GenLib v. 0.0.1

Introduction

GenLib stands for Genetic algorithm Library, whose main purpose is to provide the basis for
applications which use genetic algorithms for solving optimization problems. Original idea was to
come up with the design, which would support variety of types of objectives as well as single and
multiple optimization within the same framework. Another goal would be to allow easy (once one
managed to understand the library design) assembling and testing of variety of algorithms by
combining genetic operators. I hope, that in this I have, up to certain extent, succeeded.

In order to achieve the aforementioned objectives, the combination of class hierarchy, with wide
use of virtual methods, and templates was used. I did not want to create fully templated library (like
STL) for the sake of components interaction flexibility. The tradeoff, of course, is the loss of efficiency
for calls of virtual methods. I believe, however, that such loss is minor, in comparison with what was
achieved in terms of potential extendability. The templates also were used where the there was a clear
advantage for the design simplicity (see, for example GLOrganismVector <T>class).

The library in its current stage is usable, but by far not complete (well, this is version 0.0.1 after all) .
Three major parts are missing:

1. Implementation of multi-objective optimization.
2. Saving and restoring of optimizer's status.
3. Multithreading.

I plan to implement all this with time, but the speed and the order will be determined largely by the
interest in this library (if any). Also, wider collection of basic genetic operators (like mutators and
crossovers) would be useful. Again, if somebody will show an interest in particular feature — please, do
contact me and I shall see what I can do.

Design

I am not going to boast, that this library is easy to understand and to use. I hope it is, but I am not in
position to comment on this — after all it is for user to decide. What I can claim, however, that it has (in
most parts) a consistent design with clear ideas behind it, which, in my experience, is the key
component to understanding any library.

General conceptions and notations.

As mentioned before, the flexibility of the library is achieved through build of class hierarchy. There
are four main types of classes in GenLib:

* Pure abstract classes, which have form GLBase<Type>. Normally you should not be able to
instantiate the object of base classes. <Type> refers to an operation, which this class's children are
i1s suppose to implement (see below). Example of such class is GLBaseOrganism, which is a
prototype for all organisms which may be handled by the Genetic Algorithm in this library.

Interfaces, with prefixes GLInterface<>. Normally they do not contain any data and their purpose is
similar to that in Java — specify an interface that class must implement. For example,
GLInterfaceSwapTails is the interface for organisms which are able to swap tails. In order to be used
with CROSSOVER_ONE_POINT the organism must implement it.

Stand-alone 'real' classes. Those are classes which do not have abstract class as their parent (apart, may
be, from interface(s)). Quite often they have many static methods. Example of such class is
GLConstants.

Finally, the last group of classed are those, which are derived from the base classes. They typically
have name like GL<Type><Characteristic>, where <Type> is the same as in GLBase<Type> and
<Characteristics> is (ideally) makes clear of the class's specifics. So, the GLMutatorGenesSwapping is
child of GLBaseMutator class and swaps two arbitrary genes in organism's chromosome.

Genetic operator's design

If you looked for this library, you are probably familiar with main concepts which are used in Genetic
Algorithm optimization. I, therefore, shall explain them only to extent, which is necessary to
understand the design principles used in the library.

First, the Genetic Algorithm (GA) is population-based search technique, i. e. the prospective solutions
(organisms) form population(s) which change (evolve) with time, hopefully improving the average
fitness of its elements and eventually finding (close to) optimal solution. The GA task, therefore, is to
manage one or more populations (some variety of GAs use several populations which evolve separately
and occasionally exchange the organisms) — initialize them with initial solutions, start the evolution and
decide when to stop.

Therefore, it is logical, that GA should own population(s):

Oenetic al gotithio

Population(s)

Fig. 1: Genetic algorithm owns one or more populations.

The population is responsible for
a) storing current generation of organisms.
creating the new generation.

Population contains its own storage (type of the storage used is characteristic of population), so it is not

assumed that storage type can change during runtime.
For creating new generation population applies three major genetic operators:
1) Breeding — choosing the organisms for breeding and applying crossover to them.

Variation — choosing the organisms to be mutated (which may or may not include newly born
organisms) and applying mutation operator to them.

Selection — ranking old and new organisms and deciding which will survive for next generation.

Those population's characteristic is how it applies those operators, but operators itself belong to GA
and are passed to population when new generation is to be formed. Therefore, GA decides when new
generation will be created and which operators are to be used for this generation, but it delegates the
job of creating new generation to Population class.

Genetic alzorithm

Population(s)

Storage for organisms

Creates new generatian

Breeder

Wariatoc

Selectionist

Fig. 2: Genetic algorithm delegates work of creating new generation to Population passing
its own genetic operators.

Such approach allows using the same population class in different genetic algorithms.

Consider genetic operators now. Let us start with Breeder. It can be divided in two parts
— to decide which organisms to breed and with whom;

to create new children using crossover operator;

The first part usually is general and requires, may be, information about organisms' fitness,
while the second operation is organism specific (crossover, in principle, must use information about
internal structure of organism). That is to say, the same breeding strategy may be applied to various
types of organisms, while crossover, normally, can be used with much narrower set. Therefore, each
breeder uses crossover, which was passed to it in constructor.

Variator is very similar to breeder — it needs to make general decision which organisms to
mutate (or which organisms have higher probability for mutation) and then to apply organism-specific
mutation operator.

The task of Selectionist is to decide which organisms (old and new) are to survive for the next
generation. For this it needs some way to rank them, usually according to their fitness.

So, the following structure emerged:

Genetic algorithm

Population(s)

Storage for ocganisms

Creates New generatian

Breeder Variator

Crossover Mlutatoc

Selectionist

Rankec

Fig. 3: Breeder, Variator and Selectionist use Crossover, Mutator and Ranker operators
correspondingly.

What is described above is the use of Bridge design pattern. In case you have not read it yet, I
strongly recommend you the following book: Design Patterns: Elements of Reusable Object-Oriented
Software.

Initializing the Genetic Algorithm.

All the elements of GA (population, breeder, variator, selectionist etc.) are created in GA's constructor
using GLParametersGeneticAlgorithm and GLFactory classes. The GLParametersGeneticAlgorithm is
the simple structure, containing constants corresponding to different operators, pointers to structure
which contain additional data for some of the operators and constants which determine properties of the
Genetic Algorithm. For example, field m_mutator_type may have value MUTATOR_GENES_SWAPPING
which means that if parameters object, containing this field, will be passed to GA's constructor the GA
will be created with mutator of GLMutatorGenesSwapping type. This particular mutator randomly
swaps to genes in chromosome and does not require any additional paremeters, so field
m_mutator_params will be set to NULL. If m_mutator_type==MUTATOR_GENES_SHUFFLING then

GLMutatorShuffling will be created. This mutator randomly shuffle certain number of genes in
organism's chromosome. It requires to know the minimum and maximum number of genes it is allowed
to shuffle and therefore m_mutator_params field must be point to object of class
GLMutatorShuffling:: TParameters in order to provide mutator with necessary information.

GLFactory creates the classes based on the constants and additional parameters provided by
GLParametersGeneticAlgorithm. Because the GA's constructor takes the pointer to the factory and all
the factory's methods are virtual, it can be extended by inheritance to handle the genetic operators
which are problem-specific and defined outside the library.

Solving problems with Genetic Algorithm.
In order to apply Genetic Algorithm to particular problem one needs to feed it with:
1. Fitness function evaluator;
2. Initial population;
3. Stopping criteria.

The fitness function evaluator is your objective function, or what you want to optimize. The GenLib is
designed to find the minimum, so if you need to find the maximum of you will need to minimize the
negative value of you objective function.

The evaluator, you pass to the solver or, rather, the fitness value object (class inherited from
GLBaseFitness) which it returns, will determine what type of optimization you are going to use (e.g.
integer or real arithmetics, single or multiple objective optimization). Use of pointer to the class as a
fitness value instead of template slows things down but adds the flexibility to the design. In principle,
with such approach, single and multiple objective optimizations can be done using almost identical
algorithm. The only thing you need to change is Ranker and/or Selector.

Initial population is obtained from 'organism initializer'. This is class which should be inherited from
GLBaseOrganismslnitialiser and produces the initialized organisms. Specifying the particular initializer
will automatically determine the representation of your solution — e.g. vector of integers, tree, or
bitmap.

Stopping criteria determines when the optimization process should stop. As GA is stochastic method
usually there is no strict criteria that optimum was reached. The common criteria for stopping is
number of generations passed since the start of optimization. It also can be number of generations since
the last improvement to the fitness function was detected, when the list of optimal solutions was
amended etc. It also could be the combination of 'simple' criteria — for example, “total number of
generations reached 1000 OR number of generations since the fitness value was improved is 50 OR the
best found so far value of fitness function is less than certain value'.

Providing all three components as parameters to runGA method allows to solve completely different
types of problems.

Calibration of GA

The results of optimization by GA heavily depend on numerous parameters. Changing the size of the
initial population, mutation rate, type of genetic operator etc. may lead to completely different results.
At the same time, as GA is stochastic method it is very difficult to judge the effects of parameter's

change after a single run. To help user with calibration GenLib includes classes GLMultipleGARunner
and GLStatisticsSimple. Class GLMultipleGARunner runs takes the vector of GAs (defined with
various sets of parameters) and performs a specified number of runs for each GA from the list. The
results are stored in vector of pointers to class GLBaseGaStatus, containing various useful statistics.
Class GLStatisticsSimple analyses the results and prints a lot of useful information — e.g. mean and
standard deviation of number of generations before convergence etc.

Example of using the GA
Examples of GA's use are contained in TestGL.cpp file. Consider one of them — testFullGa. This
functions finds the minimum of f(x)= 2:11 |x,,,—x, where x is vector of integers of size n

from O to n-1 inclusive. The solution for this problem is trivial. In fact it has two solutions: x,=i—1
end x,=n—1 .Inboth cases the minimum value of objective functionis f(x)=n—1 . Note, that
size of the solution space (total number of possible solutions) is equal to n/

Go through the example, omitting the debug output.
GLFactory factory;

This statement defines the factory which will be used for instantiating objects required for Genetic
Algorithm.

//GLRandomNumbersGenerator: :initGenerator(1241186119);

This commented line requires some explanations. Genetic library uses class
GLRandomNumberGenerator to obtain random numbers and to perform relevant operations like
random shuffling. If not initialized, this class will take an initial value from the timer when used for the
first time. It can also be initialized at any time with the specific number. When initialized from the
timer the GLRandomNumberGenerator will print the initial value, allowing user to repeat the run if
any problems were encountered. This is very useful feature, taking into account the stochastic nature of
the GA algorithm.

GLParametersGeneticAlgorithm *parameters =
new GLParametersGeneticAlgorithm();

Creates the class for storing the genetic algorithm parameters.
parameters->m_mutator_type = MUTATOR_GENES_SWAPPING;

Sets the type of mutator operators to be used in GA
parameters->m_initial_population_size = 50;

Initial size of the population. Genetic algorithms can be with constant population or with the population
which varies in time.

GLGeneticAlgorithmStandard test_ga(*parameters, &factory);
delete parameters;

Creates the GA.

GLBaseOrganismInitialiser *initialiser =
new GLInitialiserShuffleIntVector(40);

Creates an initialiser for initializing the initial population with randomly shuffled vector of integers
between 0 and 39.

GLBaseEvaluator *evaluator = new GLTestEvaluator();
Objective function.

TListOfStoppers stoppers;

stoppers.push_back(new GLGaStopperMaxGenerations(1000));

stoppers.push_back(new GLGaStopperNoNew(5));

Creates the list of stoppers — criteria for Genetic algorithm to stop. In this case GA will run no more
than 1000 generations and stop as long as no new organisms appeared in population for 5 generations.

test_ga.runGA(initialiser, evaluator, stoppers);
Run GA to get the solution

cout << "Total " << evaluator->getCounter()
<< " evaluations were done\n";

Evaluator has a counter, which is updated each time the objective function is evaluated. One of the way
to measure the performance of particular type of GA if objective function's evaluations have high
overheads.

cout << *(test_ga.getStatus());

After finishing the status is available from the GA which contains, among other things, optimal
solution(s) found during and optimization process. It is printed here.

Note, that if we decide to find the minimum among the vectors of size 10 all what is necessary is to
change the parameter passed to GLInitialiserShuffleIntVector constructor.

	GenLib v. 0.0.1
	Introduction
	Design
	General conceptions and notations.
	Genetic operator's design
	Initializing the Genetic Algorithm.
	Solving problems with Genetic Algorithm.
	Calibration of GA
	Example of using the GA

