
Getting started with
Habari OpenMQ Client
Version 1.8

Trademarks

Habari is a registered trademark of Michael Justin and is protected by the laws of Germany and other
countries. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Embarcadero, the
Embarcadero Technologies logos and all other Embarcadero Technologies product or service names are
trademarks, service marks, and/or registered trademarks of Embarcadero Technologies, Inc. and are
protected by the laws of the United States and other countries. Microsoft, Windows, Windows NT, and/or
other Microsoft products referenced herein are either registered trademarks or trademarks of Microsoft
Corporation in the United States and/or other countries. Other brands and their products are trademarks of
their respective holders.

Habari OpenMQ Client 1.8 2

Contents
Introduction..5

About Habari OpenMQ Client...5

Quick Start..9

Download and Installation..9

GlassFish v3 configuration..11

Dependencies..12

Requirements...12

TCP/IP Communication Libraries..13

Communication Adapter Configuration...14

Introduction...14

The JMS API Programming Model...15

Tutorials..16

Habari Quick Start Tutorial...16

Online Tutorials..18

Connections and Sessions...19

Step by Step Example...19

Transacted Sessions...21

Failover Support...21

Destinations..23

Introduction...23

Create a new Destination..23

Producer and Consumer..25

Message Producer...25

Message Consumer...25

JMS Selectors..26

Text Messages...27

Sending Text Messages...27

Receive Text Messages...28

Bytes Messages...30

Creation..30

Sending...30

www.habarisoft.com Enterprise Messaging for Delphi®

Habari OpenMQ Client 1.8 3

Object Messages...31

Introduction...31

Message Transformers in Habari OpenMQ Client...31

Durable Subscriptions...34

Description...34

Example Applications ...35

ConsumerTool...35

ProducerTool..41

Message Options...45

JMS Standard Properties...45

User Defined Properties..46

Useful Units...47

BTStreamHelper..47

BTJavaPlatform...47

Known Limitations..48

Sessions..48

Messages..48

Security..49

References..50

Habari OpenMQ Client License..51

Third Party Library Licenses..53

Synapse..53

Indy BSD License..53

SuperObject..54

Log4D...54

NativeXml...55

Release Notes...56

Version 1.8...56

Version 1.7...57

Version 1.6...57

Version 1.5...58

Version 1.4...59

Version 1.3...59

www.habarisoft.com Enterprise Messaging for Delphi®

Habari OpenMQ Client 1.8 4

Version 1.2...60

Version 1.1...60

Version 1.0...61

Index..62

www.habarisoft.com Enterprise Messaging for Delphi®

Habari OpenMQ Client 1.8 Introduction 5

Introduction

About Habari OpenMQ Client
Habari OpenMQ Client is a Delphi library for OpenMQ. With Habari OpenMQ Client, Delphi
developers can build integrated solutions, connecting cross language clients and protocols
from C, Delphi, and Java using the peer-to-peer or the publish and subscribe communication
model. The library uses a plug-in style architecture for communication libraries. It supports
OpenMQ version 4.4 and 4.5, Delphi 6 to XE and Free Pascal, and follows the specification of
the JMS API.

How Can I Use It?
Here are some examples for software solutions built on top of a Message Broker like
OpenMQ:

● Intranet News Ticker Application: using the publish and subscribe communication
model, news can be delivered to all registered client applications. The message sender
works like a broadcast station, and does not care if clients don't listen.

● Application Server Integration: Open Message Queue is a key component of the
GlassFish v2.1.1 and GlassFish v3 Application Server.

● Load Balancing: using the point-to-point or queuing model, many 'worker'
applications can be installed on different computers. Every new message sent to the
queue will be delivered only to one client. The server will keep messages until they are
expired or delivered to a client.

● Persistent Storage: messages and objects can be stored in the Object Broker and
retrieved even after a restart.

● Inter-process Communication: applications can use point-to-point messages to
exchange information between each other even if the receiver currently is not running.

www.habarisoft.com Enterprise Messaging for Delphi®

Habari OpenMQ Client 1.8 Introduction 6

Example Illustrations

Habari for shared business logic

Similar to SOAP or REST servers, Delphi software systems can use Habari to provide business
logic to other processes.

Documents and messages (including objects, serialized using JSON or XML) can be
exchanged and secured by client-side acknowledgment and transactional sessions.

www.habarisoft.com Enterprise Messaging for Delphi®

Illustration 1: Shared Business Logic

Habari OpenMQ Client 1.8 Introduction 7

Habari in a network of Delphi applications

This illustration shows different Delphi applications running in a local network, using Habari
client libraries to implement Interprocess communication: applications use point-to-point
messages to exchange information between each other even if the receiver currently is not
running.

Using the publish/subscribe communication model, news can be delivered to all registered
client applications. The message sender works like a broadcast station, and does not care if
clients don't listen.

Habari in a load balancing solution

In this example, a PHP web application sends data to the message queue. The Habari
communication layer in the Delphi worker applications takes care of receiving and
acknowledging incoming messages.

Using the point-to-point or queuing model, many 'worker' applications can be installed on
different computers. Every new message sent to the message queue will be delivered only
to one client. The message broker will keep messages until they are expired or delivered to a
client.

www.habarisoft.com Enterprise Messaging for Delphi®

Illustration 2: Peer to Peer Communication

Illustration 3: Load Balancing

http://en.wikipedia.org/wiki/Interprocess_communication
http://en.wikipedia.org/wiki/Message_queue
http://en.wikipedia.org/wiki/Publish/subscribe

Habari OpenMQ Client 1.8 Introduction 8

Habari JMS Client Libraries - Feature Matrix

Feature
Habari

ActiveMQ
Client

Habari
HornetQ

Client

Habari
OpenMQ

Client

JMS Message Types

TextMessage / BytesMessage ✔ / ✔ ✔ / ✔ ✔ / ✔

ObjectMessage / MapMessage ✔ / ✔ ✔ / - ✔ / -

JMS Features

Temporary Queues ✔ - ✔

Durable Topics ✔ ✔ ✔

Transacted Sessions ✔ ✔ ✔

Stomp JMS Bindings

Message Expiration (JMSExpiration) ✔ ✔ ✔

Message Priority Level (JMSPriority) ✔ ✔ ✔

Persistent Message Flag (JMSDeliveryMode) ✔ ✔ ✔

Message Selector: SQL-92 / XPath ✔ / ✔ ✔ / - ✔ / -

No-Local Flag ✔ ✔ ✔

Object Serialization

JSON libraries: SuperObject / lkJSON ✔ / ✔ ✔ / - ✔ / -

XML libraries: NativeXml / OmniXML ✔ / ✔ - / ✔ ✔ / ✔

Advanced Features

Failover Transport ✔ ✔ ✔

Log4D logging library ✔ ✔ ✔

Object Exchange: Delphi-to-Delphi / Cross-Language ✔ / ✔ ✔ / - ✔ / -

Included Demo Projects 16 10 11

Compiler Compatibility

Delphi 6 – XE / Free Pascal 2.4.2 + ✔ / ✔ ✔ / ✔ ✔ / ✔

Supported Communication Adapters

Internet Direct (Indy) / Synapse ✔ / ✔ ✔ / ✔ ✔ / ✔

www.habarisoft.com Enterprise Messaging for Delphi®

Habari OpenMQ Client 1.8 Quick Start 9

Quick Start

Download and Installation
The OpenMQ 4.4 web page is located at https://mq.dev.java.net/4.4.html.

The OpenMQ 4.5 web page is located at https://mq.dev.java.net/4.5.html.

Note that this installation documentation uses the Windows installer, however the Habari
OpenMQ Client library would work with installations of OpenMQ on other operating system
platforms as well.

Installation steps for OpenMQ 4.5:

1. download the binary image file with installer (for Microsoft Windows x86) from the
OpenMQ web page

2. unpack the installer

3. navigate to the directory openmq4_5-installer
4. start the installer script installer.vbs

When the installer application is started, a graphical application will display allow you to
install and configure Message Queue.

Start the Broker
You are ready to start the OpenMQ server now via the mq/bin/imqbrokerd command, which
will run the broker and display log messages in a window

Configuration
Now you will need to enable Stomp support in the broker and configure a user name and
password for the broker bridge.

1. stop the broker

2. navigate to the configuration folder .../instances/<instance name>/props (this folder
will be created when the broker started), for example C:\MessageQueue-
4.5\var\mq\instances\imqbroker\props

3. open the configuration file config.properties with a text editor

4. add the following lines to configure the Stomp adapter with a test admin account:
imq.bridge.admin.user=admin
imq.bridge.admin.password=admin
imq.bridge.activelist=stomp
imq.bridge.enabled=true

www.habarisoft.com Enterprise Messaging for Delphi®

https://mq.dev.java.net/4.5.html
https://mq.dev.java.net/4.4.html

Habari OpenMQ Client 1.8 Quick Start 10

Save the file. You are ready to start the broker now with Stomp support.

As you can see, the Stomp bridge is running and using TCP port 7672. The Habari OpenMQ
Client library will use port 7672 by default.

Test the Stomp connection
To test the Stomp connection, you can use the ProducerTool demo application in the directory
<Habari>\demo\producertool.

If you start the ProducerTool without command line parameters, it will send 10 messages to
the broker. For a description of the parameters, please see the readme.txt file in the
ProducerTool directory or the chapter ProducerTool on page 41.

Adding user accounts
The command line tool imqusermgr can be used for user administration. Example:
imqusermgr add -u name -p pass

www.habarisoft.com Enterprise Messaging for Delphi®

Habari OpenMQ Client 1.8 Quick Start 11

GlassFish v3 configuration
In the default installation of GlassFish v3, OpenMQ is not started automatically when the
broker starts, so the message broker configuration file for the default domain “domain1”
(glassfish/domain1/imq/instances/imqbroker/props/config.properties for example) is
not present yet.

Follow these steps to initialize OpenMQ in GlassFish v3:

• only for GlassFish v3.0 (no longer required in GlassFish v3.1): edit the domain
configuration file domain.xml in the config folder of the default domain
glassfish\domains\domain1\config to deactivate lazy initialization:

 <jms-service default-jms-host="default_JMS_host" type="EMBEDDED">
 <jms-host host="localhost" name="default_JMS_host" lazy-init="false" />
 </jms-service>

• start GlassFish

• run asadmin jms-ping

• edit the config.properties file to activate Stomp

• restart GlassFish

www.habarisoft.com Enterprise Messaging for Delphi®

Habari OpenMQ Client 1.8 Dependencies 12

Dependencies

Requirements

Development Environment
● Embarcadero Delphi 6 or higher

● Free Pascal

Message Broker
● Open Message Queue 4.4 or 4.5

● Java Runtime Environment 1.6

TCP/IP Communication Library
See the next chapter for a discussion of all communication libraries and a feature matrix.

Internet Direct (Indy)

Subversion repository access:

https://svn.atozed.com:444/svn/Indy10/trunk

Inofficial snapshots:

http://indy.fulgan.com/ZIP

Synapse

Subversion repository access:

https://synalist.svn.sourceforge.net/svnroot/synalist/trunk/

www.habarisoft.com Enterprise Messaging for Delphi®

https://synalist.svn.sourceforge.net/svnroot/synalist/trunk/
http://indy.fulgan.com/ZIP

Habari OpenMQ Client 1.8 Dependencies 13

TCP/IP Communication Libraries

Supported libraries

Internet Direct (Indy) 10

The communication adapter for Indy supports both GUI-based and console mode
applications, and works with Delphi 6 to XE and Free Pascal.

The library has been tested with these versions of Internet Direct:

• Indy 10.5.8

Synapse

The communication adapter for Synapse supports both GUI-based and console mode
applications, and works with Delphi 6 to XE and Free Pascal.

The library has been tested with these versions of Synapse:

• Release 39

www.habarisoft.com Enterprise Messaging for Delphi®

Habari OpenMQ Client 1.8 Communication Adapter Configuration 14

Communication Adapter Configuration

Introduction
Habari uses communication adapters as an abstraction layer between the internal library and
the TCP/IP library.

These adapters are implemented using a common API, which allows to exchange them easily,
even at run time.

Installation of Communication Adapter classes
A communication adapter implementation can be prepared for usage by simply adding its
Delphi unit to the project.

Behind the scenes, the communication adapter will add itself to the communication adapter
list in the BTAdapterRegistry unit.

If more than one communication adapter is in the project, the first adapter class in the list
will be the default adapter. (The methods of the adapter registry performs some checks, for
example to prevent duplicate entries in the adapter list, and raise exceptions in case of
errors)

No additional setup of communication adapters is required. At run time, the JMS connection
class will pick the default adapter from this list.

The default adapter can be changed at run time by setting the adapter class (either by its
name or by its type).

Available Communication Adapters
The Habari OpenMQ Client libraries includes two adapters for TCP/IP libraries, one for Indy
(Internet Direct) and one for Synapse.

Overview: Adapter classes and units

Adapter Unit name

TBTCommAdapterIndy BTCommAdapterIndy

TBTCommAdapterSynapse BTCommAdapterSynapse

TBTCommAdapterIndySSL (beta) BTCommAdapterIndySSL

www.habarisoft.com Enterprise Messaging for Delphi®

Habari OpenMQ Client 1.8 The JMS API Programming Model 15

The JMS API Programming Model

The Sun online documentation contains a description of the JMS API Programming model:

http://download.oracle.com/javaee/5/tutorial/doc/bnceh.html

The JMS API Programming Model: Overview

www.habarisoft.com Enterprise Messaging for Delphi®

Connection
Factory

Session Message
Consumer

Message
Producer

Destination Destination
Msg

Creates

Creates

Creates Creates

Sends to Creates Receives from

Connection

http://download.oracle.com/javaee/5/tutorial/doc/bnceh.html

Habari OpenMQ Client 1.8 Tutorials 16

Tutorials

Habari Quick Start Tutorial
This tutorial provides a very simple and quick introduction to the Habari client library by
walking you through the creation of a simple "Hello World" application. Once you are done
with this tutorial, you will have a general knowledge of how to create and run Habari
applications.

This tutorial takes less than 10 minutes to complete.

To complete this tutorial, you need the following software and resources:

Software or R esource Version required

Delphi 20091

Synapse Revision 39

OpenMQ Version 4.4

Setting up the project
To create a new project:

1. Start the Delphi IDE.

2. In the IDE, choose File > New > VCL Forms Application – Delphi

3. Choose Project > Options … to open the Project Options dialog

4. In the options tree on the left, select 'Delphi Compiler'

5. Add the source directory of Habari and the Synapse source directory to the 'Search
path'

6. Choose Ok to close the Project Options dialog

7. Save the project as HelloOpenMQ

Now the project is created and saved.

You should see the main form in the GUI designer now.

Adding code to the project
To use the Habari client library, you need to add the required units to the source code.

8. Switch to Code view (F12)

1 Delphi 6 to XE are supported, only the IDE related steps are different

www.habarisoft.com Enterprise Messaging for Delphi®

Habari OpenMQ Client 1.8 Tutorials 17

9. Add the required units to the interface uses list:

uses
 BTJMSConnection,
 BTJMSInterfaces,
 BTCommAdapterSynapse,
 Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
 Dialogs;

10.Compile and save the project.

11.Switch to Design view (F12), go to the Tool palette (Ctrl+Alt+P) and select TButton,
add a Button to the form.

12.Double click on the new button to jump to the Button Click handler

13.Add the following code to send the message:

procedure TForm1.Button1Click(Sender: TObject);
var
 Connection: IConnection;
 Session: ISession;
 Destination: IDestination;
 Producer: IMessageProducer;
begin
 Connection := TBTJMSConnection.MakeConnection('admin', 'admin',
 'stomp://localhost:7672');
 Connection.Start;
 Session := Connection.CreateSession(False, amClientAcknowledge);
 Destination := Session.CreateQueue('TEST.DEFAULT');
 Producer := Session.CreateProducer(Destination);
 Producer.Send(Session.CreateTextMessage('Hello world!'));
 Connection.Close;
end;

14.Add a second button and double click on the new button to jump to the Button Click
handler

15.Add the following code to receive and display the message:

procedure TForm1.Button2Click(Sender: TObject);
var
 Connection: IConnection;
 Session: ISession;
 Destination: IDestination;
 Consumer: IMessageConsumer;
 Msg: ITextMessage;
begin
 Connection := TBTJMSConnection.MakeConnection('admin', 'admin',
 'stomp://localhost:7672');
 Connection.Start;
 Session := Connection.CreateSession(False, amAutoAcknowledge);
 Destination := Session.CreateQueue('TEST.DEFAULT');
 Consumer := Session.CreateConsumer(Destination);
 Msg := Consumer.Receive(1000) as ITextMessage;
 if Assigned(Msg) then
 ShowMessage(Msg.Text);

www.habarisoft.com Enterprise Messaging for Delphi®

Habari OpenMQ Client 1.8 Tutorials 18

 Connection.Close;
end;

16.Compile and save the project

Run the demo
• Launch OpenMQ

• Start the application

• Click on Button 1 to send the message to the OpenMQ queue

• Click on Button 2 to receive the message and display it

You can run two instances of the application at the same time, and also on different
computers if the IP address of the message broker is used instead of localhost.

Next steps
You now know how to accomplish some of the most common programming tasks for Habari.
The next chapters provide details about the basic interfaces which are the building blocks for
message broker clients.

Online Tutorials

Delphi integration with the GlassFish v3 application server
This tutorial will guide you through the creation of a simple web application for GlassFish V3
which uses a Servlet to send messages to a message queue on the embedded ActiveMQ
broker.

https://mikejustin.fogbugz.com/default.asp?W11

The second part of the tutorial will guide you through the creation of a simple EJB application
for GlassFish v3 which uses a Message Driven Bean to receive messages from a message
queue on the embedded OpenMQ broker. The Delphi ProducerTool application sends
messages to the message queue.

https://mikejustin.fogbugz.com/default.asp?W12

www.habarisoft.com Enterprise Messaging for Delphi®

https://mikejustin.fogbugz.com/default.asp?W12
https://mikejustin.fogbugz.com/default.asp?W12
https://mikejustin.fogbugz.com/default.asp?W11
https://mikejustin.fogbugz.com/default.asp?W11

Habari OpenMQ Client 1.8 Connections and Sessions 19

Connections and Sessions

Step by Step Example

Add required units
Three units are required for this example

● a communication adapter unit (e. g. BTCommAdapterIndy)

● a connection factory unit (BTJMSConnectionFactory or BTJMSConnection)

● the unit containing the interface declarations (BTJMSInterfaces)

The SysUtils unit is necessary for the exception handling.

program SendOneMessage;

{$APPTYPE CONSOLE}

uses
 SysUtils,
 BTCommAdapterIndy,
 BTJMSConnection,
 BTJMSInterfaces;
...

Creating a new Connection
To create a new connection,

● declare a variable of type IConnection

● use the helper method MakeConnection of the TBTJMSConnection class to create and
configure a new connection with user name, password and the broker URL

or

● use an instance of TBTJMSConnectionFactory to create connections

Since IConnection is an interface type, the connection instance will be destroyed
automatically if there are no more references to it in the program. Note that there is no call
to Connection.Free in the source.

var
 Connection: IConnection;
 Session: ISession;
 Destination: IDestination;

www.habarisoft.com Enterprise Messaging for Delphi®

Habari OpenMQ Client 1.8 Connections and Sessions 20

 Producer: IMessageProducer;
begin
 Connection := TBTJMSConnection.MakeConnection('', '', 'stomp://localhost');
 Connection.Start;

Local connection
If you just need a connection to the broker on the local computer using default port number
and login credentials, you can call MakeConnection without parameters:

 Connection := TBTJMSConnection.MakeConnection;

Creating a Session
To create the communication session,

● declare a variable of type ISession

● use the helper method CreateSession of the connection, and specify if it is a
transacted session, and the acknowledgement mode

Please check the API documentation for the different session types and acknowledgement
modes.

Since ISession is an interface type, the session instance will be destroyed automatically if
there are no more references to it in the program. Note that there is no call to Session.Free
in the source.

 Session := Connection.CreateSession(False, amClientAcknowledge);

Using the Session
The Session variable is ready to use now. Destinations, producers and consumers will be
covered in the next chapters.

 Destination := Session.CreateQueue('testqueue');
 Producer := Session.CreateProducer(Destination);
 Producer.Send(Session.CreateTextMessage('This is a test message'));

Closing a Connection
Finally, the application closes the connection. The client will disconnect from the message
broker. Closing a connection also implicitly closes all open sessions.

 finally
 Connection.Close;
 end;
end.

www.habarisoft.com Enterprise Messaging for Delphi®

Habari OpenMQ Client 1.8 Connections and Sessions 21

Transacted Sessions
A session may be specified as transacted. Each transacted session supports a single series of
transactions. Each transaction groups a set of message sends and a set of message receives
into an atomic unit of work. In effect, transactions organize a session's input message stream
and output message stream into series of atomic units. When a transaction commits, its
atomic unit of input is acknowledged and its associated atomic unit of output is sent. If a
transaction rollback is done, the transaction's sent messages are destroyed and the session's
input is automatically recovered.

The content of a transaction's input and output units is simply those messages that have
been produced and consumed within the session's current transaction.

A transaction is completed using either its session's Commit method or its session's Rollback
method. The completion of a session's current transaction automatically begins the next. The
result is that a transacted session always has a current transaction within which its work is
done.

Failover Support
The Failover transport layers reconnect logic on top of the Stomp transport.2

The Failover configuration syntax allows you to specify any number of composite URIs. The
Failover transport randomly chooses one of the composite URI and attempts to establish a
connection to it. If it does not succeed, a new connection is established to one of the other
URIs in the list.

Example for a failover URI:
failover:(stomp://primary:61613,stomp://secondary:61613)

Transport Options

Option Name Default
Value

Description

initialReconnectDelay 10 How long to wait before the first reconnect attempt (in ms)

maxReconnectDelay 30000 The maximum amount of time we ever wait between reconnect attempts
(in ms)

backOffMultiplier 2 The exponent used in the exponential backoff attempts

maxReconnectAttempts 0 If not 0, then this is the maximum number of reconnect attempts before
an error is sent back to the client

randomize True use a random algorithm to choose the the URI to use for reconnect from
the list provided

2 http://activemq.apache.org/failover-transport-reference.html

www.habarisoft.com Enterprise Messaging for Delphi®

Habari OpenMQ Client 1.8 Connections and Sessions 22

Example URI:
failover:(tcp://localhost:61616,tcp://remotehost:61616)?
initialReconnectDelay=100&maxReconnectAttempts=10

Example code:

with TBTJMSConnectionFactory.Create('failover:
(stomp://primary:61616,stomp://localhost:61613)?maxReconnectAttempts=3') do
try
 Conn := CreateConnection;
 Conn.Start;
 Conn.Stop;
 Conn.Close;
finally
 Free;
end;

www.habarisoft.com Enterprise Messaging for Delphi®

Habari OpenMQ Client 1.8 Destinations 23

Destinations

Introduction
The JMS API supports two models:3

1. point-to-point or queuing model

2. publish and subscribe model

In the point-to-point or queuing model, a producer posts messages to a particular queue and
a consumer reads messages from the queue. Here, the producer knows the destination of the
message and posts the message directly to the consumer's queue. It is characterized by
following:

● Only one consumer will get the message

● The producer does not have to be running at the time the receiver consumes the
message, nor does the receiver need to be running at the time the message is sent

● Every message successfully processed is acknowledged by the receiver

The publish/subscribe model supports publishing messages to a particular message topic.
Zero or more subscribers may register interest in receiving messages on a particular
message topic. In this model, neither the publisher nor the subscriber know about each
other. A good metaphor for it is anonymous bulletin board. The following are characteristics
of this model:

● Multiple consumers can get the message

● There is a timing dependency between publishers and subscribers. The publisher has
to create a subscription in order for clients to be able to subscribe. The subscriber has
to remain continuously active to receive messages, unless it has established a durable
subscription. In that case, messages published while the subscriber is not connected
will be redistributed whenever it reconnects.

Create a new Destination

Queues
A queue can be created using the CreateQueue method of the Session. Example:

 Destination := Session.CreateQueue('foo');
 Consumer := Session.CreateConsumer(Destination);

3 Java Message Service. (2007, November 21). In Wikipedia, The Free Encyclopedia.
http://en.wikipedia.org/wiki/Java_Message_Service

www.habarisoft.com Enterprise Messaging for Delphi®

Habari OpenMQ Client 1.8 Destinations 24

The queue can then be used to send or receive messages using implementations of the
IMessageProducer and IMessageConsumer interfaces. The methods of a queue are defined in
the IQueue interface and the parent interface IDestination. (See next chapter for an
example)

Topics
A topic can be created using the CreateTopic method of the Session. Example:

 Destination := Session.CreateTopic('bar');
 Consumer := Session.CreateConsumer(Destination);

The topic can then be used to send or receive messages using implementations of the
IMessageProducer and IMessageConsumer interfaces. The methods of a topic are defined in
the ITopic interface and the parent interface IDestination.(See next chapter for an example).

www.habarisoft.com Enterprise Messaging for Delphi®

Habari OpenMQ Client 1.8 Producer and Consumer 25

Producer and Consumer

Message Producer
A client uses a MessageProducer object to send messages to a destination. A
MessageProducer object is created by passing a Destination object to a message-producer
creation method supplied by a session.

Example:

...
Destination := Session.CreateQueue('foo');
Producer := Session.CreateProducer(Destination);
Producer.Send(Session.CreateTextMessage('Test message'));
...

A client can specify a default delivery mode, priority, and time to live for messages sent by a
message producer. It can also specify the delivery mode, priority, and time to live for an
individual message.

Message Consumer
A client uses a MessageConsumer object to receive messages from a destination. A
MessageConsumer object is created by passing a Destination object to a message-consumer
creation method supplied by a session.

Example:

...
Destination := Session.CreateQueue('foo');
Consumer := Session.CreateConsumer(Destination);
Consumer.MessageListener := Self;
...

A message consumer can be created with a message selector. A message selector allows the
client to restrict the messages delivered to the message consumer to those that match the
selector.

A client may either synchronously receive a message consumer's messages or have the
consumer asynchronously deliver them as they arrive.

For synchronous receipt, a client can request the next message from a message consumer
using one of its receive methods. There are several variations of receive that allow a client to
poll or wait for the next message.

www.habarisoft.com Enterprise Messaging for Delphi®

Habari OpenMQ Client 1.8 Producer and Consumer 26

For asynchronous delivery, a client can register a MessageListener object with a message
consumer. As messages arrive at the message consumer, it delivers them by calling the
MessageListener's OnMessage method.

See also:

JMS Message Listeners in “The JMS API Programming Model”

Interface MessageListener in “Java Message Service (JMS) API”

JMS Selectors
Selectors are a way of attaching a filter to a subscription to perform content based routing.
Selectors are defined using SQL 92 syntax and typically apply to message headers; whether
the standard properties available on a JMS message or custom headers you can add via the
JMS code.

Here is an example

JMSType = 'car' AND color = 'blue' AND weight > 2500

For more documentation on the detail of selectors see the reference on javax.jmx.Message.

See also:

JMS Message Selectors in “The JMS API Programming Model”

Interface MessageConsumer in “Java Message Service (JMS) API”

www.habarisoft.com Enterprise Messaging for Delphi®

http://www.j2ee.me/j2ee/1.4/docs/api/javax/jms/MessageConsumer.html
http://java.sun.com/javaee/5/docs/tutorial/doc/bnceh.html#bncer
http://www.j2ee.me/j2ee/1.4/docs/api/javax/jms/MessageListener.html
http://java.sun.com/javaee/5/docs/tutorial/doc/bnceh.html#bnceq

Habari OpenMQ Client 1.8 Text Messages 27

Text Messages

Sending Text Messages
Source code for a simple application which sends a test message:

program SendOneMessage;

{$APPTYPE CONSOLE}

uses
 SysUtils,
 BTCommAdapterIndy,
 BTJMSConnection,
 BTJMSInterfaces;

var
 Connection: IConnection;
 Session: ISession;
 Destination: IDestination;
 Producer: IMessageProducer;

begin
 Connection := TBTJMSConnection.MakeConnection('user', 'pass', 'stomp://localhost');
 Connection.Start;
 try
 Session := Connection.CreateSession(False, amAutoAcknowledge);
 WriteLn('Send a message');
 Destination := Session.CreateQueue('onemessage');
 Producer := Session.CreateProducer(Destination);
 Producer.Send(Session.CreateTextMessage('This is a test message'));
 WriteLn('Hit any key');
 ReadLn;
 finally
 Connection.Close;
 end;
end.

The unit BTCommAdapterIndy contains the Internet Direct (Indy) communication adapter
class. By including this unit, it will register the adapter class with an internal list of all
available communication adapters. By default, the first registered communication adapter will
be used.

www.habarisoft.com Enterprise Messaging for Delphi®

Habari OpenMQ Client 1.8 Text Messages 28

Receive Text Messages

Asynchronous receive
To receive text messages asynchronously, the client subscribes to a destination (which can
be a queue or a topic) on the server.

The messages will be delivered to an event handler which has to be provided by the client.

var
 Destination: IDestination;
 Consumer: IMessageConsumer;

begin
 ...
 // create a destination queue
 Destination := Session.CreateQueue('test');

 // create a consumer
 Consumer := Session.CreateConsumer(Destination);

 // set the message listener
 Consumer.MessageListener := Self;
 ...
end;

The asynchronous MessageListener is an object which implements the IMessageListener
interface.

This interface only contains one procedure, OnMessage:

 IMessageListener = interface
 procedure OnMessage(const Message: IMessage);
 end;

www.habarisoft.com Enterprise Messaging for Delphi®

Habari OpenMQ Client 1.8 Text Messages 29

Synchronous Receive
A MessageConsumer offers a Receive method which can be used to consume exactly one
message at a time.

Example:

while I < EXPECTED do
begin
 TextMessage := Consumer.Receive(1000) as ITextMessage;
 if Assigned(TextMessage) then
 begin
 Inc(I);
 TextMessage.Acknowledge;
 L.Info(Format('%d %s', [I, TextMessage.Text]));
 end;
end;

Compared with a MessageListener, the Receive method has the advantage that the
application can stop consuming messages at any point in time (for example, after receiving
20 messages). With an asynchronous MessageListener, it is possible that the
MessageConsumer will still receive some messages after calling the close method.

Receive and ReceiveNoWait

There are three different methods for synchronous receive:

Receive The Receive method with no arguments will block (wait until a
message is available).

Receive(TimeOut) The Receive method with a timeout parameter will wait for the
given time in milliseconds. If no message arrived, it will return nil.

ReceiveNoWait The ReceiveNowait method will return immediately. If no message
arrived, it will return nil.

www.habarisoft.com Enterprise Messaging for Delphi®

Habari OpenMQ Client 1.8 Bytes Messages 30

Bytes Messages

Creation

var
 Msg: IBytesMessage;
begin
 ..
 Producer := Session.CreateProducer(OutQueue);
 Msg := Session.CreateBytesMessage;

Sending

Reading Binary Content using BTStreamHelper
The BTStreamHelper unit contains the procedure LoadBytesFromStream which can be used to
read a file into a BytesMessage. Example:

 // create the message
 Msg := Session.CreateBytesMessage;

 // open a file
 FS := TFileStream.Create('filename.dat', fmOpenRead);

 try
 // read the file bytes into the message
 LoadBytesFromStream(Msg, FS);

 Size := Length(Msg.Content);

 // display message content size
 WriteLn(IntToStr(Size) + ' Bytes');

 finally
 FS.Free;
 end;

www.habarisoft.com Enterprise Messaging for Delphi®

Habari OpenMQ Client 1.8 Object Messages 31

Object Messages

Introduction

Object Serialization
Object serialization is the process of saving an object's state to a sequence of bytes, as well
as the process of rebuilding those bytes into a live object at some future time.4 In messaging
applications, object serialization is required to transfer objects between clients, but also to
store objects on the broker if they are declared persistent.

Message Transformers in Habari OpenMQ Client

Transformation Message Type Library Unit
XML ObjectMessage OmniXML BTMessageTransformerXMLOmni

JSON ObjectMessage SuperObject BTMessageTransformerJSONSuperObject

Table 1: Message Transformer Implementations

Memory Management

Outgoing Objects

The message transformer will not free objects which have been sent. To release the memory,
the application has to explicitly free them when they are no longer used.

Incoming Objects

The message transformer will create an object instance when a object message has been
received. To avoid memory leaks, the application must free this instance when it is no longer
in use.

Assign a Message Transformer
To insert a object decoder / encoder in the message processing chain, create a message
transformer instance and assign it to the connection's MessageTransformer property.

The constructor of message transformers for object exchange takes one argument, which is
the class of the serialized object. In this example, SamplePojo is the class.

4 http://java.sun.com/developer/technicalArticles/Programming/serialization/

www.habarisoft.com Enterprise Messaging for Delphi®

http://java.sun.com/developer/technicalArticles/Programming/serialization/

Habari OpenMQ Client 1.8 Object Messages 32

Connection: IConnection;
...

with (Connection as IMessageTransfomerSupport) do
begin
 MessageTransformer := TBTMessageTransformerXMLOmni.Create(SamplePojo);
end;

...
Connection.Start;

With version 1.8 and newer, you can also use the helper procedure SetTransformer in unit
BTJMSConnection:

Connection: IConnection;
...

SetTransformer(Connection, TBTMessageTransformerXMLOmni.Create(SamplePojo));

...
Connection.Start;

Create and Send an ObjectMessage
1. create a IObjectMessage instance using ISession#CreateObjectMessage

2. send the object message to the broker using IMessageProducer#Send

ObjectMessage := Session.CreateObjectMessage(Instance);
Producer.Send(ObjectMessage);

Complete Example using NativeXml
From ObjectExchangeTests.pas.

Send:

procedure TObExTestCase.TestXMLNative;
var
 ObjectMessage: IObjectMessage;
 Obj: SamplePojo;
begin
 // send
 Connection := TBTJMSConnection.MakeConnection;
 try
 SetTransformer(Connection, TBTMessageTransformerXMLNative.Create(SamplePojo));
 Connection.Start;
 Session := Connection.CreateSession(False, amAutoAcknowledge);
 Destination := Session.CreateQueue('TOOL.OBJECT.XML');
 Producer := Session.CreateProducer(Destination);
 Obj := SamplePojo.Create;
 try
 Obj.messageText := 'test';
 Obj.messageNo := 0;
 ObjectMessage := Session.CreateObjectMessage(Obj);

www.habarisoft.com Enterprise Messaging for Delphi®

Habari OpenMQ Client 1.8 Object Messages 33

 ObjectMessage.SetStringProperty(SH_TRANSFORMATION + '-custom',
 TRANSFORMER_ID_OBJECT_XML); // required for "Delphi Only" object exchange
 Producer.Send(ObjectMessage);
 finally
 Obj.Free;
 end;
 finally
 Connection.Close;
 end;

Receive:

 Connection := TBTJMSConnection.MakeConnection;
 try
 SetTransformer(Connection, TBTMessageTransformerXMLNative.Create(SamplePojo));
 Connection.Start;
 Session := Connection.CreateSession(False, amClientAcknowledge);
 Destination := Session.CreateQueue('TOOL.OBJECT.XML');
 Consumer := Session.CreateConsumer(Destination);
 ObjectMessage := Consumer.Receive(1000) as IObjectMessage;
 if Assigned(ObjectMessage) then
 begin
 ObjectMessage.Acknowledge;
 Obj := ObjectMessage.GetObject as SamplePojo;
 try
 CheckEquals('test', Obj.messageText);
 CheckEquals(0, Obj.messageNo);
 finally
 Obj.Free;
 end;
 end;
 finally
 Connection.Close;
 end;
end;

www.habarisoft.com Enterprise Messaging for Delphi®

Habari OpenMQ Client 1.8 Durable Subscriptions 34

Durable Subscriptions

Description
If a client needs to receive all the messages published on a topic, including the ones
published while the subscriber is inactive, it uses a durable TopicSubscriber. The JMS provider
retains a record of this durable subscription and insures that all messages from the topic's
publishers are retained until they are acknowledged by this durable subscriber or they have
expired.5 The combination of the clientId and durable subscriber name uniquely identifies the
durable topic subscription. After you restart your program and re-subscribe, the Broker will
know which messages you need that were published while you were away.

Creation
The Session interface contains the CreateDurableSubscriber method which creates a durable
subscriber to the specified topic. A JMS durable subscriber MessageConsumer is created with
a unique JMS clientID and durable subscriber name. Only one thread can be actively
consuming from a given logical topic subscriber.

Note: For durable topic subscriptions you must specify the same clientId
on the connection and subscriptionName on the subscribe.

Example
With the ProducerTool and ConsumerTool demo applications, you can send messages to a
durable topic:

ProducerTool --MessageCount=1000 --Topic --Persistent –Subject=test-durable

and receive them from a client:

ConsumerTool --MaximumMessages=1000 --Topic --Subject=test-durable --Durable
--ClientID=12345 --ConsumerName=12345 –Verbose

5 http://download.oracle.com/javaee/5/api/javax/jms/TopicSession.html

www.habarisoft.com Enterprise Messaging for Delphi®

http://download.oracle.com/javaee/5/api/javax/jms/TopicSession.html

Habari OpenMQ Client 1.8 Example Applications 35

Example Applications

ConsumerTool
The ConsumerTool demo sends test messages to the broker. It is configurable by command
line parameters, all are optional:

AckMode Acknowledgement mode, possible values are:
CLIENT_ACKNOWLEDGE, AUTO_ACKNOWLEDGE or
SESSION_TRANSACTED

ClientId client id for durable subscriber

ConsumerName name of the message consumer - for durable subscriber

Durable true: use a durable subscriber

MaximumMessages expected number of messages

Password password

PauseBeforeShutDown true: wait for key press

ReceiveTimeOut 0: asynchronous receive, > 0: consume messages while they
continue to be delivered within the given time out

SleepTime time to sleep after asynchronous receive

Subject queue or topic name

Topic true: topic false: queue

Transacted true: transacted session

URL server url

User user name

Verbose verbose output

www.habarisoft.com Enterprise Messaging for Delphi®

Habari OpenMQ Client 1.8 Example Applications 36

Source code:

unit ConsumerToolUnit;

interface

uses
 BTJMSInterfaces;

type
{$M+}
 TConsumerTool = class(TInterfacedObject, IMessageListener)
 private
 Session: ISession;
 Running: Boolean;
 Consumer: IMessageConsumer;
 ReplyProducer: IMessageProducer;

 FAckMode: TAcknowledgementMode;
 FURL: string;
 FTopic: Boolean;
 FSubject: string;
 FDurable: Boolean;
 FSleepTime: Integer;
 FMaximumMessages: Integer;
 FTransacted: Boolean;
 FVerbose: Boolean;
 FUser: string;
 FPassword: string;
 FClientId: string;
 FConsumerName: string;
 FReceiveTimeOut: Integer;
 FPauseBeforeShutdown: Boolean;

 function TargetType: string;

 function DurableString: string;

 procedure SetAckMode(const Value: string);

 procedure OnMessage(const Message: IMessage);

 procedure ConsumeMessagesAndClose(const Conn: IConnection;
 const Session: ISession;
 const Consumer: IMessageConsumer); overload;

 procedure ConsumeMessagesAndClose(const Conn: IConnection;
 const Session: ISession;
 const Consumer: IMessageConsumer; const TimeOut: Integer); overload;

 public
 constructor Create;

 procedure Run;

 published
 property AckMode: string write SetAckMode;
 property ClientId: string read FClientId write FClientId;
 property ConsumerName: string read FConsumerName write FConsumerName;
 property Durable: Boolean read FDurable write FDurable;
 property MaximumMessages: Integer read FMaximumMessages write
 FMaximumMessages;
 property Password: string read FPassword write FPassword;
 property PauseBeforeShutdown: Boolean read FPauseBeforeShutdown write
 FPauseBeforeShutdown;
 property ReceiveTimeOut: Integer read FReceiveTimeOut write FReceiveTimeOut;
 property SleepTime: Integer read FSleepTime write FSleepTime;
 property Subject: string read FSubject write FSubject;

www.habarisoft.com Enterprise Messaging for Delphi®

Habari OpenMQ Client 1.8 Example Applications 37

 property Topic: Boolean read FTopic write FTopic;
 property Transacted: Boolean read FTransacted write FTransacted;
 property URL: string read FURL write FURL;
 property User: string read FUser write FUser;
 property Verbose: Boolean read FVerbose write FVerbose;

 end;

implementation

uses
 CommandLineSupport,
 BTCommAdapterIndy,
 BTJMSConnection,
 BTJMSConnectionFactory,
 BTMgmtInterfaces,
 StrUtils, SysUtils;

{ TConsumerTool }

constructor TConsumerTool.Create;
begin
 ConsumerName := 'Habari';
 FAckMode := amClientAcknowledge;
 MaximumMessages := 10;
 Password := BTJMSConnectionFactory.DEFAULT_PASSWORD;
 Subject := 'TOOL.DEFAULT';
 URL := BTJMSConnectionFactory.DEFAULT_BROKER_URL;
 User := BTJMSConnectionFactory.DEFAULT_USER;
 Verbose := True;
end;

procedure TConsumerTool.SetAckMode(const Value: string);
begin
 if Value = 'CLIENT_ACKNOWLEDGE' then
 FAckMode := amClientAcknowledge
 else if Value = 'AUTO_ACKNOWLEDGE' then
 FAckMode := amAutoAcknowledge
 else if Value = 'SESSION_TRANSACTED' then
 FAckMode := amTransactional
end;

function TConsumerTool.TargetType: string;
begin
 if Topic then
 Result := 'topic'
 else
 Result := 'queue';
end;

function TConsumerTool.DurableString: string;
begin
 if Durable then
 Result := 'durable'
 else
 Result := 'non-durable';
end;

procedure TConsumerTool.OnMessage(const Message: IMessage);
var
 TxtMsg: ITextMessage;
 Msg: string;
begin
 try
 try
 if Supports(Message, ITextMessage, TxtMsg) then
 begin
 if Verbose then
 begin
 Msg := TxtMsg.Text;

www.habarisoft.com Enterprise Messaging for Delphi®

Habari OpenMQ Client 1.8 Example Applications 38

 if Length(Msg) > 50 then
 Msg := Copy(Msg, 1, 50) + '...';
 WriteLn('Received: ' + Msg);
 end;
 end
 else
 begin
 if Verbose then
 WriteLn('Received: Message');
 end;

 if Message.JMSReplyTo <> nil then
 begin
 ReplyProducer.Send(Message.JMSReplyTo,
 Session.CreateTextMessage('Reply: ' + Message.JMSMessageID));
 end;

 if Transacted then
 Session.Commit
 else if FAckMode = amClientAcknowledge then
 Message.Acknowledge;

 except
 on E: Exception do
 begin
 WriteLn(E.Message);
 end;

 end;
 finally
 if SleepTime > 0 then
 begin
 Sleep(SleepTime);
 end;
 end;

end;

procedure TConsumerTool.ConsumeMessagesAndClose(const Conn: IConnection; const
 Session:
 ISession; const Consumer: IMessageConsumer);
var
 I: Integer;
 Message: IMessage;
begin
 WriteLn('We are about to wait until we consume: ' + IntToStr(MaximumMessages)
 + ' message(s) then we will shutdown');

 I := 0;
 while (I < MaximumMessages) and Running do
 begin
 Message := Consumer.Receive(1000);
 if Message <> nil then
 begin
 Inc(I);
 OnMessage(Message);
 end;
 end;

 WriteLn('Closing connection');
 Consumer.Close;
 Session.Close;
 Conn.Close;
 if PauseBeforeShutdown then
 begin
 WriteLn('Press return to shut down');
 ReadLn;
 end;
end;

www.habarisoft.com Enterprise Messaging for Delphi®

Habari OpenMQ Client 1.8 Example Applications 39

procedure TConsumerTool.ConsumeMessagesAndClose(const Conn: IConnection; const
 Session:
 ISession; const Consumer: IMessageConsumer; const TimeOut: Integer);
var
 Message: IMessage;
begin
 WriteLn('We will consume messages while they continue to be delivered within: '
 + IntToStr(Timeout) + ' ms, and then we will shutdown');

 Message := Consumer.Receive(Timeout);
 while (Message <> nil) do
 begin
 OnMessage(Message);
 Message := Consumer.Receive(Timeout);
 end;

 WriteLn('Closing connection');
 Consumer.Close;
 Session.Close;
 Conn.Close;
 if PauseBeforeShutdown then
 begin
 WriteLn('Press return to shut down');
 ReadLn;
 end;

end;

procedure TConsumerTool.Run;
var
 ConnectionFactory: IConnectionFactory;
 Connection: IConnection;
 Destination: IDestination;
 LibraryInfoProvider: IClientLibraryInfoProvider;
 LibInfo: IClientLibraryInfo;
begin
 TCommandLineSupport.Configure(Self);

 Running := True;

 ConnectionFactory := TBTJMSConnectionFactory.Create(User, Password, URL);
 if Supports(ConnectionFactory, IClientLibraryInfoProvider, LibraryInfoProvider) then
 begin
 LibInfo := LibraryInfoProvider.ClientLibraryInfo;
 WriteLn(LibInfo.LibraryName + ' ' + LibInfo.LibraryVersion
 + ' ' + LibInfo.LibraryCopyright);
 end;

 WriteLn('Connecting to URL: ' + URL);
 WriteLn('Consuming ' + TargetType + ': ' + Subject);
 WriteLn('Using a ' + DurableString + ' subscription');

 Connection := ConnectionFactory.CreateConnection;
 if (Durable and (ClientId <> '')) then
 begin
 Connection.ClientID := ClientId;
 end;
 Connection.Start;

 // Create the session.
 Session := Connection.CreateSession(Transacted, FAckMode);

 // Create the Producer for the Destination.
 if Topic then
 Destination := Session.CreateTopic(Subject)
 else
 Destination := Session.CreateQueue(Subject);

 ReplyProducer := Session.createProducer(nil);
 ReplyProducer.setDeliveryMode(dmNonPersistent);

www.habarisoft.com Enterprise Messaging for Delphi®

Habari OpenMQ Client 1.8 Example Applications 40

 if (Durable and Topic) then
 Consumer := Session.CreateDurableSubscriber(ITopic(Destination),
 ConsumerName)
 else
 Consumer := Session.CreateConsumer(Destination);

 if MaximumMessages > 0 then
 begin
 ConsumeMessagesAndClose(Connection, Session, Consumer);
 end
 else
 begin
 if ReceiveTimeOut = 0 then
 begin
 Consumer.SetMessageListener(Self);
 while True do
 Sleep(10); // run forever
 end
 else
 ConsumeMessagesAndClose(Connection, Session, Consumer, ReceiveTimeOut);
 end;

end;

end.

www.habarisoft.com Enterprise Messaging for Delphi®

Habari OpenMQ Client 1.8 Example Applications 41

ProducerTool
The ProducerTool demo is configurable by command line parameters, all are optional:

MessageCount number of messages

MessageSize length of a message

Persistent delivery mode persistent

SleepTime pause between messages

Subject destination name

TimeToLive message expiration time

Topic destination is a topic

Transacted use a transaction

URL message broker URL

Verbose verbose output

www.habarisoft.com Enterprise Messaging for Delphi®

Habari OpenMQ Client 1.8 Example Applications 42

Source code:

unit ProducerToolUnit;

interface

uses
 BTJMSInterfaces;

type
{$M+}
 TProducerTool = class(TObject)
 private
 FURL: string;
 FMessageSize: Integer;
 FTopic: Boolean;
 FSubject: string;
 FPersistent: Boolean;
 FSleepTime: Integer;
 FTimeToLive: Integer;
 FMessageCount: Integer;
 FTransacted: Boolean;
 FVerbose: Boolean;
 FPassword: string;
 FUser: string;

 function TargetType: string;
 function PersistentString: string;

 procedure SendLoop(const Session: ISession;
 const Producer: IMessageProducer);

 public
 constructor Create;

 procedure Run;

 published
 property MessageCount: Integer read FMessageCount write FMessageCount;
 property MessageSize: Integer read FMessageSize write FMessageSize;
 property Password: string read FPassword write FPassword;
 property Persistent: Boolean read FPersistent write FPersistent;
 property SleepTime: Integer read FSleepTime write FSleepTime;
 property Subject: string read FSubject write FSubject;
 property TimeToLive: Integer read FTimeToLive write FTimeToLive;
 property Topic: Boolean read FTopic write FTopic;
 property Transacted: Boolean read FTransacted write FTransacted;
 property URL: string read FURL write FURL;
 property User: string read FUser write FUser;
 property Verbose: Boolean read FVerbose write FVerbose;

 end;

implementation

uses
 CommandLineSupport,
 BTCommAdapterIndy, BTJMSConnection, BTJMSConnectionFactory, BTMgmtInterfaces,
 StrUtils, SysUtils;

{ TProducerTool }

constructor TProducerTool.Create;
begin
 MessageCount := 10;
 MessageSize := 255;
 Password := BTJMSConnectionFactory.DEFAULT_PASSWORD;
 Subject := 'TOOL.DEFAULT';

www.habarisoft.com Enterprise Messaging for Delphi®

Habari OpenMQ Client 1.8 Example Applications 43

 URL := BTJMSConnectionFactory.DEFAULT_BROKER_URL;
 User := BTJMSConnectionFactory.DEFAULT_USER;
 Verbose := True;
end;

function TProducerTool.TargetType: string;
begin
 if Topic then
 Result := 'topic'
 else
 Result := 'queue';
end;

function TProducerTool.PersistentString: string;
begin
 if Persistent then
 Result := 'persistent'
 else
 Result := 'non-persistent';
end;

procedure TProducerTool.Run;
var
 ConnectionFactory: IConnectionFactory;
 Connection: IConnection;
 Session: ISession;
 Destination: IDestination;
 Producer: IMessageProducer;
 LibraryInfoProvider: IClientLibraryInfoProvider;
 LibInfo: IClientLibraryInfo;
begin
 TCommandLineSupport.Configure(Self);

 ConnectionFactory := TBTJMSConnectionFactory.Create(User, Password, URL);
 if Supports(ConnectionFactory, IClientLibraryInfoProvider, LibraryInfoProvider) then
 begin
 LibInfo := LibraryInfoProvider.ClientLibraryInfo;
 WriteLn(LibInfo.LibraryName + ' ' + LibInfo.LibraryVersion
 + ' ' + LibInfo.LibraryCopyright);
 end;

 WriteLn('Connecting to URL: ' + URL);
 WriteLn('Publishing a Message with size ' + IntToStr(MessageSize) + ' to ' +
 TargetType + ': ' + Subject);
 WriteLn('Using ' + PersistentString + ' messages');
 WriteLn('Sleeping between publish ' + IntToStr(SleepTime) + ' ms');
 if TimeToLive <> 0 then
 begin
 WriteLn('Messages time to live ' + IntToStr(TimeToLive) + ' ms');
 end;

 Connection := ConnectionFactory.CreateConnection;
 Connection.Start;

 // Create the session.
 Session := Connection.CreateSession(Transacted, amAutoAcknowledge);

 // Create the Producer for the Destination.
 if Topic then
 Destination := Session.CreateTopic(Subject)
 else
 Destination := Session.CreateQueue(Subject);

 // Create the producer.
 Producer := Session.CreateProducer(Destination);

 if Persistent then
 Producer.DeliveryMode := dmPersistent
 else

www.habarisoft.com Enterprise Messaging for Delphi®

Habari OpenMQ Client 1.8 Example Applications 44

 Producer.DeliveryMode := dmNonPersistent;

 if TimeToLive <> 0 then
 Producer.TimeToLive := TimeToLive;

 SendLoop(Session, Producer);

 Connection.Close;

 WriteLn('Done.');
end;

procedure TProducerTool.SendLoop(const Session: ISession;
 const Producer: IMessageProducer);
var
 I: Integer;
 TextMessage: ITextMessage;
 Msg: string;

 function CreateMessageText(const Index: Integer): string;
 begin
 Result := 'Message: ' + IntToStr(Index) + ' sent at: ' + DateTimeToStr(Now);

 if Length(Result) > MessageSize then
 Result := Copy(Result, 1, MessageSize)
 else
 Result := Copy(Result + DupeString(' ', MessageSize), 1, MessageSize);
 end;

begin
 for I := 0 to MessageCount - 1 do
 begin
 Msg := CreateMessageText(I);
 TextMessage := Session.CreateTextMessage(Msg);
 if Verbose then
 begin
 if Length(Msg) > 50 then
 begin
 Msg := Copy(Msg, 1, 50) + '...';
 end;
 WriteLn('Sending message: ' + Msg);
 end;
 Producer.Send(TextMessage);
 if Transacted then
 begin
 Session.Commit;
 end;
 Sleep(SleepTime);
 end;
end;

end.

www.habarisoft.com Enterprise Messaging for Delphi®

Habari OpenMQ Client 1.8 Message Options 45

Message Options

JMS Standard Properties

API Documentation
JMS Standard properties are documented in more detail in the API documentation for the
TBTMessage class. The are based on the JMS specification of the Message interface.6

JMS properties for outgoing messages
Messages sent by Habari OpenMQ Client can set these JMS standard properties:

JMSCorrelationID The correlation ID for the message.

JMSExpiration The message's expiration value.

JMSDeliveryMode Whether or not the message is persistent.

JMSPriority The message priority level.

JMSReplyTo The Destination object to which a reply to this message should be
sent.

JMS properties for incoming messages
Messages received by Habari OpenMQ Client may contain these JMS standard properties:

JMSCorrelationID The correlation ID for the message.

JMSExpiration The message's expiration value.

JMSDeliveryMode Whether or not the message is persistent.

JMSPriority The message priority level.

JMSTimestamp The timestamp the broker added to the message.

JMSMessageId The message ID which is set by the provider.

JMSReplyTo The Destination object to which a reply to this message should be
sent.

6 http://download.oracle.com/javaee/5/api/javax/jms/Message.html

www.habarisoft.com Enterprise Messaging for Delphi®

Habari OpenMQ Client 1.8 Message Options 46

User Defined Properties

Supported Data Types
The Stomp protocol only supports string type properties.

Reserved Names
The following names are reserved Stomp header properties and can not be used as names for
user defined properties:

● login

● passcode

● transaction

● session

● message

● destination

● id

● ack

● selector

● type

● content-length

● correlation-id

● expires

● persistent

● priority

● reply-to

● message-id

● timestamp

● transformation

● client-id

● redelivered

The client library detects overwriting of Stomp defined message properties. It will raise an
Exception if the application tries to send a message with a reserved property name.

www.habarisoft.com Enterprise Messaging for Delphi®

Habari OpenMQ Client 1.8 Useful Units 47

Useful Units

BTStreamHelper
This unit contains the procedure LoadBytesFromStream which can be used to read a file into
a BytesMessage.

Example:

 Msg := Session.CreateBytesMessage;

 FS := TFileStream.Create('filename.dat', fmOpenRead);
 try
 LoadBytesFromStream(Msg, FS);
 Size := Length(Msg.Content);
 WriteLn(IntToStr(Size) + ' Bytes');
 finally
 FS.Free;
 end;

 Producer.Send(Msg);

BTJavaPlatform
This unit contains some helper functions for Java dates. Java dates are Int64 values based on
the Unix date.

function JavaDateToTimeStamp(const JavaDate: Int64): TDateTime;

function TimeStampToJavaDate(const TimeStamp: TDateTime): Int64;

www.habarisoft.com Enterprise Messaging for Delphi®

Habari OpenMQ Client 1.8 Known Limitations 48

Known Limitations

Sessions

Acknowledgement Modes
Acknowledgment mode “amDupsOkAcknowledge” is unsupported.

Acknowledgment mode “amAutoAcknowledge” may cause message loss if you do not read
all remaining messages in the Queue before closing the connection.

Background information: The Indy and Synapse libraries reads messages into an client-side
buffer, and even when the client does not fetch the messages from the buffer (using one of
the “Receive” methods), the server will handle them as 'delivered' and acknowledged. If the
client reconnects, these messages will not be sent again.

Messages

Message Types
OpenMQ only supports TextMessage and BytesMessage message types.

It is not possible to detect the message type for incoming messages (sent from the OpenMQ
broker to the Stomp client) because there is no indicator in the message for the type. As a
workaround, the Habari library for OpenMQ uses a non-standard Stomp header to indicate
the message type:

• messagetype=text

• messagetype=byte

This header will be included in outgoing messages (from the Habari Stomp client to the
message broker) and helps the receiver to identify the message type.

ObjectMessage support in the library is provided based on a message transformer
architecture. However, native Java objects sent from Java clients will not work because
OpenMQ will not send them to Stomp clients.

Message Property Data Types
The Stomp protocol uses string type key/value lists for the representation of message
properties. Regardless of the method used to set message properties (e.g. SetInt or
SetDate), all message properties will be interpreted as Java Strings by the Message Broker.

www.habarisoft.com Enterprise Messaging for Delphi®

Habari OpenMQ Client 1.8 Known Limitations 49

As a side effect, the expressions in a Selector are limited to operations which are valid for
strings.

Timestamp properties are converted to an Unix time stamp value, which is the internal
representation in Java. But still, these values can not be used with date type expressions.

Security

Default account
The library currently uses admin / admin for the default user name / password.

www.habarisoft.com Enterprise Messaging for Delphi®

Habari OpenMQ Client 1.8 References 50

References

Message Broker
Home page https://mq.dev.java.net/

IDE
Embarcadero Delphi http://www.embarcadero.com/products/delphi

Lazarus http://www.lazarus.freepascal.org/

JMS
JMS Specification http://www.oracle.com/technetwork/java/jms/index.html

Stomp
Project home http://stomp.codehaus.org/

Communication Libraries
Synapse http://www.synapse.ararat.cz

Internet Direct (Indy) http://www.indyproject.org/

Indy Snapshot http://indy.fulgan.com/ZIP

Logging
Log4D http://log4d.sourceforge.net/

www.habarisoft.com Enterprise Messaging for Delphi®

http://log4d.sourceforge.net/
http://indy.fulgan.com/ZIP
http://www.indyproject.org/
http://www.synapse.ararat.cz/
http://stomp.codehaus.org/
http://www.oracle.com/technetwork/java/jms/index.html
http://www.lazarus.freepascal.org/
http://www.embarcadero.com/products/delphi
https://mq.dev.java.net/

Habari OpenMQ Client 1.8 Habari OpenMQ Client License 51

Habari OpenMQ Client License

 Habari OpenMQ Client (c) 2009-2011 Michael Justin

 This copyright applies to all source code, compiled code,
 documentation, graphics and auxiliary files, except those parts
 written by other people (which are normally copyright their authors).

 GENERAL TERMS THAT APPLY TO COMPILED PROGRAMS AND
 REDISTRIBUTABLES
 You may write and compile your own application programs
 using the library. You may reproduce and distribute,
 in executable form only, programs which you create using
 the library without additional license or fees, subject
 to all of the conditions in this statement.

 The license granted in this statement for you to create
 your own compiled programs and distribute your programs and
 the Redistributables (if any) is subject to all of the
 following conditions: (i) all copies of the programs you
 create must bear a valid copyright notice, either your own
 or the habarisoft copyright notice that appears on the
 Software; (ii) you may not remove or alter any habarisoft
 copyright, trademark or other proprietary rights notice
 contained in any portion of habarisoft libraries, source code,
 Redistributables or other files that bear such a notice;
 (iii) habarisoft provides no warranty at all to any person,
 other than the Limited Warranty provided to the original
 purchaser of the Software, and you will remain solely
 responsible to anyone receiving your programs for support,
 service, upgrades, or technical or other assistance, and
 such recipients will have no right to contact habarisoft for
 such services or assistance; (iv) you will indemnify and
 hold habarisoft, its related companies and its suppliers,
 harmless from and against any claims or liabilities arising
 out of the use, reproduction or distribution of your
 programs; (v) your programs must be written using a
 licensed, registered copy of the Software; (vi) your
 programs must add primary and substantial functionality,
 and may not be merely a set or subset of any of the
 libraries (including runtime libraries), code,
 Redistributables or other files of the Software; (vii)
 regardless of any modifications which you make and

www.habarisoft.com Enterprise Messaging for Delphi®

Habari OpenMQ Client 1.8 Habari OpenMQ Client License 52

 regardless of how you might compile, link, or package your
 programs, the libraries (including runtime libraries),
 code, Redistributables, and/or other files of the Software
 (including any portions thereof) may not be used in
 programs created by your end users (i.e., users of your
 programs) and may not be further redistributed by your end
 users; and (viii) you may not use habarisoft's or any of its
 suppliers' names, logos, or trademarks to market your
 programs, except to state that your program was written
 using the Software.

 All habarisoft libraries, source code, Redistributables and
 other files remain habarisoft's exclusive property. Regardless
 of any modifications that you make, you may not distribute
 any files (particularly habarisoft source code and other non-
 executable files).

 LIMITED WARRANTY
 No warranty of any sort, expressed or implied, is provided in
 connection with the library, including, but not limited to, implied
 warranties of merchantibility or fitness for a particular purpose.
 Any cost, loss or damage of any sort incurred owing to the
 malfunction or misuse of the library or the inaccuracy of the
 documentation or connected with the library in any other way
 whatsoever is solely the responsibility of the person who incurred
 the cost, loss or damage. Furthermore, any illegal use of the library
 is solely the responsibility of the person committing the illegal act.
 By using this program you accept these responsibilities, and give up
 any right to seek any damages against the authors in connection
 with this program.

www.habarisoft.com Enterprise Messaging for Delphi®

Habari OpenMQ Client 1.8 Third Party Library Licenses 53

Third Party Library Licenses

Synapse
The following software may be included in this product: Ararat Synapse; Use of any of this
software is governed by the terms of the license below:

| Copyright (c)1999-2008, Lukas Gebauer |
| All rights reserved. |
| |
| Redistribution and use in source and binary forms, with or without |
| modification, are permitted provided that the following conditions are met: |
| |
| Redistributions of source code must retain the above copyright notice, this |
| list of conditions and the following disclaimer. |
| |
| Redistributions in binary form must reproduce the above copyright notice, |
| this list of conditions and the following disclaimer in the documentation |
| and/or other materials provided with the distribution. |
| |
| Neither the name of Lukas Gebauer nor the names of its contributors may |
| be used to endorse or promote products derived from this software without |
| specific prior written permission. |
| |
| THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR |
| ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR |
| SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
| CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH |
| DAMAGE. |
|==|
| The Initial Developer of the Original Code is Lukas Gebauer (Czech Republic).|
| Portions created by Lukas Gebauer are Copyright (c)1999-2008. |
| All Rights Reserved. |

Indy BSD License

Copyright

Portions of this software are Copyright (c) 1993 - 2003, Chad Z. Hower (Kudzu) and the Indy
Pit Crew - http://www.IndyProject.org/

License

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

www.habarisoft.com Enterprise Messaging for Delphi®

http://www.IndyProject.org/

Habari OpenMQ Client 1.8 Third Party Library Licenses 54

• Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation, about box and/or other
materials provided with the distribution.

• No personal names or organizations names associated with the Indy project may be
used to endorse or promote products derived from this software without specific prior
written permission of the specific individual or organization.

THIS SOFTWARE IS PROVIDED BY Chad Z. Hower (Kudzu) and the Indy Pit Crew "AS IS''
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

SuperObject

* Super Object Toolkit
*
* Usage allowed under the restrictions of the Lesser GNU General Public License
* or alternatively the restrictions of the Mozilla Public License 1.1
*
* Software distributed under the License is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License for
* the specific language governing rights and limitations under the License.
*
* Unit owner : Henri Gourvest <hgourvest@gmail.com>
* Web site : http://www.progdigy.com
*
* This unit is inspired from the json c lib:
* Michael Clark <michael@metaparadigm.com>
* http://oss.metaparadigm.com/json-c/

Log4D
 The contents of this file are subject to the Mozilla Public
 License Version 1.1 (the "License"); you may not use this file
 except in compliance with the License. You may obtain a copy of
 the License at http://www.mozilla.org/MPL/MPL-1.1.html

 Software distributed under the License is distributed on an "AS
 IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or
 implied. See the License for the specific language governing
 rights and limitations under the License.

www.habarisoft.com Enterprise Messaging for Delphi®

http://oss.metaparadigm.com/json-c/
mailto:michael@metaparadigm.com

Habari OpenMQ Client 1.8 Third Party Library Licenses 55

NativeXml
Copyright (c) 2003 - 2011 Simdesign BV. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials provided
with the distribution.

THIS SOFTWARE IS PROVIDED BY SIMDESIGN BV "AS IS" AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
EVENT SHALL SIMDESIGN BV OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

www.habarisoft.com Enterprise Messaging for Delphi®

Release Notes

Version 1.8
Released June 14, 2011

New
Durable Subscribers If a client needs to receive all the messages published on a topic,

including the ones published while the subscriber is inactive, it
uses a durable TopicSubscriber. This version introduces support for
Durable Subscribers. For details see chapter Durable Subscriptions

NativeXml Support for the NativeXml open source XML parser library, class
TBTMessageTransformerXMLNative for IObjectMessage

OpenMQ 4.5 Tested with OpenMQ version 4.4u1, 4.4u2 and 4.5

/autolaunch If a command line parameter /autolaunch is specified, the DUnit
test program will launch the OpenMQ brokers 4.4u1, 4.4u2 and 4.5
automatically in the test suite setup and terminate the broker in
the teardown stage

NoLocal If this parameter of ISession#CreateConsumer is set, it inhibits
the delivery of messages published by its own connection.

Transformer A helper method, SetTransformer, can be used to set a message
transformer on a connection

Object Exchange Unit tests for object messages (unit ObjectExchangeTests) have
been added to the test suites, they replace the omnixml and
superobject demo applications

Changed
Refactoring Refactored to new broker-independent units BTSerialIntf,

BTSessionIntf instead of unit BTOMQInterfaces

Frame Decoder The new unit BTStompDecoder contains a new Stomp Frame
decoder implementation, it can be enabled with the conditional
symbol HABARI_USE_TBYTES

Performance Demo Shared code with Habari ActiveMQ Client and Habari OpenMQ
Client, display transfer speed in msgs/s

Indy 10.5.8 Tested with Indy 10.5.8 revision 4639

FPC 2.4.4 Build tested with Free Pascal 2.4.4

Logging Removed unused logging units (BTLog etc)

www.habarisoft.com Enterprise Messaging for Delphi®

Habari OpenMQ Client 1.8 Release Notes 57

TransformationId The client verifies if the transformation id of the message
transformer matches the 'transformation' header of incoming
object messages

TTransformable Class TTransformable is deprecated

Stomp headers Repeated headers will be ignored, only the first value will be used

BTTypes Uses System.SetString for TBytes -> RawByteString conversion
and SysUtils.ToBytes for RawByteString -> TBytes conversion

Version 1.7
Released March 8, 2011

New
OpenMQ 4.5b29 Tested with OpenMQ version 4.4u1, 4.4u2 and 4.5b29

Failover transport The Failover transport layers reconnect logic on top of the Stomp
transport. The URL for a connection factory can be configured with
failover:(uri1,...,uriN)?transportOptions

CreateMessage Function Session#CreateMessage returns a IMessage object

Changed
ReadOneMessage The internal method ReadOneMessage in TBTCommAdapterIndy

has a new parameter, ATimeout

OnVerifyPeer BTCommAdapterIndySSL updated to use the method signature of
current Indy version with an additional AError parameter

Log4D Log4D updated to revision 37

SuperObject SuperObject updated to revision 39

GUI demo fix Fixed an AV which occurred when the demo program was compiled
without assertions

ERROR frame The body of ERROR frames is included in the exception message

Version 1.6
Released December 14, 2010

New
IConnectionInfo New interface in BtMgmtInterfaces which provides connection state

information

OpenMQ 4.5b19 Tested with OpenMQ version 4.5b19 (Milestone 6 build for
GlassFish 3.1 project)

www.habarisoft.com Enterprise Messaging for Delphi®

Habari OpenMQ Client 1.8 Release Notes 58

Single Source All versions of the Habari JMS Client library share the source code
for the basic demo applications ConsumerTool, ProducerTool,
DelphiGUI and HabariChat

FPC 2.4.2 Tested with Free Pascal 2.4.2

Fixed
Thread Fixed compiler warning about deprecated Thread methods Resume

and Suspend

Connection Fixed code to avoid a EIdConnClosedGracefully exception in
BTStompCustomClient

Examples
DelphiGUI logging Use Log4D for logging

DelphiGUI dialog Added a Connection Factory configuration dialog

DelphiGUI flicker Reduced flickering of the Delphi GUI demo application

ExampleQueue DelphiGUI Demo uses default name 'ExampleQueue' for the JMS
destination

Log4D JMSAppender Provided an example implementation of a JMS log appender for the
open source Log4D logging framework (unit LogJMSAppender)

Version 1.5
Released October 14, 2010

New
Delphi XE Ready for Delphi XE

Log4D Library The Log4D logging library is now included and used when
HABARI_LOGGING is defined

Unit Tests Unit tested with Open Message Queue version 4.4u1, 4.4u2 and
4.5 b16

Library Information The Connection Factory class now implements a new interface,
IClientLibraryInfoProvider

Indy 10.5.8 Tested with Indy 10.5.8

Changed
doxygen Updated to doxygen 1.7.1, fixes

Subscription Header The library now removes the Stomp header 'subscription' which is
included in incoming messages. It is added by the broker so that
the client knows which subscription the message relates to.

www.habarisoft.com Enterprise Messaging for Delphi®

Habari OpenMQ Client 1.8 Release Notes 59

Documentation Documentation updates and fixes

Version 1.4
Released March 30, 2010

New
Logging Switch If the HABARI_LOGGING compiler condition is set, logging code

will be included. This will reduce code size in production and also
improve performance

IPv6 Prepared for IPv6 on Linux

UMS Monitor demo A new demo application shows how message broker information
can be retrieved over HTTP and the imqums web application

Changed
Synapse Improved performance for Synapse communication adapter

Free Pascal Tested with Free Pascal 2.5.1

SuperObject Update to SuperObject 1.2.4

Version 1.3
Released January 12, 2010

New
GlassFish v3 The documentation includes configuration information for OpenMQ

embedded in the GlassFish v3 application server and links to online
tutorials which describe Delphi and Java integration with GlassFish
and the NetBeans IDE

Changed
GlassFish support Tested with GlassFish v2.1.1 and GlassFish v3

OpenMQ version Tested with OpenMQ build 4.4 u1 Final released Dec 4, 2009

SuperObject version Updated to SuperObject 1.2.2 released Dec 22, 2009

Linux Tested on Ubuntu 9.10 with Free Pascal 2.2

Multithreading demo The performance test demo application can create up to 20
threads

www.habarisoft.com Enterprise Messaging for Delphi®

Habari OpenMQ Client 1.8 Release Notes 60

Fixed
ConnectTimeout Fixed default value for the ConnectTimeout property

Version 1.2
Released November 10, 2009

New
ConnectTimeout New property in BTJMSConnection and BTJMSConnectionFactory

Changed
OpenMQ version Tested with OpenMQ build 4.4u1 b3 released October 27, 2009.

According to the release notes, this is release candidate 1 for
planned inclusion in GlassFish v3. (There will probably be another
release candidate) – see: http://download.java.net/mq/open-
mq/4.4u1/b3-rc1/changes.html

Indy 10 version Tested with Indy 10.5.7 revision revision 3865. Fixed Unicode
conversion error in Indy communication adapter method
ReadMessageBuffer (below Delphi 2009).

Synapse version Updated to release 39

Version 1.1
Released September 8, 2009

New
ReceiveNoWait MessageConsumer now provides three methods to read messages

from a destination. The new method ReceiveNoWait is non-
blocking (it will immediately return nil if there is no message), it
replaces the old Receive method. Receive will now block until a
message arrives.

Delphi 2010 Tested with Delphi 2010 (all unit tests passed)

Changed
OpenMQ version Tested with OpenMQ build 4.4 b15 released August 14, 2009.

Indy 10 version Updated to Indy 10.5.6.

Demo applications Demo applications will report memory leaks on shutdown.

Minor changes JMS interface and Stomp command key cleanup.

www.habarisoft.com Enterprise Messaging for Delphi®

Habari OpenMQ Client 1.8 Release Notes 61

Version 1.0
Released July 7, 2009

www.habarisoft.com Enterprise Messaging for Delphi®

Habari OpenMQ Client 1.8 Index 62

Index

Reference
amAutoAcknowledge..............................48

amDupsOkAcknowledge..........................48

BTJMSConnection..................................32

BTStreamHelper....................................30

Connection..19

connection factory.................................19

ConsumerTool.......................................35

CreateDurableSubscriber........................34

CreateObjectMessage.............................32

Failover Support....................................21

IConnection..19

IDestination....................................24, 28

IMessage..28

IMessageConsumer..........................24, 28

IMessageListener..................................28

IMessageProducer............................24, 32

Internet Direct (Indy).................12, 13, 50

IQueue...24

ISession...32

ITopic...24

JMS..50

JMS Selector...26

JMSCorrelationID...................................45

JMSDeliveryMode...................................45

JMSExpiration..45

JMSMessageId.......................................45

JMSPriority..45

JMSReplyTo..45

JMSTimestamp......................................45

LoadBytesFromStream...........................30

Log4D..50

Message Consumer................................25

Message Producer..................................25

MessageListener...............................26, 28

MessageTransformer..............................31

NativeXml...55

Object Message.....................................31

OnMessage......................................26, 28

point-to-point..23

ProducerTool...41

publish and subscribe.............................23

Queue..23

Receive..29

ReceiveNoWait......................................29

SamplePojo...31

Session..20

SetTransformer.....................................32

Stomp..50

SuperObject....................................31, 54

Synapse....................................12, 13, 50

Text Message..27

Topic..24

TopicSubscriber.....................................34

Transacted Sessions...............................21

www.habarisoft.com Enterprise Messaging for Delphi®

Habari OpenMQ Client 1.8 Index 63

Illustrations
Illustration 1: Shared Business Logic..6

Illustration 2: Peer to Peer Communication...7

Illustration 3: Load Balancing..7

www.habarisoft.com Enterprise Messaging for Delphi®

	Introduction
	About Habari OpenMQ Client
	How Can I Use It?
	Example Illustrations
	Habari JMS Client Libraries - Feature Matrix

	Quick Start
	Download and Installation
	Start the Broker
	Configuration
	Test the Stomp connection
	Adding user accounts

	GlassFish v3 configuration

	Dependencies
	Requirements
	Development Environment
	Message Broker
	TCP/IP Communication Library

	TCP/IP Communication Libraries
	Supported libraries

	Communication Adapter Configuration
	Introduction
	Installation of Communication Adapter classes
	Available Communication Adapters
	Overview: Adapter classes and units

	The JMS API Programming Model
	Tutorials
	Habari Quick Start Tutorial
	Setting up the project
	Adding code to the project
	Run the demo
	Next steps

	Online Tutorials
	Delphi integration with the GlassFish v3 application server

	Connections and Sessions
	Step by Step Example
	Add required units
	Creating a new Connection
	Local connection
	Creating a Session
	Using the Session
	Closing a Connection

	Transacted Sessions
	Failover Support
	Transport Options

	Destinations
	Introduction
	Create a new Destination
	Queues
	Topics

	Producer and Consumer
	Message Producer
	Message Consumer
	JMS Selectors

	Text Messages
	Sending Text Messages
	Receive Text Messages
	Asynchronous receive
	Synchronous Receive

	Bytes Messages
	Creation
	Sending
	Reading Binary Content using BTStreamHelper

	Object Messages
	Introduction
	Object Serialization

	Message Transformers in Habari OpenMQ Client
	Memory Management
	Assign a Message Transformer
	Create and Send an ObjectMessage
	Complete Example using NativeXml

	Durable Subscriptions
	Description
	Creation
	Example

	Example Applications
	ConsumerTool
	ProducerTool

	Message Options
	JMS Standard Properties
	API Documentation
	JMS properties for outgoing messages
	JMS properties for incoming messages

	User Defined Properties
	Supported Data Types
	Reserved Names

	Useful Units
	BTStreamHelper
	BTJavaPlatform

	Known Limitations
	Sessions
	Acknowledgement Modes

	Messages
	Message Types
	Message Property Data Types

	Security
	Default account

	References
	Message Broker
	IDE
	JMS
	Stomp
	Communication Libraries
	Logging

	Habari OpenMQ Client License
	Third Party Library Licenses
	Synapse
	Indy BSD License
	SuperObject
	Log4D
	NativeXml

	Release Notes
	Version 1.8
	New
	Changed

	Version 1.7
	New
	Changed

	Version 1.6
	New
	Fixed
	Examples

	Version 1.5
	New
	Changed

	Version 1.4
	New
	Changed

	Version 1.3
	New
	Changed
	Fixed

	Version 1.2
	New
	Changed

	Version 1.1
	New
	Changed

	Version 1.0

	Index

