
Extension Builder 5.5 for WYSIWYG Web Builder 11

Introduction
Extension Builder is a utility to build your own extensions for WYSIWYG Web Builder

11.0 or newer. Extension Builder can be used to share code snippets, scripts, flash

components and other web widgets in one single .wbx file that can be used by

users in the same way as other objects in the WYSIWYG Web Builder toolbox.

Key features:

 Start building your own extensions within minutes without the need for an

external programming tool.

 Convert your scripts or Flash applications into a WYSIWYG Web Builder object

and share them with other users.

 Define properties to control the behavior of the HTML like text, colors, fonts,

links and a special gallery option!

 All properties you define can be edited by the user through a generic dialog.

You can also categorize the properties.

 ‘Live HTML rendering’, the results of the HTML will be directly visible within

Web Builder for most extensions.

 Many types of image galleries can be created, using XML templates.

 All files will be embedded within the extension, so the output is only 1 file

Note: This utility is for advanced users only. Some knowledge of HTML/XML

is required!

In Extension Builder you can define HTML code, attach additional files and specify

properties to control the behavior of your object. In this document you will find a

brief description of the available options and a few examples to help you get started.

Menu Options

File Menu

New

Creates a new extension project. All information that you input will be stored

in a project file with the file type .xwb. Note that in order to save the

extension in .wbx format you must use the 'build extension' option! This will

generate a .wbx file (web builder extension).

Open

Opens an existing extension project.

New extension wizard

The wizard provides a step by step process for building a new extension.

Save

Save the active extension project.

Save As

Save the active extension project with a new name.

Most recently used files

A list of the most recently used files, select the filename to open the project.

Exit

Quits the application.

View Menu

Menubar

Show or hide the menubar.

Toolbar

Show or hide the toolbar.

Statusbar

Show or hide the status bar.

Build Menu

Build extension

This option will compile the extension and create one single file that contains

all files, code and properties. This file (with file type .wbx) can be loaded by

web builder. The file will be saved in the same folder as your project file.

Tools Menu

Test XSL template

This option can be used to test XSL templates for datasets, galleries and

navigation menus. The Input field specifies the input XML data. The tool will

automatically generated some example data for the selected Type, but you

can also modify it, if needed. The Template field specifies the XSL template

code. Use the Transform button to process the data/template. The result will

be displayed in the Result field. See the examples later in this document for

more details about XSL templates.

Set Extensions Folder

Use this option to select the extension folder for WYSIWYG Web Builder.

If this folder is set then Extension Builder will make a copy of the extension to

this folder after it has been build.

Normally the extension folder is located in:

My Documents\WYSIWYG Web Builder\system\extensions\

General Page

Extension title

This is the name that will be displayed in the toolbox of WYSIWYG Web Builder.

Description

Description that will be displayed in the Extension.

Version

Specifies the version number of the extension.

The version number consists of 4 numbers separated by dots: 1.0.0.0

Examples:

2.0.0.0 => Major new version

1.1.0.0 => Minor new version

1.0.1.0 => Bug fixes only

WYSIWYG Web Builder will use this version number when checking for updates if the

extension is in the official extensions database.

Toolbox bitmap

Specifies the bitmap displayed in the toolbox. The bitmap must be 16x16!

Designed for

Specifies whether the extension was designed for desktop or mobile pages.

Desktop extensions will only be displayed in the toolbox for standard pages.

Mobile extensions will only be displayed in the toolbox for mobile pages.

Use DIV container

If this option is enabled the HTML code will be inserted inside a DIV container with

size and position information by WYSIWYG Web Builder. If this option is not enabled

the HTML code will be inserted “AS IS”, without size and position information.

Use jQuery Theme

Enable this option if your extension uses jQuery themeroller. WWB will automatically

include the theme selected by the user (in Page Properties).

Disable debug

Prevents users from debugging your extension in WWB.

Enable Layer

Enable this option to turn the extension into a container for other objects. This can

be useful to create a layer or form-like extension. Use the predefined $OBJECTS$

variable to include the HTML of the objects in your code.

Example: <form action=””>$OBJECTS$</form>

Notes:

- The $OBJECTS$ variable can only be used in code between <body></body>

tags!

- This feature is only available in WYSIWYG Web Builder 11.5 and newer!

jQuery

One of the new features in WWB8 is the built-in support for jQuery.

If your extension uses jQuery then you do not have to include any code for that!

Simply click the ‘JQuery’ button, select the jQuery modules required by your

extension and Web Builder will automatically add the code and files for you!

Tip: If your project already includes references to one of these modules remember to

remove the code to prevent duplicated entries in the HTML page. For example: do

not include references to ‘jquery-x.x.x.min.js’ in your code!

Render method

The render method specifies how WYSIWYG Web Builder will draw the extension in

the designer workspace. For practical reason it’s not always best to implement

extensions as ‘What-You-See-Is-What-You-Get’ (live HTML rendering). So there for

there are 3 different render methods to choose from.

 Display text

This option will display a text. This is the quickest render method and it will

not use many system resources. This text will not be used in the final HTML

code.

 Display image

This will draw a static image as a 'place holder' for your object. This image

will not be used in the final HTML code.

 Live HTML rendering

This will use the HTML code as specified in HTML->Code Between <BODY>

tag to render the object inside the web builder workspace. This method may

use many system resources depending on the HTML code. Also note that only

the <BODY> code will be parsed. HTML from the <HEAD> will not be

interpreted by WYSIWYG Web Builder. It’s also possible to specify HTML code

that will only be used for rendering. See ‘Render HTML’ for more details.

Sorted Categories/ Sorted Values

Specifies whether property categories/values will be sorted alphabetically. If this

option is not enabled then the categories will be displayed in the same order as they

appear in the Extension Builder properties overview.

Remember expanded/collapsed state

If this option is enabled then the property categories in the extension will have the

same expanded/collapse state as in the properties overview. This can be useful if

you do not want all categories initially opened so the user is not presented with all

properties at once.

Include Events

Enable this option if you want to include the ‘Events’ property (which displays the

standard ‘Events’ dialog). Use the predefined $EVENTS$ variable to include the

selected events in your code. Example: …

Copyrights

Original developer and website of the HTML, scripts and files.

HTML Page
Before <html> tag

This code will be inserted before the <html> tag. This section of the HTML document

is common for server sided scripts like PHP or ASP.

Between <head> tag

This code will be inserted between the <head> tag. This section of the HTML

document is common for non-visible HTML code. Like file includes and style sheets.

Between <style> tag (requires WWB 10.3.3 or higher)

This (CSS) code will be inserted between the <style> tag.

If you want to insert CSS code specifically for media queries/breakpoints then you

can do that like this:

// other styles here…

// ...

@media $BREAKPOINT$

{

.yourclass

{

 left: $LEFT$px;

 top: TOPpx;

 width: $WIDTH$px;

 height: $HEIGHT$px;

}

#ID

{

 width: $WIDTH$px;

 height: $HEIGHT$px;

 float: left;

 }

}

$BREAKPOINT$ will be replaced by the actual media queries. So the final code may

look something like this:

@media only screen and (max-width: 320px)

{

.yourclass

{

 left: 0px;

 top: 0px;

 width: 250px;

 height: 250px;

}

#Extension1

{

 width: 250px;

 height: 250px;

 float: left;

 }

}

The $LEFT$, $TOP, $WIDTH$ and $HEIGHT$ variables will have the position/size

values of the object in the current breakpoint.

$(document).ready() script

In this section you can place jQuery code that needs to be place inside Web Builder’s

standard $(document).ready handler. While JavaScript provides the load event for

executing code when a page is rendered, this event does not get triggered until all

assets such as images have been completely received.

In most cases, the script can be run as soon as the DOM hierarchy has been fully

constructed. The handler passed to .ready() is guaranteed to be executed after the

DOM is ready, so this is usually the best place to attach all other event handlers and

run other jQuery code. You must enable ‘jQuery’ for this option to work.

<script type="text/javascript">

$(document).ready(function()

{

 // your code will be inserted here

});

</script>

Between <body></body> tags

This code will be inserted between the <body></body> tags and inside the body

container (if the page is centered). This section of the HTML document is common for

visible HTML code.

After <body> tag (requires WWB 10.3 or higher)

The code will be inserted directly after the <body>tag and outside the body

container.

Before </body> tag (requires WWB 10.3 or higher)

The code will be inserted directly before the </body>tag and outside the body

container.

Render HTML

This code will only be used during design time. If the ‘Render method’ is set to ‘Live

HTML rendering’ then this code will be used to render the extension in the

workspace. This option can be useful if you design an extension that will only work

on a web server (for example if it required PHP). Instead of rendering the ‘real’ code,

you can now render something that will ‘look like’ the final result.

The HTML code can include variables to allow the user to change attributes and other

parts of the code. Variables can be connected to properties in the Properties Page.

Properties Page
In this section you can define the categories and properties of the extension.

Properties should be connected to variables within the HTML code.

For example, the following HTML is entered in the Code between <BODY> tag

section:

Hello World!

In this code the font-size is defined as the variable $fontsize$. This variable can be

connected to a property, which later can be modified by the user of the extension. In

this particular example the property could be defined like this:

Notes:

 Properties can be dragged & dropped between categories.

 Properties can be re-arranged with the ‘Move Up/Move Down’ buttons.

In WYSIWYG Web Builder this property will be displayed like this:

If the user selects the value ‘14’. Then the resulting HTML code will be

Hello World!

The extension builder supports the most common type of properties:

 bool

Boolean property with the options ‘true’ and ‘false’

 color

Color property, which displays a color picker.

 dataset

Here you can define a group of properties that will (in combination with a XML

template) allow the user to create a dataset. This can be useful for navigation

objects (menus), media players or other advanced elements.

 Edit

There are 4 edit field types:

1. Single line, standard text input field.

2. Multi line, useful to input multiple lines or HTML code.

3. Rich text, allows the user to input formatted text (font, size, color, bold,

italic and underline). Web Builder will convert the formatted text to HTML.

4. HTML Textbox, this will launch the HTML Textbox extension to edit the

value of the edit field, giving the user powerful editing options.

http://www.wysiwygwebbuilder.com/htmltextbox.html

The user must have the HTML Textbox installed, to be able to use it…

http://www.wysiwygwebbuilder.com/htmltextbox.html

 file

A file selection field. The selected file will be published together with the HTML

page.

The option Publish this file to the user defined target folder, copies the

specified file to the target folder for the file type (as configured in Menu-

>Tools->Options->Preview & Publish).

You can also specify a ‘fixed’ output folder in ‘Publish to folder’. For

example in your set this value to ‘pictures’ then the selected file will always

be copied to the /pictures folder (relative to the page location).

 file collection

This property will allow the user to select files to be published along with the

extension. This can be useful if multiple files need to be published to a specific

folder. For example thumbail images of a gallery. The selected file names will

not be stored in variable. The fields will only be copied to the output folder.

 ‘Publish to folder’ can either contain a fixed folder name or a variable (so

the user can specify the output folder).

 fontname

A font name picker

 fontsize

A font size picker

 gallery

An advanced image selection option with support for XML template based

HTML/XML output (using <xsl:template>). See the examples at the end of

this document for more details about this powerful option!

Enable Generate thumbnails to automatically generate thumbnail images.

You can specify the thumbnail width (required), height (required), prefix

(optional) and folder (optional). These can be hardcoded values or variable

names (for example: $thumbwidth$, $thumbheight$, $thumbfolder$).

By using variables you can let the user specify the size, prefix folder for the

thumbnails.

 navigation

Use this property to display a navigation/menu editor dialog.

This property uses a XML template to generate navigation code based on the

user input. See the examples later in this document.

This property supports two menu types:

- list

- tree

Please select the option which applies to your menu code.

List displays a list based menu editor. Only supports one level.

Tree display a tree based menu editor. Which allows the user to create multi

level menu structures.

Users also have the ability to enable ‘Synchronize with Site Manager’.

 options

An options menu to allow the user the select from multiple items.

Enable ‘editable’ if you want to allow the user to enter a value that is not in

the list. If ‘editable’ is disabled then the user can only select items from the

list.

It’s possible to specify a ‘display’ value and a ‘real’ value in the ‘Add option’

window like this: (use ~ as separator)

Yes~123456

No~987654

where the first value before ‘~’ is the display value and the second value will

be used as the real value. The user will only see ‘Yes’ (and not ‘123456’) in

the option list. If the user select ‘Yes’, the actual value will be ‘123456’.

Note: the Default value should not include the ‘real’ value.

 numeric

Useful for collecting numeric values. You can specify the minimum and

maximum value.

 theme

This option is deprecated. To make use of jQuery themes, please enable ‘Use

jQuery Theme’ in ‘General’ options.

 url

An URL input field with support for internal and external links.

Files Page
In this section you can select files that will be included in the extension. This can be

javascripts, flash files, images etc. When the page is published all these files also will

be published. Files can be organized in folders and you can also specify if files need

to be processed before publishing. In that case the variables in the file will be

replaced by the values of the matching properties.

New Folder

Click this button to create a new folder.

Add File(s)

Click this button to add one or more files.

The filename can also be a variable ($javascript.js$, $gallery$.xml,

file$variable$.txt). In that case the user can control the name of the file through a

property of the type ‘edit’.

Tip: rename the file on disk before adding it to the list. So the input file must also be

named $javascript.js$, $gallery$.xml etc.

Add Folder

Insert a complete folder and all files it contains.

Delete

Click this button to delete the selected item.

Properties

Click this button to view or edit the properties of the selected item.

Enable the option ‘This file requires processing’ to replace variables with the

current property values. For example if the color value in a HTML files needs to be

controlled through properties, then you defined a property in the ‘Properties page’.

Preview Page
In this page you can preview the extension without having to start WYSIWYG Web

Builder. It’s possible to modify the properties just like in Web Builder and preview

the results in the (default) browser. The values of the properties will be saved

between sessions, so the next time you preview the extension you do not have to

enter them again.

It's also possible to change the browser that is used for previewing. Click the

Preview in Browser button and select ‘Edit Browser List’ to add/edit the list of

browsers that can be used to preview the pages you are working on.

Examples

In this section you will find a few examples to help you get started to create your

first extension.

Example 1
Let’s start with a very simple example. This extension will do not much more than

display a text. The text, font and color of the text can be modified by the user.

Step 1

Select Menu->File->New to create a new project.

Click the General tab to enter the general settings of the new extension.

 Set the Extension title to ‘SimplyText’.

 Select a bitmap for the toolbar icon. If you leave this field empty the default

icon will be used.

 Set the minimum width and height to 50.

 Enable ‘Use DIV’

 Set the Render method to ‘Live HTML rendering’.

Step 2

Click the HTML tab. Now we will specify the HTML code for the extension.

Copy/paste the following code to the Code between <BODY> tag field:

<font style="font-size:$size$px;font-family:$fontname$;"

color=”$color$”>$text$

This simply piece of code has 4 variables:

$size$, specifies the size of the text.

$fontname$, specifies the font of the text.

$color$, specifies the color of the text.

$text$, specifies the displayed text.

Step 3

Click the Properties tab. This is where we will specify the properties which the user

can modify.

For this extension we add a single category.

 Click ‘Add Category’, enter ‘General’ and click OK.

 To add properties to this category, make sure the text ‘General’ is selected

before you click the ‘Add Property’ button.

 Insert 4 new properties and give them the following values:

Name Description Type Variable Default value

Text Specifies the text edit $text$ Hello World!

Color Specifies the color of the text color $color$ #000000

Font Specifies the font fontname $font$ Arial

Size Specifies the size fontsize $size$ 12

Step 4

Select Menu->File->Save As and save the project as simpletext.xwb

Step 5

The final step is to build the extension so it can be used in WYSIWYG Web Builder.

Select Menu-> Build->Build extension. A file called simpletext.wbx will be created in

the same folder as the project file.

Congratulations, you have created your first extension for WYSIWYG Web Builder!

Example 2
In this second example we’re going to demonstrate the use of external files.

We will create an extension based on a very cool effect by Christian Effenberger

called ‘Curl’.

Step 1

First let’s visit the website http://www.netzgesta.de/curl/ and download the script.

The file is called curl.zip. After you’ve downloaded the file you must unzip the files,

for example in c:\javascripts\curl\.

Note that in this example we will only need the file curl.js

Step 2

Select Menu->File->New to create a new project.

Click the General tab to enter the general settings of the new extension.

 Set the Extension title to ‘Curl’.

 Select a bitmap for the toolbar icon. If you leave this field empty the default

icon will be used.

 Set the minimum width and height to 50.

 Enable ‘Use DIV’

 Set the Render method to ‘Live HTML rendering’.

Note: the effect will not be applied to the image in design mode. You must

preview of publish the page to see the effect!

Step 3

Click the HTML tab.

Copy/paste the following code to the Code between <HEAD> tag field:

<script type="text/javascript" src="curl.js"></script>

http://www.netzgesta.de/curl/

Step 4

Click the HTML tab.

Copy/paste the following code to the Code between <BODY> tag field:

Step 5

Click the Properties tab. Now we will specify the properties the user can modify.

 Click ‘Add Category’, enter ‘General’ and click OK.

 To add properties to this category, make sure the text ‘General’ is selected

before you click the ‘Add Property’ button.

 Insert 2 new properties and give them the following values:

Name Description Type Variable Default value

Image Specifies the image file $image$

Alternate Text Specifies the alternate text edit alt

Step 6

Click the Files tab. Here we will specify the files that will be embedded in the

extension.

 Select ‘Embedded Files’ and click ‘Add file(s)’

 Find ‘curl.js’ on your local disk. This is one of the files you’ve extracted in in

step 1!

 Click ‘Open’ to add the file to the list.

Step 7

Select Menu->File->Save As and save the project as curl.xwb

Step 8

The final step is to build the extension so it can be used in WYSIWYG Web Builder.

Select Menu-> Build->Build extension. A file called curl.wbx will be created in the

same folder as the project file.

Note that the file ‘curl.js’ will be embedded inside the extension, there is no need to

distribute the file separately.

The curl script supports many other features, but to keep this example

understandable we’ve only implemented the basics. However it’s easy to add more

properties.

Let’s say you want to control the size of the curl:

1. Change the code of step 4 to
<img src="$image$" alt="alt" border="0" class="curl

isize$isize$">

2. Add a new property:

Name: Size

Description: Specifies the size of the curl

Type: edit

Variable: $isize$

Default value: 33

Example 3
A popular type of extension is the image gallery. We’ve tried to come up with a

generic way of implementing images galleries, but at the same time support many

different types of galleries. We have done this by using XML templates

<xsl:template>.

In this example we will not create a real image gallery (yet), but we’ll just give a

demonstration how to use <xsl:template>. We will simply display the names of all

selected images. In the next example we will use the same technique to build a real

image gallery.

Step 1

Select Menu->File->New to create a new project.

Click the General tab to enter the general settings of the new extension.

 Set the Extension title to ‘Image Info’.

 Select a bitmap for the toolbar icon. If you leave this field empty the default

icon will be used.

 Set the minimum width and height to 50.

 Enable ‘Use DIV’

 Set the Render method to ‘Live HTML rendering’.

Step 2

Click the HTML tab. Now we will specify the HTML code for the extension.

Copy/paste the following code to the Code between <BODY> tag field:

$image_info$

Note that we’ve added only a single variable with the name $image_info$.

This will be used as a place holder for the actual HTML code which will be generated

based on a XML template. See step 3.

Step 3

Click the Properties tab.

 Click ‘Add Category’, enter ‘General’ and click OK.

 To add properties to this category, make sure the text ‘General’ is selected

before you click the ‘Add Property’ button.

 Insert 1 new property and give it the following values:

Name Description Type Variable Default value

Images Specifies the images gallery $image_info$

Because we have selected the ‘gallery ‘ type we must also specify a xml template.

This template will tell WYSIWYG Web Builder what HTML/XML must be generated for

the gallery. In step 4 we will create this template file.

Step 4

Now we will create the template for code generation. Open notepad (or another text

editor). Create a new file and copy/paste the code below:

<?xml version="1.0" encoding="UTF-8"?>

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

version="1.0">

<xsl:template match='/'>

<table border="1">

<xsl:for-each select="GALLERY/IMAGE">

<tr>

<td><xsl:value-of select="FILENAME"/></td>

<td><xsl:value-of select="URL"/></td>

</tr>

</xsl:for-each>

</table>

</xsl:template>

</xsl:stylesheet>

Save the file as ‘imageinfo.xsl’.

Since an XSL style sheet is an XML document, it always begins with the XML

declaration: <?xml version="1.0" encoding="UTF-8"?>.

The next element, <xsl:stylesheet>, defines that this document is an XSLT style

sheet document (along with the version number and XSLT namespace attributes).

The <xsl:template> element defines a template. The match="/" attribute

associates the template with the root of the XML source document.

The content inside the <xsl:template> element defines the HTML to write to the

output.

Everything inside the <xsl:for-each> element will be repeated for each image in

the gallery. The <xls:value-of select=”xxxxx”> element will be replaced with the

actual properties of the current image.

The following values are available for the select attribute:

FILENAME

The filename of the current image.

URL

The URL for the current image (optional)

TARGET

The target for the URL (optional)

TITLE

The title for the current image (optional).

DESCRIPTION

The description for the current image (optional).

WIDTH

The width of the image (optional).

HEIGHT

The height of the image (optional).

THUMB

The name of the thumbnail image (optional).

This will only be included if ‘Enable thumbnails’ is on.

THUMB_WIDTH

The width of the thumbnail image (optional).

This will only be included if ‘Enable thumbnails’ is on.

THUMB_HEIGHT

The height of the thumbnail image (optional).

This will only be included if ‘Enable thumbnails’ is on.

When the page is published the resulting HTML may look like this:

<table border="1">

<tr>

<td>photo01.jpg</td>

<td>photo 01</td>

<td>This is the first photo</td>

</tr>

<tr>

<td>photo02.jpg</td>

<td>photo 02</td>

<td>This is the second photo</td>

</tr>

<tr>

<td>photo03.jpg</td>

<td>photo 03</td>

<td>This is the third photo</td>

</tr>

</table>

More information about xml templates is available online:

http://www.w3schools.com/xsl/xsl_templates.asp

Step 5

Select Menu->File->Save As and save the project as imageinfo.xwb

Step 6

The final step is to build the extension so it can be used in WYSIWYG Web Builder.

Select Menu-> Build->Build extension. A file called imageinfo.wbx will be created in

the same folder as the project file.

http://www.w3schools.com/xsl/xsl_templates.asp

XML template extra info

The XML template syntax is very powerful. It supports many additional features.

Just to give you an idea, here are a few examples.

Example 3.1 - Sorting items.

Replace the code in step 4 with:

<?xml version="1.0" encoding="UTF-8"?>

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

version="1.0">

<xsl:template match='/'>

<table border="1">

<xsl:for-each select="GALLERY/IMAGE">

<xsl:sort select="FILENAME"/>

<tr>

<td><xsl:value-of select="FILENAME"/></td>

<td><xsl:value-of select="URL"/></td>

</tr>

</xsl:for-each>

</table>

</xsl:template>

</xsl:stylesheet>

The items will now be sorted on filename.

Example 3.2 - Filtering items.

Replace the code in step 4 with:

<?xml version="1.0" encoding="UTF-8"?>

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

version="1.0">

<xsl:template match='/'>

<table border="1">

<xsl:for-each select="GALLERY/IMAGE">

<xsl:if test="contains(FILENAME, '.jpg')">

<tr>

<td><xsl:value-of select="FILENAME"/></td>

</tr>

</xsl:if>

</xsl:for-each>

</table>

</xsl:template>

</xsl:stylesheet>

Only filenames with the .jpg extension will be displayed/used.

The complete documentation of the syntax is available on the Microsoft MSDN

website:

http://msdn.microsoft.com/en-us/library/ms256058(VS.85).aspx

http://msdn.microsoft.com/en-us/library/ms256058(VS.85).aspx

Example 4
Now it’s time to create a more advanced image gallery…

We will use LiteBox (a modified version of LightBox v2.0) for this example.

Step 1

You can download the script from this website: http://www.doknowevil.net/litebox/

Unzip the files to a folder on your computer.

Step 2

Select Menu->File->New to create a new project.

Click the General tab to enter the general settings of the new extension.

 Set the Extension title to ‘LiteBox’.

 Select a bitmap for the toolbar icon. If you leave this field empty the default

icon will be used.

 Set the minimum width and height to 50.

 Enable ‘Use DIV’

 Set the Render method to ‘Display text only’.

 Set the display text to ‘LiteBox Extension’.

Step 3

Click the HTML tab.

Copy/paste the following code to the Code between <HEAD> tag field:

 <link rel="stylesheet" href="css/lightbox.css" type="text/css"
media="screen" />

<script type="text/javascript" src="js/prototype.lite.js"></script>

<script type="text/javascript" src="js/moo.fx.js"></script>

<script type="text/javascript" src="js/litebox-1.0.js"></script>

<script type="text/javascript">

window.onload = function()

{

 initLightbox();

}

</script>

Step 4

Click the HTML tab.

Copy/paste the following code to the Code between <BODY> tag field:

 $litebox_images$

Note that we’ve added only a single variable with the name $litebox_images$.

This will be used as a place holder for the actual HTML code which will be generated

based on a XML template. See step 5.

Step 5

Click the Properties tab.

 Click ‘Add Category’, enter ‘General’ and click OK.

 To add properties to this category, make sure the text ‘General’ is selected

before you click the ‘Add Property’ button.

 Insert 3 new properties and give them the following values:

Name Description Type Variable Default value

Images Specifies the images gallery $litebox_images$

Width Specifies the thumbnail width edit $width$ 100

Height Specifies the thumbnail height edit $height$ 100

Because we have selected the ‘gallery ‘ type we must also specify a xml template.

This template will tell WYSIWYG Web Builder what HTML/XML must be generated for

the gallery. In step 6 we will create this template file.

Step 6

Now we will create the template for code generation. Open notepad (or another text

editor). Create a new file and copy/paste the code below:

<?xml version="1.0" encoding="UTF-8"?>

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

version="1.0">

<xsl:template match='/'>

<xsl:for-each select="GALLERY/IMAGE">

<img

src="{FILENAME}" width="$width$" height="$height$" border="0"

alt="{DESCRIPTION}" />

</xsl:for-each>

</xsl:template>

</xsl:stylesheet>

Save the file as ‘litebox.xsl’.

Go back to the properties and configure this file for the ‘Images’ property.

Step 7

Click the Files tab. Here we will insert the files from the litebox zip package (see step

1).

The litebox files are organized into 3 separate folders. Click ‘New Folder’ to add these

folders to the embedded file structure:

css

images

js

Add the file ‘lightbox.css’ to the css folder.

Add the files ‘prototype.lite.js’, ‘litebox-1.0.js’ and moo.fx.js’ to the js folder.

Add the files ‘nextlabel.gif’, ‘prevlabel.gif’, blank.gif’, ‘closelabel.gif’ and ‘loading.gif’

to the images folder.

Step 8

Select Menu->File->Save As and save the project as litebox.xwb

Step 9

The final step is to build the extension so it can be used in WYSIWYG Web Builder.

Select Menu-> Build->Build extension. A file called litebox.wbx will be created in the

same folder as the project file.

Example 5
Here’s yet another image gallery example: Flash Carousel Slideshow by Saverio

Caminiti. This time we will let Web Builder create a XML data file. Usually such a file

is used by flash based image galleries.

Step 1

You can download the Flash Carousel SlideShow from this website:

http://www.flshow.net/

Unzip the files to a folder on your computer.

Step 2

Select Menu->File->New to create a new project.

Click the General tab to enter the general settings of the new extension.

 Set the Extension title to ‘Carousel’.

 Select a bitmap for the toolbar icon. If you leave this field empty the default

icon will be used.

 Set the minimum width and height to 50.

 Disable ‘Use DIV’ (uncheck!)

 Set the Render method to ‘Display text only’.

Set the display text to ‘Carousel Extension’.

Step 3

Click the HTML tab.

Copy/paste the following code to the Code between <BODY> tag field:

<div

style="position:absolute;left:$LEFT$px;top:TOPpx;width:$WIDTH$px;height:$HEIGHT$px

;z-index:Z_INDEX">

<object width="$WIDTH$" height="$HEIGHT$" classid="clsid:D27CDB6E-AE6D-11cf-96B8-

444553540000"

codebase="http://download.macromedia.com/pub/shockwave/cabs/flash/swflash.cab#versio

n=9,0,0,0">

<param name="movie" value="Carousel.swf" />

<param name="flashvars" value="xmlfile=carousel.xml" />

<param name="quality" value="High" />

<param name="bgcolor" value="#FFFFFF" />

<embed src="Carousel.swf" quality="High" type="application/x-shockwave-flash"

pluginspage="http://www.macromedia.com/go/getflashplayer">

</embed>

</object>

</div>

Note:

The variables ID, $LEFT$, TOP, $WIDTH$, $HEIGHT$ and Z_INDEX are

predefined variables. They will be replaced by the actual position and size of the

object. These variables can only be used if ‘Use DIV’ is disabled!

Step 4

Click the Files tab. Insert the Carousel.swf file.

Step 5

The carousel flash slideshow needs a XML configuration file to work properly.

The configuration file contains the properties of the carousel and the images to be

displayed.

Create a new file in notepad. Copy/paste the code below:

<slide_show>

 <options>

 <debug>false</debug>

 <background>0xFFFFFF</background>

 <interaction>

 <rotation>mouse</rotation>

 <speed>180</speed>

 <view_point>mouse</view_point>

 <console>onClick</console>

 </interaction>

 <far_photos>

 <size>50</size>

 <amount>25</amount>

 <transparency>false</transparency>

 </far_photos>

 <reflection>

 <amout>$amout$</amout>

 <blur>$blur$</blur>

 <distance>$distance$</distance>

 <alpha>$alpha$</alpha>

 </reflection>

 </options>

 $photos$

</slide_show>

This code has 5 variables. 4 of them are to control the reflection ($amout$, $blur$,

$distance$ and $alpha$). If you like you can also replace all other static values with

variables (like the rotation speed, far photo size etc).

The $photos$ variable is a reference to a XML template that we will create in one of

the next steps.

Save the file as ‘carousel.xml’ and insert this file to the list in extension builder.

Select ‘carousel.xml’ in the list and click ‘Properties’. Enable ‘This file requires

processing’, so that the variables inside the XML file will be replaced with the user’s

selections.

Step 6

Click the Properties tab.

 Click ‘Add Category’, enter ‘General’ and click OK.

 To add properties to this category, make sure the text ‘General’ is selected

before you click the ‘Add Property’ button.

 Insert 1 property and give it the following values:

Name Description Type Variable Default value

Images Specifies the images gallery $photos$

Because we have selected the ‘gallery ‘ type we must also specify a xml template.

This template will tell WYSIWYG Web Builder what HTML/XML must be generated for

the gallery. In step 7 we will create this template file.

 Click ‘Add Category’, enter ‘Reflection’ and click OK.

 To add properties to this category, make sure the text ‘Reflection’ is selected

before you click the ‘Add Property’ button.

 Insert the 4 properties for the reflection:

Name Description Type Variable Default value

Amout Specifies the reflection’s amout edit $amout$ 200

Blur Specifies the reflection’s blur edit $blur$ 15

Distance Specifies the reflection’s distance edit $distance$ 10

Alpha Specifies the reflection’s alpha edit $alpha$ 75

Step 7

Now we will create the template for code generation. Open notepad (or another text

editor). Create a new file and copy/paste the code below:

<?xml version="1.0" encoding="UTF-8"?>

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

version="1.0">

<xsl:template match='/'>

<xsl:for-each select="GALLERY/IMAGE">

<photo href="{FILENAME}" target="{TARGET}">

<xsl:value-of select="FILENAME"/>

</photo>

</xsl:for-each>

</xsl:template>

</xsl:stylesheet>

Save the file as ‘carousel.xsl’.

Go back to the properties and configure this file for the ‘Images’ property.

Step 8

Select Menu->File->Save As and save the project as carousel.xwb

Step 9

The final step is to build the extension so it can be used in WYSIWYG Web Builder.

Select Menu-> Build->Build extension. A file called carousel.wbx will be created in

the same folder as the project file.

Example 6
In this example we will demonstrate the use of the dataset property type. Just like

the gallery this uses a XML template to control the HTML output. However in this

case you will define the dataset structure. This can be useful when an extension

requires the input of multiple items like media players or navigation menus.

Let’s start with a simple example. We’ll display a list of files (selected by the user)

and a short description.

Step 1

Select Menu->File->New to create a new project.

Click the General tab to enter the general settings of the new extension.

 Set the Extension title to ‘File List’.

 Select a bitmap for the toolbar icon. If you leave this field empty the default

icon will be used.

 Set the minimum width and height to 50.

 Enable ‘Use DIV’

 Set the Render method to ‘Live HTML rendering’.

Step 2

Click the HTML tab. Now we will specify the HTML code for the extension.

Copy/paste the following code to the Code between <BODY> tag field:

$files$

Note that we’ve added only a single variable with the name $files$.

This will be used as a place holder for the actual HTML code which will be generated

based on a XML template. See step 3.

Step 3

Click the Properties tab.

 Click ‘Add Category’, enter ‘General’ and click OK.

 To add properties to this category, make sure the text ‘General’ is selected

before you click the ‘Add Property’ button.

 Insert 1 new property and give it the following values:

Name Description Type Variable Default value

Files Specifies the files dataset $files$

Because we have selected the ‘dataset’ type we must also specify a xml template.

This template will tell WYSIWYG Web Builder what HTML/XML must be generated for

the data. In step 4 we will create this template file.

Next, add these elements (click ‘Add’ to a new element):

Display name Description Type Element name Default value

File Specifies the filename file FILENAME

Description Description of the file edit DESCRIPTION

The configuration above will result in a dataset that looks something like this:

<DATASET>

 <ITEM>

 <FILENAME>filename01.mp3</FILENAME>

 <DESCRIPTION>Description 1</DESCRIPTION>

 </ITEM>

 <ITEM>

 <FILENAME>filename02.mp3</FILENAME>

 <DESCRIPTION>Description 2</DESCRIPTION>

 </ITEM>

 <ITEM>

 <FILENAME>filename03.mp3</FILENAME>

 <DESCRIPTION>Description 3</DESCRIPTION>

 </ITEM>

</DATASET>

Note the tags DATASET and ITEM will be created by Web Builder. For every item the

user adds to the list in the extension’s properties, a new ITEM will be added to the

dataset. The XML template determines how the data will be transformed to HTML

(see step 4).

Values entered in Web Builder by the user:

Tip:

Holding 'SHIFT' while clicking 'Add' in dataset properties will copy/clone the selected

item.

Step 4

Now we will create the template for code generation. Open notepad (or another text

editor). Create a new file and copy/paste the code below:

<?xml version="1.0" encoding="UTF-8"?>

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

version="1.0">

<xsl:template match='/'>

<table border="1">

<xsl:for-each select="DATASET/ITEM">

<tr>

<td><xsl:value-of select="FILENAME"/>

</td>

<td>

<xsl:value-of select="DESCRIPTION"/>

</td>

</tr>

</xsl:for-each>

</table>

</xsl:template>

</xsl:stylesheet>

Save the file as ‘filelist.xsl’.

Go back to the properties and configure this file for the ‘Files’ property.

When the page is published, the resulting HTML may look like this:

<table border="1">

<tr>

<td>filename01.mp3</td>

<td>Description 1</td>

</tr>

<tr>

<td>filename02.mp3</td>

<td>Description 2</td>

</tr>

<tr>

<td>filename03.mp3</td>

<td>Description 3</td>

</tr>

</table>

More information about xml templates is available online:

http://www.w3schools.com/xsl/xsl_templates.asp

http://www.w3schools.com/xsl/xsl_templates.asp

Step 5

Select Menu->File->Save As and save the project as filelist.xwb

Step 6

The final step is to build the extension so it can be used in WYSIWYG Web Builder.

Select Menu-> Build->Build extension. A file called filelist.wbx will be created in the

same folder as the project file.

Example 7
Here’s an example of how to create a (multi) MP3 player extension.

Step 1

Download Multiple Tracks Flash mp3 Player With Menu from this website:

http://www.premiumbeat.com/flash_resources/free_flash_music_player/

Unzip the files to a folder on your computer.

Step 2

Select Menu->File->New to create a new project.

Click the General tab to enter the general settings of the new extension.

 Set the Extension title to ‘Multi MP3 Player’.

 Select a bitmap for the toolbar icon. If you leave this field empty the default

icon will be used.

 Set the minimum width and height to 50.

 Disable ‘Use DIV’ (uncheck!)

 Set the Render method to ‘Display text only’.

Set the display text to ‘Placeholder for MP3 Player Extension’.

Step 3

Click the HTML tab.

Copy/paste the following code to the Code between <HEAD> tag field:

<script type="text/javascript" src="swfobject.js"></script>

http://www.premiumbeat.com/flash_resources/free_flash_music_player/

Step 4

Copy/paste the following code to the Code between <BODY> tag field:

<div id="flashPlayer" style="position:absolute; left:$LEFT$px; top:TOPpx;

width:$WIDTH$;height:$HEIGHT$; z-index:Z_INDEX">

This text will be replaced by the flash music player.

</div>

<script type="text/javascript">

var so = new SWFObject("playerMultipleList.swf", "mymovie", "$WIDTH$", "$HEIGHT$",

"7", "#FFFFFF");

so.addVariable("playerSkin", "$playerskin$");

so.addVariable("autoPlay", "$autoplay$");

so.addVariable("playlistPath", "playlist.xml");

so.write("flashPlayer");

</script>

Note:

The variables ID, $LEFT$, TOP, $WIDTH$, $HEIGHT$ and Z_INDEX are

predefined variables. They will be replaced by the actual position and size of the

object.

Step 5

Click the Files tab. Insert swfobject.js and playerMultipleList.swf.

Step 6

Create a new file in notepad. Copy/paste the code below:

<?xml version="1.0" encoding="UTF-8"?>

<xml>

 $tracks$

</xml>

The $tracks$ variable is a reference to a XML template that we will create in one of

the next steps.

Save the file as ‘playlist.xml’ and insert this file to the list in extension builder.

Select ‘playlist.xml’ in the list and click ‘Properties’. Enable ‘This file requires

processing’, so that the variables inside the XML file will be replaced with the user’s

selections.

Step 7

Click the Properties tab.

 Click ‘Add Category’, enter ‘General’ and click OK.

 To add properties to this category, make sure the text ‘General’ is selected

before you click the ‘Add Property’ button.

 Insert the following properties:

Name Description Type Variable Default Options

MP3 Files Select the files to be played dataset $tracks$

PlayerSkin Skin of the player Options $playerskin$ 4 1, 2, 3, 4, 5

AutoPlay Enable auto play Options $autoplay$ no no, yes

Because we have selected the ‘dataset‘ type we must also specify a xml template.

This template will tell WYSIWYG Web Builder what HTML/XML must be generated for

the gallery. In step 8 we will create this template file.

Next, add these elements to the dataset (MP3 Files):

Display name Description Type Element name Default value

Path Specifies the path of the MP3 file file PATH

Title Specifies the title edit TITLE

Step 8

Now we will create the template for code generation. Open notepad (or another text

editor). Create a new file and copy/paste the code below:

<?xml version="1.0" encoding="UTF-8"?>

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

version="1.0">

<xsl:output method="xml" indent="yes"/>

<xsl:template match='/'>

<xsl:for-each select="DATASET/ITEM">

<track>

 <path><xsl:value-of select="PATH"/></path>

 <title><xsl:value-of select="TITLE"/></title>

</track>

</xsl:for-each>

</xsl:template>

</xsl:stylesheet>

Save the file as ‘multimp3.xsl’.

Go back to the properties and configure this file for the ‘MP3 Files’ property.

Step 8

Select Menu->File->Save As and save the project as multimp3.xwb

Step 9

The final step is to build the extension so it can be used in WYSIWYG Web Builder.

Select Menu-> Build->Build extension. A file called multimp3.wbx will be created in

the same folder as the project file.

Example 8
In this example we use the ‘navigation’ property which allows us to generate menu

scripts. This can be either a simple (one level) menu or complex tree (multi level)

menu. Just like the ‘gallery’ and ‘dataset’ properties, the ‘navigation’ property also

uses XML templates to generate the output code. If you are not yet familiar with

templates please read the information in previous examples first.

Step 1

Select Menu->File->New to create a new project.

Click the General tab to enter the general settings of the new extension.

 Set the Extension title to ‘Menu List’.

 Select a bitmap for the toolbar icon. If you leave this field empty the default

icon will be used.

 Set the minimum width and height to 50.

 Enable ‘Use DIV’

Step 2

Click the HTML tab. Now we will specify the HTML code for the extension.

Copy/paste the following code to the Code between <BODY> tag field:

$menu_items$

Note that we’ve added only a single variable with the name $menu_items$.

This will be used as a place holder for the actual HTML code which will be generated

based on a XML template. See step 3.

Step 3

Click the Properties tab.

 Click ‘Add Category’, enter ‘General’ and click OK.

 To add properties to this category, make sure the text ‘General’ is selected

before you click the ‘Add Property’ button.

 Insert 1 new property and give it the following values:

Name Description Type Variable Default value

Items Specifies the menu items navigation $menu_items$

Set the menu type to ‘List’.

Step 4

Now we will create the template for code generation. Open notepad (or another text

editor). Create a new file and copy/paste the code below:

<?xml version="1.0" encoding="UTF-8"?>

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

version="1.0">

<xsl:output method="xml" indent="yes"/>

<xsl:template match='/'>

<table border="1">

<xsl:for-each select="MENU/ITEM">

<tr>

<td><xsl:value-of select="TITLE"/></td>

<td>

<xsl:choose>

<xsl:when test="@current='true'">

 <xsl:value-of select="URL"/>

</xsl:when>

<xsl:otherwise>

 <xsl:value-of select="URL"/>

</xsl:otherwise>

</xsl:choose>

</td>

<td><xsl:value-of select="TARGET"/></td>

<td><xsl:value-of select="ALT"/></td>

</tr>

</xsl:for-each>

</table>

</xsl:template>

</xsl:stylesheet>

Save the file as ‘menulist.xsl’.

The following values are available for the select attribute:

TITLE

The name/title of the current item.

URL

The URL for the current item

TARGET

The target for the URL

ALT

The alternate text for the menu item.

Note that we also used a conditional statement to check for the current page

(@current is an attribute of the ITEM tag). In this case the URL value will not be a

link. In a real menu the @current attribute can be useful if you want to display the

current page in a different style.

When the page is published the resulting HTML may look like this:

<table border="1">

<tr>

<td>Home</td>

<td>index.html</td>

<td>_blank</td>

<td>Home</td>

</tr>

<tr>

<td>Products</td>

<td>products.html</td>

<td>_blank</td>

<td>Products</td>

</tr>

<tr>

<td>Downloads</td>

<td>>downloads.html</td>

<td>_self</td>

<td>Downloads</td>

</tr>

</table>

Step 5

Select Menu->File->Save As and save the project as menulist.xwb

Step 6

Select Menu-> Build->Build extension. A file called menulist.wbx will be created in

the same folder as the project file.

Example 9
Here’s another example for the ‘navigation’ property. This one uses the ‘tree’ option

which can be used to created complex tree (multi level) menus. Please check out

Example 8 first for a basic menu example.

Step 1

Select Menu->File->New to create a new project.

Click the General tab to enter the general settings of the new extension.

 Set the Extension title to ‘Menu List’.

 Select a bitmap for the toolbar icon. If you leave this field empty the default

icon will be used.

 Set the minimum width and height to 50.

 Enable ‘Use DIV’

Step 2

Click the HTML tab. Now we will specify the HTML code for the extension.

Copy/paste the following code to the Code between <BODY> tag field:

$menu_items$

Note that we’ve added only a single variable with the name $menu_items$.

This will be used as a place holder for the actual HTML code which will be generated

based on a XML template. See step 3.

Step 3

Click the Properties tab.

 Click ‘Add Category’, enter ‘General’ and click OK.

 To add properties to this category, make sure the text ‘General’ is selected

before you click the ‘Add Property’ button.

 Insert 1 new property and give it the following values:

Name Description Type Variable Default value

Items Specifies the menu items navigation $menu_items$

Set the menu type to ‘Tree’.

Step 4

Now we will create the template for code generation. Open notepad (or another text

editor). Create a new file and copy/paste the code below:

<?xml version="1.0" encoding="UTF-8"?>

<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:output method="xml" indent="yes"/>

<xsl:template match="/">

 <xsl:call-template name="menu" />

</xsl:template>

<xsl:template name="menu">

 <ul id="menutree">

 <xsl:apply-templates select="MENU/ITEM" />

</xsl:template>

<xsl:template match="ITEM">

 <xsl:value-of select="TITLE"/>

 <xsl:if test="ITEM">

 <xsl:apply-templates select="ITEM"/>

 </xsl:if>

</xsl:template>

</xsl:stylesheet>

Save the file as ‘menutree.xsl’.

Note that this template recursively creates a (nested) list of all menu items. Many

menu scripts use this structure as the basis for multi level menus.

When the page is published the resulting HTML may look like this:

<ul id="menutree">

 Item 1

 Sub Item 1

 Sub Item 2

 Sub Item 1

 Sub Item 2

 Item 2

 Item 3

Step 5

Now let’s turn this into a drop down menu by adding some styling to the items.

Copy/paste the following code in the ‘Between <head> tag’ section:

<style type="text/css">

#menutree, #menutree ul

{

 padding: 0;

 margin: 0;

 list-style-type: none;

}

#menutree

{

 margin: 25px 0 100px 10px;

 position: relative;

 z-index: 2;

}

#menutree li

{

 float: left;

 position: relative;

}

#menutree a, #menutree a:visited

{

 background: #CCCCCC;

 border: 1px solid #BBBBBB;

 color: #444444;

 display: block;

 font-family: arial;

 font-size: 12px;

 height: 25px;

 line-height: 24px;

 text-decoration: none;

 text-indent: 5px;

 width: 120px;

}

#menutree li:hover > a

{

 background: #444444;

 color: #FFFFFF

}

#menutree li ul

{

 display: none;

}

#menutree li:hover > ul

{

 display: block;

 left: 121px;

 position: absolute;

 top: 0;

}

#menutree > li:hover > ul

{

 left: 0;

 top: 25px;

}

</style>

Step 6

Select Menu->File->Save As and save the project as menutree.xwb

Step 7

Select Menu-> Build->Build extension. A file called menutree.wbx will be created in

the same folder as the project file.

How to install extensions so they will be available in Web Builder?

You can use the Extension Manager (Menu->Tools->Extension Manager) to install

the extension.

Alternatively you can manually copy all files from the zip file to the Web Builder

extensions folder. Usually this folder is in this location:

My Documents\WYSIWYG Web Builder\system\extensions\

More information is available here:

http://www.wysiwygwebbuilder.com/forum/viewtopic.php?t=7234

Requirements

- Windows Vista/Windows7/Window8/Windows10 or later

- Registered version of WYSIWYG Web Builder 11

- Knowledge of HTML/XML/Scripting

- It’s recommended to copy ‘ExtBuilder.exe’ to the same folder as the

WYSIWYG Web Builder (C:\Program Files\WYSIWYG Web Builder 11\), so it

can access the default themes and other assets.

License

This application is free of charge for registered users of WYSIWYG Web Builder 11.

This application is provided as-is, with no warranty expressed or implied. Use this

application at your own risk. The author assumes no liability for any loss associated

with the use of this application. If you do not agree with the terms of this license, do

not install this application.

This software is not officially supported by Pablo Software Solutions.

However bugs and other issues will be fixed a.s.a.p (as usual).

Feedback

Comments/suggestions are welcome on the support forum:

http://www.wysiwygwebbuilder.com/forum/

This application was created by Pablo
Copyright 2016 Pablo Software Solutions
http://www.wysiwygwebbuilder.com

http://www.wysiwygwebbuilder.com/forum/viewtopic.php?t=7234
http://www.wysiwygwebbuilder.com/forum/
http://www.wysiwygwebbuilder.com/

