
Flying Logic

Thinking with Flying Logic
by

Robert McNally

Version 1.0.3

http://sciral.com/
http://flyinglogic.com/

Documentation © 2016 Sciral

This work is licensed under a Creative Commons Attribution-NonCommercial-
NoDerivs 3.0 Unported License.

Sciral
Glendora, CA
FlyingLogic.com

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://flyinglogic.com

Contents

Part I — Introduction	 5
About This Book	 5
Keys to Great Thinking	 7

Part II — The Theory of Constraints Thinking Processes	 11
Overview of the Theory of Constraints	 13

The Goal	 13
The Constraint	 13
The Five Focusing Steps	 14

The Categories of Legitimate Reservation	 19
Clarity	 19
Entity Existence	 22
Causality Existence/Cause-Effect Reversal	 22
Insufficient Cause	 24
Additional Cause	 26
Predicted Effect	 26
Tautology	 27

Current Reality Tree	 29
Evaporating Cloud — Conflict Resolution	 39
Future Reality Tree	 47
Prerequisite Tree	 61
Transition Tree	 69
Strategy & Tactics Tree	 77

Part III — Other Techniques	 83
Evidence-Based Analysis	 85
Concept Maps	 89

Appendix	 91
Resources	 91

Flying Logic Web Site	 91
Web Sites on the TOC	 91
Books on the TOC	 92
Books on Psychology, Communication, and Negotiation	 92
Other Useful Web Sites	 92

4

5

Part I — Introduction

About This Book
Flying Logic is software that helps people improve. This book, Thinking
with Flying Logic, introduces the core techniques that the Flying Logic
was designed to support. Even if you don’t use Flying Logic, I hope you
will find it a concise and useful introduction to some powerful ways you
can improve your business and personal life.

Thinking with Flying Logic is companion to two other documents: Wel-
come to Flying Logic explains why Flying Logic exists, and the Flying
Logic User’s Guide explains the details of operating it. To use a travel
analogy, Welcome to Flying Logic hopefully got you interested in taking
a trip, the Flying Logic User’s Guide taught you how to drive the car,
and Thinking with Flying Logic is the road map you will follow to get you
where you want to go.

However, Thinking with Flying Logic is not an exhaustive tutorial on the
techniques it discusses— in fact, it barely scratches the surface. In par-
ticular, the Theory of Constraints (TOC) and the TOC Thinking Processes
that inspired the creation of Flying Logic are supported by a wealth of
literature, books, papers, web sites, courses, conferences, consultants,
trainers, academics, implementors, studies, and success stories. I be-
lieve that Flying Logic is a much-needed piece of the puzzle, and I urge
anyone who reads this book to seek out these other great resources as
well, some of which are listed in the Appendix.

6

7

Keys to Great Thinking
Most of this book is spent on the step-by-step instructions for working
with each of the techniques it presents, but in this introduction I want to
briefly touch on some ideas, attitudes, and behaviors that I have found
create a mind set conducive to effective thinking and communication—
these are the ultimate keys to effective use of Flying Logic.

Logic and Emotion

“Logic” is popularly seen as a cold, complex topic; on par with higher
mathematics and invoking images of nerdy professors, science fiction
computers and emotionless aliens. But the fact remains that we all
think, and we all use logic with more or less skill.

What is not widely understood is that logic is simply the rules for think-
ing. Just as it is possible (though perilous) to drive a car without know-
ing the rules of the road, it is possible to think without understanding
the rules of logic. These rules are extremely powerful, and fortunately
quite simple— but it is unfortunate that as children we are rarely taught
to use them as naturally as we learn to read and write. And far from
turning us into dispassionate machines, we humans are naturally the
happiest and most productive when our emotional hearts and logical
minds work together in concert.

Some people resist “being logical” on the grounds that they “just know
how they feel” on a given subject. But when we experience strong emo-
tions or gut instincts, it is important to recognize that there are al-
ways underlying causes for those feelings. If we merely acknowledge
the resulting feelings, and resist a deeper understanding of the causes,
we create a disconnect between the rational and emotive parts of our
minds. This disconnect results in cognitive dissonance, which is stress
resulting from attempting to believe conflicting things or behave in con-
flicting ways. Cognitive dissonance is a two-edged sword: on the one
hand it can help motivate us to change our beliefs for the better (that
is, to better reflect reality) while on the other hand it can also lead us to
manufacture rationalizations for the way we feel that don’t reflect real-
ity. While both actions quell the discomfort of cognitive dissonance in
the short term, rationalizing ultimately leads us deeper into trouble by
putting us further and further out of sync with reality.

Attempting to act on feelings alone has another drawback: such actions

8

leave us vulnerable to unintended consequences that our rational minds
could have helped us predict and avoid. Of course, it works the other
way too: if we try to be “purely rational,” yet ignore strong feelings by
discounting their causes, we are also going to create dissonance.

The solution is to get in the habit of bringing the causes (or reasons)
that underlie our emotions and instincts to the surface. In doing so, we
validate our emotions, and can then integrate them into effective plans.

The good news is that thinking is a learnable skill that improves with
practice, and that doing so does not diminish, but rather complements
the value of emotions.

Communication and Criticism

We can rarely accomplish anything of significance alone: we rely on
other people for many kinds of contributions, and since no one is an
island, we must communicate effectively with others— to gain an under-
standing of their needs, benefit from their experience and wisdom, and
negotiate their cooperation.

Often, we are too close to a situation to understand it well— we are
embroiled in the situational details and “can’t see the forest for the
trees.” When we think we understand a situation well; when we think
we already know the all the options and the right answers— this is
when inviting others to evaluate and criticize our plans can be the most
valuable. Doing so lets “light and air” into our minds and helps us rid
ourselves of ways of thinking that have become stale and unproductive.

In The Godfather Part II, Michael Corleone says, “Keep your friends
close, but your enemies closer.” Ironically, the most fruitful criticism of-
ten comes from people who actively disagree with us. Abraham Lincoln,
arguably the greatest United States President, is renowned for having
chosen prominent members of his cabinet from those who most vehe-
mently opposed his policies. Whether or not we ultimately agree with
our critics, they can often teach us a great deal— the key is to allow our
view of the world to change as we learn.

Argument and Honor

When we think of an argument, many of us envision scowls, angry
gesticulation, and yelling. We imagine petty name-calling, a parade of
unforgiven grievances, and other emotional power plays. Most impor-
tantly, we imagine arguing to get our way— to show that we are right

9

and others are wrong. But such an interaction is not an argument— it is
a fight. In a fight there may be winners, but there will certainly be los-
ers, and injuries for all.

A real argument is a shared search for truth. In an honorable argument
people can still be passionate, but they follow the rules of logic just as
drivers follow the rules of the road. And even though people approach a
situation from different perspectives and with different preconceptions,
the positions they take should be seen as suggestions that are ultimate-
ly intended as win-win, even if they initially fall far short. Indeed, even
such flat statements as, “We’ll get along fine as soon as you learn to do
things my way,” hint at a common objective: getting along.

When argument is viewed as a search for truth, it becomes possible to
see adapting one’s position to new information and ideas not as weak
or wishy-washy, but as a challenge to which only a mature, strong, and
honorable person can rise. More pragmatically, all sides can begin to
look forward to not merely getting their way, but getting something bet-
ter in the form of a win-win solution.

Control and Influence

When considering how to cause change, we can imagine ourselves
standing at the center of a circle. The things we can reach out and touch
directly define our span of control. If the all changes we wish to make
are entirely within our span of control, we have the power to simply go
ahead and make them.

Usually, however, things are not so simple. In our mental image, the
things we control are just what lies within arm’s reach— our span of
control is always quite small. But just beyond our span of control lies the
start of our sphere of influence. Although we may not be able to reach
out and touch these things directly, we can still cause change by cooper-
ating with others. For example, a business may control its manufactur-
ing processes, while it can only influence its suppliers and customers.

The farther away objects are, the less influence we wield— until we
reach a point where we have no significant influence. This marks the
end of our sphere of influence.

Our sphere of influence is always much larger than our span of control,
and is probably larger than we think. Most gratifyingly: causing posi-
tive changes within your sphere of influence has the desirable effect of
expanding it.

10

Optimization and Suboptimization
When we reward people for improvements entirely within their span of
control, what is the natural reaction? An example of this might be basing
manager performance reviews solely on efficiency within their depart-
ments. The natural reaction is, of course, for them to narrow their span
of control as much as possible— to define its boundaries as sharply from
other parts of the system, and to focus entirely on efficiency within their
particular component (division, department, cubicle, etc.) This behavior
results in suboptimization, which is maximizing or fine-tuning a part of
the system without considering the (often detrimental) effects of doing
so on the entire system.

On the other hand, what happens when we reward people for improve-
ments within their entire sphere of influence? In this case, their desire
becomes to extend their sphere of influence outwards as far as possible.
As mentioned previously, acting in one’s sphere of influence requires
coordination and cooperation with others, which in turn encourages an
awareness of the system as a whole. The end result is optimization,
where people orchestrate their efforts together, toward the fulfillment
of the system’s goal.

Optimization is the outcome of systems thinking (looking at a system
not as merely a collection of parts but as a unified whole) applied to the
goal of process improvement.

Tools and Expectations
People have invented many useful tools that help us perceive the world
accurately, arrange our knowledge, think about it logically, develop plans,
and communicate effectively. Despite having these tools, we must still
do the hard work of thinking, and also the hard work of implementing
our plans. When new tools (such as Flying Logic) are introduced, they
are often touted as labor-saving devices. But do we really do less work
now that we have automobiles, telephones, and computers? Arguably,
in our world of accelerating change, we often do more. So it is important
to have a pragmatic understanding that the net result of new tools is not
to reduce labor, but to raise expectations.

Just as spreadsheets were a boon to accounting and financial planning
but did not make accountants obsolete, I hope that Flying Logic will be
of significant help to systems thinkers and people with a passion for
making the world and its systems better. Even more, it is my hope that
Flying Logic will help get more people involved in these vital topics.

— Robert McNally, 2007

11

Part II — The Theory
of Constraints Thinking

Processes

12

13

Overview of the Theory of
Constraints

The Goal
The Theory of Constraints (TOC) is an overall management philosophy
originally developed by Eliyahu M. (“Eli”) Goldratt and first popularized
in his bestselling business novel The Goal. He started with the idea that
all real-world systems; whether personal, interpersonal, or organiza-
tional have a primary purpose, or goal. The rate at which the system
accomplishes its goal is called throughput.

The Constraint
From the idea of throughput, it is easy to see that systems must also
have at least one constraint: something that limits the system’s
throughput, which can be likened to a chain’s weakest link. If a system
had absolutely no constraints, it would be capable of infinite through-
put. But though infinite throughput is impossible, amazing throughput
gains are possible through the careful identification and management
of a system’s key constraints. The purpose of the TOC then, is to give
individuals and organizations the tools they need to manage their con-
straints in the most effective manner possible.

Originally applied to industrial manufacturing lines, TOC principles have
been successfully adapted for areas as diverse as supply chain, finance,
project management, health care, military planning, software engineer-
ing, and strategy.

TOC claims that a real-world system with more than three constraints is
extremely unlikely, and in fact usually only one constraint is key. Coun-
ter-intuitively, this is because the more complex a system becomes, the
more interrelationships are necessary among its parts, which results in
fewer overall degrees of freedom.

A major implication of this is that managing a complex system or or-
ganization can be made both simpler and more effective by providing
managers with few, specific, yet highly influential areas on which to
focus — maximizing performance in the areas of key constraints, or
elevating the constraint (making it less constraining.)

The TOC was originally applied to manufacturing operations, where the

http://en.wikipedia.org/wiki/Theory_of_Constraints
http://en.wikipedia.org/wiki/Eliyahu_M._Goldratt
http://en.wikipedia.org/wiki/The_Goal_%28novel%29

14

constraint was usually a physical constraint— some sort of machine
or process that formed a bottleneck in the production line. These sort
of constraints are fairly easy to locate. But in the real-world situations
where these constraints were broken (i.e. elevated to the point where
they were no longer the constraint) it was discovered that the con-
straints could take on another character: the policy constraint. These
are the “ways things have always been done” that ultimately serve to
restrict the system’s throughput, and they are usually due to some form
of suboptimization— tuning part of a system without regard to the
benefit of the whole. Policy constraints are often more difficult to iden-
tify and more difficult to manage than a simple machine or physical
process— more powerful tools were invented to do just that.

The Five Focusing Steps
To identify and manage constraints of all kinds, the developers of TOC
defined the Five Focusing Steps, which describe a process of ongoing
improvement. (Step Zero was later added for additional clarity.)

0.	Articulate the goal of the system. How do we measure the sys-
tem’s success?

1.	Identify the constraint. What is the resource limiting the system
from attaining more of its goal?

2.	Exploit the constraint to its fullest. How can we keep the con-
straining resource as busy as possible, exclusively on what it can
do that adds the most value to the entire system?

3.	Subordinate all other processes to the decisions made in Step 2.
How can we align all processes so they give the constraining re-
source everything it needs?

4.	Elevate the constraint. If managing the constraining resource
more efficiently does not give us all the improvement we need,
then how can we acquire more of the resource?

5.	Avoid inertia. Has the constraint moved to some other resource
as a result of the previous steps? If so, don’t allow inertia itself to
become the constraint: go back to step 1.

It is possible that, after iterating through the Five Focusing Steps a few
times, that the constraint on the system’s throughput moves entirely
out of the system itself, and into the system’s environment. An example
of this would be when a manufacturer has more capacity than demand
for its products. In this case, further improvement may still be possible,

15

but doing so requires expanding the concept of the “system” to include
its customers, the economy, and other factors that were originally just
givens of the system’s environment.

The Thinking Processes

The Thinking Processes emerged as TOC practitioners worked with
organizations that needed to identify their core constraints and how to
manage or elevate them. They needed the answers to three deceptively
simple questions:

•	 What to change?
•	 To what to change?
•	 How to cause the change?

The Thinking Processes are based on the scientific method, to which
is added a simple visual language, the Thinking Process Diagrams,
that are used for describing and reasoning about situations, arguments,
and plans using the language of Cause and Effect. There are two basic
kinds of reasoning: Sufficient Cause and Necessary Condition.

A necessary condition for an effect

A sufficient cause for an effect

The Thinking Process Tools

From the basic Thinking Processes developed several techniques called
the Thinking Process Tools designed to answer the three questions.
The tools provide the ability to develop a complete picture of a system’s
core constraints and how to manage them.

16

Tool Thinking
Process Starting Point End Result

Current
Reality Tree
(CRT)

Sufficient
Cause

A set of undesirable
symptoms

The core cause of the
symptoms (constraint)

Evaporating
Cloud

Necessary
Condition

A perceived conflict
underlying a
constraint

Possible win-win
solutions

Future Reality
Tree (FRT)

Sufficient
Cause A proposed solution

Necessary changes
that implement the
solution and avoid
new problems

Prerequisite
Tree (PTR)

Necessary
Condition

Major objectives
and the obstacles to
overcoming them

Milestones that
overcome all obstacles

Transition Tree
(TRT)

Sufficient
Cause A set of goals Detailed actions to

achieve the goals

Strategy &
Tactics Tree
(S&T)

Necessary
Condition

The highest-level
goals of a system

A multi-tiered set of
implementation steps

The last of these tools— the Strategy & Tactics Tree, is used in large
organizations where it is necessary to create major changes in a short
period of time. However, the other five tools are applicable to systems
of any size from individuals, to families, to businesses small and large.
Like a physical tool kit, you can choose to use individual tools— just
the right tool for the job at hand. Or, you can do a larger project where
most or all of the tools may be required. When all of the tools are used,
the “finished result” of one tool can easily be used as part of the “raw
materials” for the next tool. Since improvement is a continuous process,
you can use each tool over and over again on every pass through the
Five Focusing Steps.

17

The Measurement of Success

The last piece of the improvement puzzle is feedback. There needs to be
an unambiguous way to measure improvements brought about through
the implemented changes. For traditional business, Dr. Goldratt devel-
oped three non-traditional measurements that began with the overrid-
ing concept of the system’s goal: Throughput (T), Inventory (I), and
Operating Expense (OE). It is outside the scope of this book to discuss
these in detail, but readers are directed to the TOC body of knowledge
(see the Appendix) for discussions of these measures and how they
have been adapted for many different endeavors.

18

19

The Categories of Legitimate
Reservation

We all want our ideas and plans to make sense. But how do we know
that we are making sense? What do we even mean by that? When we
use the Thinking Process Tools, we are building a model of the way
part of the world works, and in this context our model makes sense if
it in does in fact portray a picture of the world that is pertinent and ac-
curate.

To be pertinent, our model must be of that part of the world (our sys-
tem) that we actually care about— in other words our model must have
the proper scope. It must not be too detailed in areas that don’t signifi-
cantly affect the outcome, nor too general— glossing over areas where
important details lie. To ensure pertinence, the people who are the main
stakeholders in the outcome of the plan must have influence over it.

To be accurate, the cause-and-effect relationships that we model must
indeed hold in real life. The Categories of Legitimate Reservation
(CLR) are ways to verify the accuracy of a Thinking Process Diagram.
They are used to catch common pitfalls in our own thinking and the
thinking of others. They are called the Categories because they are well-
defined and of limited number. They are called Legitimate because any-
one who writes or reads logical statements is always allowed to express
them. And they are Reservations because they highlight parts of the
diagram that are not completely convincing. Since these reservations
are always legitimate, they can be raised, explored, understood, and
accepted without anyone feeling like they’re having their toes stepped
on— they help everyone keep their emotional distance and stay reason-
able.

When you start to work with Thinking Process diagrams, you should
deliberately consider the CLR one by one for each part of your diagram.
But as you gain experience you will find you begin to apply them quickly
and habitually.

Clarity
If you are creating a Thinking Process diagram by yourself, you probably
have a good idea of what you mean. However, you will also probably
need to share your plan with someone else sooner or later, and you

20

need to apply the Clarity reservation as the last step before you do. Ask
yourself:

•	 Is the meaning of each part of my diagram clear?
•	 Is the meaning of my diagram as a whole clear?

Similarly, when someone presents you with a Thinking Process diagram
you have never seen before, you should apply the Clarity reservation
first by asking yourself:

•	 Does this diagram really convey what the person presenting it in-
tends?

In Thinking Process diagrams, causes and effects are all represented by
entities: rectangles that contain brief statements that are, or could be,
true about reality. Flying Logic entities also have a colored bar at the top
that designates the entity’s class— the kind of role the entity plays in
the diagram of which it is part.

Class

Title

To satisfy the clarity reservation, the title of an entity must be:

•	 complete, unambiguous, and grammatically correct,
•	 in the present-tense, and
•	 simple in that it contains a single idea with no compound state-

ments.
“Bumped and glass fell and broke,” is an example of a statement that
violates all three principles. This idea should probably be expressed as
three separate entities, each related to the next by a causal connection:

21

The causal connections between the entities must also be clear, with
each step from entity to entity having a natural and obvious flow for any
stakeholder who reads the diagram. Reading from one entity to another
via an edge (also called an arrow) will follow one of two patterns, or
Thinking Processes. Which Thinking Process is used depends on what
kind of diagram you are working with; but within a single diagram, the
meaning of the edges does not change.

•	 Sufficient Cause Thinking: “If A then B.” or “A is sufficient to
cause B.”

This pattern expresses the idea that the existence of A is, by itself,
enough to cause the existence of B. Sufficient Cause Thinking is used
by the Current Reality Tree, Future Reality Tree, and Transition
Tree.

“is sufficient to
cause”

•	 Necessary Condition Thinking: “If not A then not B.” or “A is
necessary to obtain B.”

These patterns express that A must exist for B to exist, but may
not be sufficient by itself. Necessary Condition Thinking is used by the
Evaporating Cloud and Prerequisite Tree.

“is necessary
to obtain”

Notice that in both illustrations, the edge (arrow) looks exactly the same

22

although the meaning is different. How you read an edge depends on
which Thinking Process was used to construct the diagram.

Entity Existence
This reservation asks whether an entity in the diagram is true now. In
a Current Reality Tree, for instance, every entity in it should describe
something that is true now. A Future Reality Tree or Transition Tree,
however, can contain a mix of entities that are either true now, or would
be expected to become true under certain conditions. This reservation is
a warning to “check the facts” before making an untrue assertion about
reality.

?
Causality Existence/Cause-Effect Reversal
This reservation asks, “Does A really cause B?” Often we associate
two ideas because they are correlated, that is, they are often found in
proximity to each other. However, to actually say that one thing causes
another requires much stronger evidence.

?

23

Indirect Effects

Other times, an entity is an indirect effect of a cause, but important
necessary steps are missing.

?

Cause-Effect Reversal

A special case of the Causality Existence reservation is Cause-Effect
Reversal. In this case, we question whether the edge is pointed in the
right direction.

?

24

Back Edges

In cases where it seems ambiguous as to which entity is the cause and
which is the effect, it may be a good place to look for a self-reinforcing
loop. Flying Logic can model self-reinforcing loops using back edges. A
back edge is added whenever you attempt to create a new edges that
indirectly makes an effect to be its own cause. Back edges are drawn
thicker than regular edges.

?

Insufficient Cause
This reservation asks, “Is A, all by itself, sufficient to cause B? What
else might also be necessary?” Usually a combination of factors out-
side our control (“Preconditions”) and factors that we influence or con-
trol (“Actions”) must combine to create a particular effect. In diagrams
based on Sufficient Cause Thinking, this is modeled using a junctor that

25

contains the AND operator. Junctors are easily created by dragging from
an entity to an existing edge.

?
Junctor

When looking for insufficient causes, we should also keep in mind that a
list of causes can also be too sufficient, or in other words, include causes
that are actually not required to produce the effect. So we should also
ask, “Have we listed anything as necessary that really isn’t?”

?

26

Additional Cause
Once we have identified one sufficient cause for an effect, we are often
tempted to move on, and in doing so we may overlook other causes that
may either be independently causing the effect, or mutually intensifying
it. This reservation asks, “Have we identified every cause of A? What
else could also be causing A?”

?

Predicted Effect
How can we increase our certainty that a cause we have identified is
really the cause of the effects we are inclined to believe? For example,
let’s say I come from a walk and discover my wallet missing. One of the
first things that might pass though my mind is that my house has been
robbed. But has it been robbed?

?
Usually a cause is responsible for more than one effect, and this reser-

27

vation asks, “If A is true, what other effects in addition to B would we
expect to see?”

?
If the additional predicted effects are also observed, then we can be
more confident in the causality we initially identified. But if the predicted
effects are not observed, then we may be well advised to look for ad-
ditional causes.

Tautology
People sometimes don’t examine their beliefs very closely, and will,
when asked for a cause, often re-state the cause using different words.
Even though you will almost never encounter tautology (also called cir-
cular reasoning or begging the question) in a Thinking Process diagram,
you will encounter it in casual conversation. Some examples:

28

•	 “You can’t give me a C for this course— I’m an A student!”
•	 “My homework is boring because it’s so tedious.”
•	 “Mayor Green is the most successful mayor ever because he’s the

best mayor in our history.”
•	 “The defendant shows no remorse, and this fact should strengthen

your resolve to find him guilty!”

29

Current Reality Tree
When a non-trivial system (a for-profit business, a non-profit organiza-
tion, a department, or a personal relationship to name a few examples)
needs improvement, it is often not clear what to change, even to peo-
ple who have a great deal of experience with the system’s workings.
This is because systems contain many cause-effect relationships that
interrelate in complex ways, and understanding the system sufficiently
to decide what to change is often even more problematic because the
people with experience often have only a narrow view of the parts of the
system they interact with.

The Theory of Constraints (TOC) is based on the idea that all systems
have a goal, or reason for existence— the rate at which a system can
achieve its goal is called its throughput. The TOC also says that all sys-
tems have core drivers, which can be physical constraints, policy con-
straints, market constraints, or some combination of those, that have a
major impact on the entire system and that ultimately (albeit indirectly)
govern the system’s throughput. Ironically, the more complex the sys-
tem, the fewer core drivers it is likely to have, due to the greater num-
ber of interdependent cause-effect relationships such systems contain.

The Current Reality Tree (CRT) is a tool for discovering the system’s
core driver, which is also known as the constraint. The constraint is the
cause that is most common to the most severe symptoms the system is
experiencing, and thus the constraint must be managed most carefully
in order to most dramatically improve throughput. By focusing on the
constraint, you will realize the most “bang for your buck.”

Flying Logic Setup

A CRT is based on Sufficient Cause Thinking, and this is how Flying
Logic documents are set up when first created, so you do not need to
do anything special with the Operators popup menus to start creating
your CRT. Most CRTs are drawn with root causes at the bottom and the

30

symptoms at the top, so you may want to use the Orientation popup
menu to change the orientation of your document to Bottom to Top.

CRTs are created using the entity classes in the built-in Effects-Based
Planning domain, and primarily use the following classes: Un-Desirable
Effect, Precondition, and Intermediate Effect. CRTs are most often used
to pinpoint problems, but can also be used to identify core strengths, in
which case the Desirable Effect class can also be used.

Step 1: Understand the Scope

Before you can document how your system works and where its prob-
lems lie, you need to make sure you have a clear understanding of what
you mean when you talk about your system. In other words: what are
you analyzing?

Spend the time necessary to reach a clear, written understanding with
other stakeholders:

•	 What is your system’s goal?

•	 What are the necessary conditions for knowing the goal is being

31

achieved?

•	 What measures do you use to use to know how well the necessary
conditions of the goal are being met?

•	 Where do the boundaries of your system lie?

•	 What greater system is your system a part of?

•	 What systems does your system interact with?

•	 What are your system’s inputs and outputs?

Step 2: List the Symptoms

Presumably, you are doing your analysis because you believe the sys-
tem would benefit from improvement, and because you see evidence of
this potential benefit in various problems or symptoms of trouble. Such
symptoms could be low profits, low customer satisfaction, or lots of ar-
guments among family members. These symptoms are known in TOC as
Un-Desirable Effects or simply UDEs.

Usually there are between 5 and 10 UDEs that are causing the most
difficulty in the system, and it is these UDEs that should be added first.
Give each UDE a simple, present-tense title that is intended to be clear
to any stakeholder, and make sure that the UDEs you choose at this
stage are uncontroversial as to their actual existence. In other words,
any stakeholder who looks at this list should have no difficulty agreeing,
“Yes, these are some of the most serious problems we have.”

Step 3: Connect the Symptoms

Undesirable Effects are often contribute to other problems. As you study
your list of UDEs, you will notice that some are probably direct or indi-

32

rect causes of others already in your list. If this is the case, then connect
these entities with edges (arrows) from the causes to the effects. Don’t
be too concerned at this stage if the causes are not directly responsible
for the effects: as you grow the tree, you will add other entities that
complete the picture.

Sometimes you will notice that a single cause contributes to more than
one effect, as is the case with D, below.

Other times you will notice that an effect has more than one indepen-
dent cause, as is the case with B, above. When a Flying Logic document
is set up for Sufficient Cause Thinking, more than one arrow entering an
entity denotes more than one sufficient, independent cause. This is also
called an OR relationship.

Often, a single cause is necessary, but not sufficient by itself to cause an
effect. This is denoted by an AND junctor, which is created by dragging
from the cause entity to an existing edge.

33

Step 4: Apply the Categories of Legitimate Reservation

The diagram as it stands is probably only an extremely rough picture
of your system. By applying the Categories of Legitimate Reservation,
you now add additional entities and causal relationships that create a
true picture of the situation. In particular, look to add additional causes
for the effects you have identified, and identify insufficient causes and
add their necessary conditions. Also review your diagram for clarity, and
step through it using Flying Logic’s confidence spinners. You can even
change the class of an existing entity if, for instance, an entity that you
originally added as an UDE now appears more neutral in context.

34

Use these guidelines to help you choose what class of entity to add:

•	 If an entity is undesirable on its face— in other words, if the sys-
tem would definitely be better off without it, then use the Un-
Desirable Effect class. UDEs can have predecessors, successors,
or both, but should always have at least one causal connection into
a completed diagram.

•	 If the entity is neither negative nor positive, but exists merely
due to the larger context in which the system must operate and is
something over which you have no significant influence, then use
the Precondition class. Preconditions should never have prede-
cessors, and should always have at least one successor.

•	 If the entity is neither negative or positive, but exists because of
something within your control, then use the Action class. Actions
are always causes and never effects, so they will have successors
but no predecessors.

•	 If the entity is neither negative nor positive, but it exists as a con-
sequence of other causes in the diagram, use the Intermediate
Effect entity class. In a completed CRT, Intermediate Effects should
always end up with both predecessors and successors.

Step 5: Continue Adding Underlying Causes

At this stage, you may have several unconnected, or loosely connected
clusters of entities. In this step, search for and add deeper causes for
the effects in your diagram, looking in particular to add causes that tie
two or more clusters together. Of the causes that are currently at the
root of your diagram, keep asking yourself, “Why is this happening?”
and make your answer take the form of additional entities and the edges
that connect them. Alternate between adding underlying causes and ap-
plying the Categories of Legitimate Reservation from the previous step.

35

Step 6: Consider Negative Reinforcing Loops

Although it is uncommon, sometimes the presences of an UDE at a
higher level in your system actually aggravates UDEs at a lower level.
Since this situation is so serious, it is important that you note it in your
diagram as a causal loop, also known as a vicious circle.

Normally, all edges in a Flying Logic document “flow” from the start of
the document (the root causes) to the end (final effects.) When you
attempt to add an edge that would create a loop (that is, an effect indi-
rectly becoming its own cause) Flying Logic creates a special back edge
that denotes a casual loop. Back edges are thicker than regular edges

http://en.wikipedia.org/wiki/Virtuous_circle_and_vicious_circle

36

and drawn in blue.

Back
Edge

Back edges differ from regular edges in two ways: They do not have
edge weights, and they do not participate in the flow of confidence val-
ues through the documents. They can, however, be annotated like other
edges.

Step 7: Identify Root Causes

As your CRT becomes more complete, you will notice that one group of
causes lie at its “root.” That is, they have successors but no predeces-
sors. Some of these causes will be Preconditions and others may be
UDEs, and they won’t necessarily appear at the bottom of the diagram—
in the illustration above there are nine root causes.

37

The purpose of this step is to make sure you have built down your tree
to the point where you have uncovered the deepest causes over which
you have some control or influence. Preconditions are by definition out
of our control, but you should question whether the preconditions at the
root of your CRT aren’t really Intermediate Effects with other underly-
ing causes. Also question whether the UDEs at the root of the tree don’t
have additional underlying causes that you also control. The idea is to
“uproot” problems at their deepest possible level.

Step 8: Trim the Tree

At times you may discover that parts of the tree you have built have
little or no connection, as successors or predecessors, to the UDEs you
care about. To keep the tree manageable, you should remove these
clusters from view by either

•	 Deleting them,
•	 Using Cut and Paste to move them to a different document, or
•	 Placing them into a group which is then collapsed.

Step 9: Identify the Core Driver

If you have constructed your CRT rigorously observing the rules of cause
and effect, you will agree that eliminating a root cause will also cause a
chain reaction of other problems being eliminated. If this doesn’t appear
to be the case, go back and make sure that at each step in the diagram,
you have identified and added all the necessary and sufficient causes
of your UDEs (Step 4), and that you have built the tree down as far as
possible to root causes that you control or influence (Step 5.)

The time has come to identify the single cause that has the most influ-
ence over the most critical UDEs in your CRT. This single cause is the
Core Driver (also call the constraint, or the bottleneck)— the cause that
must be managed or eliminated in order to break through the boundar-
ies that hold your system back.

Although your CRT may contain several root causes, all of which may
eventually need attention, you can find the Core Driver by judging sev-
eral factors for each root cause:

•	 How many UDEs they indirectly cause,
•	 How severe are the UDEs they indirectly cause, and
•	 How much control or influence you have over them.

38

You can turn on the Edit ➧ Cut/Copy Includes Successors switch, se-
lect one of your root causes, then select Edit ➧ Copy. This highlights
the cause you selected, and all of its direct and indirect predecessors.
(Press the Escape key to remove the highlighting.) Use this technique
to quickly get an idea of how influential each of your root causes are,
although you will still need take the severity of the UDEs into account.

In the illustration below, entity G has been selected and copied with the
Includes Successors switch on, which makes it obvious that it contrib-
utes in some way to every UDE in the diagram. Since all of the causes in
the diagram are at least within our influence, we conclude that G is our
Core Driver— it is the constraint on which we must focus.

39

Evaporating Cloud — Conflict
Resolution

Arguments. Fights. Politics. Enemies. Compromise. Loss.

We have all encountered conflict, and most of us try to avoid it when-
ever possible. Conflict is seen as unhealthy and unpleasant to the point
that many people will attempt to ignore it even after realizing that doing
so may actually be contributing to a worsening situation. Or both sides
treat the conflict as a zero-sum game: “Either I go, or he goes!” Or per-
haps worse, both sides compromise: they “split the baby” and nobody
goes away happy.

It turns out there are better ways for resolving conflicts: ways that
result in the creation of solutions that completely satisfy everyone in-
volved. From one remarkable perspective, it is even possible to enter-
tain the idea that conflicts don’t actually exist except at the superficial
level of our positions: what we say we want.

When two wants appear to be mutually exclusive, we say there is a con-
flict. The way forward is to recognize that our wants (also called posi-
tions) are motivated by underlying needs (also called requirements.) For
example, the two wants could result from children fighting over a toy: in
this case they both want to possess the same limited resource. However,
they are motivated by underlying needs, which may not be the same
for each of them: one child may feel the need to assert their ownership
of the toy, while the other child may feel the need to incorporate the
toy into their play. Furthermore, the children are united in a common
objective: to get along and have fun. To achieve this common objective,
satisfying both children’s needs is necessary. Notice that as we have
passed beyond the boundary of the apparent conflict presented by their
wants, a recognition of their needs and common objective begins open-
ing the door to creative solutions that may leave everyone happier than
they thought possible.

When the connection is made that conflict stems not from some kind
of pathology, but from legitimate needs and common objectives, it be-
comes obvious that the best approach is not avoidance but prompt com-
munication and the creation of options for mutual gain.

Often, after producing a Current Reality Tree (CRT), it is possible to
recast the Core Driver as a Core Conflict, containing two mutually ex-

40

clusive positions. So whenever we find ourselves faced with conflicting
wants, which often happens as the result of creating a CRT, but even
more frequently just happens on its own, the Evaporating Cloud is the
tool to use. (It is so-called due to its ability to “evaporate” conflict. It is
also known as the Conflict Resolution Diagram.)

Flying Logic Setup

Since the basic form of a Cloud is always the same, the easiest way to
start a Cloud is to open the included template file Cloud.logic-t located
in the Examples/Conflict Resolution folder. Template files open as
new, untitled documents to which you can make changes and save with-
out fear of accidentally changing the template file itself.

The following paragraphs describe how to set up a Cloud document from
scratch. You can skip to the next section if you are using the template.

A Cloud is based on Necessary Condition Thinking. Since Flying logic
documents are set up for Sufficient Cause Thinking by default you will
want to set the Operator popup menus as follows:

•	 Entity Operator: Fuzzy And (AND)

•	 Default Junctor Operator: Fuzzy Or (OR)

Clouds are read from left-to-right, starting at the Common Objective.
However, this means the flow of the edges (arrows) must be towards the
Common Objective or right-to-left: so you will want to set the Orienta-
tion popup menu to Right to Left.

Clouds are created using the entity classes in the built-in Conflict Reso-
lution domain, and use the following classes: Want, Need, Common Ob-

41

jective, Conflict, and Solution.

If you’re using the template mentioned above, then the diagram is al-
ready drawn for you— you only need fill in the text. But the steps below
assume you are drawing a cloud from scratch.

Step 1: Identify the Wants

Create two Wants entities and give them titles that succinctly sum-
marize each of the conflicting positions. Traditionally the two Wants are
called D and D’ (“D Prime”).

Step 2: Identify the Conflict

Create a single Conflict entity and make it a predecessor of each of the
two Wants. If you’re using the right-to-left orientation typical of Clouds,
the Conflict entity will be to the right of the Wants.

Give the Conflict entity a title that summarizes why the Wants conflict.

42

Finally, right-click (Mac or Windows) or control-click (Mac) one of the
two edges leading from the Conflict entity and select Negative in the
popup menu that appears. This causes the edge you negated to turn
red. By doing this, our model accurately reflects the mutually-exclusive
nature of the two wants. To see this, click the Show Confidence Spinners
switch in the toolbar, then adjust the spinner on the Conflict entity from
its maximum (True) to is minimum (False). You will see how the spin-
ners on the Wants entities cannot both be true at the same time, due to
the negated edge.

Step 3: Identify the Underlying Needs

Create two Needs entities, each one a successor to one of the Wants
entities. The purpose of a position is to fulfill an underlying need. Give
each need a title that summarizes the immediate need that its side in
the conflict is trying to fulfill by asserting its position (the Want.)

The difference between a Need and a Want is simple: fulfillment of
Needs are conditions considered necessary to fulfilling the overall objec-
tive, while Wants are particular actions chosen to fulfill the needs.

43

Step 4: Identify the Common Objective

Create a single Common Objective entity, and make it a successor of
both needs. In a left-to-right orientation, the Common Objective will be
the left-most entity in your diagram.

If the two sides in the conflict have no common objective, then there
isn’t really any conflict because the two sides could simply go their sepa-
rate ways— they have no reason to cooperate. Thus, in every situation
identified as a conflict, there is always a common objective. The Needs
identified in the previous step are both considered necessary to achiev-
ing the common objective. In other words, both sides of the conflict
believe that unless their needs are met, the common objective cannot
be met.

The Common Objective is also usually at a “higher level” than the Wants
or the Needs. In the case of the children fighting over a toy, the Com-
mon Objective might be for them to “get along and have fun.” Notice
that this Common Objective doesn’t mention the specific toy that is the
subject of the conflict, even though the Wants and Needs may all men-
tion it.

Step 5: Ensure Clarity by Reading the Diagram

Now that the diagram is complete, show the Confidence Spinners, and
note that there is only one driver— the Conflict entity. This is the only
entity that has no predecessors. If you have set up the document opera-
tors and negated one of the edges coming out of the Conflict entity as
described above, you will see that by changing the value of the Conflict
entity’s spinner, one Want or the other can be satisfied (by becoming
True), and yet the Common Objective can never become True. In other
words, as long as the conflict exists, the Common Objective cannot be
achieved.

44

Now read and revise the diagram for clarity and accuracy. Clouds are
read from left to right, against the flow of the edges, using the pattern:

•	 “In order to satisfy the need we must obtain our want.”

This is the basic pattern of Necessary Condition Thinking. This pattern
applies to all the edges except the two coming from the Conflict entity.
Once we have completed this step, we fix or clarify the wording.

Step 6: Identify and Validate Assumptions

In the pattern from the previous step, there are two blanks for needs
and wants. In this step we add a third blank:

•	 “In order to satisfy the need we must obtain our want because
of our assumptions.”

Our assumptions are why we must obtain our want, and finding errone-
ous assumptions is the key to breaking the conflict. Assumptions “hide”
underneath the Want→Need edges, and the Needs→Common Objective
edges. There are also assumptions that underlie the Conflict entity it-
self— why we believe we can’t have both Wants simultaneously.

As you surface these assumptions, use Flying Logic’s annotation feature
to add text to each of the four dependency edges and the Conflict en-
tity. Take as much space as you need to describe each assumption, and
begin each assumption with “...because”.

45

Sometimes there will be a single assumption under each edge, but often
there will be several. Assumptions can be either valid or invalid. Invalid
assumptions are often used to link needs to wants, but here you must
critically evaluate each of the assumptions to determine their validity.
Invalid assumptions can be eliminated, leaving just the valid ones.

Step 7: Propose Solutions

If we manage to invalidate all the assumptions on any of our edges,
then we have eliminated the necessary condition relationship between
two of the entities. If we have invalided all the assumptions on the Con-
flict entity, then we have eliminated the perception of conflict itself. In
either of these cases, the Cloud has “evaporated” and we have discov-
ered there is, in reality, no conflict.

If the cloud is still intact, then we have at least one valid assumption
in the five locations. The final step is to construct solutions (also called
injections) that let us “break” one or more of the edges in the Cloud. A
solution is an “option for mutual gain,” and the most constructive place
in the cloud to find creative solutions is in the edges that connect the
Wants to the Needs, by asking questions of this pattern:

•	 “How can we satisfy Need without obtaining Want?”

•	 “How can we accomplish Common Objective without satisfying
Need?”

•	 “How can we obtain both First Want and Second Want?”

Remember that solutions that you come up with at this stage should not
be considered final unless the situation you are analyzing is rather sim-
ple— this tool is for brainstorming a new set of options. You can use a
Future Reality Tree to solidify the ideas you generate at this stage. Also,
avoid the temptation to look for a single “panacea” solution— you will

46

often need two or more injections to implement a truly win-win solution.

To inject a solution into the diagram, first select the edge where you
want the solution to appear then either:

•	 Double-click the Solution entity in the class list in the sidebar.
•	 Right-click (Mac or Windows) or control-click (Mac) the edge and

select Solution from the popup menu that appears.
An OR junctor will be inserted into the edge, and the new Solution entity
will be added as a predecessor. Give the new Entity a title that summa-
rizes the solution.

More solutions can be added to the same edge by selecting just the
junctor, then using the same command from the popup menu.

By displaying the Confidence Spinners, you will see that you now have
additional points of control for every solution you have added, and that
it is now possible to make the Common Objective True, even if both
Wants (the original positions) are not obtained.

47

Future Reality Tree
Perhaps you have a system you want to improve, and you’ve done a
Current Reality Tree to identify What needs to change. Perhaps you’ve
also done one or more Clouds to create some potential win-win solu-
tions, in other words What to change to. But...

•	 How can you be confident which of those ideas will work?
•	 How do you pick one idea over another?
•	 How do you know something important hasn’t been ignored or

overlooked?
•	 What are the solution’s strengths, and how can they be maximized?
•	 How can you be confident the “solution” won’t have unanticipated

effects that leave you in a situation that’s worse than before?
•	 Are a potential solution’s shortcomings something we can live with,

something we can fix after the fact, or something we should avoid
at all costs?

It is the job of the Future Reality Tree (FRT) to help you answer these
questions.

The FRT is easiest-understood by contrasting it with the Current Reality
Tree (CRT):

•	 To build a CRT, start with a set of Un-Desirable Effects (UDEs), and
build down to the Core Driver, from which we invent Solutions (also
called injections.)

•	 To build a FRT, start with a potential Solution (injection), and build
upwards to a set of Desirable Effects (DEs).

FRTs can be built not only from a previously-conceived Solution, but also
from other parts of previously-created CRTs and Clouds.

Flying Logic Setup

An FRT is based on Sufficient Cause Thinking, and this is how Flying
Logic documents are set up when first created, so you do not need to do
anything special with the Operators popup menus to start creating your
FRT. Most FRTs are drawn with one or more proposed Solutions at the
bottom and the Desired Effects at the top, so you may want to use the

48

Orientation popup menu to change the orientation of your document to
Bottom to Top.

FRTs are created using the entity classes in the built-in Effects-Based
Planning domain, and primarily use the following classes: Desirable Ef-
fect, Un-Desirable Effect, Precondition, Intermediate Effect, and Action.
If starting with solutions created from a Cloud, then FRTs will also often
use the Solution class from the Conflict Resolution domain.

Step 1: State the Proposed Solution and Desired Effects

Create one or more Solution entities to identify the set of injections you
plan to implement. These injections may come from a Cloud you’ve al-
ready created, and you can use the Copy and Paste commands to easily
add these entities to your FRT document.

Also create one or more Desirable Effect entities that summarize the
outcome you are working towards.

49

You may wish to temporarily group these two sets of entities to keep
them separate— the purpose of the FRT is to fill in the “middle”.

Step 2: Add Other Elements Already Developed

If you have already created a CRT, look for Precondition entities (state-
ments about existing reality) that may be needed in your FRT. You can
use the Copy and Paste commands to easily transfer them from your
CRT to your FRT.

If you are working from an existing Cloud, also copy over the Common
Objective and any of the Needs entities that the proposed Solutions are
intended to satisfy.

You may wish to group the entities you’ve added in this step, as they
represent entities that will end up in the “middle” of your FRT.

50

Step 3: Fill In the Gaps

Starting with your Solution entities, add entities that represent the di-
rect, inevitable consequences of those injections being put into place.
Use Un-Desirable Effect entities for negative consequences, Desirable
Effect entities for positive consequences, and Intermediate Effect enti-
ties for neutral consequences.

Use the Categories of Legitimate Reservation, to check your causal con-
nections. If the consequences you add are not sufficient by themselves,
then make sure you add any Precondition entities, or tie in any other
entities that express the other necessary conditions (AND relationships)
needed to produce the predicted result. Feel free to move objects be-
tween groups or ungroup the entities when the edges begin giving your
document structure.

51

Continue advancing from the effects you’ve identified to additional ef-
fects, evaluating whether the subsequent effects are bringing you closer
to any of your Desirable Effects, or the Common Objective or Needs
entities you may have added from your Cloud. If they do not, continue
adding and evaluating effects you may not have previously considered.

52

If your progress slows down or stops, then consider additional Action
entities you might add. These Actions are also injections, but to differ-
entiate these injections from those that are part of your original solu-
tion, use the Action entity class instead of the Solution entity class you
started with.

53

Step 4: Read and Verify the Tree

Once you have made connections to all of your Desirable Effects, re-
read the entire diagram. Remember that FRTs are created using Suf-
ficient Cause thinking, so the basic pattern you will use when reading is:

• If cause A then effect B.

When two or more arrows enter an entity, we have multiple sufficient
conditions, also called an OR relationship:

• If cause B or cause C then effect D.

When two or more arrows enter an AND junctor, then we have multiple
necessary conditions:

• If cause E and cause F then effect G.

Pay careful attention to the Categories of Legitimate Reservation. Make
sure every statement in your entities and those implied by the causal
relationships are clear and logical.

When reading through the diagram, it is also a good idea to display the
Confidence Spinners and use them as an aid to checking your logic.

1.	Display the Confidence Spinners by clicking the Confidence button
in the toolbar or selecting the View ➧ Confidence command

1.	Set every spinner to indeterminate by using the
Entity ➧ Reset Confidence command.

2.	Because Preconditions are supposed to be facts about the world,
set each Precondition entity’s confidence value to True.

3.	Notice that your Solution by itself is sufficient to cause additional
effects, so set its confidence value to True and notice how those
effects become true.

54

3.	Notice that some of your Actions are “paired up” by AND junctors
with other entities that are now True. These Actions are eligible
for execution, while other Actions that are paired up with any enti-
ties that are not already True are ineligible for execution— they
must wait until the other necessary conditions become True.

Ineligible
Action

Eligible
Actions

4.	Continue step-by-step through the diagram, telling yourself the
“story” of the diagram as you set each Action to True when it
becomes eligible, until your Desirable Effects also become True.
Correct any errors you discover in your logic along the way.

55

Step 5: Build In Positive Reinforcing Loops

Recall that when building a Current Reality Tree, occasionally there are
Un-Desirable effects that are so severe that they “feed back” on others
and create negative reinforcing loops. When creating a FRT, you want
to loop for opportunities to do the opposite: build in positive reinforcing
loops. If you can do so, you are more likely to create a solution that is
self-sustaining.

Look for Desirable Effects that may intensify effects lower in the tree
that lead back to one or more Desirable Effects. If you find such cas-
es, annotate them using Back Edges. Pay close attention to where you
might need to add additional Actions in order to create sufficient cause
for a positive reinforcing loop’s existence.

56

Step 6: Seek and Address Negative Branches

This is a critical step. Whether or not you’ve already added some Un-
Desirable Effects to your FRT, now is the time to go back over it and
carefully search for other UDEs that are consequences of any of the
entities we have added.

Once you have done that, look for the earliest places in the causal chain
where UDEs start to appear. These “turning points” are the start of Neg-
ative Branches. It is critical that you deal with Negative Branches in
order to avoid creating worse problems than those you set out to cure.

There are two approaches to addressing Negative Branches: Reactive

57

and Proactive.

In the Reactive approach, UDEs are allowed (perhaps even expected) to
occur, but are deemed unavoidable. New Action entities (injections) are
then paired with the UDEs (along with other entities as necessary) to
cause additional effects that mitigate the UDEs. These additional effects
are hopefully Desirable Effects, but can also be neutral Intermediate
Effects.

In the Proactive approach, alternative injections are created that achieve
the next stage of Intermediate Effects that are on the path to the final
Desirable Effects, without causing the UDEs. This is also known as “trim-
ming the Negative Branch.”

In the illustration below, we deal with one Negative Branch proactively
by discarding one of our original Solution entities B and devising an
alternate course of action Y. The other negative branch is handled re-
actively by devising a new Action AA that mitigates the UDE S if and
when it occurs.

58

Proactive Solution

Reactive Solution

59

Once a better path has been created, it is a good idea to keep a record
of the entities that participated in the Negative Branch by keeping them
in collapsed groups, instead of deleting them.

When someone brings you a well-intentioned proposal that you have
concerns about, it is good practice to ask for some time to think about
it, then take their proposal and construct a FRT with their suggestion as
the initial injection at the root, and with the Desirable Effects predicted
by the suggester and the UDEs you foresee as the final outcome. Once
you have this FRT, you can discuss it in detail with the suggester. If you
or they can develop injections that address the UDEs, then you are likely
to have a proposal you can approve.

60

61

Prerequisite Tree
Perhaps you’ve gotten a picture of your Core Drivers using a Current
Reality Tree (CRT). You may have used a Cloud to come up with some
promising solutions and used a Future Reality Tree (FRT) to develop a
solution you think will work. But unless your situation is quite simple,
you’re not done yet. One of the most overlooked aspects of planning lies
in determining the things we need but don’t have yet: these are the ob-
stacles that lie in our path. And as we develop ways to overcome these
obstacles, further obstacles will often become visible. The Prerequisite
Tree (PRT) is a tool that helps us to identify and see beyond every obsta-
cle, and make sure that every necessary activity is included in our plan.

Flying Logic Setup

A PRT is based on Necessary Condition Thinking. Since Flying logic docu-
ments are set up for Sufficient Cause thinking by default you will want
to set the Operator popup menus as follows:

•	 Entity Operator: Fuzzy And (AND)

•	 Default Junctor Operator: Fuzzy Or (OR)

PRTs are usually read from top-to-bottom, starting at the Objective(s).
However, this means the flow of the edges (arrows) must be towards the
Objective(s) or bottom-to-top: so you will want to set the Orientation
popup menu to Bottom to Top.

PRTs are created using the entity classes in the built-in Prerequisite
Tree domain, and use the following classes: Objective, Overcome, and
Milestone.

62

If you have already constructed PRTs in the past, the choice of Over-
come instead of Obstacle as an entity class name may seem a little
strange at first. We use the two terms somewhat interchangeably, but
the name Overcome was chosen for three reasons:

•	 First, the choice of Overcome makes the tree more natural to read.
For example, this simple sequence can be read, “In order to obtain
A, it is necessary to overcome B. In order to overcome B, it is
necessary to obtain C.”

•	 Second, when using the Confidence Spinners to step through the
logic of the tree, we use True to indicate that the statement in the
title of the entity exists or otherwise pertains to reality, and False
to indicate that it does not pertain. If we used the class name Ob-
stacle, then a True confidence value would indicate the existence
of the obstacle. However, what we want to express is the exact op-
posite: when all the necessary conditions are met, we want a con-
fidence value of True to indicate that the obstacle no longer exists:
it has been overcome. So when dealing with Overcome entities,
it is easy to think of False meaning, “We have not yet overcome
this,” (the obstacle exists) and True as meaning, “We have over-
come this” (the obstacle no longer exists.) Thus, if every entity in
our PRT does not have a Confidence of True, it is easy to see at a
glance what we still need to accomplish.

63

•	 Third, there is a positive connotation to calling these entities Over-
come. The name helps convey the idea that all obstacles contain
the seeds of their downfall, and focuses the planner on the obstacle
not as something that exists to thwart them, but rather as some-
thing that exists to be thwarted.

Step 1: Identify the Objective

Create an Objective entity and give it a title that uses simple, present-
tense wording. Usually PRTs will have a single Objective entity that de-
fines the outcome that you are working to achieve, although they can
contain more than one Objective if they are closely related. Often the
wording of the Objective will be drawn from an injection (Solution entity
or Action entity) you used in creating a Future Reality Tree.

Step 2: Identify Some Obstacles to Overcome

Something stands in the way of achieving your Objective, or you prob-
ably would have done it already. Create a set of Overcome entities that
represent the nonexistent necessary conditions for achieving your Ob-
jective. The point here is not to list everything you will need to do to
achieve your Objectives, but to identify the things you still lack. Connect
each Overcome entity as a predecessor of your Objective.

64

Step 3: Brainstorm Milestones

Consider each of the Overcome entities you have added and brainstorm
one or more Milestone entities that will negate the obstacles. It is useful
to remember that you don’t need to completely destroy an obstacle to
get past it: you can (figuratively) go around it, over it, or under it— the
point is to be creative.

•	 Often there will be a single Milestone matched with each Over-
come. (M is necessary to overcome G.)

•	 Some of the Milestones you identify may Overcome more than one
obstacle. (J is necessary to overcome D and E.)

•	 Other times, your brainstorming will come up with two or more
alternatives that may be able to Overcome an obstacle. You use
OR junctors to model this. Junctors are easily created by dragging
from an existing entity to a line. (Either H or I are necessary to
overcome C.)

•	 And sometimes, more than one Milestone will need to be achieved
in order to Overcome an obstacle. (K and L are necessary to
overcome F.)

65

Step 4: Continue to Deepen the Tree

Now consider each of the Milestones you added in the last step. What
obstacles to implementing them present themselves? Lack of knowl-
edge? Lack of manpower? Lack of money? Creating a PRT is focused on
finding those Necessary Conditions that you currently lack— this is all
an obstacle really is. For each such obstacle you identify, create a new
Overcome entity and connect it as a predecessor to the appropriate
Milestone. For each of these new Overcome entities, devise Milestones
that address them, and so on.

As you deepen the tree, the Milestones you add will start to have a
smaller, more tractable character. At some point you will add Milestones
for which you are unable to find any significant obstacles to their imple-
mentation. These Milestones are the roots of your PRT, and represent
the accomplishments that must be tackled first. Of course, there may
be many actual Actions that are required to implement a Milestone, and
this is the subject of the Transition Tree discussed in the next chapter.
But for now, it is sufficient to identify Milestones that entail no significant
obstacles.

66

Step 5: Read and Verify the Tree

Once you feel that your tree is well-connected from its simplest Mile-
stones all the way through to the ultimate Objective, it is time to care-
fully read the tree for clarity and completeness. Since PRTs are con-
structed using Necessary Condition thinking, the tree is read against
the flow of the edges starting with the Objective. Each step of the tree
is read with one of the following patterns:

67

•	 In order to obtain A it is necessary that we overcome B.

•	 In order to overcome B it is necessary that we obtain C.
Make sure that you apply the Categories of Legitimate Reservation as
you read through the tree. Ask yourself questions such as:

•	 Do we really need to overcome this obstacle?
•	 Is there a way to avoid having to overcome this obstacle?
•	 Does the milestone really overcome the obstacle?
•	 Are there any other milestones required to overcome the obstacle?
•	 Are there any other milestones that are also sufficient to overcome

the obstacle?
It is also a good idea to use Flying Logic’s Confidence Spinners at this
stage to go through your diagram step by step with the flow of the
edges from the root Milestones all the way to the Objective.

Step 6: Trim and Finalize the Tree

Once you have verified that your PRT is logically sound, it may contain
one or more alternate Milestones (connected by OR relationships) that
you can now choose among. Trim the rejected alternatives either by
deleting them or placing them within collapsed groups.

68

69

Transition Tree
Once you have identified the obstacles that stand in the way of achiev-
ing your goal and developed milestones that will overcome them, you
need an execution plan: a set of actions that combine step-by-step to
bring your system inexorably closer to its goal. Others who read your
plan (and ideally participated in its creation) should be able to clearly
see how every action, and particularly the actions in which they play
a role contribute to the benefit of the entire system. This is the key to
creating buy in— a shared vision that yields enthusiastic cooperation.
The Transition Tree (TRT) is an effective tool for creating an execution
plan that creates a transition from the current reality to a future reality.

Although a Transition Tree is related to the more traditional PERT dia-
gram used in Project Management in that they both contain a set of se-
quenced actions, one of their main distinctions is the TRT’s inclusion of
Preconditions (assumptions about reality) paired with each action. This
means that TRTs can contain numerous contingency plans that are trig-
gered by the Preconditions that pertain at the time the plan is executed.
Essentially, as execution of the plan proceeds, numerous different PERT
charts can “fall out” of a TRT depending on what the situation “on the
ground” looks like. This makes the TRT an ideal tool for creating plans
that involve a significant degree of risk.

Flying Logic Setup

A TRT is based on Sufficient Cause Thinking, and this is how Flying
Logic documents are set up when first created, so you do not need to
do anything special with the Operators popup menus to start creating
your TRT. TRTs often flow upwards, with the Goal at the top. So you may
want to use the Orientation popup menu to change the orientation of
your document to Bottom to Top.

http://en.wikipedia.org/wiki/PERT
http://en.wikipedia.org/wiki/PERT

70

TRTs are created using the entity classes in the built-in Effects-Based
Planning domain, and primarily use the following classes: Goal, Pre-
condition, Intermediate Effect, and Action. You can also use Desirable
Effect entities to highlight other positive benefits of your plan, and Un-
Desirable Effect entities if your sequence of actions causes unavoidable
UDEs that further part of the execution plan must address.

Step 1: Identify the Goal

A TRT often contains a single Goal entity, but can contain more than
one if they are reasonably related. You can start a TRT with an intuitive
pre-conception of what your Goal should be, or you can start with your
Goal taken from one of the injections taken from a Future Reality Tree,
or an Objective taken from a Prerequisite Tree. In any case, the Goal
entity should have as its title a clear, present-tense statement of the
desired reality.

Step 2: Identify Intermediate Effects

If you have already done a Prerequisite Tree, you have a set of Milestone
entities that you can copy directly into your Transition Tree document.
It’s important to realize, however, that while the Milestones in a PRT are

71

all necessary, they probably aren’t sufficient. The PRT is used for iden-
tifying and overcoming the things you don’t have yet, while the TRT is
used for identifying everything you need to do, and the order in which
you need to do them.

If you are not copying Milestone Entities from a PRT, you may want to
create a number of Intermediate Effect entities that represent states
you know will need to achieve along the way to your goal, and link
them with edges to their order is more or less defined. It is not neces-
sary to be absolutely rigorous at this stage— defining the exact causal
sequence is the focus of the following steps.

Step 3: Define a Complete Step

A step of your execution plan requires three things:

•	 The outcome you want to achieve. This is either an Intermediate
Effect, a Milestone copied from a PRT, or the Goal of your TRT.

•	 A statement of current reality. This is either a Precondition entity,
which represents an aspect of reality that is out of your control an
which must therefore be taken as a given, or an Intermediate Ef-
fect or Milestone that was the outcome of a previous step.

•	 An Action. To be well-defined, an Action must be something within
your control or influence, with clear criteria for determining that it
has been carried out successfully, and must be something that can

72

be assigned to a resource with the responsibility and power to carry
it out.

The current reality and action must logically combine as the necessary
and sufficient causes of achieve the outcome.

If in reading your step, the action is not sufficient to produce the out-
come, then it needs to be broken down into one or more sufficient sub-
steps.

73

Step 4: Continue Building the Tree

Each of the intermediate effects in your TRT must similarly be character-
ized as complete steps: outcome of actions and current realities. Often
these steps will form a linear sequence, but other times they will diverge
into parallel sequences, or have more complex dependencies.

Step 5: Seek and Address Negative Branches

This is similar to the step of the same name in the description of the
Future Reality Tree (FRT). In fact, a TRT can be thought of as a kind of
FRT where instead of starting with an injection and ending up with the
consequences, you start with a desired consequence (the Goal) and
work backwards to the injections that will achieve it.

If you are working from a FRT you created previously, then your actions
may already be designed to avoid the Un-Desirable Effects (UDEs) that
are the hallmarks of negative branches.

On the other hand, sometimes it is impossible to avoid risk. Risk mani-
fests as the failure of Preconditions (assumptions about reality) to be
True when it comes time to execute the actions that depend on them.
Depending on the nature of the environment in which the plan is execut-
ed, exactly which Preconditions may not hold true at the time the plan
is executed can be very difficult to predict, and if you create a plan with
a rigid picture of reality, you are likely to be disappointed when reality
fails to conform. Thus, to the degree that your plan involves risks, it is

74

critically important that you identify the UDEs that can result from the
failure of Preconditions, and develop alternative courses of action that
either mitigate those UDEs (the reactive approach) or avert them (the
proactive approach.)

If a plan terminates with any un-addressed UDEs, it is incomplete.

Incomplete Plan

A complete plan will terminate only with Goals or Desirable Effects.

75

Complete Plan — Reactive Mitigation

Complete Plan — Proactive Avoidance

Finally, what happens if all the conditions determined to be necessary
and sufficient for a particular effect are present, but when the plan is
executed the effect turns out to be absent? What if some other UDE we
didn’t anticipate manifests? More importantly, how can we reduce the
chances of this nightmare from occurring?

This is the case of unforeseen uncertainty (also called unknown-
unknowns)— things that have not been and could not have been imag-
ined or anticipated. In this case there can be no pre-determined contin-
gency plan, but there are some things we can do to prepare:

•	 If possible, try several approaches in parallel and ultimately com-
mit to the one that works the best.

•	 Avoid hubris: nurture an organizational culture of humility and re-
sist being blinded by your own expertise.

•	 Be flexible and willing to adapt the plan to a changing situation.

76

•	 Give heed to hunches and concerns of experienced stakeholders,
even if those reservations are not (for the moment) clearly articu-
lated.

For the last case, even inarticulate reservations can be added to a TRT
as unspecified Preconditions, and removed later if they fail to material-
ize. Don’t add unknown-unknowns at every possible place— just where
a strong-but-inspecific reservation has been expressed. Unknown-un-
knowns can also be added as part of assessment when planned effects
fail to materialize as a plan is executed.

Unknown-Unknown

Unexpected
Failure

Unexpected
UDE

Step 6: Read and Verify the Tree

This is similar to the step of the same name in the description of the
Future Reality Tree (FRT). If you have included contingency plans, then
step through the pertinent parts of your tree more than once, each time
setting up your Preconditions to trigger the different paths through your
tree.

77

Strategy & Tactics Tree
The latest addition to the TOC-TP application tools, the Strategy and
Tactics Tree (S&T Tree) is used to move from the highest-level organiza-
tional goals to a comprehensive, multi-tiered, fully-justified set of imple-
mentation steps. It is used to implement a wide-ranging improvement
throughout a larger organization by making it clear what role every part
of the organization plays.

Flying Logic Setup

An S&T Tree is based on Necessary Condition Thinking. Since Flying
logic documents are set up for Sufficient Cause thinking by default you
will want to set the Operator popup menus as follows:

•	 Entity Operator: Fuzzy And (AND)

•	 Default Junctor Operator: Fuzzy Or (OR)

S&T Trees are usually read from top-to-bottom, starting at the highest-
level Strategy. However, this means the flow of the edges (arrows) must
be towards the highest-level Strategy or bottom-to-top: so you will want
to set the Orientation popup menu to Bottom to Top.

S&T Trees are created using the entity classes in the provided domain
file Strategy & Tactics Tree.logic-d in the Examples/Strategy &
Tactics Tree folder. You can either import this domain into an existing
document with the Entity ➧ Import Domain command, or open it with
the File ➧ Open command, in which case it acts like a template docu-
ment and opens a new, untitled document with the S&T Tree domain
already imported and ready for use.

78

Structure of the S&T Tree

The S&T Tree is based on the idea that Strategy and Tactics are com-
plementary concepts used to describe a tree-like hierarchy of action,
with each Step (node) of the tree justifying its existence with a strategy:
a description of why the node exists. The highest-level strategy corre-
sponds to the system’s goal.

Each Strategy is supported by a single Tactic entity that describes how
the strategy will be implemented. The bottom of a complete S&T tree
will always be a layer of Tactics— the most fundamental actions that
support the strategies.

If more than one Tactic is necessary to implement a Strategy, a Tactic
may be broken down into two or more sub-Tactics, but each one must
first be justified by its own Strategy. Therefore, each Strategy always

79

has exactly one Tactic below it, but tactics may have either zero, or two
or more sub-Strategies.

If a Strategy has more than one possible Tactic that can accomplish it,
then this can be added as an OR relationship.

80

For a given Strategy, we need to do more than provide a Tactic for ac-
complishing it— we also need to justify that Tactic as both necessary and
sufficient to accomplish its parent strategy. So we create a Necessary
entity and a Sufficient entity and make each one a sibling of each Tactic
entity. The title given to each entity should do exactly as the class name
suggests: describe why the Tactic must be implemented to accomplish
the strategy (Necessary), along with why that Tactic absolutely will work
(Sufficient). If there are numerous justifications for why a Tactic is Nec-
essary or Sufficient, then additional Necessary or Sufficient entities can
be added, or they can be enumerated in the entity’s textual annotations.

One more entity class, the Parallel (“parallel assumption”) class is used
to proactively answer objections that neither directly address the Neces-
sity or Sufficiency of the Tactic, such as:

•	 The Strategy already exists— no action need be taken to imple-
ment it.

•	 It is not possible to implement the Tactic.
Taken together, all five kinds of entities constitute a Step.

81

Since S&T Trees can grow quite large, it is useful to use Flying Logic’s
grouping feature to manage the diagram. One approach is to group all a
Strategy’s supporting entities and use a junctor to combine their edges
with an AND junctor so only a single edge emerges from the group.

82

Groups can, in turn, be used to group entire Steps, including the Strate-
gy entity, the Tactic entity, and the sub-group containing the Necessary,
Sufficient, and Parallel (NSP) entities. Using this technique, you can ar-
range a very large S&T Tree to make it easy to “drill down” to the level
of detail you need. Take these ideas as suggestions, and feel free to
develop your own techniques for managing large Flying Logic diagrams.

83

Part III — Other Techniques

84

85

Evidence-Based Analysis
This category of entity classes is suited to an environment when a more
probabilistic mode of analysis is desired. One real-world scenario where
Evidence-Based Analysis is useful is in Competitor Analysis. Usually an
analysis is designed and then carried out over a period of time. During
such time, Propositions may be discovered to hold, which may trigger
further actions by the agency conducting the analysis.

Flying Logic Setup

There are two styles of Evidence-Based Analysis: belief-network and
probabilistic. If the belief-network style is used, the Flying Logic docu-
ment is set up with Proportional (∷) for both the entity operator and
default junctor operator. If the probabilistic style is chosen, the docu-
ment is typically set up with Sum Probabilities (⊕) as the entity operator
and Product (×) as the default junctor operator. This setup is analogous
to the use of Fuzzy Or (OR) and Fuzzy And (AND) in Sufficient Cause
Thinking.

Setup for Belief Network Setup for Probabilistic

Proposition

Propositions (also known as requirements) are questions for which the
analysis is intended to discover the most likely answers. Propositions
take the form of a statement that has some probability of being true.
Determining whether the probability of the Propositions exceeds de-
termined thresholds is a primary purpose of Evidence-Based Analysis.
Propositions are analogous to goals in Effects-Based Planning, and thus
are terminal, i.e., they are always successors and never predecessors.

http://en.wikipedia.org/wiki/Competitor_analysis

86

Indicator

Indicators are potential causes for Propositions or other Indicators, and
can be considered analogous to Intermediate Effects in Effects-Based
Planning. Another way of thinking of Indicators is as inferred evidence.
Each Proposition typically has a set of Indicators that feed into it, each
of which is considered to be a possible cause of the Proposition, and
which together form a “template” for recognizing that the Proposition
holds (i.e., that the requirement has been met.)

Each indicator in turn may have a set of more specific indicators which
feed into it and form a “sub-template” for recognizing that the indicator
in question probably holds. Indicators are usually both successors and
predecessors.

87

In a complex analysis, individual analysts can be assigned responsibil-
ity for certain indicators, which places them in a supervisory role over
all indicators that are predecessors of the indicators for which they are
directly responsible.

Event

Events represent direct evidence which becomes known throughout the
life cycle of the analysis. In the intelligence community for example,
Events may be derived from Signals Intelligence (SIGINT), Human In-
telligence (HUMINT), or Open Source Intelligence (OSINT).

Events are always predecessors and are never successors. They are
assigned a Confidence value based on their reliability (or probability.)

http://en.wikipedia.org/wiki/SIGINT
http://en.wikipedia.org/wiki/HUMINT
http://en.wikipedia.org/wiki/Open_source_intelligence

88

Knowledge

Knowledge represents pertinent facts known to be true about the situ-
ation under analysis. Knowledge can be built into the analysis before
events are received, or can be added to the analysis in response to
events as they occur. Knowledge entities are combined with Events to
provide context and semantics either supporting or refuting the various
indicators into which they feed.

Like Events, Knowledge entities are predecessors and not successors.
They are assigned Confidence values based on their reliability (or prob-
ability.)

Edge Weights

Edge weights in the model are assigned based on the positive (or nega-
tive) correlation between each entity and its successors.

89

Concept Maps
Concept Maps are used to visualize and capture or convey a quick un-
derstanding of a web of related concepts.

Flying Logic Setup

Concept Maps are created using the entity classes in the provided do-
main file Concept Map.logic-d in the Examples/Concept Maps fold-
er. You can either import this domain into an existing document with
the Entity ➧ Import Domain command, or open it with the File ➧ Open
command, in which case it acts like a template document and opens a
new, untitled document with the Concept Map domain already imported
and ready for use.

Structure of Concept Maps

Concept maps use two entity classes, Concept (•) and Relation (→).
Symbols were used for the entity class names instead of words because
Concept Maps are read entirely from their entity titles, and the words
“Concept” and “Relation” are never spoken.

Concepts Maps start with one or more main concepts at the root,
and relations are used between concepts to connect in supporting
concepts. The main rule when building Concepts Maps is that each
Concept→Relation→Concept step should be readable as a complete sen-
tence. Additional relevant concepts can be added in any order, and con-
nected in as many places as they are used.

http://en.wikipedia.org/wiki/Concept_map

90

91

Appendix

Resources

Flying Logic Web Site
The resources at FlyingLogic.com are intended to be of interest not only
to Flying Logic users, but also to people generally interested in TOC,
business improvement, and personal improvement.

•	 Flying Logic Forum — Discussion
•	 Flying Logic Wiki — Collaborative knowledge base
•	 Flying Logic Blog — News and items of interest

Web Sites on the TOC
•	 My Saga to Improve Production

By Eli Goldratt
•	 TOC.tv
	 Videos by Eli Goldratt
•	 A Guide to Implementing the Theory of Constraints

Kelvyn Youngman
•	 TOC Video Overviews

Dr. James R. Holt, Washington State University
•	 Theory of Constraints International Certification Organization —

Among other things, the TOC-ICO hosts a yearly conference
•	 TOC Glossary

Pinnacle Strategies
•	 Strategy and Tactics — a description of the S&T Tree

By Eli Goldratt, Rami Goldratt, and Eli Abramov
•	 Throughput Accounting — includes a description of Throughput,

Inventory, and Operating Expense
Wikipedia

http://flyinglogic.com/
http://forum.flyinglogic.com/
http://wiki.flyinglogic.com/
http://blog.flyinglogic.com/
https://www.toc-goldratt.com/content/My-Saga-to-Improve-Production
http://www.TOC.tv/
http://www.dbrmfg.co.nz/
http://www.vancouver.wsu.edu/fac/holt/em526/ConstraintsOverview/TOCOverViews.htm
http://www.tocico.org/
http://www.pinnacle-strategies.com/glossary.htm
http://www.vancouver.wsu.edu/fac/holt/em534/Goldratt/Strategic-Tactic.html
http://en.wikipedia.org/wiki/Throughput_accounting

92

Books on the TOC
•	 The Logical Thinking Process: A Systems Approach to Complex

Problem Solving
by H. William Dettmer

•	 Thinking for a Change: Putting the TOC Thinking Processes to Use
by Lisa J. Scheinkopf

•	 Introduction to the Theory of Constraints (TOC) Management Sys-
tem
by Thomas B. McMullen, Jr.

Books on Psychology, Communication, and Negotia-
tion

•	 Mistakes Were Made (But Not by Me): Why We Justify Foolish
Beliefs, Bad Decisions, and Hurtful Acts
by Carol Tavris, Elliot Aronson

•	 Getting to Yes: Negotiating Agreement Without Giving In
by Roger Fisher, Bruce M. Patton, William L. Ury

•	 Getting Past No: Negotiating in Difficult Situations
by William L. Ury

•	 Difficult Conversations: How to Discuss what Matters Most
by Douglas Stone, Bruce Patton, Sheila Heen, Roger Fisher

•	 Crucial Conversations: Tools for Talking When Stakes are High
by Kerry Patterson, Stephen Covey et al.

Other Useful Web Sites
•	 The Theory Underlying Concept Maps and How To Construct Them
	 by Joseph D. Novak, Alberto J. Cañas, Florida Institute for Human

and Machine Cognition

http://www.amazon.com/gp/product/0873897234/ref=as_li_ss_tl?ie=UTF8&tag=ironwolf-20&linkCode=as2&camp=217145&creative=399349&creativeASIN=0873897234
http://www.amazon.com/gp/product/0873897234/ref=as_li_ss_tl?ie=UTF8&tag=ironwolf-20&linkCode=as2&camp=217145&creative=399349&creativeASIN=0873897234
http://www.amazon.com/gp/redirect.html?ie=UTF8&location=http%3A%2F%2Fwww.amazon.com%2FThinking-Change-Processes-Constraints-Management%2Fdp%2F1574441019%2F&tag=ironwolf-20&linkCode=ur2&camp=1789&creative=9325
http://www.amazon.com/gp/redirect.html?ie=UTF8&location=http%3A%2F%2Fwww.amazon.com%2FIntroduction-Theory-Constraints-Management-System%2Fdp%2F1574440667%3Fie%3DUTF8%26s%3Dbooks%26qid%3D1187770311%26sr%3D1-8&tag=ironwolf-20&linkCode=ur2&camp=1789&creative=9325
http://www.amazon.com/gp/redirect.html?ie=UTF8&location=http%3A%2F%2Fwww.amazon.com%2FIntroduction-Theory-Constraints-Management-System%2Fdp%2F1574440667%3Fie%3DUTF8%26s%3Dbooks%26qid%3D1187770311%26sr%3D1-8&tag=ironwolf-20&linkCode=ur2&camp=1789&creative=9325
http://www.amazon.com/gp/redirect.html?ie=UTF8&location=http%3A%2F%2Fwww.amazon.com%2FMistakes-Were-Made-But-Not%2Fdp%2F0151010986%3Fie%3DUTF8%26s%3Dbooks%26qid%3D1187745601%26sr%3D8-1&tag=ironwolf-20&linkCode=ur2&camp=1789&creative=9325
http://www.amazon.com/gp/redirect.html?ie=UTF8&location=http%3A%2F%2Fwww.amazon.com%2FMistakes-Were-Made-But-Not%2Fdp%2F0151010986%3Fie%3DUTF8%26s%3Dbooks%26qid%3D1187745601%26sr%3D8-1&tag=ironwolf-20&linkCode=ur2&camp=1789&creative=9325
http://www.amazon.com/gp/redirect.html?ie=UTF8&location=http%3A%2F%2Fwww.amazon.com%2FGetting-Yes-Negotiating-Agreement-Without%2Fdp%2F0140157352%3Fie%3DUTF8%26qid%3D1187745700%26sr%3D1-1&tag=ironwolf-20&linkCode=ur2&camp=1789&creative=9325
http://www.amazon.com/gp/redirect.html?ie=UTF8&location=http%3A%2F%2Fwww.amazon.com%2FGetting-Past-No-William-Ury%2Fdp%2F0553371312%3Fie%3DUTF8%26qid%3D1187745700%26sr%3D1-1&tag=ironwolf-20&linkCode=ur2&camp=1789&creative=9325
http://www.amazon.com/gp/redirect.html?ie=UTF8&location=http%3A%2F%2Fwww.amazon.com%2FDifficult-Conversations-Discuss-what-Matters%2Fdp%2F014028852X&tag=ironwolf-20&linkCode=ur2&camp=1789&creative=9325
http://www.amazon.com/gp/redirect.html?ie=UTF8&location=http%3A%2F%2Fwww.amazon.com%2FCrucial-Conversations-Tools-Talking-Stakes%2Fdp%2F0071401946&tag=ironwolf-20&linkCode=ur2&camp=1789&creative=9325
http://cmap.ihmc.us/Publications/ResearchPapers/TheoryCmaps/TheoryUnderlyingConceptMaps.htm

