[image: image1.png]
In Image Encryption

Eyemage IIE provides powerful and extremely secure (Unbreakable until broken) encryption of information whilst at the same time hiding that information within images. If you don’t want to hide information in images you can still use Eyemage IIE’s awesome encryption to protect any information.

Why Use Eyemage IIE?

What we are saying here may sound like the hard sell, but we are not selling you anything, as Eyemage IIE is free. So relax, listen, and if you like what we say then feel free to use Eyemage IIE to keep your secrets safe and your communications secret.

Eyemage IIE will encrypt any file into any image (Size permitting) and the level of encryption is truly awesome – we think its unbreakable but would never say that in public… And remember, if you are not as confident as us about the security of Eyemage IIE, you can always encrypt your data with another method first.

Benefits of Eyemage

· Hides information in the images without visibly altering them.

· Extreme security is provided. If you don’t know the password you don’t get the contents.

· Very simple to use.

· Fun to use. There is something neat about hiding your accounts in a photo of your car.
Disadvantages of Eyemage

· The age old Key Distribution Problem: how to I get the password to the person who needs it without others intercepting it. We have come up with a neat solution to this, that may not satisfy spies but should work fine for us mortals. See the Section on Intimakeys.

· Size Inefficient: You may find you use a 100k image to send a 50k document. Its your call, but relax, the network can cope. You can always use the Pure Noise Images which are very size efficient.

Instructions for Using Eyemage IIE

Eyemage IIE is super-dupa easy to use. Its intended for even the biggest computer novice - but with some effort and a little bit of chillin’ out even security experts should be bale to use it. When you load it up you are presented with two buttons: Encode and Decode.

· Encode (On the left) is the button you should press if you want to hide something in an image.

· Decode (On the Right) is the button you should press if you want to get something out of an image.

After pressing the desired button you will be swiftly carried to another screen….

Encoding

· Firstly decide if you want to encode a file or Typed Text with the appropriate buttons.

· Then decide if you want to encode into an existing bitmap image (With the extension .bmp) or into a Pure Noise Image. Pure noise images don’t require you to have a bitmap available and they don’t waste any space -In fact with Eyemage IIE’s in built compression they save space, ain’t life sweet.

· If you have an existing bitmap and you want to shrink it to match the size of your input file then check the “Shrink 2 fit” button. This will cause distortion in the image.

· Click the Encode Button. You will be prompted to enter a password (Or Intimakey). You can also here select the speed, see the “Password Mangling” section below to see what this actually means. So.. make your selections and click OK. Your image will be encoded, you will be shown a preview of the image and can then save the image to distribute as you see fit, including it’s hidden secrets.

Decoding

To decrypt an image that you think has been encoded with Eyemage IIE:

· Select the image with the file requestor.

· Click the Decode Button. You will be prompted with a password requestor. Enter the password in here.

· Eyemage IIE will attempt to decode the contents of the container image using the password.

· On completion and depending on the contents you will either be shown the hidden text message or you will be prompted with a requestor to save whatever file was hidden.

Password Verification

The password is never stored in the image in any form. Nor is a password digest stored in the image as it is in some comparable systems. The advantage of this is that it makes things even more secure, the “disadvantage” of this is that there is no way to tell with certainty if the password you enter is the one that the file was encrypted with. However we have come up with an ingenious way to verify if the file has been decrypted using the correct password and thus you are warned if the password you have entered does not appear to be correct.
 In such a case you will be told this after Eyemage has attempted to decrypt the file.

What is Password Mangling?

Eyemage IIE uses a variety of what are termed “digests” or “one way hash functions” to mess up your password before it is actually used to do any work in terms on encoding and encryption. These digests are looped though a number of times depending on the speed you select when entering the password. Now, the reason we do this is now to add any extra strength to the encryption as such (Well, it does add a bit, but forget that).

Why we mangle the password is because it takes TIME. Mathematical time. Something that if anyone were to try to guess passwords by brute force they would also have to go though the same mangling procedure. If you set the speed to very slow then Eyemage will run your password through ten million digest loops, it will take about a minute on a 1gigahertz Pentium III. In reality this probably is massive over-kill, but, hey, why not. The default setting for mangling puts it through a mere half a million loops.

What are Pure Noise Images?

If you want you can let Eyemage IIE generate an image of random noise which can then be used to hold your data. In general this shouldn’t give you any extra security but it does provide a way of transporting data with little waste. But remember, if people intercept a pure noise image they will suspect that something is up - unless you are renowned for collecting images of static on TVs.

If you want to send or store information with humungous security but cant be bothered with pretty pictures then you might as well just use pure noise images.

Password Distribution

Its an age old problem of cryptography: How to send a password to someone without it being intercepted. This is the Key Distribution Problem.

Public Key encryption methods do solve this but at the cost of simplicity and, in our humble opinion, they are not the best methods for secret commutations between intimates. If you ask yourself, who do I want to send secrets to, there will be one of two types of people:

People you know and people you don’t know. If you want to send secrets to civil rights campaigners inside a hostile country then, all in all, stick with PGP or similar. If you want to send secrets to your husband, girlfriend, workmate, brother, mother or anyone else you are intimate with, then you now have the option of going “old school” using Eyemage IIE. And with Intimakeys things get even easier.

What are Intimakeys?

The Key Distribution Problem can be diluted significantly in certain cases by instead of transporting the key or password you transport intimate semantic knowledge that is used to generate the password of key.

So, if Brain wants to send Felicity (His estranged wife who now lives in Minnesota) in Eyemage IIE image but will not send the password “over the air” he may send the file and say “The password for this file is the name of the restaurant where we first met plus your mothers maiden name plus my favourite colour, eg it might be “flanniganspercyred”, but its not.” This way even if the message is intercepted, without intimate knowledge nobody will be able to determine the password.

It’s a great attempt to securely transport passwords but its pretty fiddly, we think you will agree. If you want to you can use a system that we call Intimakeys (It’s a play on the word “intimacy”, didn’t you know). Here is how it works:

In Eymage IIE, when you are about to add a password to encrypt something in an image, instead click on the Intimakey button. A box will pop up where you can enter one to 5 questions and answers. These can be anything you want; obviously is best to have answers that only you and the destination would know.

The more questions and answers you have the more security you would have.

Using Intimakeys to Add Security

As said, Intimakeys do weaken the security of the encryption used. However they can also be used to enhance the security of Eyemage IIE. Assuming that you have securely established a password with your buddy through whatever means (phone, PGP, chat in Turkish bath…) you can have this Password as one of the answers to an Intimakey question and then pad it out with other “normal type” questions. So you may have four Intimakey questions:

The city we last met in.

Our normal password.

Jason’s wife’s name.

Franks birthday month.

The Security Compromise of Intimakeys

Although the Intimakey system does not store the answers to the questions in the image it does store the questions and the digest of the answers. This fact will cause an obvious weakening of security of the system. If one of the questions is about then name of a restaurant in Barcelona then it doesn’t take many secret agents to get a list of all the restaurants in Barcelona – or to find your mother’s maiden name or your husbands shirt size. Its up to you how paranoid you want to be. (Note that Intimakeys used in conjunction with a “normal” password actually add security)

Another point of concern is that embedding an Intimakey into an image is a sure fire way to tell people with knowledge of how Eyemage IIE works (Anyone can get this through NDA) that your image contains a secret.

How it Works

Eyemage IIE manages to simultaneously encrypt and hide any information in an image file by exploiting a property we term “Linear Randomness”. The random numbers that computers generate are not at all random, rather they are determinately ordered (linear) but in such a way that they are highly unpredictable. They are psuedo-random sequences.

The quality of these sequences varies depending upon the maths that is used to generate them. The randomness of computer games for example doesn’t need to be that random but the randomness of weather modelling super computers needs to be as close as possible to the true randomness. In Eyemage IIE we use a number of different algorithms
 that produce exceedingly high quality random numbers and combine them, randomly. From a sequence of trillions of “our” random numbers you would not be able to predict any other number. Compare this to a standard random number generator which may become predictable after only 32,000 numbers.

Ok.. we are getting too excited by all of this randomness talk, back to Eyemage itself. So, your password will produce a number of seeds for Eyemage IIE’s random number generators and these random numbers are used to encode your information in the images. The scope of the encoding is such that without the password you cannot get at the data. At least we don’t think you can, but hey, famous last words and all that.

Stage 1: Password Mangling

A collection of random seeds are generated from the password (actually from a digest
 of the password). These will be used for all operations in image encryption.

Stage 2: First Noise Pass

The input file or text is encrypted with a portion of one of the linear random sequences using a simple XOR pass through the entire input.

Stage 3: Input Compression

The input is compressed using a randomly chosen compression algorithm. This is to reduce the size of the input data but it also add another layer of security. The headers of the compressed file are extracted to remove any tell-tale file parts.

Stage 4: XOR Encryption Pass

The compressed input is encrypted with a different random linear sequence obtained from the password. The particular sequence used is the full length of the input and thus serves as a kind of One Time Pad for the file. This is meaty encryption in itself.

Stage 5: Random Method Encryption Pass

The input is then passed through a randomly chosen encryption scheme, such as random bit flipping or bit swapping. We have a number of schemes to do this.

Stage 6: In Image Encryption

This is where the real work begins. Every byte of the input is placed with a randomly chosen pixel. It is encoded in that pixel in a randomly chosen way. So much randomness, so little time.

Stage 7: Stop sequence encoding

Once the contents of the input have all been randomly encoded in the image we include, at a randomly chosen point, a flag that signifies that the encoding is over. There are a wide number of methods we use to encode the flag and, guess what, they are all randomly chosen. Note that the Stop Point location is not included in the file itself but it is determined by the password.

Stage 8: Content Detail Encoding

To make Eyemage easy to use with files and file types, once the input has been encoded we then store the file name and type within the image using the original contents to encode it. Thus without the knowing the original contents you cannot determine the name of the file or its type.

That’s all there is to it.

Can I crack it?

This is the big question of any encryption system. Some systems provide the answer in terms of “bit strength”: Uses 512 bit encryption and so forth. These kind of quantifiers are not applicable to Eyemage IIE so we cant give you a period in “billions of year of computing time” to crack the code. If you want to crack the system there are two ways to go about it:

1) A Brute Farce Attack

You can go through and try password combinations on the file (we can provide the source code for Eyemage IIE under NDA for you to try) however you have lots of combinations to try, especially as you don’t know the password length.

Content Media Ignorance

You also don’t know the contents of the image. Is it another image, one line of text, a zip file, a word document or an excel sheet. So you would have to sit at the computer for each attempt and see if you get anything. Perhaps with some clever AI and statistical analysis you could narrow this down but it still means that you, the cracker, will have to sift through a megazillion possible outcomes.

Over determination

The most serious problem you have to overcome is that of the password space over determining the encrypted contents. This means that that the scope of possible passwords to encrypt Secret X will also allow for Secret Y to be produced from the wrong password combination. In a simple sense, a wrong password attempt might produce the message “My credit card number is 45454783254488” or “Meet me by the clock tower at midnight, bring the plans”. But you, the cracker, cannot know if this is the actual message or one of the many possible flukes.

2) Getting Handy with Randy

The mathematical security of Eyemage IIE comes from the pseudo random numbers it uses. We use the most respected generators in existence, any one of these would provide an awesome lack of predictability; Eyemage IIE mixes output from these random generators creating a computational explosion that, in computational terms, is like the big bang.

What if I crack it?

Hey, let us know. We will give you some free software or something like that. And then we will resign from the computer security game, never to return and soil its holy shores with our funky and fun experiments. We will stick to writing other software, making the cool hardware we make for Handhelds and generally doing other stuff.

1 You don’t know the password length. It can be anything from 4 characters upwards.

� There is a tiny chance (About 1 in 16 million) that a wrong password may be seen by Eyemage IIE to be the correct password. In this case the contents of the file will be utter garbage. This payoff is very worth it, we assure you.

� Mersenne Twister, Ranrot, ISAAC, TT000 and Mother of All

� Using SHA 1.

�Which can be from 4 to loads of characters and any ascii character can be used.

