
IBM LanguageWare
Miner for Multidimensional
Socio-Semantic Networks

Version 1.1

Getting Started Guide

IBM LanguageWare
Miner for Multidimensional Socio-Semantic Networks Getting Started Guide

Contents

1 Introduction 1

2 System Requirements 3
2.1 Operating System. 3
2.2 Java . 3
2.3 UIMA . 3
2.4 ICU4J . 4

3 Installation 5

4 Tutorial 6
4.1 The GUI Application . 6

5 How it Works 10
5.1 What is IBM LanguageWare Miner for Multidimensional Socio-

Semantic Networks. 10
5.2 Ontologies. 10
5.3 Mining Multi-Dimensional Networks 12

6 The API 14
6.1 Lexico-Semantic Classes. 14
6.2 Node Types. 15
6.3 Creating and Managing Lexico-Semantic Dictionaries. 15
6.4 Running a Semantic Processor. 17
6.5 Known Limitations . 19

7 Creating Semantic Resources 20
7.1 Lexico-Semantic Dictionaries. 20
7.2 XML format for lexico-semantic dictionaries. 21
7.3 The XML configuration file. 23
7.4 Compiling the Semantic Resource. 25

i

IBM LanguageWare
Miner for Multidimensional Socio-Semantic Networks Getting Started Guide

1 Introduction

IBM LanguageWare Miner for Multidimensional Socio-Semantic Networks is a
tool for building Web 2.0 applications. Using the miner is simple, and in many
cases useful applications can be created as easily as a quickhack. However, the
algorithm scales up to enterprise solutions just as easily.All you need to do is
pass the right data describing the problem to it. At the same time, the IBM Lan-
guageWare Miner for Multidimensional Socio-Semantic Networks is a tool for
developing innovative intelligent methods for Web 2.0.

Web 2.0 is about people, the things they create and do. Peopleform outcome-
focused teams, ad hoc knowledge/value-focused communities of practice are
emerging, reconstituted and dissolved dynamically with the run of time. People
create digital artefacts such as emails, documents, ontologies, and blogs. These di-
gital artefacts are interconnected explicitly, by hyperlinks, and indirectly through
concepts mentioned in free texts, and also through their creators, those who
read/view them and the activities performed by these people usingthese resources.
People are involved in activities such as organising a conference or a trip, which
utilise many aspects of these diverse virtual networks. So software or services
must be easily adapted to the needs of the individual and alsoto the task at hand.
The miner is flexible enough to allow the applications it powers to be adaptive to
these needs and to deliver personalisation to the user.

Most of the software for Web 2.0 needs must be able to perform elements
of social computing, semantic processing, and activity centric computing. IBM
LanguageWare Miner for Multidimensional Socio-Semantic Networks is a library
which, through a simple unified API allows users to create solutions for social
computing, semantic text processing, and activity centriccomputing. This simpli-
city is achieved by exploiting a highly customisable methodof activation spread
on networks of nodes, which in our implementation can be usedfor soft cluste-
ring and fuzzy inference on multidimensional networks of people, the things they
create (digital artefacts such as documents and concepts) and the things they do.
This can even be made sensitive to temporal events for workflow management by
treating time as a linear chain of timestamps linked to people, events, and arte-
facts, within the greater network.

In this Getting Started document we’ll describe:

• How to install and run IBM LanguageWare Miner for Multidimensional
Socio-Semantic Networks

• The basics of how to use the API

• How to use the miner to extract the most important concepts/ideas/keywords
from a text

1

IBM LanguageWare
Miner for Multidimensional Socio-Semantic Networks Getting Started Guide

IBM LanguageWare Miner for Multidimensional Socio-Semantic Networks
provides semantic processing both for ontology- and instance-based semantics.
For example, one can use ontologies such as MeSH to power the lexico-semantic
analysis performed by the miner. In this way IBM LanguageWareMiner for Mul-
tidimensional Socio-Semantic Networks can be used to perform ontology-based
semantic text processing (including term disambiguation and semantic tagging).
This might be used for automatic generation of meta tags for use in semantic web
applications or in semantic desktop applications (e.g. social semantic desktop
which is under development in the EU project NEPOMUK1).

In this Getting Started Document we’ll also outline what will be described in
more detail in future releases and links to research projects which use this techno-
logy:

• How to use IBM LanguageWare Miner for Multidimensional Socio-
Semantic Networks for social applications (such as community based tag
recommendation in collaborative tagging systems)

• How to use IBM LanguageWare Miner for Multidimensional Socio-
Semantic Networks for activity centric computing

1http://nepomuk.semanticdesktop.org

2

IBM LanguageWare
Miner for Multidimensional Socio-Semantic Networks Getting Started Guide

2 System Requirements

The distribution package contains the API and a lightweightGUI application (ga-
laxy.exe) built on Eclipse which allows you to see some of thefunctionality in ac-
tion, and to build and test your own semantic resources. Depending on your needs
you may require one, or both of these components. The system requirements dif-
fer slightly for the two as described below. The UIMA and ICU4Jrequirements
only apply to use of the API. The required dependencies are bundled with the GUI
application.

2.1 Operating System

API

Use of the API is operating system independent. IBM LanguageWare Miner for
Multidimensional Socio-Semantic Networks is written as a set of Java libraries
which you can use from for own applications. Details of how todo this can be
found in Section6 and in the Javadocs supplied.

GUI

The GUI application supplied is compiled only for use on Windows platforms.
Compatibility has been tested on Windows 2000, XP and Vista.

Other Operating Systems

As mentioned above, use of the API is OS independent. The GUI application
is built on the Eclipse framework, so it can be ported to any OSsupported by
Eclipse. In the current release we only generate an executable for Windows, but
in future releases we plan to provide this application for other platforms. If you
require the GUI compiled for any other platform, please contact us with details of
the platform and we will compile an executable to suit your needs.

2.2 Java

The IBM LanguageWare Miner for Multidimensional Socio-Semantic Networks
libraries are written in Java. The required runtime is Java 1.5.

2.3 UIMA

Using the API requires Apache UIMA version 2.2.2 or later.

3

IBM LanguageWare
Miner for Multidimensional Socio-Semantic Networks Getting Started Guide

2.4 ICU4J

Using the API requires ICU4J version 3.6 or later.

4

IBM LanguageWare
Miner for Multidimensional Socio-Semantic Networks Getting Started Guide

3 Installation

To install the Galaxy GUI application:

1. Download thegalaxy.zip file

2. Unpack the zip file to a suitable directory

3. Launch the application (galaxy/galaxy.exe)

To use the Galaxy API:

1. Download thegalaxy-api.zip file

2. Unpack the zip file to a suitable directory

3. Galaxy API is provided as a set of Eclipse plugins/OSGi bundles. To use
them in Eclipse IDE, addgalaxy-api folder to the target platform. Al-
ternatively, plugin jar files fromgalaxy-api/plugins folder can be used
without Eclipse/OSGi by adding jar files to the classpath of an application.

5

IBM LanguageWare
Miner for Multidimensional Socio-Semantic Networks Getting Started Guide

4 Tutorial

In this section we provide a brief tutorial on using IBM LanguageWare Miner
for Multidimensional Socio-Semantic Networks for the firsttime. The aim is
to provide some familiarity with its capabilities through some basic examples.
This is, of course, only the tip of the iceberg. IBM LanguageWare Miner for
Multidimensional Socio-Semantic Networks is in no way limited to these types
of applications, as mentioned in the introduction and will be further discussed in
Section5, once the problem can be described using a graph, the miner can provide
an efficient and scalable solution to suit your particular needs.

4.1 The GUI Application

This distribution contains an Eclipse application which provides a graphical in-
terface to the basic functionalities of the libraries. Using this application you
can build data into lexico-semantic dictionaries, explorethe underlying multi-
dimensional network, perform analysis on text, and performsome basic investi-
gation into what additional information can be inferred from the underlying net-
work.

Compiling and Working with the Sample Data

This distribution comes supplied with a small dataset and some sample texts. The
dataset describes information about a fictional company including management
structures, products, locations, company terminology, etc. The sample texts are
emails relating to the company’s business. To work with thisdata it must first be
compiled into a lexico-semantic dictionary (*.lex.dic file) and semantic network
(*.sem.dic file) for the miner to use. This process is described in Section7.4, as
well as how to load the compiled resources into the viewer. The dataset supplied
in the distribution is stored in a file calleddemo.xml in thedata directory of the
distribution. The corresponding configuration file for compiling and loading the
data isdemo.config.xml located in the same directory.

Exploring the Data Once the resources are loaded the left pane of the viewer is
populated with data. This side of the view allows you to explore the semantic net-
work. The “Semantic Trees” tab displays any data in the network which conforms
to a tree structure. Switching to the “Types” tab displays all the data (including
anything which does not conform to a hierarchical or tree-like structure) in a flat-
tened form. Both of these tabs allow you to filter what you see based on the node
type. Clicking on any of the nodes in this pane will populate the pane on the right
with data about that specific node (see Figure1). Clicking on a node name in the

6

IBM LanguageWare
Miner for Multidimensional Socio-Semantic Networks Getting Started Guide

“Links” section of this right hand pane will navigate to the information for that
node and will also update the view in the left pane.

Figure 1:Exploring compiled data

Analysing Text With a lexico-semantic resource loaded you can now start to
analyse text. To do this open a text file in the GUI.

• From the “Semantic” menu choose “Open text file”

• A file selection dialog opens, here select the text file you want to analyse,
for the purposes of this example select one of theemail.txt files contained
in the data directory

The text will open in the upper left portion of the view. The miner will imme-
diately process the text and display a ranked list of foci opposite the text pane.

In the text pane you will notice that certain terms in the texthave been high-
lighted. These are lexical expressions corresponding to concepts in the underlying
network of concepts. In the demo files given, you will notice that the concepts
detected include, names, places, products, and even concepts like happiness or
urgency which are expressed in the text. These term mentionsare then aggregated
with other relevant concepts (which are not necessarily mentioned in the text) and
ranked by a type of spreading activation method (described in Section5). This is
the ranked list which appears on the right. These are the foci, or concepts which

7

IBM LanguageWare
Miner for Multidimensional Socio-Semantic Networks Getting Started Guide

Figure 2:Analysing text

are most relevant to the text currently displayed accordingto our algorithm. This
list can be filtered by node type, to for example, find the most relevant person (in
the underlying socio-semantic network) to talk to about a particular document.

For example, notice that if you openemail1.txt with the data fromdemo.xml
loaded that even though the mail is from “John Walsh”, he is the least relevant
person to the topic of the discussion that the miner finds (seeFigure2).

Disambiguation of ambiguous terms (where different nodes are associated
with the same lexical expression) is done automatically by the miner, and if you
are typing text in the editor, focus finding and disambiguations are all performed
on the fly. For example, if you analyse the remaining email text files in the data
directory (email2.txt andemail3.txt) you will notice that the lexical expression
“Dennis” is ambiguous in the underlying network. This lexical expression can
refer to either node 951908672 corresponding to “Dennis Watson” or to node
I94446754 corresponding to “Dennis Hogan.” However, the miner has correctly
disambiguated the term in two different contexts. Inemail2.txt it maps to “Dennis
Watson” and inemail3.txt it maps to “Dennis Hogan.” The algorithm performs
this disambiguation at run time using a spread of activationtechnique (described
in Section5) taking into account the other nodes which are “activated” by the
other lexical expressions found in the text.

Inference At this stage you will have noticed that the text pane in the GUI al-
lows you to do more than analyse text files on disk. You can enter and edit text in

8

IBM LanguageWare
Miner for Multidimensional Socio-Semantic Networks Getting Started Guide

this pane in the same way you would in a normal text editor and it will be proces-
sed on the fly with foci and ambiguities processed as you type.You may also have
noticed that if you explicitly type the name of a node (or the lexical expression
corresponding to it) in the text editor that it is “activated” and usually appears in
the right pane as a one of the ranked foci. By combining these two facts and using
a blank file the GUI can be used to draw some very basic inferences from the data
in the underlying network. For example, returning to thedemo.xml data again, if
you type in some names and a topic of interest the ranked list of foci can then be
filtered to reveal who has the most expertise on this topic. Entering the following
text “Emma Max Jack DOU” and filtering by nodes of type “person” reveals that
“Emma” is the expert on this topic in the group (Figure3).

Figure 3:Basic Inference

Even though there is no direct link in the data associating the nodes named
“Emma” and “DOU”, IBM LanguageWare Miner for Multidimensional Socio-
Semantic Networks has been able to determine a degree of closeness between
the two based on the cumulative effect of activating the other nodes. This pro-
cess can be used to suggest additional links to the user, to recommend related
artefacts, and even to suggest a course of action. This simple example is purely
illustrative, the real expressive power of this capabilitybecomes apparent when it
is used in conjunction with larger more descriptive data. For example, we have
used this capability to navigate and annotate semantically-enabled networks of
people and associated objects [Kinsella et al., 2007]. The limits of the capabilities
of this inferencing are dependant upon the type and structure of data in the un-
derlying network. By adding more information and more dimensions to describe
the scenario you empower the LanguageWare Miner for Multidimensional Socio-
Semantic Networks to infer more about the “world” which yourdata describes,
and so enable it to increase the capabilities, consumability and innovation of your
applications which are built on this technology.

9

IBM LanguageWare
Miner for Multidimensional Socio-Semantic Networks Getting Started Guide

5 How it Works

5.1 What is IBM LanguageWare Miner for Multidimensional
Socio-Semantic Networks

IBM LanguageWare Miner for Multidimensional Socio-Semantic Networks is a
library of tools which can be used to process information represented as multidi-
mensional networks, such as social and semantic networks, to extract data about
known nodes and infer new information, links and relationships based on the exis-
ting knowledge encoded in the network. The miner also provides lexico-semantic
mapping from term mentions in text to concepts in a network ofconcepts. It
provides a wide range of functionality necessary to enable the user to build socio-
semantic applications, in a single highly customisable technology. The perfor-
mance of the miner is scales up well with performance in the region of less than
200 milliseconds on networks of hundreds of thousands of nodes on a typical
desktop PC.

The combination of soft clustering and fuzzy inference usedin the miner is
lightweight, scalable and adaptable to traditional socio-semantic tasks such as ex-
pertise location as well as tasks from other areas like workflow management.

The scalability and customisable nature of IBM LanguageWareMiner for
Multidimensional Socio-Semantic Networks enables you to increase the consu-
mability of socio-semantic and web 2.0 applications through its speed of per-
formance and adaptive nature. Its scalable nature then means it can provide an
enterprise level solution just as easily as a quick desktop hack.

5.2 Ontologies

IBM LanguageWare Miner for Multidimensional Socio-Semantic Networks is, as
the name suggests, a multidimensional network miner, however, because it is cur-
rently mostly used for ontology-based analysis of text (eg.the medical ontology
MeSH) for a range of different activities, we will discuss ontologies here briefly
in the context of multidimensional networks for socio-semantic applications.

For the purposes of socio-semantic applications, an ontology is a collection
of nodes which are networked together in a meaningful way. Inthis way, nodes
represent concepts or semantic meanings of a particular “thing” and links connec-
ting nodes represent relationships between nodes. There are no constraints on
what concepts and relationships can be represented, for example company mana-
gement structures, product components, semantic relations between words such
as synonymy/hyponymy/meronymy, and any other situation where there is a re-
lationship between two concepts or things can be represented using linked nodes.
Figure4 shows a very simple ontology pertaining to the automotive industry.

10

IBM LanguageWare
Miner for Multidimensional Socio-Semantic Networks Getting Started Guide

Figure 4:Simple Automotive ontology

Representing data in this way, as a network of interconnectednodes, lends
itself to many types of data for many different applications. In a social context
they can be used to analyse peoples relationships and interests or to find domain
experts. Temporal events can be modelled using a timeline ofevents embedded
within the greater network. Even things like shades of colours can be modelled
and accounted for in this way. Likewise, from analysing suchnetworks we can
infer new relationships based on existing linkage which canbe used (for among
other things) to recommend interesting documents, web pages and people based
on a persons existing connections.

Often, there are relationships outside the scope of a particular graph which
apply to the nodes it contains, and which link to nodes in a different graph.
For example, a company management structure graph shows nodes which re-
present people and their reporting relationships. However, these people have so-
cial connections to one another, and so too to people outsidethe scope of the
original graph, for example in another company or organisation (Figure5).

Figure 5:Interconnected Ontologies — Multi-Dimensional Network

Taking this type of connectivity into consideration requires data integration in
a composite network which accounts for the different dimensions of the data and
also the task at hand. Multidimensional networks of this nature allow applications
to draw on much wider context and so to address a wider range ofproblems with

11

IBM LanguageWare
Miner for Multidimensional Socio-Semantic Networks Getting Started Guide

greater ingenuity than those which only consider a single aspect or dimension of
the socio-semantic space. Multidimensional networks, such as these can be used
to represent instance-based semantics like collections ofdocuments manually an-
notated with tags, keywords, or arranged in a system of sub-folders. This aspect
combined with the expressive nature of ontologies means that applications which
can exploit these networks are in a strong position to deliver innovative new solu-
tions to problems in the socio-semantics and workflow management.

5.3 Mining Multi-Dimensional Networks

Multidimensional networks are data aggregators which combine data from a mul-
titude of data sources. The nature of multidimensional networks means that they
include diverse data types, they are often very large, and can change with time.
This can make it difficult to find useful information in or do anything useful with
such a large dynamic data source, unless you have an efficient scalable algorithm
to process the data contained in such a multidimensional network.

Traditional graph analysis techniques present some possible solutions like
cluster analysis which groups nodes together as a unit basedon some common trait
or distance measure. But clustering nodes in this way is vague, in that it reduces
nodes to collections, thereby losing finer details and distinctions which often
contain useful information. It is also inefficient at processing multi-dimensional
networks, as described above, because depending on the taskdifferent analysis
metrics are necessary and also changes to the data mean that the whole network
needs to be repartitioned.

There are a wealth of efficient algorithms for traversing graphs and networks
of nodes given a starting point. However, from the point of view of socio-semantic
applications and workflow management this is an unsuitable approach as the focus
is too narrow (node to node connections instead of the “bigger picture”) and it is
also quite process intensive at run time.

Our solution to this problem is similar to the method of spreading activation
used in associative networks, neural networks and, more recently, in semantic net-
works. This method is more abstract than a network traversal, nodes could be said
to be grouped together but unlike traditional clustering methods described above,
IBM LanguageWare Miner for Multidimensional Socio-Semantic Networks per-
forms a “softer” clustering which retains the finer distinctions between nodes.

For any given request or query, IBM LanguageWare Miner for Multidimensio-
nal Socio-Semantic Networks is only concerned with a small subset of the nodes
in a multidimensional network, those which are passed to it as starting points.
These initial nodes (which might be widely spread across thenetwork) are gi-
ven an activation level according to their importance to thequery (eg. important
concepts from a document), then this activation propagatesoutward from these

12

IBM LanguageWare
Miner for Multidimensional Socio-Semantic Networks Getting Started Guide

nodes along all links. Taking an analogy of light emanating from a point, It works
by first illuminating the nodes relevant to a query, then thislight spreads through
the network illuminating nearby nodes, but to a lesser extent as it travels. The
light (activation) can accumulate in nodes which are “illuminated” by multiple
nodes and once the process is complete the node(s) with greatest activation level
is deemed to be the focus or most relevant concept to the query. This gives us
an analysis similar to ”fuzzy clustering”, dealing with a (changing) sub-network
based around a set of nodes within the network provided to theminer, and finds a
focus (or foci) relative to those nodes and dependent upon the network topology
and the user’s constraints on how propagation around the graph can happen. The
focus found by the miner is similar to finding a central node orconcept for the
given sub-graph. However, dependent on the starting nodes,the users conditions
and graph topology multiple foci or no focus may be returned.In this way it does
not return a central concept or focus unless one can be found which is close to the
starting nodes.

All factors regarding the spread of activation through the network, decay rate,
link strength, link direction, etc., can be controlled through a series of parameters
set in a configuration file, this is discussed in Section7.3. Tuning these para-
meters means IBM LanguageWare Miner for Multidimensional Socio-Semantic
Networks can be adapted to give different results depending on the application or
the users preferences.

The spread of activation acts locally, centered around the nodes which receive
initial activation. This is part of what makes the method so efficient, by follo-
wing the principal of locality in software development. However, if the activation
propagates far enough through the network, by means of particularly strong ac-
tivation, low decay rate or otherwise, it is possible to model not only micro- but
also mezzo- and macro-level phenomena.

This method of analysing multidimensional networks is lightweight, scalable
and adaptable to traditional socio-semantic tasks such as expertise location as well
as tasks from other emerging areas like workflow management.In short, once you
can describe the problem and constraints using a graph, IBM LanguageWare Mi-
ner for Multidimensional Socio-Semantic Networks can helpsolve the problem.
And it scales up to provide an enterprise level solution justas easily as a quick
desktop hack.

13

IBM LanguageWare
Miner for Multidimensional Socio-Semantic Networks Getting Started Guide

6 The API

Full Javadoc is available in the distribution package; we describe the main classes
and their usage here.

6.1 Lexico-Semantic Classes

This section describes the main classes of the lexico-semantic module. These
classes are available in thecom.ibm.dltj.ls 1.5.0.200711301204.jar file2. The
DLTSemanticDictionary<T> template is the entry point to a lexico-semantic dic-
tionary. A lexico-semantic dictionary consists of the following template classes:

Node set (NodeStock<T>)

Holds all nodes and provides a reference to each node (NodeReference<T>). This
template class has two implementations:

• NodeBag<T> stores nodes in an array which grows in size when adding
more nodes. This stock allows the duplication of same node instances.

• NodeSet<T> stores nodes in a hash set. This stock excludes the duplication
of same node instances.

Set of views (NodeView<T>)

Provides some information on nodes in the stock. There may bezero or multiple
views in a dictionary. There are three types of views:

LexiconView<T> this view links lexical entries to nodes from the stock. Lexical
entries are not unique. i.e. the same lexical entry can be attached to multiple
nodes and the same node can have more than one lexical entry. There are
two implementations for lexicon views:

• A character trie implementation can be used for longest-common-
prefix lookup.

• A hash implementation uses a hash map to store lexical entries. It can
be used for exact-match lookup.

SemanticView<T> This kind of views links nodes with each other via a semantic
relation. There are four types of semantic views:

2The version number (after the underscore) of this file name will change in future releases but
the overall name will remain the same

14

IBM LanguageWare
Miner for Multidimensional Socio-Semantic Networks Getting Started Guide

• SemanticTreeView<T>: a tree hierarchy

• SemanticGraphView<T>: an undirected graph

• SemanticDigraphView<T>: a directed graph

• SemanticDigraphViewSet<T>: groups a set of views from the above
three types and provides a (read-only) access to them as if they were
one directed graph.

IDView<T> associates a unique ID with each node. There are two types of ID
views:

• IDStringView<T>: where an ID is a String. This retrieves a node in
the form of a NodeReference<T> given its ID.

• IDStringBidiView<T>: same as the IDStringView<T> but adds a bi-
directional view of IDs (i.e. given a node reference, we can retrieve
the ID of this node).

6.2 Node Types

The generic type T represents the type of nodes. It can be any kind of object. It is
however recommended to make nodes subclasses of the GraphNode. As a default
node type, we provide DLTGraphNode which is a subclass of theGraphNode and
provides the following properties:

Name The name of the node

Label A label for the node; that label can be used in UIs to display information
about the node.

Type A String indicating the type of the node.

Properties Properties in the form of (key,value) pairs.

Users are free to use the subclass DLTGraphNode to provide whatever infor-
mation they need in the node. The Semantic API offers the NodeReference<T>
template to create pointer references to nodes:

6.3 Creating and Managing Lexico-Semantic Dictionaries

This section explains how to create lexico-semantic dictionaries using the API.

15

IBM LanguageWare
Miner for Multidimensional Socio-Semantic Networks Getting Started Guide

Instantiating a new dictionary

A dictionary is created via acreateDictionary() factory method by specifying the URL
of the resource (dictionary).

URL url = new File("dictionary-ls.dic").toURL();

SemanticDictionary<DLTGraphNode> dictionary =

DLTSemanticDictionary.<DLTGraphNode>createDictionary(url);

Creating a dictionary stock

Once your dictionary is instantiated, a stock should be firstcreated to hold nodes.

dictionary.createsStock(feature);

The feature parameter determines the implementation details of the created node stock. It can
take two values:

DLTResourceFactory.STOCK BAG Bag implementation. i.e. an array which grows in size
when adding more nodes

DLTResourceFactory.STOCK SET Hashed implementation.

Creating views

You create a view by using theSemanticDictionary.createView() method.

dictionary.createView(id, feature);

It requires two parameters:

• id: a unique ID for the created view

• feature: determines the type of the view

The parameterfeature takes the following values:

Feature Value Created Lexicon
Lexicon Views
DLTResourceFactory.LEXICONTRIE Character trie implementation
DLTResourceFactory.LEXICONHASH Hashed implementation
Semantic Views
DLTResourceFactory.SEMANTICTREE a tree hierarchy
DLTResourceFactory.SEMANTICGRAPH an undirected graph
DLTResourceFactory.SEMANTICDIGRAPH a directed graph
DLTResourceFactory.SEMANTICSET a grouped set of one or more

views from above views

Table 1:Feature Values

16

IBM LanguageWare
Miner for Multidimensional Socio-Semantic Networks Getting Started Guide

Semantic views have areverse() method that returns a view which is the reverse of the
original view (i.e. direction of edges is reversed).

You can build an ID view usingSemanticDictionary.buildIDView() function.

IDView<DLTGraphNode> idView = dictionary.buildIDView();

There are methods available for each type of view. The Javadoc describes each method in
detail. For samples, refer to the sample files provided with LanguageWare or download them from
the IBM site at http://languageware.mul.ie.ibm.com/downloads/jFrost/LW61/samples/.

Saving and loading the dictionary

Dictionaries can be saved to or loaded from a dictionary file by using the load and save methods
of the dictionary class. This will save or load a dictionary to or from the URL specified when
creating the dictionary.

dictionary.load();

dictionary.save();

6.4 Running a Semantic Processor
The semantic processor is the object that performs the semantic analysis of your documents. The
following sections explain how to configure and run a semantic processor.

Initializing the semantic processor

A semantic processor must be initialized with contextual information: it must be given the name
of the dictionary to use, the class of the focus determiner touse, lists of words to ignore in the
analysis, etc. This is done through the SemanticProcessorContext class.

SemanticProcessorContext context = new SemanticProcessorContext();

context.dictionary = new File("dictionary-ls.dic").toURL();

context.focusDeterminerClassName =

"com.ibm.dltj.ls.mining.impl.FocusDeterminerNet_Luminous";

context.focusDeterminerConfig = new File("config.xml").toURL();

context.genBlacklist = new File("generic-black-list.txt").toURL();

context.specBlacklist = new File("specific-black-list.txt").toURL();

The SemanticProcessorContext class has the following properties:

17

IBM LanguageWare
Miner for Multidimensional Socio-Semantic Networks Getting Started Guide

Property Description
dictionary URL pointing to the location of

a lexico-semantic dictionary
focusDeterminerClassNameFully qualified Java class name

of a SemanticProcessor imple-
mentation

focusDeterminerConfig URL of the XML configuration
of semantic processing, descri-
bed before

genBlacklist URL pointing to a text file
containing newline-separated
generic words exclusion list

specBlacklist URL pointing to a text file
containing newline-separated
specific words exclusion list

Table 2:Properties of the SemanticProcessorContext class

Instantiating and executing the semantic processor

A semantic processor must be created with the above context and it must be opened to load the
needed resources.

SemanticProcessor processor = new SemanticProcessorImpl(context);

processor.open(context);

The semantic processor is now ready for use and can analyse pieces of documents (text
chunks). The text is input in the form of an ArrayList of Strings. This means that preproces-
sing may be needed to transform a document or document parts into this array.

You might use the LanguageWare lexical analysis to build this array since the text chunks are
typically tokens or multi-word units - these are lexical expressions that have been identified in text
and can potentially be mapped onto a concept.

ArrayList<String> textchunks = new ArrayList<String>();

// populate the textchunks with tokens or MWUs from Lexical Analysis

...

SemanticProcessorResult result = processor.getFoci(textchunks);

Working with the results

The semantic processor returns an object of the class SemanticProcessResult. This class has two
properties:

fociList a list of ResultNodes describing the focus of this piece of text

18

IBM LanguageWare
Miner for Multidimensional Socio-Semantic Networks Getting Started Guide

disambiguationList a list ResultNodes corresponding to the input list. For eachinput String we
have either null (if the word could not be disambiguated) or aResultNode describing the
disambiguation of this String)

Each ResultNode contains the following parameters:

ID the id of the node described by this ResultNode

Label the label of the node if it exists

Score the confidence in this result.

Closing the semantic processor

Once the semantic analysis is done, the processor should be closed.

processor.close();

6.5 Known Limitations
The current implementation of the lexico-semantic dictionary is not thread-safe. Developers will
need to implement their own locks to avoid modifying resources while they are used for semantic
analysis.

19

IBM LanguageWare
Miner for Multidimensional Socio-Semantic Networks Getting Started Guide

7 Creating Semantic Resources
The lexico-semantic dictionaries used by IBM LanguageWareMiner for Multidimensional Socio-
Semantic Networks have a unique format and content. This type of dictionary is used to identify
concepts in texts and to disambiguate them with respect to the context (the other concepts mentio-
ned in the same text). As a result, this data is built into two different objects:

Lexical dictionary (*.lex.dic) This lexical dictionary enables concepts to be spotted in texts.
It contains the various surface forms for a particular concept. For example, IBM is a
concept that has the following lexical representations: IBM, International Business Ma-
chines, I.B.M, IBM Corporation. This lexical dictionary iscompiled with a multi-word
unit (MWU) format since the lexical variants of a term can contain multiple words that
may inflect.

Semantic network (*.sem.dic) This binary object stores the concepts and their relationships as
nodes and links. It is then traversed during the analysis. When the lexical analyser finds
such a concept (one of the referenced surface forms), it usesthe lemma gloss to then find
entry points into this semantic network. The system can thenexplore the concepts that are
related, so as to provide some level of semantic analysis anddisambiguation.

7.1 Lexico-Semantic Dictionaries
Lexico-semantic dictionaries are used to provide semanticdisambiguation. Semantic disambigua-
tion is the process of finding the right concept given the context. For example, the word “Gates”
is very ambiguous; it might refer to the gates at the entries of buildings, it might refer to the Mi-
crosoft founder “Bill Gates”, it might also be the name of a computer game. To be able to decide,
it is possible to create an ontology that describes conceptsand how they are linked together.

For example, it is possible to describe the concept of a company and list Microsoft Corporation
as an item in this category. And it is possible as well to definethe concept of Executive Manager or
CEO and to list Bill Gates as a member of this category. It is also possible to associate variants or
synonyms to these members. For example, Gates would be a logical synonym for Bill Gates and
Microsoft would as well be an acceptable synonym for Microsoft Corporation. Then of course,
we can define relationships between our concepts. Typicallya CEO “leads” a company and of
course we can associate Bill Gates and Microsoft Corporation using this relationship. We can as
well set a weight to this relationship. Typically, the relation between a company and its Executive
Manager is a strong one. The link between a company and a country by an “operates-in” relation
would for example be weaker now that companies are very global.

What is the purpose of describing these concepts and relationships? The purpose is to use
these links, follow them and, when some concepts co-occur ina text, confidently associate the
right concepts behind words. Typically if both Microsoft and Gates co-occur in a document, it
is very likely that Gates is definitively referring to Bill Gates, the Microsoft CEO. However, if
the United States and Orange co-occur in a text, we have difficulties associating a company tag
to Orange, because that the link between a company name and a country is weak. And typically
that is the best approach because a text could very well be about the production of oranges in the
United States.

20

IBM LanguageWare
Miner for Multidimensional Socio-Semantic Networks Getting Started Guide

7.2 XML format for lexico-semantic dictionaries

Semantic graph

All of the information in the lexico-semantic dictionary isstored in semantic graphs. A semantic
graph consists of nodes and links among these nodes. A node could describe a thing, a concept,
an item, etc. The link between nodes specifies a relation.

Nodes Each node must have a uniqueid attribute which takes the format of a case-sensitive string,
without having to be human readable. A node may have the attribute type, as a case-
sensitive string. It may also have a label. The label is typically the information displayed
in user interfaces when we refer to this object. Example:

<node id="John Smith" type="person">

<label text="John Smith"/>

</node>

Properties Nodes may also have additional information, given a list of properties. Each property
is composed of a name attribute and a value attribute; both being strings. The name attribute
contains the name of the property, and the value attribute holds its value. Properties can be
used for anything that is not a link to other nodes. For example:

<node id="John Smith" type="person">

<property name="address" value="Somewhere"/>

<property name="phone" value="1234567"/>

</node>

Relations A semantic graph is made of links which connect the nodes. A graph link describes
a relation between two concepts. All links have a subject, relation name and object. The
subject is the node in which this relation is described. The relation name and object are
specified with XML attributes. For example:

<node id="Mary Allen" type="person">

<link rel="manager" id="John Smith"/>

</node>

Relation types There are three different relation types:

Directed graph the most general relation type.

Non-directed graph used for symmetric relations.

Tree for hierarchical structures, taxonomies, etc.

The following sections explain the three types of relationsin detail.

Graphs and Trees

Directed Graph A directed graph is the most general relation type; it has a name (the relation
name) and there is also a name for the inverse relation: For example:

<digraph name="manager" reverse="manages"/>

21

IBM LanguageWare
Miner for Multidimensional Socio-Semantic Networks Getting Started Guide

Logically, directed graphs imply that if there is a link between A and B through the relation R,
there is a link between B and A with the reversed relation of R.In our sample, if Marys manager
is John, then John manages Mary. With a directed graph, the following 2 examples are equivalent:

<node id="John Smith">

<link rel="manages" id="Mary Allen"/>

</node>

<node id="Mary Allen"/>

<node id="John Smith"/>

<node id="Mary Allen">

<link rel="manager" id="John Smith"/>

</node>

Non-directed graph Non-directed graphs are specified with the XML tag graph and the
attribute name. For example:

<graph name="worksWith"/>

Non-directed graphs give symmetric relations; i.e., the link from A to B implies the link from
B to A. Links are created just like for digraphs, using the link tag. In our sample, if John works
with Alan then that means that Alan also works with John.

Trees A tree is specified with forward and reverse relation names and an id of the root node:

<tree name="manages" reverse="manager" root="IBM"/>

The forward relation is used for navigating from the root to the leaves, while the reverse
relation is used to navigate from the leaves to the root. Links can be added as for digraphs with
the link tag, or can be specified using nested XML nodes as in the example below. Notice that the
link name is just given once for all items, in the top node. This aims at avoiding some verbosity.

<node id="IBM" type="company" rel="manages">

<node id="John Smith" type="person">

<node id="Mary Allen"/>

</node>

</node>

In this example, we specify the hierarchical management structure of the “IBM” company.
“John Smith” who is a person is managing “Mary Allen” who is also a person. Notice that the
node type is inherited by the nested XML nodes. In the example, we do not have to specify that
Mary Allen is a person. This is inherited from the previous node “John Smith”, by default.

Example of a Full XML Structure

<?xml version="1.0" encoding="utf-8" standalone="yes"?>

<lsxml>

<relations>

<tree name="manages" reverse="manager" root="IBM"/>

<graph name="worksWith"/>

22

IBM LanguageWare
Miner for Multidimensional Socio-Semantic Networks Getting Started Guide

</relations>

<nodes>

<node id="IBM" type="company" rel="manages">

<label text="IBM"/>

<name text="IBM"/>

<name text="International Business Machines"/>

<node id="John Smith" type="person">

<name text="John Smith"/>

<name text="Smith, John"/>

<name text="John"/>

<name text="Smith"/>

<property name="address" value="Somewhere"/>

<property name="phone" value="1234567"/>

<node id="Mary Allen"/>

<name text="Mary Allen"/>

<name text="Mary"/>

<link rel="worksWith" id="James Johnson"/>

</node>

<node id="James Johnson"/>

<name text="James Johnson"/>

<name text="James"/>

</node>

</node>

</node>

</nodes>

</lsxml>

Note

• A node may have several different lexical expressions.

• Different nodes may be associated with the same lexical expression.

• IDs need to be unique.

7.3 The XML configuration file
A configuration file is needed to use the lexico-semantic resources described above. This config
file specifies the linguistic resources to be used, the type ofannotations we want (e.g. UIMA
annotations), and the Java classes we want to use when customization of behaviour is possible. It
also gives specific parameters to some relationships through the strength and changing properties.
By setting these properties we can control the behaviour of the semantic navigation and give more
weight to some relations, to allow some concepts to be more easily reached than others.

<?xml version="1.0" encoding="UTF-8"?>

<configuration>

<dictionary

source="example.xml"

text_processor="jFrost"

lex_file="example.jfrost.dic"

23

IBM LanguageWare
Miner for Multidimensional Socio-Semantic Networks Getting Started Guide

gm_file="example.sem.dic"

lexicon_view="com.ibm.dltj.ls.Lexicon"

semantic_view="com.ibm.dltj.ls.Semantic"

parser_class="com.ibm.dltj.ls.dictbuilder.LSXMLParser"

node_class="com.ibm.dltj.ls.resource.impl.DLTGraphNode"/>

<focus_determiner

class="com.ibm.dltj.ls.mining.impl.FocusDeterminerNet_Luminous"

max_weight_mult="0.3" max_distance="4">

<relation name="manager" strength="0.7" changing="0.5" />

<relation name="manages" strength="0.5" changing="0.3" />

<relation name="worksWith" strength="0.7" changing="0.5" />

<relation name="*" strength="0.4" changing="0.2" />

</focus_determiner>

</configuration>

Dictionary Attributes

Lexico-semantic dictionaries can have the following attributes specified in the configuration file:

source The location of the source XML dictionary file:

• absolute URL/URI

• relative URI

• filename if the dictionary is located in the same directory asthe configuration file.

text source The text processor being used. The default is “jFrost”.

lex file The lexical dictionary file (generated from the source XML).

gm file The semantic dictionary file (generated from source XML)

lexicon view The name of the main lexicon view in the semantic dictionary.The default is
com.ibm.dltj.ls.Lexicon.

semanticview The name of the main semantic view in the semantic dictionary. The default is
com.ibm.dltj.ls.Semantic.

parser class The name of the parser class. If the XML dictionary format is used, then this para-
meter must have the value com.ibm.dltj.ls.dictbuilder.LSXMLParser.

node class The node class. If the XML dictionary format is used, then this parameter must have
the value com.ibm.dltj.ls.resource.impl.DLTGraphNode.

blacklist file A blacklist file is a plain text file with one lexical expression on each line. The
blacklist should contain lexical expressions from the dictionary which also have significant
usage outside the dictionarys specific domain. For example,“University” must be in bla-
cklist for a geographical ontology because its main usage will not refer to the town called
University, but to an educational institution.

24

IBM LanguageWare
Miner for Multidimensional Socio-Semantic Networks Getting Started Guide

Attributes of the focus determiner element

The configuration file can have the following attributes for the focusdeterminer element:

class Focus determiner class. The default is com.ibm.dltj.ls.mining.impl.FocusDeterminerNetLuminous.

max weight mult Maximum weight, which is the threshold for the focus determiner algorithm.
It must be within the range [0,. . . ,1]. A zero value would meanno threshold and is not
advisable. The reasonable range would be within [0.1,. . . ,0.3].

max distance Maximum distance, which is the maximum number of steps for spread-activation.
If the distance between nodes is larger than the threshold, they are considered completely
unrelated.

relation Parameters for individual relations:

name Relation name (* is a wild card and means all relations).

strength During spread-activation, a step through the link of this relation type will de-
crease the weight by this factor. A value of 0 means no spread.A value of 1 means
no decrease. Intermediate values are more reasonable.

changing This is the strength that must be applied when the relation type of the previous
step in the path of spread-activation was different from the relation type of the current
step.

7.4 Compiling the Semantic Resource
Once you have described your data in the XML format describedabove compiling it into a lexical
dictionary and semantic network can be done through the GUI application (galaxy.exe), or from
the command line. For full details of how to compile using thecommand line application see the
Javadoc for the LSDictionaryBuilder class.

To compile using the GUI

1. From the “Semantic” menu select “Build dictionary”

2. A file selection dialog opens; here select the configuration file appropriate for your data
and click “Open”

3. A progress indicator will show when the semantic resourcehas been compiled into dictio-
naries.

To load the newly created dictionaries:

1. From the “Semantic” menu select “Open dictionary config file”

2. A file selection dialog opens; here select the configuration file appropriate for your data
and click “Open”

3. A progress indicator will show when the semantic dictionaries have been loaded

References
[Kinsella et al., 2007] Kinsella, S., Harth, A., Troussov, A., Sogrin, M., Judge, J., Hayes, C.,

and Breslin, J. G. (2007). Navigating and annotating semantically-enabled networks of people
and associated objects. In Friemel, T., editor,Proceedings of Applications of Social Network
Analysis.

25

	1 Introduction
	2 System Requirements
	2.1 Operating System
	2.2 Java
	2.3 UIMA
	2.4 ICU4J

	3 Installation
	4 Tutorial
	4.1 The GUI Application

	5 How it Works
	5.1 What is IBM LanguageWare Miner for Multidimensional Socio-Semantic Networks
	5.2 Ontologies
	5.3 Mining Multi-Dimensional Networks

	6 The API
	6.1 Lexico-Semantic Classes
	6.2 Node Types
	6.3 Creating and Managing Lexico-Semantic Dictionaries
	6.4 Running a Semantic Processor
	6.5 Known Limitations

	7 Creating Semantic Resources
	7.1 Lexico-Semantic Dictionaries
	7.2 XML format for lexico-semantic dictionaries
	7.3 The XML configuration file
	7.4 Compiling the Semantic Resource

