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Overview 

This document explains the general principals and workings behind the IM and IMa 

computer programs, both of which apply the Isolation with Migration model to genetic data 

drawn from a pair of closely related populations or species.   These programs were 

originally described in Hey and Nielsen (2004) and Hey and Nielsen (2007) respectively. 

The two programs differ in fundamental ways regarding how model parameters are 

estimated,  however both are based on Markov chain Monte Carlo simulations of gene 

genealogies.  Both IM and IMa  use the same input file format. This introductory 

document provides an overview of the issues that are common to both programs.  
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There are six demographic parameters in the full 

two-population  Isolation with Migration model, 

with additional mutation parameters added with 

multiple loci.  Two challenges arise when applying 

such a full model:  (1) obtaining good estimates of 

the marginal densities; and (2) interpreting the 

results.  With large numbers of parameters the 

method has vast potential to exceed our intuition 

and thus to provide estimated distributions that we 

have not expected.   

  

This is figure 1 from Hey and Nielsen (2004).  With six parameters it can capture many of 

the phenomena that can occur when one population splits into two:  the splitting event may 

have been long ago or recent;  the ancestral and the two descendant populations may differ 

in size;  there may have been gene exchange during the time since population splitting; and 

this gene exchange may have occurred more in one direction than the other. Please note the 

direction of migration in the figure, in which m1 pertains to the movement of genes from 

population 1 to population 2.  It is important to understand that this is in the coalescent, 

meaning back into the past.  In other words, in the conventional sense of time moving 

forwards, m1 pertains to genes moving from population 2 to population 1, and m2 pertains 

to genes moving from population 1 to population 2. 

 

The Isolation with Migration model differs sharply from the general family of models in 

which populations have been exchanging genes for an indefinitely long period of time.  

Such ‘island models’  or ‘stepping-stone’ models assume that the pattern of variation 

within and between populations is at equilibrium between the counteracting forces of 

mutation, genetic drift and gene exchange. In this way the Isolation with Migration model 

should be more appropriate for the analysis of populations that have recently separated.  

 

The overall approach that is represented in these programs has many complexities and for 

this reason these programs can not be used to quickly obtain an answer to a particular 

question. Rather than being ‘plug and chug’,  the programs are tools for analyzing data. 
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Use of the programs, without understanding the methodology will almost certainly lead to 

results that are not interpretable or that are very misleading.  It is also useful to keep in 

mind that the  programs are not the same thing as the Isolation with Migration model.  The 

model is a theoretical idea, and the program implements one way to fit the model to the 

data.  

 

Key References 
Details and examples are explained in the primary references.  

Nielsen, R., and J. Wakeley. 2001. Distinguishing migration from isolation. A Markov 

chain Monte Carlo approach. GENETICS 158:885-96. 

Hey, J. 2005. On the number of new world founders: a population genetic portrait of the 

peopling of the Americas. PLoS Biol 3:e193. 

Hey, J., Y.-J. Won, A. Sivasundar, R. Nielsen, and J. A. Markert. 2004. Using nuclear 

haplotypes with microsatellites to study gene flow between recently separated 

Cichlid species. Mol Ecol 13:909-919. 

Hey, J., and R. Nielsen. 2004. Multilocus methods for estimating population sizes, 

migration rates and divergence time, with applications to the divergence of 

Drosophila pseudoobscura and D. persimilis. GENETICS 167:747-760. 

Won, Y. J., and J. Hey. 2005. Divergence population genetics of chimpanzees. Mol Biol 

Evol 22:297-307. 

Hey J,  Nielsen R. 2007. Integration within the Felsenstein equation for improved Markov 

chain Monte Carlo methods in population genetics. PNAS 104:2785–2790. 

Assumptions 
The major overall assumption is that the history of a sample from two populations can 

reasonably be described by an Isolation with Migration model.  This means that there 

should not be other populations that are more closely related to the sampled populations 

than they are to each other, and it means that there should not be other unsampled 

populations exchanging genes with the sampled populations or their ancestor.  The other 

major population genetic assumptions underlying the method are as follows: 

• Selective Neutrality.  The method assumes that the variation within the data set is 

neutral  (i.e. not affected by directional or balancing selection).  
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• No Recombination Within Loci. The method assumes that there has not been 

recombination within the gene, or genes, that are being studied since the time of 

common ancestry of the gene copies included in the study. For loci that might have 

had recombination it is generally a good idea to check the data for obvious signs 

that recombination has shaped the pattern of variation,  such as by using the four-

gamete test (Hudson and Kaplan 1985).  This test which can be applied by eye or 

using computer programs such as SITES or DnaSP. See Hey and Nielsen (2004) for 

detailed discussion of the recombination issue. 

• Free Recombination Between Loci.  The method treats different loci as having 

segregated independently over the time since the common ancestry of the gene 

copies.  In practice this does not require that loci be on separate chromosomes, but 

rather that multiple recombination events  would have occurred between loci more 

recently than the most recent times of common ancestry among samples for each 

locus.  Often this will mean that even loci that have only a low rate of crossing over 

between them, per generation, are effectively unlinked over longer time frames.  

• Mutation has Followed the Model Applied to the Data. The  IM program includes 

implementations of three mutation models.  Each model invokes assumptions about 

the nature of the mutation process.  

 

Mutation Models 
Three different mutation models are represented in the program.  Also the program 

includes two types of compound mutation model, in which a locus has multiple portions 

each with its own mutation rate.  

• The Infinite Sites (IS) model (Kimura 1969).  Under this model every mutation that 

has occurred in the history of a sample of sequences occurs at a different place in a 

DNA sequence. While this may seem unrealistic,  it is actually a highly applicable 

model for many DNA sequence data sets, particularly for nuclear genes.  Genes 

from the nucleus generally experience mutation rates on the order of 10-9 per base 

pair per generation,  which means that one does not expect there to be multiple 

mutations per base pair along a lineage (e.g. a branch on a gene tree), unless that 

branch is very many generations long.  Because the Isolation with Migration model 
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is intended for relatively recent cases of population splitting,  the genealogies of 

loci that are analyzed will usually have depths of the same order as are found within 

populations.  It is precisely in such contexts, where polymorphic sites tend to have 

low density along a sequence, that the IS model is ideal. Also, keep in mind that one 

can check to see if the IS model roughly applies. If it does, there will not be any 

polymorphic sites with more than two base pairs segregating in the sample.  Also, if 

the IS model applies and there has been no recombination,  then the data for each 

locus fall on a branching tree with zero homoplasy.  

• The Hasegawa-Kishino-Yano (HKY) model (Hasegawa et al. 1985) was applied to 

the Isolation with Migration model by Palsbøll et al., (2004).  It is a general model 

that allows for multiple substitutions, with different rates of transitions and 

transversions as well as unequal frequencies of the four nucleotides.  This is a 

useful model for when you want to allow for multiple substitutions,  such as when 

using mitochondrial DNA sequence data.  It is important to recognize that the 

model does not accommodate different underlying substitution rates at different 

positions in the sequence.  

• The Stepwise Mutation Model (SMM) (Kimura and Ohta 1978).  This is a model 

that can be applied to allelic variation (as opposed to sequence, or haplotype 

variation) in which each mutation causes an allele to increase or decrease by one 

step on whatever scale the alleles are being measured. Microsatellite loci (aka Short 

Tandem Repeat loci, or  STR loci) experience high mutation rates to different 

numbers of repeats in an approximately stepwise manner (Estoup et al. 2002). The  

SMM model is implemented in a manner that follows Wilson and Balding (Wilson 

and Balding 1998).  An important question, that needs to be investigated, is whether 

the ways that STR loci do not fit the SMM model, lead to important biases when 

analyzed assuming the SMM model.    

• Compound Locus Models.  These programs also implement two kinds of  models in 

which a locus has multiple parts.   One of these is a model in which a locus includes 

multiple completely linked STRs, each of which follows the SMM model.  An 

example of this would be data from human Y chromosomes, in which each 

individual has been genotyped at a series of STRs, all of which are perfectly linked 

because of the absence of recombination on the Y.  A second compound model is 
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for loci that include a DNA sequence portion (that evolves under the IS model) and 

one ore more STRs (each of which follow the SMM model).   Compound loci with 

both sequence and STR will have both high- and low- mutation rate components 

and offer the potential for increased resolution for recent splitting events.  Inspired 

by Joanna Mountain’s use of compound loci, that she called SNPSTRs (Mountain et 

al. 2002),  we call these loci HapSTRs  (Hey et al. 2004).  

 

Understanding Markov chain Monte Carlo  (MCMC) 
Each program begins by simulating a genealogy (i.e. a gene tree) for each locus in the data 

set, and then runs a simulation in which each genealogy is repeatedly updated to a new 

value following specific criteria  (see references for details).  Under the method of Nielsen 

and Wakeley (2001) (as implemented in IM)  the state space of the simulation also 

includes all of the model parameters.  Under the method of Hey and Nielsen (2007) (as 

implemented in  IMa)  the state space does not include population size and migration rate 

parameters (though it does include the splitting time parameter, and mutation scalar 

parameters).  At intervals,  a record is made of the current state of the simulation, and over 

the course of a sufficiently long run the distribution of recorded values can be expected to 

approximate the posterior probability density of those values.  This is true for whatever is 

being recorded  from the simulation - whether it be genealogies (as in IMa) or model 

parameters (as in  IM).  To put it another way,  when the program is up and running it is 

generating random samples from the desired posterior probability distribution.  

 

The simulation is of a type called Markov chain Monte Carlo  (MCMC).  There is a large 

literature on this, and methods like this one have become commonly used for population 

genetic and phylogenetic problems.  It is suggested that users have a good general 

understanding of the principles involved (better than what is provided here),  if they are 

going to be doing any extensive analysis.   

 

The length of the Markov chain simulation is measured in steps.  Each step is one iteration 

through the routines that pick new values for genealogies and parameters that are included 

in the state space of the simulation.   Each new value that is considered is evaluated in 
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terms of the appropriate Metropolis-Hastings criteria, and either the new value is accepted 

or it is rejected (in which case the old value is retained).  Each quantity is updated will have 

yield an acceptance rate,  which is the proportion of proposed values that are accepted.  If 

acceptance rates are too low,  then the simulation cannot  explore the state space.     

 

How Long to Run the Program 
The general answer to this question is the same as for any MCMC method, and has two 

parts,  (1) reaching stationarity and (2) convergence of the sample to the stationary 

distribution. The stationary distribution is just the distribution that we want to estimate with 

our samples of parameter values that are drawn from the Markov chain. The speed at which 

the program achieves both stationarity and convergence depend on how well the Markov 

chain explores the space of genealogies and parameter values. If it moves around fairly 

well and quickly (‘mixes’ well)  then both processes will usually happen quickly.  However 

if the Markov chain is slow to explore the space, then it can take awhile to reach 

stationarity and possibly a very long time for the sample to converge on the stationary 

distribution.  

 

First, before you can get started recording values from the simulation,  you must run the 

program until the parameter values and genealogies in the simulation belong to the actual 

stationary distribution. The initial running of the program to get the parameters and 

genealogies to the point where they fall within the stationary distribution (i.e. the posterior 

distribution) is called the ‘burn-in’.  When the program starts it begins by using randomly 

selected parameter values and random genealogies,  and it is quite likely that the 

probabilities of the genealogies, given the data, and the probabilities of the parameters, 

given those genealogies,  are very low - so low that it is not really fair to consider them as 

being drawn from the posterior distribution that is to be estimated. However you can’t 

simply tell whether or not this is the case just by checking the probability calculations 

because you don’t know the true distribution. Usually one does a preliminary run to see 

how strongly parameter values are autocorrelated over the course of the run (more on this 

below), and this can give you an idea of how long the burn-in should be. The goal is to pick 

a burn-in time that allows the parameter values and genealogies to move to a point such 

that the values are effectively independent of those at which the program started. There is 
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no problem in having a longer burn-in than the minimum needed.  Also, if the burn-in is 

too short usually this will be because the chain mixes slowly, and in these cases 

convergence is going to be a big problem. So for the most part, burn-in is not a big issue, 

and if it is a big issue it is usually also the case that convergence is an even bigger issue.  

The most common situation where burn-in is a problematic issue is when the starting 

genealogy that is simulated is far removed from genealogies with a reasonable fit to both 

data and to parameter priors.  This can happen particularly for SMM model data, especially 

compound STR data, and in these cases the possible need for a very long burn-in should be 

anticipated.  

 

Turning to the matter of convergence, by which is meant the approach of the observed 

distribution of samples, that are saved over the course of the run,  to the true posterior 

probability (also called the ‘stationary’ distribution – see above).  The importance of 

convergence cannot be underestimated,  as a lack of convergence means that the program is 

giving you the wrong answer.  The program will generate some distribution, and you can 

plot it.  It may look nice, but it could be completely wrong.   

 

How do you know if you are getting a good estimate of the true distribution?   There are 

two general kinds of approaches, neither of which are foolproof.  One is to see if you get 

the same distribution from multiple different runs that are identical except for starting 

random parameter values. The other is to observe over the course of a run how well a chain 

seems to be mixing. In these programs this is done by plotting recorded values over the 

course of the run and by measuring how these values are correlated with themselves (i.e. 

autocorrelated) over the length of the run.  If the plotted values show trends over long 

portions of the run, or if autocorrelations persist for a large number of steps,  then this 

means the state space is being explored slowly, in which case longer runs are required.   

 

Metropolis Coupling of Markov chains 
To improve mixing, and thereby convergence, the programs can optionally implement a 

Metropolis-coupled version of the algorithm in which multiple chains are run 

simultaneously, with all chains but one having heated stationary distributions (Geyer 1991). 

These heated chains will not individually return the correct posterior distributions but they 
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will explore the state space far more quickly than will the non-heated chain. Increased 

mixing in the non-heated chain is obtained by symmetrically swapping parameter and 

genealogy states between chains at rates determined by a Metropolis criterion that is a 

function of the difference in overall probabilities between the chains and the difference in 

heating values of the chains (Geyer 1991). For a simulation with Metropolis coupling 

among k chains, each chain will be approximately a fraction 1/k as long as would a single 

chain run for the same length of time. The advantage gained is that the overall rate of 

mixing on the primary chain may be vastly improved. In practice we have found this 

method solves the difficulties of inadequate mixing that arise sometimes with datasets that 

include multiple loci.  

 

Assessing the Autocorrelation of Recorded Values 
Although a  Markov chain with properly specified Metropolis-Hastings update criteria will 

provide samples from the desired distribution,  these samples will not be independent of 

each other.  This is another way of describing the difficulty of ensuring convergence, as 

convergence would not be such a problem if we had a method that was assured of 

providing independent samples from the desired distribution.  Therefore one way to keep 

tabs on the convergence question is to explicitly inquire of just how independent the 

samples seem to be.     

 

The simplest way to roughly assess independence, over the course of the run,  is to plot 

successive values of recorded quantities and to observe the actual sequence of change.  The 

IM and IMa programs include an option to plot trend lines.  Good mixing is suggested by  

pattern in which the recorded value explores the same range of values in different portions 

of the plot (see top Trendline figure example).   At the other extreme,  poor mixing is 

reflected in movement of the recorded quantity that is so slow that it is not yet clear what 

the likely range of values is going to be (see bottom trendline figure).  If a long run 

produces patterns like that in the bottom figure, then there is a severe mixing problem.  

Intermediate patterns (middle figure) may not be cause for concern,  but will at least 

require longer runs.    Trendline plots do not offer any guarantees, and it is quite possible 

(and common) for a run to generate a plot like the top figure over the early course of the 
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run, but to then turn into a plot like the bottom figure, as the simulation proceeds and 

begins to explore a larger or different portion of the state space. 
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Example figures of parameter trendlines.  The plots generated by IM are more approximate 
and are generated using ASCII text.  
 

 

Another way to assess convergence is to monitor the autocorrelation of recorded values 

over the course of a run.  Each autocorrelation calculation is based on a distance k , called 

the lag, that is the number of steps between the pairs of values that are included in the 

calculation.  The autocorrelation for a given lag k is  ρk  ,  and it can be calculated for all 

possible values of k. One expects very high values for ρk  (near 1) for small values of k, and 

one hopes for values near zero for larger values of k.     One widely used measure of mixing 

is based on the idea of Effective Sample Size (ESS).  If samples taken at each successive 
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step were independent then ESS would be the number of steps.  When they are not 

independent then ESS can be estimated as  

∑
∞

=

+
=

1
21

k
k

MESS
ρ

, where M is the total number of steps. 

These programs approximate this sum by measuring ρk for a series of values for k  up to 

1,000,000 steps. If you observe strong autocorrelations for this large a lag value then the 

ESS value is underestimated, and you’ve got a real mixing problem.   

 

The IM and IMa  programs estimate the autocorrelations and ESS values for whatever  

parameters are included in the MCMC simulation as well as for  Log(P) = 

Log(P(Data|Genealogy)) + Log(P(Genealogy|Parameters)).  ESS estimates are always 

going to be far less than the actual number of steps because values are highly 

autocorrelated along the chain.  ESS estimates will not be stable or reliable for short runs.  

From experience with diverse data sets,  the rule of thumb seems to be that one should run 

for at least a million steps before beginning to rely upon the ESS estimates.   

 

The program will provide runtime values, in the running window on the computer screen,  

of estimated ESS values,  however these are not reliable for short run times. With some 

experience, one can get a feel for what kinds of ESS values suggest good mixing, even if a 

run has only been going for a short while,  however one needs to be quite cautious in using 

estimated ESS values for short runs.  ESS estimates are inherently unstable for short runs 

because only low lag values are available.  As the run progresses, larger lag values come 

online and this can cause the ESS estimates to jump around quite a lot.  

 

If multiple Metropolis-coupled chains are used, then the ESS values will often be greatly 

inflated when they first begin to appear.  This is because the different chains will have 

started out at widely different points in the parameter space, and if there is much swapping 

of chains,  the initial assessments of autocorrelations will be quite low.  Again, one needs to 

wait and see what the autocorrelations look like after a million or more steps.  
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Parameter Conversions -  How to Obtain Demographic Parameter Estimates 

from Model Parameter Estimates 

The IM and IMa programs can be used to generate estimates of model parameters (θ1, θ2, 

θA, m1 , m2 and t).  Typically the peaks of the estimated distributions are taken as the 

estimates, just as if one was taking a maximum likelihood estimate.  Indeed, because the 

method uses uniform prior distributions,  these estimates are maximum likelihood estimates 

in those cases when the prior distributions are very wide and the tails of the posterior 

distributions are clearly contained within the range of the prior distributions (i.e. as if the 

prior really was uniform over the range of zero to infinity).  

 

Once the model parameter estimates are in hand,  many investigators will wish to also 

generate estimates of the demographic quantities (i.e. N1, N2, NA, t, m1, and m2).  Most of 

these conversions can  be done automatically by the program,  provided that mutation rate 

estimates are included in the input file (see the section on Input File Format and command 

line flags for the program you are using).  Whether this is done by the program or by the 

investigator, it is important to understand what is being done here, as the subject can be a 

bit confusing. The next few paragraphs explain how these calculations are made.  

 

First, note that that all of the parameters in the model include the mutation rate u (which is 

a value for the gene, not per base pair). If you have multiple loci,  then u is the geometric 

mean of the mutation rates of all the loci.  The method for converting parameter scales is 

explained for diploid autosomal loci for the parameters t, θ1, and m1.  The same approach is 

readily applied to θ2, θA, and m2 in the same way.   

 

First,  gather your model parameter estimates, and an estimate of actual mutation rates 

(using an outgroup or some other relevant data).    

- Let A  be your estimate of  θ1  (i.e. 4N1u where N1 is the effective size of population 

1) 

- Let B be your estimate of t,  the time parameter (i.e. t u, where t is the time since 

splitting) 
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- Let C be your estimate of m1 (i.e. m1/u).  It is important to understand that m1 is the 

rate per gene per generation from population 1 to population 2, in the coalescent.  

Since the coalescent goes backwards in time,  m1 is more easily thought of as the 

rate at which genes come into population 1, from population 2,  as time moves 

forward. 

- Let U be an estimate of the mutation rate per year for the gene being studied. (not 

per base pair, but for the entire gene).  This must usually be obtained using some 

other data, such as distance from an outgroup of known time separation. If you are 

doing multiple loci,  then U is the geometric mean of the mutation rates (per year) 

for the loci.  

- Let V be an estimate of the mutation rate per generation for the gene being studied. 

If G is the number of years per generation, then V = U  G. 

 

 Now generate estimates of demographic quantities:  

- To estimate the effective population size, N1,  calculate  A/(4 V). This is because N1 

is defined in the coalescent models as being proportional to the inverse of the 

coalescent rate per generation.  Therefore we need to use V since it is an estimate of 

the mutation rate on a scale of generations.  

- To estimate the time since splitting, t,  in units of years,  take B/U. 

- To estimate the time since splitting in generations,  take B/V. 

- To estimate the migration rate per generation, m1, take  C  × V.  

- To estimate a migration rate per year, take C × U. 

- To estimate the population migration rate (the effective rate at which genes come 

into a population, per generation) for population 1 (i.e. 2 N1 m1) you don't even 

need the estimate of mutation rate,  Since 4N1u × m1/u / 2  = 2N1 m1,   all you need 

to do is take A×C/2. 

 

When multiple loci are studied, the program also allows estimation of mutation rate scalars 

for each locus. If xi is the estimate of the scalar for locus i,  then an estimate of  4N1ui can 

be obtained by taking A × xi.  
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If data from multiple loci are used,  but per-year mutation rates are only available for a 

subset of them,  then it is still possible to generate estimates of demographic quantities.  

The trick is to make use of the estimates of the mutation rate scalars for those same loci.  

Let X be the geometric mean of the estimates of the mutation rate scalars for just those loci 

for which per-year mutation rates are also available.  Let U be the geometric mean of the 

per-year mutation rates for just those same loci, and let V = U G. Then A X /(4 V) is an 

estimate of N1. Similarly an estimate of the number of years since divergence began is 

obtained with B X/U. An estimate of the migration rate per generation per gene copy is 

obtained with    C V/X.   

 

If you are working with multiple loci that have mixed inheritance models, then you will 

want to be setting the inheritance scalars in the input file  (see Input File Format). In this 

case the method described above can be applied in exactly the same way without changes.  

 

Similarly if you are working with a single locus, and the inheritance scalar in the input file 

is not one  (e.g. if the data is mtDNA and the scalar is set to 0.25),  then the affect of that 

scalar is to yield results that would be comparable to a diploid autosomal locus, and again 

the method described above can be applied in exactly the same way without changes.  

 

However if you are working with a single locus that does not have diploid autosomal 

inheritance, but the inheritance scalar is set to 1 in the input file.  Then the estimates of  θ1, 

θ2, and θA are not of 4Neu but rather of the product of 4Neu and whatever the true 

inheritance scalar actually is for that locus.   

 

 

Cautions, Suggestions and Interpretations 
One of the greatest challenges is knowing whether the Markov chain is mixing sufficiently.  

Even when update acceptance rates are high, and ESS rates are high,  and even when trend 

lines are suggestive of good mixing,  it is recommended that multiple runs be made using 

different seeds for the random number generator.  
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Typically a minimum of three runs will be needed to have a rough idea of how well the 

program is working and of what the marginal distributions look like.  The first run is 

required to assess mixing and to find a range of prior distributions that include all or most 

of the range over which the posterior density is non-trivial.   If it looks like the posterior 

distributions are fully contained within the bounds of the prior distribution, and if the 

observed maxima for any distributions are far to the left of the upper bounds, then the 

priors can be reduced for subsequent runs.  Both the second and third runs should be long 

and started using identical settings but different random number seeds. You will have a 

pretty good idea that the chains are sufficiently long if all ESS values are high and if both 

runs have generated similar distributions.   

 

If the data set is small, and sometimes even if not,  it can happen that a large portion of the 

likelihood surface is very flat over the range of some parameters.  In particular it is not 

uncommon to have high, flat likelihoods for high values of t and θA.  One may find for 

example in the marginal curve for t a sharp peak at a low value, and then a plateau that 

extends indefinitely to the right at an even higher value.  This is awkward because the 

highest likelihood appears to be associated with an infinitely wide range of parameter 

values. In these situations,  the data does not contain enough information to identify the 

model, and the results should not be relied upon.     
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