

"Skyconditions

"Temperature
"Dew Point

ceeeee----2", 1 _weather_response-location,/
ceeececaaawaa-2", 1 _weather_response-time,/
ceeeeecaeaawaa--", 1 _weather_response-wind,/
cee--o--2", 1_weather_response-visibility,/

-.-.--", 1 _weather_response-skyconditions,/

eew--.--", 1 _weather_response-temperature,/
ceweee----", 1 _weather_response-dewpoint,/

"Relative Humidity.:", 1| _weather_response-relativehumidity,/

"Pressure
"Status

F 1_responsexml

........... , 1_weather_response-pressure,/

ceeeeeeoo-.-.2", 1 _weather_response-status.

IS NOT INITIAL.

CALL FUNCTION “DISPLAY_XML_STRING*®
EXPORTING

xml_string

title

starting_x
starting_y

EXCEPTIONS

no_xml_document

OTHERS

IF sy-subrc <> 0.
MESSAGE 1_callstatus-description

TYPE

T

1 _responsexml

"Server response directly displayed”
5

5

1
2.

67 /114

DISPLAY LIKE 1 _callstatus-type.

ENDIF.
ELSE.
MESSAGE 1 _callstatus-description
TYPE *S*
DISPLAY LIKE 1_callstatus-type.
EXIT.
ENDIF.

3.5.5.5 TESTING AN EPO CLIENT SERVICE

Testing of outgoing integration (calling 3™ party Web service) is nothing more than
running and debugging the program you wrote.

To display the request and/or the response for testing purposes, you can use either
SAP function module DISPLAY_XML_STRING in your program (like we did), which
displays XML message in SAP or you can configure the service to store request
and/or response and then use /EPO1/MESSAGESLIST program to display those
messages (Area menu EPO XML Connector Data Maintenance [/
[EPO1/MESSAGESLIST - List and view stored messages). The
/EPO1/MESSAGESLIST program uses the DISPLAY_XML_STRING function
module, so you don’t need to call it in your report.

68 /114

3.6 QUTBOUND: SAP CLIENT

The SAP Client function provides an extension and simplification to the SAP
standard for generated ABAP client proxies. ABAP proxies allow you to consume
external web services.

You can generate an ABAP proxy using a WSDL in SAP standard and use this ABAP
proxy in the EPO XML Connector. All functions of the EPO XML Connector are
available then (store, reprocess, XSLT transform,). Two customer exits allow you to
access request and response XML data and add your custom functions.

SAP client is SAP standard — generated ABAP client proxy, by which you can call
“outside” Web services. You can use this standard together with EPO XML
Connector functionality via the method of class /epol/cl_proxyconnector -
/lepol/sapclient and reprocessing program /epol/proxy_reprocess.

The SAP Client is one option creating an outbound integration with SAP. The other
option for outbound integration is using the unique EPO Client of the EPO XML
Connector. You can decide service by service, which option is appropriate. We
recommend using EPO Client as it works for any web service and is more flexible
and easy to implement.

Usage of outbound SAP Client (compare with outbound EPO Client)
e Integrations, where you can generate an ABAP proxy from a provided WSDL

Overview: Steps for creating outbound integrations using SAP Client:
e Generate the ABAP proxy using a WSDL
e Configure the service in the EPO XML Connector
e Write program for calling the SAP Client (the generic method of the EPO XML
Connector)
e Test your integration

Note: SAP Client is not available on WAS 6.20.

3.6.1 CREATING SAP CLIENT - INTEGRATION GUIDE

3.6.1.1 GENERATE ABARP CLIENT PROXY

To do this you need to start Object Navigator (transaction SE80), Repository Browser
View, select “Package” in drop-down combo box and open or create new package,
where the proxy objects will be added into. Next right-click on package name and
select Create — Enterprise Service / Web Service — Proxy Object in the menu which
appears. The proxy creation wizard starts afterwards. The example below does not
describe all possibilities of proxy creation process. You can find full documentation
for SAP 700 on

http://help.sap.com/saphelp nw70/helpdata/en/ba/d4c23b95c8466ce10000000a1140
84/content.htm.

http://help.sap.com/saphelp_nw70/helpdata/en/ba/d4c23b95c8466ce10000000a114084/content.htm�
http://help.sap.com/saphelp_nw70/helpdata/en/ba/d4c23b95c8466ce10000000a114084/content.htm�

69 /114

1. WSDL Source

In the first window you can choose the location of service’s WSDL (Web Service
Description Language) file / generator.

WSDL Source

(_Local File
DT
(¥l Repositony

v K

2. Choose URL or HTTP destination

Choose URL ar HTTF Destination

@ TRL dhanate b servicex netliglobalweather. asmxPwsdl
(_JHTTP Destination
Path Suffix

v K

The URL we used is the same as in EPO Client service example —
http://www.webservicex.net/globalweather.asmx?wsdl.

3. Select Method

This step applies only for the Web services having multiple access methods.

ect Method

Hultiple port types exist

Select a port tvpe

@ GlobaleatherSoap-=httpoifnanan webserices . NET
1 GlobalWeatherHttpGet-=hitp: fanana websemvic el HET
(1 GlobalteatherHttpP ost = hittp s webseric e NET

v K

http://www.w3.org/TR/wsdl�
http://www.w3.org/TR/wsdl�
http://www.webservicex.net/globalweather.asmx?wsdl�

70/114

4. Specifications for Objects to be Generated

Here you input the package you want the client proxy object to be generated into
and the prefix for object naming.

Package Z_EFP0l_EXAMPLES
Prefi zEPO1 |
v K

5. Problems with mapping name

You can see on the image below that some of the generated names in the object
were too long or in conflict with existing ones. In the next step we correct this
problem.

Froblems when mapping narme

Naming problemzs occurred when mapping the interface description to ABAP
ohijects. The followihg are possible problens:

[u} Name Abbreviations

[u} Namirng Conflicts

Check the tab page 'Name Problemzs' for names proposed by the system and
change the names accordingly.

When vou activate the proxy, the systemn considers the problems as solwed
and they disappear from wiew.

6. Correct the naming problems

When all the object components are generated you click on the “Name Problems”
tab to see list of names to be changed. The wizard did the corrections
automatically, but still you might need to change the names to fulfil your needs.

Message Interface (Outhound) GlobalWeatherSoap Mewy (revised)

Fropeties ' Marme Problems k Generation k Structure k Preconfiguration |

Ohject |Wame Froblem Marme in Integration Builder
Structure [ZEF0L1_GET _CITIES BY COUNTEY 31 [Mame name already exists (number attached) |GetCitiesByCountrySoapin
Structure ZEPDl_GET_CITIES_BY_CDUIII'RY_SDI Mame shorened to 30 characters GetCitiesByCountrySoapCut

Note: We have changed the name of the first structure from proposed _S1 (one) to _SI (capital I).
The example program which calls this proxy object uses this name in the source code so you
need to change it the same way for the example to work.

7. Activate client proxy

Obviously the client proxy you created will not work if you don't activate it.

71/114

3.6.1.2 CrEATE LoGICAL PORT FOR GENERATED CLIENT PROXY

Runtime features of the proxy you generated need to be assigned to it by so-called
“Logical Port” using transaction LPCONFIG. Full documentation can be found on
http://help.sap.com/saphelp _nw04/helpdata/en/16/285d32996b25428dc2eedf2b0ead

d8/content.htm.

Image: Creating logical port for generated client proxy

Logical Port
Proxy Class EEPOL CO_GLOBAL WEATHEE, SOAP @
Logizcal Port DEFATTLT
Description
Diefault Part

Note: We created default logical port changing nothing in the proposed attributes.

Please do not forget to activate the Logical Port you created.

3.6.1.3 CREATE SAP CLIENT SERVICE

Description of service creation is in section 3.1. Image below shows an example
of such service.

Image: SAP Client service example
Semice name scx_get weather

EPO XML Connector services
Direction of service O OUT of SAF, call an external semvice

]

Partner numhber

Partner type

[Inactive

[operation mandatory
IM: ¥SLT operation
[]IM: use hitp header
[]1IM: use guery string
Message format

FILE directory

FILE name

Description SAP Client senice example
[#] Callstack in errors

http://help.sap.com/saphelp_nw04/helpdata/en/16/285d32996b25428dc2eedf2b0eadd8/content.htm�
http://help.sap.com/saphelp_nw04/helpdata/en/16/285d32996b25428dc2eedf2b0eadd8/content.htm�

721114

3.6.1.4 CoNFiIGURE SAP CLIENT SERVICE

Area menu: EPO XML Connector Configuration —» Outbound service

configuration (external services) — Generated ABAP Proxy Client — Out:
Create/Change Proxy configuration
Transaction: [EPO1/WSOUT12

Image: SAP Client service configuration example

Semice name scx_get_weather
Qperation get_weather
Yersion

Configuration for SAP Client outhound services

MR ohject FEFOT/MOR
Suhohjectvalue
Murmber Range Mumber B8

[Inactive

Processing type S Synchronous =
Store XhL 6 store reguest and response information including XML message e
[v] Compress

Mame of proxy class LEPO1_CO_GLOBAL_WEATHER_SOMP

Mame of proxy method GET_WEATHER

Logical port

Cuat customer exit fim
In customer exit fim

HELT in
Maonitaring profile EFOTEST
Description SAP Client senice configuration example

Fields “Service name”, “Operation”, “Version”, “NR object”, “Subobject value”,
“Number Range Number”, “Inactive”, “Processing type”, “Store XML", “Compress”,
“Monitoring profile” and “Description” are common for every EPO service
configuration. For description of these fields please see section 3.2.3.3.

Name of proxy class: Class name created by generation of client proxy. This
class name is used for reprocessing of messages using
/lepol/reprocessproxy program.

Name of proxy method: Method of the proxy class. The method in this case is the
operation of the Web service to be called.

Logical port: Logical port name to use when the client proxy is called.
You can leave it empty if you want to use the default
logical port.

Out customer exit FM: Function module which is called in pre-processing stage of
the request message (outbound), right after the message
is saved, before the “XSLT in” transformation takes place.

731114

In customer exit FM: Function module which is called in post-processing stage
of the response message (inbound), right after the
message is saved.

XSLT in: XSLT transformation of response XML message. It takes
part in request handling right after the “In customer exit
FM”.

3.6.1.5 CREATE PROGRAM TO CALL SAP CLIENT

Call the EPO XML Connector method in your program. The method name is
“/epol/sapclient” and it belongs to class “/epol/cl_proxyconnector”. The service in
the example below is calling the same Web service as the example of EPO Client so
you can see the differences between these two implementations.

Example program for calling EPO client method

*& __ *
*& Report /epol/scx_actual_weather *
*& __ *

& To uncomment this example please use /EPO1/COMMENTUNCOMMENT program

*& __ *
*& To use this example you will need to generate Client Proxy object. *
*& WSDL from URL: http://www.webservicex.net/globalweather.asmx?wsdl *
*& Prefix ZEPO1l_ (Class name zepol co global weather_soap). *
*& Please change naming abbreviations to *
*& zepol get _cities by country_si for input structure and *
*& zepol get _cities by country_so for output structure of method *
*& get_cities_by country which is used in another example. *
*& __ *
*& Company: EPO Consulting *
*& 1P Rights: Intellectual Property Rights and all other rights are *
*& held by EPO Consulting. *
*& Copying or Modifying this program is only allowed with *
*& written consent of EPO Consulting. *
*& Author: MH *
*& Date: May 2007 *
*& Desc.: comment/uncomment reports *
*& __ *

report /epol/scx_actual weather.

data: 1_ro type ref to cx_root,
Is _error type string,
1 _requestxnml type xstring,

I _responsexml type xstring,
lI_transactionid type /epol/transactionid,
1_configouts type /epol/configouts,

I _return type bapiret2.

selection-screen begin of block sel with frame title text-001.
parameters: p_ctry(50) type c default "SLOVAKIAT,

p_city(50) type c default "BRATISLAVA®.
selection-screen end of block sel.

data: output type zepol get weather_soap_out .
data: input type zepol get weather_soap_in .

input-city_name = p_city.

input-country_name

p_ctry.

* EPO Connector processing

call method /epol/cl_sapclient=>/epol/sapclient

*

*

*

if 1_return-type = "E" or l_return-type = "A".

exporting
i_service
i_operation
i_version
i_proxy_input
i_reprocess
importing
e_proxy_output
e_return
changing
c_transactionid
c_request_asxml
c_response_asxml

"GET_WEATHER_PROXY "
"GET_WEATHER"

input

= output
= 1_return

= 1|_transactionid

= 1_responsexml

C_request_message =

c_fTkeyl

c_fTkey2
c_Tkey3
c_Tkey4

e _return (BAPIRET2) error handling

call transformation id
source error = | _return
result xml 1_responsexml.

else.

endif.

*

view response

CALL FUNCTION “DISPLAY_XML_STRING"

EXPORTING
xml_string
title
starting_x
starting_y

EXCEPTIONS
no_xml_document
OTHERS

1_responsexml
text-002

5

5

1
2.

741114

75/114

3.6.1.5.1 /EPO1/SAPCLIENT METHOD INTERFACE

Import

i_service type /epol/service
i_operation type /epol/operation optional
i_version type /epol/version optional

EPO XML Connector service name, operation and version parameters are
used to find the generated client proxy method to call, which is set in service’s
configuration.

i_proxy_input type any optional

Request data to be send to Web service. The input data must have the
structure of the input parameter of the generated proxy method.

i_reprocess type flag optional

This parameter is here for reprocessing program only. Please use
lepol/proxy_reprocess program for reprocessing stored messages.

Export

e_proxy_output type any

Generated ABAP client proxy output parameter. This is the response in the
format defined by generated method. If you want to access the response in
the XML format you need to use another parameter — ¢_response_asxmi

e_return type bapiret2

Return parameter for error handling.

Changing

c_transactionid type /epol/transactionid

Although you might not need to use this variable, you have to provide it for the
method call for it is used inside for handling. It will carry the unique transaction
identifier for the transaction created by the call of this method.

C_request_asxml type xstring optional

Serialized request message data (by transformation id) must fit the generated
proxy input data structure. This is the second way of how to pass the data to
this method. Note that if you use both i_proxy_input and i_request_asxml, the
method will raise an error.

C_request_status type /epol/status optional

76 /114

Giving variable to this parameter, you will be able to see the status code of
request message after it was processed.

e C_request_message type /epol/message optional

You can find useful information about processing of request when you use this
parameter.

o c fkeyl —c_fkey4 type /epol/tkeyl - /epol/ftkey4 optional

These four foreign keys are stored with each message. You can set or read
any of them in here or in user exit function modules. You can use them to
store any data you need to store with every message. The example of such
usage would be using one of the keys for storing some information you don’t
provide to the 3" party web service and then using the key for searching.

3.6.1.6 TESTING A SAP CLIENT SERVICE

Testing of SAP Client service is exactly the same as the testing of EPO Client service
so please see the section 3.4.4.5.

771114

4 GENERIC FUNCTION MODULE CALL (IMPLEMENTED IN
EPO RUNTIME)

General function module call (GFMC) is special functionality of EPO XML Connector
to allow you using specific EPO Runtime service for calling any SAP function module
accessible within you SAP system. In other words, you can directly call any SAP
function module from outside of SAP using xml messages. A standard, W3-conform
WSDL is provided (same on SAP systems worldwide). An excerpt of more than 3000
WSDL for SAP BAPI's is published on www.epoconsulting.com.

First you must setup the service (one time only).

4.1 SET UP: SERVICE FOR GENERIC FUNCTION MODULE CALL

@ Precondition 1: EPO XML Connector installation
Installation is standard with transaction SAINT (installation) and
SPAM (support packages). There is no difference to SAP
standard software. Please refer to the installation documentation.

& Precondition 2: SICF Service /epolsoa/xmlhandler must be active
Area menu: EPO XML Connector Administration — HTTP
Service Hierarchy Maintenance (ICF)
Transaction: SICF
For details see section 2.3.

@ Precondition 3: Number range must be set up
If you want to store request or response messages, you need a
number range for the TransactionlID.
Area menu:. EPO XML Connector Configuration — Maintain
number range for EPO XML Connector messages
Transaction: /EPO1/NOR.
For details see section 2.2.

& Precondition 4: Valid license key must be installed for production systems
Area menu: EPO XML Connector Administration — Load license
key for EPO XML Connector
Transaction: /EPO1/SETLICENSE
For details see section 2.1.

& Step 1: Set up a service

You need to create a specific EPO Runtime service (inbound) for the GFMC. The
image below shows such a service. EXC services are documented in section 3.1.

Area menu: EPO XML Connector Configuration — Maintain Services EPO
XML Connector
Transaction: /EPO1/SERVICES12

78 /114

Hint: We use EPOFM as service name. You could use any other name.

Image: EPO Runtime GFMC service
Senice narme EPOFM

EPO XML Connector services
Direction of service [1M to SAP, call 2 SAF semvice

(i

Partner numhber

Partner type

[Inactive

[operation mandatory

I ¥SLT operation FEPOT/GETHAINFIELDS _EXAMPLE
IM: use hitp header

IM: use guery string

Message format ®mil

FILE directory

FILE name

Description EPOC runtime far generic function madule calls

[]Zallstack in errars

Operation mandatory: Notice that 'Operation mandatory' is not checked, which
enables you to call any SAP function module without creating specific
configurations for specific operations (operation = function module name). Only
1 configuration with empty operation is needed as shown in the example below.
We strongly recommend checking the '‘Operation mandatory' field for production
systems, so that not any non-configured function module call would work.

IN: XSLT operation: The used XSLT /EPO1/GETMAINFIELDS EXAMPLE tries to
read the first xml element in the <soap:Body>. If it is found, it is used as
“Operation” (operation = SAP function module name).

IN: use http header: If “Operation” was not found or is not checked with the “IN: XSLT
operation”, the http header SOAPaction is used.

IN: use query string: If “Operation” was not found with the previous 2 settings, it will
be read from the query string (&operation=[function module name]). This setting
is necessary when using GET (not POST), for example for producing the WSDL
(see below).

& Step 2: Set up the configuration for the service
Area menu: EPO XML Connector Configuration — Inbound service configuration

(SAP Services) — EPO runtime — In: Maintain EPO runtime service configuration
Transaction: /EPO1/EPORTIN12

791114

The GFMC service uses “operation” parameter passed to it as the name of the SAP
function module, which is called then.

Here it is important that you use:

e /EPO1/GFMC_PROCESSINGFM as the processing function module. It
encapsulates all functionality for calling generically any SAP function modules.
It also holds the functionality inside for generating WSDL'’s.

e /EPO1/SOAP_RFC _TO _ASXML as the XSLT in. It transforms incoming
SOAP requests into ABAP XML (ASXML).

e /EPO1/ASXML_TO_SOAP_RFC as the XSLT out. It transforms ABAP XML
(ASXML which is produced with CALL TRANSFORMATION ID) into SOAP.

Image: GFMC configuration
Service name EFOFM

Cperation
Yarsion

Configuration for EFQ Runtime inbound services
MR object JEPOTSNOR
Subohjectwalue

Mumber Range Mumber 00

[]Inactive

Protacal OHTTF i
Frocessing type S Synchronous i
Store =hL B stare request and response information including XML message Z
[v] Compress

Processing Fh {EPOT/GFMC_PROCESSINGFH

RFC Destination

HELTin JEPO1fSOAP_RFC_TO_ASXML

HELT out JEPOTfBSXML_TO_SOAP_RFC

In.Renq.Structure Fhi

In.Reg.Mapping Fhd

In.Res.mMapping Fi

In.Res. Structure Fi

[]FILE o impart twice

FILE custorm exit Fh

Monitaring profile EPOTEST

Description EFCQ Runtime generic function module calls

Notice: This is the configuration as we use it on our test & development systems. It
has empty operation field, which enables any SAP function module to be called. In
other words, it is used when there is no specific setting for a SAP function module.
The precondition for this entry to work is that “operation mandatory” is not set for the
service (see above).

The opposite situation would be having entries with specific FM names in the
operation field.

80/114

Notice: Like in any other EXC service you need a number range (and the NR object)
for creation of TransactionIDs — unique transaction identifiers. The protocol is set to
HTTP although you could use FILE protocol if you wish to use files for request
messages (e.g. upload files in development). Synchronous processing type means
that the call is made at the time when request arrives, opposite to asynchronous,
where the request would be only stored and processing would be done later either
manually or by a scheduled job. This configuration also stores the request and
response information and compressed (compress check box) data into EXC tables
(Store XML field). All other fields of this dialogue are described in chapter 3.2.3.3.

With this setup you are able to call hundreds of thousand of SAP function modules.
Let’'s produce WSDL's and call the SAP function modules.

4.2 WSDL GENERATION IN XML TRANSMITTER FOR SAP
FUNCTION MODULE

After you created and configured the GFMC service, you can create WSDL files in
our freeware tool named XML Transmitter. You will fill in the URI and click GET,
submenu “Create WSDL from EXC interface response”. The function module for
which you want to create the WSDL is specified as operation for GFMC service.
Please note the "..?wsdl.." part of query string following the GFMC service name,
which makes it create interface response for XML transmitter. If you want to use
function module which includes namespace in its name like
/EPO1/EXC_STORE_REQUEST you will need to replace the '/' character with '_-', so
it will become _-EPO1_-STORE_REQUEST. The reason behind this is that '/
character cannot be used in xml element names.

URI example for FM BAPI_BANK_GET_DETAIL:
http://saptest:8080/epolsoa/xmlhandler/EPOFM?wsdl&operation=BAP|I BANK GET
DETAIL

Image: WSDL generation in XML Transmitter

E%ML Transmitter 2.1.8 - Freeware

W
EPO Consulting
s Sl

ansmitter PRO server Get XML Transmitter Office
et you scheule the transfer of Semd data rom Mierosoh Excel t any serves via

Destination: pitp: //sapdev-8080/epo1 soa/xmihandler/ EPOFM Pwsditoperation=BAPI_BANK_GETDETAIL
Username: kioiss Password, = Port: anen Timeout(s) 10 <<

7 Import WSDL _# Create WSDL 5 Open config | Sawe config [E] ciear - oy Get | B view

Request [| H B B Protacol HTTP(S] - POST - RESpUISE
Duecmﬂ Server

c . _File Name Size (kB)
fepofm - BAPT BANK GETLIST #ml 17,58
O Config.Msi Bpoim - BAPI MATERIAL GETLIGT... 4,87
+ [Documents and Settings ers_hapi_bank_getdetail.xml 0,35
#-[0 Program Files
+-[JRECYCLER
Osratest
O system Volume Information
= O Temp
+-[] WINDOWS
O xmL

Hame Value Change headers
ContentType tetiaml

http://saptest:8080/epo1soa/xmlhandler/EPOFM?wsdl&operation=BAPI_BANK_GETDETAIL�
http://saptest:8080/epo1soa/xmlhandler/EPOFM?wsdl&operation=BAPI_BANK_GETDETAIL�

81/114

The XML Transmitter will then open three new tabs; on client side (left) you will see
request xml structure, on server side (right) there will be response xml structure and
the WSDL created.

Image: Created WSDL and request and response XML structures

S 01L Transmittes 2,10 - Freewsre
Fe e Oplors Hep

Gat XML Transmitter PRO sorver | | Gel XML Transmi e Offica

EPO XML Connoctor |

Pt om0 Teeosd 10 o
£ It WEDL £ Canaln WEDL SOpancony Swmesdy [T Dew P oir P rost B View

Reguest 5 i W B OB B Powd Wity - oSt

Dreuiy V|

;g @

Hamn Waks Chorre hewdens
CorseniTyze teterd

After this step you can save the WSDL and use it for creation of proxy object to call
the specified function module.

Notice: The WSDL will be the same on any SAP system as long as the SAP function
module interface does not change (Release independent).

4.2.1 STRUCTURE OF THE EXC GFMC WSDLSs:

The structure of any WSDL will have the SAME top level XML elements:

For Request it will have 1 or 2 or 3 of those xml elements:

<IMPORT> containing all IMPORT parameters of a SAP function module. XML
element names will be same as function module parameters.

<CHANGING> containing all CHANGING parameters of a SAP function module.
XML element names will be same as function module parameters.

<TABLES> containing all TABLES parameters of a SAP function module. XML
element names will be same as function module parameters.

For Response it will have 1 or 2 or 3 of those xml elements:

<EXPORT> containing all IMPORT parameters of a SAP function module. XML
element names will be same as function module parameters.

<CHANGING> containing all CHANGING parameters of a SAP function module.
XML element names will be same as function module parameters.

82/114

<TABLES> containing all TABLES parameters of a SAP function module. XML
element names will be same as function module parameters.

Notice: In the WSDL all types will be set to string. However in the request and
response XML, which is created together with the WSDL in the XML Transmitter, you
can see all type definitions of all SAP fields (=xml elements with same name). At
runtime you must make sure, that all sent data confirms to the SAP fields. For
example dates must be sent as yyyymmdd (e.g. 20090430). If you want to send
different formats or cannot use the EXC GFMC runtime, we recommend using EPO
runtime instead. EPO runtime means, that you are using your own processing fm
(opposite to using /EPO1/GFMC_PROCESSINGFM). Trick: You can copy the
mapping program from the GMFC runtime and use it in your own processing fm.

4.3 TESTING THE WSDL (THE SAP FUNCTION) IN XML
TRANSMITTER

You can POST the request xml message, which is generated together with the
WSDL in XML Transmitter to test the SAP function right away from this point. Of
course, you must fill it first with correct data. The image below shows response of
BAPI_BANK_ GETDETAIL function module to my request for bank which does not
exist on our development system.

Image: BAPI FM response received after posting request for non-existing bank

, EPO XML Connector |

Debeadion e vvapdew 000ec0) soatmibandeu LPOEH

Uremane: foe L Pt om0 Teessd 10
2 Impacst WAL £ Constn WADL Opsncorig jdSwmoody [T Dew @ ey @ rost 5] Viess

Raquast S B OB W Puecd uitas - Post

i}

Hama Witk e beders

Zervee SAR W Appbeation Cerer (1 0700

SOAP Fault message response in error cases for EXC GFMC runtime:
In error cases the response you will receive will be standard SOAP fault message
with the error described in <detail> element using /epol/callstatus structure.

83/114

Example of SOAP fault GFMC response:

<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope
xmlns:asx="http://www.sap.com/abapxml" xmlins:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Fault>
<faultcode>EPO1_EXC_ERROR</faultcode>
<faultstring>EPO XML Connector Error</faultstring>
<detail>
<CALLSTATUS>
<CODE>551</CODE>
<TYPE>E</TYPE>
<SUBJECT>XML transformation error</SUBJECT>
<DESCRIPTION>Exception in XSLT processor: No valid source context supplied</DESCRIPTION>
<TRANSACTIONID></TRANSACTIONID>
</CALLSTATUS>
</detail>
</soap:Fault>
</soap:Envelope>

84/114

5 PUBLIC FUNCTION MODULES - REQUEST/RESPONSE API

The API function modules allow you to store message of any kind into EXC tables.
Its intended use is to include existing interfaces of any kind (file up- and downloads,
IDOC interfaces...) into the EPO XML Connector.

Existing interfaces are then automatically extended with
- monitoring features
- storing metadata information (who, when, what,...)
- storing the interface transaction data in binary form and
- reprocessing options

5.1 /EPO1/EXC_STORE_REQUEST INTERFACE

The function stores request (only) message into EXC tables. As you can see on the
image, the interface is straightforward, all the parameters has already been
described in this documentation. The function checks the existence of specified
service and configuration and creates (if configured) specified header
(/EPO1/XMLHEAD) and/or data (/EPO1/XMLDATA) records. In case of any error you
can use E_CALLSTATUS to describe it.

Precondition: Service must be set up in EPO XML Connector

Notice: Monitoring messages are not sent at runtime. You must use the EPO XML
Connector monitor to produce monitoring messages.

Image: Store request function module interface.
Function module fEPOT/EXC_STORE_REQUEST Active

Attributes | Import | Export | Changing | Tables | Exceptions ' Source code

1 EHfunction /epol/exc store regquest.

2 [l] P
3 £MENMT 0o3] Interface:

4 £ TMPORTTING

5 e EREFERENCE (I MESSAGEDTIRECTION) TYPE AEPQL /MESZAGEDTIRECTTON
[} *rr EREFERENCE (I SEEVICE) TYPE FEPO1SSERVICE

7 e LREFERENCE (I OPERATION) TY¥PE SEPOLSOPERATION OPTTIONAL

=1 el EEFERENCE (I VEESTON) TYPE AEDQL1/VERSTION OPTIONAL

= “rr EEFERENCE (I EXT TRANSACTIONID) T¥DE FEPO S TRANSACTTIONTD
10 e OPTTIONAL

11 1 LREFERENCE (I NEYEAR) T¥PE FAEDO1NR¥EAR DEFAULT "Q000"

1z e EEFERENCE (I STATUS) T¥PE FEPOISSTATHS OPTTONAL

13 e REFERENCE [I MESZAGE) TYPE FEPOL1/MEZSAGE QOPTIONAL

14 1 LREFERENCE (I FRE¥1) T¥DE SEPO1AFEEY1 (QPTTONAL

15 e EEFERENCE (I FEEYz) TYDPE AEDQ1/FKEYZ OPTTONAL

16 e REFERENCE (I FEE¥3) T¥DE AEPDLSFEEY3 OPTTONAL

17 e LREFERENCE (I FEE¥4) TY¥DPE AEPO1SFEEY4 QPTTONAL

15 e EEFERENCE (I DATA) TYPE FEPQLSKML OPTTONAL

19 = EXPOETTHNG

Z0 e LREFERENCE (E TREANSACTIONID) T¥DE FEPDL TRANSACTIONID

21 el EEFERENCE (E CALLETATHS) TYPE AEPQLSCALLSTATHS

22 E il e e e e e e e e e e e e e e e 5 e e e e e e e e e e i 5 5 e e e e e e e e e e

85/114

5.2 /EPOL/EXC_STORE_RESPONSE INTERFACE

The function
store respons

is exactly the same as the previous one, but this one permits you to
e message only. You can use it for http(s) protocols for example.

Notice: The transaction ID parameter is a CHANGING parameter. Therefore you can
use the transaction ID which was generated when storing the request.

Function module

Image: Store response function module interface.
fEPD1/EXC_STORE_RESPONSE Active

Aftributes h Import h Export h Changing h Tahles h E}{ceptinns/ Source code

1! Hfunction fepolfexc store response.

Z H &l e

3 #rEflocal Interface:

4 #™ IMPORTING

= E3U LEFEEENCE (I MESSAGEDIRECTION) TYPE /EPQL/MESSAGEDIRECTION

& = REFERENCE (T SERVICE) T¥PE /EPO1/5ERVICE

7 = REFERENCE (I OPERATION) T¥PE /EPO1/0PERATION OPTIONAL

g el EEFERENCE (T VERESTON) TYPE JEPOQ/VERSTON OPTTONAL

9 E30 REFERENCE (T NEYEAR) T¥PE SEPO1/NREYEAR DEFAULT 'Q000°

10 el REEFERENCE (I STATUS) T¥PE EPOL/STATUS OPTIONAL

11 = LEFEEENCE (I MESSAGE) T¥PE JEPOI/MESSAGE OPTICONAL

1z = REFERENCE (T FKE¥1) T¥PE /EPO1/FKE¥1 OPTIONAL

13 = REFERENCE (I FKEY¥Z2) T¥PE /EPO1/FKEYZ2 OPTIONAL

14 30 EEFERENCE (T FKEY¥3) TYPE /EPO1/FKEY3 OPTIONAL

15 E30 EEFERENCE (T FKEY¥4) TYPE JEPO1/FKEYd OPTIONAL

16 el REFERENCE (I DATA) T¥PE JEPOL/XML OPTIONAL

17 " CHANGING

15 = REFEEENCE {C TREANSACTIONID) TY¥PE AEPOL/TRANSACTIONID

19 wm

L
o
T
*.

REFERENCE (& CALLSTATUS) TYPE SEPO1/CALLSTATUS

86/114

6 MONITORING FUNCTIONALITY

Monitoring functionality of EPO XML Connector allows you to monitor all interfaces
from and to your SAP systems. You can monitor all interfaces implemented within the
EPO XML Connector implicitly (EPO runtime, SAP runtime, EPO Client, SAP Client).
And you can also monitor all other interfaces, by just adding one of the two API
function modules (see chapter 5) to your existing interfaces.

EXC monitoring sends internal (SAP Office), external (E-Mail) or custom (user exit)
messages when “something goes wrong”. In detail this means you can send
monitoring messages, when transactions finish with statuses which correspond to
statuses set in a monitoring profile. A monitoring profile can be assigned to any EXC
service.

The functionality is executed always when processing a transaction with monitoring
profile set in service's configuration (at runtime). Or you can also manually run
/EPO1/MONITOR program (image below) to send monitoring message(s) for
selected set of transactions, or you can schedule a job to run this program
(scheduled).

87 /114

6.1 SETTING UP MONITORING PROFILES

Monitoring profiles hold information about when and how a monitoring message
should be sent. Monitoring profiles can subsequently be assigned to each service
configuration or they can be used in the EPO XML Connector monitor.

Area menu: EPO XML Connector Configuration -> Monitoring -
>Create/Change monitoring profile
Transaction: /EPO1/MONITOR12

Image: Monitoring profile example
Monitaring profile EXAMPLE

!_Eﬁ'@'-};{hﬂ'L—Cnnnectur- M_lzu_nitEring prn:uﬂl'és—/--m
Monitoring target 0 Regquestmeszages (default =

Simple status 0 Error and partial error messsages (status =51 or 52 =l
LIser ranoe VE '
Llser range aptian g
LIzer range low
Llser randge high

log mantiaring ess. no logging of monitoring messages &
kee_p log |

Sender (SAP Usen) SAPUSER

Fecipient(s) type I E-Mail Address Z
Fecipients infog@epaconsulting.com

Maonitor CCrecipients
hMessange subject | Test munitnring_prnﬂle
Message text name |S010_TEXT_MAME

Meszage text ID ST

Content T}.;'FIE _HTM Cl:untent-Type: textthtmil ey
HSLT far head

Include request head

Include request data nline {within bady) g
HSLT for request m.

max. regquest lenoth 2048

[1Include respon. head

Include respon. data Aas attachment B
HSLT for respanse m. _

Max. response length 2048

Sending style 0 Separate messages =
Message list sording 0 Table by - TfanaactiunlD, Message direction et
Mon. custarm exit F

88/114

Description of monitoring profile parameters:

e Monitoring profile

e Monitoring target

e Simple status

e Userrange I/E

e User range option
e User range low

e User range high

e Log monitoring mess.

e Keeplog

e Sender (SAP User)

¢ Recipient(s) type

Name of the profile, which you fill into the service
configuration

Monitoring message is sent when status of an EXC
message meets the status set in monitoring profile. Here
you decide what status the monitoring is looking at;
request (default) or response message status.

Note: Only request message status is set automatically in error
cases so unless you set status of response message in user exit, the
request message status is the only viable option here.

Status values for which the monitoring message will is
sent. Options here are:

- Error and partial error messages (status = 51 or 52)

- Error messages only (status = 51)

- Stored messages (status = 50)

- Successful messages (status = 53)

- All messages (any status)

- User defined status range (user range)

Include or exclude user range

User range relational operators (BT, CP, EQ, etc...)
Status value

Status value

Using these four fields you can define range of statuses
for the profile, which is used when 'Simple status' field is
set to 'User defined status range (user range).

If you enable logging of monitoring messages here, the
log records are created in /EPO1/MON_LOG table. The
logged information is : Service, operation, version,
creation date and time, monitoring profile name,
monitoring source (R-runtime, M-manual), the SUBRC
error number (when sending of the message failed), error
message, TransactionID and recipient type.

Number of days for keeping the log records. When
empty, all records are kept, otherwise the log records
older then specified are deleted.

SAP user name used as a sender of monitoring
message.

According to this value, the monitoring message is send
to:
- SAP User (SAP Office)

Recipients

Monitor CCrecipients

Message subject

Message text name

Message text ID

Content type

XSLT for head

Include request head

XSLT for request m.

Include request data

Max. request length

Include respon. head
Include respon. data

89/114

- EXC customer exit (to be programmed individually)

- E-Mail address

In case of customer exit, function filled in 'Mon. custom
exit FM' field of profile is called.

Semicolon (;) separated list of recipients of the
monitoring message. Sap user names, e-mail addresses
or custom recipients list for the user exit FM.

Same as above, but these are “carbon copy” recipients.
Text for subject of the monitoring message (string).

Text for body of the monitoring message. This is name of
text object created using transaction SO10 (SAP
standard texts).

Text ID of a SAP standard text object (SO10).

TXT (text/plain) or HTM (text/html) content type for
message body. Make sure you set it to HTM you want
the message body to properly show html, which you pass
to it.

XSLT transformation, which you can use for formatting
/lepol/xmlhead structure (either request or response
dependent on 'Monitoring target' setting of the profile.

When checked, the body of message will contain
information from /epol/xmlhead table for request
message of the monitored transaction.

The transformation specified here you can use for
formatting the request head (/epol/xmlhead structure)
information set to be included in field above.

You can also include the request data into body attach it
as a file to the monitoring message.

Options are:

- when this field is empty, no request data are sent

- as attachment — data file attached to the message

- inline (within body) — data included in message body

Maximum size in bytes of the included request data.
When empty or zero, all the data are included, otherwise
the string is shortened to the size specified here.

These fields are equivalents of the four fields above,
but for response head and data information.

90/114

e XSLT for response m.
e Max. response length

e Sending style Options for sending set of transactions in one monitoring
message. This field only applies to /EPO1/MONITOR
program. In opposite, when monitoring runs on
transaction being processed, there is always only one
message per one transaction possible.

You can choose to send:

Separate messages

Message list per service

Message list per service and operation
- Message list per service, operation and version

e Message list sorting In case you selected message list in field above, you can
choose the sorting of the included monitoring messages
here.

Sorting options:

- Table key (TransactionlD, Message direction)

- Service, operation, version

- Creation date, creation time, changed data, changed
time

- Sorting 1 and 2 — Service, operation, version,
creation date, creation time, changed data, changed
time

e Mon. custom exit FM Here you can specify your function module to be
executed when you set 'Recipients type' field to 'EXC
customer exit (to be programmed individually)'. This is
the option for you to program your own sending of the
monitoring messages.

6.1.1 MONITORING CUSTOM EXIT FUNCTION MODULES

Instead of using one of the build-in monitoring message function (SAP office mail, E-
mail), you can implement your own monitoring message function. This can be used
to send monitoring messages either

- with other techniques like fax, SMS, ftp,...

- or to link it with another monitoring system.

The call of the custom exit function code:

CALL FUNCTION me->profile-moncustomexitfm

EXPORTING
i_mon_profile = me->profile “type /epol/mon_profs (structure)
i_service =1|_service “ type /epol/service
i_operation =1|_operation “ type /epol/operation

i_version =1 _version “ type /epol/version

i_transactionid
i_request_head
i_request_data
i_response_head
i_response_data
i_message_body
i_testmode
IMPORTING
e_mon_status
e_mon_message
CHANGING
C_recipients_type
C_recipients
C_cc_recipients
c_mon_subject

=|_transactionid

= me->request_head
= me->request_data

= me->response_head
= me->response_data
= me->message_body
=i_testmode

=1_mon_status
=1_mon_message

= me->profile-recipients_type
= me->profile-recipients

= me->profile-cc_recipients

= me->profile-subject.

91/114

“ type /epol/transactionid

“type /epol/xmlhead (table)

“type /epol/xmldata (table)

“type /epol/xmlhead (table)

“type /epol/xmldata (table)

“type /epol/mon_message_body (table)
“type /epol/testmode

“type /epol/status
“type /epol/message

“type /epol/mon_recipients_type
“type /epol/mon_recipients
“type /epol/mon_cc_recipients
“type /epol/mon_subject

92/114

6.2 EPO XML CONNECTOR MONITOR

The EPO XML Connector monitor allows you to select messages according to their
status and

- list messages in test run

- or to send monitoring message in “Production mode”.

Area menu: EPO XML Connector Configuration — Monitoring — EPO XML
Connector monitor
Transaction: /EPO1/MONITOR

There are 2 main options for selecting messages:
a) “Use fixed monitoring profile” left empty
b) “Use fixed monitoring profile” filled with a monitoring profile

With option a) only services configured with a monitoring profile will be selected.
Sending of monitoring messages is done according to the different monitoring
profiles.

With option b) all messages will be selected and sending of monitoring messages is
done according to this monitoring profile.

Image: Monitoring program selection screen

ERPO XML Connector Monitor

5] 18] 151 151 151 5] TSI 751 5] 961 5] 15] 98] 15] 75] 95 16} 75 16} 36] 15} 16

J_}é ?

0o:oe: e
0o:oe: e

oo:oe: e
oo:oe: e

94 /114

7 MESSAGE DATA MAINTENANCE (INBOUND & QUTBOUND)

During runtime of any service each message sent or received in SAP with the EPO
XML Connector will get a unique transaction ID. Request and response messages of
a particular service call will get the same transaction ID, but different message
direction information (I or O). If a service is configured to store messages, those
messages can be obtained, viewed and edited with the data maintenance transaction
of the EPO XML Connector.

All functions are available for all kind of messages. You can find them in our area
menu in section EPO XML Connector Data Maintenance and they are divided into
two sections for better orientation — Inbound XML messages (Call of SAP Services)
and Outbound XML messages (Call of external Services).

7.1 (RE) PROCESS A STORED XML REQUEST MESSAGE

Processing or reprocessing of XML messages manually can be done via our menu
functions.

Inbound services (Incoming requests to a SAP services — EPO Runtime
and SAP Runtime services):
EPO XML Connector Data Maintenance — Inbound XML messages —
/EPO1/EPORTINPROC — In: (Re) Process EPO Runtime XML message
/EPO1/WSINPROC - In: (Re) Process SAP Runtime XML message

Outbound services (Outgoing request to an external service — EPO Client
and SAP Client services):
EPO XML Connector Data Maintenance — Inbound XML messages —
/EPO1/EPORTOUTPROC - Out: (Re) Process EPO Client XML message
[EPO1/WSOUTPROC - Out: (Re) Process SAP Client XML message

Each of these transactions call different programs to (re)process a message using a
different technique, but they all have got the same selection screen, where you select
the message(s) for processing or reprocessing.

The only condition needed for (re)processing of a message is that its status code
needs to be less than 53 (processed successfully). However, if you need to
reprocess such message again you can change the status code manually, using the
function from administration menu (or your SAP administrator can) — EPO XML
Connector Administration — /EPO1/SETSTATUS - Set status of XML message
manually.

7.2 DOWNLOAD AND EDIT A STORED XML MESSAGE

There are two functions in our area menu enabling you to download an XML
message as a file(s). Every record in the database tables is represented by a single
file. You can store the file(s) to the server or local machine directory, which you will

95/114

need to input in selection screen of the chosen program. There is a common
selection screen in each of the functions where you will be able to choose which
message you want to download. The files are saved in binary format which keeps all
the encoding information intact. The names of the files are generated automatically
using “epo”, client, TransactionID and Messagedirection with the following structure:
“EPO_<client>_<transactionid>_<messagedirection>.<suffix>", where the suffix is
taken from “Message format” field of configuration of corresponding service. The file
name then will look like this: epo_910 _000000000000054 |.XML” for incoming
message of transaction 54. The client, transaction id and message direction from the
file name are used when uploading / updating the XML message. So you don’t really
want to change them, if you want to successfully update the same record in the
database. However this function is here for you to be able to edit the content of the
file — XML message itself. You can use any XML editor for these purposes; many of
them are available on the internet.

Note: Using the outbound function for incoming service, you are able to download
and therefore edit a response XML message, but can not upload and update the
response using the upload function. You will also see the message “This is response
message” in the message column of the ALV list displayed after you downloaded
such file.

The functions are:

Inbound services (Incoming requests to a SAP services — EPO Runtime
and SAP Runtime services):
EPO XML Connector Data Maintenance — Inbound XML messages —
/EPO1/DOWNLOADXMLIN — In: Download XML message

Outbound services (Outgoing request to an external service — EPO Client
and SAP Client services):
EPO XML Connector Data Maintenance — Outbound XML messages —
/EPO1/DOWNLOADXMLOUT — Out: Download XML message

7.3 UPLOAD A STORED XML MESSAGE

After having downloaded and edited a file (previous paragraph) you can upload it
back and update the database tables. You can upload the file from the server or local
machine by choosing the right option in the selection screen and selecting the right
file by browsing in local machine files, or typing the path and file name of the server
file. The file name must correspond to the structure created by the downloading
program (see previous paragraph). The information from it is used for finding the
record, which needs to be updated. This function uploads the selected file and
updates the record in the database tables. It cannot be used to_insert a new record in
any case. You will not be able to upload any file which contains a response XML
message using these functions (The responses are answers from the services, so it
does not make any sense to change them).

Functions for uploading files:

96/114

Inbound services (Incoming requests to a SAP services — EPO Runtime
and SAP Runtime services):
EPO XML Connector Data Maintenance — Inbound XML messages —
/EPO1/UPLOADXMLIN — In: Upload XML message

Outbound services (Outgoing request to an external service — EPO Client
and SAP Client services):
EPO XML Connector Data Maintenance — Outbound XML messages —
/EPO1/UPLOADXMLOUT - Out: Upload XML message

7.4 FILE UPLOAD OF A NEW XML REQUEST MESSAGE (INSTEAD OF
USING HTTP)

Please use this program only for ad-hoc uploads. For uploads of files from the SAP
server as a regular service, you must use program /epol/exc_fileruntime
(Transaction can be found in Configuration - EPO runtime part of area menu).

Reading the previous two paragraphs, you know that you can download, edit, upload
and update the XML message to/from files. The functions described here enable you
to insert new request message into the database tables. They will not update any
record in any case. Unlike the uploading functions, these ones do not need the
specific file name; they will upload any file, which you choose in the selection screen,
but you will have to assign the file to the right service by inputting service’s name,
operation and version, so that it can be (re)processed afterwards. When running the
upload program you will tell the EPO XML Connector to create a new transaction id
and insert a new request message to the database tables. It will not process the
request automatically, you will need to do it manually using (re)processing function
(please see section 7.1).

The functions for inserting new record from a file are:

Inbound services (Incoming requests to a SAP services — EPO Runtime
and SAP Runtime services):
EPO XML Connector Data Maintenance — Inbound XML messages —
/EPO1/UPLOADXMLIN — In: Upload XML message

Outbound services (Outgoing request to an external service — EPO Client
and SAP Client services):
EPO XML Connector Data Maintenance — Outbound XML messages —
/EPO1/UPLOADXMLOUT - Out: Upload XML message

Note: The concept of the EPO XML Connector allows inserting any file format (not
just XML). If it is not an XML format, you will need the EPO runtime with a processing
function module to process the message.

97/114

8 ADMINISTRATION OF THE EPO XML CONNECTOR
8.1 ARCHIVING XML MESSAGES

For archiving (write, delete and read archiving routines) of XML messages we
created the /epol/xml7 (/fepol/xml in WAS 6.20) archiving object, which you can use
in SAP archive administration — transaction SARA. You can call the transaction from
our area menu (EPO XML Connector Administration — Archiving XML messages —
/EPO1/SARAT — Archive Administration for object /EPO1/XML7), which will open the
SARA transaction with the object name already filled in, so you don’'t need to
remember it.

Image 30: SARA — Archive Administration using object /EPO1/XML7
Archive Administration: Initial Screen

E[E Logs || Custormizing || Database Tables || Information System | & Statistics || CheckiDelete

Archiving Object [/EFOL/20L7 EF'O ¥ML Connectar archiving abject
Actions

[E iite |

||ﬂ Delete |

||jf|f| Read |

A2 Management |

The only thing you will most likely need to change for the archiving object is the
Logical path in the Logical file name definition, so it corresponds with your archiving
system setup (image 31). As you probably know, you can do this in transaction FILE,
which you can also access from our area menu (EPO XML Connector Administration
— Archiving XML messages — FILE — Cross-client file names / paths).

Image 31: Logical file name definition for object /EPO1/XML7
Change View "Logical File Name Definition, Cross-Client”: Details

%% MewEnties [&« & B EH

Dialog Structure Logical file ARCHIVE DATA FILE EP0 ML
¥ DLogical F'Ie Path DEﬂmt'! Marme Archive data file for EPO =ML Connector
(1 Assignment of Physi -
&9 Logical File Name Defini Fhysical file ER QXML <YEAR==MONTH=<DAY= =TIME=.<F=EXAMPLE=
1 Definition of variahles | Datafarmat EIN
[Syntax Graup Definition | Applicat.area EC
[Assignment of Operating| | ggieaf path ARCHIVE_GLOBAL_PATH|

To let you have a look at the /epol/xml7 archiving object definition there is the AOBJ
transaction in our menu (EPO XML Connector Administration — Archiving XML
messages — AOBJ — Archiving object definition)

98/114

8.2 AD-HOC DATA OPERATIONS

Please do not mismatch these operations with services. They are here to provide
data access in case there is a need to manually alter the data or database.

8.2.1 DowNLOAD XML MESSAGES TO DIRECTORY

Rather then downloading stored XML messages by direction as it is proposed in data
maintenance area menu, you can download all selected messages (based on
selection) to a single directory either to the server or local machine. The files are
stored in binary format to keep the encoding. The names of the files are created
automatically from the ‘epo’, client, TransactionID and direction of the message
(Messagedirection). The suffix each file is set to the message format, which is
configured with the service (please see section 3.1). Error messages occurring
during download, if any, you can view in the ALYV list field “message” after running the
program.

8.2.2 UrPLOAD XML MESSAGES FROM DIRECTORY

With this function you can upload all files, which were downloaded before, from a
single directory either from the server or local machine. This procedure only updates
records in the database tables, it does not insert anything in any case and that is why
uploading requires existing records in the database tables. The key is TransactionID
and Messagedirection, which is stored in the file name, so the file name structure
must correspond to the structure created by downloading program — this is checked
exactly when uploading files and if the file name structure is not correct, files are not
uploaded. These files are treated as wrong files, so you will not be able to see them
anywhere in the ALV list. All other errors are written to the message field of
corresponding records, but only in local table — they are not stored to the database —
and you can see them with all the other stored fields (except the XML message of
course) in the ALV list displayed after the procedure.

Note: When this function runs, it always uploads all the correct files in the selected
directory and then it applies the filter you have entered in the selection screen of the
program, so it can take some time when you have many files, but you want to upload
just one or couple of them.

8.2.3 INSERT NEW XML MESSAGES FROM DIRECTORY

Please use this program only for ad-hoc uploads. For uploads of files from the SAP
server, as a regular service, you must use program /epol/exc_fileruntime
(Transaction can be found in Configuration - EPO runtime part of area menu).

File handling functionality would not be complete without having the ability to insert
new records to the database tables. Similar to uploading it uploads all files from a
selected directory, either from the server or local machine. It creates new
TransactionlDs for each of the uploaded files and inserts them into the database
tables. You need to assign the files to the existing service by inputting service name,
operation and version in the selection screen. It does not update any record in any
case and it does not check the file name, so all the files are inserted. It does not

99/114

process the requests automatically. You will need to (re)process them afterwards
(please see section 7.1). Errors opening and/or reading files are written to the
message field of the local table — not inserted to the database — and displayed with
all the other fields in the ALV list after running this program.

100/

8.3 OTHER ADMINISTRATIVE FUNCTIONS

/EPO1/SETSTATUS — Set status of XML message manually

You can change the status code of a XML message using this program. It
allows you to reprocess a message, which has already been processed, by
setting the code to the number less than 53.

SMICM — ICM monitor
SICF — HTTP service hierarchy maintenance

Standard SAP transactions you will need to use administering EPO XML
connector.

/EPO1/SETLICENSE — Load license key for EPO XML Connector
Utility for loading the license key file for EPO XML Connector
/EPO1/TEMPLATESUNCOM — Uncomment / comment template programs

Here you can find a program to uncomment or comment the template
programs (examples), which are delivered with the EPO XML Connector.

All template programs delivered with the EPO XML Connector are commented
out. Note: This is to avoid syntax errors in your system, because you might not
have installed all SAP components which are used in the templates.

If you want to use a template program, you must first uncomment it. Often this
is not necessary, because you will need to create a copy of a template
program in the Z* or Y* namespace (see developing of new services).

You can uncomment or comment all template programs in one single run.
The comment / uncomment program can only be used for template programs

with the EPO XML Connector. No other programs can be commented or
uncommented.

101/

9 INTEGRATION SOLUTIONS BASED ON EXC

9.1 XHTML INTERACTIVE FORMS

This solution enables you to generate prefilled xHTML forms out of SAP. It is directly
built-in into the EPO XML Connector.

It is similar to Adobe pdf interactive forms, but instead of using pdf forms you can use
XHTML forms. It is also similar to BSP (SAP Business Server Pages) with the
advantage of being much simpler and again a clear separation between front-end
and back-end.

9.1.1 X*HTML QuTRUT FOR EPO RUNTIME AND CLIENT

The title saying it, this part of xml processing applies to EPO Runtime and EPO Client
services only. The idea is to be able to serve HTML form prefilled with data from
SAP. To give full control to you, the prefilling is done in customer programmed
function modules, where you call pre-defined XSLT transformations. Example XSLT
transformation are delivered with the EPO XML Connector (used in example prefill
function modules):
e /EPO1/EXC_CHANGE_ XHTML_ATTRIB replaces or adds attributes and its
values in existing elements.
e /EPO1/EXC_CHANGE_XHTML_ELEMENT replaces value in existing element
of the template.
The xHTML template must be stored in SAP MIME repository (transaction SE80,
MIME Repository button). It has to be in xHTML format to be able to do XSLT
transformations. You can find xHTML specification on http://www.w3.org/TR/xhtmI1/.

The prefill function module call is placed before outbound XSLT transformation in
both EPO runtime and EPO Client.

EPO runtime and EPO Client both check whether there is a xHTML configuration set

for the called service, configuration and version. If it is set, it reads the configured
MIME object and passes it together with XML data to the prefill function module.

9.1.2 XHTML OuTPUT CONFIGURATION

Area menu: EPO XML Connector Configuration — Maintain EPO xHTML
configuration
Transaction: [EPO1/XHTML12

Image: EPO xHTML output configuration example

http://www.w3.org/TR/xhtml1/�

Seniice name ;EKC_KHTML_TEST
Qperation
Hersinn

HHTHML configuration -

MIME Object URL fSAP/PUBLICHest him|

Prefill Fi [/EPO1/EXC_XHTHL_PREFILL
HTTF content type textfhtml charset=utf-g

Service name, Operation, Version: EPO Runtime or Client service identification for
XHTML output processing

MIME Object URL: xHTML template object URL (SE80, MIME Repository)
Prefill FM: Customer programmed function module for template transformations

HTTP content type: EPO Runtime only, custom HTTP header value for response,
text/xml (EPO Runtime default) if left empty

9.1.3 x*HTML OuTrUT PREFILL FM INTERFACE

Below is the interface of template function module, placed in /EPO1/EXC_XHTML
package which you can use for filling the xHTML template with data from SAP.

function /epol/exc_xhtml _prefill.

*

'"" ocal Interface:

> IMPORTING
REFERENCE(1_SERVICE) TYPE /EPO1/SERVICE
REFERENCE(1_OPERATION) TYPE /EPO1/0PERATION
REFERENCE(1_VERSION) TYPE /EPO1/VERSION
REFERENCE(I_XML) TYPE /EPO1/XML
REFERENCE(1_MIME) TYPE /EPO1/XML

EXPORTING
REFERENCE(E_XML) TYPE /EPO1/XML
REFERENCE(E_CALLSTATUS) TYPE /EPO1/CALLSTATUS

L T R

| SERVICE, | OPERATION, | VERSION: EPO Runtime or Client service
identification

|_XML: For EPO Runtime this is response XML data after being saved (if configured)
and before outbound XSLT transformation (if configured) is applied, for EPO
Client it is request XML data passed to /EPO1/EPOCLIENT FM, after being
saved (if configured), before outbound XSLT transformation (if configured).

|_MIME: The xHTML template read from MIME Repository (SE80)

103/

E_XML: Parameter for filled or transformed template to pass it back to EPO Runtime
or EPO Client processing

E_CALLSTATUS: Error information in /EPO1/CALLSTATUS format. If you fill this
information and leave E_XML empty it is transformed to simple HTML structure
containing the information, if you want to create different error structures, do so
in E_XML and leave this empty

9.1.4 xXHTML OutrPuT PREFILL FM CREATION

First step is getting data needed for filling the template from imported XML data. In
the template we call transformation id to give us username to read the data using
BAPI.

' get username from i_xml
call transformation id
source xml i_xml
result username = | _username.

Then we call the BAPI to get user details, but obviously you will use this part to get
the data you need. You can see simple error handling here, which gives back
callstatus which is then in turn transformed to HTML message.

' get user details
call function "BAPI_USER_GET_DETAIL"

exporting

username = l_username
importing

address = l|_address
tables

return = It _return.

" error handling
if I_address is initial.
" First error to callstatus
loop at It_return into wa_return
where type = "E° or
type AT

clear e_xml.
call function "/EPO1/EXC CSMSG*

exporting
i_bapiret2 = wa_return
i_parameterl = "BAPI USER GET DETAIL"
importing
e _callstatus = e _callstatus.
exit.
endloop.
endif.

Last part is transforming the xHTML template using XSLT transformations to prefilled
xHTML form. Before this bit there is also filling of these two internal tables, you can
find whole code in /EPO1/EXC_XHTML_PREFILL function module, which you can
also use as a template for your own ones.

" xHTML form template
e xml = i_mime.

" apply attribute value changes
loop at It_attributes into wa_attributes.
call transformation /epol/exc_change_xhtml_attrib

parameters
element = wa_attributes-element
id = wa_attributes-id
attribute = wa attributes-attribute

value = wa_attributes-value
source xml e_xml
result xml e xml.
endloop.

" apply element value changes
loop at It_elements into wa _elements.
call transformation /epol/exc_change_xhtml_element

parameters
element = wa_elements-element
id = wa_elements-id

value = wa_elements-value
source xml e_xml
result xml e_xml.
endloop.

105/

9.2 METASTORM BPM / SAP INTEGRATION

Integration of Metastorm BPM (former name e-Work) with SAP was previously done
with the Metastorm BPM Connector. With the release of the EPO XML Connector
integration of Metastorm BPM is covered by this general, more powerful connector.
The Metastorm BPM Connector is retired.

There is a separate, in-detail-documentation available for integrating Metastorm BPM
with SAP. EPO Consulting also provides a product called B2B WS Integrator for
Metastorm BPM, which enables web service calls (SAP Inbound) for Metastorm
BPM.

9.2.1 INTEGRATION OF METASTORM BPM USING WEB SERVICES

Metastorm has released new, improved Web Service functionality with Metastorm
Release 7.5 SR1. We have successfully tested the EPO XML Connector with these
Web Services. There is a full documentation with examples available which can be
requested from EPO Consulting or downloaded from our website. Here follows only a
short documentation.

9.2.2 INTEGRATION OF METASTORM BPM USING FILE INTERFACES

You can also use the file interface functionality of the EPO XML Connector. In
principle it means creating a file in Metastorm BPM and loading it into SAP or vice
versa.

9.2.3 UsSING B2B INTEGRATOR FOR METASTORM BPM

The B2B Integrator from EPO Consulting is a software tool allowing you to create
Web Service interfaces (SAP Inbound) with Metastorm BPM.

The B2B Integrator is a software tool, which needs to be installed on the Metastorm
BPM Server.

When creating Metastorm BPM processes the B2BIntegrator library must be attached
to processes. This library automates the call of SAP Web Service calls (in the
Integration Wizard of the Metastorm designer).

9.3 MS EXCEL / SAP INTEGRATION

Integration of MS Excel with SAP is brought to a new level by the EPO XML
Connector. There are several options available to set up any MS Excel to SAP
integration. The technique used is always calling a web service out of Excel, which is
provided by SAP with the power of EXC (SAP Inbound).

Option 1: Calling a SAP EXC web service with GET in VB

Option 2: Calling a SAP EXC web service with POST in VB

Option 3: Calling a SAP EXC web service with using XML Transmitter Office add-in
(a product developed by EPO Consulting)

106/

Option 4: Calling a SAP EXC web service using .NET programming options.

EPO Consulting will deliver examples and pre-packed solutions in the coming
months.

107/

10APPENDIX 1. USING XML TRANSMITTER FOR TESTING
AND DEPLOYING WEB SERVICES

When developing your web services using EPO XML Connector you will need to test
them. For this purpose we have created a special application which we deliver
together with the EPO XML Connector — XML Transmitter. We are using it heavily
ourselves developing and testing the connector, so we think it can help you with
creation and testing of your own services.

The application enables you to create HTTP request, SOAP or not, post it to the
server and see the response in the same window. You can type in your XML
messages or create them from WSDL description; you can use XSLT transformations
on them; you can even set your own special HTTP headers using this program. The
application window is divided into left and right side, where the left side contains all
the information about the request you are posting and the right side which shows the
response after it has been received. Everything you change on posting side you can
store to the configuration file and use it over and over again. You can see some
screenshots of this program in section 3.2.5 - Testing an EPO runtime service and
section 3.3.2.8 - Testing a SAP runtime service.

Create WSDL functionality

A very useful function of the XML Transmitter is “Create WSDL". It enables you to
generate a WSDL file from a request XML, response XML and the URL (URI). You
can use this functionality not just with SAP web services.

The XML Transmitter has got many more functions, which we are not going to
describe in here. It can be found in its own documentation.

http://dict.leo.org/ende?lp=ende&p=/gQPU.&search=excursion�

108/

11 APPENDIX 2: DEMONSTRATION OF ABAP SERIALISATION

As of Release 6.10 ABAP contains the statement CALL TRANSFORMATION that
allows you to transform ABAP data to XML and vice versa. There is simple demo
program in your EXC installation, which shows how this transformation can be used.
The program selects data from TO0O0 and CVERS tables, transforms it into asXML,
which is displayed afterwards. Then it uses the same transformation, but in the other
direction, to process the asXML back to local table TO0O, which is displayed as ALV-
lists. Then it does the same with table CVERS. The transformation of asXML to
tables (TO00 and CVERS in this example) could be also done in one step.

AsXML is the XML representation of SAP ABAP programming language structures.

The demo program source

*

’?"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
*

*& Report /EPO1/Z_TRANSFORMATIONID

H -
*& Company: EPO Consulting

*& IP Rights: Intellectual Property Rights and all other rights are

*

*
*& held by EPO Consulting. *
*& Copying or Modifying this program is only allowed with *
*& written consent of EPO Consulting. *
*& Author: MH *
*& Date: March 2008 >
*& Desc.: Example of TRANSFORMATION ID *
*& ___ *

REPORT /epol/z_transformationid.

TYPE-POOLS: slis.

TABLES: t000,cvers.

DATA: 1t_t0O00 TYPE TABLE OF t00O0,
It _cvers TYPE TABLE OF cvers,
1_return TYPE bapiret2,
as_xml TYPE xstring.

SELECTION-SCREEN BEGIN OF BLOCK t000 WITH FRAME TITLE text-001.
SELECT-OPTIONS: so_mandt FOR t000-mandt.
SELECTION-SCREEN END OF BLOCK t000.

SELECTION-SCREEN BEGIN OF BLOCK cvers WITH FRAME TITLE text-003.
SELECT-OPTIONS: so_comp FOR cvers-component.
SELECTION-SCREEN END OF BLOCK cvers.

START-OF-SELECTION.

SELECT * FROM t000 INTO TABLE It_t000
WHERE mandt IN so_mandt.

SELECT * FROM cvers INTO TABLE It _cvers
WHERE component IN so_comp.

END-OF-SELECTION.

' transform the tables to asXML
TRY.
CALL TRANSFORMATION id
SOURCE
t000 = It_t000

cvers = It _cvers
RESULT XML as_xml.
CATCH cx_root.
" no error handling in this example
EXIT.
ENDTRY .

' empty the tables
REFRESH: 1t_t000, It _cvers.
" view the asXML
PERFORM view_xml USING as_xml.

' the following two tranformations could be done in one step, but in
" this exapmle we do it In two

' transform asXML to tO00 table
TRY.
CALL TRANSFORMATION id
SOURCE XML as_xml
RESULT t000 = It_t000.
CATCH cx_root.
''no error handling in this example
EXIT.
ENDTRY .

" ALV list table of banks
PERFORM list_t000.
" transform asXML to cvers table
TRY.
CALL TRANSFORMATION id
SOURCE XML as_xml
RESULT cvers = It_cvers.
CATCH cx_root.
" no error handling in this example
EXIT.
ENDTRY .

" ALV list table of banks
PERFORM list _cvers.

A A A A A A A A A A A A A A A A A AT A A A A A A AT AA A AAAAAAAAAAAAAAAAIAAAAAAAIAAAIAIAA A AA LA XA AdX*x

* View XML message

AAXKXAAXAXAAXAXAXAXAAAXAXAAXAXAAAXAXAAXAXAAXAXAAAXAAXKAAAKXX *hx

FORM view_xml USING Ip_xml TYPE xstring.

DATA: Is_xml TYPE string,
lo_conv TYPE REF TO cl_abap conv_in_ce,
li_len TYPE i. "#EC NEEDED

li_len = XSTRLEN(C Ip_xml).
lo_conv = cl_abap_conv_in_ce=>create(input = Ip_xml).
lo_conv->read(IMPORTING data = Is_xml len = li_len).

CALL FUNCTION "PAYLOAD_DISPLAY™

EXPORTING
p_payload = Is_xml
p_title = text-002.

ENDFORM. "view_xml

A A A A A A A A A A A A A A A A A AT A A A A A A A AAAAAAAAXAAAAAAAXAAAAAAAAIAAAIAAAAIAAA AL ARAddhdXx

110/

* ALV list table cvers
AEAA AKX A AT AATA AT AAAAAAAAAAXAAXAXAAXAXAAXAAXAAXAAXAAXAAXAAAXAAXAAXAAAAXAAXAAXAAAAAAhAdhAdhhiiik
FORM list_t000.
DATA: wx_t000 TYPE 000, “#EC *
feldcat TYPE slis_t fieldcat _alv.

REFRESH feldcat.

" get field catalog from WX_TOOO structure

CALL FUNCTION "REUSE_ ALV FIELDCATALOG MERGE*®
EXPORTING

i_program_name = sy-cprog

i_internal_tabname = "WX TO0O"

i_inclname = sy-cprog
CHANGING

ct_fieldcat = feldcat
EXCEPTIONS

OTHERS = 3.

IF sy-subrc <> 0.
" no error handling in this example
EXIT.

ENDIF.

" ALV list It _banklist
CALL FUNCTION "REUSE_ALV_LIST_DISPLAY"

EXPORTING

it fieldcat = feldcat
TABLES

t_outtab = 1t_t000
EXCEPTIONS

OTHERS = 2.

IF sy-subrc <> 0.
''no error handling in this example
EXIT.
ENDIF.
ENDFORM. "list_t000

A A A A A A A A A A A A A A A A A AT A A A A A A A AAAAAAAAXAAAAAAAXAAAAAAAAIAAAIAAAAIAAA AL ARAddhdXx

* ALV list table cvers
FORM list_cvers.
DATA: wx_cvers TYPE cvers, "HEC *
feldcat TYPE slis_t fieldcat alv.

REFRESH feldcat.

" get fTield catalog from WX_CVERS structure

CALL FUNCTION "REUSE ALV FIELDCATALOG MERGE*
EXPORTING

i_program_name = sy-cprog

i_internal_tabname = "WX CVERS~

i_inclname = sy-cprog
CHANGING

ct fieldcat = feldcat
EXCEPTIONS

OTHERS = 3.

IF sy-subrc <> 0.
" no error handling in this example
EXIT.

ENDIF.

" ALV list It _cvers
CALL FUNCTION "REUSE_ ALV LIST DISPLAY"
EXPORTING
it fieldcat = feldcat

111/

TABLES

t_outtab = It _cvers
EXCEPTIONS

OTHERS = 2.

IF sy-subrc <> 0.
"' no error handling in this example
EXIT.
ENDIF.
ENDFORM. “"list_cvers

112/

12 APPENDIX 3: XSL TRANSFORMATIONS (XSLT)

Since Release 6.10 of the SAP Web Application Server (SAP Web AS), XSL
Transformations (XSLT) have been integrated in ABAP via the CALL
TRANSFORMATION command. XSLT is the most powerful and advanced
technology available for the transformation of XML documents. XML data can be
transformed into ABAP data structures and vice versa; however, XSLT is not limited
to those types of output. You can also generate HTML documents or plain text files
that are made available as loadable assets to other applications. XSLT is widely used
and well documented, we don't intend to give all the information in this document —
just a brief start point - you can find useful links in the end of this appendix. In EXC
we use these transformations for formatting input and output XML messages and for
XML to asXML conversion.

121 CREATING TRANSFORMATIONS

The easiest way to create an XSLT is using Object Navigator (SE80) as show on
images below.
Image: Create Transformation
Ohbject Navigator
= B Edit Object

@MI ME Repositary |
,ﬁﬁHepository Browser |

%H epaszitary Information System
Tag Browser
%Transport Organizer |

Package e

[EPO1 ML ONNECTOR Rarsa

=] E A ENIES ER T

Chject Mame Description
< EEVIEPOIRMLCONNEGTOR - Frm s Ao nelude
DDEmbeddedPackages """" Create 4 Package Transformation
I> [Dictionary Objects Change Package Interface Trangaction
b [Class Library Display v | Program Message Class
b O Includes Display Objact Directory Entry Weh Dynpro v Internet Service
[»] Transactions Write Transport Entry Dictionary Ohject v URL Ohject
b [SETIGET Parameters Other Functions | Class Library +| Dialog Module
b O Message C'?SSES Enterprise Service | Weh Senice v | Logical Database
b Ve el BSP Library »| SETIGET Parameter ID
Enhancerment * Area Menu
Business Engineering v Authorization COhject
Form Ohject + Selection Wiew
Test Object 3 Checkpoint Group
Mare... v FastSearch Wiew

Image: Choose XSLT Program

Create Transformation

Transfarmation | @
Shoart Description 4
Transformation Type H¥BLT Program &

o X

113/

The XSLT program might look something like this — template SOAP to asXML XSLT:

<xsl:transform version="1.0" xmIns:xsl=http://www.w3.0rg/1999/XSL/Transform
xmIns:nsm=""urn:sap-com:document:sap:soap:functions:mc-style">

<xsl:template match=""nsm:*">
<xsl:call-template name="asXML"/>
</xsl:template>

<xsl:template name="asXML">
<asx:abap xmlns:asx="http://www.sap.com/abapxml" version="1.0">
<asx:values>
<xsl:call-template name=""Uppercase"/>
</asx:values>
</asx:abap>
</xsl:template>

<xsl:template name="Uppercase'>
<xsl:for-each select=""*">
<xsl:element name="{translate(local-name(.),
"qwertyuiopasdfghjklzxcvbnm® , *QWERTYUIOPASDFGHJIKLZXCVBNM®)}'">
<xsl:value-of select="text()"/>
<xsl:call-template name="Uppercase'/>
</xsl:element>
</xsl:for-each>
</xsl:template>
</xsl:transform>

122 DEBUGGING XSLT IN SAP
When you create and open XSLT in Object Navigator (SE80), you can press
*

button to test it, = DebUILING | pyton to debug it, or you can do it in XSLT Tester
(transaction XSLT), which is the program called by Object Navigator anyway.

Image: XSLT Tester transaction
XELT Tester

JEFOL/TH SO0AP_TO_ASXML

| ouputtosting | | outputtaFile | | outputDocument | | viewHTML

Prograrn Parameters

123 LINKS TO XSLT DOCUMENTATION

W3C - The Extensible Stylesheet Lanquage Family (XSL)
W3C - XSL Transformations (XSLT)
W3C - XML Path Lanquage (XPath)

SAP Transformation Editor
SAP XSLT Processor Reference
SAP XSLT Debugger

And a lot more out there...

+++ End of document +++

http://www.w3.org/Style/XSL/�
http://www.w3.org/TR/xslt�
http://www.w3.org/TR/xpath�
http://help.sap.com/saphelp_nw04/helpdata/en/a8/824c3c66177414e10000000a114084/frameset.htm�
http://help.sap.com/saphelp_nw04/helpdata/en/a8/824c3c66177414e10000000a114084/frameset.htm�
http://help.sap.com/saphelp_nw04/helpdata/en/a8/824c3c66177414e10000000a114084/frameset.htm�

	1 General, Functions, Area Menu
	1.1 Introduction
	1.1.1 What is the EPO XML Connector? – SOA layer
	1.1.2 Important naming terminology
	1.1.2.1 Inbound (calling a SAP service)
	1.1.2.2 Outbound (calling an external service)
	1.1.2.3 Overview of functionality (SAP Integration)

	1.2 System requirements
	1.3 Architecture, scalability, performance and stability
	1.3.1 Architecture
	1.3.2 Scalability
	1.3.3 Performance
	1.3.4 Stability

	1.4 EPO XML Connector Area Menu /epo1/soa7
	1.5 Functions and features
	1.5.1 Inbound
	1.5.2 Outbound
	1.5.3 Mapping & Interface structure definition
	1.5.4 Feature: Central data storage
	1.5.5 Feature: Reprocessing of services
	1.5.6 Feature: XSL Transformations (XSLT)
	1.5.7 Feature: SAP authorisation by service
	1.5.8 Concept of XML to ABAP and ABAP to XML transformation (Serialisation)
	1.5.9 Concept of other data format to ABAP transformation and vice versa
	1.5.9.1 SAP Inbound data conversion using EPO runtime
	1.5.9.2 SAP Outbound data conversion using EPO Client

	2 Initial configuration
	2.1 Upload license key
	2.2 Create number range(s)
	2.3 Activate services

	3 EPO XML Connector services configuration & development
	3.1 Definition of Services (Inbound & Outbound)
	3.2 Authorisation object
	3.3 Inbound: EPO Runtime
	3.3.1 Stateful (session) handler
	3.3.2 Using http(s)
	3.3.2.1 Important http headers

	3.3.3 Using file, ftp
	3.3.4 Creating EPO runtime - Integration guide for HTTP protocol
	3.3.4.1 Define interfaces - request and response XML messages
	3.3.4.2 Create EPO runtime service
	3.3.4.3 Configure EPO runtime service
	3.3.4.4 Create processing function module
	3.3.4.5 Create WSDL for Service using XML Transmitter

	3.3.5 Creating EPO runtime - Integration guide for FILE protocol
	3.3.6 Testing an EPO runtime service
	3.3.6.1 Using http
	3.3.6.2 Using file, ftp

	3.3.7 EPO runtime error XML message
	3.3.8 EPO runtime example services

	3.4 Inbound: SAP runtime
	3.4.1 SAP Runtime (Web Service SOAP) - inbound
	3.4.2 Creating SAP runtime - Integration guide
	3.4.2.1 Create a Web service from a function module
	3.4.2.2 Create reference (alias) to the web service under the srthandler
	3.4.2.3 Release the reference using transaction WSCONFIG
	3.4.2.4 Create SAP runtime service for EPO XML Connector
	3.4.2.5 Configure SAP runtime service
	3.4.2.6 Set additional HTTP headers for (re-)processing
	3.4.2.7 WSDL of the web service
	3.4.2.8 Testing a SAP runtime service
	3.4.2.9 SAP runtime example services

	3.5 Outbound: EPO Client
	3.5.1 Using HTTP(s)
	3.5.2 Using FILE, FTP
	3.5.3 Using UM - SAP Mail, E-Mail via SCOT and Customer defined
	3.5.4 /epo1/epoclient function module interface
	3.5.5 Creating EPO Client - integration guide
	3.5.5.1 Create EPO Client service
	3.5.5.2 Configure EPO Client service
	3.5.5.3 Set additional HTTP headers if needed
	3.5.5.4 Create program to call /epo1/epoclient function module
	3.5.5.5 Testing an EPO Client service

	3.6 Outbound: SAP Client
	3.6.1 Creating SAP Client - integration guide
	3.6.1.1 Generate ABAP client proxy
	3.6.1.2 Create Logical Port for Generated Client Proxy
	3.6.1.3 Create SAP Client service
	3.6.1.4 Configure SAP Client service
	3.6.1.5 Create program to call SAP Client
	3.6.1.5.1 /epo1/sapclient method interface

	3.6.1.6 Testing a SAP Client service

	4 Generic function module call (implemented in EPO runtime)
	4.1 Set up: Service for Generic Function Module Call
	4.2 WSDL generation in XML Transmitter for SAP function module
	4.2.1 Structure of the EXC GFMC WSDLs:

	4.3 Testing the WSDL (the SAP function) in XML Transmitter

	5 Public function modules - request/response API
	5.1 /epo1/exc_store_request interface
	5.2 /epo1/exc_store_response interface

	6 Monitoring functionality
	6.1 Setting up monitoring profiles
	6.1.1 Monitoring custom exit function modules

	6.2 EPO XML Connector Monitor

	7 Message data maintenance (Inbound & Outbound)
	7.1 (Re) Process a stored XML request message
	7.2 Download and edit a stored XML message
	7.3 Upload a stored XML message
	7.4 File upload of a new XML request message (instead of using http)

	8 Administration of the EPO XML Connector
	8.1 Archiving XML messages
	8.2 Ad-hoc data operations
	8.2.1 Download XML messages to directory
	8.2.2 Upload XML messages from directory
	8.2.3 Insert new XML messages from directory

	8.3 Other administrative functions

	9 Integration solutions based on EXC
	9.1 xHTML interactive forms
	9.1.1 xHTML Output for EPO Runtime and Client
	9.1.2 xHTML Output Configuration
	9.1.3 xHTML Output Prefill FM Interface
	9.1.4 xHTML Output Prefill FM Creation

	9.2 Metastorm BPM / SAP Integration
	9.2.1 Integration of Metastorm BPM using Web Services
	9.2.2 Integration of Metastorm BPM using file interfaces
	9.2.3 Using B2B Integrator for Metastorm BPM

	9.3 MS Excel / SAP Integration

	10 Appendix 1: Using XML Transmitter for testing and deploying Web Services
	11 Appendix 2: Demonstration of ABAP Serialisation
	12 Appendix 3: XSL Transformations (XSLT)
	12.1 Creating transformations
	12.2 Debugging XSLT in SAP
	12.3 Links to XSLT documentation

