
 Provided by 
  

EPO Consulting 
E-Mail info@epoconsulting.com 

Internet www.epoconsulting.com 
 

SAP, ABAP and SAP NetWeaver are the trademarks or registered trademarks of SAP AG in Germany 
and in several other countries. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

DDDEEEPPPLLLOOOYYYMMMEEENNNTTT,,,   CCCOOONNNFFFIIIGGGUUURRRAAATTTIIIOOONNN   &&&   
DDDEEEVVVEEELLLOOOPPPMMMEEENNNTTT DDDOOOCCCUUUMMMEEENNNTTTAAATTTIIIOOONNN   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Status: Release 
 Version: 30A SP3 
 Last updated: October 2009 

 

EEEPPPOOO   XXXMMMLLL   CCCooonnnnnneeeccctttooorrr   
   fffooorrr   SSSAAAPPP   

Version 30A SP3 



 

EPO XML Connector for SAP - Configuration & Development Documentation © EPO Consulting 

EEEPPPOOO   XXXMMMLLL   CCCOOONNNNNNEEECCCTTTOOORRR FOR SAP 
 
Short table of contents – Configuration & Development documentation 
 
1 General, Functions, Area Menu   ........................................................................... 6

1.1 Introduction   .................................................................................................. 6
1.2 System requirements   ................................................................................... 8
1.3 Architecture, scalability, performance and stability   ....................................... 8
1.4 EPO XML Connector Area Menu /epo1/soa7   ............................................. 10
1.5 Functions and features   ............................................................................... 12

2 Initial configuration  ............................................................................................. 19
2.1 Upload license key   ..................................................................................... 19
2.2 Create number range(s)   ............................................................................. 19
2.3 Activate services   ........................................................................................ 20

3 EPO XML Connector services configuration & development   ............................. 21
3.1 Definition of Services (Inbound & Outbound)   ............................................. 21
3.2 Authorisation object   .................................................................................... 23
3.3 Inbound: EPO Runtime   .............................................................................. 24
3.4 Inbound: SAP runtime   ................................................................................ 40
3.5 Outbound: EPO Client   ................................................................................ 54
3.6 Outbound: SAP Client   ................................................................................ 68

4 Generic function module call (implemented in EPO runtime)   ............................ 77
4.1 Set up: Service for Generic Function Module Call   ...................................... 77
4.2 WSDL generation in XML Transmitter for SAP function module   ................ 80
4.3 Testing the WSDL (the SAP function) in XML Transmitter   ......................... 82

5 Public function modules - request/response API   ............................................... 84
5.1 epo1/exc_store_request interface   .............................................................. 84
5.2 epo1/exc_store_response interface   ........................................................... 85

6 Monitoring functionality   ...................................................................................... 86
6.1 Setting up monitoring profiles   ..................................................................... 87
6.2 EPO XML Connector Monitor   ..................................................................... 92

7 Message data maintenance (Inbound & Outbound)   .......................................... 94
7.1 (Re) Process a stored XML request message   ............................................ 94
7.2 Download and edit a stored XML message   ................................................ 94
7.3 Upload a stored XML message   .................................................................. 95
7.4 File upload of a new XML request message (instead of using http)   ........... 96

8 Administration of the EPO XML Connector   ....................................................... 97
8.1 Archiving XML messages   ........................................................................... 97
8.2 Ad-hoc data operations   .............................................................................. 98
8.3 Other administrative functions   .................................................................. 100

9 Integration solutions based on EXC   ................................................................ 101
9.1 xHTML interactive forms   .......................................................................... 101
9.2 Metastorm BPM / SAP Integration   ............................................................ 105
9.3 MS Excel / SAP Integration   ...................................................................... 105

10 Appendix 1: Using XML Transmitter for testing and deploying Web Services   . 107
11 Appendix 2: Demonstration of ABAP Serialisation   .......................................... 108
12 Appendix 3: XSL Transformations (XSLT)   ....................................................... 112

12.1 Creating transformations   .......................................................................... 112
12.2 Debugging XSLT in SAP   .......................................................................... 113
12.3 Links to XSLT documentation  ................................................................... 114

 



 

 

Full table of contents – Configuration & Development documentation 
 
1 General, Functions, Area Menu   ........................................................................... 6

1.1 Introduction   .................................................................................................. 6
1.1.1 What is the EPO XML Connector? – SOA layer   .................................... 6
1.1.2 Important naming terminology   ............................................................... 6

1.1.2.1 Inbound (calling a SAP service)   ......................................................... 6
1.1.2.2 Outbound (calling an external service)   .............................................. 7
1.1.2.3 Overview of functionality (SAP Integration)   ....................................... 7

1.2 System requirements   ................................................................................... 8
1.3 Architecture, scalability, performance and stability   ....................................... 8

1.3.1 Architecture   ........................................................................................... 8
1.3.2 Scalability   .............................................................................................. 9
1.3.3 Performance   ........................................................................................ 10
1.3.4 Stability  ................................................................................................ 10

1.4 EPO XML Connector Area Menu /epo1/soa7   ............................................. 10
1.5 Functions and features   ............................................................................... 12

1.5.1 Inbound   ............................................................................................... 12
1.5.2 Outbound   ............................................................................................ 13
1.5.3 Mapping & Interface structure definition   .............................................. 13
1.5.4 Feature: Central data storage   ............................................................. 14
1.5.5 Feature: Reprocessing of services   ...................................................... 15
1.5.6 Feature: XSL Transformations (XSLT)   ................................................ 15
1.5.7 Feature: SAP authorisation by service   ................................................ 15
1.5.8 Concept of XML to ABAP and ABAP to XML transformation 
(Serialisation)   .................................................................................................... 16
1.5.9 Concept of other data format to ABAP transformation and vice versa   18

1.5.9.1 SAP Inbound data conversion using EPO runtime   .......................... 18
1.5.9.2 SAP Outbound data conversion using EPO Client   .......................... 18

2 Initial configuration  ............................................................................................. 19
2.1 Upload license key   ..................................................................................... 19
2.2 Create number range(s)   ............................................................................. 19
2.3 Activate services   ........................................................................................ 20

3 EPO XML Connector services configuration & development   ............................. 21
3.1 Definition of Services (Inbound & Outbound)   ............................................. 21
3.2 Authorisation object   .................................................................................... 23
3.3 Inbound: EPO Runtime   .............................................................................. 24

3.3.1 Stateful (session) handler  .................................................................... 24
3.3.2 Using http(s)   ........................................................................................ 24

3.3.2.1 Important http headers  ..................................................................... 25
3.3.3 Using file, ftp   ....................................................................................... 25
3.3.4 Creating EPO runtime - Integration guide for HTTP protocol   .............. 25

3.3.4.1 Define interfaces - request and response XML messages   .............. 25
3.3.4.2 Create EPO runtime service   ............................................................ 26
3.3.4.3 Configure EPO runtime service   ....................................................... 27
3.3.4.4 Create processing function module   ................................................. 31
3.3.4.5 Create WSDL for Service using XML Transmitter   ........................... 33

3.3.5 Creating EPO runtime - Integration guide for FILE protocol   ................ 36
3.3.6 Testing an EPO runtime service   .......................................................... 36

3.3.6.1 Using http   ........................................................................................ 36
3.3.6.2 Using file, ftp   .................................................................................... 38



 

 

3.3.7 EPO runtime error XML message   ....................................................... 38
3.3.8 EPO runtime example services   ........................................................... 38

3.4 Inbound: SAP runtime   ................................................................................ 40
3.4.1 SAP  Runtime (Web Service SOAP) - inbound   ................................... 40
3.4.2 Creating SAP runtime - Integration guide   ............................................ 41

3.4.2.1 Create a Web service from a function module   ................................. 41
3.4.2.2 Create reference (alias) to the web service under the srthandler   .... 44
3.4.2.3 Release the reference using transaction WSCONFIG   ..................... 45
3.4.2.4 Create SAP runtime service for EPO XML Connector   ..................... 47
3.4.2.5 Configure SAP runtime service   ........................................................ 47
3.4.2.6 Set additional HTTP headers for (re-)processing   ............................ 49
3.4.2.7 WSDL of the web service   ................................................................ 49
3.4.2.8 Testing a SAP runtime service   ........................................................ 51
3.4.2.9 SAP runtime example services   ........................................................ 53

3.5 Outbound: EPO Client   ................................................................................ 54
3.5.1 Using HTTP(s)   .................................................................................... 54
3.5.2 Using FILE, FTP   .................................................................................. 54
3.5.3 Using UM - SAP Mail, E-Mail via SCOT and Customer defined   .......... 55
3.5.4 epo1/epoclient function module interface   ............................................ 56
3.5.5 Creating EPO Client - integration guide   .............................................. 59

3.5.5.1 Create EPO Client service   ............................................................... 59
3.5.5.2 Configure EPO Client service   .......................................................... 59
3.5.5.3 Set additional HTTP headers if needed   ........................................... 63
3.5.5.4 Create program to call /epo1/epoclient function module   .................. 63
3.5.5.5 Testing an EPO Client service   ......................................................... 67

3.6 Outbound: SAP Client   ................................................................................ 68
3.6.1 Creating SAP Client - integration guide   ............................................... 68

3.6.1.1 Generate ABAP client proxy   ............................................................ 68
3.6.1.2 Create Logical Port for Generated Client Proxy   ............................... 71
3.6.1.3 Create SAP Client service   ............................................................... 71
3.6.1.4 Configure SAP Client service   .......................................................... 72
3.6.1.5 Create program to call SAP Client   ................................................... 73

3.6.1.5.1 epo1/sapclient method interface   ............................................... 75
3.6.1.6 Testing a SAP Client service   ........................................................... 76

4 Generic function module call (implemented in EPO runtime)   ............................ 77
4.1 Set up: Service for Generic Function Module Call   ...................................... 77
4.2 WSDL generation in XML Transmitter for SAP function module   ................ 80

4.2.1 Structure of the EXC GFMC WSDLs:   .................................................. 81
4.3 Testing the WSDL (the SAP function) in XML Transmitter   ......................... 82

5 Public function modules - request/response API   ............................................... 84
5.1 epo1/exc_store_request interface   .............................................................. 84
5.2 epo1/exc_store_response interface   ........................................................... 85

6 Monitoring functionality   ...................................................................................... 86
6.1 Setting up monitoring profiles   ..................................................................... 87

6.1.1 Monitoring custom exit function modules   ............................................ 90
6.2 EPO XML Connector Monitor   ..................................................................... 92

7 Message data maintenance (Inbound & Outbound)   .......................................... 94
7.1 (Re) Process a stored XML request message   ............................................ 94
7.2 Download and edit a stored XML message   ................................................ 94
7.3 Upload a stored XML message   .................................................................. 95
7.4 File upload of a new XML request message (instead of using http)   ........... 96



 

 

8 Administration of the EPO XML Connector   ....................................................... 97
8.1 Archiving XML messages   ........................................................................... 97
8.2 Ad-hoc data operations   .............................................................................. 98

8.2.1 Download XML messages to directory   ................................................ 98
8.2.2 Upload XML messages from directory   ................................................ 98
8.2.3 Insert new XML messages from directory   ........................................... 98

8.3 Other administrative functions   .................................................................. 100
9 Integration solutions based on EXC   ................................................................ 101

9.1 xHTML interactive forms   .......................................................................... 101
9.1.1 xHTML Output for EPO Runtime and Client   ...................................... 101
9.1.2 xHTML Output Configuration   ............................................................. 101
9.1.3 xHTML Output Prefill FM Interface   .................................................... 102
9.1.4 xHTML Output Prefill FM Creation   .................................................... 103

9.2 Metastorm BPM / SAP Integration   ............................................................ 105
9.2.1 Integration of Metastorm BPM using Web Services   .......................... 105
9.2.2 Integration of Metastorm BPM using file interfaces   ........................... 105
9.2.3 Using B2B Integrator for Metastorm BPM   ......................................... 105

9.3 MS Excel / SAP Integration   ...................................................................... 105
10 Appendix 1: Using XML Transmitter for testing and deploying Web Services   . 107
11 Appendix 2: Demonstration of ABAP Serialisation   .......................................... 108
12 Appendix 3: XSL Transformations (XSLT)   ....................................................... 112

12.1 Creating transformations   .......................................................................... 112
12.2 Debugging XSLT in SAP   .......................................................................... 113
12.3 Links to XSLT documentation  ................................................................... 114



 

 

6 / 114 

111   GGGEEENNNEEERRRAAALLL,,,   FFFUUUNNNCCCTTTIIIOOONNNSSS,,,   AAARRREEEAAA   MMMEEENNNUUU   
 

111...111   IIINNNTTTRRROOODDDUUUCCCTTTIIIOOONNN   
 
This documentation is intended to provide: 
 
 instructions on using the EPO XML Connector to exchange information 

between SAP and any other third-party system 
 

 describing the scope of the integrations, which can be done with the EPO XML 
Connector 

 
 explaining how existing and new integrations have to be set up 

 
For installation of the EPO XML Connector please refer to the “Installation 
Documentation”. 
 

111...111...111   WWWHHHAAATTT   IIISSS   TTTHHHEEE   EEEPPPOOO   XXXMMMLLL   CCCOOONNNNNNEEECCCTTTOOORRR???   –––   SSSOOOAAA   LLLAAAYYYEEERRR   
 
The EPO XML Connector is an SAP ABAP add-on software product, which enables 
easy and standardised integration from SAP R/3 to any third-party system and vice 
versa. 
The communication between these two systems is based on sending and receiving 
XML messages (Web Services) or alternatively you can use file protocol functionality 
for XML or other file format communication. 
It creates a service layer (SOA), where communication messages can be viewed and 
edited. The communication layer is separated from the functionality of the SAP 
system and the integrated third-party systems. This is a very important concept of 
this connector, because it brings great advantages during development and 
productive usage. Especially changes of one system can be handled much easier. 
 
It creates direct integration between systems with a communication layer. 
 
Technically the EPO XML Connector is an ABAP add-on product. There are no 
modifications of the SAP system. It is developed in namespace /EPO1/. 
 

111...111...222   IIIMMMPPPOOORRRTTTAAANNNTTT   NNNAAAMMMIIINNNGGG   TTTEEERRRMMMIIINNNOOOLLLOOOGGGYYY   
 
For the EPO XML Connector we always take the look of SAP, when describing (web) 
services. 

111...111...222...111   IIINNNBBBOOOUUUNNNDDD   (((CCCAAALLLLLLIIINNNGGG   AAA   SSSAAAPPP   SSSEEERRRVVVIIICCCEEE)))   
 
 SAP provides the service: This can be a web service of a function 

module (published) or any other service from SAP, which can be accessed 
from outside using the HTTP(S) protocol. 



 

 

7 / 114 

 An external application consumes the SAP service 
 The request XML comes from outside, the response XML is from SAP 
 Request XML has direction IN 
 Response XML has direction OUT 

111...111...222...222   OOOUUUTTTBBBOOOUUUNNNDDD   (((CCCAAALLLLLLIIINNNGGG   AAANNN   EEEXXXTTTEEERRRNNNAAALLL   SSSEEERRRVVVIIICCCEEE)))   
 
 Service is provided external: This can be a web service or any other service 

outside SAP using the HTTP(S) protocol. 
 SAP consumes the external (web) service 
 The request XML comes from SAP, the response XML is sent to SAP 
 Request XML has direction OUT 
 Response XML has direction IN 

 

111...111...222...333   OOOVVVEEERRRVVVIIIEEEWWW   OOOFFF   FFFUUUNNNCCCTTTIIIOOONNNAAALLLIIITTTYYY   (((SSSAAAPPP   IIINNNTTTEEEGGGRRRAAATTTIIIOOONNN)))   
 
Technical view 
 

Web Services 
 Integrate external Web Service 
 Provide Web Services 
File Interfaces/FTP/… 
 Create Files (XML and others) and store it or send it out 
 Receive (Upload) files into SAP 
IDOC interfaces 
 Currently only supported with API for monitoring. Full IDOC support only with 

additional programming. Please contact EPO Consulting, if you want to use 
EPO XML Connector for IDOC interfaces. 
Will be fully, integrated supported with next major release of the EPO XML 
Connector 

 
Business view 
 

Third-party software integration 
 Tested and SAP certified with Metastorm BPM (using Microsoft Web Service 

technology = .NET Web Service technology) 
 Integrates any web service enabled software 
.NET developments 
 Enables direct web service integration using SOAP and WSDL. Significant 

advantage to .NET Connector from SAP (using proprietary RFC) 
.Java developments 
 Enables direct web service integration using SOAP and WSDL. Significant 

advantage to .Java Connector (JCO) from SAP (using proprietary RFC) 
Application integration 
 Web service integration 
 File integration 
Document integration 
 XML document integration (Adobe Interactive Forms, MS Excel XML 

documents etc.) 
 Microsoft Excel integration 



 

 

8 / 114 

 Other structured document integration (CSV etc.) 
SAP Portal integration 
 Web service integration instead of JCO integration (using proprietary RFC) 
Portal and Website integration 
 Web service integration 
 xHTML interactive forms with basic workflow functionality 
Adobe products integration 
 Adobe forms integration 

 
There will be new and existing applications, which will have SAP integration 
provided by the EPO XML Connector. 

 

111...222   SSSYYYSSSTTTEEEMMM   RRREEEQQQUUUIIIRRREEEMMMEEENNNTTTSSS   
 
 Any SAP system with SAP NetWeaver Application Server (ABAP) 6.20, 6.40, 

7.00 or newer. See SAP menu: System – Status – Component version. See 
component SAP_ABA. 

 
(WAS 6.20 needs patch level 29 for EPO XML Connector. It uses cl_abap_gzip class to 
compress XML messages) 

 
Note: The EPO XML Connector is an official SAP component. So you can see it 
after installation in the SAP menu: System – Status – Component version. See 
component EPO1. 
 

111...333   AAARRRCCCHHHIIITTTEEECCCTTTUUURRREEE,,,   SSSCCCAAALLLAAABBBIIILLLIIITTTYYY,,,   PPPEEERRRFFFOOORRRMMMAAANNNCCCEEE   AAANNNDDD   SSSTTTAAABBBIIILLLIIITTTYYY   
 

111...333...111   AAARRRCCCHHHIIITTTEEECCCTTTUUURRREEE   
 
The EPO XML Connector is written 100% within the ABAP workbench. It can be 
installed on any SAP NetWeaver ABAP server. 
It can handle any incoming message and forward it to the SAP function (SAP 
Inbound). It can also take a message for sending out and send it (SAP Outbound). 
The protocol used (http, file, ftp,...) does not influence the interface within the EPO 
XML Connector. Therefore protocols for interfaces can be changed anytime with little 
effort. 
 
 



 

 

9 / 114 

Image: EPO XML Connector architecture 

 
 
 

111...333...222   SSSCCCAAALLLAAABBBIIILLLIIITTTYYY   
 
The architecture allows endless scalability. Scaling up the solution at any time is 
easily possible. 
 
Setting up http listener processes can be done with setting a profile parameter 
(number of parallel threads per application server). All other settings influencing the 
performance of the EPO XML Connector are SAP NetWeaver Web Application 
Server settings (including logon procedures), too. 
 
Central SAP system installation 
The EPO XML Connector can be installed on the central SAP system. This is often 
SAP ERP (ECC 6.0). Load balancing can be achieved with standard load balancing 
(1 message server, several application servers – load balancing also works with http, 
same like rfc). The SAP Web Dispatcher is another option for load balancing and 
security settings (can be setup in DMZ). 
 
Central SAP system installation on dedicated server 
The EPO XML Connector can also be installed on a separated, dedicated SAP 
NetWeaver application server. The communication from this “middleware / EAI” 
server (which is a SAP NetWeaver runtime) to the back-end SAP systems is easily 
achieved with RFC calls. 
Another option would be using SAP Solution Manager or another central SAP 
system. 
 
Decentralised SAP system installation 
The EPO XML Connector can be installed on any SAP solution running on SAP 
NetWeaver ABAP. It can be used to allow direct connections to each of those SAP 
systems. 
 



 

 

10 / 114 

111...333...333   PPPEEERRRFFFOOORRRMMMAAANNNCCCEEE   
 
The EPO XML Connector was designed and implemented for highest performance. 
Because of its architecture allowing direct integrations it outpaces all other solution. 
There is virtually no overhead, which would slow down integrations. The actual 
function is either a standard SAP function module or a custom program, which must 
be called anyway. 
In fact, because of using 100% ABAP it reaches almost same performance values as 
users experience within the SAP GUI. 
 
 

111...333...444   SSSTTTAAABBBIIILLLIIITTTYYY   
 
The EPO XML Connector uses SAP NetWeaver application server without modifying 
anything. It just uses standard functionality (which is often completely unknown) of 
SAP NetWeaver. This is the SAP server used for all SAP solution based on ABAP 
technology (like SAP ERP, ECC 6.0, SCM...). It is almost needless to say, that this is 
one of the most stable servers. 
 
The EPO XML Connector is used on SAP production systems with millions of 
transactions per year. 
 

111...444   EEEPPPOOO   XXXMMMLLL   CCCOOONNNNNNEEECCCTTTOOORRR   AAARRREEEAAA   MMMEEENNNUUU   ///EEEPPPOOO111///SSSOOOAAA777   
 
Access area menu with transaction code: /n/EPO1/SOA7 
 
Note: For WAS 6.20 version the area menu is /n/epo1/soa and contains only functionality available on 
WAS 6.20. 
 
Note: For some reason it is necessary to enter the transaction code for the area menu twice, because 
it gives an error message the first time (error message: transaction code does not exist). 
 
The area menu is designed to help you navigate through the functionality of EPO 
XML Connector. It is divided into three main sections. Each main section will be used 
by different groups of users:  
 

• “Data maintenance”,  
• “Configuration” and  
• “Administration”. 

 
“Data maintenance” and “Configuration” section then divide into “Inbound” and 
“Outbound” subsections hierarchically to help you choose the right option. Finally the 
“Administration” section comprises universal file handling functions, archiving object 
manipulation and set of transaction for the Connector maintenance. 
 
Tip: Authorisation roles can be directly created from sections or subsections of area menus. 
 

 
 



 

 

11 / 114 

 

 
 

Area menu continues on the next page. 
 
 
 
 



 

 

12 / 114 

 

111...555   FFFUUUNNNCCCTTTIIIOOONNNSSS   AAANNNDDD   FFFEEEAAATTTUUURRREEESSS   
 
Common functionality 
 

 Synchronous and asynchronous processing and reprocessing 
 Logging transactions, storing XML request and response messages 
 XSLT transformations of request and response messages 
 Customer exits where it is not possible to enter the process directly 
 Using file(s) (FILE protocol) as request(s). 
 Downloading and uploading XML messages to/from files 
 Synchronous and asynchronous monitoring of transactions 

111...555...111   IIINNNBBBOOOUUUNNNDDD   
 
“Inbound” in EPO XML Connector stands for integration where your SAP system 
provides the service, therefore primary connection is made from outside by 
“incoming” request. There are two options to implement such scenario in the 
connector: EPO runtime and SAP runtime. 
 



 

 

13 / 114 

111...555...222   OOOUUUTTTBBBOOOUUUNNNDDD   
 
The outbound part of the EPO XML Connector represents scenarios where there is 
an existing web service “outside” your SAP system, which you want to use in SAP. 
Thus your system needs to send out the request in order to receive the response. 
Like in the inbound part there are two options to implement this scenario in the 
connector: The unique EPO Client and the generated ABAP client proxy (enhanced 
SAP standard). The EPO Client also allows writing request messages down to a file 
system or to send it out using ftp (ftp target folder must be mapped like a network 
drive). 
 

111...555...333   MMMAAAPPPPPPIIINNNGGG   &&&   IIINNNTTTEEERRRFFFAAACCCEEE   SSSTTTRRRUUUCCCTTTUUURRREEE   DDDEEEFFFIIINNNIIITTTIIIOOONNN   
 
Starting from EXC 17E (07E on WAS 6.20) support package one we have enabled 
you to create mapping and structure function modules for your services. Although 
you do not need to use this functionality, it is recommended to do so. The 
configuration input parameters are only informative, no functions are called 
automatically, and you need to call them yourself in your service code. The main 
reason for doing this is having central storage for your XML interfaces, both inbound 
and outbound, and ability to choose from existing interfaces rather then writing a new 
one for each service. There are two types of function modules available – structure 
and mapping. Structure FM we use for converting XML into ABAP variables, 
structures, or tables and vice versa. In mapping FM we change output or prepare 
input variables for structure FM. Of course this is only how we used it in our 
examples, as I said before; the notations in configurations do not really do anything, 
so you can use these functions for other purposes. 
 
Example: You use the same XML request message for several services, each with 
different functionality. So, you wrote CALL TRANSACTION ID SOURCE XML... for 
getting the ABAP variables out of the XML. You may or not put in into function 
module to be able to use it again, but now you can make a note into your service 
configuration, that it uses this particular FM. To be able to do this you only need to 
put the FM into package /EPO1/EXC_REPOSITORY and corresponding Function 
Group. 
 
Available function groups are: (in package /EPO1/EXC_REPOSITORY) 
 
 - EPO Runtime (inbound) 
  /EPO1/IN_REQUEST_STRUC  (XML to ABAP) 
  /EPO1/IN_REQUEST_MAP  (ABAP to ABAP) 
  /EPO1/IN_RESPONSE_MAP  (ABAP to ABAP) 
  /EPO1/IN_RESPONSE_STRUC  (ABAP to XML) 
 
 - EPO Client (outbound) 
  /EPO1/OUT_REQUEST_MAP  (ABAP to ABAP) 
  /EPO1/OUT_REQUEST_STRUC  (ABAP to XML) 
  /EPO1/OUT_RESPONSE_STRUC (XML to ABAP) 
  /EPO1/OUT_RESPONSE_MAP  (ABAP to ABAP) 
 
 



 

 

14 / 114 

Image: Structure and mapping FMs in EPO Runtime service configuration 

 

111...555...444   FFFEEEAAATTTUUURRREEE:::   CCCEEENNNTTTRRRAAALLL   DDDAAATTTAAA   SSSTTTOOORRRAAAGGGEEE   
 
There is an option for each scenario to store 

- header data and 
- message data 

For synchronous services (web services) this storage can be done for request and 
response. 
 
Header data (logging) 
All header data is stored in table /EPO1/XMLHEAD 
 
Message data 
All message data is stored in table /EPO1/XMLDATA. The data is stored in binary 
format. 
 
This feature creates a central place for monitoring of the integration. Independently 
from the type of the integration (file upload/download up to web services) all data is 
stored in 1 central place. 



 

 

15 / 114 

It enables 
- logging (who, what, when,) 
- reprocessing 
- display of messages 
- editing of message 

111...555...555   FFFEEEAAATTTUUURRREEE:::   RRREEEPPPRRROOOCCCEEESSSSSSIIINNNGGG   OOOFFF   SSSEEERRRVVVIIICCCEEESSS   
When a service is set up to store message data, it can be reprocessed. 
Reprocessing is only possible, if the status of the message to be reprocessed is less 
than 53. 
 
Asynchronous services 
Processing must be done to fulfil the purpose of the service. Jobs can be scheduled 
to automate this. Reprocessing can be done in error cases. 
 
Synchronous services 
Reprocessing can be done in error cases. 
 

111...555...666   FFFEEEAAATTTUUURRREEE:::   XXXSSSLLL   TTTRRRAAANNNSSSFFFOOORRRMMMAAATTTIIIOOONNNSSS   (((XXXSSSLLLTTT)))   
 
Since Release 6.10 of the SAP Web Application Server (SAP Web AS), XSL 
Transformations (XSLT) have been integrated in ABAP via the CALL 
TRANSFORMATION command. XSLT is the most powerful and advanced 
technology available for the transformation of XML documents. XML data can be 
transformed into ABAP data structures and vice versa; however, XSLT is not limited 
to those types of output. You can also generate HTML documents or plain text files 
that are made available as loadable assets to other applications. XSLT is widely used 
and well documented, we don’t intend to give all the information in this document – 
just a brief start point - you can find useful links in the end of this appendix. In EXC 
we use these transformations for formatting input and output XML messages and for 
XML to asXML conversion. 
We recommend using your own transformation software to develop your XSLT 
transformations. You can also get professional service from EPO Consulting for this 
task. Or you can use SAP transaction XSLT and XSLT_TOOL to develop XSLT 
transformations. 
 
XSLT can be applied to services in the EPO XML Connector for inbound and 
outbound messages in the configuration. 
 
You must store all XSLT as “Transformations” in data dictionary using the object 
browser (SE80). See “Others – Transformations”. 
 
 

111...555...777   FFFEEEAAATTTUUURRREEE:::   SSSAAAPPP   AAAUUUTTTHHHOOORRRIIISSSAAATTTIIIOOONNN   BBBYYY   SSSEEERRRVVVIIICCCEEE   
 
With EXC release 30A SP3 you can switch on authorisation check for services. This 
allows you to control the authorisation for any integration with standard SAP security. 
Technical details are described in chapter 3.2 Authorisation object.  



 

 

16 / 114 

111...555...888   CCCOOONNNCCCEEEPPPTTT   OOOFFF   XXXMMMLLL   TTTOOO   AAABBBAAAPPP   AAANNNDDD   AAABBBAAAPPP   TTTOOO   XXXMMMLLL   TTTRRRAAANNNSSSFFFOOORRRMMMAAATTTIIIOOONNN   
(((SSSEEERRRIIIAAALLLIIISSSAAATTTIIIOOONNN)))   

 
XML messages must be transformed to ABAP variables or ABAP variables must be 
transformed into XML messages. In the EPO XML Connector we are using the 
standard ABAP command 
 
CALL TRANSFORMATION 
 
This is an implementation of the standard XSLT transformations as defined from 
W3C (www.w3.org). 
 
You can find a demo program in the EPO XML Connector area menu (EPO XML 
Connector Configuration - Templates). The documentation including the source code 
of the demo program can be found in  Appendix 2: Demonstration of ABAP 
Serialisation
 

. 

asXML format 
SAP has defined asXML as an internal XML format for ABAP transformations. asXML 
can be transferred with the internal “ID” transformation to ABAP variables. Also when 
transferring ABAP variables into an XML string using the ID transformation, asXML 
will be the result. 
Important: asXML can only contain XML elements in capital letters. For example 
<MESSAGE> is allowed, but not <Message>. 
 
XML transformation into ABAP 
When transforming a XML document into ABAP it can be done in 2 steps: 
First transform the XML document into asXML and then transform it into ABAP using 
the ID transformation. Obviously these 2 steps can be combined into 1. But for 
understanding the concept the first transformation is decisive. 
 
Step 1: XML to asXML 
CALL TRANSFORMATION yourxslt 
 SOURCE XML  sourcexml 
 RESULT XML  asXML 
 
Step 2: asXML to ABAP variables 
CALL TRANSFORMATION ID 
 SOURCE XML  asXML 
 RESULT XMLElement1 = ABAPVariable1 
  ComplexXMLElement1 = ABAPDeepStructureVariable1. 
 
Or in 1 step: XML to ABAP variables 
CALL TRANSFORMATION yourxslt 
 SOURCE XML  sourcexml 
 RESULT XMLElement1 = ABAPVariable1 
  ComplexXMLElement1 = ABAPDeepStructureVariable1. 
 

http://www.w3.org/�


 

 

17 / 114 

The EPO XML Connector uses the 2 step technique for EPO runtime and EPO 
Client. This enables you to assign the XSLT in the configuration and do only the ID 
transformation in your custom ABAP programming. 
 
 
For SOAP XML to asXML transformation a generic XSLT is provided with the EPO 
XML Connector: 
/EPO1/IN_SOAP_TO_ASXML SOAP XML to asXML transformation translating all 

XML elements into uppercase. 
 
 
ABAP into XML transformation 
This is achieved again with the ABAP command CALL TRANSFORMATION and can 
also be done in 1 or 2 steps. 
 
Step 1: ABAP variables to asXML 
CALL TRANSFORMATION ID 
 SOURCE XMLElement1 = ABAPVariable1 
  ComplexXMLElement1 = ABAPDeepStructureVariable1 
 RESULT XML  asXML. 
 
Step 2: asXML to XML 
CALL TRANSFORMATION yourxslt 
 SOURCE XML  asXML 
 RESULT XML  targetxml. 
 
 
Or in 1 step: ABAP variables to XML 
CALL TRANSFORMATION yourxslt 
 SOURCE XMLElement1 = ABAPVariable1 
  ComplexXMLElement1 = ABAPDeepStructureVariable1 
 RESULT XML  yourxml. 
 
The EPO XML Connector uses the 2 step technique for EPO runtime and EPO 
Client. This enables you to assign the XSLT in the configuration and do only the ID 
transformation in your custom ABAP programming. 
 
 
For asXML to SOAP XML transformation a generic XSLT is provided with the EPO 
XML Connector: 
/EPO1/ASXML_TO_SOAP asXML to SOAP XML transformation. It uses 

a XML element <RESPONSEOPERATION> to 
determine the name of the operation (the child of 
<body>). This allows the XML Transmitter to create 
a valid WSDL file. Example: 
<RESPONSEOPERATION>BAPIUserGetDetail</R
ESPONSEOPERATION> will lead to 
<body><BAPIUserGetDetailResponse>… 
If <RESPONSEOPERATION> is not created with 
CALL TRANSFORMATION, the xml element will be 
named just <Response>. 



 

 

18 / 114 

Creating a web service for SOAP XML for SAP Inbound (SAP provides the web 
service) 
This means, that the request XML will be a SOAP message posted to SAP. So you 
will apply XSLT /EPO1/IN_SOAP_TO_ASXML in the configuration for direction I (In). 
For the response XML you will apply XSLT /EPO1/ASXML_TO_SOAP for direction O 
(Out). 
 
 

111...555...999   CCCOOONNNCCCEEEPPPTTT   OOOFFF   OOOTTTHHHEEERRR   DDDAAATTTAAA   FFFOOORRRMMMAAATTT   TTTOOO   AAABBBAAAPPP   TTTRRRAAANNNSSSFFFOOORRRMMMAAATTTIIIOOONNN   AAANNNDDD   
VVVIIICCCEEE   VVVEEERRRSSSAAA   

All messages are kept in binary format in the EPO XML Connector. Therefore any 
message format can be handled. 
 

111...555...999...111   SSSAAAPPP   IIINNNBBBOOOUUUNNNDDD   DDDAAATTTAAA   CCCOOONNNVVVEEERRRSSSIIIOOONNN   UUUSSSIIINNNGGG   EEEPPPOOO   RRRUUUNNNTTTIIIMMMEEE   
EPO runtime requires using a processing function module for processing the data in 
SAP. The message data is provided with IMPORTING parameter  
I_REQUESTXML TYPE XSTRING 
 
Now you can use any technique available in ABAP to use this binary data. Beside 
XML data handling with ABAP command CALL TRANSFORMATION there are 
various function modules etc. available. 
 
Examples: 
“Upload” or http(s) receipt of Microsoft Excel files (.XLS) 
“Upload” or http(s) receipt of text files, CSV files or other structured files 
“Upload” or http(s) receipt of IDOC files 
 

111...555...999...222   SSSAAAPPP   OOOUUUTTTBBBOOOUUUNNNDDD   DDDAAATTTAAA   CCCOOONNNVVVEEERRRSSSIIIOOONNN   UUUSSSIIINNNGGG   EEEPPPOOO   CCCLLLIIIEEENNNTTT   
EPO Client needs the request data in binary format. It must be provided to 
IMPORTING parameter  
I_REQUESTXML TYPE XSTRING 
 
Now you can use any technique available in ABAP to produce this binary data. 
Beside XML data handling with ABAP command CALL TRANSFORMATION there 
are various function modules etc. available. 
 
Examples: 
“Send” or download of Microsoft Excel files (.XLS) 
“Send” or download of text files, CSV files or other structured files 
“Send” or download of IDOC files 
 
 
 



 

 

19 / 114 

222   IIINNNIIITTTIIIAAALLL   
 

CCCOOONNNFFFIIIGGGUUURRRAAATTTIIIOOONNN   

There are few things you have to do before you can start working with EPO XML 
Connector. First you need the software license key for the connector to operate, next 
you create number ranges for your services and finally you must activate connector 
services for inbound calls. 
 

222...111   UUUPPPLLLOOOAAADDD   LLLIIICCCEEENNNSSSEEE   KKKEEEYYY   
 
In order to use EPO XML Connector on SAP production systems you need to upload 
the license key file into your system, which you can obtain from EPO Consulting. To 
try out our product first, there are evaluation licenses available as well. 
 

Area menu: EPO XML Connector Administration → Load license key for EPO 
XML Connector 
Transaction: /EPO1/SETLICENSE 
 

Image 1: Screenshot from license program 

 
 
You must upload the license key in “Production mode”! 
 

222...222   CCCRRREEEAAATTTEEE   NNNUUUMMMBBBEEERRR   RRRAAANNNGGGEEE(((SSS)))   
The numbers generated by number range(s) are used to identify each 
transaction=message (TransactionID) for services used with the EPO XML 
Connector. You can create your own number range object using transaction SNRO 
(also in EPO area menu - EPO XML Connector Configuration → Number Range 
Objects) or can use predefined “/EPO1/NOR” number range object, but in that case 
you need to set up at least one number range – default “00” range, although you can 
have different number range for each service eventually (see example on image 
below). We recommend using at least 2 different number ranges for inbound and 
outbound services. 
 
Note: Default number range number ‘00’ (identifier of number range) is used when nothing is set in the 
service configuration. 
 

Area menu: EPO XML Connector Configuration → Maintain number range for 
EPO XML Connector messages 
Transaction: /EPO1/NOR 

 



 

 

20 / 114 

Image: Number ranges example 

 

222...333   AAACCCTTTIIIVVVAAATTTEEE   SSSEEERRRVVVIIICCCEEESSS   
 
Since it is not possible to deliver active services, you are required to activate 
epo1soa service and all subsequent children of it (images below). The inbound part 
of the EPO XML Connector depends on these services. 
 

Area menu: EPO XML Connector Administration → HTTP Service Hierarchy 
Maintenance (ICF) 
Transaction: SICF 

 
Image: Service activation in SICF 

 
 

 
Image: Activate all subsequent children of a service 

 
 
 
 

 



 

 

21 / 114 

333   EEEPPPOOO   XXXMMMLLL   CCCOOONNNNNNEEECCCTTTOOORRR   SSSEEERRRVVVIIICCCEEESSS   CCCOOONNNFFFIIIGGGUUURRRAAATTTIIIOOONNN   &&&   
DDDEEEVVVEEELLLOOOPPPMMMEEENNNTTT   

333...111   DDDEEEFFFIIINNNIIITTTIIIOOONNN   OOOFFF   SSSEEERRRVVVIIICCCEEESSS   (((IIINNNBBBOOOUUUNNNDDD   &&&   OOOUUUTTTBBBOOOUUUNNNDDD)))   
 
Every operation (= integration scenario) of EPO XML Connector we call a service 
and every one of these services must be defined in the “services” table. Although the 
service record contains more information, basically it is just name and direction, 
which you use to create “service configuration”. This enables you to use different 
operations and versions of the same service. 
 

Area menu: EPO XML Connector Configuration → Maintain Services EPO 
XML Connector 
Transaction: /EPO1/SERVICES12 

 
Area menu: EPO XML Connector Configuration → Display Services EPO 
XML Connector 
Transaction: /EPO1/SERVICES3 
 

Image: EPO XML Connector service setting 

 
 
Service name: For inbound services the service name is determined by 

the name of web service you are using. 
For outbound services you can freely define a unique 
service name. 

 
Direction of service:  Inbound (IN to SAP), outbound (OUT of SAP) 
 
 



 

 

22 / 114 

Partner number and type: Partner definition for the service. The fields will also be 
used for IDOC monitoring and / or integration. 

 
Inactive: You can turn off the service by setting it to inactive. 
 
Operation mandatory: This setting makes sure that no processing takes place if 

passed operation does not exist in service's configuration 
table. In opposite situation (operation mandatory not set) 
the configuration with empty operation, if exists, will be 
used for any non-existing operations. 

 
Authorisation check: When this is enabled, EXC always checks user 

authorisation for object /EPO1/ECS for service being 
processed. 

 
IN: XSLT operation: Used only for inbound. 

This field is optional. XML transformation which extracts 
* operation,  
* version and  
* foreign keys (FKEY1-FKEY4) out of the request XML 
message. Foreign keys (if used) are stored in the 
message header table (if configured to store). So you 
don’t need to store the whole xml messages, if you want to 
log just up to 4 parameters from it. 
Extract the “operation” of a web service here, if the web 
service has got more then 1 operation and http header 
“SOAPaction” is not used for the call. 

 
 Note: This applies to FILE protocol as well (Inbound only) 
 
In: Use http header: Used only for inbound. 

This field is optional and will only be used, if “XSLT 
operation” (see above) does not provide the “operation”. 
The handler will get  
*operation – http header: “SOAPaction”, 
* version – http header: “version” and  
* foreign keys - http header: “fkey1” to “fkey4” 
from HTTP header if you set this checkbox.  

 
Note: If you both use “XSLT operation” and set “Use http header” 
then using HTTP header has lower priority and will only be 
processed, if “operation” was not retrieved with “XSLT operation”. 

 
In: Use query string: Used only for inbound. 
 This field is optional and will only be used if “XSLT 

operation” and “HTTP Header” (see above) functions (if 
set) does not provide the “operation”. 

 The handler will get 
  - operation variable “operation” 
  - version variable “version” and 
  - foreign keys variable “fkey1” to “fkey4” 
 from URL (http://server/service?operation=something). 

http://server/service?version=something�


 

 

23 / 114 

     
Note: If you use all “XSLT operation”, “Use http header” and “Use 
query string” then using Query string has the lowest and will only be 
processed, if “operation” was not retrieved using the other two 
methods. 

 
Message format: This field is optional 

Format of a service message. By default the value is XML 
even when this entry is left empty. This format is used as 
filename extension in file handling programs and UM 
protocols of EPO XML Connector. 

 
FILE directory: Directory for file reading (EPO Runtime - inbound) or 

storing (EPO Client - outbound) used in FILE protocol. 
 
FILE name: File name for FILE and UM protocols. For EPO Runtime 

(inbound) files this field can contain search pattern. The 
search is using ABAP logical expression “CP”. Masking 
signs are ‘*’ and ‘+’ and search is not case-sensitive. 
Hint: It will read first always all files in the specified 
directory and then reduce it to the number of matching 
files. So keep you directories as clean as possible. 

  
Description: Your description of the service. 
 
Callstack in errors: Set this flag to include ABAP call stack in /epo1/callstatus 

error messages for the service. 
 

333...222   AAAUUUTTTHHHOOORRRIIISSSAAATTTIIIOOONNN   OOOBBBJJJEEECCCTTT   
 
Authorisation check can be enabled in service configuration. It allows you to create 
and assign authorisations for each service. 
 
The authorisation object is /EPO1/ECS (class EPO1), authorisation /EPO1/EXSA00, 
and field name /EPO1/SNAM – name of service being used. Like with any other 
authorisation object, you can use transactions PFGC, SU01, SU02, SU03 to maintain 
and assign authorisation profiles and roles. When authorisation check fails, the error 
message is given back in callstatus parameter. 
 
Example: You could create a communication SAP user, which is authorised only for 1 
specific SAP Inbound service. In ICF you could then create an alias (or ICF service), 
where you enter this user and password. This way you get a trusted service, which 
can be used in your intranet without logon data required. 
 
 
Next chapters: 
 
Inbound (calling a SAP service) 
The inbound section is guiding you through creation and setting up EPO runtime and 
SAP runtime services of the EPO XML Connector (providing a Web Service). 



 

 

24 / 114 

 
Outbound (calling an external service) 
The outbound section describes how to create and use services for communication 
with web services “outside” of SAP. There are two options for implementing outbound 
services in the EPO XML Connector: EPO Client and SAP Client (consuming a Web 
Service). 

333...333   IIINNNBBBOOOUUUNNNDDD:::   EEEPPPOOO   RRRUUUNNNTTTIIIMMMEEE   
 
EPO runtime provides a unique HTTP(s) handler, which is represented by the URL 
address sap_default_host/epo1soa/xmlhandler. XML messages can be posted to this 
URL. When the handler receives the request message it is able (in order) to store, 
XSLT transform, and process it. (Re)Processing is done by calling customer-
developed function modules. This XML handler can store or log and XSLT transform 
the response message as well. The same thing can be done using files stored on 
your file system rather then HTTP(s) requests. In this case we call it EPO FILE 
runtime or FILE protocol. 
A WSDL file can be created easily using the “WSDL create” functionality of the XML 
Transmitter (freeware from EPO Consulting). 
 
The unique EPO runtime is one option creating an inbound integration with SAP. The 
other option for inbound integration is using the SOAP runtime of the EPO XML 
Connector. You can decide service by service, which option is appropriate. We 
recommend using EPO runtime as it returns far better error messages. 
 
Overview: Steps for creating inbound integrations using EPO runtime: 

• Define XML messages (request and response) 
• Configure the service in the EPO XML Connector 
• Write the custom function module for processing the request and response 

XML message (e.g. map the XML elements to the internal used BAPI). 
• Create WSDL using XML Transmitter 
• Test your integration 

 

333...333...111   SSSTTTAAATTTEEEFFFUUULLL   (((SSSEEESSSSSSIIIOOONNN)))   HHHAAANNNDDDLLLEEERRR   
 
On the top of previously described handler (xmlhandler), there is also a stateful 
handler available (sap_default_host/epo1soa/apphandler), which you can use to 
create server sessions for EPO Runtime services. When the session is created after 
successful logon, server sends identification cookie (‘set-cookie’ header) which you 
need to use (‘cookie’ header) to be able to access the opened session. Sending any 
value in HTTP header named ‘exc-terminate’ will close the session. Read more info 
about stateful communication at help.sap.com. 
 

333...333...222   UUUSSSIIINNNGGG   HHHTTTTTTPPP(((SSS)))   
 
The EPO runtime is implemented as a HTTP handler for SAP NetWeaver Application 
server (WAS). In the SAP service tree (transaction SICF) it is located in 

http://help.sap.com/saphelp_nw04/helpdata/EN/72/c730f8c06511d4ad310000e83539c3/frameset.htm�


 

 

25 / 114 

sap_default_host/epo1soa/xmlhandler. The call of such an inbound service is done 
by posting (HTTP POST) a XML request message to this handler. 
 
Example call: http://vepo2005:8000/epo1soa/xmlhandler/BAPI_BANK_GD_ERT? 
Explanation of this call: 
The host “vepo2005” and port “8000” are from the SAP WAS. 
“/epo1soa/xmlhandler/” is the EPO runtime HTTP handler on SAP WAS. 
The URI “BAPI_BANK_GD_ERT” is the service name, which must be configured. 

333...333...222...111   IIIMMMPPPOOORRRTTTAAANNNTTT   HHHTTTTTTPPP   HHHEEEAAADDDEEERRRSSS   
 
SOAPaction (optional): The operation of the service. 
Hint: The operation of a service can also be defined in the XML of the service itself 
(first child element of <soap:Body> 
Sap-client (optional): SAP logon client (Web logon, not an RFC logon) 
Sap-language (optional): Logon language to SAP 
ContentType: For example text/xml or text/plain 
ContentLength: Normally automatically added 
Method: POST 

333...333...333   UUUSSSIIINNNGGG   FFFIIILLLEEE,,,   FFFTTTPPP   
 
You can use file(s) as a runtime request(s) by setting up job which runs 
/epo1/exc_fileruntime program. This program checks specified service and 
configuration and then reads files from directory specified in service settings and 
processes them as requests similarly to HTTP requests. For ftp access you can use 
the same thing by mapping ftp site to your file system. 
 

333...333...444   CCCRRREEEAAATTTIIINNNGGG   EEEPPPOOO   RRRUUUNNNTTTIIIMMMEEE   ---   IIINNNTTTEEEGGGRRRAAATTTIIIOOONNN   GGGUUUIIIDDDEEE   FFFOOORRR   HHHTTTTTTPPP   PPPRRROOOTTTOOOCCCOOOLLL   

333...333...444...111   DDDEEEFFFIIINNNEEE   IIINNNTTTEEERRRFFFAAACCCEEESSS   ---   RRREEEQQQUUUEEESSSTTT   AAANNNDDD   RRREEESSSPPPOOONNNSSSEEE   XXXMMMLLL   MMMEEESSSSSSAAAGGGEEESSS   
 

Request XML definition example (BAPI_BANK_GD_ERT service) 
 
<?xml version="1.0" encoding="UTF-8"?> 
<soap:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xmlns:xsd="http://www.w3.org/2001/XMLSchema" 
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"> 
  <soap:Body> 
    <m0:BAPI_BANK_GETDETAIL xmlns:m0="urn:sap-com:document:sap:rfc:functions"> 
      <BANKCOUNTRY>AT</BANKCOUNTRY> 
      <BANKKEY>00100</BANKKEY> 
    </m0:BAPI_BANK_GETDETAIL> 
  </soap:Body> 
</soap:Envelope> 
 
 
Response XML message example (BAPI_BANK_GD_ERT interface) 
 
<?xml version="1.0" encoding="utf-8"?> 
<asx:abap xmlns:asx="http://www.sap.com/abapxml" version="1.0"> 
  <asx:values> 
    <BANKADDRESS> 

http://vepo2005:8000/epo1soa/xmlhandler/BAPI_BANK_GD_ERT�


 

 

26 / 114 

      <BANK_NAME>Oesterreichische Nationalbank</BANK_NAME> 
      <REGION /> 
      <STREET /> 
      <CITY>1011 WIEN</CITY> 
      <SWIFT_CODE /> 
      <BANK_GROUP /> 
      <POBK_CURAC /> 
      <BANK_NO>00100</BANK_NO> 
      <POST_BANK /> 
      <BANK_BRANCH /> 
      <ADDR_NO /> 
    </BANKADDRESS> 
    <BANKDETAIL> 
      <CREAT_DATE>1999-04-01</CREAT_DATE> 
      <CREATOR>&lt;UEBERNAHME&gt;</CREATOR> 
      <METHOD /> 
      <FORMATTING /> 
      <BANK_DELETE /> 
    </BANKDETAIL> 
    <RETURN> 
      <TYPE /> 
      <ID /> 
      <NUMBER>000</NUMBER> 
      <MESSAGE /> 
      <LOG_NO /> 
      <LOG_MSG_NO>000000</LOG_MSG_NO> 
      <MESSAGE_V1 /> 
      <MESSAGE_V2 /> 
      <MESSAGE_V3 /> 
      <MESSAGE_V4 /> 
      <PARAMETER /> 
      <ROW>0</ROW> 
      <FIELD /> 
      <SYSTEM /> 
    </RETURN> 
  </asx:values> 
</asx:abap> 

333...333...444...222   CCCRRREEEAAATTTEEE   EEEPPPOOO   RRRUUUNNNTTTIIIMMMEEE   SSSEEERRRVVVIIICCCEEE   
 

The service creation is described in Definition of Services (Inbound & Outbound). 
 

Area menu: EPO XML Connector Configuration → Maintain Services EPO 
XML Connector 
Transaction: /EPO1/SERVICES12 
 

Image: EPO Runtime service example 



 

 

27 / 114 

 

333...333...444...333   CCCOOONNNFFFIIIGGGUUURRREEE   EEEPPPOOO   RRRUUUNNNTTTIIIMMMEEE   SSSEEERRRVVVIIICCCEEE   
 

Area menu: EPO XML Connector Configuration → Inbound service configuration 
(SAP Services) → EPO runtime → In: EPO runtime maintain service configuration 
Transaction: /EPO1/EPORTIN12 
 

Image: EPO runtime configuration example 



 

 

28 / 114 

 
Service name:  The name of service as it is set in service table described in 

section 3.1. 
 
Operation: Operation of the service - you can create / use more 

operations of one service or leave it empty. 
 
Version: Version of the service / operation. Using the version parameter 

you can implement changes to existing services and handle 
new and old versions of XML requests. 

 
NR object: Number range object used for creating transaction identifiers 

(TransactionID). You can define your own object in transaction 
SNRO or use default “/EPO1/NOR”. 

 
Subobject value: Number range sub object value for the configuration. 
 
No Range No: Number range number: It is used to create a unique 

“TransactionID” for each service call. It is used throughout the 
EPO XML Connector for requests and responses when 
storing. Creation of number ranges is described in section 2.2

 
. 



 

 

29 / 114 

Protocol:

 

 Protocol used to acquire request XML. Default is HTTP. When 
you set this to FILE, you can get the request from file(s). In 
that case you will also need to fill the fields ‘FILE directory’ and 
‘FILE name’ in service’s settings. 

Processing type: Synchronous – the processing is done when the request is 
received. 

 

 Asynchronous – nothing is done processing-wise but you can 
configure the connector to save the xml message and 
reprocess it later on (storing is described below in Store XML 
field). 

 

Store XML: This field offers several possibilities for storing HTTP request 
and XML message: 

- 

 

0 Do not store any information: Obviously, the connector does not store any 
information in this case. Suitable for synchronous processing when you do not 
want to keep any data. Do not use for asynchronous services or for disabling 
them. 

- 

 

1 Store request information: (only table /epo1/xmlhead): The connector in this 
case stores everything except XML message itself, but for (in this inbound 
case) request only. This option you can use for logging HTTP requests to your 
service when processing synchronously, but beware, you won’t be able to 
reprocess the request when using asynchronous processing. 

- 

 

2 Store request information including XML message: The request in this case 
is stored including the XML message and you are able to reprocess it. This is 
the solution for asynchronous processing when you do not need to log or store 
responses. You can use this also when processing synchronously to be able 
to reprocess the request in error cases. 

- 

 

3 Store response information (only table /epo1/xmlhead): Response logging 
could be the name for this option. The connector stores response information 
except the XML which is given out. The request message itself is not stored 
after processing. 

- 

 

4 Store response information including XML message: Complete response 
storing is done when you choose this option. You can choose it to be able to 
check the responses of your service. 

- 

 

5 Store request and response information (only /epo1/xmlhead): Use this 
option when you want to be able to check both request and response parts of 
transactions of your service but you don’t care about the data transferred. 

- 

 

6 Store request and response information including XML message: Finally, 
this is the “keep everything” choice. Use it when you require total control over 
your service. 

 

Note: Depending on service usage, stored XML messages could occupy quite some 
database space. They are stored in database table /EPO1/XMLDATA. 



 

 

30 / 114 

 

Compress: If you check this checkbox, the XML messages are 
compressed before storing (if configured to store). 

 

Processing FM: Processing function module: This is the function module 
which is called to process the request. Function module 
structure (interface) and development of those function 
modules is described below in detail. 

 

RFC Destination: The processing FM is called using RFC destination set in this 
field, otherwise the FM is called locally. 

 

XSLT in: XSLT transformation of request XML message. It takes part 
in request handling right after the request XML message is 
stored (if configured to do so) and before the message is 
processed (by calling processing function module). 

 

XSLT out: XSLT transformation of response XML message. This 
happens after the message is stored, before sending out. 

In.Req.Structure FM Section 1.4.3 of this document describes these fields in 
In.Req.Mapping FM detail. 
In.Res.Mapping FM 

 
In.Res.Mapping FM 

 

FILE no import twice:  FILE protocol only. Set this to disable importing the same file 
twice for the configuration, which is done by storing filename 
in /epo1/files. 

 

FILE custom exit FM: FILE protocol only. User-exit function module which is called 
after the file is read and before it is processed. Interface of 
this function module can be found in example 
/epo1/file_in_user_exit. You can use this FM to rename the 
file after it has been successfully read into the EPO XML 
Connector. Also you can disable processing of the file, if 
renaming fails (e.g. because file is still written or changed). 

Monitoring profile: This field sets monitoring profile for the service. Monitoring is 
closely described in section 5

 
. 

 

Description: Describe the version, operation, service or anything, but you 
can leave it empty if you don’t need it. 



 

 

31 / 114 

333...333...444...444   CCCRRREEEAAATTTEEE   PPPRRROOOCCCEEESSSSSSIIINNNGGG   FFFUUUNNNCCCTTTIIIOOONNN   MMMOOODDDUUULLLEEE   
 
Processing function modules are used in the EPO runtime for  

• receiving the XML request  
• transforming it into ABAP data structures 
• calling the function (BAPI, Call transaction BI, RFBI* program, IDOC, …) 
• preparing the response 
• transforming the response into XML 

All processing function modules must have the same interface, thus you can 
copy an example function module. We strongly recommend doing so. 
Use transaction SE37 or SE80 to implement it. 
Your own processing function modules will be in the Z* or Y* name space. 
 
 
Processing function module example (naming convention of example function 
modules for EPO Runtime is /epo1/erx*). 
 
function /epo1/erx_bapi_bank_getdetail . 
"---------------------------------------------------------------------- 
"*"Local Interface: 
"  IMPORTING 
"     VALUE(I_REQUESTXML) TYPE  XSTRING 
"     REFERENCE(I_SERVICENAME) TYPE  /EPO1/SERVICE OPTIONAL 
"     REFERENCE(I_OPERATION) TYPE  /EPO1/OPERATION OPTIONAL 
"     REFERENCE(I_VERSION) TYPE  /EPO1/VERSION OPTIONAL 
"     REFERENCE(I_TRANSACTIONID) TYPE  /EPO1/TRANSACTIONID OPTIONAL 
"     REFERENCE(I_MESSAGEDIRECTION) TYPE  /EPO1/MESSAGEDIRECTION 
"       OPTIONAL 
"  EXPORTING 
"     REFERENCE(E_XML) TYPE  XSTRING 
"     REFERENCE(E_RESPONSEMESSAGE) TYPE  /EPO1/MESSAGE 
"  CHANGING 
"     REFERENCE(C_REQUESTSTATUS) TYPE  /EPO1/STATUS OPTIONAL 
"     REFERENCE(C_REQUESTMESSAGE) TYPE  /EPO1/MESSAGE OPTIONAL 
"     REFERENCE(C_FKEY1) TYPE  /EPO1/FKEY1 OPTIONAL 
"     REFERENCE(C_FKEY2) TYPE  /EPO1/FKEY2 OPTIONAL 
"     REFERENCE(C_FKEY3) TYPE  /EPO1/FKEY3 OPTIONAL 
"     REFERENCE(C_FKEY4) TYPE  /EPO1/FKEY4 OPTIONAL 
"---------------------------------------------------------------------- 
 
*&-------------------------------------------------------------------- 
*& Company:   EPO Consulting 
* 
*& IP Rights: Intellectual Property Rights and all other rights are 
*&            held by EPO Consulting 
*&            Copying or Modifying this program is only allowed with 
*&            written consent of EPO Consulting. 
*& Author:    WK 
*& Date:      March 2007 
*&-------------------------------------------------------------------- 
 
  data: xml_bankcountry type string. 
  data: xml_bankkey     type string. 
  data: l_bankkey type bapi1011_key-bank_key. 
  data: l_bankcountry type bapi1011_key-bank_ctry. 
 
  data: l_bank_address type bapi1011_address. 



 

 

32 / 114 

  data: l_bank_detail  type bapi1011_detail. 
  data: l_return type bapiret2. 
 
 
* Transform asXML to ABAP variables 
  try. 
*      CALL TRANSFORMATION id 
*      SOURCE 
*        XML           i_requestxml 
*      RESULT 
*        xmlelemtent1 = abapvariable1 
*        xmlelemtent2 = abapvariable1 
*      Tip 1: define abapvariable as strings. This avoids conversion 
*             errors, when the XML element contents is too long 
*      Tip 2: XML elements "tables" can passed to internal ABAP tables 
 
      call transformation id 
      source 
        xml           i_requestxml 
      result 
        bankcountry = xml_bankcountry 
        bankkey     = xml_bankkey. 
 
    catch cx_root. 
      c_requeststatus = '51'. 
      c_requestmessage = 'XML wrong format'. 
*      write your own error message here 
      exit. 
  endtry. 
 
  if xml_bankcountry is initial or xml_bankkey is initial. 
    exit. 
  endif. 
 
  l_bankcountry = xml_bankcountry. 
  l_bankkey     = xml_bankkey. 
 
  call function 'BAPI_BANK_GETDETAIL' 
    exporting 
      bankcountry  = l_bankcountry 
      bankkey      = l_bankkey 
    importing 
      bank_address = l_bank_address 
      bank_detail  = l_bank_detail 
      return       = l_return. 
 
* 1. Fill Status Fields ******************************************* 
  if l_return-type = 'E'. 
    c_requeststatus = '51'. 
*    write your own error message here 
  else. 
    c_requeststatus = '53'.         "processed successfully 
  endif. 
  c_requestmessage = l_return-message. 
* **************************************************************** 
 
* use call transformation ID instead! 
* Transform asXML to ABAP variables 
  try. 
*      CALL TRANSFORMATION id 
*      SOURCE 
*        XML           i_requestxml 
*      RESULT 



 

 

33 / 114 

*        xmlelemtent1 = abapvariable1 
*        xmlelemtent2 = abapvariable1 
*      Tip 1: define abapvariable as strings. This avoids conversion 
*             errors, when the XML element contents is too long 
*      Tip 2: XML elements "tables" can passed to internal ABAP tables 
 
      call transformation id 
      source 
        bankaddress   = l_bank_address 
        bankdetail    = l_bank_detail 
        return        = l_return 
      result 
        xml             e_xml. 
 
    catch cx_root. 
      c_requeststatus  = '51'. 
      c_requestmessage = 'XML wrong format'. 
*     write your own error message here 
  endtry. 
 
endfunction
 

. 

 

333...333...444...555   CCCRRREEEAAATTTEEE   WWWSSSDDDLLL   FFFOOORRR   SSSEEERRRVVVIIICCCEEE   UUUSSSIIINNNGGG   XXXMMMLLL   TTTRRRAAANNNSSSMMMIIITTTTTTEEERRR   
 
To be able to use a web service in other programming environments you will 
need to provide a WSDL. The XML Transmitter (freeware from EPO Consulting) 
provides “Create WSDL” functionality. 
The steps needed to create a WSDL are described here. 
 
 
1. Step.  
Define a request message on client side and response message on the server 
side. You can “generate” the response message by testing your EPO XML 
Connector service (use POST). Messages must be in SOAP format, it means, 
they must have format from the schema definition 
xmlns:soap=http://schemas.xmlsoap.org/soap/envelope/. 
 
Schema definition template for the request: 
 
<?xml version="1.0" encoding="UTF-8"?> 
<soap:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xmlns:xsd="http://www.w3.org/2001/XMLSchema" 
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"> 
  <soap:Body> 
 < ... own structure ... />  
  </soap:Body> 
</soap:Envelope> 
 
Schema definition for the response: 
 
<?xml version="1.0" encoding="UTF-8"?> 
<soap:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xmlns:xsd="http://www.w3.org/2001/XMLSchema" 
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"> 
  <soap:Body> 
 < ... own structure ... />  



 

 

34 / 114 

  </soap:Body> 
</soap:Envelope> 
 
(Same as for the request) 

 
 
2. Step.  
Make sure the URL and http headers are correct. 
Then push the button Create WSDL file 
Function “Create WSDL file” starts the wizard for the creation. In the first form 
window will be definition for the destination and definition for the SOAP action 
header. 

 
 
Second form shows definition for the request and response messages. 



 

 

35 / 114 

 
 
To finish the action press the “Finish” button. 
 
The created WSDL file will be in the client side window. For checking the 
correctness of the WSDL file it is possible to start “Import WSDL” file. After import 
request and response messages will be created, which must be same as a 
source request and response messages. 
 

 
 
 
 



 

 

36 / 114 

333...333...555   CCCRRREEEAAATTTIIINNNGGG   EEEPPPOOO   RRRUUUNNNTTTIIIMMMEEE   ---   IIINNNTTTEEEGGGRRRAAATTTIIIOOONNN   GGGUUUIIIDDDEEE   FFFOOORRR   FFFIIILLLEEE   PPPRRROOOTTTOOOCCCOOOLLL   
 

Basically you can convert any HTTP runtime service (guide above) into FILE 
protocol one by changing the protocol in configuration of such service. The 
processing will then require the ‘FILE directory’ and ‘FILE name’ fields in service’s 
settings to be filled with reasonable values. Also you can use ‘FILE no import 
twice’ check box in configuration to make such service not to process the same 
file twice when reading the same directory and/or you can rename, move or 
delete imported file in user exit function module. The interface of this user exit FM 
and example of how to rename the file using system command you can find in 
/EPO1/FILE_IN_USER_EXIT. 
 
To automate such services, you can schedule program /epo1/exc_fileruntime as 
a SAP job. 
 

333...333...666   TTTEEESSSTTTIIINNNGGG   AAANNN   EEEPPPOOO   RRRUUUNNNTTTIIIMMMEEE   SSSEEERRRVVVIIICCCEEE   

333...333...666...111   UUUSSSIIINNNGGG   HHHTTTTTTPPP   
 
In order to test an EPO runtime service, you must http post a request xml to the 
URL of the service. We recommend using XML Transmitter from EPO Consulting 
for testing such services. 
 
Options for testing EPO runtime inbound services: 

1. Post request XML messages from your integrated application 
2. Post request XML messages from XML Transmitter 
3. Post request XML messages from any other tool (SAP Java test tool, XML 

editor with POST functionality, …) 
4. Upload a request XML file directly in SAP into the EPO XML Connector 

and process it (using upload and (re-)processing programs of the EPO 
XML Connector) 

5. Use a stored XML message and (re-)process it (using the (re-)processing 
program of the EPO runtime of the EPO XML Connector). 

 
Example: Testing service BAPI_BANK_GD_ERT with XML Transmitter: 
 
“Configuration” (can be stored) with URL, user, password, http headers, XML 
request. With button “POST” the test will start. 
 



 

 

37 / 114 

Image: Testing EPO Runtime service using XML Transmitter – before post 

 
 

 
Image: Testing EPO Runtime service using XML Transmitter – after post – successful response 

 
 
 
Debugging your service: 
You can set an external break point in your processing function module. When 
posting a request XML, the SAP debugger will start. Make sure to set your “timeout” 
to a maximum. The SAP debugger will close on timeout. 
Another easy way for testing is reprocessing the service with a stored message in 
SAP. 

 



 

 

38 / 114 

333...333...666...222   UUUSSSIIINNNGGG   FFFIIILLLEEE,,,    FFFTTTPPP   
 

The file protocol can be tested by manually running /epo1/exc_fileruntime 
program (also in /EPO1/SOA menu EPO XML Connector Configuration → 
Inbound Service Configuration → EPO Runtime → /EPO1/FILERT – In: FILE 
protocol runtime program) and debugging it if necessary. 
 

333...333...777   EEEPPPOOO   RRRUUUNNNTTTIIIMMMEEE   EEERRRRRROOORRR   XXXMMMLLL   MMMEEESSSSSSAAAGGGEEE   
 

In case that you send a wrong XML request, use non-existing service (example) 
or something else is not what it should be, you will receive an error XML 
message generated by the EPO XML Connector with the following structure. You 
will only receive this message, if there is no response message from the 
processing function module. 
 
<?xml version="1.0" encoding="utf-8"?> 
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"> 
  <soap:Body> 
    <STATUSINFO> 
      <CODE>900</CODE> 
      <TYPE>E</TYPE> 
      <SUBJECT>Service name not found in /EPO1/SERVICES</SUBJECT> 
      <DESCRIPTION>ZEPO1_BAPI_BANK_GETDETAIL not configured in table 
/EPO1/SERVICES</DESCRIPTION> 
      <TRANSACTIONID> 
      </TRANSACTIONID> 
    </STATUSINFO> 
  </soap:Body> 
</soap:Envelope> 

 
Note: Quite obviously this does not apply for FILE protocol, where there is no 
response sent back. You can see the job log for errors when using file protocol. 
 

333...333...888   EEEPPPOOO   RRRUUUNNNTTTIIIMMMEEE   EEEXXXAAAMMMPPPLLLEEE   SSSEEERRRVVVIIICCCEEESSS   
 
There are many different examples available for using EPO runtime. Examples 
are delivered as processing function modules for EPO runtime. All examples are 
delivered commented. You can copy it and create your own integration. If you 
want to use an example function module (e.g. for demonstration or first 
connection tests), you can uncomment it using the comment/uncomment 
program /EPO1/COMMENTUNCOMMENT (transaction 
/EPO1/TEMPLATESUNCOM, area menu: EPO XML Connector Administration). 
 
All examples follow the naming convention /epo1/erx*. 
 
You can find it using transaction SE37 or SE80. 
 
List of processing function module examples: 
 
Function group: /EPO1/ERX_EXAMPLES              
/EPO1/ERX_BAPI_ACC_DOC_POST     
/EPO1/ERX_BAPI_EMPLOYEE_GETD    
/EPO1/ERX_BAPI_EMPLOYEE_GETD_T  



 

 

39 / 114 

/EPO1/ERX_FB01_RFBIBL00         
                                
Function group: /EPO1/ERX_EXAMPLES_MINISAP      
/EPO1/ERX_BAPI_BANK_CREATE_T    
/EPO1/ERX_BAPI_BANK_GETDETAIL   
                                
Function group: /EPO1/MBPM_PROCESSINGFM         
/EPO1/ERX_MBPM_BAPI_ACC_DOC_PO  
/EPO1/ERX_MBPM_BAPI_AGR_ASSIGN  
/EPO1/ERX_MBPM_BAPI_BANK_CREA   
/EPO1/ERX_MBPM_BAPI_BANK_GETL   
/EPO1/ERX_MBPM_BAPI_USER_GETD   
 



 

 

40 / 114 

333...444   IIINNNBBBOOOUUUNNNDDD:::   SSSAAAPPP   RRRUUUNNNTTTIIIMMMEEE   
The SAP runtime takes advantage of the SAP standard SOAP web service runtime 
of the SAP NetWeaver Application server. You can publish any function module as 
web service in SAP standard and use it then in the SAP runtime of the EPO XML 
Connector. 
In the SAP service tree (transaction SICF) it is located in 
sap_default_host/epo1soa/srthandler. The call of such an inbound service is done by 
posting (HTTP POST) a XML request message to this handler. 
 
Example call: http://vepo2005:8000/epo1soa/srthandler/BAPI_BANK_GD? 
Explanation of this call: 
The host “vepo2005” and port “8000” are from the SAP WAS. 
“/epo1soa/srthandler/” is the SAP runtime HTTP handler on SAP WAS. 
The URI “BAPI_BANK_GD” is the service name, which must be configured. 
 
Important http headers: 
SOAPaction (optional): The operation of the service. 
Hint: The operation of a service can also be defined in the XML of the service itself 
(first child element of <soap:Body> 
Sap-client (optional): SAP logon client (Web logon, not an RFC logon) 
Sap-language (optional): Logon language to SAP 
ContentType: For example text/xml or text/plain 
ContentLength: Normally automatically added 
Method: POST 

333...444...111   SSSAAAPPP      RRRUUUNNNTTTIIIMMMEEE   (((WWWEEEBBB   SSSEEERRRVVVIIICCCEEE   SSSOOOAAAPPP)))   ---   IIINNNBBBOOOUUUNNNDDD   
The SAP runtime provides a web service handler identical to SAP standard SRT 
(SOAP runtime), but it includes more features like enabling you to use asynchronous 
processing, full control over service processing, transformation of XML messages 
and file handling programs. Implementation of that integration is fairly simple and not 
much different to publish a SAP standard web service: You must publish a web 
service from a RFC-enabled function module or BAPI and put an alias (in SICF) 
under the srthandler service, release the alias (WSCONFIG) and configure the EPO 
XML Connector service. This enhances the standard SAP web service functionality 
with all functions of the EPO XML Connector (store, log, reprocess, XSLT 
transform,). 
 
The SOA runtime is one option creating an inbound integration with SAP. The other 
option for inbound integration is using the unique EPO runtime of the EPO XML 
Connector. You can decide service by service, which option is appropriate. We 
recommend using EPO runtime as it returns far better error messages. 
 
Steps for creating inbound integrations using EPO runtime: 

• Publish a web service (a BAPI or RFC function module) 
• Create an alias in SICF and release the alias in WSCONFIG 
• Configure the service in the EPO XML Connector 
• Test your integration 

 
Note: Web Service SOAP runtime is not available on WAS 6.20. 
 

http://vepo2005:8000/epo1soa/srthandler/BAPI_BANK_GD�


 

 

41 / 114 

333...444...222   CCCRRREEEAAATTTIIINNNGGG   SSSAAAPPP   RRRUUUNNNTTTIIIMMMEEE   ---   IIINNNTTTEEEGGGRRRAAATTTIIIOOONNN   GGGUUUIIIDDDEEE   
 
You will find all relevant transactions in the area menu /EPO1/SOA7. 
 

333...444...222...111   CCCRRREEEAAATTTEEE   AAA   WWWEEEBBB   SSSEEERRRVVVIIICCCEEE   FFFRRROOOMMM   AAA   FFFUUUNNNCCCTTTIIIOOONNN   MMMOOODDDUUULLLEEE   
 
In this chapter it is described, how to publish a web service in SAP standard. You 
can also refer to SAP help (http://help.sap.com). 
 
You can create Web service for RFC-enabled function modules, BAPIs and for 
function groups. The service definition is created using a wizard. Subsequently it 
can be checked and processed in the ABAP workbench. 
 

1. In the Object Navigator (SE80), select the name of the package in which you 
want to create a Web service. From the context menu, choose Create → 
Enterprise Services → Web Services → Web Service. 

 
To create a Web service from a function group or function module, you can 
call the Creation Wizard from the Function Builder (SE37). Choose the 
function module, display it, and then choose Utilities → More Utilities → 
Create → Enterprise Services → Web Services → Web Service 

 
Note: The function group must contain at least one RFC-enabled function module. 

 
Image: Web service creation in Object Navigator (SE80) 

 
 

2. Perform the steps indicated in the wizard. 



 

 

42 / 114 

 
 

2.1 Create Service - Enter a name and description for the service definition 
and choose an end point type. 

 
 
2.2 Choose Endpoint – Choose the object that you want to offer as a Web 

service. For business objects, enter the application. If the checkbox Name 
Mapping is checked, the wizard accepts the existing names for the end 
point. Initial letters are in uppercase and underscores are removed if this is 
not required, the service definition is created using the names in the 
endpoint. 

 
 



 

 

43 / 114 

2.3 Choose Operations – For BAPIs and function groups, choose operations 
for which the Web service is to be created. 

 
Note: There is no image in here because in this example service there is only one operation 

involved and that’s why the wizard skipped this window. 
 

 
2.4 Configure Services – The features you can assign here to the Web service 

relate to security of data transfer and type of communication. You can 
choose a predefined feature set from the profiles. By checking the 
“Release Service for Runtime” checkbox the Web service is release 
immediately when it is complete. Otherwise you need to release the Web 
service manually using WSCONFIG transaction (Release Web services for 
SOAP runtime) 

 
 
 
2.5 Complete – The Web service definition is created. 

 
 

3. Assign transport requests (including a Customizing request to configure the 
SOAP runtime) appropriate to the system configuration 

 
When you finish Web service creation process, the service location in service tree 
should be 
“Sap_default_host/sap/bc/srt/rfc/sap/Z_EPO1_BAPI_BANK_GETDETAIL”. 



 

 

44 / 114 

333...444...222...222   CCCRRREEEAAATTTEEE   RRREEEFFFEEERRREEENNNCCCEEE   (((AAALLLIIIAAASSS)))   TTTOOO   TTTHHHEEE   WWWEEEBBB   SSSEEERRRVVVIIICCCEEE   UUUNNNDDDEEERRR   TTTHHHEEE   SSSRRRTTTHHHAAANNNDDDLLLEEERRR   
 
In order to use the SAP runtime handler of the EPO XML Connector you have to 
create a reference (an internal alias) to the service you created before under the 
“srthandler” service. You can create sub trees under the “srthandler” tree for 
organising your services. 
 
How to create an internal alias service: 
 
In transaction SICF (HTTP Service Hierarchy Maintenance (ICF)) you right click 
on the “srthandler” service in “epo1soa” and choose “New Sub-Element” (Image 
10).  
Tip: You could also use the wizard for creating services in SICF for creating this 
reference (alias). Menu: Service/Host – Wizard: Create Service 

 
Image: Creating reference to existing Web service step 1 

 
 
 

Then you name the service you are creating and more importantly you need to 
select “Reference to Existing Service” radio button. 

 
Image: Creating reference to existing Web service step 2 

 



 

 

45 / 114 

The last step is to point the reference to the service you created. Click “Alias Trgt” 
tab and then find the service you wish to use. Services created in wizard as 
above are located in "sap_default_host/sap/bc/srt/rfc/sap/". You can configure the 
reference parameters the same way you can configure web services. 

 
Image: Creating reference of Web service for EPO SOAP runtime handler 

 
 
 

333...444...222...333   RRREEELLLEEEAAASSSEEE   TTTHHHEEE   RRREEEFFFEEERRREEENNNCCCEEE   UUUSSSIIINNNGGG   TTTRRRAAANNNSSSAAACCCTTTIIIOOONNN   WWWSSSCCCOOONNNFFFIIIGGG   
 

When creating Web service Z_EPO1_BAPI_BANK_GETDETAIL the release was 
done automatically by selecting “Release service for Runtime” checkbox in the 
creation wizard. For the reference you need to do the release manually. 
 
Transaction WSCONFIG: 
Fill in the name of the Web service and variant (the same as Web service) into 
“Release Web Services for SOAP Runtime” program (transaction WSCONFIG), 
then press the “Create” button. 

 
 
 



 

 

46 / 114 

Image: Released Web service example 

 
 
 
Then you need to change the URL to point to the reference you created before. 

 
Image: Release reference to Web service example 

 
 
Hint: If you forget to release the web service or the reference (alias), you will get an error message 
when testing your service “500 internal server error”. 
 
 
 



 

 

47 / 114 

333...444...222...444   CCCRRREEEAAATTTEEE   SSSAAAPPP   RRRUUUNNNTTTIIIMMMEEE   SSSEEERRRVVVIIICCCEEE   FFFOOORRR   EEEPPPOOO   XXXMMMLLL   CCCOOONNNNNNEEECCCTTTOOORRR   
 
The service creation is described in section 3.1. 
 

Area menu: EPO XML Connector Configuration → Maintain Services EPO 
XML Connector 
Transaction: /EPO1/SERVICES12 
 

IMPORTANT: The service name MUST BE the name of the ALIAS (the 
reference) you created before in transaction SICF 
 
For the example the alias was BAPI_BANK_GETD. It must be used as the name 
of the service in the EPO XML Connector. The service name is also part of the 
URL. 
 
 

Image: EPO XML Connector SAP runtime service example 

 
 
 
 
 

333...444...222...555   CCCOOONNNFFFIIIGGGUUURRREEE   SSSAAAPPP   RRRUUUNNNTTTIIIMMMEEE   SSSEEERRRVVVIIICCCEEE   
 

Area menu: EPO XML Connector Configuration → Inbound service configuration 
(SAP Services) → SAP runtime (SAP Web Services) → In: Maintain SAP runtime 
web service configuration 
Transaction: /EPO1/WSIN12 
 



 

 

48 / 114 

Image: EPO XML connector SAP runtime configuration example 

 
Fields “Service name”, “Operation”, “Version”, “NR object”, “Subobject value”, 
“Number Range Number”, “Inactive”, “Processing type”, “Store XML”, “Compress”, 
“Monitoring profile” and “Description” are common for every EPO service 
configuration. For description of these fields please see section 3.2.3.3. 
 

 

In customer exit fm: Function module which is called in pre-processing stage of 
the request message (inbound), right after the message is 
saved, before the “XSLT in” transformation takes place. As 
a template you can use /epo1/exit_requestxml function 
module provided in delivery. 

 

XSLT in: XSLT transformation of request XML message. It takes part 
in request handling right after the “In customer exit fm” call 
and before the message is processed (by calling Web 
service). 

 

Out customer exit fm: Function module called in post processing stage of the 
service after the response is stored and before the “XSLT 
out” transformation is done. You can copy template function 
module /epo1/exit_responsexml for this purpose. 

 

XSLT out: XSLT transformation of response XML message. This 
happens after “Out customer exit fm” is called. Actually it is 
the last operation of the post processing method. 



 

 

49 / 114 

 

Path (Uri): The URI path to the service itself. It must be correct if you 
plan to use reprocessing functionality. The message is sent 
to the service using this URI when reprocessed. It is only 
used for reprocessing. 

 

HTTP timeout: Timeout parameter for reprocessing of messages only. It’s 
the amount of time in seconds for which the reprocessing 
program tries to send the request XML message and get 
the response to it. 

 

Host number: SAP virtual host number. Default_host is used, if you leave 
it empty. 

333...444...222...666   SSSEEETTT   AAADDDDDDIIITTTIIIOOONNNAAALLL   HHHTTTTTTPPP   HHHEEEAAADDDEEERRRSSS   FFFOOORRR   (((RRREEE---)))PPPRRROOOCCCEEESSSSSSIIINNNGGG   
 
You can add any number of HTTP headers to the request message when 
(re)processing a stored message in SAP. Those HTTP headers are not used for 
synchronous services at the initial processing. They will be used only, when the 
request XML message is stored in SAP and the (re)processing is done with 
transaction /EPO1/WSINPROC = In: (Re) Process SAP runtime XML message. 
 

Image: EPO XML Connector SAP runtime additional HTTP header example 

 
 

333...444...222...777   WWWSSSDDDLLL   OOOFFF   TTTHHHEEE   WWWEEEBBB   SSSEEERRRVVVIIICCCEEE   
 
For deploying the web service on the integrated system, you will need the WSDL 
of the web service. Here it is described, how you get the WSDL in SAP standard. 
Please note, that you can get the WSDL only from the originally published web 
service. It is not possible to get the WSDL from the reference (alias) you created 
in the tree /epo1soa/srthandler/. 
 
Another option to generate a WSDL is using the XML Transmitter. EPO 
Consulting XML Transmitter allows you to create a WSDL from a request and 
response XML message, which can be used directly in Microsoft .NET and Java 
developments. All details about this you can find in chapter 3.2.3.5. 
 



 

 

50 / 114 

Transaction /nWSADMIN 
 
Open the tree in WSADMIN and select the web service. Press the button WSDL 
and generate the WSDL. You can choose between different options for the 
WSDL. 
 
 
 
 

Image: Generating WSDL for SAP runtime service – WSDL button 

 
 

 
Image: Generating WSDL for SAP runtime service – WSDL style 

 
 

This should open your web browser. You need to login using your SAP user and 
password. Then you can save the WSDL file from here (Menu: File – save as). 
Another option is to use the URL, which you can see in your web browser now. 

 



 

 

51 / 114 

Image: WSDL for SAP runtime service in IE 

 
 

Note: For consuming this web service with the EPO XML Connector, you must replace the URL given 
in this WSDL with the URL of the EPO XML Connector 
sap_default_host/epo1soa/xmlhandler/<service name>? If you are using the URL from the WSDL, 
your web service should also work – only you loose all features of the EPO XML Connector (storing 
the message, applying a XSLT, (re-)processing etc.). 

333...444...222...888   TTTEEESSSTTTIIINNNGGG   AAA   SSSAAAPPP   RRRUUUNNNTTTIIIMMMEEE   SSSEEERRRVVVIIICCCEEE   
 

In order to test an SAP runtime service, you must http post a request xml to the 
URL of the service. We recommend using XML Transmitter from EPO Consulting 
for testing such services. 
 
Options for testing SAP runtime inbound services: 

1. Post request XML messages from your integrated application 
2. Post request XML messages from XML Transmitter. We strongly 

recommend using the “Import WSDL” functionality to create a valid XML 
instance. 

3. Post request XML messages from any other tool (SAP Java test tool, XML 
editor with POST functionality, …) 

4. Upload a request XML file directly in SAP into the EPO XML Connector 
and process it (using upload and (re-)processing programs of the EPO 
XML Connector). 

5. Use a stored XML message and (re-)process it (using the (re-)processing 
program of the EPO runtime of the EPO XML Connector). 

 
 

Example: Testing service BAPI_BANK_GETD with XML Transmitter: 
 

“Configuration” (can be stored) with URL, user, password, http headers, XML 
request. With button “POST” the test will start. 

 



 

 

52 / 114 

Image: Testing SAP Runtime service using XML Transmitter – before post 

 
 
Image: Testing EPO Runtime service using XML Transmitter – after post – successful response 

 
 
 

Common errors: 
When testing your web service, you might encounter some error messages initially. 
Unfortunately you will get often the undistinguished error message “The remote 
server returned an error: (500) Internal Server Error. 
This error message is raised by the SOAP runtime and it cannot be changed from the 
EPO XML Connector. The 2 most common reasons for this error message are: 

• The URL (host, port and URI/tree) you are posting to, does not exists. 
• The XML request message format is wrong (case sensitive, underscores 

are maybe removed). Create an example instance using the WSDL. (The 
XML Transmitter from EPO Consulting is tested with such WSDL.) 

 



 

 

53 / 114 

Tables of BAPIs/FM in WSDL and XML request: 
Table parameters in function modules can be either import or export parameters. In 
the WSDL it is not defined, if a table parameter is an import or export parameter. 
When testing a SAP web service with table parameters you must always send the 
table XML elements with the request XML. For export tables these XML elements 
must be empty (e.g. <tablebapiret2/>). 
Note: Table parameters should not be used anymore in function modules. Instead 
you should define a table type in the data dictionary and use this either in export or 
import of the function module interface. 
 
Example for XML request of BAPI_USER_GET_DETAIL: 
 
<?xml version="1.0" encoding="UTF-8"?> 
<soap:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"> 
  <soap:Body> 
    <m0:UserGetDetail xmlns:m0="urn:sap-com:document:sap:soap:functions:mc-style"> 
      <Activitygroups /> 
      <Addcomrem /> 
      <Addfax /> 
      <Addpag /> 
      <Addprt /> 
      <Addrfc /> 
      <Addrml /> 
      <Addsmtp /> 
      <Addssf /> 
      <Addtel /> 
      <Addtlx /> 
      <Addttx /> 
      <Adduri /> 
      <Addx400 /> 
      <Extidhead /> 
      <Extidpart /> 
      <Groups /> 
      <Parameter /> 
      <Parameter1 /> 
      <Profiles /> 
      <Return /> 
      <Systems /> 
      <Uclasssys /> 
      <Username>KROISS</Username> 
    </m0:UserGetDetail> 
  </soap:Body> 
</soap:Envelope> 

 
Debugging your service: 
Debugging of SAP web services is not useful. You might debug the customer exits of 
the EPO XML Connector, if you are using it. 

333...444...222...999   SSSAAAPPP   RRRUUUNNNTTTIIIMMMEEE   EEEXXXAAAMMMPPPLLLEEE   SSSEEERRRVVVIIICCCEEESSS   
There are no examples delivered with the EPO XML Connector for the SAP 
runtime. This is because you can publish any BAPI or RFC-enabled function 
module in SAP standard and use it directly with the SAP runtime of the EPO XML 
Connector. 

 



 

 

54 / 114 

333...555   OOOUUUTTTBBBOOOUUUNNNDDD:::   EEEPPPOOO   CCCLLLIIIEEENNNTTT   
 
The EPO Client is an easy to use function module called “/EPO1/EPOCLIENT”. 
When used for HTTP(s) protocol it dynamically creates a client proxy to be able to 
send given request XML message to a web service and receive response. Like all 
the other services you can use this one asynchronously, store or log and XSLT 
transform request and response messages. Using FILE protocol, it stores a file to the 
location specified in service’s settings and with UM protocols you can send a SAP-
Mail, E-Mail or other message to configured or dynamic list of recipients. 
 
The unique EPO Client is one option creating an outbound integration with SAP. The 
other option for outbound integration is using a generated ABAP client proxy within 
the EPO XML Connector (see next chapter). You can decide service by service, 
which option is appropriate. We recommend using EPO Client as it works for any 
web service and is more flexible and easy to implement. 
 
 
Usage of outbound EPO Client (compare with outbound generated ABAP client 
proxy) 

• Integrations, where the XML format and structure is defined by a partner 
system (but does not have a WSDL or is not a full web service) 

• Integrations, where SAP defines request and response XML messages (for 
outbound!) 

• Integrations, where the request and response XML is relatively simple 
• Integrations, where you do not want to use the overhead of generated ABAP 

proxies 
 
Overview: Steps for creating outbound integrations using EPO client: 

• Call the function module /epo1/epoclient (e.g. from your custom Z program) 
• Configure the service in the EPO XML Connector 
• Test your integration 

 

333...555...111   UUUSSSIIINNNGGG   HHHTTTTTTPPP(((SSS)))   
 
EPO Client is simple to use function module /epo1/epoclient to which you pass the 
XML message you want to post to Web service. The Protocol field in service 
configuration is set to HTTP in this case. 
 

333...555...222   UUUSSSIIINNNGGG   FFFIIILLLEEE,,,   FFFTTTPPP   
 
You can use the same call as if using HTTP(s) protocol to make EPO client write a 
file to a location specified in service’s fields. The Protocol field in service 
configuration must be set to FILE to make this happen. The file directory and name 
parameters are set in service’s settings. 
 



 

 

55 / 114 

333...555...333   UUUSSSIIINNNGGG   UUUMMM   ---   SSSAAAPPP   MMMAAAIIILLL,,,   EEE---MMMAAAIIILLL   VVVIIIAAA   SSSCCCOOOTTT   AAANNNDDD   CCCUUUSSSTTTOOOMMMEEERRR   DDDEEEFFFIIINNNEEEDDD   
 
Unified messaging (UM) protocols have been designed for sending messages using 
EPO Client function module to other common message end points – SAP Mail, E-
Mail via SCOT and Customer defined (function module customer exit). XML data 
passed to the EPO Client FM could be sent within the message body or as an 
attachment. When sending attachment, the file naming routine from file protocol is 
used. File name and extension (message format) are taken from service settings and 
file name additions - client number (MANDT), transaction ID, date and time – are set 
based on setting in services configuration.  
 
After sending the message, the success information or error message is given back 
to you in both e_callstatus and e_responsexml export parameters, e_responsexml 
contains transformed e_callstatus information. 
 
The customer defined function module call is shown below; most of the parameters 
are taken from configuration as they are, recipients and CC recipients can be added 
dynamically from EPO Client FM import parameters; i_um_body, i_um_packing_list 
and i_um_att_cont are filled the same way like we use them with 
SO_OBJECT_SEND function module for first two UM protocols - SAP Mail and E-
Mail via SCOT. The body already contains text from text object specified in 
configuration. 
 
        try. 
            call function me->um_customexitfm 
              exporting 
                i_protocol        = me->protocol 
                i_um_sender       = me->um_sender 
                i_um_recipients   = me->um_recipients 
                i_um_ccrecipients = me->um_ccrecipients 
                i_um_subject      = me->um_subject 
                i_um_textname     = me->um_textname 
                i_um_textid       = me->um_textid 
                i_um_contenttype  = me->um_contenttype 
                i_um_attachtype   = me->um_attachtype 
                i_um_body         = me->um_body 
                i_um_packing_list = me->um_packing_list 
                i_um_att_cont     = me->um_att_cont 
                i_testmode        = me->testmode. 
            exit. 
          catch cx_root.                                 "#EC CATCH_ALL 
            raise um_customexit_call. 
        endtry. 



 

 

56 / 114 

333...555...444   ///EEEPPPOOO111///EEEPPPOOOCCCLLLIIIEEENNNTTT   FFFUUUNNNCCCTTTIIIOOONNN   MMMOOODDDUUULLLEEE   IIINNNTTTEEERRRFFFAAACCCEEE   
 

Image: Function module /EPO1/EPOCLIENT interface 

 
 

 
Import 
 

• i_requestxml type xstring optional 
 

Request XML message can be left empty when reprocessing using 
i_transactionid. In all other cases the request XML (a valid XML string) must 
be given to this parameter. 
 

• i_servicename type /epo1/service 
 
Service name from /epo1/services table. Please see section 3.4.4.1. 
 

• i_operation type /epo1/operation optional 
 
Operation of the service is checked against service’s configuration. This can 
be left empty, but in that case configuration with empty operation must exist in 
configuration table for used service. Please see section 3.4.4.2. 
 

• i_version type /epo1/version optional 
 
Version of used service. Rules for this variable are the same as for 
i_operation. 



 

 

57 / 114 

 
• i_fkey1 – 4 type /epo1/fkey1 – 4 optional 

 
The foreign key 1,2,3 and 4 are stored in header table with all the transaction 
information except the message itself, which is stored in data table, of course 
only if the service is set to store such information. These keys you can use to 
store additional information about specific transaction. Usage of such 
information can be variable e.g. logging, search capability, statistics etc. 
 

• i_reprocess type flag optional 
 
Flag domain can have values ‘X’ or ‘ ‘. By setting this flag to ‘X’ you make the 
function module to reprocess stored XML message. You will need to set 
i_transactionid to TransactionID of transaction you wish to reprocess as well. 
 

• i_transactionid type /epo1/transactionid optional 
 
TransactionID is unique identifier of EPO XML Connector transaction made 
from number range object (see section 2.2). You only need to set this 
parameter when you want to reprocess stored message by setting i_reprocess 
parameter to ‘X’. 
 

• i_nryear type /epo1/nryear optional default '0000' 
 
Year parameter for number range object. Overrides actual date used by 
default. 
 

• i_path type string optional 
 
This parameter overwrites ‘Path (URI)’ value taken from service configuration. 
See section 3.4.4.2. 
 

• i_httpaddress type /epo1/httpheadertable optional 
 
Additional HTTP headers. This parameter is very useful when you need to set 
some HTTP header dynamically. These headers are added after the HTTP 
headers from static headers table (see section 3.4.4.3) so you can use it to 
overwrite static headers as well. 
 

• i_umrecipients type /epo1/um_recipients optional 
 
Additional recipients for UM, semicolon separated list (string). These recipients 
are added after the recipients from EPO Client service configuration. Only 
used for UM protocols (SAP-Mail, E-Mail, or customer defined). 
 

• i_umccrecipients type /epo1/um_ccrecipients optional 
 
Additional carbon copy recipients for UM. These CC recipients are added after 
the CC recipients from EPO Client service configuration. Only used for UM 
protocols (SAP-Mail, E-Mail, or customer defined). 
 



 

 

58 / 114 

Export 
 
 e_responsexml type xstring 

 
Response XML message returned from the web service or the web server in 
error cases. 
  

 e_callstatus type /epo1/callstatus 
 
Status of processing message with EPO XML Connector. It does only return 
the callstatus of the generated call in SAP (e.g. if connection cannot be 
established or path is wrong). It does not give any information, which is 
returned from the web service itself. For successful web service calls the 
callstatus code will be empty (check field callstatus-code). 
 
Structure description: 
 
 code type /epo1/statuscode (numc 3) 
callstatus with status code equal or greater than 200 is error message 
 
 type type /epo1/statustype (char 1) 

‘E’ = error message, ‘I’ = information, ‘S’ = success message, ‘W’ = 
warning message 
 

• subject type /epo1/statussubject (char 50)  
subject of callstatus message 

 
• description type /epo1/statusdesc (string) 
description of callstatus message 

 
• TransactionID type /epo1/transactionid (char 15) 
unique identifier of transaction raising message 

 
 e_transactionid type /epo1/transactionid 

 
Unique identifier of transaction being processed. 

 



 

 

59 / 114 

333...555...555   CCCRRREEEAAATTTIIINNNGGG   EEEPPPOOO   CCCLLLIIIEEENNNTTT   ---   IIINNNTTTEEEGGGRRRAAATTTIIIOOONNN   GGGUUUIIIDDDEEE   

333...555...555...111   CCCRRREEEAAATTTEEE   EEEPPPOOO   CCCLLLIIIEEENNNTTT   SSSEEERRRVVVIIICCCEEE   
 

Description of service creation is in section 3.1. Image below shows an example 
of such service which can use FILE protocol as well. 
 

Image: EPO Client service example 

 
 
 
 
 
 
 

333...555...555...222   CCCOOONNNFFFIIIGGGUUURRREEE   EEEPPPOOO   CCCLLLIIIEEENNNTTT   SSSEEERRRVVVIIICCCEEE   
 

Area menu: EPO XML Connector Configuration → Outbound service 
configuration (external services) → EPO Client → Out: Maintain EPO Client 
service configuration 
Transaction: /EPO1/EPORTOUT12 

 
 

Image: EPO Client service configuration example for http 



 

 

60 / 114 

 



 

 

61 / 114 

Fields “Service name”, “Operation”, “Version”, “NR object”, “Subobject value”, 
“Number Range Number”, “Inactive”, “Processing type”, “Store XML”, “Compress”, 
“Monitoring profile” and “Description” are common for every EPO service 
configuration. For description of these fields please see section 3.2.3.3. 
 
Protocol: HTTP or FILE. When set to HTTP, EPO Client sends 

request using HTTP(s) protocol to a Web Service, 
otherwise it stores it in a file. The directory and name of 
the file are set in service’s fields. 

 
Special char to enti: Special character are converted to HTML (XML) entity 

character codes (e.g. 
 

„€“ to „&euro;“ etc.) in messages. 

Source codepage: Code page being used for character conversion, when 
Special char to enti is set. 

 

 

In customer exit fm: Function module which is to be called in pre-processing 
stage of the request message (inbound), right after the 
message is saved, before the “XSLT in” transformation 
takes place. As a template you can use 
/epo1/exit_requestxml function module provided in 
delivery. 

 
XSLT out: XSLT transformation of request XML message. 

 

XSLT in: XSLT transformation of request XML message. It takes 
part in request handling right after the “In customer exit 
fm” call and before the message is processed (by calling 
Web service). 

In.Req.Structure FM Chapter 1.4.3 of this document describes these  
In.Req.Mapping FM fields in detail. 
In.Res.Mapping FM 

 
In.Res.Structure FM 

 
HTTP host: Host name (domain name) of server hosting the service. 

 

HTTP port: Port number on which the host server accepts messages. 
The default value is 80 for HTTP services. 

 

HTTP URI: The URI path to the service itself. The message is sent to 
the service using this URI when (re)processed. 

HTTP Content type: The HTTP header named ‘Content-type’ is given this value 
when this configuration is used. You 

 

will need to set it to 
‘text/xml’ for calling all the Web services which receive 
XML message in HTTP body. Most of the Web services, 
particularly SOAP ones will not work if this header is not 
there or is set differently. 

HTTP proxy host: Name of proxy server to use for communication. 



 

 

62 / 114 

 

 
HTTP proxy port: Port number of proxy server. 

HTTP SSL ID: 

 

By specifying the SSL client identity, you define the client 
certificate with which the SAP system logs on to the HTTP 
server. 

 

HTTP Scheme: HTTP or HTTPS for non-secure or secure HTTP 
communication. 

 

HTTP timeout: Parameter for (re)processing of messages. It’s the amount 
of time in seconds for which the (re)processing program 
tries to send the request XML message and get the 
response. 

 

 

FILE include MANDT: FILE protocol only. Processing program will append SAP 
Client number (SY-MANDT) to file name. 

 

FILE include TransID: FILE protocol only. Same as above but TransactionID is 
appended. 

 

FILE include DATE: FILE protocol only. Date (SY-DATUM) appended to file 
name. 

 

FILE include TIME: FILE protocol only. System time (SY-UZEIT) appended to 
file name. 

 

FILE custom exit FM: Name of customer (Z) function module which is called 
after the file is written and closed. You can use this FM to 
rename / move the file when stored successfully. 

 

UM sender (SAP User): UM protocols only. SAP user name used as sender for UM 
messages. 

 
UM recipients: UM protocols only. Semicolon separated list of recipients. 

 

UM CC recipients: UM protocols only. Semicolon separated list of carbon 
copy recipients. 

 
UM subject: UM protocols only. Subject text for message. 

UM body text name: UM protocols only. 

 

Text for body of UM message. This is 
name of text object created using transaction SO10 (SAP 
standard texts). 

UM body text ID: UM protocols only. 

 

Text ID of a SAP standard text object 
(SO10). 

UM content type: UM protocols only. TXT (text/plain) or HTM (text/html) 
content type for UM message body. 



 

 

63 / 114 

 

UM attachment type: UM protocols only. XML data attachment can be ‘inline’ – 
within body of message or ‘as attachment’ – file attached 
to the message. 

 

UM customer exit FM: UM protocols only. Name of customer exit function module 
for implementing other or own message sending system. 

 

333...555...555...333   SSSEEETTT   AAADDDDDDIIITTTIIIOOONNNAAALLL   HHHTTTTTTPPP   HHHEEEAAADDDEEERRRSSS   IIIFFF   NNNEEEEEEDDDEEEDDD   
 
Area menu: EPO XML Connector Configuration → Outbound service configuration 
(external services) → EPO Client → Out: Maintain EPO Client HTTP headers 

Transaction: /EPO1/EPORTOUTH12 
 
You can add any number of HTTP headers to the request message. When the Web 
service is called – the request message is to be sent – the headers are used in HTTP 
communication, therefore they can be extracted and used on the other side. 
 
All the fields of this dialog should be self explanatory but the ‘Sort number’. It is the 
last part of the key of table holding all the headers and so you need to use it if you 
are adding more than one header to the service. 
 
 
HTTP header ‘SOAPaction’ 
 
This header is used only when calling SOAP Web service. This header must contain 
the name of operation as it is listed in WSDL description of the Web service. 

 
Image: EPO XML Connector - EPO Client HTTP header example 

 
 

333...555...555...444   CCCRRREEEAAATTTEEE   PPPRRROOOGGGRRRAAAMMM   TTTOOO   CCCAAALLLLLL   ///EEEPPPOOO111///EEEPPPOOOCCCLLLIIIEEENNNTTT   FFFUUUNNNCCCTTTIIIOOONNN   MMMOOODDDUUULLLEEE   
 
Finally you have to call the function module for sending the request XML message. 
So you need to create an ABAP program. The service in this example is calling the 
same Web service as the example in the next chapter (generated proxy client), so 
that you can see the differences between these two implementations. 
 
Note:  We have created XML request string in outbound request structure function module by calling 

XSLT transformation /epo1/tecx_out_actual_weather, which you can find (including all the 
FMs used here) in /EPO1/EXC_REPOSITORY package installed with EXC. 



 

 

64 / 114 

Example program for calling EPO Client function module 
*&--------------------------------------------------------------------* 
*& Report  /EPO1/ECX_ACTUAL_WEATHER                                   * 
*&--------------------------------------------------------------------* 
*& Company:   EPO Consulting                                          * 
*& IP Rights: Intellectual Property Rights and all other rights are   * 
*&            held by EPO Consulting.                                 * 
*&            Copying or Modifying this program is only allowed with  * 
*&            written consent of EPO Consulting.                      * 
*& Author:    MH                                                      * 
*& Date:      September 2008                                          * 
*& Desc.:     Call external Web service using EPO Client              * 
*&--------------------------------------------------------------------* 
*& >> In order to use this example you need to create EPO Client 
*&    service using following settings (selection screen default): 
*& 
*& Service name:         ecx_get_weather 
*& Direction of service: OUT of SAP, call an external service 
*& IN: XSLT operation: 
*& IN: use http header:  Checked 
*& Message format:       xml 
*& Description:          EPO Client service example 
*& 
*& >> The service configuration is: 
*& 
*& Service name:    ecx_get_weather 
*& Operation:       get_weather 
*& Version: 
*& 
*& Processing type:      Synchronous 
*& Store XML:            store request and response information 
*&                       including xml message 
*& Number Range Number:  00 
*& Compress:             Checked 
*& Special char to enti: Not checked 
*& XSLT out: 
*& XSLT in: 
*& Hostname:             www.webservicex.net 
*& Port: 
*& Path (URI):           http://www.webservicex.net/globalweather.asmx 
*& Content type: 
*& Proxy hostname: 
*& Proxy port: 
*& SSL ID: 
*& HTTP scheme:          HTTP 
*& Timeout: 
*& Description:          Get actual weather using EPO Client - example 
*& 
*& >> Also you need to add special HTTP header for SOAP 
*& 
*& Service name:    ecx_get_weather 
*& Operation:       get_weather 
*& Version: 
*& Sort number:     0 
*& 
*& HTTP header name:  SoapAction 
*& HTTP header value: http://www.webserviceX.NET/GetWeather 
*&-------------------------------------------------------------------- 
 
REPORT  /epo1/ecx_actual_weather. 
 
DATA: l_requestxml        TYPE xstring, 
      l_responsexml       TYPE xstring, 



 

 

65 / 114 

      ls_requestxml       TYPE string, 
      ls_responsexml      TYPE string, 
      ls_city             TYPE string, 
      ls_country          TYPE string, 
      l_callstatus        TYPE /epo1/callstatus, 
      l_convo             TYPE REF TO cl_abap_conv_out_ce, 
      l_convi             TYPE REF TO cl_abap_conv_in_ce, 
      ls_location         TYPE string, 
      ls_time             TYPE string, 
      ls_wind             TYPE string, 
      ls_visibility       TYPE string, 
      ls_skyconditions    TYPE string, 
      ls_temperature      TYPE string, 
      ls_dewpoint         TYPE string, 
      ls_relativehumudity TYPE string, 
      ls_pressure         TYPE string, 
      ls_status           TYPE string, 
      l_weather_response  TYPE /epo1/ecx_weather_response. 
 
SELECTION-SCREEN BEGIN OF BLOCK sel WITH FRAME TITLE text-001. 
PARAMETERS: p_ctry(50) TYPE c DEFAULT 'SLOVAKIA', 
            p_city(50) TYPE c DEFAULT 'BRATISLAVA'. 
SELECTION-SCREEN SKIP 1. 
PARAMETERS: p_serv TYPE /epo1/service   DEFAULT 'ecx_get_weather', 
            p_oper TYPE /epo1/operation DEFAULT 'get_weather', 
            p_vers TYPE /epo1/version. 
SELECTION-SCREEN END OF BLOCK sel. 
 
* 1. Call outbound request mapping function module 
CALL FUNCTION '/EPO1/ORM_ACTUAL_WEATHER' 
  EXPORTING 
    i_cityname    = p_city 
    i_countryname = p_ctry 
  IMPORTING 
    e_cityname    = ls_city 
    e_countryname = ls_country 
  CHANGING 
    c_callstatus  = l_callstatus. 
 
* 2. Call outbound request structure function module 
CALL FUNCTION '/EPO1/ORS_ACTUAL_WEATHER' 
  EXPORTING 
    i_cityname    = ls_city 
    i_countryname = ls_country 
  IMPORTING 
    e_xmlrequest  = l_requestxml 
  CHANGING 
    c_callstatus  = l_callstatus. 
 
* 3. EPO Client processing - send request, receive response 
IF l_callstatus-code < 500. 
  CALL FUNCTION '/EPO1/EPOCLIENT' 
    EXPORTING 
      i_requestxml  = l_requestxml 
      i_servicename = p_serv 
      i_operation   = p_oper 
      i_version     = p_vers 
    IMPORTING 
      e_responsexml = l_responsexml 
      e_callstatus  = l_callstatus. 
ENDIF. 
 
* 4. Call outbound response structure function module 



 

 

66 / 114 

CALL FUNCTION '/EPO1/OSS_ACTUAL_WEATHER' 
  EXPORTING 
    i_responsexml      = l_responsexml 
  IMPORTING 
    e_location         = ls_location 
    e_time             = ls_time 
    e_wind             = ls_wind 
    e_visibility       = ls_visibility 
    e_skyconditions    = ls_skyconditions 
    e_temperature      = ls_temperature 
    e_dewpoint         = ls_dewpoint 
    e_relativehumidity = ls_relativehumudity 
    e_pressure         = ls_pressure 
    e_status           = ls_status 
  CHANGING 
    c_callstatus       = l_callstatus. 
 
* 5. Call outbound response mapping function module 
CALL FUNCTION '/EPO1/OSM_ACTUAL_WEATHER' 
  EXPORTING 
    i_location         = ls_location 
    i_time             = ls_time 
    i_wind             = ls_wind 
    i_visibility       = ls_visibility 
    i_skyconditions    = ls_skyconditions 
    i_temperature      = ls_temperature 
    i_dewpoint         = ls_dewpoint 
    i_relativehumidity = ls_relativehumudity 
    i_pressure         = ls_pressure 
    i_status           = ls_status 
  IMPORTING 
    e_weather_response = l_weather_response 
  CHANGING 
    c_callstatus       = l_callstatus. 
 
IF l_callstatus-code < 500. 
 
* In this exapmle we just view the response on screen 
  WRITE:/'Location..........:', l_weather_response-location,/ 
         'Time..............:', l_weather_response-time,/ 
         'Wind..............:', l_weather_response-wind,/ 
         'Visibility........:', l_weather_response-visibility,/ 
         'Skyconditions.....:', l_weather_response-skyconditions,/ 
         'Temperature.......:', l_weather_response-temperature,/ 
         'Dew Point.........:', l_weather_response-dewpoint,/ 
         'Relative Humidity.:', l_weather_response-relativehumidity,/ 
         'Pressure..........:', l_weather_response-pressure,/ 
         'Status............:', l_weather_response-status. 
 
ELSEIF l_responsexml IS NOT INITIAL. 
 
  CALL FUNCTION 'DISPLAY_XML_STRING' 
    EXPORTING 
      xml_string      = l_responsexml 
      title           = 'Server response directly displayed' 
      starting_x      = 5 
      starting_y      = 5 
    EXCEPTIONS 
      no_xml_document = 1 
      OTHERS          = 2. 
  IF sy-subrc <> 0. 
    MESSAGE l_callstatus-description 
      TYPE  'S' 



 

 

67 / 114 

      DISPLAY LIKE l_callstatus-type. 
  ENDIF. 
 
ELSE. 
  MESSAGE l_callstatus-description 
    TYPE  'S' 
    DISPLAY LIKE l_callstatus-type. 
  EXIT. 
ENDIF.  

 

333...555...555...555   TTTEEESSSTTTIIINNNGGG   AAANNN   EEEPPPOOO   CCCLLLIIIEEENNNTTT   SSSEEERRRVVVIIICCCEEE   
 
Testing of outgoing integration (calling 3rd

 

 party Web service) is nothing more than 
running and debugging the program you wrote. 

To display the request and/or the response for testing purposes, you can use either 
SAP function module DISPLAY_XML_STRING in your program (like we did), which 
displays XML message in SAP or you can configure the service to store request 
and/or response and then use /EPO1/MESSAGESLIST program to display those 
messages (Area menu EPO XML Connector Data Maintenance  
/EPO1/MESSAGESLIST – List and view stored messages). The 
/EPO1/MESSAGESLIST program uses the DISPLAY_XML_STRING function 
module, so you don’t need to call it in your report. 



 

 

68 / 114 

333...666   OOOUUUTTTBBBOOOUUUNNNDDD:::   SSSAAAPPP   CCCLLLIIIEEENNNTTT   
 
The SAP Client function provides an extension and simplification to the SAP 
standard for generated ABAP client proxies. ABAP proxies allow you to consume 
external web services. 
You can generate an ABAP proxy using a WSDL in SAP standard and use this ABAP 
proxy in the EPO XML Connector. All functions of the EPO XML Connector are 
available then (store, reprocess, XSLT transform,). Two customer exits allow you to 
access request and response XML data and add your custom functions. 
 
SAP client is SAP standard – generated ABAP client proxy, by which you can call 
“outside” Web services. You can use this standard together with EPO XML 
Connector functionality via the method of class /epo1/cl_proxyconnector - 
/epo1/sapclient and reprocessing program /epo1/proxy_reprocess. 
 
The SAP Client is one option creating an outbound integration with SAP. The other 
option for outbound integration is using the unique EPO Client of the EPO XML 
Connector. You can decide service by service, which option is appropriate. We 
recommend using EPO Client as it works for any web service and is more flexible 
and easy to implement. 
 
Usage of outbound SAP Client (compare with outbound EPO Client) 

• Integrations, where you can generate an ABAP proxy from a provided WSDL 
 
Overview: Steps for creating outbound integrations using SAP Client: 

• Generate the ABAP proxy using a WSDL 
• Configure the service in the EPO XML Connector 
• Write program for calling the SAP Client (the generic method of the EPO XML 

Connector) 
• Test your integration 

 
Note: SAP Client is not available on WAS 6.20. 
 
 

333...666...111   CCCRRREEEAAATTTIIINNNGGG   SSSAAAPPP   CCCLLLIIIEEENNNTTT   ---   IIINNNTTTEEEGGGRRRAAATTTIIIOOONNN   GGGUUUIIIDDDEEE   
 

333...666...111...111   GGGEEENNNEEERRRAAATTTEEE   AAABBBAAAPPP   CCCLLLIIIEEENNNTTT   PPPRRROOOXXXYYY   
 
To do this you need to start Object Navigator (transaction SE80), Repository Browser 
View, select “Package” in drop-down combo box and open or create new package, 
where the proxy objects will be added into. Next right-click on package name and 
select Create → Enterprise Service / Web Service → Proxy Object in the menu which 
appears. The proxy creation wizard starts afterwards. The example below does not 
describe all possibilities of proxy creation process. You can find full documentation 
for SAP 700 on  
http://help.sap.com/saphelp_nw70/helpdata/en/ba/d4c23b95c8466ce10000000a1140
84/content.htm. 
 

http://help.sap.com/saphelp_nw70/helpdata/en/ba/d4c23b95c8466ce10000000a114084/content.htm�
http://help.sap.com/saphelp_nw70/helpdata/en/ba/d4c23b95c8466ce10000000a114084/content.htm�


 

 

69 / 114 

1. WSDL Source 
 
In the first window you can choose the location of service’s WSDL (Web Service 
Description Language) file / generator. 
 

 
 
 
 

2. Choose URL or HTTP destination 
 

 
 
The URL we used is the same as in EPO Client service example – 
http://www.webservicex.net/globalweather.asmx?wsdl. 
 

3. Select Method 
 
This step applies only for the Web services having multiple access methods. 
 

 
 
 
 
 

http://www.w3.org/TR/wsdl�
http://www.w3.org/TR/wsdl�
http://www.webservicex.net/globalweather.asmx?wsdl�


 

 

70 / 114 

4. Specifications for Objects to be Generated 
 
Here you input the package you want the client proxy object to be generated into 
and the prefix for object naming. 

 
 

5. Problems with mapping name 
 
You can see on the image below that some of the generated names in the object 
were too long or in conflict with existing ones. In the next step we correct this 
problem. 
 

 
 

6. Correct the naming problems 
 
When all the object components are generated you click on the “Name Problems” 
tab to see list of names to be changed. The wizard did the corrections 
automatically, but still you might need to change the names to fulfil your needs.  
 

 
Note: We have changed the name of the first structure from proposed _S1 (one) to _SI (capital I). 
The example program which calls this proxy object uses this name in the source code so you 
need to change it the same way for the example to work. 
 

7. Activate client proxy 
 

Obviously the client proxy you created will not work if you don’t activate it. 



 

 

71 / 114 

333...666...111...222   CCCRRREEEAAATTTEEE   LLLOOOGGGIIICCCAAALLL   PPPOOORRRTTT   FFFOOORRR   GGGEEENNNEEERRRAAATTTEEEDDD   CCCLLLIIIEEENNNTTT   PPPRRROOOXXXYYY   
 
Runtime features of the proxy you generated need to be assigned to it by so-called 
“Logical Port” using transaction LPCONFIG. Full documentation can be found on 
http://help.sap.com/saphelp_nw04/helpdata/en/16/285d32996b25428dc2eedf2b0ead
d8/content.htm.  
 

Image: Creating logical port for generated client proxy 

 
Note: We created default logical port changing nothing in the proposed attributes. 

 
Please do not forget to activate the Logical Port you created. 
 
 

333...666...111...333   CCCRRREEEAAATTTEEE   SSSAAAPPP   CCCLLLIIIEEENNNTTT   SSSEEERRRVVVIIICCCEEE   
 

Description of service creation is in section 3.1. Image below shows an example 
of such service. 
 

Image: SAP Client service example 

 
 
 
 
 

http://help.sap.com/saphelp_nw04/helpdata/en/16/285d32996b25428dc2eedf2b0eadd8/content.htm�
http://help.sap.com/saphelp_nw04/helpdata/en/16/285d32996b25428dc2eedf2b0eadd8/content.htm�


 

 

72 / 114 

333...666...111...444   CCCOOONNNFFFIIIGGGUUURRREEE   SSSAAAPPP   CCCLLLIIIEEENNNTTT   SSSEEERRRVVVIIICCCEEE   
 

Area menu: EPO XML Connector Configuration → Outbound service 
configuration (external services) → Generated ABAP Proxy Client → Out: 
Create/Change Proxy configuration 
Transaction: /EPO1/WSOUT12 
 

Image: SAP Client service configuration example 

 
Fields “Service name”, “Operation”, “Version”, “NR object”, “Subobject value”, 
“Number Range Number”, “Inactive”, “Processing type”, “Store XML”, “Compress”, 
“Monitoring profile” and “Description” are common for every EPO service 
configuration. For description of these fields please see section 3.2.3.3. 
 

 

Name of proxy class: Class name created by generation of client proxy. This 
class name is used for reprocessing of messages using 
/epo1/reprocessproxy program. 

 

Name of proxy method: Method of the proxy class. The method in this case is the 
operation of the Web service to be called. 

 

Logical port:  Logical port name to use when the client proxy is called. 
You can leave it empty if you want to use the default 
logical port. 

Out customer exit FM: Function module which is called in pre-processing stage of 
the request message (outbound), right after the message 
is saved, before the “XSLT in” transformation takes place. 



 

 

73 / 114 

 

 

In customer exit FM: Function module which is called in post-processing stage 
of the response message (inbound), right after the 
message is saved. 

 

XSLT in: XSLT transformation of response XML message. It takes 
part in request handling right after the “In customer exit 
FM”. 

333...666...111...555   CCCRRREEEAAATTTEEE   PPPRRROOOGGGRRRAAAMMM   TTTOOO   CCCAAALLLLLL   SSSAAAPPP   CCCLLLIIIEEENNNTTT   
 
Call the EPO XML Connector method in your program. The method name is 
“/epo1/sapclient” and it belongs to class “/epo1/cl_proxyconnector”. The service in 
the example below is calling the same Web service as the example of EPO Client so 
you can see the differences between these two implementations. 
 

Example program for calling EPO client method 
*&--------------------------------------------------------------------* 
*& Report  /epo1/scx_actual_weather                                   * 
*&--------------------------------------------------------------------* 
*& To uncomment this example please use /EPO1/COMMENTUNCOMMENT program* 
*&--------------------------------------------------------------------* 
*& To use this example you will need to generate Client Proxy object. * 
*& WSDL from URL: http://www.webservicex.net/globalweather.asmx?wsdl  * 
*& Prefix ZEPO1_ ( Class name zepo1_co_global_weather_soap ).         * 
*& Please change naming abbreviations to                              * 
*& zepo1_get_cities_by_country_si for input structure and             * 
*& zepo1_get_cities_by_country_so for output structure of method      * 
*& get_cities_by_country which is used in another example.            * 
*&--------------------------------------------------------------------* 
*& Company:   EPO Consulting                                          * 
*& IP Rights: Intellectual Property Rights and all other rights are   * 
*&            held by EPO Consulting.                                 * 
*&            Copying or Modifying this program is only allowed with  * 
*&            written consent of EPO Consulting.                      * 
*& Author:    MH                                                      * 
*& Date:      May 2007                                                * 
*& Desc.:     comment/uncomment reports                               * 
*&--------------------------------------------------------------------* 
 
report  /epo1/scx_actual_weather. 
 
data: l_ro            type ref to cx_root, 
      ls_error        type string, 
      l_requestxml    type xstring, 
      l_responsexml   type xstring, 
      l_transactionid type /epo1/transactionid, 
      l_configouts    type /epo1/configouts, 
      l_return        type bapiret2. 
 
selection-screen begin of block sel with frame title text-001. 
parameters: p_ctry(50) type c default 'SLOVAKIA', 
            p_city(50) type c default 'BRATISLAVA'. 
selection-screen end of block sel. 
 
data: output type zepo1_get_weather_soap_out . 
data: input type zepo1_get_weather_soap_in . 
 



 

 

74 / 114 

input-city_name = p_city. 
input-country_name = p_ctry. 
 
* EPO Connector processing 
call method /epo1/cl_sapclient=>/epo1/sapclient 
  exporting 
    i_service         = 'GET_WEATHER_PROXY' 
    i_operation       = 'GET_WEATHER' 
*    i_version         = 
    i_proxy_input     = input 
*    i_reprocess       = 
  importing 
    e_proxy_output    = output 
    e_return          = l_return 
  changing 
    c_transactionid   = l_transactionid 
*    c_request_asxml   = 
    c_response_asxml  = l_responsexml 
*    c_request_message = 
    c_fkey1           = p_city 
    c_fkey2           = p_ctry 
*    c_fkey3           = 
*    c_fkey4           = 
    . 
 
* e_return (BAPIRET2) error handling 
if l_return-type = 'E' or l_return-type = 'A'. 
  call transformation id 
    source error = l_return 
    result xml l_responsexml. 
else. 
 
endif

 

. 
 
* view response 
CALL FUNCTION 'DISPLAY_XML_STRING' 
  EXPORTING 
    xml_string      = l_responsexml 
    title           = text-002 
    starting_x      = 5 
    starting_y      = 5 
  EXCEPTIONS 
    no_xml_document = 1 
    OTHERS          = 2.  



 

 

75 / 114 

333...666...111...555...111   ///EEEPPPOOO111///SSSAAAPPPCCCLLLIIIEEENNNTTT   MMMEEETTTHHHOOODDD   IIINNNTTTEEERRRFFFAAACCCEEE   
 
Import 
 

• i_service type /epo1/service 
• i_operation type /epo1/operation optional 
• i_version type /epo1/version optional 

 
EPO XML Connector service name, operation and version parameters are 
used to find the generated client proxy method to call, which is set in service’s 
configuration. 

 
• i_proxy_input type any optional 

 
Request data to be send to Web service. The input data must have the 
structure of the input parameter of the generated proxy method. 

 
• i_reprocess type flag optional 

 
This parameter is here for reprocessing program only. Please use 
/epo1/proxy_reprocess program for reprocessing stored messages. 

 
Export 
 

• e_proxy_output type any 
 
Generated ABAP client proxy output parameter. This is the response in the 
format defined by generated method. If you want to access the response in 
the XML format you need to use another parameter – c_response_asxml 

 
• e_return type bapiret2 

 
Return parameter for error handling. 

 
Changing 
 

• c_transactionid type /epo1/transactionid 
 
Although you might not need to use this variable, you have to provide it for the 
method call for it is used inside for handling. It will carry the unique transaction 
identifier for the transaction created by the call of this method.  
 

• c_request_asxml type xstring optional 
 
Serialized request message data (by transformation id) must fit the generated 
proxy input data structure. This is the second way of how to pass the data to 
this method. Note that if you use both i_proxy_input and i_request_asxml, the 
method will raise an error. 
 

• c_request_status type /epo1/status optional 



 

 

76 / 114 

 
Giving variable to this parameter, you will be able to see the status code of 
request message after it was processed. 
 

• c_request_message type /epo1/message optional 
 
You can find useful information about processing of request when you use this 
parameter. 

 
• c_fkey1 – c_fkey4 type /epo1/fkey1 - /epo1/fkey4 optional 
  

These four foreign keys are stored with each message. You can set or read 
any of them in here or in user exit function modules. You can use them to 
store any data you need to store with every message. The example of such 
usage would be using one of the keys for storing some information you don’t 
provide to the 3rd

 
 party web service and then using the key for searching. 

 

333...666...111...666   TTTEEESSSTTTIIINNNGGG   AAA   SSSAAAPPP   CCCLLLIIIEEENNNTTT   SSSEEERRRVVVIIICCCEEE   
 
Testing of SAP Client service is exactly the same as the testing of EPO Client service 
so please see the section 3.4.4.5. 
 
 
 



 

 

77 / 114 

444   GGGEEENNNEEERRRIIICCC   FFFUUUNNNCCCTTTIIIOOONNN   MMMOOODDDUUULLLEEE   CCCAAALLLLLL   (((IIIMMMPPPLLLEEEMMMEEENNNTTTEEEDDD   IIINNN   
EEEPPPOOO   RRRUUUNNNTTTIIIMMMEEE)))   

 
General function module call (GFMC) is special functionality of EPO XML Connector 
to allow you using specific EPO Runtime service for calling any SAP function module 
accessible within you SAP system. In other words, you can directly call any SAP 
function module from outside of SAP using xml messages. A standard, W3-conform 
WSDL is provided (same on SAP systems worldwide). An excerpt of more than 3000 
WSDL for SAP BAPI’s is published on www.epoconsulting.com. 
 
First you must setup the service (one time only). 
 

444...111   SSSEEETTT   UUUPPP:::   SSSEEERRRVVVIIICCCEEE   FFFOOORRR   GGGEEENNNEEERRRIIICCC   FFFUUUNNNCCCTTTIIIOOONNN   MMMOOODDDUUULLLEEE   CCCAAALLLLLL   
 
 Precondition 1: EPO XML Connector installation 

Installation is standard with transaction SAINT (installation) and 
SPAM (support packages). There is no difference to SAP 
standard software. Please refer to the installation documentation. 
 

 Precondition 2: SICF Service /epo1soa/xmlhandler must be active 
Area menu: EPO XML Connector Administration → HTTP 
Service Hierarchy Maintenance (ICF) 
Transaction: SICF 
For details see section 2.3. 
 

 Precondition 3: Number range must be set up 
If you want to store request or response messages, you need a 
number range for the TransactionID. 
Area menu: EPO XML Connector Configuration → Maintain 
number range for EPO XML Connector messages 
Transaction: /EPO1/NOR. 
For details see section 2.2. 

 
 Precondition 4: Valid license key must be installed for production systems 

Area menu: EPO XML Connector Administration → Load license 
key for EPO XML Connector 
Transaction: /EPO1/SETLICENSE 
For details see section 2.1. 

 
 Step 1: Set up a service 
 
You need to create a specific EPO Runtime service (inbound) for the GFMC. The 
image below shows such a service. EXC services are documented in section 3.1. 
 

Area menu: EPO XML Connector Configuration → Maintain Services EPO 
XML Connector 
Transaction: /EPO1/SERVICES12 



 

 

78 / 114 

 
Hint: We use EPOFM as service name. You could use any other name. 
 

Image: EPO Runtime GFMC service 

 
 
 
Operation mandatory: Notice that 'Operation mandatory' is not checked, which 

enables you to call any SAP function module without creating specific 
configurations for specific operations (operation = function module name). Only 
1 configuration with empty operation is needed as shown in the example below. 
We strongly recommend checking the 'Operation mandatory' field for production 
systems, so that not any non-configured function module call would work. 

 
IN: XSLT operation: The used XSLT /EPO1/GETMAINFIELDS_EXAMPLE tries to 

read the first xml element in the <soap:Body>. If it is found, it is used as 
“Operation” (operation = SAP function module name). 

 
IN: use http header: If “Operation” was not found or is not checked with the “IN: XSLT 

operation”, the http header SOAPaction is used. 
 
IN: use query string: If “Operation” was not found with the previous 2 settings, it will 

be read from the query string (&operation=[function module name]). This setting 
is necessary when using GET (not POST), for example for producing the WSDL 
(see below). 

 
 
 Step 2: Set up the configuration for the service 
 

Area menu: EPO XML Connector Configuration → Inbound service configuration 
(SAP Services) → EPO runtime → In: Maintain EPO runtime service configuration 
Transaction: /EPO1/EPORTIN12 

 



 

 

79 / 114 

The GFMC service uses “operation” parameter passed to it as the name of the SAP 
function module, which is called then. 
 
Here it is important that you use: 

• /EPO1/GFMC_PROCESSINGFM as the processing function module. It 
encapsulates all functionality for calling generically any SAP function modules. 
It also holds the functionality inside for generating WSDL’s. 

• /EPO1/SOAP_RFC_TO_ASXML as the XSLT in. It transforms incoming 
SOAP requests into ABAP XML (ASXML). 

• /EPO1/ASXML_TO_SOAP_RFC as the XSLT out. It transforms ABAP XML 
(ASXML which is produced with CALL TRANSFORMATION ID) into SOAP. 

 
Image: GFMC configuration 

 
 
Notice: This is the configuration as we use it on our test & development systems. It 
has empty operation field, which enables any SAP function module to be called. In 
other words, it is used when there is no specific setting for a SAP function module. 
The precondition for this entry to work is that “operation mandatory” is not set for the 
service (see above). 
The opposite situation would be having entries with specific FM names in the 
operation field. 
 



 

 

80 / 114 

Notice: Like in any other EXC service you need a number range (and the NR object) 
for creation of TransactionIDs – unique transaction identifiers. The protocol is set to 
HTTP although you could use FILE protocol if you wish to use files for request 
messages (e.g. upload files in development). Synchronous processing type means 
that the call is made at the time when request arrives, opposite to asynchronous, 
where the request would be only stored and processing would be done later either 
manually or by a scheduled job. This configuration also stores the request and 
response information and compressed (compress check box) data into EXC tables 
(Store XML field). All other fields of this dialogue are described in chapter 3.2.3.3.  
 
With this setup you are able to call hundreds of thousand of SAP function modules. 
Let’s produce WSDL’s and call the SAP function modules. 
 

444...222   WWWSSSDDDLLL   GGGEEENNNEEERRRAAATTTIIIOOONNN   IIINNN   XXXMMMLLL   TTTRRRAAANNNSSSMMMIIITTTTTTEEERRR   FFFOOORRR   SSSAAAPPP   
FFFUUUNNNCCCTTTIIIOOONNN   MMMOOODDDUUULLLEEE   

 
After you created and configured the GFMC service, you can create WSDL files in 
our freeware tool named XML Transmitter. You will fill in the URI and click GET, 
submenu “Create WSDL from EXC interface response”. The function module for 
which you want to create the WSDL is specified as operation for GFMC service. 
Please note the "..?wsdl.." part of query string following the GFMC service name, 
which makes it create interface response for XML transmitter. If you want to use 
function module which includes namespace in its name like 
/EPO1/EXC_STORE_REQUEST you will need to replace the '/' character with '_-', so 
it will become _-EPO1_-STORE_REQUEST. The reason behind this is that '/' 
character cannot be used in xml element names. 
 
URI example for FM BAPI_BANK_GET_DETAIL: 
http://saptest:8080/epo1soa/xmlhandler/EPOFM?wsdl&operation=BAPI_BANK_GET
DETAIL 
 

Image: WSDL generation in XML Transmitter 

 

http://saptest:8080/epo1soa/xmlhandler/EPOFM?wsdl&operation=BAPI_BANK_GETDETAIL�
http://saptest:8080/epo1soa/xmlhandler/EPOFM?wsdl&operation=BAPI_BANK_GETDETAIL�


 

 

81 / 114 

 
The XML Transmitter will then open three new tabs; on client side (left) you will see 
request xml structure, on server side (right) there will be response xml structure and 
the WSDL created.  
 
 

Image: Created WSDL and request and response XML structures 

 
 
After this step you can save the WSDL and use it for creation of proxy object to call 
the specified function module. 
 
Notice: The WSDL will be the same on any SAP system as long as the SAP function 
module interface does not change (Release independent). 
 

444...222...111   SSSTTTRRRUUUCCCTTTUUURRREEE   OOOFFF   TTTHHHEEE   EEEXXXCCC   GGGFFFMMMCCC   WWWSSSDDDLLLSSS:::   
 
The structure of any WSDL will have the SAME top level XML elements: 
 
For Request it will have 1 or 2 or 3 of those xml elements: 
<IMPORT> containing all IMPORT parameters of a SAP function module. XML 

element names will be same as function module parameters. 
<CHANGING> containing all CHANGING parameters of a SAP function module. 

XML element names will be same as function module parameters. 
<TABLES> containing all TABLES parameters of a SAP function module. XML 

element names will be same as function module parameters. 
 
 
For Response it will have 1 or 2 or 3 of those xml elements: 
<EXPORT> containing all IMPORT parameters of a SAP function module. XML 

element names will be same as function module parameters. 
<CHANGING> containing all CHANGING parameters of a SAP function module. 

XML element names will be same as function module parameters. 



 

 

82 / 114 

<TABLES> containing all TABLES parameters of a SAP function module. XML 
element names will be same as function module parameters. 

 
Notice: In the WSDL all types will be set to string. However in the request and 
response XML, which is created together with the WSDL in the XML Transmitter, you 
can see all type definitions of all SAP fields (=xml elements with same name). At 
runtime you must make sure, that all sent data confirms to the SAP fields. For 
example dates must be sent as yyyymmdd (e.g. 20090430). If you want to send 
different formats or cannot use the EXC GFMC runtime, we recommend using EPO 
runtime instead. EPO runtime means, that you are using your own processing fm 
(opposite to using /EPO1/GFMC_PROCESSINGFM). Trick: You can copy the 
mapping program from the GMFC runtime and use it in your own processing fm. 
 

444...333   TTTEEESSSTTTIIINNNGGG   TTTHHHEEE   WWWSSSDDDLLL   (((TTTHHHEEE   SSSAAAPPP   FFFUUUNNNCCCTTTIIIOOONNN)))   IIINNN   XXXMMMLLL   
TTTRRRAAANNNSSSMMMIIITTTTTTEEERRR   

 
You can POST the request xml message, which is generated together with the 
WSDL in XML Transmitter to test the SAP function right away from this point. Of 
course, you must fill it first with correct data. The image below shows response of 
BAPI_BANK_GETDETAIL function module to my request for bank which does not 
exist on our development system. 
 

Image: BAPI FM response received after posting request for non-existing bank 

 
 
 
 
 
SOAP Fault message response in error cases for EXC GFMC runtime: 
In error cases the response you will receive will be standard SOAP fault message 
with the error described in <detail> element using /epo1/callstatus structure. 
 



 

 

83 / 114 

 
 
 
 
 
Example of SOAP fault GFMC response: 
 
<?xml version="1.0" encoding="utf-8"?> 
<soap:Envelope 
 xmlns:asx="http://www.sap.com/abapxml"  xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"> 
 <soap:Fault> 
  <faultcode>EPO1_EXC_ERROR</faultcode> 
  <faultstring>EPO XML Connector Error</faultstring> 
  <detail> 
   <CALLSTATUS> 
    <CODE>551</CODE> 
    <TYPE>E</TYPE> 
    <SUBJECT>XML transformation error</SUBJECT> 
    <DESCRIPTION>Exception in XSLT processor: No valid source context supplied</DESCRIPTION> 
    <TRANSACTIONID></TRANSACTIONID> 
   </CALLSTATUS> 
  </detail> 
 </soap:Fault> 
</soap:Envelope> 
 
 
 



 

 

84 / 114 

555   PPPUUUBBBLLLIIICCC   FFFUUUNNNCCCTTTIIIOOONNN   MMMOOODDDUUULLLEEESSS   ---   RRREEEQQQUUUEEESSSTTT///RRREEESSSPPPOOONNNSSSEEE   AAAPPPIII   
 
The API function modules allow you to store message of any kind into EXC tables. 
Its intended use is to include existing interfaces of any kind (file up- and downloads, 
IDOC interfaces...) into the EPO XML Connector. 
 
Existing interfaces are then automatically extended with 

- monitoring features 
- storing metadata information (who, when, what,...) 
- storing the interface transaction data in binary form and 
- reprocessing options 

 

555...111   ///EEEPPPOOO111///EEEXXXCCC___SSSTTTOOORRREEE___RRREEEQQQUUUEEESSSTTT   IIINNNTTTEEERRRFFFAAACCCEEE   
 
The function stores request (only) message into EXC tables. As you can see on the 
image, the interface is straightforward, all the parameters has already been 
described in this documentation. The function checks the existence of specified 
service and configuration and creates (if configured) specified header 
(/EPO1/XMLHEAD) and/or data (/EPO1/XMLDATA) records. In case of any error you 
can use E_CALLSTATUS to describe it. 
 
Precondition: Service must be set up in EPO XML Connector 
 
Notice: Monitoring messages are not sent at runtime. You must use the EPO XML 
Connector monitor to produce monitoring messages. 
 

Image: Store request function module interface. 

 



 

 

85 / 114 

555...222   ///EEEPPPOOO111///EEEXXXCCC___SSSTTTOOORRREEE___RRREEESSSPPPOOONNNSSSEEE   IIINNNTTTEEERRRFFFAAACCCEEE   
 
The function is exactly the same as the previous one, but this one permits you to 
store response message only. You can use it for http(s) protocols for example. 
 
Notice: The transaction ID parameter is a CHANGING parameter. Therefore you can 
use the transaction ID which was generated when storing the request. 
 

Image: Store response function module interface. 

 
 
 
 
 
 



 

 

86 / 114 

666   MMMOOONNNIIITTTOOORRRIIINNNGGG   FFFUUUNNNCCCTTTIIIOOONNNAAALLLIIITTTYYY   
 
Monitoring functionality of EPO XML Connector allows you to monitor all interfaces 
from and to your SAP systems. You can monitor all interfaces implemented within the 
EPO XML Connector implicitly (EPO runtime, SAP runtime, EPO Client, SAP Client). 
And you can also monitor all other interfaces, by just adding one of the two API 
function modules (see chapter 5) to your existing interfaces. 
 
EXC monitoring sends internal (SAP Office), external (E-Mail) or custom (user exit) 
messages when “something goes wrong”. In detail this means you can send 
monitoring messages, when transactions finish with statuses which correspond to 
statuses set in a monitoring profile. A monitoring profile can be assigned to any EXC 
service. 
 
The functionality is executed always when processing a transaction with monitoring 
profile set in service's configuration (at runtime). Or you can also manually run 
/EPO1/MONITOR program (image below) to send monitoring message(s) for 
selected set of transactions, or you can schedule a job to run this program 
(scheduled). 
 
 
 



 

 

87 / 114 

666...111   SSSEEETTTTTTIIINNNGGG   UUUPPP   MMMOOONNNIIITTTOOORRRIIINNNGGG   PPPRRROOOFFFIIILLLEEESSS   
 
Monitoring profiles hold information about when and how a monitoring message 
should be sent. Monitoring profiles can subsequently be assigned to each service 
configuration or they can be used in the EPO XML Connector monitor. 
 
 

Area menu: EPO XML Connector Configuration -> Monitoring -
>Create/Change monitoring profile 
Transaction: /EPO1/MONITOR12 
 

Image: Monitoring profile example 

 
 
 



 

 

88 / 114 

 
Description of monitoring profile parameters: 
 
• Monitoring profile Name of the profile, which you fill into the service 

configuration 
 
• Monitoring target Monitoring message is sent when status of an EXC 

message meets the status set in monitoring profile. Here 
you decide what status the monitoring is looking at; 
request (default) or response message status. 

 
Note: Only request message status is set automatically in error 
cases so unless you set status of response message in user exit, the 
request message status is the only viable option here. 

 
• Simple status Status values for which the monitoring message will is 

sent. Options here are: 
- Error and partial error messages (status = 51 or 52) 
- Error messages only (status = 51) 
- Stored messages (status = 50) 
- Successful messages (status = 53) 
- All messages (any status) 
- User defined status range (user range) 

 
• User range I/E Include or exclude user range 
• User range option User range relational operators (BT, CP, EQ, etc...) 
• User range low Status value 
• User range high Status value 
 

Using these four fields you can define range of statuses 
for the profile, which is used when 'Simple status' field is 
set to 'User defined status range (user range). 

 
• Log monitoring mess. If you enable logging of monitoring messages here, the 

log records are created in /EPO1/MON_LOG table. The 
logged information is : Service, operation,  version, 
creation date and time, monitoring profile name, 
monitoring source (R-runtime, M-manual), the SUBRC 
error number (when sending of the message failed), error 
message, TransactionID and recipient type. 

 
• Keep log Number of days for keeping the log records. When 

empty, all records are kept, otherwise the log records 
older then specified are deleted. 

 
• Sender (SAP User) SAP user name used as a sender of monitoring 

message. 
 
• Recipient(s) type According to this value, the monitoring message is send 

to: 
- SAP User (SAP Office) 



 

 

89 / 114 

- E-Mail address 
- EXC customer exit (to be programmed individually) 

 
In case of customer exit, function filled in 'Mon. custom 
exit FM' field of profile is called. 

 
• Recipients Semicolon (;) separated list of recipients of the 

monitoring message. Sap user names, e-mail addresses 
or custom recipients list for the user exit FM. 

 
• Monitor CCrecipients Same as above, but these are “carbon copy” recipients. 
 
• Message subject Text for subject of the monitoring message (string). 
 
• Message text name Text for body of the monitoring message. This is name of 

text object created using transaction SO10 (SAP 
standard texts). 

 
• Message text ID Text ID of a SAP standard text object (SO10). 

 
• Content type TXT (text/plain) or HTM (text/html) content type for 

message body. Make sure you set it to HTM you want 
the message body to properly show html, which you pass 
to it. 

 
• XSLT for head XSLT transformation, which you can use for formatting 

/epo1/xmlhead structure (either request or response 
dependent on 'Monitoring target' setting of the profile. 

 
• Include request head When checked, the body of message will contain 

information from /epo1/xmlhead table for request 
message of the monitored transaction. 

 
• XSLT for request m. The transformation specified here you can use for 

formatting the request head (/epo1/xmlhead structure) 
information set to be included in field above. 

 
• Include request data You can also include the request data into body attach it 

as a file to the monitoring message. 
Options are: 
- when this field is empty, no request data are sent 
- as attachment – data file attached to the message 
- inline (within body) – data included in message body 

 
• Max. request length Maximum size in bytes of the included request data. 

When empty or zero, all the data are included, otherwise 
the string is shortened to the size specified here. 

 
• Include respon. head These fields are equivalents of the four fields above,  
• Include respon. data but for response head and data information. 



 

 

90 / 114 

• XSLT for response m.  
• Max. response length 
 
• Sending style Options for sending set of transactions in one monitoring 

message. This field only applies to /EPO1/MONITOR 
program. In opposite, when monitoring runs on 
transaction being processed, there is always only one 
message per one transaction possible. 

 
You can choose to send: 
- Separate messages 
- Message list per service 
- Message list per service and operation 
- Message list per service, operation and version 

• Message list sorting In case you selected message list in field above, you can 
choose the sorting of the included monitoring messages 
here. 

 
Sorting options:  
- Table key (TransactionID, Message direction) 
- Service, operation, version 
- Creation date, creation time, changed data, changed 

time 
- Sorting 1 and 2 – Service, operation, version, 

creation date, creation time, changed data, changed 
time 

 
• Mon. custom exit FM Here you can specify your function module to be 

executed when you set 'Recipients type' field to 'EXC 
customer exit (to be programmed individually)'. This is 
the option for you to program your own sending of the 
monitoring messages. 

 
 

666...111...111   MMMOOONNNIIITTTOOORRRIIINNNGGG   CCCUUUSSSTTTOOOMMM   EEEXXXIIITTT   FFFUUUNNNCCCTTTIIIOOONNN   MMMOOODDDUUULLLEEESSS   
 
Instead of using one of the build-in monitoring message function (SAP office mail, E-
mail), you can implement your own monitoring message function. This can be used 
to send monitoring messages either 

- with other techniques like fax, SMS, ftp,... 
- or to link it with another monitoring system. 

 
 
The call of the custom exit function code: 

 
CALL FUNCTION me->profile-moncustomexitfm 
  EXPORTING 
    i_mon_profile = me->profile “ type /epo1/mon_profs (structure) 
    i_service = l_service  “ type /epo1/service 
    i_operation = l_operation “ type /epo1/operation 
    i_version = l_version “ type /epo1/version 



 

 

91 / 114 

    i_transactionid = l_transactionid “ type /epo1/transactionid 
    i_request_head = me->request_head “ type /epo1/xmlhead (table) 
    i_request_data = me->request_data “ type /epo1/xmldata (table) 
    i_response_head = me->response_head “ type /epo1/xmlhead (table) 
    i_response_data = me->response_data “ type /epo1/xmldata (table) 
    i_message_body = me->message_body “ type /epo1/mon_message_body (table) 
    i_testmode = i_testmode “ type /epo1/testmode 
  IMPORTING 
    e_mon_status = l_mon_status “ type /epo1/status  
    e_mon_message = l_mon_message “ type /epo1/message 
  CHANGING 
    c_recipients_type = me->profile-recipients_type “ type /epo1/mon_recipients_type 
    c_recipients = me->profile-recipients “ type /epo1/mon_recipients 
    c_cc_recipients = me->profile-cc_recipients “ type /epo1/mon_cc_recipients 
    c_mon_subject = me->profile-subject.  “ type /epo1/mon_subject 

 
 
 
 
 



 

 

92 / 114 

666...222   EEEPPPOOO   XXXMMMLLL   CCCOOONNNNNNEEECCCTTTOOORRR   MMMOOONNNIIITTTOOORRR   
 
The EPO XML Connector monitor allows you to select messages according to their 
status and 

- list messages in test run 
- or to send monitoring message in “Production mode”. 

 
Area menu: EPO XML Connector Configuration → Monitoring → EPO XML 
Connector monitor 
Transaction: /EPO1/MONITOR 

 
There are 2 main options for selecting messages: 

a) “Use fixed monitoring profile” left empty 
b) “Use fixed monitoring profile” filled with a monitoring profile 

 
With option a) only services configured with a monitoring profile will be selected. 
Sending of monitoring messages is done according to the different monitoring 
profiles. 
With option b) all messages will be selected and sending of monitoring messages is 
done according to this monitoring profile. 
 

Image: Monitoring program selection screen 



 

 

93 / 114 

 
 
 



 

 

94 / 114 

777   MMMEEESSSSSSAAAGGGEEE   DDDAAATTTAAA   MMMAAAIIINNNTTTEEENNNAAANNNCCCEEE   (((IIINNNBBBOOOUUUNNNDDD   &&&   OOOUUUTTTBBBOOOUUUNNNDDD)))   
 
During runtime of any service each message sent or received in SAP with the EPO 
XML Connector will get a unique transaction ID. Request and response messages of 
a particular service call will get the same transaction ID, but different message 
direction information (I or O). If a service is configured to store messages, those 
messages can be obtained, viewed and edited with the data maintenance transaction 
of the EPO XML Connector. 
 
All functions are available for all kind of messages. You can find them in our area 
menu in section EPO XML Connector Data Maintenance and they are divided into 
two sections for better orientation – Inbound XML messages (Call of SAP Services) 
and Outbound XML messages (Call of external Services).  
 

777...111   (((RRREEE)))   PPPRRROOOCCCEEESSSSSS   AAA   SSSTTTOOORRREEEDDD   XXXMMMLLL   RRREEEQQQUUUEEESSSTTT   MMMEEESSSSSSAAAGGGEEE   
 
Processing or reprocessing of XML messages manually can be done via our menu 
functions.  
 

Inbound services (Incoming requests to a SAP services – EPO Runtime 
and SAP Runtime services): 

  EPO XML Connector Data Maintenance → Inbound XML messages → 
  /EPO1/EPORTINPROC – In: (Re) Process EPO Runtime XML message 
  /EPO1/WSINPROC – In: (Re) Process SAP Runtime XML message 
 

Outbound services (Outgoing request to an external service – EPO Client 
and SAP Client services): 

  EPO XML Connector Data Maintenance → Inbound XML messages → 
  /EPO1/EPORTOUTPROC – Out: (Re) Process EPO Client XML message 
  /EPO1/WSOUTPROC – Out: (Re) Process SAP Client XML message 
 
Each of these transactions call different programs to (re)process a message using a 
different technique, but they all have got the same selection screen, where you select 
the message(s) for processing or reprocessing. 
 
The only condition needed for (re)processing of a message is that its status code 
needs to be less than 53 (processed successfully). However, if you need to 
reprocess such message again you can change the status code manually, using the 
function from administration menu (or your SAP administrator can) – EPO XML 
Connector Administration → /EPO1/SETSTATUS – Set status of XML message 
manually. 
 

777...222   DDDOOOWWWNNNLLLOOOAAADDD   AAANNNDDD   EEEDDDIIITTT   AAA   SSSTTTOOORRREEEDDD   XXXMMMLLL   MMMEEESSSSSSAAAGGGEEE   
 
There are two functions in our area menu enabling you to download an XML 
message as a file(s). Every record in the database tables is represented by a single 
file. You can store the file(s) to the server or local machine directory, which you will 



 

 

95 / 114 

need to input in selection screen of the chosen program. There is a common 
selection screen in each of the functions where you will be able to choose which 
message you want to download. The files are saved in binary format which keeps all 
the encoding information intact. The names of the files are generated automatically 
using “epo”, client, TransactionID and Messagedirection with the following structure: 
“EPO_<client>_<transactionid>_<messagedirection>.<suffix>”, where the suffix is 
taken from “Message format” field of configuration of corresponding service. The file 
name then will look like this: epo_910_000000000000054_I.XML” for incoming 
message of transaction 54. The client, transaction id and message direction from the 
file name are used when uploading / updating the XML message. So you don’t really 
want to change them, if you want to successfully update the same record in the 
database. However this function is here for you to be able to edit the content of the 
file – XML message itself. You can use any XML editor for these purposes; many of 
them are available on the internet. 
 
Note: Using the outbound function for incoming service, you are able to download 
and therefore edit a response XML message, but can not upload and update the 
response using the upload function. You will also see the message “This is response 
message” in the message column of the ALV list displayed after you downloaded 
such file. 
 
The functions are: 
 

Inbound services (Incoming requests to a SAP services – EPO Runtime 
and SAP Runtime services): 

EPO XML Connector Data Maintenance → Inbound XML messages → 
/EPO1/DOWNLOADXMLIN – In: Download XML message 
 

Outbound services (Outgoing request to an external service – EPO Client 
and SAP Client services): 

EPO XML Connector Data Maintenance → Outbound XML messages → 
/EPO1/DOWNLOADXMLOUT – Out: Download XML message 

 

777...333   UUUPPPLLLOOOAAADDD   AAA   SSSTTTOOORRREEEDDD   XXXMMMLLL   MMMEEESSSSSSAAAGGGEEE   
 
After having downloaded and edited a file (previous paragraph) you can upload it 
back and update the database tables. You can upload the file from the server or local 
machine by choosing the right option in the selection screen and selecting the right 
file by browsing in local machine files, or typing the path and file name of the server 
file. The file name must correspond to the structure created by the downloading 
program (see previous paragraph). The information from it is used for finding the 
record, which needs to be updated. This function uploads the selected file and 
updates the record in the database tables. It cannot be used to insert

 

 a new record in 
any case. You will not be able to upload any file which contains a response XML 
message using these functions (The responses are answers from the services, so it 
does not make any sense to change them). 

Functions for uploading files: 
 



 

 

96 / 114 

Inbound services (Incoming requests to a SAP services – EPO Runtime 
and SAP Runtime services): 

EPO XML Connector Data Maintenance → Inbound XML messages → 
/EPO1/UPLOADXMLIN – In: Upload XML message 
 

Outbound services (Outgoing request to an external service – EPO Client 
and SAP Client services): 

EPO XML Connector Data Maintenance → Outbound XML messages → 
/EPO1/UPLOADXMLOUT – Out: Upload XML message 
 

777...444   FFFIIILLLEEE   UUUPPPLLLOOOAAADDD   OOOFFF   AAA   NNNEEEWWW   XXXMMMLLL   RRREEEQQQUUUEEESSSTTT   MMMEEESSSSSSAAAGGGEEE   (((IIINNNSSSTTTEEEAAADDD   OOOFFF   
UUUSSSIIINNNGGG   HHHTTTTTTPPP)))   

Please use this program only for ad-hoc uploads. For uploads of files from the SAP 
server as a regular service, you must use program /epo1/exc_fileruntime 
(Transaction can be found in Configuration - EPO runtime part of area menu). 
 
Reading the previous two paragraphs, you know that you can download, edit, upload 
and update the XML message to/from files. The functions described here enable you 
to insert new request message into the database tables. They will not update any 
record in any case. Unlike the uploading functions, these ones do not need the 
specific file name; they will upload any file, which you choose in the selection screen, 
but you will have to assign the file to the right service by inputting service’s name, 
operation and version, so that it can be (re)processed afterwards. When running the 
upload program you will tell the EPO XML Connector to create a new transaction id 
and insert a new request message to the database tables. It will not process the 
request automatically, you will need to do it manually using (re)processing function 
(please see section 7.1).  
 
The functions for inserting new record from a file are:  
 

Inbound services (Incoming requests to a SAP services – EPO Runtime 
and SAP Runtime services): 

EPO XML Connector Data Maintenance → Inbound XML messages → 
/EPO1/UPLOADXMLIN – In: Upload XML message 
 

Outbound services (Outgoing request to an external service – EPO Client 
and SAP Client services): 

EPO XML Connector Data Maintenance → Outbound XML messages → 
/EPO1/UPLOADXMLOUT – Out: Upload XML message 

 
Note: The concept of the EPO XML Connector allows inserting any file format (not 
just XML). If it is not an XML format, you will need the EPO runtime with a processing 
function module to process the message. 
 
 



 

 

97 / 114 

888   AAADDDMMMIIINNNIIISSSTTTRRRAAATTTIIIOOONNN   OOOFFF   TTTHHHEEE   EEEPPPOOO   XXXMMMLLL   CCCOOONNNNNNEEECCCTTTOOORRR   

888...111   AAARRRCCCHHHIIIVVVIIINNNGGG   XXXMMMLLL   MMMEEESSSSSSAAAGGGEEESSS   
 
For archiving (write, delete and read archiving routines) of XML messages we 
created the /epo1/xml7 (/epo1/xml in WAS 6.20) archiving object, which you can use 
in SAP archive administration – transaction SARA. You can call the transaction from 
our area menu (EPO XML Connector Administration → Archiving XML messages → 
/EPO1/SARA7 – Archive Administration for object /EPO1/XML7), which will open the 
SARA transaction with the object name already filled in, so you don’t need to 
remember it. 
 

Image 30: SARA – Archive Administration using object /EPO1/XML7 

 
 
The only thing you will most likely need to change for the archiving object is the 
Logical path in the Logical file name definition, so it corresponds with your archiving 
system setup (image 31). As you probably know, you can do this in transaction FILE, 
which you can also access from our area menu (EPO XML Connector Administration 
→ Archiving XML messages → FILE – Cross-client file names / paths). 
 

Image 31: Logical file name definition for object /EPO1/XML7 

 
 
 
To let you have a look at the /epo1/xml7 archiving object definition there is the AOBJ 
transaction in our menu (EPO XML Connector Administration → Archiving XML 
messages → AOBJ – Archiving object definition) 
 



 

 

98 / 114 

888...222   AAADDD---HHHOOOCCC   DDDAAATTTAAA   OOOPPPEEERRRAAATTTIIIOOONNNSSS   
 
Please do not mismatch these operations with services. They are here to provide 
data access in case there is a need to manually alter the data or database. 

888...222...111   DDDOOOWWWNNNLLLOOOAAADDD   XXXMMMLLL   MMMEEESSSSSSAAAGGGEEESSS   TTTOOO   DDDIIIRRREEECCCTTTOOORRRYYY   
 
Rather then downloading stored XML messages by direction as it is proposed in data 
maintenance area menu, you can download all selected messages (based on 
selection) to a single directory either to the server or local machine. The files are 
stored in binary format to keep the encoding. The names of the files are created 
automatically from the ‘epo’, client, TransactionID and direction of the message 
(Messagedirection). The suffix each file is set to the message format, which is 
configured with the service (please see section 3.1). Error messages occurring 
during download, if any, you can view in the ALV list field “message” after running the 
program. 

888...222...222   UUUPPPLLLOOOAAADDD   XXXMMMLLL   MMMEEESSSSSSAAAGGGEEESSS   FFFRRROOOMMM   DDDIIIRRREEECCCTTTOOORRRYYY   
 
With this function you can upload all files, which were downloaded before, from a 
single directory either from the server or local machine. This procedure only updates 
records in the database tables, it does not insert

 

 anything in any case and that is why 
uploading requires existing records in the database tables. The key is TransactionID 
and Messagedirection, which is stored in the file name, so the file name structure 
must correspond to the structure created by downloading program – this is checked 
exactly when uploading files and if the file name structure is not correct, files are not 
uploaded. These files are treated as wrong files, so you will not be able to see them 
anywhere in the ALV list. All other errors are written to the message field of 
corresponding records, but only in local table – they are not stored to the database – 
and you can see them with all the other stored fields (except the XML message of 
course) in the ALV list displayed after the procedure. 

Note: When this function runs, it always uploads all the correct files in the selected 
directory and then it applies the filter you have entered in the selection screen of the 
program, so it can take some time when you have many files, but you want to upload 
just one or couple of them. 

888...222...333   IIINNNSSSEEERRRTTT   NNNEEEWWW   XXXMMMLLL   MMMEEESSSSSSAAAGGGEEESSS   FFFRRROOOMMM   DDDIIIRRREEECCCTTTOOORRRYYY   
 
Please use this program only for ad-hoc uploads. For uploads of files from the SAP 
server, as a regular service, you must use program /epo1/exc_fileruntime 
(Transaction can be found in Configuration - EPO runtime part of area menu). 
 
File handling functionality would not be complete without having the ability to insert 
new records to the database tables. Similar to uploading it uploads all files from a 
selected directory, either from the server or local machine. It creates new 
TransactionIDs for each of the uploaded files and inserts them into the database 
tables. You need to assign the files to the existing service by inputting service name, 
operation and version in the selection screen. It does not update any record in any 
case and it does not check the file name, so all the files are inserted. It does not 



 

 

99 / 114 

process the requests automatically. You will need to (re)process them afterwards 
(please see section 7.1). Errors opening and/or reading files are written to the 
message field of the local table – not inserted to the database – and displayed with 
all the other fields in the ALV list after running this program. 



 

 

100 / 
 

888...333   OOOTTTHHHEEERRR   AAADDDMMMIIINNNIIISSSTTTRRRAAATTTIIIVVVEEE   FFFUUUNNNCCCTTTIIIOOONNNSSS   
 
/EPO1/SETSTATUS – Set status of XML message manually 
 

You can change the status code of a XML message using this program. It 
allows you to reprocess a message, which has already been processed, by 
setting the code to the number less than 53. 

 
SMICM – ICM monitor 
SICF – HTTP service hierarchy maintenance 
 

Standard SAP transactions you will need to use administering EPO XML 
connector. 

 
/EPO1/SETLICENSE – Load license key for EPO XML Connector 
 
 Utility for loading the license key file for EPO XML Connector 
 
/EPO1/TEMPLATESUNCOM – Uncomment / comment template programs 
 

Here you can find a program to uncomment or comment the template 
programs (examples), which are delivered with the EPO XML Connector. 
 
All template programs delivered with the EPO XML Connector are commented 
out. Note: This is to avoid syntax errors in your system, because you might not 
have installed all SAP components which are used in the templates. 
 
If you want to use a template program, you must first uncomment it. Often this 
is not necessary, because you will need to create a copy of a template 
program in the Z* or Y* namespace (see developing of new services). 
 
You can uncomment or comment all template programs in one single run. 
 
The comment / uncomment program can only be used for template programs 
with the EPO XML Connector. No other programs can be commented or 
uncommented. 

 
 
 
 



 

 

101 / 
 

999   IIINNNTTTEEEGGGRRRAAATTTIIIOOONNN   SSSOOOLLLUUUTTTIIIOOONNNSSS   BBBAAASSSEEEDDD   OOONNN   EEEXXXCCC   
 

999...111   XXXHHHTTTMMMLLL   IIINNNTTTEEERRRAAACCCTTTIIIVVVEEE   FFFOOORRRMMMSSS   
 
This solution enables you to generate prefilled xHTML forms out of SAP. It is directly 
built-in into the EPO XML Connector. 
It is similar to Adobe pdf interactive forms, but instead of using pdf forms you can use 
xHTML forms. It is also similar to BSP (SAP Business Server Pages) with the 
advantage of being much simpler and again a clear separation between front-end 
and back-end. 
 

999...111...111   XXXHHHTTTMMMLLL   OOOUUUTTTPPPUUUTTT   FFFOOORRR   EEEPPPOOO   RRRUUUNNNTTTIIIMMMEEE   AAANNNDDD   CCCLLLIIIEEENNNTTT   
 
The title saying it, this part of xml processing applies to EPO Runtime and EPO Client 
services only. The idea is to be able to serve HTML form prefilled with data from 
SAP. To give full control to you, the prefilling is done in customer programmed 
function modules, where you call pre-defined XSLT transformations. Example XSLT 
transformation are delivered with the EPO XML Connector (used in example prefill 
function modules): 

• /EPO1/EXC_CHANGE_XHTML_ATTRIB replaces or adds attributes and its 
values in existing elements. 

• /EPO1/EXC_CHANGE_XHTML_ELEMENT replaces value in existing element 
of the template. 

The xHTML template must be stored in SAP MIME repository (transaction SE80, 
MIME Repository button). It has to be in xHTML format to be able to do XSLT 
transformations. You can find xHTML specification on http://www.w3.org/TR/xhtml1/. 
 
The prefill function module call is placed before outbound XSLT transformation in 
both EPO runtime and EPO Client. 
 
EPO runtime and EPO Client both check whether there is a xHTML configuration set 
for the called service, configuration and version. If it is set, it reads the configured 
MIME object and passes it together with XML data to the prefill function module. 
 

999...111...222   XXXHHHTTTMMMLLL   OOOUUUTTTPPPUUUTTT   CCCOOONNNFFFIIIGGGUUURRRAAATTTIIIOOONNN   
 

Area menu: EPO XML Connector Configuration → Maintain EPO xHTML 
configuration 
Transaction: /EPO1/XHTML12 
 

Image: EPO xHTML output configuration example 

http://www.w3.org/TR/xhtml1/�


 

 

102 / 
 

 
 

Service name, Operation, Version: EPO Runtime or Client service identification for 
xHTML output processing 

 
MIME Object URL: xHTML template object URL (SE80, MIME Repository) 
 
Prefill FM: Customer programmed function module for template transformations 
 
HTTP content type: EPO Runtime only, custom HTTP header value for response, 

text/xml (EPO Runtime default) if left empty 
 
 

999...111...333   XXXHHHTTTMMMLLL   OOOUUUTTTPPPUUUTTT   PPPRRREEEFFFIIILLLLLL   FFFMMM   IIINNNTTTEEERRRFFFAAACCCEEE   
 
Below is the interface of template function module, placed in /EPO1/EXC_XHTML 
package which you can use for filling the xHTML template with data from SAP. 
 
function /epo1/exc_xhtml_prefill. 
*"---------------------------------------------------------------------- 
*"*"Local Interface: 
*"  IMPORTING 
*"     REFERENCE(I_SERVICE) TYPE  /EPO1/SERVICE 
*"     REFERENCE(I_OPERATION) TYPE  /EPO1/OPERATION 
*"     REFERENCE(I_VERSION) TYPE  /EPO1/VERSION 
*"     REFERENCE(I_XML) TYPE  /EPO1/XML 
*"     REFERENCE(I_MIME) TYPE  /EPO1/XML 
*"  EXPORTING 
*"     REFERENCE(E_XML) TYPE  /EPO1/XML 
*"     REFERENCE(E_CALLSTATUS) TYPE  /EPO1/CALLSTATUS 
*"---------------------------------------------------------------------- 
 
I_SERVICE, I_OPERATION, I_VERSION: EPO Runtime or Client service 

identification 
 
I_XML: For EPO Runtime this is response XML data after being saved (if configured) 

and before outbound XSLT transformation (if configured) is applied, for EPO 
Client it is request XML data passed to /EPO1/EPOCLIENT FM, after being 
saved (if configured), before outbound XSLT transformation (if configured). 

 
I_MIME: The xHTML template read from MIME Repository (SE80) 
 



 

 

103 / 
 

E_XML: Parameter for filled or transformed template to pass it back to EPO Runtime 
or EPO Client processing 

 
E_CALLSTATUS: Error information in /EPO1/CALLSTATUS format. If you fill this 

information and leave E_XML empty it is transformed to simple HTML structure 
containing the information, if you want to create different error structures, do so 
in E_XML and leave this empty 

 
 
 

999...111...444   XXXHHHTTTMMMLLL   OOOUUUTTTPPPUUUTTT   PPPRRREEEFFFIIILLLLLL   FFFMMM   CCCRRREEEAAATTTIIIOOONNN   
 
First step is getting data needed for filling the template from imported XML data. In 
the template we call transformation id to give us username to read the data using 
BAPI. 
 
      " get username from i_xml 
      call transformation id 
        source xml i_xml 
        result username = l_username. 
 
Then we call the BAPI to get user details, but obviously you will use this part to get 
the data you need. You can see simple error handling here, which gives back 
callstatus which is then in turn transformed to HTML message.  
 
        " get user details 
        call function 'BAPI_USER_GET_DETAIL' 
          exporting 
            username = l_username 
          importing 
            address  = l_address 
          tables 
            return   = lt_return. 
 
        " error handling 
        if l_address is initial. 
          " first error to callstatus 
          loop at lt_return into wa_return 
            where type = 'E' or 
                  type = 'A'. 
 
            clear e_xml. 
            call function '/EPO1/EXC_CSMSG' 
              exporting 
                i_bapiret2   = wa_return 
                i_parameter1 = 'BAPI_USER_GET_DETAIL' 
              importing 
                e_callstatus = e_callstatus. 
            exit. 
          endloop. 
        endif. 
 
Last part is transforming the xHTML template using XSLT transformations to prefilled 
xHTML form. Before this bit there is also filling of these two internal tables, you can 
find whole code in /EPO1/EXC_XHTML_PREFILL function module, which you can 
also use as a template for your own ones. 



 

 

104 / 
 

 
        " xHTML form template 
        e_xml = i_mime. 
 
        " apply attribute value changes 
        loop at lt_attributes into wa_attributes. 
          call transformation /epo1/exc_change_xhtml_attrib 
            parameters 
              element   = wa_attributes-element 
              id        = wa_attributes-id 
              attribute = wa_attributes-attribute 
              value     = wa_attributes-value 
            source xml e_xml 
            result xml e_xml. 
        endloop. 
 
        " apply element value changes 
        loop at lt_elements into wa_elements. 
          call transformation /epo1/exc_change_xhtml_element 
            parameters 
              element   = wa_elements-element 
              id        = wa_elements-id 
              value     = wa_elements-value 
            source xml e_xml 
            result xml e_xml. 
        endloop. 



 

 

105 / 
 

 

999...222   MMMEEETTTAAASSSTTTOOORRRMMM   BBBPPPMMM   ///   SSSAAAPPP   IIINNNTTTEEEGGGRRRAAATTTIIIOOONNN   
 
Integration of Metastorm BPM (former name e-Work) with SAP was previously done 
with the Metastorm BPM Connector. With the release of the EPO XML Connector 
integration of Metastorm BPM is covered by this general, more powerful connector. 
The Metastorm BPM Connector is retired. 
There is a separate, in-detail-documentation available for integrating Metastorm BPM 
with SAP. EPO Consulting also provides a product called B2B WS Integrator for 
Metastorm BPM, which enables web service calls (SAP Inbound) for Metastorm 
BPM. 
 

999...222...111   IIINNNTTTEEEGGGRRRAAATTTIIIOOONNN   OOOFFF   MMMEEETTTAAASSSTTTOOORRRMMM   BBBPPPMMM   UUUSSSIIINNNGGG   WWWEEEBBB   SSSEEERRRVVVIIICCCEEESSS   
Metastorm has released new, improved Web Service functionality with Metastorm 
Release 7.5 SR1. We have successfully tested the EPO XML Connector with these 
Web Services. There is a full documentation with examples available which can be 
requested from EPO Consulting or downloaded from our website. Here follows only a 
short documentation. 
 

999...222...222   IIINNNTTTEEEGGGRRRAAATTTIIIOOONNN   OOOFFF   MMMEEETTTAAASSSTTTOOORRRMMM   BBBPPPMMM   UUUSSSIIINNNGGG   FFFIIILLLEEE   IIINNNTTTEEERRRFFFAAACCCEEESSS   
You can also use the file interface functionality of the EPO XML Connector. In 
principle it means creating a file in Metastorm BPM and loading it into SAP or vice 
versa. 
 

999...222...333      UUUSSSIIINNNGGG   BBB222BBB   IIINNNTTTEEEGGGRRRAAATTTOOORRR   FFFOOORRR   MMMEEETTTAAASSSTTTOOORRRMMM   BBBPPPMMM   
The B2B Integrator from EPO Consulting is a software tool allowing you to create 
Web Service interfaces (SAP Inbound) with Metastorm BPM. 
 
The B2B Integrator is a software tool, which needs to be installed on the Metastorm 
BPM Server. 
When creating Metastorm BPM processes the B2BIntegrator library must be attached 
to processes. This library automates the call of SAP Web Service calls (in the 
Integration Wizard of the Metastorm designer). 
 

999...333   MMMSSS   EEEXXXCCCEEELLL   ///   SSSAAAPPP   IIINNNTTTEEEGGGRRRAAATTTIIIOOONNN   
 
Integration of MS Excel with SAP is brought to a new level by the EPO XML 
Connector. There are several options available to set up any MS Excel to SAP 
integration. The technique used is always calling a web service out of Excel, which is 
provided by SAP with the power of EXC (SAP Inbound). 
 
Option 1: Calling a SAP EXC web service with GET in VB 
Option 2: Calling a SAP EXC web service with POST in VB 
Option 3: Calling a SAP EXC web service with using XML Transmitter Office add-in 
(a product developed by EPO Consulting) 



 

 

106 / 
 

Option 4: Calling a SAP EXC web service using .NET programming options. 
 
EPO Consulting will deliver examples and pre-packed solutions in the coming 
months. 



 

 

107 / 
 

111000   AAAPPPPPPEEENNNDDDIIIXXX   111:::   UUUSSSIIINNNGGG   XXXMMMLLL   TTTRRRAAANNNSSSMMMIIITTTTTTEEERRR   FFFOOORRR   TTTEEESSSTTTIIINNNGGG   
AAANNNDDD   DDDEEEPPPLLLOOOYYYIIINNNGGG   WWWEEEBBB   SSSEEERRRVVVIIICCCEEESSS   

 
When developing your web services using EPO XML Connector you will need to test 
them. For this purpose we have created a special application which we deliver 
together with the EPO XML Connector – XML Transmitter. We are using it heavily 
ourselves developing and testing the connector, so we think it can help you with 
creation and testing of your own services.  
 
The application enables you to create HTTP request, SOAP or not, post it to the 
server and see the response in the same window. You can type in your XML 
messages or create them from WSDL description; you can use XSLT transformations 
on them; you can even set your own special HTTP headers using this program. The 
application window is divided into left and right side, where the left side contains all 
the information about the request you are posting and the right side which shows the 
response after it has been received. Everything you change on posting side you can 
store to the configuration file and use it over and over again. You can see some 
screenshots of this program in section 3.2.5 - Testing an EPO runtime service and 
section 3.3.2.8 - Testing a SAP runtime service. 
 
Create WSDL functionality 
A very useful function of the XML Transmitter is “Create WSDL”. It enables you to 
generate a WSDL file from a request XML, response XML and the URL (URI). You 
can use this functionality not just with SAP web services. 
 
The XML Transmitter has got many more functions, which we are not going to 
describe in here. It can be found in its own documentation. 
 
 

http://dict.leo.org/ende?lp=ende&p=/gQPU.&search=excursion�


 

 

108 / 
 

111111      AAAPPPPPPEEENNNDDDIIIXXX   222:::   DDDEEEMMMOOONNNSSSTTTRRRAAATTTIIIOOONNN   OOOFFF   AAABBBAAAPPP   SSSEEERRRIIIAAALLLIIISSSAAATTTIIIOOONNN   
 
As of Release 6.10 ABAP contains the statement CALL TRANSFORMATION that 
allows you to transform ABAP data to XML and vice versa. There is simple demo 
program in your EXC installation, which shows how this transformation can be used. 
The program selects data from T000 and CVERS tables, transforms it into asXML, 
which is displayed afterwards. Then it uses the same transformation, but in the other 
direction, to process the asXML back to local table T000, which is displayed as ALV-
lists. Then it does the same with table CVERS. The transformation of asXML to 
tables (T000 and CVERS in this example) could be also done in one step. 
 
AsXML is the XML representation of SAP ABAP programming language structures. 
 

The demo program source 
*&---------------------------------------------------------------------* 
*& Report  /EPO1/Z_TRANSFORMATIONID 
*&---------------------------------------------------------------------* 
*& Company:   EPO Consulting                                           * 
*& IP Rights: Intellectual Property Rights and all other rights are    * 
*&            held by EPO Consulting.                                  * 
*&            Copying or Modifying this program is only allowed with   * 
*&            written consent of EPO Consulting.                       * 
*& Author:    MH                                                       * 
*& Date:      March 2008                                               * 
*& Desc.:     Example of TRANSFORMATION ID                             * 
*&---------------------------------------------------------------------* 
REPORT  /epo1/z_transformationid. 
 
TYPE-POOLS: slis. 
TABLES: t000,cvers. 
DATA: lt_t000  TYPE TABLE OF t000, 
      lt_cvers TYPE TABLE OF cvers, 
      l_return TYPE bapiret2, 
      as_xml   TYPE xstring. 
 
SELECTION-SCREEN BEGIN OF BLOCK t000 WITH FRAME TITLE text-001. 
SELECT-OPTIONS: so_mandt FOR t000-mandt. 
SELECTION-SCREEN END OF BLOCK t000. 
 
SELECTION-SCREEN BEGIN OF BLOCK cvers WITH FRAME TITLE text-003. 
SELECT-OPTIONS: so_comp FOR cvers-component. 
SELECTION-SCREEN END OF BLOCK cvers. 
 
START-OF-SELECTION. 
 
  SELECT * FROM t000  INTO TABLE lt_t000 
    WHERE mandt IN so_mandt. 
 
  SELECT * FROM cvers INTO TABLE lt_cvers 
    WHERE component IN so_comp. 
 
END-OF-SELECTION. 
 
  " transform the tables to asXML 
  TRY. 
      CALL TRANSFORMATION id 
        SOURCE 
          t000  = lt_t000 



 

 

109 / 
 

          cvers = lt_cvers 
        RESULT XML as_xml. 
    CATCH cx_root. 
      " no error handling in this example 
      EXIT. 
  ENDTRY. 
 
  " empty the tables 
  REFRESH: lt_t000,lt_cvers. 
 
  " view the asXML 
  PERFORM view_xml USING as_xml. 
 
  " the following two tranformations could be done in one step, but in 
  " this exapmle we do it in two 
 
  " transform asXML to t000 table 
  TRY. 
      CALL TRANSFORMATION id 
        SOURCE XML as_xml 
        RESULT t000 = lt_t000. 
    CATCH cx_root. 
      " no error handling in this example 
      EXIT. 
  ENDTRY. 
 
  " ALV list table of banks 
  PERFORM list_t000. 
 
  " transform asXML to cvers table 
  TRY. 
      CALL TRANSFORMATION id 
        SOURCE XML as_xml 
        RESULT cvers = lt_cvers. 
    CATCH cx_root. 
      " no error handling in this example 
      EXIT. 
  ENDTRY. 
 
  " ALV list table of banks 
  PERFORM list_cvers. 
 
************************************************************************ 
* View XML message 
************************************************************************ 
FORM view_xml USING lp_xml TYPE xstring. 
 
  DATA: ls_xml  TYPE string, 
        lo_conv TYPE REF TO cl_abap_conv_in_ce, 
        li_len  TYPE i.                                     "#EC NEEDED 
 
  li_len = XSTRLEN( lp_xml ). 
  lo_conv = cl_abap_conv_in_ce=>create( input = lp_xml ). 
  lo_conv->read( IMPORTING data = ls_xml len = li_len ). 
 
  CALL FUNCTION 'PAYLOAD_DISPLAY' 
    EXPORTING 
      p_payload = ls_xml 
      p_title   = text-002. 
 
ENDFORM.                    "view_xml 
 
********************************************************************** 



 

 

110 / 
 

* ALV list table cvers 
********************************************************************** 
FORM list_t000. 
  DATA: wx_t000 TYPE t000,                                  "#EC * 
        feldcat TYPE slis_t_fieldcat_alv. 
 
  REFRESH feldcat. 
  " get field catalog from WX_T000 structure 
  CALL FUNCTION 'REUSE_ALV_FIELDCATALOG_MERGE' 
    EXPORTING 
      i_program_name     = sy-cprog 
      i_internal_tabname = 'WX_T000' 
      i_inclname         = sy-cprog 
    CHANGING 
      ct_fieldcat        = feldcat 
    EXCEPTIONS 
      OTHERS             = 3. 
  IF sy-subrc <> 0. 
    " no error handling in this example 
    EXIT. 
  ENDIF. 
 
  " ALV list lt_banklist 
  CALL FUNCTION 'REUSE_ALV_LIST_DISPLAY' 
    EXPORTING 
      it_fieldcat = feldcat 
    TABLES 
      t_outtab    = lt_t000 
    EXCEPTIONS 
      OTHERS      = 2. 
  IF sy-subrc <> 0. 
    " no error handling in this example 
    EXIT. 
  ENDIF. 
ENDFORM.                                                    "list_t000 
 
********************************************************************** 
* ALV list table cvers 
********************************************************************** 
FORM list_cvers. 
  DATA: wx_cvers TYPE cvers,                                "#EC * 
        feldcat TYPE slis_t_fieldcat_alv. 
 
  REFRESH feldcat. 
  " get field catalog from WX_CVERS structure 
  CALL FUNCTION 'REUSE_ALV_FIELDCATALOG_MERGE' 
    EXPORTING 
      i_program_name     = sy-cprog 
      i_internal_tabname = 'WX_CVERS' 
      i_inclname         = sy-cprog 
    CHANGING 
      ct_fieldcat        = feldcat 
    EXCEPTIONS 
      OTHERS             = 3. 
  IF sy-subrc <> 0. 
    " no error handling in this example 
    EXIT. 
  ENDIF. 
 
  " ALV list lt_cvers 
  CALL FUNCTION 'REUSE_ALV_LIST_DISPLAY' 
    EXPORTING 
      it_fieldcat = feldcat 



 

 

111 / 
 

    TABLES 
      t_outtab    = lt_cvers 
    EXCEPTIONS 
      OTHERS      = 2. 
  IF sy-subrc <> 0. 
    " no error handling in this example 
    EXIT. 
  ENDIF. 
ENDFORM.                                                    
 

"list_cvers 



 

 

112 / 
 

111222      AAAPPPPPPEEENNNDDDIIIXXX   333:::   XXXSSSLLL   TTTRRRAAANNNSSSFFFOOORRRMMMAAATTTIIIOOONNNSSS   (((XXXSSSLLLTTT)))   
 
Since Release 6.10 of the SAP Web Application Server (SAP Web AS), XSL 
Transformations (XSLT) have been integrated in ABAP via the CALL 
TRANSFORMATION command. XSLT is the most powerful and advanced 
technology available for the transformation of XML documents. XML data can be 
transformed into ABAP data structures and vice versa; however, XSLT is not limited 
to those types of output. You can also generate HTML documents or plain text files 
that are made available as loadable assets to other applications. XSLT is widely used 
and well documented, we don’t intend to give all the information in this document – 
just a brief start point - you can find useful links in the end of this appendix. In EXC 
we use these transformations for formatting input and output XML messages and for 
XML to asXML conversion. 

111222...111   CCCRRREEEAAATTTIIINNNGGG   TTTRRRAAANNNSSSFFFOOORRRMMMAAATTTIIIOOONNNSSS   
The easiest way to create an XSLT is using Object Navigator (SE80) as show on 
images below. 

Image: Create Transformation 

 
 

Image: Choose XSLT Program 

 



 

 

113 / 
 

The XSLT program might look something like this – template SOAP to asXML XSLT: 
 
<xsl:transform version="1.0" xmlns:xsl=http://www.w3.org/1999/XSL/Transform 
xmlns:nsm="urn:sap-com:document:sap:soap:functions:mc-style"> 
 
 <xsl:template match="nsm:*"> 
  <xsl:call-template name="asXML"/> 
 </xsl:template> 
 
 <xsl:template name="asXML"> 
  <asx:abap xmlns:asx="http://www.sap.com/abapxml" version="1.0"> 
   <asx:values> 
    <xsl:call-template name="Uppercase"/> 
   </asx:values> 
  </asx:abap> 
 </xsl:template> 
 
 <xsl:template name="Uppercase"> 
  <xsl:for-each select="*"> 
   <xsl:element name="{translate(local-name(.), 
'qwertyuiopasdfghjklzxcvbnm','QWERTYUIOPASDFGHJKLZXCVBNM')}"> 
    <xsl:value-of select="text()"/> 
    <xsl:call-template name="Uppercase"/> 
   </xsl:element> 
  </xsl:for-each> 
 </xsl:template> 
</xsl:transform> 
 

111222...222   DDDEEEBBBUUUGGGGGGIIINNNGGG   XXXSSSLLLTTT   IIINNN   SSSAAAPPP   
When you create and open XSLT in Object Navigator (SE80), you can press  
button to test it,  button to debug it, or you can do it in XSLT Tester 
(transaction XSLT), which is the program called by Object Navigator anyway. 
 

Image: XSLT Tester transaction 

 



 

 

114 / 
 

111222...333   LLLIIINNNKKKSSS   TTTOOO   XXXSSSLLLTTT   DDDOOOCCCUUUMMMEEENNNTTTAAATTTIIIOOONNN   
 
W3C - The Extensible Stylesheet Language Family (XSL) 
W3C - XSL Transformations (XSLT) 
W3C - XML Path Language (XPath) 
 
SAP Transformation Editor 
SAP XSLT Processor Reference 
SAP XSLT Debugger 
 
And a lot more out there... 
 
 
 
 
+++ End of document +++ 

http://www.w3.org/Style/XSL/�
http://www.w3.org/TR/xslt�
http://www.w3.org/TR/xpath�
http://help.sap.com/saphelp_nw04/helpdata/en/a8/824c3c66177414e10000000a114084/frameset.htm�
http://help.sap.com/saphelp_nw04/helpdata/en/a8/824c3c66177414e10000000a114084/frameset.htm�
http://help.sap.com/saphelp_nw04/helpdata/en/a8/824c3c66177414e10000000a114084/frameset.htm�

	1 General, Functions, Area Menu
	1.1 Introduction
	1.1.1 What is the EPO XML Connector? – SOA layer
	1.1.2 Important naming terminology
	1.1.2.1 Inbound (calling a SAP service)
	1.1.2.2 Outbound (calling an external service)
	1.1.2.3 Overview of functionality (SAP Integration)


	1.2 System requirements
	1.3 Architecture, scalability, performance and stability
	1.3.1 Architecture
	1.3.2 Scalability
	1.3.3 Performance
	1.3.4 Stability

	1.4 EPO XML Connector Area Menu /epo1/soa7
	1.5 Functions and features
	1.5.1 Inbound
	1.5.2 Outbound
	1.5.3 Mapping & Interface structure definition
	1.5.4 Feature: Central data storage
	1.5.5 Feature: Reprocessing of services
	1.5.6 Feature: XSL Transformations (XSLT)
	1.5.7 Feature: SAP authorisation by service
	1.5.8 Concept of XML to ABAP and ABAP to XML transformation (Serialisation)
	1.5.9 Concept of other data format to ABAP transformation and vice versa
	1.5.9.1 SAP Inbound data conversion using EPO runtime
	1.5.9.2 SAP Outbound data conversion using EPO Client



	2 Initial configuration
	2.1 Upload license key
	2.2 Create number range(s)
	2.3 Activate services

	3 EPO XML Connector services configuration & development
	3.1 Definition of Services (Inbound & Outbound)
	3.2 Authorisation object
	3.3 Inbound: EPO Runtime
	3.3.1 Stateful (session) handler
	3.3.2 Using http(s)
	3.3.2.1 Important http headers

	3.3.3 Using file, ftp
	3.3.4 Creating EPO runtime - Integration guide for HTTP protocol
	3.3.4.1 Define interfaces - request and response XML messages
	3.3.4.2 Create EPO runtime service
	3.3.4.3 Configure EPO runtime service
	3.3.4.4 Create processing function module
	3.3.4.5 Create WSDL for Service using XML Transmitter

	3.3.5 Creating EPO runtime - Integration guide for FILE protocol
	3.3.6 Testing an EPO runtime service
	3.3.6.1 Using http
	3.3.6.2 Using file, ftp

	3.3.7 EPO runtime error XML message
	3.3.8 EPO runtime example services

	3.4 Inbound: SAP runtime
	3.4.1 SAP  Runtime (Web Service SOAP) - inbound
	3.4.2 Creating SAP runtime - Integration guide
	3.4.2.1 Create a Web service from a function module
	3.4.2.2 Create reference (alias) to the web service under the srthandler
	3.4.2.3 Release the reference using transaction WSCONFIG
	3.4.2.4 Create SAP runtime service for EPO XML Connector
	3.4.2.5 Configure SAP runtime service
	3.4.2.6 Set additional HTTP headers for (re-)processing
	3.4.2.7 WSDL of the web service
	3.4.2.8 Testing a SAP runtime service
	3.4.2.9 SAP runtime example services


	3.5 Outbound: EPO Client
	3.5.1 Using HTTP(s)
	3.5.2 Using FILE, FTP
	3.5.3 Using UM - SAP Mail, E-Mail via SCOT and Customer defined
	3.5.4 /epo1/epoclient function module interface
	3.5.5 Creating EPO Client - integration guide
	3.5.5.1 Create EPO Client service
	3.5.5.2 Configure EPO Client service
	3.5.5.3 Set additional HTTP headers if needed
	3.5.5.4 Create program to call /epo1/epoclient function module
	3.5.5.5 Testing an EPO Client service


	3.6 Outbound: SAP Client
	3.6.1 Creating SAP Client - integration guide
	3.6.1.1 Generate ABAP client proxy
	3.6.1.2 Create Logical Port for Generated Client Proxy
	3.6.1.3 Create SAP Client service
	3.6.1.4 Configure SAP Client service
	3.6.1.5 Create program to call SAP Client
	3.6.1.5.1 /epo1/sapclient method interface

	3.6.1.6 Testing a SAP Client service



	4 Generic function module call (implemented in EPO runtime)
	4.1 Set up: Service for Generic Function Module Call
	4.2 WSDL generation in XML Transmitter for SAP function module
	4.2.1 Structure of the EXC GFMC WSDLs:

	4.3 Testing the WSDL (the SAP function) in XML Transmitter

	5 Public function modules - request/response API
	5.1 /epo1/exc_store_request interface
	5.2 /epo1/exc_store_response interface

	6 Monitoring functionality
	6.1 Setting up monitoring profiles
	6.1.1 Monitoring custom exit function modules

	6.2 EPO XML Connector Monitor

	7 Message data maintenance (Inbound & Outbound)
	7.1 (Re) Process a stored XML request message
	7.2 Download and edit a stored XML message
	7.3 Upload a stored XML message
	7.4 File upload of a new XML request message (instead of using http)

	8 Administration of the EPO XML Connector
	8.1 Archiving XML messages
	8.2 Ad-hoc data operations
	8.2.1 Download XML messages to directory
	8.2.2 Upload XML messages from directory
	8.2.3 Insert new XML messages from directory

	8.3 Other administrative functions

	9 Integration solutions based on EXC
	9.1 xHTML interactive forms
	9.1.1 xHTML Output for EPO Runtime and Client
	9.1.2 xHTML Output Configuration
	9.1.3 xHTML Output Prefill FM Interface
	9.1.4 xHTML Output Prefill FM Creation

	9.2 Metastorm BPM / SAP Integration
	9.2.1 Integration of Metastorm BPM using Web Services
	9.2.2 Integration of Metastorm BPM using file interfaces
	9.2.3  Using B2B Integrator for Metastorm BPM

	9.3 MS Excel / SAP Integration

	10 Appendix 1: Using XML Transmitter for testing and deploying Web Services
	11  Appendix 2: Demonstration of ABAP Serialisation
	12  Appendix 3: XSL Transformations (XSLT)
	12.1 Creating transformations
	12.2 Debugging XSLT in SAP
	12.3 Links to XSLT documentation


