
JBasic User’s Guide

Tom Cole

Version 2.8
December, 2010

!

This page intentionally left blank.

JBasic Userʼs Guide!

2

Table Of Contents
..Getting Started! 9

...Notations Used In This Documentation! 9
...Command Line Invocation! 9

..JBasic Programs! 11
...About Line Numbers! 13

..Workspaces! 16
...Constants! 16

...Variables! 17
..Expressions! 18

..Increment and Decrement Operators! 22
...Conditional Expressions! 23

..Arrays! 23
...Records! 26

..Tables! 29
...Global Variables! 31

...About $MODE! 32
..Data Files! 33

..Database Access! 34
...Interrupting Execution! 36

..Debugging! 37
...Threads! 38

...Java Objects! 40
...JBasic Objects! 43

...XML Data! 45
...Macros! 48

..A Complete Sample Program! 49

..The Rest Of This Document! 51
..ADD! 53

...ARRAY! 54
..BOOLEAN! 55

...BREAK! 56
..CALL! 58
..CHAIN! 59

!

...CLEAR! 61

...CLOSE! 62
...COMMON! 63

..DATA! 64
..DEFFN! 65
..DELETE! 66

...DIM ! 67
..DIVIDE! 68

..DO! 69
..DOUBLE! 71
...EXECUTE! 73

...FIELD! 75

...FILES! 77
...FIND! 78
..FOR! 79

...FUNCTION! 81
..GET! 83

..GOSUB! 84
...GOTO! 85
..HELP! 86

...IF! 87
...INFORMAT! 89

...INPUT! 90
...INTEGER! 94

...LET! 96
..LINE INPUT! 98

..LIST! 99
..LOAD! 100
..LOCK! 101

..MESSAGE! 103
...MID$! 104

..MULTIPLY! 105

JBasic Userʼs Guide!

2

...NEW! 106
..NEXT! 108

..OLD! 109
..ON! 110

..OPEN! 111
...PRINT! 115

...PROGRAM ! 117
..PROTECT! 119

..PUT! 120
...QUIT! 123

..RANDOMIZE! 124
..READ! 125
...REM ! 126

...RENUMBER! 127
...RESUME! 128
...RETURN! 129
...REWIND! 130

..RUN! 131
..SAVE! 132

...SAVE PROTECTED! 133
..SAVE WORKSPACE! 134

..SAVE XML! 135
..SEEK! 136

..SIGNAL! 139
..SLEEP! 140

..SORT! 141

..STEP! 142
..STRING! 143

..SUB! 144
..SUBTRACT ! 146

...SYSTEM! 147
..TABLE! 148

JBasic Userʼs Guide!

3

..UNLOCK! 149
...UNTIL! 150
..VERB! 151
..WHILE! 152

...Built-In Functions! 153
..ARRAYTOSTR()! 153

..ABS()! 153
...ARCCOS()! 153

...ARCSIN()! 154
..ARCTAN()! 154

...ARRAY()! 154
...ASCII()! 154

..BASENAME()! 154
...BINARY()! 155

...BOOLEAN()! 155
...BYNAME()! 155
..CEILING()! 155

..CHARACTER()! 156
...CIPHER()! 156

...COS()! 156
..CSV()! 156

...DATE()! 156
..DECIPHER()! 158

..DOUBLE()! 158
...EOD()! 158
..EOF()! 158

..EXISTS()! 158
..EXP()! 159

..EXPRESSION()! 159
..EXTENSION()! 159
...FILEPARSE()! 159

...FILES()! 160
..FILETYPE()! 160

...FILETYPES()! 161
...FLOOR()! 161

JBasic Userʼs Guide!

4

..FORMAT()! 161

..GETPOS()! 162
...HEXADECIMAL()! 163

...INTEGER()! 163
..INPUT()! 163

...ISOBJECT()! 163
..LEFT()! 163

..LENGTH()! 164

..LOADED()! 164

..LOCATE()! 164
...LOCKS()! 164

..LOWERCASE()! 165
..MATCHES()! 165

...MAX()! 165
...MEMBER()! 166

..MEMBERS()! 166
..MEMORY()! 166
..MESSAGE()! 167
...MESSAGES()! 167

..MIN()! 167
..MIXEDCASE()! 167

...MKDIR()! 168
...MOD()! 168

...MQUOTE()! 168
..NUMBER()! 168

..OBJECT()! 169
..OBJECTMETHODS()! 169

...OCTAL()! 169
...PAD()! 169

...PATHNAME()! 169
..PROGRAM()! 170

..RADIX()! 171
..REPEAT()! 171
..RANDOM()! 171

..RANDOMLIST()! 171
...RIGHT()! 172

JBasic Userʼs Guide!

5

..SECONDS()! 172
..STRTOARRAY()! 172

...SUBSTRING()! 172
..SUM()! 173

...SYMBOL()! 173
..SYMBOLS()! 173

..TABLES()! 174
..TOTAL()! 174

...TYPE()! 174
...TYPECHK()! 174

..UPPERCASE()! 175
...XML()! 175

..XMLPARSE()! 175

...BASIC Compatibility! 177
..Expressions and Variables! 177

..Control Statements! 179
...Binary File I/O! 181

...MULTIUSER Mode! 183
...Preparing for MULTIUSER Mode! 183

..Logical Names! 183
...Home Directories! 184

..Functions! 184
..PERMISSION()! 184

...USERS()! 185
..Controlling the Server! 185

...SET PASSWORD! 186
...SERVER ADD USER! 187

...SERVER DEFINE! 188
..SERVER DELETE USER! 189

...SERVER GRANT! 190
..SERVER LOAD! 192

..SERVER MODIFY! 193
...SERVER QUIT! 194

...SERVER REVOKE! 195
...SERVER SAVE! 196

JBasic Userʼs Guide!

6

..SERVER START! 197
..SERVER STOP ! 199
...SET LOGGING! 200
...SHOW SERVER! 201

...SHOW SERVER LOGICAL NAMES ! 202
...SHOW SERVER SESSIONS! 203

...SHOW SERVER USERS! 204
...Inside JBasic! 205

...JBasic Internal Architecture! 205
..Command Execution! 208

..Program Execution! 209
..Global Symbols! 210

..Runtime Statistics! 213
..Value Representations! 214

..ByteCode Execution! 214

..Internal Commands! 217
...ASM ! 218

...COMPILE! 219
...COMPILE() ! 220

...DISASM ! 221
...LINK! 222

...SET! 223
..SHELL! 224

...SHOW CALLS ! 225
...SHOW FILES ! 226

..SHOW FUNCTIONS ! 227
...SHOW LOCKS ! 229

...SHOW MESSAGES ! 230
...SHOW OPTIONS ! 231
...SHOW PROGRAM! 233

...SHOW STATUS ! 234
..SHOW SYMBOLS! 235

...SHOW VERBS! 237

JBasic Userʼs Guide!

7

...SHOW VERSION! 238
...TEST! 239
...TIME! 240

..TRACE! 241
..UNLINK! 242

...Product Revision History! 243

JBasic Userʼs Guide!

8

Getting Started

JBasic is BASIC, written in Java. JBasic is primarily intended as an environment for learning introductory
programming concepts and skills, though it can be used to create quite complex applications if needed. It
is intended to be run interactively from a console-style environment.

The first section of this manual will cover the general concepts behind JBasic - how to start JBasic, how to
create a program, and information about how data is stored in variables, etc. This is followed by a refer-
ence section that describes each statement and function in the JBasic language, with some examples.
Third, there is a section dedicated to using JBasic in a multi-user mode such as in a classroom setting.
Finally, the last section describes some of the internals of JBasic and some statements and commands
that are used just to support development of JBasic itself.

Notations Used In This Documentation
In this document, the typeface of the text can tell you information about what you are reading. Here are
the conventions used in this document:

Notation Meaning

Plain text Informational or descriptive text

KEYWORD A keyword in the JBasic language

VARIABLE A user-supplied element of a JBasic program

Additionally, segments of sample programming code are displayed in grey text boxes. These may be ex-
amples of code, or examples of interactions with JBasic via a console command shell.

! 100 REM This is a comment in a sample program

Command Line Invocation
All operations take place in the context of a JBasic “session”, which is created when you use the com-
mand line shell to invoke a JBasic command prompt. The session contains both the programs you are
running and the information that the programs are manipulating. When you exit JBasic, the session ends.

JBasic can be executed as a Java application using the following command, issued from within your
computerʼs command or terminal shell:

! java -jar <jar-location>jbasic.jar

JBasic Userʼs Guide!

9

In this case, <jar-location> is the directory path specification where the jbasic.jar file is located. This
could be the current directory, or a shared or system location where JBasic was installed. Your system
administrator may create other shortcuts or commands to assist you in running the JBasic application. By
default, JBasic will print a header indicating what version you are running, and then prompt you for a
command. For example,

JBasic accepts commands at its console input prompt. These commands may be executed immediately,
or may be compiled and stored away as programs that can be run, modified, saved, and re-loaded. You
terminate use of JBasic by executing the QUIT command.

There are a variety of command line options that can follow the invocation of the JBasic jar file on the
command line. These are summarized here:

Option Description

-exec The remainder of the command line is used as a JBasic com-
mand to execute. If not specified, then the main program or a
command shell is used to determine what command(s) are
executed by JBasic.

-help Displays a description of the command line arguments.

JBasic Userʼs Guide!

10

Option Description

-sandbox Prevents JBasic programs from being able to access or
change the host environment, such as being able to create
files or access a command-line process. If not specified, the
userʼs access to the host environment is controlled by the
userʼs host attributes. This mode is typically used when JBasic
is deployed as part of a web application.

-noworkspace The default workspace is not loaded automatically. If not
specified, JBasic attempts to load the default file
“Workspace.jbasic” located in the userʼs home directory.

-server JBasic starts up in multi-user mode, accepting remote connec-
tions on the default port. If not specified, JBasic runs in single
user mode and only executes commands from the current
user.

-noshell When specified, no command prompt for JBasic commands or
statements is given. After any command given on the com-
mand line or a main program has executed, JBasic terminates.
If not specified, then JBasic prompts the user for commands
interactively.

-nomain If specified, the main program in the Library or Workspace is
not executed. This is used when there is a bug in the main
program that prevents JBasic from starting up normally. If not
specified, then after initialization JBasic will load and run the
program named “$MAIN” automatically.

-nopreferences If specified, the preferences file “$PREFERENCES” is not
loaded and run automatically. When not specified, JBasic at-
tempts to run the program $PREFERENCES if it is found after
initialization. This is used to set default user preferences.

-nointerrupt If specified, the user interrupt handler is not enabled. This pre-
vents the program from being interrupted by a Control-C or
similar interrupt operation.

JBasic Programs
JBasic programs reside in a "workspace", which is a collection of programs that are available when a
JBasic session is active. When you start JBasic, the default workspace is (re)loaded into memory. If you
change the programs in the workspace, you can use the SAVE WORKSPACE command to preserve them
so they will be available the next time you use JBasic.

JBasic has a "current program" which is the one that you are currently adding statements to or executing.

Programs must have names, identified by the first statement, which is usually a PROGRAM statement. User
programs usually have line numbers, used to organize the statements in the program. You can add

JBasic Userʼs Guide!

11

statements to the current program by entering a line number (any positive integer greater than zero) fol-
lowed by the text of a statement. The statement is compiled and stored away.

• Use the NEW command to create a new program.
• Use the OLD command to access an existing program.
• Use the LIST command to see the current program.
• Use the RUN command to execute the current program.

Here is a simple program you can enter to get a feel for how JBasic works. Do this at the command line
prompt, which is usually "BASIC>".

 BASIC> new hello

 BASIC> list

At this point, the program has one statement that was automatically created for you, along with a few
comments. Note that in JBasic, comments are indicated by the double-slash “//” indicator rather than the
keyword REM as in other dialects of BASIC. The output will look something like this:

 1000! PROGRAM HELLO
 1010! // Version: 1.0
 1020! // Date: Wed Dec 8 09:32:10 EST 2010
 1030! // Author: tom
 1040 END

Add some more statements to the program. You can enter these in any order, since they are stored in the
program in line-number order. Note that the first line has the same number as an existing line in the pro-
gram; the new line will replace the old one in the program. Verify this using the LIST command.

! BASIC> 1040 print "Hello, world"
! BASIC> 1050 return
! BASIC> list

Now let's run the stored program we have created.

! BASIC> run
! Hello, world
! BASIC>

JBasic Userʼs Guide!

12

You can type SAVE WORKSPACE now to store this workspace (which contains the program HELLO that
you just wrote). The next time you run JBasic, it will reload the stored workspace and the HELLO program
will be available for your use.

You can get a list of the programs that are available in your workspace by typing SHOW PROGRAMS. You
will see any programs you have created, plus a few that are built in to JBasic. Program names with a "*"
after the name are ones that you have created or modified yourself.

You can put more than one statement on a line, with some limitations. For example, consider the following
code fragment:

! 100 X = TRUE : Y = “TOM”
! 110 IF X THEN PRINT Y : GOTO DONE
! 120 IF Y = “SUE” THEN X = FALSE : Y = “DEB” ELSE X = TRUE

The first statement shows two assignment statements performed on the same line of code. The colon
character (“:”) separates the statements on the line. When line 100 is executed, both assignment opera-
tions will be performed. When more than one statement is on a line, this is called a “compound statement”

The second demonstrates the use of a compound statement in an IF statementʼs clause. If the value of X
is a “true” value, then both the PRINT and GOTO statements will be executed. The third line shows that
even in an IF-THEN-ELSE statement, the THEN and ELSE clauses may contain compound statements.
See the reference information on the IF statement later in this document for more details.

About Line Numbers
JBasic programs that are typed in at the console always have line numbers. These line numbers are used
to determine what order the statements are stored in the active program. Line numbers are all integer
values greater than zero. Lower line numbers are stored and executed before higher line numbers.

Before you can enter or edit a program, you must make it the "current program." This is done with the OLD
or NEW commands.

You enter programs statements just by typing the line number followed by the text of one or more state-
ments (separated by a colon “:” character). For example,

> new hello
> 1040 print "Hello, world"
> 1050 print "Bye for now."

Note that these two statements could be typed in any order, the line numbers guarantee that the state-
ments are stored in the correct order in the program itself.

When you use NEW to create a new program, JBasic creates a program with a few lines of text in it al-
ready. For example, the above operation would result in a complete program that looks similar to this:

JBasic Userʼs Guide!

13

 BASIC> list
 1000 PROGRAM HELLO
 1010 // Version: 1.0
 1020 // Date: Wed Dec 8 09:32:10 EST 2010
 1030 // Author: tom
 1040 PRINT "Hello, world"
 1050 PRINT "Bye for now."

JBasic automatically created lines 1000-1040 for you when you issued the NEW command. By convention,
the use starts entering programs starting at line 1000, and incrementing by 10 to make sure there is room
for additional statements. However, if you run out of room between two statements to type in new pro-
gram statements, you can use the RENUMBER command, which renumbers the statements to make addi-
tional room for new statements. For example, given the above program, we could use the RENUMBER
command just to make the program slightly more readable, staring at line number 100:

BASIC> renumber 100
BASIC> list
! 100 PROGRAM HELLO
! 110 // Version: 1.0
! 120 // Date: Wed Dec 8 09:32:10 EST 2010
! 130 // Author: tom
! 140 PRINT "Hello, world"
! 150 PRINT "Bye for now."
!

You can replace a line in a program just by typing the line number and a new statement to be stored in
the same location in the program:

BASIC> 150 print "Au revoir!"

This replaces the line in the program with line number 150 with the new statement text. You can delete a
line in a program by typing the line number without putting any text after it. To delete line 150 entirely, just
type:

BASIC> 150
BASIC> list
! 100 PROGRAM HELLO
! 110 // Version: 1.0
! 120 // Date: Wed Dec 8 09:32:10 EST 2010
! 130 // Author: tom
! 140 PRINT "Hello, world"
!

JBasic Userʼs Guide!

14

You can use the DELETE command to delete all the lines in a program, or a range of lines.

BASIC> DELETE 110-130

In the sample program we're working on, this would delete the comment lines that were automatically put
in the program by the NEW command.

For compatibility with older versions of BASIC, line numbers can be used to control the “flow of execution”
of your JBasic program. For example, consider the following code:

! 100! LET X = 1
! 110! IF X THEN 200
! 120! PRINT “BAD”
! 130! END
! 200! PRINT “GOOD”
! 210! END

This sample uses a line number as the target of a conditional branch. See the reference material describ-
ing the IF and GOTO statements later in this document for more information about flow of control and
conditional branches.

If you renumber a program that uses line numbers to indicate where a program is to execute, these num-
bers will be changed automatically by the RENUMBER command so that they continue to jump to the new
location. For example, if the above program were renumbered starting at 1000, the resulting program
would look like the following:

! 1000! LET X = 1
! 1010! IF X THEN 1040
! 1020! PRINT “BAD”
! 1030! END
! 1040! PRINT “GOOD”
! 1050! END

Because line numbers are not inherently meaningful, and because they are changed when RENUMBER
commands are given, it is suggested that you do not use line numbers in GOTO and related statement in
your programs if you do not need them. See the documentation for each statement for examples of how
to use text labels instead of line numbers.

JBasic Userʼs Guide!

15

Workspaces
A workspace is a collection of programs that are all loaded into the running JBasic application, and can be
executed with RUN, CALL, or other statements that run stored programs, verbs (programs that act line
language statements), or functions.

All the programs in a workspace are available at the same time; you don't need to specifically load and
save individual programs. Any changes you make to a program (such as discussed in the section on line
numbers) are immediately reflected in the program currently in memory.

A workspace can be saved to disk. This means that all the programs in the workspace that you have writ-
ten are stored into a single file on the disk. The default name for this file is "Workspace.jbasic" in your
home directory. (If you are running a multi-user version of JBasic, the default name will be different and
will include your username.) You save the current programs to disk using the SAVE WORKSPACE com-
mand.

When JBasic starts up, it will load the workspace file if it is found, so the programs you previously saved
are available for your use. You can use the LOAD command to load additional programs from saved work-
spaces or text files, which are added to the current workspace.

When you issue a SHOW PROGRAMS, SHOW VERBS, or SHOW FUNCTIONS command, you see a list of all
the programs of the requested type. If the program is one that you created (as opposed to being built-in to
JBasic), it will have an asterisk ("*") character next to the name. If you have changed the program since
the last time you started JBasic or saved the workspace, it will have a sharp ("#") character, telling you
that you will need to SAVE WORKSPACE to keep the changes you made.

Both the SAVE WORKSPACE and LOAD commands allow you to specify a different workspace name than
the default, if you wish to create more than one workspace. You might do this to maintain separate ver-
sions of your program, or to group programs by projects or other related activity.

Note that you can save individual programs (similar to the way other BASIC dialects work) by using the
SAVE command, which is different than SAVE WORKSPACE and saves only the current program to a text
file. The LOAD command can be used to read in either individual programs or workspaces interchangea-
bly. If the filename given in a SAVE WORKSPACE, SAVE, or LOAD command does not have an extension,
then “.jbasic” is assumed.

Constants
JBasic supports a wide variety of data types. Most are referred to as “scalar” types, which means they
contain a single value of a given type, such as an integer or a string. Some data types are “compound”
and are used to hold things like lists of values, and are discussed later. This section describes the most
fundamental scalar data types and how to enter values for each type.

The table below indicates the basic data types supported by JBasic:

Type Example Description

BOOLEAN true, false A value that can contain only the values true or false.

INTEGER 55, -108 An integer value with an optional sign, but no fractional com-
ponent.

JBasic Userʼs Guide!

16

Type Example Description

DOUBLE -3.8, 1.2E-8 A floating point value that can have a whole number and a
fractional component. The number can be expressed in expo-
nential notation as well, with a power-of-10 multiplier as shown
in the second example, which is the same as 0.0000000012.
Also note that the special value of a dot (“.”) represents an
arithmetic missing value, or “Not a Number”.

STRING “Score:\t103” A string containing zero or more characters. The string can
contain control characters when “escaped” with the back-slash
character. The example string has a tab character between the
colon and the digit “1”.

As shown in the example for a string, a string constant can include representations of characters such as
the \t for a tab character. The table below shows the characters that can be represented in a string this
way:

Value Name Example

\t tab “The total is:\t103”

\” quote “The word \”foo\” is what you seek.”

\n newline “First line\nsecond line”

\\ backslash “The \\ is used for control characters.

Variables
Nearly all programming languages have the concept of variables, which are ways of identifying a storage
location in the computerʼs memory that can contain data (numbers or text). The variable can be set to a
value, and the variableʼs value can be used in a statement or expression by naming the variable.

In JBasic, variables must be named with an identifier, which can be made up from letters, numbers, or the
"_" and "$" characters. The first character cannot be a number. Variable names are not case-sensitive;
there is no difference between the name "x" and the name "X".

Here are examples of valid variable names:

 !X! ! ! ! SYS$PROGRAMS

 !PLAN9!! ! ! MY_DATA

A variable can hold a single value (referred to as a "scalar" value), or it may hold a list of values in the
form of an array or record. Scalar values can be numbers, strings, or true/false values. An array or record
is a special variable that contains a list of values. See the sections for arrays or records later in this sec-
tion for more information about these data types.

JBasic Userʼs Guide!

17

JBasic handles the idea of a variableʼs data type in one of two different ways. The default mode is called
“dynamic types”. This means that a variable can contain data of different types over time. For example, a
variable ID might hold an integer value like 1105 at the start of a program, but a later operation might
store a string value like “user15” in the same variable. If your program needs to know what kind of value
is stored in a variable, the TYPE() function will return the type name of any variable or expression.

The second mode is called “static types.” In this mode, a variable can only hold a specific type of data,
usually based on the name of the variable. The last character (the “suffix”) of the variable name defines its
default type as shown in the following table.

Suffix Example Type Information

$ NAME$ Character string data

COUNT# Integer data

! DONE! Boolean data

A-Z SALARY Floating point data

For example, the variable ID$ would be a string variable because it ends in a dollar-sign (“$”) character. If
a program stores an integer in the variable ID$, it would first be converted to a string. Places where a
variable can only be numeric (such as the index of a FOR...NEXT loop) could not use a variable named
ID$.

Static types are usually defined a program-by-program basis. By default, dynamic typing is used, but
some programs that were originally written for other dialects of BASIC may require static types. You spec-
ify the way that variables are handled in each program by using the optional DEFINE(STATIC_TYPES)
clause in the PROGRAM, FUNCTION, or VERB statement.

You can also change the default mode for all new programs by using the SET STATIC_TYPES command.
You can restore the default with SET DYNAMIC_TYPES.

NOTE

The remaining examples in this guide assume the default setting of DYNAMIC_TYPES.

In many cases, you can print, assign, input, etc. a variable without concern for what type of data is stored
in the variable.. You cannot perform all mathematical operations on all data types; it makes no sense to
divide a string by number, for example. However, JBasic will automatically convert data types if possible,
so the expression "10"/5 results in the number 2.

Expressions
Expressions refer to sequences of JBasic code that are evaluated (calculated) to derive a result. Expres-
sions most often are performed on numeric values, but some involve string values as well. In general,
expressions can appear anywhere that a value must be calculated and used, but are not used to describe
where to store information.

JBasic Userʼs Guide!

18

! LET X = 3*X+5 !

In JBasic, the above statement is correct and valid, because the expression 3*X+5 is being used to cal-
culate what value is to be stored in the variable X.

! LET X+3 = Y

However, the statement above is not allowed because the LET statement requires that the left side of the
"=" be a variable reference and not an expression. The LET, INPUT, READ, and FOR statements all
have this limitation on operations that store into a variable. An expression can be used anywhere else in
the JBasic language where a numeric or string value is required.

Numeric expressions are those whose terms are all numeric, or will be converted to numbers automati-
cally. The operators that are used to perform calculations in a numeric expression are:

Operator Function

+ Add two numbers together

- Subtract two numbers

* Multiply two numbers

/ Divide two numbers

^ Raise first number to power of second number

% Remainder (modulo) of dividing two integer values

For example, consider the following simple segment of JBasic code:

! LET X = 3.5
 ! LET Y = 2
 ! PRINT X*Y

The result is calculated by multiplying the value of X (3.5) by the value of Y (2), and the result of the ex-
pression is output using the PRINT statement. The output would be the value 7.

Expressions follow an "order of precedence" just as they do in conventional mathematical operations.
Multiplication and division operations are done first, followed by addition and subtraction.

! PRINT 3 + Y * X

JBasic Userʼs Guide!

19

The above example will print the value 10, because the multiplication of X*Y is done before the value 3 is
added back in. You can use parenthesis to group things together to control the order of evaluation.

! PRINT (3+Y) * X

This will print the value 17.5, since the addition of Y and 3 will happen first, followed by the multiplication
by X. You can use more than one set of parenthesis, and they can be "nested" inside each other to control
the evaluation of complex expressions.

! PRINT ((1+3)*(5-2))/2 !

This results in the value 6 being printed. The inner parenthesis expressions are calculated first, then the
next-outermost and so on. The above expression is mathematically the same as the following examples.

! PRINT (4*3)/2

 which is the same as typing

! PRINT 12/2

The above examples all use numeric values. But you can express some kinds of operations using string
values as well. The string operators are shown in the following table.

Operator Function

|| Concatenation, which appends one string to another.

- Remove a string from another string, essentially deleting a portion of a string.

* Repeat a string value a given number of times, similar to the REPEAT() function.

For example, the statement

! print "Tom" || "Cole"

JBasic Userʼs Guide!

20

!

will print out the string “TomCole”. Note that there is no space between the items, they are concatenated
directly together. Here is an example of using subtraction to delete a string:

! print "Tom Cole" - "m C" !

This prints the value “Toole”, since the part that was subtracted has been deleted from the string. If you
attempt to delete a string that is not there ("Tom" - "Z") then the result is the first string without any
changes.

You can use the leading minus sign “-” character to indicate a negative value of an expression or a con-
stant value. For example,

! X = 33
! Y = -X
! Z = -”Tom”

In this example, the value of Y will be the negative number -33. You could express the constant directly in
the program as -33 as well. Additionally, you can negate a string (or have a negative string constant). In
this example, Z is equal to “moT” which is the string with the characters in reverse order.

You can use the multiplication operator to repeat a string by multiplying it by an integer value.

! PRINT “-”*80

This results in a line of eighty dashes being printed to the output. This only works if the second value is an
integer; attempts to use other data types results in all values being converted to numbers and the expres-
sion being evaluated as a standard arithmetic equation rather than as a shortcut for the REPEAT() func-
tion.

For comparison operations there are a set of relational operators that compare two values and result in a
true or false value.

Operator Function

= True if the left and right sides are equal. For scalar values, they must be the same
value, after any required type coercion occurs. For record values they must have
identical member names and values. For arrays, they must be identical in length
and values.

<> The inverse of the “=” operator, this is true if the values are not equal.

JBasic Userʼs Guide!

21

Operator Function

< True if the left side is less than the right side. This is is not valid for missing (NaN)
scalar values.

<= True if the left side is less than or equal to the right side. Not valid for NaNs.

> True if the left side is greater than the right side. Not valid for NaNs.

>= True if the left side is greater than or equal to the right side. Not valid for NaNs.

You can combine the relational expressions with Boolean logical operators to express ideas like “if the
value of X is greater than or equal to 100 and the value of Y is not zero then…” This would be expressed
as the following:

! IF X >= 100 AND Y <> 0 THEN ...

Here is a table describing the boolean operations:

Operator Meaning

AND Both the left and right sides of the operator must be true for
the entire expression to be true. If either or both side is
false, then the expression is false.

OR Either the left and right sides of the operator must be true
for the entire expression to be true. If both sides are
false, then the expression is false.

NOT This is a “unary” operator that goes before an expression. It
inverts the result of the expression, such that if what follows it
is true then the result is false, and vice versa.

Increment and Decrement Operators
An expression can contain a reference to a simple numeric variable (an INTEGER or DOUBLE) that also
changes the value of the variable, using increment and decrement operators. For example,

! X = 33
! Y = ++X * 2

JBasic Userʼs Guide!

22

In this example, the variable X will be incremented before it is used in the expression. The result of the
assignment statement is to set the variable X to the value 34, and the variable Y to the value 68. The in-
crement operation occurs before the value is used in the expression. You can use the decrement opera-
tor (“--”) instead of the increment operator (“++”) to subtract one from the value before using it in the ex-
pression. This form is referred to as a pre-increment or pre-decrement operation because the addition or
subtraction of 1 is performed before the variable is used in the remainder of the expression.

You can also cause the value to be incremented or decremented after it is used in the expression. For
example,

! X = 10
! Y = X-- / 2

The result is that the variable X will contain the value 9, and the variable Y will contain the value 5. This is
because the current value of the variable X was used in the division operation, and then the value was
decremented after division operation; resulting in 10/2 as the value for Y. This is referred to as a post-
increment or post-decrement operation since the value is modified after it is used in the expression.

Conditional Expressions
You can create an expression that has a conditional element; that is, one or more elements of the expres-
sion are dependent on another value (typically a variable or Boolean expression). For example,

! MSG = STRING(COUNT) || “ STONE” || IF COUNT <> 1 THEN “S” ELSE “”

In this example, the string expression will add an “S” to the end of the word “STONE” if the value of COUNT
is not equal to 1. If the value of COUNT is equal to 1, then an empty string is added. The IF clause is
evaluated and either the THEN or ELSE sub-expression is used in the enclosing expression. There must
always be an ELSE clause so there are always two possible values depending on whether the expression
is true or false.

A conditional expression can be used anywhere an expression is permitted.

Arrays
An array is a list of values. The values can be of any type - they can be numbers, strings, or even other
arrays. In some cases the array can be referenced just by name (such as when assigning it to another
variable). You can also reference the individual elements of the array using an array subscript notation:

! X = MY_DATA[3]

JBasic Userʼs Guide!

23

This references the third item in the MY_DATA list of values; the value in that array element is assigned to
the variable X. You can store items in an array the same way:

 MY_NAMES[5] = "Tony"

If the variable MY_NAMES is not already an array, the previous value is discarded and the variable re-
typed as an array. If you store an array element at a position that does not exist, the array automatically
extends by adding array elements containing an integer zero.

You can find out how many elements are in the array by using the LENGTH() function, as in:

 N = LENGTH(MY_NAMES)

Note that the LENGTH function is operating on the array variable, not one of its elements. If you had used
the expression LENGTH(MY_NAMES[5]), then you would instead get the length of the fifth element in the
array.

If you print an array element, it prints just as any other scalar value. You can also print the entire array, as
in the following example.

 X[1] = "Tom"
 X[2] = "Sue"
 PRINT X

The output is ["Tom", "Sue"], which shows an array (defined by the brackets) with two items, each
of which is a string. You can create array constants like this yourself, as in the following example.

 PERSON = ["Tom", 35]

This creates an array called PERSON with two member elements. The first element is PERSON[1] and is a
string "Tom". The second element is PERSON[2] and is the number 35.

You can use arrays in the addition "+" operation if the first item is an array. The second item is added to
the array by making a new entry in the array. If the second item is also an array, all the elements of the
second array are added to the end of the first array. For example,

 X = [3, 5]
 Y = ["Tom", 35]
 Z = X + Y
 Q = X + 22

JBasic Userʼs Guide!

24

In this case, Z will be [3, 5, "Tom", 35]. The value of Q will be [3, 5, 22].

Similarly, subtraction is used to locate and remove elements from an array (similar to using the subtrac-
tion operator on strings). The value to be subtracted can be a scalar item or another array. In either case,
all elements in the value subtracted will be removed from the array being subtracted from.

! X = [33, “Tom”, 5, “a”, 5]
! Y = X - [“Tom”, 5]
! PRINT Y

The result of the array subtraction is that the array Y will contain [33, “a”]. Note that the subtraction
removes all instances of the values subtracted. The original array contained two instances of the value 5,
both of which were removed because 5 was in the subtrahend.

!

 X = [101, 33.5, “Bob”, true, 32]
! Y = X[2..4]

A subset of an array can be referenced using the ellipsis “..” operator. In this example, the array Y is set to
the elements of X from 2 to 4, inclusive. So the array Y contains [33.5, “Bob”, true]. The range
elements can be expressions used to calculate the beginning and ending elements to include in the re-
sulting array subset. The ellipsis operator cannot be used on the left side of an assignment operation.

You can also specify the elements of an array using a second array of integer values containing selectors:

! X = [“Tom”, “Mary”, “Tony”, “Sue”, “Dave”, “Pam”]
! Y = [1, 2, 4, 5]
! Z = X[Y]

In this instance, the resulting array Z will contains [“Tom”, “Mary”, “Sue”, “Dave”] because
those are the elements of X that are identified by the selector values in the array Y. Similarly, the sub-
script for the array can be an array of boolean values which act as indicators to say if the row is to be se-
lected or not.

! X = [“Tom”, “Mary”, “Tony”, “Sue”, “Dave”, “Pam”]
! Y = [true, false, true, true, false, true]
! Z = X[Y]

JBasic Userʼs Guide!

25

The resulting array is [“Tom”, “Tony”, “Sue”, “Pam”] because those corresponding elements
where true in the indicator array. This can be particularly helpful when there are a number of conditions
that must be evaluated to determine if an array element (in particular an array of records) is to be se-
lected; the indicator can be set by he analytical or selection process and then a single reference to the
indicator array will dereference the selected rows.

You can use the special operator IN to detect if a value is found in an array. For example,

! X = [“Tom”, “Mary”, “Tony”, “Sue”]
! ! ...
! IF “Mary” IN X THEN GOTO FOUND

In this example, the IN operator is used to determine if the value “Mary” is found in the array X, and if it
is, then control is transferred to the label FOUND. The same basic functionality is possible by using the
LOCATE() function and testing for a non-zero result.

Records
A record is another kind of list of values. The values can be of any type - they can be numbers, strings,
arrays, or other records. Unlike an array where the elements are always addressed by their position in the
array, a record identifies its members by the member name. A record can have as many members as you
wish, but each must have a unique member name. Member names are identifiers, and therefore follow
the same syntax rules as variable names.

In some cases the record can be referenced just by name (such as when assigning it to another variable).
You can also reference the individual elements of the record using the member name of the record.

 X = MY_DATA.AGE

This references the element of the record whose member name is AGE. The value in that record element
is assigned to the variable X. You can store items in a record the same way:

 MY_DATA.NAME = "Tony"

If the variable MY_DATA is not already a record, the previous value is discarded and the variable re-typed
as a record. If you store a record element in a member that does not exist, the member is automatically
added.

You can find out what the names of the members of a record are by using the MEMBERS() function:

 N = MEMBERS(MY_NAMES)

JBasic Userʼs Guide!

26

This returns an array of strings. Each element in the array corresponds to a member name in the record.
You can use one of these member names to get a value from a member indirectly using the MEMBER()
function. For example,

! N = MEMBERS(MY_NAMES)
! X = MEMBER(MY_DATA, N[1])

If the first member of the record is named “AGE”, then the above example is the same as accessing
MY_DATA.AGE, but allows you to determine the member name as part of your program logic.

! X = MY_DATA[“AGE”]

Similarly, you can use a modified form of array syntax to access a member with a value that has been
calculated by program logic. In this mode, the array subscript value must be a string, and that string is
assumed to be a member name.

If you print a record member, it prints just as any other scalar value. You can also print the entire record,
as in the following example.

 X.NAME = "Sue"
 X.AGE = 3
 PRINT X

The output is { AGE: 3, NAME: "Sue" }, which shows a record (defined by the curly braces) with
two items. The members are reported in alphabetical order regardless of the order in which they were
created. You can define record constants like this yourself, as in:

 PERSON = { NAME: "Tom", AGE: 35 }

This creates an array called PERSON with two members. The first member is PERSON.NAME and is a string
"Tom". The second member is PERSON.AGE and is the number 35.

Records cannot be used in arithmetic operations. However, the members of a record can be used as
terms in an expression.

 X = PERSON.AGE + 5

JBasic Userʼs Guide!

27

While not being able to participate in arithmetic operations, a record can have items added to it or deleted
from it using addition and subtraction operators as in the following examples:

 X = { NAME: “Tom”, AGE: 48 }
 Y = X + { MALE: TRUE }
 Z = Y - “NAME”

In this example, the record Y will contain { NAME: “Tom”, AGE: 48, MALE: TRUE } because the
“+” operator concatenates the records together. If the record being added contains fields with the same
name as the record being added to, the new field values replaced the old ones. Additionally, the record Z
contains { AGE: 48, MALE: TRUE } because the NAME field has been deleted from the record. This
requires that the value being subtracted be a string, which is a field name. It is a runtime error to attempt
to delete a field that does not exist.

Record members can be arrays or records themselves. Additionally, you can create arrays of records.

 FAMILY = [{ NAME: "Tom", AGE: 35 }, { NAME: "Sue", AGE: 3 }]
 X = FAMILY[1]
 Y = X.NAME

In this case, Y will have the value "Tom", since that is the NAME member from the first record in the array
called FAMILY. You can create compound references of array and record names, as in:

 FAMILY = [{ NAME: "Tom", AGE: 35 }, { NAME: "Sue", AGE: 3 }]
 Y = FAMILY[1].NAME

This is functionally equivalent to the example above, but the array dereference of element 1 is combined
with the member reference NAME to identify the value “Tom”.

You can explicitly specify the type of a member of a record in a constant expression by placing the type
name before the field name, as in:

 LET X = { DOUBLE Y: 55, BOOLEAN Z: 1 }

This results in a double value for X.Y even though the constant value is an integer.

Because records can be created dynamically by subroutines, etc. the calling code may not always know
which members are present. The MEMBERS() function can be used to determine the names of each
member by returning an array with string names that contain the members. The IN() operator can also
be used for this purpose, as show in the following example:

JBasic Userʼs Guide!

28

! X = URL(“http://apple.com/store?id=1035&item=iPod”)
! IF “ITEM” IN (X.QUERY) THEN CALL CHECK_ITEM(X.QUERY.ITEM)

In this example, the URL() function is used to parse an URL string. Since the contents of the string can
be based on arbitrary input, the record identified by X.QUERY in the above example will contain members
for each query item in the string. The second line of code tests to see if there is a record member called
ITEM in the record, and if so uses that as a parameter to a subroutine call. Note that calling the function
directly with X.QUERY.ITEM would result in a runtime error if the ITEM member did not exist, so the
above statement prevents the error by conditionally calling only when the member is present.

Tables
A TABLE is a special kind of two-dimensional array in JBasic used to store data in a fashion similar to a
database table. The TABLE is functionally most like an array of records where each record must have the
same members and data types.

You create a TABLE using the TABLE statement, which creates a new data value in the current symbol
table. The TABLE statement defines the name of the table and one or more members with a specific data
type.

 TABLE EDATA AS INTEGER ID, STRING FIRST, STRING LAST

This creates a table of employee data containing an employee ID number and a first and last employee
name. You can add records to the table in two ways: as records or as arrays.

 EDATA = EDATA + [101, "Bob", "Smith"]
 EDATA = EDATA + [LAST: "Jones", FIRST: "Dave", ID:102]

In the first example, an array is being added. In this case, the array members must be in the same order
as was declared in the TABLE statement. In the second case, a record is being added and the member
names must exactly match the fields declared in the TABLE statement. In both cases, the data will be
converted to the data type declared in the TABLE statement.

You can access a TABLE row as an array subscript. For example,

 EMP = EDATA[1]

This sets EMP to { FIRST: "BOB", ID:101, LAST: "Smith" } which is a record describing the
individual row. You can of course reference a specific member using member notation:

JBasic Userʼs Guide!

29

http://apple.com/store?id=1035&item=iPod
http://apple.com/store?id=1035&item=iPod

 LAST_NAME = EDATA[2].LAST

which sets LAST_NAME to the string "Jones". Because a TABLE is meant to be used similarly to data-
base table, you can also join two tables together with a common member value. Assume the above table
EMPLOYEES already exists, and we create a new one with payroll data:

 TABLE PAY AS INTEGER ID, DOUBLE RATE
 PAY = PAY + [102, 10.50]
 PAY = PAY + [101, 7.25]

This creates a table with just an employee ID and a floating point value used to describe a pay rate. You
might wish to join these items together to create a view of the data that matches pay rates to employees.
You can use the JOIN() function:

 D = JOIN(EDATA, PAY, "ID")

This creates a new table D which contains the fields ID, LAST, FIRST, and RATE. The rows from the PAY
are matched to the rows from EDATA using the field ID; when a row in one table has a matching row in
the second table where the ID field is the same, a new row is created in the output table merging all the
fields of both tables for that row.

If there is no match, then no new row is created, so if there was an employee ID 103 in the EDATA data
but not in the PAY data, then no row for that employee would exist in the new table D.

You can sort the data in a table using the SORT statement with a BY clause that describes the column to
sort by. You can also use the SORT() function on a table,

 D = SORT(D, "LAST")

This sorts the data based on the LAST name field. You can also subset the data with a WHERE() clause
in an expression, which can follow any table expression:

 H = D WHERE(RATE >= 10)

This creates a new table that contains the rows of the table D where the RATE field is greater than or
equal to 10.0. Rows that do not meet this criteria will not be included in the HIGH_PAID table. You can
combine these expressions together to create complex data operations such as

JBasic Userʼs Guide!

30

 H = SORT(JOIN(EDATA, PAY, "ID") WHERE(RATE >=10), "LAST")

This creates a table merging the pay and employee data, selecting only those with a pay rate greater than
10.00 and then sorting the result by the last name field. You can select a subset of the columns of a ta-
ble using the SELECT() function, which accepts a table name and a list of column names:

 F = SELECT(H, "ID", "LAST")

An error is signaled if a field is named that does not exist. The result of the SELECT() function is a new
table with just the named columns. You can use the WHERE operator as well, such as:

 F = SELECT(H WHERE(RATE>=10), "ID", "LAST")

This selects the ID and last name columns from the subset of rows where the RATE is greater-than or
equal-to 10. The WHERE operator can be put on the source table as shown above or applied to the result
of the SELECT, but it is more efficient to use WHERE on the inner-most table of an operation to reduce the
number of rows that are copies/duplicated as part of the query expression.

When you PRINT an entire table, the data is formatted for readability with column headings, etc. If you
are writing an entire table to a disk file, you should use XML() format so the column definitions and rows
are properly encoded and can be reconstructed into a TABLE using the XMLPARSE() function when the
data is read from a file.

You can also use the INPUT ROW OF statement (an extension to the INPUT statement) to read a row of
data from a file or the console.

Global Variables
Variables are stored in a special list called the symbol table, which is just a list of the variables that are
known to JBasic and what value they hold. Each running program has a symbol table, which contains the
symbols created while that program was running. When the program stops running, the symbol table is
discarded and those variables no longer have any value.

Some variables reside in a “global” symbol table, which is a table that is created when the JBasic session
is started, and maintain their value regardless of whether a program is running or not. As such, values in
this table are available to any program. These variables continue to have value even after a program
stops running, and can be examined by a running program or by statements you type in to the JBasic
command line.

Many of the variables in the global symbol table are created automatically as part of JBasic initialization.
They can be used to check the state of the environment that a JBasic program is running in, or can be
used to control certain aspects of how JBasic works. You use the command SHOW GLOBAL SYMBOLS to
see the name and current value of all the global symbols.

JBasic Userʼs Guide!

31

Here are some useful global variables and what they are contain:

Name Meaning

SYS$ARGS The list of command line arguments that were given to
JBasic when it was first started up.

SYS$HOME The userʼs home directory on the computer. This is a location
that can be used to read or write files.

SYS$INPUT_PROMPT The prompt string used by the INPUT statement if no prompt
string is given. Defaults to “?”.

SYS$LANGUAGE The language that the current user wishes to see messages,
etc. formatted in. “EN” means English.

SYS$STATUS The error code of the last error message printed.

SYS$PROGRAMS An array that has the name of each program object loaded in
memory currently.

SYS$PROMPT The command prompt. Defaults to “BASIC>”.

SYS$USER The username of the current user of JBasic.

About $MODE
JBasic allows a single program module to be used for multiple purposes; as a program that is executed
as a RUN command, as a program that is called as a function, as an object-oriented method call, etc. The
local variable $MODE is always created on behalf of the running program code to reflect how the program
was invoked. Additionally, the variable $THIS contains the name of the current program, and $PARENT
tells what program was active when the current program was invoked or called, and the array $ARGS will
always contain the argument list to the current program as passed in by the caller. The possible values for
the $MODE variable are outlined in this table:

Value Description

“CALL” The current program was invoked with the CALL statement. There
may be arguments, and a return value may be given.

“FUNCTION” The current program was invoked as a function in an expression.
There may be arguments, and a return value must be given.

“METHOD” The current program was invoked as a method for an object.
There may be arguments, and a return value may be given. The
local variable THIS identifies the object being manipulated.

JBasic Userʼs Guide!

32

Value Description

“RUN” The current program was invoked with a RUN command. There
will be no arguments other than those with a default value, and no
return value is permitted.

“VERB” The current program is a user-written verb, executed because the
verb was given as a command.

Data Files
JBasic, like most dialects of the BASIC language, allows user programs to manipulate files. In the most
common case, files refer to physical data files on your computerʼs disk storage. They can also refer to
other representations of data that behave like files, such as the information in a database. Files are ac-
cessed (and created, if necessary) using the OPEN statement, and when the file is no longer in use, the
CLOSE statement terminates processing of the data that is in the file, residing on the computerʼs disk. The
KILL statement can be used to delete the physical file if it is no longer needed.

Data files can contain text data (represented in human-readable characters) and be manipulated with
INPUT, LINE INPUT, and PRINT statements. Files can alternatively contain binary data (an representa-
tion of information in a format that is native to the computer) and be manipulated with GET, PUT, and
SEEK statements.

Program statements that manipulate the contents of a file use a file reference to indicate which file they
are operating on. The file reference is like a variable identifier, except that it indicates an open file rather
than a storage location in memory.

In JBasic, the preferred way to specify a file reference is to use the keyword FILE followed by an identi-
fier of your choice that will be used to refer to the file as long as it is open. For example, the following pro-
gram creates a file called “names.txt” on the disk, and uses the file reference NAME_DATA to refer to the
file in the running program:

! OPEN “names.txt” FOR OUTPUT AS FILE NAME_DATA
! PRINT FILE NAME_DATA, “Tom”
! PRINT FILE NAME_DATA, “Deb”
! CLOSE FILE NAME_DATA

In this example, the first statement identifies the file name on the disk (“names.txt”), the mode of the file
(OUTPUT) and the file reference (FILE NAME_DATA). In place of NAME_DATA, you could use any valid
identifier name that is meaningful to you. While the file is open, the symbol NAME_DATA is reserved to
mean the open file. Once the CLOSE statement is executed, the symbol NAME_DATA no longer has mean-
ing until it is used for another purpose (to identify a file or variable).

For compatibility with other dialects of the BASIC language, you can also make a file reference that is an
integer number. This is the way that some of the oldest versions of BASIC referenced files. Here is the
same sample code as above, but using the numeric format of a file reference to indicate which file is be-
ing operated upon:

JBasic Userʼs Guide!

33

! OPEN “names.txt” FOR OUTPUT AS #3
! PRINT #3, “Tom”
! PRINT #3, “Deb”
! CLOSE #3

The sharp sign (#) is used to indicate a numeric file reference. The same integer number must be used
for all references to the file while it is opened. No two files can have the same numeric value at the same
time. However, any valid positive integer can be used as the file number (some older versions of BASIC
had a limit on the numbers that could be used, but this limitation does not exist in JBasic).

See the documentation later in this guide describing the OPEN statement for more information on the use
of files, file modes, and the other statements that can manipulate a file. The SHOW FILES command will
list the files that are open at any given time during the JBasic session.

Database Access
A JBasic program can access external database tables as if they were files. This is done using external
program elements called “drivers” to access data stored in the external database. JBasic can use drivers
that support the JDBC standards (a set of definitions and requirements about how programs can access
external databases) to connect to a database, send a query or request for data, and get results back to
the running JBasic program.

If you do not need to access databases or are not interested in the mechanism by which JBasic and the
Java runtime environment use JDBC, you can skip this section.

To be able to use a database with JBasic, you must have access to a database managed by a database
server, such as Firebird, MySQL, or Oracle. Additionally you must have a JDBC driver jar file that contains
the code that tells JBasic how to access the driver. This jar file is often supplied by the database vendor
or can sometimes be found a open source softwares at repository sites like SourceForge.net.

Once you have acquired the driver file, you will need to make sure that it is in your class path. This means
that it is pointed to by an environment variable like CLASSPATH or was specified explicitly when you ran
JBasic. The provider of the driver file will usually give you examples of how to specify the location of the
driver file.

When your JBasic program accesses the database, it must declare that it will be using the JDBC driver(s)
that you have acquired. You do this by creating an array variable called SYS$DRIVERS which contains an
array of strings. Each string is the name of the JDBC class, which is located in the jar file. For example,

! SYS$DRIVERS = [“org.firebirdsql.jdbc.FBDriver”]

This defines the JayBird driver for accessing Firebird databases. The actual driver class name will be dif-
ferent for other database drivers.

JBasic Userʼs Guide!

34

In addition to the driver definition in SYS$DRIVERS, you must create a data source name (DSN) record
variable that describes the database you are planning to access. This is a JBasic record variable which
contains specific fields that tell how to access the database. These fields are:

Field Description

DRIVER The driver name, such as “firebirdsql”

SERVER The computer where the database lives, or “localhost” if it is on
your own computer.

PATH The database-specific path that defines which database on the
server is to be used.

USER The username used to authenticate the userʼs access to the data-
base. If not provided, the current userʼs login name is used.

PASSWORD The password used to authenticate to the database.

These fields are all specified in a record variable you create, and used to open a database file using the
OPEN statement as shown in the following example.

! SYS$DRIVERS = [“org.firebirdsql.jdbc.FBDriver”]

! TESTDB.DRIVER = “firebirdsql”
! TESTDB.SERVER = “localhost”
! TESTDB.PATH = “c:\mydatabases\test.fdb”
! TESTDB.USER = “sysdba”
! TESTDB.PASSWORD = “masterkey”

! REQUEST = “SELECT * FROM FAMILY ORDER BY FIRST”
! OPEN DATABASE TESTDB AS MYDB QUERY REQUEST

LOOP:
! IF EOF(MYDB) THEN GOTO DONE
! GET MYDB AS FAMILY
! PRINT FAMILY.NAME
! GOTO LOOP

DONE:

! CLOSE MYDB

This example defines the name of the driver class in the SYS$DRIVERS array. It then creates a record
called TESTDB which contains the required fields to define the database to access, and the user creden-
tials (username and password) passed to the database.

It also defines a query string - expressed in the standard query language SQL - and stores it in a string
variable called REQUEST.

JBasic Userʼs Guide!

35

Next, the OPEN statement is used to identify the database to access, the name of the file identifier to use
in subsequent statements, and the QUERY clause which passes a string or variable containing the query
expression.

A programming loop is specified which uses the EOF() function to determine if there is more data to be
returned from the database query. If all data from the most recent query has been read then EOF() is true
and the database access is terminated using the CLOSE statement. Otherwise, the GET statement is used
to access a record in the database result. This record is stored in the variable FAMILY, and the field NAME
from that database is printed. Note that the fields in the record FAMILY are defined by whatever the data-
base query result selects as the result, so the fact that this program prints the field NAME depends on the
programmer knowing that there is a field NAME in the table FAMILY in the database.

The query is defined by either the QUERY clause in the OPEN statement, or by subsequent PRINT opera-
tions to the database file. In either case, the text of the query is available in the file variable in a field
named QUERY.

Interrupting Execution
It is possible to write a program in JBasic that does not end. For example, consider the following short
program:

 PROGRAM ENDLESS
 LOOP: GOTO LOOP

The program named ENDLESS will run forever, because it has been directed to transfer control to the
GOTO statement over and over again.

You can stop an endless loop (or any long-running JBasic program) by using the console interrupt func-
tion. Normally this is control-C on DOS, Mac OS X, and VMS consoles. On Unix systems, this usually
defined by the stty -INTR key definition. When you press this key during a running program, a signal of
INTERRUPT is generated for the next statement to execute. This signal causes the program to terminate
and return to the command prompt with an error message:

 BASIC> run
 ^C
 In program ENDLESS; interrupted by user
 BASIC>

Because the interrupt is a signal like any other, you can use an ON statement (documented later in this
guide) to catch the interrupt request and execute a GOTO statement to process the interrupt in a fashion
appropriate to your program, such as saving any data being processed currently, etc.

Please note that the interrupt function will not work when JBasic is being run within Eclipse, because
Eclipse does not have the ability to send the native interrupt signal. In this case, just stop the JBasic
thread using the "Terminate" button. Additionally, if the -nointerrupt flag was specified on the command
line invoking JBasic, the interrupt function is disabled.

JBasic Userʼs Guide!

36

Debugging
A very simple program can often run correctly the first time, or with little effort to identify where an error in
logic or simple typographic errors led to an unwanted outcome. But more complex programs are hard to
evaluate just by inspection, and often benefit from being able to “watch them run”. This is where a debug-
ger comes in handy. A debugger is a mechanism that allows the user to have a measure of control over
the execution of a program, inspect the state of the program and variables as it runs, and detect unex-
pected execution paths or variable values.

JBasic includes a debugging facility. This facility allows you to trace execution of a program on a
statement-by-statement basis, inspect variables, and set breakpoints, which are conditions in which the
program temporarily suspends execution so you can examine information about its state.

A program is “debugged” by running it with the DEBUG keyword in the RUN command, as in the following
example:

! BASIC> run debug pi_test
! Step to PI_TEST 140,
 LET OLDPI = 0
! DBG>

This runs the program PI_TEST under control of the debugger. The debugger accepts command like the
regular console mode, but with a prompt string of “DBG>”.

The debugger stops just before executing the first non-comment statement in the program, at line 140 in
the above example. That is, at the prompt above, the LET statement has not been executed yet.

You can use a LIST command to see the program, or PRINT a variable to see its value. You can even
use a LET command to assign a new value to a variable before the next statement is executed.

You use the STEP command to execute a single statement. The STEP command causes the statement at
line 140 to be executed, and then a new statement is ready for execution:

! DBG> step
! Step to PI_TEST 150,
 FOR I = 1 TO 150
! DBG>

At this point, the value of OLDPI as been set to zero (the operation of the statement at line 140) and the
program is ready to execute the beginning of the FOR loop that starts on line 150. The STEP command
optionally accepts a number which indicates the number of statements to step before returning to the de-
bugger. As a shortcut, you can just press return at the debugger command prompt to step a single line.
The STEP command can also be used to control stepping into a function call or program call, or continu-
ing until the called program returns. You can use the RESUME command to resume normal execution of
the program. When you issue a RESUME command, execution continues until the program ends normally,
or a breakpoint is encountered.

JBasic Userʼs Guide!

37

The BREAK command is used to set a breakpoint, which is a condition under which the program suspends
execution and allows debugger commands to be issued. Breakpoints can be based on a program location
(“stop at line 210”) or be based on a condition (“stop when variable I is greater than 10”). For example,

! DBG> BREAK WHEN I = 15
! DBG> RESUME

The above command, when executed in the PI_TEST program, would resume execution of the program
until the loop index variable I was equal to 15. At that point, the program would suspend execution and
allow more debugger commands to be issued. See the documentation on the BREAK command for more
information on how to create breakpoints, list the active breakpoints, and remove breakpoints once you
no longer need them.

The SHOW CALLS command can be used to display the current “call stack.” That is, when one program
calls a second program, both are active but only one is running at any given time. So when PROGRAM ABC
calls PROGRAM BAR, which in turn invokes FUNCTION FOO, then there is a call stack representing who has
called whom.

The information presented includes the method that each “stack frame” was invoked, by displaying the
$MODE variable for each frame. It also shows the name of the program at each frame, and the program
statement that is currently being executed (which, for frames other than the first, will show the statement
or expression that caused the next-lowest-numbered frame to be invoked). For example,

 DBG> show calls
 1: FUNCTION FOO 210 LET OLDPI = 0
 2: CALL BAR 140 LET XPI = FOO()
 3: RUN ABC 190 CALL BAR(I) RETURNS X

 3 stack frames

 DBG>

This shows that program FOO is executing at line 210. It was called from program BAR by a statement on
line 140. And that program in turn was called by program ABC from line 190.

Threads
It is possible to write a program that executes more than one subroutine at a time. That is, imagine exe-
cuting a CALL statement to run a subroutine called TASK1 and second CALL that runs TASK2. Instead of
waiting for TASK1 to complete, the program continued immediately and invoked TASK2 as well. Each of
these subroutines execute essentially at the same time.

This can be valuable in a couple of cases. If your computer has two or more processors in it (sometimes
called Symmetric Multiprocessor or Multi-Core computers), then both programs actually run at the same
time, and complex calculations that can be divided among more than one subroutine can complete faster
by running simultaneously. Additionally, sometimes one routine must do work that waits for external
events like user input, but the second routine can usefully do work anyway while the first routine waits.

JBasic Userʼs Guide!

38

In each of these cases, JBasic can be told to invoke a subroutine on a thread. A thread is a term indicat-
ing a context for executing code. In practice, each thread is like its own instance of JBasic running inde-
pendently. Mechanisms are provided to allow the threads to communicate with each other and determine
their status.

Programming with threads should not be undertaken lightly, there can be complex and occasionally sur-
prising relationships between two or more subroutines running independently, especially since there is no
direct way to control which of the threads is running at any given time, and how fast each thread com-
pletes it work.

To create threads, we add the AS THREAD clause on a CALL statement to invoke a program.

! CALL TASK1(EMPID, 100) AS THREAD
! CALL TASK2(EMPID, 105) AS THREAD

! SHOW THREADS

This sample starts the program TASK1 as a thread, passing it parameters. It is important to note that the
parameters are processed in the context of the program that makes the CALL. So it doesnʼt matter if EM-
PID has a value in another thread, the value in the currently running program is the one that is used to
pass to the new thread(s) as they are created. The SHOW THREADS statement will list the active and com-
pleted threads, and show their final SYS$STATUS value if they have completed execution.

In order for threads to communicate with each other, they can access a special file type called a QUEUE.
This is created the first time it is accessed by any thread (including the main thread that started JBasic in
the first place), and is deleted when all threads have closed the file. The queue acts like a message pass-
ing mechanism. Any thread can PRINT a line of text to the file and it is added to the queue. Additionally,
any thread can LINE INPUT from the file and receive the oldest item in the queueʼs list. And the EOF()
function can be used to see if there is currently anything in the queue. If a thread executes a LINE INPUT
statement for a queue and there is nothing in the queue, then that thread waits until another thread puts
data into the queue. If multiple threads access the same queue and perform LINE INPUT operations,
there is no way to guarantee which thread will get the next item in the queue. Queues are stored in mem-
ory; when the JBasic console program terminates, all remaining data in queues is lost.

! OPEN QUEUE “MSGS” AS F
! CALL TASK1(“MSGS”) AS THREAD(T1)
! PRINT FILE F, “Here is some text”
! CLOSE F

! PROGRAM TASK1(QNAME)
! OPEN QUEUE QNAME AS Q
! LINE INPUT Q, TXT
! PRINT “The message is: “; TXT
! CLOSE Q
! RETURN

JBasic Userʼs Guide!

39

The above example shows a main program and a second program used as a thread. The main program
creates a queue by being the first to reference the queue. Queues are identified by a name, which is not
case-sensitive. It starts the thread and passes the name of the queue that will be used to communicate
with this thread. This example also shows that you can optionally specify a variable (T1 in this case) that
receives the name of the newly-created thread.

The thread starts running almost immediately, and opens the same queue. It then performs a LINE
INPUT operation on that queue. If the main program has not yet put anything in the queue, TASK1 will
wait until there is data in the queue.

Meanwhile, the main thread continues running, and executes a PRINT operation to store a text message
in the queue. When the TASK1 thread receives the message, then it will print it. Meanwhile, the main pro-
gram continues on its way and closes the file. Finally, the thread will also close the queue reference,
which causes the queue to be deleted. You can use the SHOW QUEUES command to see the active
queues that are in existence at any one time.

It is critical to note that while the above description narrates approximately what happens between the
main program and the thread it creates, the order of statements executed by the main program compared
to the statements in the thread is unpredictable, so you cannot write a program that assumes that a
thread is at a specific line in the program unless you use a queue to suspend its execution while it waits
for input.

In addition to using queues to manage information flow between threads, you can also create locks which
protect critical regions of code that must not interfere with potentially concurrent execution by other
threads. See the help on the LOCK statement for an example of using locks to protect threads.

Java Objects
You can directly manipulate Java objects from within JBasic, with some limitations. This is intended to
support interoperability with other elements of a larger Java software architecture, such as using JBasic
as a scripting agent to control interactions between other objects.

Java objects look a lot like a RECORD to JBasic, but have a few additional special properties and some
limitations. Java objects are created in JBasic in one of three ways. First, a JBasic program can create a
new instance of a Java object with the NEW() function. Secondly, a program that is using JBasic as an
embedded language processor can store Java objects in a JBasic global variable via a method call to
JBasic. Finally, external statements or functions that are executed within JBasic can create new JBasic
values from any arbitrary Java object. Of these three means, only the first is documented here as it is the
only mechanism done directly with the JBasic language.

To create an instance of a new object, use the NEW() function with either a string containing the fully
qualified class name, or with another previously-created Java object whose class is used to create the
new object. For example,

 ! MYSTRING = NEW("java.lang.StringBuffer")

Note that the class name must be in mixed case, and must exactly match a class name visible to the Java
class loader. This means you can't arbitrarily name classes that are not included in the Java CLASSPATH
for JBasic.

JBasic Userʼs Guide!

40

In the above example, a Java StringBuffer object is created. The StringBuffer class as defined in
the Java class structure also accepts constructors with parameters. You can pass parameters to NEW().

 ! MYSTRING = NEW("java.lang.StringBuffer", “Heading1”)

 In this example, the constructor parameter is a string, which becomes the initial value of the string buffer.
The code above is similar to StringBuffer myString = new StringBuffer(“Heading1”);

Note that when parameters are used with the NEW() function, the data types of the parameters must
match a valid constructor for the class of object you are creating.

The above example gives a complete Class specification for the StringBuffer class. You can define a list
of packages to search automatically when a partial class path is given, using the SET PACKAGE com-
mand. For example, consider the following example code:

 ! SET PACKAGE=”java.lang”
! MYSTRING = NEW("StringBuffer")

In this case, the class given in the NEW() function is a partial class designation. The list of all packages
that have been defined with the SET PACKAGE command are used to search for the full class definition.
Packages are added to the search list with SET PACKAGE and removed with SET NOPACKAGE. You can
also add packages to the list using the Java addPackage() method of a JBasic session object if you are
using JBasic in an embedded mode. The list of packages are always visible in the array SYS$PACKAGES
which is a read-only system variable.

You can call methods for Java objects in two ways, via the CALL statement for methods that do not return
a value, or via method function in an expression.

The first example is demonstrated with this call to the append() method of the StringBuffer class. In
this case, two strings are being appended to the buffer:

! ! CALL MYSTRING->APPEND("This &")

 ! CALL MYSTRING->APPEND(" that")

Note that the actual Java method name is append but the name we give is not case-sensitive; JBasic
converts all identifiers to uppercase automatically. Because of this, you cannot call a method that has an
ambiguous name if case-sensitivity is not considered. That is, in Java a method of isMyField() and
isMYField() are two different methods, but ambiguous in JBasic. Such a method call will fail and you
will need to consider creating a wrapper Java object with unambiguous names.

The above method call passes a string. You can pass a string, integer, double, or boolean as arguments
to a method. Additionally, you can pass any arbitrary Java object as a parameter, in which case the under-
lying method must support the actual class of the Java object to be valid. You cannot pass arrays, chars,
or other data types in Java that do not have a JBasic equivalent. Again, if you need to pass different data

JBasic Userʼs Guide!

41

types, consider creating a wrapper class for the Java object that translates the supported JBasic argu-
ment types into the richer Java argument set.

You can also call a method as a function call in an expression. In this example, the toString() method
is called to convert the string buffer created in the previous example to a standard string.

 X = MYSTRING->TOSTRING()

Again, note that the toString() Java method must be unambiguous when converted to uppercase. The
"->" notation with a method name and an argument list signals a method call. In this example, the result-
ing value is a string, stored in the variable X, that contains the text "This & that", created by the previ-
ous append() method calls.

Here is a more complex example that uses the Java TreeMap class to define a list of keys and values
and keep them in sorted order:

! TREE = NEW(“java.util.TreeMap”)
! CALL TREE->PUT(“1003”, “Tom”)
! CALL TREE->PUT(“1004”, “Tony”)
! CALL TREE->PUT(“1010”, “Sue”)
! CALL TREE->PUT(“1008”, “Mary”)
! PRINT TREE->GET(“1004”)
! PRINT “The Keys are: “; TREE->KEYSET->TOARRAY()
! PRINT “The Values are: “; TREE->VALUES->TOARRAY()

In this example, values are put in the TreeMap object by giving it a key and an object (in this case, both
the key and the object are strings). You can use TREE->GET(“1004”) to recover the string value
“Tony” for example. You can also use methods that return objects as shown above, where the key-
Set() method is used to return a set of the key values, and the toArray() method is used to convert
this to an array. The resulting array is processed as a JBasic array, and the result is [“1003”, “1004”,
“1008”, “1010”]. Because the TreeMap class maintains the tree in sorted order, the keys and values
are always returned in the order of the keys.

Some objects allow direct manipulation of some of their fields. In this case, you can reference those fields
as if they were fields in a RECORD. For example,

 ! OBJ = NEW("my.domain.MyObject")

This creates a Java object reference to a newly created object of the class my.domain.MyObject,
which must be loadable via the CLASSPATH. Let's assume that this object has a public String field called
myName and a public int field called myAge. If you print OBJ, you will see these fields in the RECORD
that represents the Java object:

JBasic Userʼs Guide!

42

 BASIC> PRINT OBJ
 { MYAGE: 49, MYNAME: "Tom" }

Note that - like method names - the field names are converted to uppercase, and must be unambiguous
when expressed in uppercase. You cannot have a field named "age" and one named "Age" in the same
class or an error occurs. You can reference the field values in an expression, as in:

 OBJ.MYAGE=50
 PRINT OBJ.MYAGE

Unlike a JBasic RECORD, you cannot create new fields by assigning a value to them; you can only refer-
ence fields that actually exist in the Java object. The MEMBERS() function will return a list of the fields in
the Java object just as it would in a RECORD.

If the Java class has static fields, these are available in the Java object but are not normally printed out or
included in the MEMBERS() list. To reference a static field in the Java object, you must precede its name
with an "_". Suppose the MyObject class used in the above example includes a static int value of
adultAge with a value of 18. You would not see it in the PRINT command of the object, but you could
reference it as OBJ._ADULTAGE. If you use the optional second parameter to the MEMBERS() function
you can see the list of static fields as well as the object fields, as in MEMBERS(OBJ,TRUE) which will in-
clude the static field names in the list.

When JBasic calls object methods that throw a Java exception, this is reported back to the JBasic pro-
gram as a OBJEXCEPT error code, with the status argument being a text representation of the underlying
Java exception. Also note that if a method is called as a function and does not return a value, then an er-
ror is thrown. A method that returns a value can always be executed with the CALL statement, if a value is
returned but not used it is just discarded.

The function METHODS() can be used to return a string array that contains text descriptions of the meth-
ods that can be called on a given object. These descriptions are in Java notation and include the parame-
ter types and return value types. The function CLASSOF() can be used to determine the class of the ob-
ject, or will return the underlying Java type if the argument is a JBasic value other than an object.

JBasic Objects
JBasic implements limited support for experimenting with object-oriented programming natively in the
JBasic language. JBasic objects are special cases of RECORD data types. JBasic allows you to create
hierarchies of classes as well as storage containers. The following section describes how this can be
used in JBasic programs. This section does not attempt to explain object oriented programming!

JBasic objects are RECORD values with additional information describing what class and what container
they belong to. The class distinction is a conventional object paradigm; the class provides additional in-
formation about the fields and methods (programs) that can be invoked on behalf of the object. The con-
tainer associates an object with another object, such that you can access fields in the current object, or in
the container object (or the containerʼs container object, etc.).

JBasic Userʼs Guide!

43

Consider the following example code, which illustrates using JBasic objects to represent employees and
a manager of a department in a company:

! CLASS EMPLOYEE (SALARY AS DOUBLE, NAME AS STRING)
! CLASS MANAGER SUPERCLASS EMPLOYEE (ACCESS AS STRING)
! CLASS DEPARTMENT (DNAME AS STRING)

! CUSTSERV = NEW(DEPARTMENT)
! CUSTSERV.DNAME = “Customer Service”

! BOB = NEW(MANAGER) OF DEPARTMENT
! BOB.NAME = “Bob Smith”
 BOB.SALARY = 65000
 BOB.ACCESS = “BUILDING 33”

! SUE = NEW(EMPLOYEE) OF BOB
! SUE.NAME = “Sue Jones”
! SUE.SALARY = 12.50

! CALL BOB->PAY()
! CALL SUE->PAY()
! PRINT “Sue is in the “; SUE->DNAME; “ department”

The first section defines three classes. A class is a special kind of object that is used to define the charac-
teristics of other objects. For example, the class EMPLOYEE has two fields named SALARY and NAME. The
class MANAGER is a class that has EMPLOYEE as its superclass. That is, MANAGER has all the fields of EM-
PLOYEE, but also the additional fields given in this class (ACCESS, in this example).

The next section creates a DEPARTMENT object. This is an instance of a DEPARTMENT, and has all the
fields of any DEPARTMENT. The next statement sets the field value for this specific department.

Next, a MANAGER object is created named BOB. The OF clause means that this manager is contained by
the DEPARTMENT object. An object can be contained by at most one other object. The fields of BOB are
then filled in, including the salary which (for objects of type MANAGER) is defined as $65,000 a year. The
BOB object has a field that EMPLOYEE objects do not; the ACCESS field is set to specify the building this
object has access to.

The next block creates an EMPLOYEE named SUE. BOB is the container object for SUE, which means that
some kinds of references for fields in SUE will search BOB and then CUSTSERV because that is the con-
tainer hierarchy. Objects of type EMPLOYEE are paid by the hour, so her salary is expressed as $12.50 an
hour.

The next section illustrates method invocation to perform work on an object. In both cases the same
method is invoked (PAY) on all the objects regardless of whether they are EMPLOYEE or MANAGER ob-
jects. The underlying implementation in JBasic uses the class information to locate a method. For BOB, a
program named MANAGER$PAY is searched for first. If found, it will be called to arrange to pay BOB (pre-
sumably by knowing that his salary is annual and not hourly). If there was no method called MANA-
GER$PAY, then JBasic would search for EMPLOYEE$PAY and call it if it was found. Finally it would search
for a program OBJECT$PAY which is the root class of all objects. Whenever a program is located, it will be

JBasic Userʼs Guide!

44

called and the current object (BOB or SUE) will be passed to the program as a local variable that is always
called THIS. So the program could reference the salary using THIS.SALARY.

Class EMPLOYEE

Class MANAGER

Object SUE

Object TOM

When SUE has the same PAY method invoked, it does not look for MANAGER$PAY but instead starts at the
class for the SUE object which is EMPLOYEE, and locates EMPLOYEE$PAY which presumably pays her
based on an hourly rate.

The last section in the sample code shows a container field reference. If the reference was to SUE.DNAME
then it would look for a field in SUE called DNAME to print. However, the -> operator means that JBasic will
search the container hierarchy to locate a field called DNAME. In this case, it searches SUE first, then looks
in BOB (which is the container for SUE) and then looks in CUSTSERV which is the container for BOB. It finds
the field DNAME here, and prints the name of the department that both BOB and SUE are members of.

XML Data
XML refers to eXtensible Markup Language, and is an industry standard way of expressing information
that can be shared between programs, computers, and networks with great accuracy regardless of the
computer systems, languages, etc. involved. JBasic can express any data value as XML, and can parse
XML created to describe JBasic values.

Here is an example of the most basic structure if an XML Value definition:

JBasic Userʼs Guide!

45

<?xml version="1.0" encoding="UTF-8"?>
! <JBasicValue>
! <Integer>3</Integer>
! </JBasicValue>

This string represents the integer value 3. The first part is a comment that identifies an XML string. The
second part is common to all JBasic XML strings, and indicates that this XML code is a JBasicValue,
which means a data representation for JBasic. The item <JBasicValue> is an XML header tag, and is the
default tag for identifying a JBasic value. You can specify a different header tag value in cases were you
use the built-in functions for creating or processing XML data, discussed later in this section.

The header tag followed by the actual data type and value, and then the matching terminator for the
JBasicValue tag. This same format applies to all the scalar data types, shown in the following table.

Data Type Example XML Representation

BOOLEAN <Boolean>true</Boolean>

DOUBLE <Double>3.553</Double>

INTEGER <Integer>3</Integer>

STRING <String>"This is \"Test\""</String>

Note that the string value representation is in quotation marks, and contains any characters that cannot
be represented in a string as escaped characters, such as the \" which represents a quotation mark.

Arrays are stored as a list of values. The next example is an array of integer values, containing [101,
102, 103], expressed as XML:

<?xml version="1.0" encoding="UTF-8"?>
! <JBasicValue>
! <Array count="3">
! <Integer>101</Integer>
! <Integer>102</Integer>
! <Integer>103</Integer>
! </Array>
! </JBasicValue>

In the <ARRAY> tag, the attribute count tells how many members are in the array that is being repre-
sented here, and is followed by that many individual data representations.

A RECORD type is a little more complicated because it uses the field names as the tags around each
value. Here is the XML representation of a simple record {AGE:14, NAME:"Susan"}

JBasic Userʼs Guide!

46

<?xml version="1.0" encoding="UTF-8"?>
! <JBasicValue>
! <Record>
! <AGE>
! <Integer>14</Integer>
! </AGE>
! <NAME>
! <String>"Susan"</String>
! </NAME>
! </Record>
! </JBasicValue>

Here, the <Record> tag is followed by each field name as a tag containing a data item.

Finally, you can combine types in XML just as you can in JBasic values to create compound data types.
Below is an array of records each describing a person:

<?xml version="1.0" encoding="UTF-8"?>
! <JBasicValue>
! <Array>
! <Record>
! <AGE>
! <Integer>14</Integer>
! </AGE>
! <NAME>
! <String>"Susan"</String>
! </NAME>
! </Record>
! <Record>
! <AGE>
! <Integer>10</Integer>
! </AGE>
! <NAME>
! <String>"Danny"</String>
! </NAME>
! </Record>
! </Array>
! </JBasicValue>

You can generate valid XML for any given value by using the XML() function, which returns a string. You
can parse valid XML that describes a JBasicValue object using the XMLPARSE() function. See the in-

JBasic Userʼs Guide!

47

dividual documentation on these functions later in this manual for more information, including how to use
non-default XML tags to identify JBasic values.

Additionally, you can save a program as an XML definition by using the SAVE XML command. When you
load a program file, JBasic checks to see if the file is an XML definition of a program and parses the file
accordingly. See the documentation on the SAVE command for more information.

Finally, you can use the INPUT statement to read XML expressions from a file, either as raw XML data or
by converting them to JBasic values. See the documentation on the INPUT statement for more informa-
tion.

Macros
JBasic includes a rudimentary macro facility which allows source code to be dynamically modified as it is
read and processed, using substitution values set up by the user. This can be used to create program
templates that are incomplete programs where strings are filled in as the program is loaded to create the
complete program.

! FUNCTION <@FUNC_NAME@> (X)
! RETURN X * 2

This simplistic program uses a macro FUNC_NAME to define the name of the function. The actual name is
not resolved until the program is loaded into memory. A program can be written to perform this operation
dynamically.

! LET<MACRO> FUNC_NAME = “TIMES2”
! LOAD “function_template.jbasic”

This program sequence creates a macro variable (identified by storing the symbol in the reserved table
name MACRO) with the name of the function. The second statement then causes the file described above
to be loaded into memory. When it is loaded and compiled, the macro substitution will occur and the re-
sulting function name will be called TIMES2, and can be called and executed after the LOAD command
complete.

The macro substitution operation occurs only once when the program file is loaded (or a statement is
typed in at the command prompt). The macro variable can have itʼs value changed for a subsequent
LOAD of the same template file and a new function will be created with the new name. You can use the
SHOW MACRO SYMBOLS command to see all the macro symbol definitions.

The default macro quote characters are <@ and @>. The expression between these symbols is used to
define the substitution value; it can be any expression that references a constant value or a macro
symbols; other symbols such as local program variables are not recognized as macro symbols.

If your program needs to use the character strings “<@” or “@>” as literal text instead of macro symbols,
you can change the macro quote characters or disable macro substitution entirely.

JBasic Userʼs Guide!

48

! SET MACRO_QUOTES=[“<<“, “>>]

! SET NOMACRO_QUOTES

The first example sets a different string to represent the starting and ending macro quote characters.
Anytime these characters are found in program source, they are used to replace the quoted value with a
substitution string. If the substitution operation references unknown variables or has an expression syntax
error, then the substitution is just an empty string.

The second statement above disables the macro facility entirely by specifying that there are no macro
quote characters to be searched for.

Finally, you can use the SET LOGGING=3 command to enable diagnostic logging of JBasic operations,
which includes showing when macro substitutions occur and also reporting details of any expression er-
rors in the macro strings. This can be used when debugging a template file, but should be turned off with
a SET LOGGING=1 command to restore normal error reporting when you are done debugging a template
file.

A Complete Sample Program
The following is a complete sample program written in JBasic. You can type this in and run it yourself, or
make changes to expand its functionality. The programʼs job is to let the user enter a list of grades, and
produce a simple average.

The program accepts the input as a list of numbers. The user tells when the list of numbers is complete
by entering the word “END” as the value. The program inputs each of the values as a string, and then
converts them to a number to perform the average computation.

JBasic Userʼs Guide!

49

! 100! ! PROGRAM AVERAGE
! 105! //! Sample Program AVERAGE
! 110! //! Version 1.0
! 120! //! By Tom Cole
! 125! //
! 128! //! Initialize the summation variables
! 130! ! SUM = 0.0
! 140! ! COUNT = 0
! 145! //
! 147! //! Get the next input value
! 150! GET_NEXT:
! 160! ! LINE INPUT “Enter grade or END: “; GRADE
! 162! //
! 165! //! Are we done? Make sure “end” and “END” are
! 167! //! treated the same by uppercasing user value.
! 170! ! IF UPPERCASE(GRADE) = “END” THEN GOTO DONE
! 173! //
! 175! //! Convert the string to a number, and sum up
! 180! ! NUMGRADE = DOUBLE(GRADE)
! 190! ! ADD 1 TO COUNT
! 200! ! ADD NUMGRADE TO SUM
! 210! ! GOTO GET_NEXT
! 212! //
! 215! //! If done, calculate and print average
! 220! DONE:
! 230! ! AVE = SUM / COUNT
! 240! ! PRINT USING “The average is ###.##”; AVE
! 242! //
! 255! //! All done, program stops here
! 250! ! RETURN

JBasic Userʼs Guide!

50

The Rest Of This Document

The next sections of this manual will describe the operation and syntax of each of the statements in the
JBasic language. This is followed by a description of each of the supplied runtime functions in the lan-
guage, and a description of how MultiUser server mode is used.

The final part of the manual will describe tools that are used to help understand the internal operation of
JBasic, and how to extend JBasic so that it has additional statements that you create, or can call code
you write from within JBasic programs.

The Legal Stuff

JBasic is open source. The author, Tom Cole, retains licensing control. JBasic is meant to be used freely
by anyone who finds value in it. It is licensed under the GNU General Public License 2.0. A copy of this
license can be found at:

http://www.gnu.org/licenses/old-licenses/gpl-2.0.txt

In a nutshell, you are free to use JBasic in any non-commercial way that you want, as long as you keep a
reference to the authorship and license of JBasic visible in your product splash screen, credits, or docu-
mentation. You are NOT free to take JBasic and incorporate it into a commercial product without direct
written permission of the Author(s).

JBasic incorporates code from the open source project TelnetD, at http://sf.net/projects/telnetd. This
source is authored by Dieter Wimberger and is licensed under the BSD License and the GNU Lesser
General Public License (LGPL). The full text of this license can be found at:

http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html

This userʼs guide is Copyright 2006, 2007, 2008, 2009 by Tom Cole. All rights are reserved. You may re-
produce this document for educational or personal use, but may not reproduce it for commercial purposes
of any kind without written permission of the Author.

Where to go from here?

Well, the most obvious thing is to just try it out and see if you find it useful. If you find a problem, or have
something you want JBasic to be able to do, please feel free to email me with questions or a description
of your problem at tomcole@users.sf.net

You can always get the most recent source code for JBasic from the SourceForge server, along with oc-
casional packaged releases:

! ! ! ! http://jbasic.sf.net

This document is authored using Apple Computerʼs Pages, a word processing and page layout program
for Mac OS X. The PDF file is generated using the Macʼs built-in PDF export functions. Please report any
errors in the document (including errors in formatting or readability using any specific platform or docu-
ment reader) to tomcole@users.sf.net.

JBasic Userʼs Guide!

51

http://www.gnu.org/licenses/old-licenses/gpl-2.0.txt
http://www.gnu.org/licenses/old-licenses/gpl-2.0.txt
http://sf.net/projects/telnetd
http://sf.net/projects/telnetd
http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html
http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html
mailto:tomcole@users.sf.net
mailto:tomcole@users.sf.net
http://jbasic.sf.net
http://jbasic.sf.net
mailto:tomcole@users.sf.net
mailto:tomcole@users.sf.net

This page intentionally left blank.

JBasic Userʼs Guide!

52

ADD

The ADD statement adds the value of an expression to an existing variable.

! ADD (HOURS*RATE) TO PAY

The above statement calculates the expression and adds it to the existing value of PAY. If the variable
PAY does not exist, then this statement generates a runtime error. This is essentially equivalent to the
statement LET PAY = PAY + (HOURS*RATE).

Note that if this expression uses pre- or post-increment or decrement operators in the target expression,
they are processed after the statement completes the storage of the new value in the target. For exam-
ple,

 B = 3
 ADD X+B TO EMPS[B++]

The increment operation of B will take place after the sum X+B is stored in the array EMPS at the location
of the current value of B (3 in this case).

The ADD statement can also be used to add rows to a table, as in this example:

 TABLE EMPS AS INTEGER ID, STRING NAME
 ADD [101, “Tom”] TO EMPS
 ADD [351, “Sue”] TO EMPS

Each array of values is added as a row at the end of the given table.

JBasic Userʼs Guide!

53

ARRAY

The ARRAY statement declares one or more variables as array variables, and optionally creates an array
of arrays. For example,

! ARRAY X[10]=TRUE

This statement creates an array X with ten elements, each of type BOOLEAN and each element initialized
to the value given. Unlike other type declaration statements like BOOLEAN or INTEGER, this statement
uses the type of the initial value to set the type of each array element.

If no initial value is given, the array is created as an array of arrays. That is, each array element in the
named variable will itself be an array, containing no values. For example,

! ARRAY Y[3]
! Y[1,2] = 55

This first creates an array Y each containing the value []. Each array element can then be extended by
assigning additional values, so the second statement extends the first array to have two members, and
assigns the integer 55 to the array. The resulting array looks like [[0, 55], [], []].

In most cases, you would use the specific declaration statement for the type of element(s) you wish to
define in an array. Use the ARRAY statement when you want to pre-define an array of arrays.

! ARRAY X

You can omit the array index size completely and the result is the creation of an empty array, equivalent
to issuing the statement ARRAY X[0]

JBasic Userʼs Guide!

54

BOOLEAN

The BOOLEAN statement declares one or more variables as Boolean variables, and assigns them initial
values. Optionally, the value can be declared as an array of Boolean values by using an array size. For
example,

! BOOLEAN X[10], FLAG=TRUE

This statement creates an array with ten elements, each of type BOOLEAN. The array is initialized to the
default value for the type, so in this case it is an array of false values. The array size must be specified
using square brackets, not parenthesis.

The statement also creates a single BOOLEAN value named FLAG, which is initialized to a specific value of
true.

This statement has the same effect of using the DIM statement with an explicit type of BOOLEAN, but also
allows you to specify an initial value for each item.

JBasic Userʼs Guide!

55

BREAK

The BREAK command is used to control breakpoints in the debugger. See the introductory section on de-
bugging to get more information on how to run a program under control of the debugger. The BREAK
command can only be used when the debugger is active. The BREAK command has several formats,
each of which are described here.

 BREAK AT line-number

This specifies a breakpoint at a given line number in the program. When this line is about to be executed,
the debugger will gain control of the running program and let you execute new debugger commands. The
breakpoint is triggered each time the given line is executed.

 BREAK WHEN expression

This causes a breakpoint when the expression evaluates to true. When it becomes true the first time,
then a breakpoint is set and the debugger lets you enter debug commands. The breakpoint will not be hit
again until the expression goes from false to true. A break point set using BREAK WHEN IX=5 will halt
execution at the moment when variable IX becomes equal to 5, but won't halt execution continually as
long as variable IX is still 5. It will only break when variable IX changes from “not 5” to “5”. This is re-
ferred to as “triggering” the breakpoint.

When a program is running under control of the debugger, two variables are automatically set at the start
of each statement. These are _LINE_ which is an integer containing the current line number, and _PRO-
GRAM_ which contains the name of the current program. You can use these variables in a WHEN condi-
tion to create more complex breakpoints than can be specified with the BREAK AT format, such as

! BREAK WHEN _LINE_ > 150 AND IX = 3

This will trigger a breakpoint when the program has executed past line 150, and the value of the variable
IX becomes equal to 3.

You can use the RESUME RESET command to resume execution of a program after resetting all break-
points to the “untriggered” state, which means that the next statement will cause each breakpoint to be
evaluated to see if it becomes triggered.

JBasic Userʼs Guide!

56

You can see a list of the breakpoints you have specified and their name using the BREAK LIST command.

 DBG> BREAK LIST
! BREAK_1: WHEN I > 5 [true]
! BREAK_2: AT 150

 DBG>

Each breakpoint is given a name when it is created, in the form BREAK_n where "n" is a sequence num-
ber. The condition of the break point (an AT location or a WHEN condition) is indicated. For the condition, if
the flag [true] is printed next to the condition, it means that the condition has been met and a break al-
ready taken.

The BREAK LIST output is useful for determining the identifiers for breakpoints to be used with the BREAK
CLEAR command.

 BREAK CLEAR name
 BREAK CLEAR ALL

This lets you clear (remove) a specific breakpoint by name - usually determined by the BREAK LIST
command - or to remove all breakpoints.

JBasic Userʼs Guide!

57

CALL

The CALL statement allows one program to execute another. The CALL statement suspends execution of
the current program, executes another program (optionally passing in arguments to it) and then resumes
execution of the current program once the called program completes execution.

 CALL name [(arg1 [, arg2...)] [RETURNS variable]

The name of the program is usually an identifier that is the name of the program that you are calling. It
can also be written as

 CALL USING(expression) ...

In this case, the expression is evaluated, and the resulting string value is treated as the name of the pro-
gram to call. This allows you to put the name of the program in a variable and use that, for example.

If there are arguments to pass to the program, they are given in parenthesis after the program name. The
number of arguments must be the same or greater than the number of arguments in the PROGRAM decla-
ration. See the documentation on PROGRAM for more information about how arguments are stored in local
variables in the called program.

Finally, a called program can return a value to the calling program, using the RETURN statement. In this
case, the return value will be stored in the RETURNS variable. This is the name of a variable such as you
would use in an assignment (LET) statement, and after the program is run the value is set for use in the
calling program. A program called this way can also be called as a function in an expression, as long as
the program name is not also the name of a user-written or built-in function.

The return variable can specify scope qualifiers to define the attributes of the variable. See the documen-
tation on the LET statement for more information on scope qualifiers.

When a program is invoked via a CALL statement, the variable $MODE in the called program's symbol ta-
ble is set to the value "CALL". This is used to differentiate between programs executed by CALL versus
RUN. If the program is being called as a function, then $MODE is set to “FUNCTION”.

! CALL PROCESS_DATA(RECORDID, “LOAD”) AS THREAD(TID)

As documented in the introductory section on threads, you can add the AS THREADS clause which
causes the called program to run in an independent instance of JBasic, possibly at the same time as the
main program. In this example, the name of the new thread is returned in the variable TID. When run as
a thread, it is not possible to get a return value directly from the thread. Use a queue to pass information
between threads or between a thread and the main program. See OPEN for more information.

JBasic Userʼs Guide!

58

CHAIN

The CHAIN command transfers control from the current program to a new program, identified in the com-
mand. Optionally, a starting line number in the new program is given to indicate where the program is to
begin execution.

! CHAIN "program" [, line-number]

The program to transfer control to must be a program already loaded from a workspace. The program
name is a string expression, so you can construct a variable or other expression to define the name as
well as using a string literal.

If you wish to specify a line number in the program at which to begin execution, put that after the program
name (separated by a comma).

The current program stops execution, and the new program is run instead. Only symbols in the current
program that are part of a COMMON definition are available to the new program. See the documentation on
the COMMON statement for more information.

When a program is run via a CHAIN statement, the $MODE variable is set to the string "CHAIN" (as op-
posed to "CALL" or "RUN"). In addition, a variable $CHAINED_FROM is created that has the name of the
program that executed the CHAIN operation. The $PARENT variable is the same as the parent of the pro-
gram that executed the CHAIN operation.

Consider the following example programs:

 10 PROGRAM CHAIN1
 100 COMMON NAME$
 110 LET NAME$ = "Tom"
 120 LET AGE = 47
 130 CHAIN "chain2", 100
 140 PRINT "Never returns from chain!"

 10 PROGRAM CHAIN2
 15 PRINT "This won’t be run!"
 20 END
 100 PRINT "The name is "; NAME$
 130 PRINT "Done with CHAIN2 program."

In these examples, the program CHAIN1 will run, and will then be replaced with the code for CHAIN2.
This is different from a CALL statement, where the program that is doing the calling continues to run after
the called program returns. In a CHAIN operation, the new program replaces the old program in terms of
execution.

JBasic Userʼs Guide!

59

In the example, the COMMON statement is used to define a variable that is common to all programs that
are executed via a CHAIN from the current program. This means that the variable NAME$ will be available
in the program CHAIN2 and will retain its value. The variable AGE will not be available to program
CHAIN2. See the documentation on COMMON for more information.

Note that after the CHAIN statement is executed in the first program, control will never return to this pro-
gram - the final PRINT statement will never be executed. In addition, the CHAIN statement specifies a
starting line number in the destination program, so the first PRINT statement in the chained-to program
will not be executed.

JBasic Userʼs Guide!

60

CLEAR

The CLEAR command is used to remove a stored value or program element from memory. The statement
has a variety of formats, depending on what you are trying to clear:

 CLEAR PROGRAM name [, name…]
 CLEAR FUNCTION name [, name…]
 CLEAR VERB name [, name…]
 CLEAR TEST name [, name…]
! CLEAR FIELD file-identifier
 CLEAR SYMBOL name [, name…]
! CLEAR LOCK name [, name]

In all the above cases, the name of the item is given as an identifier, such as

! CLEAR SYMBOL MYNAME

An error is signalled if the named object does not exist. Otherwise, it is removed from memory.

For program objects (PROGRAM, FUNCTION, VERB, and TEST), the object can subsequently be recreated
by a LOAD command to re-load program elements. A symbol can be recreated by assigning a value to the
symbol name or by using the DIM statement.

See the SHOW command for information on how to see what program objects or symbols exist at any
given time in the JBasic session.

You can specify more than one object to be cleared by using a comma-separated list, such as

! CLEAR PROGRAM FOO, BAR

This clears both program FOO and program BAR from program memory. All objects in the list must be of
the same type, i.e. they are all PROGRAMS or SYMBOLS, etc.

In addition to the above uses of the command, you can use the CLEAR THREADS command to remove
references to threads that have stopped. Because threads run independently of the main program, they
may complete at any time. You can use the THREADS() function to get a list of all threads, and the
THREAD() function to get a record of information about a specific thread. When a thread completes it is
not deleted so the main or creating thread can get information about its completion status, final error code
if any, etc. Because of this, threads must be explicitly cleared when they are no longer needed. The
CLEAR THREADS command deletes all competed threads. Threads that are still active are not deleted.

JBasic Userʼs Guide!

61

CLOSE

The CLOSE command closes a file accessed via an OPEN statement. The file identifier used in the CLOSE
statement must be the same one that was returned from the OPEN statement.

 CLOSE [FILE] identifier

The keyword FILE is optional. The keyword FILE can also be expressed as a sharp sign (“#”) for com-
patibility with other dialects of BASIC.

If the statement is given without a file identifier, then all files opened by the userʼs program(s) are closed.
Files opened by JBasic itself (such as the console) are not closed by this operation.

! CLOSE

For compatibility with other dialects of BASIC, you can specific CLOSE ALL, which is the same as CLOSE
with no additional file identifier. See the information on the OPEN command for information on how files
are opened and accessed. You can also use the SHOW FILES command to display the list of currently
open files.

JBasic Userʼs Guide!

62

COMMON

The COMMON statement is used to declare variables in the current program that will also be available in
any program that is executed by a CHAIN statement from this program. The COMMON statement has the
same syntax as the DIM statement.

! COMMON variable [AS type] [, variable [AS type]...]

Variables declared in this way have the common attribute, and are copied to the symbol table of any pro-
gram that is run via a CHAIN statement. All other symbols in the current program are discarded during a
CHAIN operation.

You can also mark a variable as being a COMMON variable by setting the COMMON scope qualifier attribute
in an assignment statement.

! LET MYDATA/COMMON/ = "Data to pass to another program"

The /COMMON/ tag indicates that the variable is marked as being common to the chained program(s).
Once a variable is marked as being common, it cannot be unmarked.

See the documentation on the CHAIN command for more information.

JBasic Userʼs Guide!

63

DATA

The DATA statement is used to store data elements directly in the program. These DATA elements can be
loaded into a variable using the READ statement.

 DATA 3, "Tom"
 DATA {age:40}

The above statements define three constant values. One is an integer, one is a string, and one is a record
type. When a READ statement is executed, it will read one or more of the data elements in the program
into variables, which can then be used just as if they came from a LET or INPUT statement.

A DATA statement can only contain constant data, such as numbers or strings. However, you can include
expressions as long as all of the parts of the expression are constants - that is, they contain no variables
as part of the value expression.

DATA elements can be stored anywhere in the program. When a READ statement is executed, it reads
starts with the first DATA statement in the program and reads the first item in that DATA statement. The
next READ uses the next DATA element, either in the same DATA statement or the next one in the pro-
gram. When all the DATA has been read, the next READ statement will read the first item again.

A DATA statement cannot be executed, and cannot be used except in a program (you cannot use the
DATA statement on the command line, for example). Because a DATA statement is not executed, the
physical order of the DATA statements in the program is all that matters in determining which DATA ele-
ment(s) to read next - you cannot use a GOTO or other statement to change the order in which DATA is
accessed by the READ statements.

Use the REWIND statement to reset the location where the next READ statement gathers its data. The
EOD() function can also be used to test to see if there is more DATA to be read.

See the documentation on REWIND, READ, and EOD() entries for more information.

JBasic Userʼs Guide!

64

DEFFN

The DEFFN statement is used to define a local statement function. This is a function that is expressed as
a single expression, and is available for use only in the program that defines it.

100! DEFFN LINE(X, B) = 3 * X + B
 ...
230 Y = LINE(XPOS, 10)

In this example, a function LINE() is defined which takes two parameters. The parameters are used in
the expression that defines the behavior of the function. This expression can be any valid JBasic expres-
sion, including calling other functions.

The second statement shows calling the function. The values XPOS and 10 are substituted for the pa-
rameters X and B, and the expression is evaluated. The result is used as the function result, and stored in
the variable Y in this example.

Statement functions can only be defined using expressions, so no flow-of-control is possible in a state-
ment function. They are intended purely to compute straightforward mathematical expressions.

A statement function is only available in the program that defines it. That is, if the above code is located in
program FOO, then a call to the function LINE() from program BAR will result in an unrecognized function
call error. Only program FOO can call the functions that it defines.

JBasic Userʼs Guide!

65

DELETE

The DELETE command deletes lines from the current program. You can list a specific line, or a range of
lines. If the beginning or ending of the range is not given, then the first or last lines are assumed.

 DELETE 1150 // Delete line 1150
 DELETE 100-150 // Delete lines 100..150
 DELETE -30 // Delete lines up to line 30
 DELETE 500- // Delete lines after 500

You can use statement labels for line numbers as well. The label must exist or an error is reported.

 DELETE INIT - TERM // Delete lines between INIT and
 // TERM statement labels.

If you specific DELETE without giving a range of lines, the entire program will be deleted from the stored
program memory. If you delete the entire program, there is no "current" program until the next OLD or NEW
statement, or until you start to enter new program lines.

JBasic Userʼs Guide!

66

DIM

The DIM statement declares a variable and gives it a type. This is usually used to create an array (the
word DIM is a contraction for the word DIMENSIONs), but can be used to create any variable without hav-
ing to assign a specific value to it.

! DIM INTEGER X[10]

This statement creates an array with ten elements, each of type INTEGER. The array is initialized to the
default value for the type, so in this case it is an array of zeroes. The type value must be one of BOOLEAN,
STRING, DOUBLE, or INTEGER. The array size can be specified in brackets or parenthesis, for compatibil-
ity with other dialects of BASIC.

If you omit the size value in parenthesis, then a simple variable is created of the given type.

! DIM BOOLEAN FLAG

This creates a variable FLAG of type Boolean, and sets it to false by default. This has the same effect as
using the BOOLEAN statement.

You can specify more than one variable in a single DIM statement by using a comma:

! DIM INTEGER A, STRING B, BOOLEAN C[10]

This creates three variables: an integer A, a string B, and an array of Boolean values called C.

You can use the DIM statement to create multi-dimensional arrays. For example, this creates an array
named BOARD that is a 3x3 array of integers:

! DIM INTEGER BOARD[3,3]

The result is identical to setting BOARD to the value [[0,0,0],[0,0,0],[0,0,0]]. Each element of
the two-dimensional array is initially filled with the integer value zero.

JBasic Userʼs Guide!

67

DIVIDE

The DIVIDE statement divides an already-existing target value by the value of an expression.

! DIVIDE HOURS BY 60*60 // Convert hours to seconds

The above statement calculates the expression and divides the existing value of HOURS by that value.. If
the variable HOURS does not exist, then this statement generates a runtime error. This is essentially
equivalent to the statement LET HOURS = HOURS / (60*60).

Note that if this expression uses pre- or post-increment or decrement operators in the target expression,
they are processed after the statement completes the storage of the new value in the target. For exam-
ple,

 B = 3
 DIVIDE EMPS[B++] BY X+B

The increment operation of B will take place after the division by X+B is stored in the array EMPS at the
location of the current value of B (3 in this case).

JBasic Userʼs Guide!

68

DO

The DO statement creates a loop that runs until an expression results in either a true/non-zero value or a
false/zero value, depending on the form of the loop.

 DO

 ...statements...

 UNTIL Boolean-expression

The Boolean-expression is any expression that results in a Boolean (true/false) or numeric value. If the
result is false or zero then the loop runs again. If the result is true or non-zero, then the loop exits and
execution of the program continues after the UNTIL statement.

 DO

 ...statements...

 WHILE Boolean-expression

The Boolean-expression is any expression that results in a Boolean (true/false) or numeric value. If the
result is true or non-zero then the loop runs again. If the result is false or zero, then the loop exits and
execution of the program continues after the WHILE statement.

Loop statements such as DO...WHILE or DO...UNTIL cannot be executed directly from the command
line, but are only valid in running programs.

You can place the condition at the “top” of the loop so it is evaluated before the loop runs the first time, as
in the following example:

! X = 10
! DO WHILE X > 0
! PRINT X
! LOOP

This is similar to the DO..WHILE loop above, except that if the value if X is less than or equal to zero in-
stead of having the value 10, the loop will not execute at all. You can express DO UNTIL..LOOP the
same way if the logic of your loop calls for evaluating the expression at the “top” of the loop instead of the
“bottom.”

JBasic Userʼs Guide!

69

You can use the CONTINUE LOOP and END LOOP statements to change flow of control while executing the
body of the loop. Consider the following example:

! I = 0
 DO WHILE I < 10
! I = I + 1
! IF I = 5 THEN CONTINUE LOOP
! PRINT “Value “; I
! LOOP

In this case, when the value of the index variable is 5, the CONTINUE LOOP statement causes control to
transfer back to the top of the loop body, which retests the WHILE condition - it discontinues the current
instance of the loop body, and runs the next loop iteration. If the ending condition is met, then the loop
exits normally. In the above example, all the index values from 1 to 10 will be printed except the value of
5, because the CONTINUE LOOP causes the rest of the loop body to be ignored.

! I = 0
! DO
! I = I + 1
! IF I = 5 THEN END LOOP
! PRINT “Value “; I
! UNTIL I >= 10

Similarly, the END LOOP statement could be used to terminate the loop completely. In that case, execution
would continue in the statement following the loop body (after the UNTIL statement). In this example, the
index values from 1 to 4 will be printed, and the loop will be terminated even though the DO..UNTIL loop
end condition has not yet been met. The value of the index variable in that case would be left at the last
value (5, in the example above).

JBasic Userʼs Guide!

70

DOUBLE

The DOUBLE statement declares one or more variables as double precision floating point variables, and
assigns them initial values. Optionally, the value can be declared as an array of double values by using an
array size. For example,

! DOUBLE X[10], SCALE=0.03

This statement creates an array with ten elements, each of type DOUBLE. The array is initialized to the
default value for the type, so in this case it is an array of 0.0 values. The array size must be specified
using square brackets, not parenthesis.

The statement also creates a single DOUBLE value named SCALE, which is initialized to a specific value of
0.03.

This statement has the same effect of using the DIM statement with an explicit type of DOUBLE, but also
allows you to specify an initial value for each item.

JBasic Userʼs Guide!

71

END

The END verb terminates execution of the current program, including programs that it has called as sub-
routines via the CALL statement or as functions.

 END

For example, assume there is a program FOO which calls subprogram BAR which calls function COUNTER.
If the function COUNTER executes an END statement, then this immediately terminates the execution of
the function COUNTER and the programs BAR and FOO.

In additional to terminating execution, this statement also closes all files that were opened under user
program control (the console is not closed, for example).

JBasic Userʼs Guide!

72

EXECUTE

The EXECUTE verb allows a string expression to be executed as a language statement. This allows a
program to create a line of program code and have it processed by JBasic just as if it has been typed in
by a user.

 EXECUTE string-expression [RETURNS variable] [AS THREAD (NAME)]

If the statement contained in the result of the string expression gets an error, then the EXECUTE statement
is considered to be in error and the program halts. You can use the RETURNS clause to capture the result
of the statement in a variable; in this case the EXECUTE statement does not halt with an error, but the
status information about the error from the statement is stored in the RETURNS variable.

The returned status can specify scope qualifiers to define the attributes of the variable. See the documen-
tation on the LET statement for more information on scope qualifiers.

The status variable is a RECORD variable with the following fields:

Variable Description

CODE The error code (a mnemonic identifier) such as VERB

PARM The argument that is included with the error, if any. For example,
in a VERB error, it is the text of the unrecognized command.

SUCCESS Boolean ʻtrueʼ if this is a successful status code.

You can use the MESSAGE() function to convert this status record into a text message in the current lan-
guage for display to the user if desired.

You can optionally cause the command to execute in another JBasic thread. A thread is an execution con-
text; each JBasic thread is a new instance of JBasic that can execute concurrently - that is, program
statements in each thread can execute at the same time. On computers with more than one CPU core,
this means that jobs can be divided up to run on more than one processor at a time, reducing overall
compute time. Alternatively, commands run on a separate thread can execute instructions that require
waiting for an event such as user input while the primary thread continues executing.

! EXECUTE “RUN PAYROLL_JOB” AS THREAD(TID)

This statement executes the command RUN PAYROLL_JOB on a separate thread. The thread is given a
name, and this name is returned in the variable TID. You can use the SHOW THREADS command to see
the state of execution of any threads that are created by your session. While the PAYROLL_JOB program
is run, the current program or shell continues to run as well.

JBasic Userʼs Guide!

73

Because the command being executed might have come from user input, it is possible to constrain the
possible operations of the command with the SANDBOX statement modifier.

! INPUT “Command: “, CMD$
! EXECUTE SANDBOX CMD$ RETURNS X

This example accepts a command (any JBasic statement) from the user and executes it. However, if the
statement includes operations that might be destructive or interfere with the operation of the program, it is
often desirable to limit the capabilities of the command.

The SANDBOX option indicates that the statement is run as if it was an unprivileged user. No file opera-
tions, THREAD operations, or operations that affect the stored programs are permitted in this environment.

JBasic Userʼs Guide!

74

FIELD

The FIELD statement defines the fields to be used to process a data record in a BINARY format file ac-
cessed via OPEN, PUT, and GET statements. The FIELD statement creates a named object that describes
how to move data from the file to variables in memory and vice versa.

 FIELD name, type [(size)] name [, type [(size)] name...]

Fields must have a valid name. This cannot be the name of any other variable or language keyword. This
is followed by a list of one or more type and name combinations. The resulting field specification is then
used in a USING clause in a GET or PUT statement to indicate how the binary data is to be processed. For
example,

 FIELD EMPREC, UNICODE STRING(30) NAME, INTEGER(2) ID
 PUT FILE BD, USING EMPREC, FROM { NAME : "Tom", ID : 2001 }

The first statement defines the record EMPREC which has two fields, a 30-character string suitable for stor-
ing Unicode (multi-national) strings called NAME and an short integer called ID. A maximum length is al-
ways required for a STRING, UNICODE STRING, or VARYING STRING field type. A length is optional for
types of INTEGER and FLOAT. See the documentation on the GET and PUT statements for details on the
supported binary file data types.

The PUT statement can be expressed with a USING clause that defines the field definition that describes
what data is to be written to the file. The EMPREC tells the PUT statement to find fields named NAME and
ID and write them out to the file from the FROM clause's data record.

The FIELD is a statement that defines a "map" of how data is to be read or written using GET and PUT
statements. This is in contrast to records variable types which are a data type containing one ore more
named fields in memory. The above syntax creates a FIELD that tells how to read and write records.

Instead of creating a field object, you can bind the field definition directly to a file. For example,

 FIELD #1, UNICODE STRING(30) AS NAME, INTEGER(2) AS ID
 PUT #1

The first statement creates a field definition involving a string called NAME and a two-byte integer value
called ID. These are associated with file #1, and each GET, PUT, or SEEK statement will use this definition
to determine the fields to be read or written and how to calculate record positions in the file.

Each time the FIELD statement is executed, the record definition associated with the file changes, and
subsequent GET, PUT, and SEEK operations will use the most recent FIELD definition.

JBasic Userʼs Guide!

75

The allowable types and characteristics for binary data types are shown in the following table:

TYPE Description

INTEGER An integer value. The default is a 4-byte integer in the range
from -2147483648 to 2147483647. An optional size can be given
of 1, 2, or 4 to specify byte, word, or integer values.

FLOAT A floating point number. The default is a 4-byte single precision
value, but a size can be given of 4 or 8 to select single or double
precision data.

DOUBLE A double-precision floating point number (8 bytes). This is the
same as specifying FLOAT(8).

STRING A string of text, with a specific length allocated in the record as
specified by the size of the field.

UNICODE STRING A string of Unicode (UTF-16) text, with a specific length allo-
cated in the record specified by the size of the field.

VARYING STRING A string of text of varying length. The maximum amount of space
the string can take is specified in the SIZE field. An additional
integer value is read or written that contains the actual length of
the string in the buffer.

BOOLEAN A single byte of data containing 1 or 0 to represent true or false
values.

JBasic Userʼs Guide!

76

FILES

The FILES command lists files in the current directory, or in a directory given in the command:

 FILES ["path"]

If omitted, the default directory is assumed. If a specific directory is to be listed, then that must be ex-
pressed as a string constant, including quotation marks.

 More than one path can be specified on the command line. For example,

 FILES "bin", "src"

This displays the files in the "bin" and "src" subdirectories.

JBasic Userʼs Guide!

77

FIND

The FIND command searches the current program for a specific string, and lists all the program lines that
contain the string.

! FIND keyword

! FIND “string”

In the first form of the command, the current program is searched for any instance of the given keyword or
numeric constant. Because the keyword is not in quotes, then only unquoted strings or capitalized key-
words will match.

The second form searches for an exact match of the given string, including case. So the command FIND
“instance” would locate the string inside a quoted text string or comment, but would not find the vari-
able INSTANCE which would have been automatically capitalized in the program.

If there is no current program, then FIND reports an error. Use the OLD command to make an existing
program current, or use the NEW command to create a new program.

If there are no copies of the selected string, then no error is reported but the message “Found 0 in-
stances” is printed. If there are instances, each line of the program containing the search value is
printed, followed by a count of the total number of instances there are of the search string in the current
program.

JBasic Userʼs Guide!

78

FOR

The FOR statement creates a loop with an index variable that changes value by a specified incremental
value each iteration of the loop. The loop executes as many times as it takes to increment the index vari-
able past a given limit.

 FOR index = start TO end [BY increment]
 ... statements ...
 NEXT index

The index is a variable that is initially assigned the start value. The statements are executed, and when
the NEXT statement is executed, the index variable has the increment value added to it. If the increment
was not specified, then 1.0 is assumed. The index is then compared to the end value, and if the end value
has been exceeded (greater than it if the increment is positive; less than it if the increment is negative)
then the program continues executing with the next statement after the NEXT. Otherwise, the statement
body is executed again.

If the index value is already past the limit, the loop does not run at all, but execution continues following
the NEXT statement. An increment with a value of zero signals an error.

Loop statements such as FOR...NEXT cannot be executed directly from the command line, but are only
valid in running programs.

An alternate version of the FOR statement allows you to specify a list of values to be assigned to the index
variable rather than an incremented value:

 NAMES = [“TOM”, “MARY”, “SUE”, “BOB”]
 FOR NAME = NAMES, “DAVE”
 PRINT “NAME = “; NAME
 NEXT NAME

In this example, the index variable NAME will be set to the value of each item in the list that follows the “=”
character. There is no TO or BY value. When one of the items in the list is an array, the index variable is
set to each value of the array in turn. So in the above case, the index variable will be set to “TOM”,
“MARY”, “SUE”, “BOB”, and “DAVE” in turn as the loop body executes. The values list can be a list of one
or more expressions, which must be separated by commas.

Finally, you can use either form of the FOR statement to execute a single statement as the loop body with
an implied NEXT. This is done by using the DO clause on the FOR statement:

! FOR N = SYS$PROGRAMS DO PRINT “PROGRAM = “; N

This executes the PRINT statement for each value of N in the SYS$PROGRAMS array.

JBasic Userʼs Guide!

79

You can use the CONTINUE LOOP and END LOOP statements to change flow of control while executing the
body of the loop. Consider the following example:

! FOR I = 1 TO 10
! IF I = 5 THEN CONTINUE LOOP
! PRINT “Value “; I
! NEXT I

In this case, when the value of the index variable is 5, the CONTINUE LOOP statement causes control to
transfer to the NEXT statement, which iterates the loop. That is, it discontinues the current instance of the
loop body, and runs the next loop iteration. If the ending condition is met, then the loop exits normally. In
the above example, all the index values from 1 to 10 will be printed except the value of 5, because the
CONTINUE LOOP causes the rest of the loop body to be ignored.

! FOR I = 1 TO 10
! IF I = 5 THEN END LOOP
! PRINT “Value “; I
! NEXT I

Similarly, the END LOOP statement could be used to terminate the loop completely. In that case, execution
would continue in the statement following the NEXT statement. In this example, the index values from 1 to
4 will be printed, and then the loop will be terminated even though the FOR statement end condition has
not yet been met.The value of the index variable in that case would be left at the last value (5, in the ex-
ample above).

JBasic Userʼs Guide!

80

FUNCTION

The FUNCTION statement in a stored program declares a function, which takes zero or more arguments
and returns a single value.

 FUNCTION name ([type] arg [, [type] arg...])

The function is later called by the given name. The caller must supply at least as many arguments as are
declared in the function. If there are no arguments, use empty parenthesis. If there are to be variable
numbers of arguments, end the argument list with an ellipsis ("...") indicator.

By default, the function does not have to declare a type for what it returns. Rather, the RETURN statement
is used in the function to pass a result back to the caller, and the function result is whatever type the value
is. You can specify a specific data type for the function value, in which case the RETURN statement value
is always converted to the required type. For example,

 FUNCTION ARCTANGENT(X) RETURNS DOUBLE

In this case, no matter what the ARCTANGENT program code calculates as a result (perhaps an integer
or a double), the result will always be converted to a double before returning the result to the calling ex-
pression. The type of the parameters can also be optionally specified, as shown in this example:

! FUNCTION FOO(INTEGER X, DOUBLE Y)

In this example, the parameters have explicit types given to them. When the type is given, whatever data
is passed to the function is converted to the given type before being stored in the local argument variable.
So the above example guarantees that the first value will be an integer, and the second will be a double,
regardless of the values passed to the function. If the type names are not given, then the argument vari-
ables take on whatever type the passed parameter was in the calling program.

You can specific default values for parameters as well.

! FUNCTION BAR(INTEGER X, INTEGER COUNT=10)

In this example, the first parameter must be specified, and is converted to an integer. The second pa-
rameter may be omitted in the calling program; if it is not given then a value of 10 is assumed for the sec-
ond parameter.

The function can be included anyplace an expression exists, and there is no distinction between stored
program functions and intrinsic functions built into JBasic as far as how they can be used or called. See

JBasic Userʼs Guide!

81

the section on Functions elsewhere in this document for a list of the built-in functions. Use the SHOW
FUNCTIONS command for a runtime list of the built-in and stored program functions.

You can define additional characteristics of the function you create by using the DEFINE() clause follow-
ing the function argument list. See the documentation on the PROGRAM statement for more details.

JBasic Userʼs Guide!

82

GET

The GET command is used to read information from a BINARY format file, which means the format of the
data stored on the file matches the internal binary representation of the information in the computer, as
opposed to a human-readable format. The information read from the file is stored in variables just like a
INPUT statement that reads from a file. Data read from a BINARY file must be identified not only by the
variable that will contain the information, but the type of data that the information is stored as on the disk
file.

The binary format is specified in one of two ways: explicitly in the GET statement or via an array of record
data types that describes what is to be written.

! GET FILE BD, INTEGER ID, STRING(30) N, DOUBLE SALARY!

In this example, the variables ID, N, and SALARY are read from the file. The variable ID is read as an in-
teger, with a possible value in the range of +/- 2^31. The variable N is read as a string, with information on
the maximum amount of space reserved in the file for 30 characters of data. The variable SALARY is read
as a double precision floating point value.

Note that while the variable N may be any length from zero to 30 characters, space is reserved in the file
for 30 characters of data. This will be important when the program needs to position itself in the file and
must calculate the location of the binary data. See the documentation on the SEEK command for more
information.

You can use the FIELD statement to create a definition of the contents of each data record in the file.
This is then automatically used when a GET statement reads data. For example,

! FIELD #1, STRING(30) AS NAME, INTEGER AS ID
! GET #1

The GET statement reads a record from the file and stores the values in the variables NAME and ID. The
FIELD stays in effect until another FIELD statement creates a new definition or a CLEAR FIELD state-
ment removes the field definition completely. This field definition is used for both GET and PUT state-
ments. See the documentation on the FIELD statement for more information.

If you use a FIELD that is not bound to a specific file, you can still reference it from a GET or PUT state-
ment with the USING clause:

! FIELD MYDATA, STRING(30) AS NAME, INTEGER AS ID
! GET #1, USING MYDATA

JBasic Userʼs Guide!

83

GOSUB

The GOSUB statement transfers control to another statement in the current program, identified by a label.
Unlike GOTO, when the program executes a RETURN statement, control will return to the statement follow-
ing the GOSUB. This allows internal subroutines (without parameters) to be written in the current program.

 X = 3
 GOSUB TWOX
 PRINT X
 RETURN
 TWOX: X = X * 2
 RETURN

The above program will cause X to be set to 6. The GOSUB statement transfers control to a line within the
same program that executes a RETURN when it is ready to return control to the program statement that
called it.

In the above case, the subroutine TWOX could be called from many places in the program, and each time
it would execute the same lines of code at the label TWOX and then return to the statement following
whichever GOSUB directed it to transfer control.

This allows for simple subroutines to be implemented within the program for performing commonly per-
formed operations that can be called from many places in the same program. When the subroutine is
running, it has access to all the same symbols as the rest of the program, and any variable created or
changed in the program will be in the same scope as the rest of the running program.

Obviously, most subroutines perform a more interesting operation than just doubling the value of a given
variable. However, the important thing to note is that the subroutine does not have any additional informa-
tion that is given to it other than the currently available variables. See the CALL statement for information
on how to pass control to an entire program, giving it specific values for variables to operate on.

See the documentation on the SUB statement for information on how to create local subroutines in the
current program that accept parameters and have their own variable scope.

JBasic Userʼs Guide!

84

GOTO

The GOTO statement transfers control to another statement in the current program, usually identified by a
label.

 GOTO name
 or
 GOTO USING(expression)

The destination label can be identified by a name such as TRY_AGAIN or by a USING clause with an ex-
pression that resolves to a string, which is the name of the label. The destination statement has a label
which is a name followed by a single colon, optionally followed by the first statement executed at that la-
bel. For example,

 GOTO TRY_AGAIN
 ...

TRY_AGAIN:
 PRINT "We are going to try again"
 ...

For compatibility with older dialects of BASIC you can also use a line number as the destination of a
GOTO statement. The program must have line numbers (as opposed to unnumbered statements in a
workspace file).

1000! GOTO 1035
! ...
1035 PRINT “I AM HERE”

In this example, the statement at line 1000 will transfer control to the statement with line number 1035. A
RENUMBER command will automatically update line number references in statements like GOTO that
transfer control to a specific line in the program.

NOTE

Use of line numbers as branch destinations is not recommended because they are hard to remember and
can change. Use text labels instead.

JBasic Userʼs Guide!

85

HELP

The HELP command displays information about commands, organized by topics which are one or more
paragraphs of reference information and examples. If you just type HELP, you get an introductory topic
that gives you information on other HELP items that are available.

• To see a list of help topics, use HELP TOPICS.

• To see a tutorial on entering and running programs, use HELP PROGRAMS

• To see information about available functions, use HELP FUNCTIONS

The text that is used for the HELP command output is part of the JBasic program archive file, jbasic.jar,
and is in the member “JBASIC-HELP.TXT”. You can edit this text if you wish to add additional information
to the HELP command output.

The HELP command is a good example of a JBasic verb. The HELP command is implemented as a
JBasic program that acts as if it was a statement in the language. You can see the source code for the
HELP command by using the command SHOW VERB HELP once the program is loaded into memory by
executing at least one HELP command.

JBasic Userʼs Guide!

86

IF

The IF statement conditionally executes one or more statement. The IF statement evaluates an expres-
sion whose result is tested to see if it is a true or non-zero.

 IF X>3 THEN PRINT "We win!"

If the value of X is greater than 3, then the PRINT statement is executed. If X is less than or equal to
three, then the next statement in the program is executed instead.

You can have IF statement include a statement to be executed if the condition is false.

 IF X = 3 THEN PRINT "winner" ELSE PRINT "loser"

In this case, if X is 3 then "winner" is printed. If X is not 3, then "loser" is printed. If the THEN clause uses a
compound statement (multiple statements separated by colons) then do not put a colon before the ELSE
keyword. For example,

! IF X THEN PRINT “WINNER!” : GOTO DONE ELSE PRINT “STILL NO WINNER.”

Note that IF statements can contain GOTO statements that will effect flow of control in the program. The
IF..THEN..ELSE statement above could have been written as

 IF X = 3 THEN GOTO WINNER
 PRINT "loser"
 GOTO DONE

WINNER:
 PRINT "winner"

DONE:

This code segment will use GOTO to conditionally execute a block of code.

For compatibility with older versions of BASIC, you can specify a line number to branch to if the expres-
sion evaluates to true or non-zero. For example, consider the following code fragment:

JBasic Userʼs Guide!

87

! 1000! IF X > 3 THEN 1035
! ...
! 1035 PRINT “X was greater than 3!”

The line number follows the THEN clause without a GOTO keyword. There cannot be an ELSE clause in
this variation of the IF statement.

NOTE

When a RENUMBER command is given with the sample code above, if statement 1035 gets a new
line number, then the statement at line 1000 will be modified as well to point to the new line num-
ber.

Use of line numbers to specific the destination of a branch operation is not recommended. The
line numbers are not inherently meaningful to the programmer compared to a text label (GOTO
HANDLE_INPUT means more to the programmer than GOTO 3310). Additionally, because the
RENUMBER statement changes the line numbering, the programmer will find that even choosing
“easy to remember numbers” like 3000 will result in unpredictable changes to the line numbering
scheme.

Finally, you can construct IF..THEN..ELSE logic using multiple lines of code. This requires that there be
no statement text following the THEN keyword; the block of code executed must start on the following line.
For example,

! IF SALARY > 12.00 THEN
! WAGE = HOURS * SALARY // Execute if condition true
! PRINT “STRAIGHT SALARY”
! ELSE
! WAGE = HOURS * (SALARY * 1.20) // Execute if condition false
! PRINT “ADJUSTED SALARY”
! END IF

In this example, the true block of code will be executed when the condition is true (the value of SALARY is
greater than 12.00). This block of code consists of all the statements before the ELSE statement, which
must stand by itself. The false block of code is executed if the condition is false; all statements between
the ELSE and the END IF will be executed in this case. The ELSE clause is optional, if there is no false
block of code then the THEN clause is terminated with the END IF statement.

JBasic Userʼs Guide!

88

INFORMAT

The INFORMAT statement is used to compile a input format specification and store it in a record variable.
This format specification can then be used with the INPUT() function to process an input buffer accord-
ing to the format specification.

! INFORMAT fmtvar AS format-spec [, format-spec]

The fmtvar is an identifier indicating a variable that will be created to contain the format specification.
The specification is an array of records, made up of one or more format-spec fields. Each format
specification defines an input operation or a positioning operation. For example,

! INFORMAT DOLLAR_FIELDS AS INTEGER(*), SKIP(“.”), INTEGER(*)
! FIELD_VALUES = INPUT(DOLLAR_FIELDS, “123.45”)

The first statement creates a format specification called DOLLAR_FIELDS that contains three specifica-
tions. The first reads an integer of variable length, the second skips until it finds a “.” character, and the
third specification reads another integer of variable length. The second statement applies this format to a
string value, and returns an array of values. The resulting data in FIELD_VALUES will be an array of two
items: the integer 123 and the integer 45, skipping the decimal point between them.

The following table describes the input format specifications supported.

Specification Description

INTEGER(size) Input an optional sign “+” or “-” followed by an integer value. If the
size is given as varying (indicated by an asterisk) then the input
specification reads characters until a non-integer character is found.
If a size is given, then exactly that many characters are read, and
the integer must be right-justified in the field.

SKIP(count) Skips the input pointer ahead count characters in the input field.
These characters are not used for data input.

SKIP(“string”) Skips the input pointer ahead until the string has been found, and
positions the input pointer immediately following the string value.

POS(count) Moves the input pointer to the specific position in the string, where
1 represents the first character in the input buffer, 2 indicates the
second character, etc.

JBasic Userʼs Guide!

89

INPUT

The INPUT statement is used to prompt the user for a value or list of values, and stores them in one or
more variables.

 INPUT [FILE identifier,] ["prompt",] identifier

If the FILE keyword is given followed by a file identifier, then the input is taken from the named file. Oth-
erwise, the user's console is prompted. If the prompt string is not given, the string content of the variable
SYS$INPUT_PROMPT is used, which defaults to "? ". You cannot specify a prompt string when a FILE
identifier is used. The INPUT identifiers must follow the same rules as identifiers on the left side of the “=”
in a LET statement.

The prompt text is printed on the console (if specified) and JBasic then reads text from either the console
or file to store in the named identifiers. If more than one variable value is to be read at one time, you
should separate them by commas or blanks in the input text.

The input variable can specify scope qualifiers to define the attributes of the variable. See the documenta-
tion on the LET statement for more information on scope qualifiers, such as marking the variable
READONLY after the data is stored.

The input is one or more values separated by commas, blanks or end-of-line. These values are assigned
in the same order as they are given to the identifiers in the INPUT statement. For example,

! BASIC> INPUT "Enter three scores: ", A, B, C

! Enter three scores: 33,55,13

The prompt string is displayed and the user enters three values. Upon completion of the statement, the
variable A will contain 33, the variable B will contain 55, and the variable C will contain 13. If more values
are given on the input than are needed to satisfy the INPUT statement variable list, the remaining values
are processed with the next INPUT statement. So if an INPUT statement requires input for a single vari-
able but two are given on the input line, a second INPUT statement wonʼt prompt for input but will just use
the additional value from the first input. Any unused input values are discarded when the program com-
pletes execution.

You can specify arbitrarily-complex expressions representing the location in which the input value is to be
stored. For example, this assumes an array of employee records and sets the value of the employee
name in an element of the array:

! INPUT “Enter your name: “, EMPLOYEES[EMPID].NAME

JBasic Userʼs Guide!

90

In this example, the variable EMPID is used to locate a specific record in the EMPLOYEES array and then
set the value to the member NAME in that record. If the variable references an array index position or re-
cord member does not exist, then it is created automatically.

You can specify the type of data that is to be returned in the input statement regardless of the type of data
found in the file by giving an AS clause. For example,

! INPUT #3, NAME AS STRING

This reads a value from the input file, and converts it to a STRING data type.

You can also specify the special data type of XML which means that the file is read until a valid XML string
is found. The resulting string is processed just as if it was passed through the XMLPARSE() function and
attempts to read a value from the XML string. If there is no valid XML data in the file then a SYNTAX error
is generated. If the XML string is incomplete, an EOF error is generated.

! INPUT #3, STUDENT_DATA AS XML

After the input file is read, the file is left positioned after the XML string. By default the root tag of the XML
is Value (case insensitive). You can specify an explicit root tag by specifying it as a string expression in
parenthesis, such as the following. The XML format must still be that of a JBasic Value but can have a
custom root tag name:

! INPUT #3, STUDENT_DATA AS XML(“STUDENTDATA”)

Finally, you can also specify a special data type of RAW XML which means that the file is read until a valid
XML string is found, which is returned as a JBasic string. If there is no valid XML string in the file then a
SYNTAX error is generated. If the XML string is incomplete, an EOF error is generated.

! INPUT #3, USERDATA AS RAW XML

After the input file is read, the input is left positioned after the XML string. If valid XML was encountered in
the file, then a complete XML specification will be found in the string variable USERDATA after the above
statement executes. The is the responsibility of the program to determine how to use or process the XML
data.

Another use of the INPUT statement is to allow the user's input to determine a label for each value, which
is returned to the program as a record. This is done with the BY NAME clause. For example,

JBasic Userʼs Guide!

91

! BASIC> INPUT “Data? “, FOO BY NAME
! Data? User=”tom”, age=38

This prompts the user for input. The user must enter one or more comma-separated values with a vari-
able followed by an equals sign and the value. Each user entry becomes a field in the resulting record.
For example, FOO in the above case will be set to the value { AGE:38, USER:”Tom”}.

Another version of this syntax allows the userʼs input to directly set you specify in the INPUT statement
using the BY NAME() clause. For example,

 INPUT "Parms? ", BY NAME(AGE, GENDER, NAME)

The user is prompted and enters a line of text consisting of a comma-seaprated list of the given names,
an "=", and a value. The names can be given in any order in the input. The following is an example of an
immediate mode INPUT statement showing the userʼs input.

 BASIC> INPUT "Parms? ", BY NAME(AGE, GENDER, NAME)
 Parms? GENDER="F", AGE=35, NAME="Sue"

When the statement completes, the three variables are given the values named by the user. If the user
does not give a named value for a variable in the BY NAME() list, then that variable is set to a double
missing value (NaN). If there is a syntax error in the user's input, all variables are set to NaNs. You can
specify a different name for the user to specify than the variable it is assigned to, as in

 INPUT "Parms? ", BY NAME(PARM1 AS P1, PARM2 as P2)

In this case, the user input must reference P1 and P2, but the values are stored in variables PARM1 and
PARM2. This allows you to specify simplified names for the user input.

If the user specifies values that are not in the BY NAME() list, they are normally ignored. However, you
can capture a list of the unexpected variables using the UNEXPECTED AS clause:

 INPUT BY NAME(USER, PASSWORD) UNEXPECTED AS EXTRAS

If the user's input contains any values other than PASSWORD and USER, the names of the values are
stored as record named EXTRAS If there were no unexpected values in the input then the record will be
empty. Otherwise the record contains the names and values that were unexpectedly found in the input.

JBasic Userʼs Guide!

92

In any use of the INPUT BY NAME notation, if the userʼs input is not syntactically valid, then the global
variable SYS$STATUS is set to reflect the error detected, such as invalid numerical notation or missing “=”
character, etc.

! TABLE EMPDATA, STRING NAME, INTEGER AGE, DOUBLE SALARY
! INPUT “Enter employee data: “, ROW OF EMPDATA

The INPUT statement can also be used to input a row of data from a table. The INPUT ROW OF state-
ment processor uses the description of the table to determine the required types of data for the input
stream. It reads as many items as needed from the input buffer to satisfy the requirements for one row of
the table, and performs the type conversions as needed automatically. If a prompt is not given in the
statement, then a prompt is constructed using the names of the columns. The new row is added to the
end of the table.

JBasic Userʼs Guide!

93

INTEGER

The INTEGER statement declares one or more variables of type INTEGER, and assigns them initial val-
ues. Optionally, the value can be declared as an array of integer values by using an array size. For exam-
ple,

! INTEGER X[10], AGE=49

This statement creates an array with ten elements, each of type INTEGER. The array is initialized to the
default value for the type, so in this case it is an array of zeroes. The array size must be specified using
square brackets.

The statement also creates a single INTEGER value named AGE, which is initialized to a specific value of
49.

This statement has the same effect of using the DIM statement with an explicit type of INTEGER, but also
allows you to specify an initial value for each item.

JBasic Userʼs Guide!

94

KILL

The KILL statement is used to delete a file, directory, or execution thread. In the case of a file or direc-
tory, the argument is a string containing the name of the path or file. If the argument is a string identifying
a path to a directory (as opposed to a file), the directory must be empty or an error occurs.

 KILL "names.txt"

The statement will signal an error if the file does not exist, or if security restrictions prevent the file from
being deleted.

You can also KILL an open file by referencing it using its file handle, indicated by the FILE keyword:

 KILL FILE MYFILE

The handle variable MYFILE must reference an open file. The file is closed and deleted; after this state-
ment the file handle is no longer valid.

Additionally, you can use a form of the KILL statement to stop a running thread.

! TLIST = THREADS()
! KILL THREAD TLIST[1]

This uses the THREADS() function to get a list of the active threads, which is a list of strings. Each string
contains the name of the instance of JBasic running the thread (the SYS$INSTANCE_NAME variable in
that thread). This string is used with the KILL THREAD statement to stop that thread from running.

Note that a thread that is waiting for an event like user input or reading from an empty queue will not stop
until the event is complete.

JBasic Userʼs Guide!

95

LET

The LET statement assigns a value to a variable. If the variable does not exist, it will be created. If the
variable already exists and is read-only, an error is signaled

 [LET] variable = expression

The verb LET does not have to be explicitly specified in the statement, though it will be added automati-
cally by JBasic. By default, the variable's type is set to whatever type the expression result is, even if that
is different than the variableʼs previous type. For example,

 X = 33
 X = "Test"

This is a valid sequence of statements, and after both statements are executed, the variable X will be of
type string, and contain the characters “Test”.

A variable can be created as an array, simply by specifying an array index in the left side of the expres-
sion. For example,

 NAMES[3] = "Mary"

If the array NAMES does not exist, it is created, and the third entry is set to the string "Mary". The array
elements NAMES[1] and NAMES[2] will be set to empty strings. Specifying an array subscript that is larger
than the current arrays size results in the array being extended automatically.

You can specify arbitrarily complex expressions representing the location in which the expression is to be
stored. For example, this assumes an array of employee records and sets the value of the employee
name in an element of the array:

! EMPLOYEES[EMPID].NAME = “Tom”

In this example, the variable EMPID is used to locate a specific record in the EMPLOYEES array and then
set the value to the member NAME in that record. When used in a LET statement (or as the target of an
INPUT, LINE INPUT, or READ statement), if the array index position or record member does not exist,
then it is created.

The LET statement can also define additional information about the variable using scope qualifiers. These
are indicators that define information about what symbol table (such as the local, parent, root, etc.) the
variable is created in, or if the variable is to be marked as COMMON or READONLY. These scope qualifiers

JBasic Userʼs Guide!

96

are specified after the name of the variable, and can only be given after a scalar variable. That is, you can
set the scope of the variable X in a LET statement, but you cannot apply scope to an element of a com-
pound variable reference such as X[I].KIND.

A scope qualifier can be specified right after the name of the variable, separated by a “slash” character,
as in this example:

! X/PARENT/ = 3.5
! Y/COMMON,READONLY/ = “Bubba”

In these examples, the variable X is created in the parent table - that is, the table of whatever program
called the current program. In the second example, the variable Y is marked as both COMMON (which
means it will be copied to any program invoked with a CHAIN command) and is also READONLY which
means it cannot be modified once it is set. When more than one scope qualifier is used, they are sepa-
rated by commas.

The permitted scope qualifier names are:

Qualifier Description

LOCAL The variable is created in the local (current) symbol table. This is
the default behavior of any statement that creates a variable and
does not need to be explicitly stated.

PARENT The variable is created in the parent of the currently running state-
ment. If the statement is in a program that was called from another
program, the variable is created in that programʼs symbol table. If in
a program run from the command prompt, the variable is created in
the shellʼs symbol table and will be available after the program or
statement terminates.

ROOT The variable is created in the ROOT symbol table. The ROOT symbol
table is the “ancestor” of all other symbol tables. A symbol that is
stored in the ROOT table will be visible to any program or statement
running in any thread. This is one way that information can be
shared between running JBasic program threads.

COMMON The variable is marked as a COMMON variable, which means that it
will be copied to the symbol table space of any program that is in-
voked with a CHAIN statement from the current program.

READONLY The variable is marked as READONLY which means that it cannot
be modified once the value is set by the current statement.

Note that these scope qualifiers can also be set on any other statement that creates a variable value,
such as INPUT, LINE INPUT, READ, GET, or DIM. An exception is that they cannot be used on the index
variable of a FOR statement.

JBasic Userʼs Guide!

97

LINE INPUT

The LINE INPUT command reads a complete line of text from a file or the command-line console and
stores it in a string variable. An optional prompt string can be given if input is from the console.

 LINE INPUT [FILE identifier] ["prompt text",] name

The input is read from the console by default unless a FILE identifier clause is given. This must be the
identifier for an open file; see the documentation on the OPEN statement for more information.

The prompt text can only be specified when reading from the console; it cannot be specified if the FILE
clause is used. If input is from the console and no prompt string is given, then there is no prompt text out-
put to the console.

The user can enter a single line of text with any internal punctuation, spacing, etc. and the entire line of
text is stored as a string in the named variable. If the input is from a file, then a single line of the file is
read in and stored in the string variable. This is different than the INPUT statement which will evaluate the
text entered and look for multiple values to store in multiple variables. The LINE INPUT statement will
always read an entire line of text, and store it in a single variable.

You can specify arbitrarily complex expressions representing the location in which the expression is to be
stored. For example, this assumes an array of employee records and sets the value of the employee
name in an element of the array:

! LINE INPUT “Enter your name: “, EMPLOYEES[EMPID].NAME

In this example, the variable EMPID is used to locate a specific record in the EMPLOYEES array and then
set the value to the member NAME in that record. When used in a LINE INPUT statement (or an INPUT,
LET, or READ statement), if the array index position or record member does not exist, then it is created.

The input variable can specify scope qualifiers to define the attributes of the variable. See the documenta-
tion on the LET statement for more information on scope qualifiers.

JBasic Userʼs Guide!

98

LIST

The LIST command displays the current programʼs text to the console.

 LIST

The program is output in a formatted fashion, as opposed to the exact spacing as originally entered. You
can list a specific line, or a range of lines. If the beginning or ending of the range is not given, then the
first or last lines are assumed.

 LIST 1150 // List line 1150
 LIST 100-150 // List lines between 100 and 150
 LIST -30 // List lines up to line 30
 LIST 500- // List lines after 500

You can use statement labels for line numbers as well. The label must exist or an error is reported.

 LIST INIT - TERM // List lines between INIT and
 // TERM statement labels.

The output can be controlled by several global variables, which affect the formatting of the program text.

Variable Description

SYS$LABELWIDTH This variable describes the default number of characters reserved
for statement labels in the output. Statements with no label have
this many blanks at the start of each line so that program state-
ments line up and are easier to read. The default is 10 characters.

SYS$RETOKENIZE This variable indicates if the program text entered by the user is
retokenized into uniform format. When set, JBasic uses a set of
internal rules to insert spacing in the program line and capitalization
of non-quoted strings. The default is true.

SYS$SOURCE_LINE_LENGTH Statements longer than this number of characters are “wrapped” by
using the continuation character “\” at the end of the line, and sub-
sequent characters appear on the next line. The default is 80.

JBasic Userʼs Guide!

99

LOAD

The LOAD statement loads a text file into memory as an executable program element. The text file can
contain one or more program, function, verb, or test definitions.

! LOAD “program-file”

If you specify a file name without an extension, the extension of “.jbasic” is assumed. The program(s)
in the named file are added to the programs already in memory - multiple LOAD commands result in add-
ing programs to memory - not replacing the ones already in the workspace - unless the file contains pro-
grams with the same name as something already in memory.

The format of a program file is an editable text file containing all the program elements to be loaded. Each
program element must start with a program element declaration statement, such as PROGRAM, VERB, or
FUNCTION. Programs may have line numbers, but they are optional. However, programs loaded from a
workspace that do not have line numbers are given line numbers by default starting at 100.

All of the lines of text following a program element declaration statement are added to the program being
stored, until the end of the file or the next program element declaration. This means that comments that
appear before a PROGRAM statement will be stored in the previous PROGRAM, not the current program!

If the first element in the file does not contain a PROGRAM, VERB, or FUNCTION statement, then the file
name is used to create a default PROGRAM name.

There is a special case of LOAD, when the file being loaded is an XML representation of a program. This
kind of file can be created using the SAVE XML command. In this case, the file can contain only one in-
stance of a program, and it must be correctly formed XML.

JBasic Userʼs Guide!

100

LOCK

The LOCK command is used to create a lock if it doesn't already exist, and put a hold on the lock so no
other JBasic thread in the current program can access the lock. Specify one or more lock names in a
comma-separated list:

 LOCK COUNT_L, COUNT_Q

The example above creates locks COUNT_L and COUNT_Q (if they don't already exist) and then holds the
locks. This will prevent any other thread from being able to acquire the same locks.

Another thread that executes a LOCK statement for the same named lock will wait until the lock is re-
leased by the thread that holds it. The UNLOCK statement is used to release locks so other threads that
need the locks can then hold the locks.

Locks are used to create a “critical region” of your programs that will prevent more than one concurrent
thread of execution from performing conflicting operations. Consider the following sample code:

 LOCK COUNT_L
 COUNT = COUNT + 1
 UNLOCK COUNT_L

If this same code is executing simultaneously in more than one thread, there is a risk that the threads will
interfere with each other. The first thread will load the value of COUNT, and add 1 to it. The second thread
would then load the same value of COUNT and add 1 to it. The first thread would write the newly updated
value back to COUNT, and then the second thread would write the *same* value back to COUNT. The result
is that - depending on the order of instructions being executed simultaneously - both threads will attempt
to increment COUNT but it will effectively only be incremented once.

By using the LOCK and UNLOCK statement in the example, each thread is guaranteed to have exclusive
execution control while they hold the same lock being shared among multiple threads, and the increment
of COUNT will be completed on one thread before it can run on another thread.

When a program has created a dynamic lock name, where the name is stored in a string variable, the
LOCK statement will accept a USING clause, as in:

! LOCK USING(“LOCK_” + LCKID)

This example assumes that an integer value LCKID will be appended to the string “LOCK_” to indicate the
specific lock being manipulated.

You can create a lock without acquiring access to it using the LOCK CREATE command. For example,

JBasic Userʼs Guide!

101

! LOCK CREATE MYLOCK

! ! or

! LOCK CREATE USING (“LOCK_” + LOCKID)

In these examples, a new lock is created and owned by the current process. However, the lock is not
currently in a locked state, as indicated by a SHOW LOCK command, or by using the LOCKS() function to
return an array of records describing each active lock.

See the documentation on the UNLOCK statement for more information. You can use the SHOW LOCKS
command to display the list of known locks in the JBasic session. You can use the CLEAR LOCK com-
mand to delete the locks, and you can use the LOCKS() function to get an array of records describing
the locks.

Note that locks are global to a process; all sessions and all threads in a single process will have access to
the same table of locks and lock names.

JBasic Userʼs Guide!

102

MESSAGE

The MESSAGE statement defines a signal name and the text used to format the associated message in a
given language.

 MESSAGE identifier (language) "format string"

The identifier must be a valid JBasic name that is not already a reserved word, function name, or state-
ment name. This is followed by a language code, which must be a two-letter language code that corre-
sponds to the userʼs language. EN is the default, and means English. Other possible codes include FR for
French or ES for Spanish. These codes are defined by the Java standards for language encoding.

The format string is the text string used to display the signal when it is formatted for output as an error
message. If the signal allows an argument, it can be placed in the format string using “[]” as s a place-
holder.

For example,

 MESSAGE VERB (EN) "Unrecognized command, []"
 MESSAGE VERB (ES) “Comando desconocido, []”

This defines the same message code with two language encodings (English and Spanish). The text that
will be displayed in the event of a VERB error will be selected based on the userʼs current language set-
ting as a user, typically a setting of the operating system such as the Mac OS X “System Preferences”
panel.

You can override the setting of the language by changing the JBasic variable named SYS$LANGUAGE,
which must be a two-character string identifying the language encoding.

JBasic Userʼs Guide!

103

MID$

The MID$ pseudo-function is used on the left hand of an assignment operation to store character data
into the middle of an existing string, without disturbing other characters in the string.

! NAME = “I AM BOB SMITH”
! MID$(name, 6, 8) = “TOM”
! PRINT NAME

The above sequence will print out “I AM TOM SMITH”, because characters 6-8 of the named string vari-
able were replaced with the string expression “TOM”.

The string variable used in the MID$() pseudo-function must already exist; you cannot create a new
variable using the MID$() operation.

The position within the string is 1-based; that is, the first character is position 1, and the last character is
at the position also returned by the LENGTH() function. A runtime error is generated if the start position is
less than 1, the end position is greater than the length of the string, or if the end position is less than the
start position.

If the string value to be inserted is shortened than the required number of characters it is blank-padded. If
it is longer than the available space, the string is truncated such that only the left-most characters are
used.

Note that scope qualifiers are not permitted in the MID$ pseudo-assignment operation. See the docu-
mentation on the LET statement for additional information on scope qualifiers.

JBasic Userʼs Guide!

104

MULTIPLY

The MULTIPLY statement multiplies an existing variable by the value of an expression.

! MULTIPLY HOURS BY RATE

The above statement calculates the expression and adds it to the existing value of HOURS. If the variable
HOURS does not exist, then this statement generates a runtime error. This is essentially equivalent to the
statement LET HOURS = HOURS * RATE).

Note that if this expression uses pre- or post-increment or decrement operators in the target expression,
they are processed after the statement completes the storage of the new value in the target. For exam-
ple,

 B = 3
 MULTIPLY EMPS[B++] BY X+B

The increment operation of B will take place after the sum X+B is multiplied by the array value EMPS at the
location of the current value of B (3 in this case).

The MULTIPLY statement can also be used to repeat a string value:

 X = “-”
 MULTIPLY X BY 80

The result is that the variable will contain a string containing 80 dashes. The value to be multiplied must
be a string and the value it is multiplied by must be an integer.

JBasic Userʼs Guide!

105

NEW

The NEW statement creates a new program with no statements in it. You enter new statements by entering
commands that are preceded with a line number. Statements may be entered in any order, bur are stored
in line-number-order.

! NEW [kind] [name] [arguments]

If you do not specify a kind of FUNCTION, VERB, or TEST, then PROGRAM is assumed. If you do not give
the program a name, it will be given a unique name. This is the name that the program will be referenced
by in a SHOW PROGRAMS listing or when you wish to call the program from some other program. The ar-
gument list is optional and can be used with PROGRAM or FUNCTION programs only.

The program is created with a declaration statement, a few header comments, and a RETURN statement.
You can use the RENUMBER command to change the line number ordering in the program as you add new
statements.

Here is an example of creating a new FUNCTION named DBL, and then entering a statement to represent
the body of the function. In this case, the function is defined with an argument list, and that can be put on
the NEW statement. If no arguments are provided, then the function wonʼt accept arguments until the
FUNCTION statement is subsequently modified. See the documentation at the introduction of this manual
on creating programs for more information.

! NEW FUNCTION DBL(X)
! 1040 return x*2

You can create a new program from a record value. For example, if you use the PROGRAM() function to
capture the contents of a current program, the resulting record can be used to construct a new instance of
the program:

 NEW USING(MYPGM)

In this example, the variable MYPGM must contain a record with members for NAME (the name of the pro-
gram), USER (a boolean indicating if it is a user program or not), and LINES (an array of strings contain-
ing the individual program statements). The result is the creation of a new program with the given name
and program lines. The following example effectively copies “OLDPGM” and creates a new program called
“NEWPGM” using the program data:

JBasic Userʼs Guide!

106

 OLDPGM = PROGRAM(“OLDPGM”)
 OLDPGM.NAME = “NEWPGM”
 NEW USING(OLDPGM)

JBasic Userʼs Guide!

107

NEXT

The NEXT statement identifies the end of a FOR...NEXT loop construction. See the documentation for
the FOR statement for more information.

Loop statements such as FOR...NEXT cannot be executed directly from the command line, but are only
valid in running programs.

JBasic Userʼs Guide!

108

OLD

The OLD statement makes an existing program become the current program. The program name must
exist as a program in the stored program memory. See the LOAD and SAVE commands for information on
how to bring programs into and out of stored program memory from other locations like a disk.

 OLD name

The existing program (if any) is not disturbed, but the program named in the OLD statement becomes
"current". That means that a RUN command with no argument will run that program, and a LIST com-
mand will list it. Statements can be stored in the program by entering them with a line number on the
command line.

You can use OLD to access the program text for non-program objects by including the type.

 OLD FUNCTION MIXEDCASE

This makes the function MIXEDCASE be the current program object that can be modified or viewed (via
LIST). You cannot access intrinsic functions this way, since they do not have associated JBasic program
text.

JBasic Userʼs Guide!

109

ON

The ON statement declares a statement label to be executed in the event of an error being signaled. The
error could be generated by the program code itself (see the SIGNAL statement) or could be the result of
an error in the program syntax or execution signaled by JBasic. For example,

 ON ERROR THEN GOTO ERROR_HANDLER

This will cause control to transfer to the label ERROR_HANDLER when any error occurs.

 ON TOOBIG THEN GOTO FIX_UP

This will cause a GOTO to the routine FIX_UP to be executed if the specific error TOOBIG is signaled.

An ON statement only applies to the program it is executed in. For example, if PROGRAM FOO calls PRO-
GRAM BAR using a CALL statement, and PROGRAM BAR has an ON statement, then only errors executed
while in PROGRAM BAR will trigger the GOTO statement. When PROGRAM BAR executes a RETURN state-
ment, then the ON..THEN GOTO is discarded. Each PROGRAM may have its own ON statements, so PRO-
GRAM BAR and PROGRAM FOO may each have an ON ERROR statement, and each is executed when the
error is signaled in the program that contains it.

An ON statement need only be executed one time in the program to stay in effect for as long as that pro-
gram is running regardless of whether an error is triggered or not.

When an ON..THEN GOTO statement is executed, the SYS$STATUS record variable describes the spe-
cific error.

Variable Description

SYS$STATUS.CODE The error code (a mnemonic identifier) such as VERB

SYS$STATUS.PARM The argument that is included with the error, if any. For example,
in a VERB error, it is the text of the unrecognized command.

SYS$STATUS.SUCCESS Boolean ʻtrueʼ if this is a successful status code.

SYS$STATUS.PROGRAM The name of the program running when the error occurred.

SYS$STATUS.LINE The line number of the program when the error occurred.

JBasic Userʼs Guide!

110

OPEN

The OPEN statement opens a file for data access. The file can then be used with a PRINT, LINE INPUT,
or INPUT statement if it is a text file, or GET, PUT, and SEEK statements if it is a binary data file. You must
specify the path name of the file, the mode (INPUT, OUTPUT, etc. from the table below) and provide an
identifier used to reference this file later.

 OPEN FILE "full-path-name" FOR mode AS identifier

Any of the statement clauses FILE, FOR, or AS can appear in any order, but all must be specified. The
identifier is used to locate this specific file later for statements that reference the file such as a PRINT
statement.

The mode must be one of the following keywords:

Mode Description

INPUT The file must already exist and is opened for input.

OUTPUT The file is created if needed and is written to from the beginning of
the file.

APPEND The file is created if it does not exist. Writing begins at the end of
the existing file if there is any existing content.

BINARY The file is created as a “binary” file which means that numbers and
strings are stored in the file just as they are stored in computer
memory.

QUEUE The file is an in-memory thread-safe FIFO (first-in, first-out) queue
used to communicate messages between JBasic threads.

PIPE The file is a command to the local host system which is executed by
JBasic. The output of the command becomes the “contents” of the
file and can be read using LINE INPUT, etc.

DATABASE The file is a JDBC database, and the file path name is a DSN re-
cord instead of a string variable. See the section on Databases in
the first chapter of this document for more information.

By default, the file is a “text” file, meaning all output is written as human-readable text. A file created using
INPUT, OUTPUT, or APPEND modes can be opened by a text editor or printed to a printer.

By comparison, a BINARY file has its information stored in the internal representation of the data as used
by the computer itself, and is generally not readable by a person or usable in a text editor. However, BI-
NARY files have the benefit of being “random access.” This means that the program can decide exactly
where in the file (using a relative byte position) a data item is to be read or written. This lets the JBasic
program organize the data in the file into “records” that are collections of like data, such as name, age,

JBasic Userʼs Guide!

111

and salary, and access records directly (rather than having to read all records to find a specific one.) See
the documentation on the GET, PUT, and SEEK statements for more information.

For compatibility with other dialects of BASIC, there is considerable flexibility in the expression of the
OPEN statement clauses. The clauses are defined as the FILE clause which names the path to the file,
the FOR clause which names the mode of access, and the AS clause which tells the file identifier to use
for subsequent access to the file. These clauses may appear in any order, and the keywords FOR and
FILE are optional. As an example, the following statements are equivalent:

! OPEN FILE “X.DAT” FOR OUTPUT AS MYFILE

! OPEN OUTPUT FILE “X.DAT” AS MYFILE

! OPEN AS MYFILE “X.DAT” FOR OUTPUT

Additionally, file identifiers can be specified in one of two ways. The default mode for JBasic (and the one
used in most examples in this document) is that file identifiers are names, just like variable names. In the
above examples, MYFILE is the identifier which would be used on subsequent PRINT or CLOSE state-
ments. Some dialects of BASIC require that files be identified by an integer expression instead of an iden-
tifier. In this case, the integer expression must be preceded by a pound-sign (“#”) character.

! OPEN “X.DAT” FOR OUTPUT AS #3

In this case, all references in the program to this file must be made as #3 rather than using the FILE
keyword. So to print a line of text to this file, the statement would look like this:

! PRINT #3, “This is a test line of text”

When numeric file notation is used, the file number is converted to an identifier, so a SHOW FILES com-
mand will show something like __FILE3 for the open file.

For OUTPUT text files, you can specific automatic column formatting by adding the COLUMNS clause. This
lets JBasic assist you in creating columnar output. For example,

 OPEN FILE "x.txt" FOR OUTPUT AS X COLUMNS(25,3)

This means that each PRINT statement to the file that does not include a newline will be aligned into 25-
character-wide columns, and every three columns a newline is automatically inserted. If you then PRINT
to the file with a newline, then the column position is reset to the first column but formatting continues.
Note that if you do not use the trailing ";" to prevent a newline character, then column formatting is not
used.

JBasic Userʼs Guide!

112

In the column specification, if the width is less than zero, it means that the column is right-justified. If the
width is greater than zero, the column is left justified.

As documented in the introductory section on threads, you can also create a reference to a queue, which
is like a list of strings. The first string written to the list will be the first one removed, but at any given time
more strings may be on the list than there are readers ready to remove them. A queue is created by using
the QUEUE keyword.

! OPEN QUEUE “TASK_LIST” AS MYQ

This creates the queue TASK_LIST if it does not already exist. A queue resides only in memory for the
current process, and never is written to disk. If the queue already exists, then it is opened. Unlike text
files, a queue can be read and written to using the same file reference. Once a queue is opened, you can
use PRINT and LINE INPUT statements to write strings to the queue or read them back in. This is usually
used between threads, but can also be used within a main program.

Because the queue is referenced as an open file, you will see it in the list of open files when you issue a
SHOW FILES command. However, there is only one set of queues for the entire JBasic process, so there
may be queues that were created by other threads that do not appear as open files in the main thread or
a thread that issues a SHOW FILES command. In this case, you can use the SHOW QUEUES command to
see all active queues on all threads. When the last thread closes a queue, it is deleted.

Another special file type is a PIPE, which is really a connection between JBasic and another program
being run on the same computer system. The file name is the command that invokes the program. When
the program runs, it normally produces output. This output becomes the “contents” of the file, and is read
using conventional JBasic statements such as LINE INPUT. Here is a simple example of a program that
uses a PIPE file type to read the output of a UNIX directory listing command.

! OPEN PIPE “ls -l” AS #1
! DO WHILE NOT EOF(1)
! LINE INPUT #1, TEXT$
! PRINT TEXT$
! LOOP
! CLOSE #1

This approximates the behavior of the command SYSTEM “ls -l” which also executes the command
and displays the output. Of course, the advantage of the PIPE is that your program can use the output in
the JBasic program rather than just displaying it on the console as in the above example.

Normally, a PIPE is similar to an INPUT file in that you read the contents of the file (the program output)
and process it in your program. You can also treat a PIPE as an OUTPUT file if the program you run is
expecting input; you can then PRINT information that is sent to the program being run. In general, it is
safe to use a PIPE for input or output. If you write a program that attempts to perform both operations, be
aware that you can deadlock your program. This means that if you run a command that expects input,
and then you issue a LINE INPUT statement to wait for input, then both your program and the PIPE pro-
gram will wait forever, each expecting the other to provide data.

JBasic Userʼs Guide!

113

Finally, you can use a variation of the OPEN statement syntax that emulates the behavior of programs writ-
ten for GW-Basic or similar dialects. For example,

! OPEN “FOO.TXT”, “I”, 3

This opens the text file “FOO.TXT” for input as file #3. The mode must be either “INPUT”, “OUTPUT”, or
“APPEND”, or the first letter of those words. The file name can be any string expression.

The above statement has the exact same effect as the JBasic dialect version:

! OPEN FILE “FOO.TXT” FOR INPUT AS #3

JBasic Userʼs Guide!

114

PRINT

The PRINT command prints output to the console or a file. The PRINT statement accepts an optional
FILE clause, followed by a list of one or more expressions. Each expression is printed in order, followed
by an end-of-line character.

 PRINT [FILE identifier,] exp [, exp [, exp...]]

If a FILE clause is not given, then the output is directed to the userʼs console. If a FILE statement is
given, then the output is written to the file referenced by the identifier. See the documentation on the
OPEN statement for information on how this identifier is created. If a FILE clause is given, then the file
must have been opened for OUTPUT or APPEND modes.

If the expressions are separated by a comma character "," then a tab is printed between each character
so they are spaced in columns. If a semicolon ";" is used to separate the elements, then they are printed
directly next to one another. You can include a trailing comma or semicolon so that output does not go to
a new line after the PRINT statement output is generated.

If a PRINT statement is given without a list of expressions, then a newline is automatically added to the
output (either the console or the named output file).

The PRINT USING statement is an extension of the PRINT statement that supports formatted text output.
A single format string expression is given, followed by a list of comma-separated data items that are used
to fill values into the format string. Unlike the standard PRINT statement, all elements in the list must be
separated by commas.

 PRINT USING "Credit ##.## Net (###.##)", 3.5, -27.55

 Credit 3.50 Net (27.55) !

The above example prints two values using a format string. The format options are the same as those
used in the FORMAT() function. Text in the format string not part of the value format itself are just printed.
There must be as many values in the variable list as there are in the format string expression itself.

You can print the output to a file as well, similar to a standard PRINT statement:

! PRINT FILE MYFILE, USING "000#.##", 1.3 !

The above example will result in the string "0001.30" being printed to the file opened as identifier MYFILE.

JBasic Userʼs Guide!

115

In a PRINT USING statement, you can use a trailing comma or semicolon to prevent a newline from be-
ing added to the output if you wish to print additional information on the same line of the output or file.

For compatibility with older dialects of BASIC, you can use the question mark (“?”) symbol instead of a
PRINT statement on the command line. This is short-hand for asking “what is”, as in “what is X times 5?”
as shown in this example:

! BASIC> X=3
! BASIC> ? X*5
! 15
! BASIC>

You can also specify that the name of the variable be printed when outputting a given value. This creates
self-descriptive output, as in

! BASIC> PRINT X=, Y=
! X=15! ! Y=”Age”
! BASIC>

In this example, the name of the variable X is printed followed by an equals sign, and the current value.
The formatting operator (the “,” comma) means a tab stop is skipped, and then the second variable name
is printed followed by “=” and the value. This syntax can only be used for simple variable names; it cannot
be used for array or record notation or an error is generated.

JBasic Userʼs Guide!

116

PROGRAM

The PROGRAM statement appears in a text file and identifies a block of statements to be stored as an ex-
ecutable program in the JBasic runtime.

 PROGRAM BOB

This defines a program that will be named BOB. This must be the first line of a new program that you cre-
ate. In fact, the NEW command will automatically create a first line containing a PROGRAM statement for
you.

If you modify the PROGRAM statement in the current program, it effectively renames the current program.
You will immediately see this reflected in the name of the current program (stored in the SYS$CUR-
RENT_PROGRAM variable) and in the output of a SHOW PROGRAMS statement.

The program can have parameters if it is to be used as the target of a CALL statement. These parame-
ters are specified on the CALL statement, and their values are copied into the parameter variables when
the program is executed by the CALL statement. Parameters can optionally have a default value given to
them, which means that if the CALL statement doesnʼt provide the parameter, it will take on the default
value.

! 100! PROGRAM CALC(VALUE, COUNT=10)
! 105! SUM = 0.0
! 110! FOR I = 1 TO COUNT
! 120! SUM = SUM + VALUE
! 130! NEXT I
! 140! RETURN SUM

In this case, if the CALL statement that invokes this program does not supply a second parameter for
COUNT, then the variable will contain 10 by default. If a program does not have parameters in its PROGRAM
definition, then it can be executed by a CALL statement but cannot have parameters passed to it.

The type of the parameters can be optionally specified.

! 100 PROGRAM FOO(INTEGER X, DOUBLE Y)

In this example, the parameters have explicit types given to them. When the type is given, whatever data
is passed to the program is converted to the given type before being stored in the local argument vari-
able. So the above example guarantees that the first value will be an integer, and the second will be a
double, regardless of the values passed to the function. If the type names are not given, then the argu-
ment variables take on whatever type the passed parameter was in CALL statement that invokes the pro-
gram.

JBasic Userʼs Guide!

117

You can define additional characteristics of the program using the DEFINE() clause following the pro-
gram name and parameter specifications. These characteristics affect the way that the program is run or
managed by JBasic. The DEFINE characteristics are:

Keyword Definition

SYSTEM_OBJECT This program object should be considered owned by JBasic
rather than created by the user. This mode is the default for pro-
grams loaded from Library.jbasic or from within the JBasic jar file.

STATIC_TYPES This program should use static types for variables created while it
is running. See the section on Variables at the start of this
document for more information.

DYNAMIC_TYPES This program should use dynamic types for variables created
while it is running. This is the default state.

An example of using the DEFINE clause might be a program that was originally written for another dialect
of BASIC that assumes variable types:

! 100 PROGRAM INVOICE DEFINE(STATIC_TYPES)
! 110 NAME$ = 1

This indicates that variables created by this program have static types. The variable NAME$ is a string
variable when static types are enabled, so the above program segment will result in the value 1 being
converted to the string “1” when it is stored, because automatic type conversion occurs when writing val-
ues to variables if STATIC_TYPES is enabled.

JBasic Userʼs Guide!

118

PROTECT

The PROTECT command marks a program as protected. A program that is protected cannot be viewed by
the end-user as source. This means it cannot be selected as an OLD program, or listed with LIST or
SHOW PROGRAM statements, and the source is not available via the PROGRAM().LINES[] array

! PROTECT name !

Where "name" is the fully qualified name of the program. A verb or function must include the correct pre-
fix, such as the following example:

! PROTECT FUNC$ENCODE

This marks the user-written function ENCODE as protected.

When a protected program is saved to a workspace, the code is not stored as a JBasic program but is
stored as compiled instructions. A program that is loaded from a workspace as a protected program re-
mains protected. Once a program is marked protected, it cannot be unprotected, and the source code for
the program is lost. Always make a copy of any program you mark as protected!

You can protect all programs in the workspace at one time, using the command:

! PROTECT ALL PROGRAMS

After issuing this command, no program currently in the workspace can be listed, disassembled, etc. If
you save the workspace, then all source for the programs will be lost.

JBasic Userʼs Guide!

119

PUT

The PUT command is used to write information to a BINARY format file. The information written to the file
is stored in variables just like a PRINT statement that writes to a file. However, the format of the data
stored on the file matches the internal binary representation of the information in the computer, as op-
posed to a human-readable format. Data written to a BINARY file must be identified not only by the vari-
able that contains the information, but the type of data that the information is stored as on the disk file.

For example, a variable SALARY might contain the number 5. This can be written to the disk as an integer
or as a floating point value. The difference is both in the nature of the data written (is there a fractional
part, for example) and also the binary file layout. All data written to a BINARY file must be re-read using a
GET statement using the same binary format.

The binary format is specified in one of two ways: explicitly in the PUT statement or via an array of record
data types that describes what is to be written.

! PUT FILE BD, INTEGER ID, STRING(30) N, DOUBLE SALARY!

In this example, the variables ID, N, and SALARY are written to the file. The variable ID is written as an
integer, with a possible value in the range of +/- 2^31. The variable N is written as a string, with space re-
served in the file for 30 characters of data. The variable SALARY is written as a double precision floating
point value.

Note that while the variable N may be any length from zero to 30 characters, space is reserved in the file
for 30 characters of data. This will be important when the program needs to position itself in the file and
must calculate the location of the binary data. See the documentation on the SEEK command for more
information. An explicit length is required for STRING, UNICODE STRING, and VARYING STRING specifi-
cations. In addition, a FLOAT type is permitted which converts the normal JBasic DOUBLE into a single-
precision value that consumes only four bytes.

In addition to naming variables to be written to the file, you can use expressions. The result of the expres-
sion is converted to the given type in the PUT statement, as in:

! PUT FILE BD, INTEGER EMPID + 1000

This calculates the value EMPID+1000 and writes it as an integer to the BINARY file. The type of the cal-
culation will be converted as needed.

The record definition could be specified in an array of records as well. Consider the following sample
code that constructs the definition of the binary file data and then uses that to PUT data to the file:

JBasic Userʼs Guide!

120

! DIM E[3]
! E[1] = { TYPE:”INTEGER”, NAME:”ID” }
! E[2] = { TYPE:”STRING”, NAME:”N”, SIZE:30 }
! E[3] = { TYPE:”DOUBLE”, NAME:”SALARY” }

! PUT FILE BD, USING E

In the example, an array E is created with elements for each data item to be written to the binary file.
Each element is a record data type, which must contain the fields TYPE and NAME. The TYPE field defines
the data type to be written to the file, and the NAME field defines the variable name that contains the data.
The SIZE field is used for STRING data types to define how much space to leave in the record for the
string value, or to specify the size of the INTEGER or FLOAT point value in bytes.

The allowable values for the TYPE field are:

TYPE Description

“INTEGER” An integer value. The default is a 4-byte integer in the range
from -2147483648 to 2147483647. An optional size can be given
of 1, 2, or 4 to specify byte, word, or integer values.

“FLOAT” A floating point number. The default is a 4-byte single precision
value, but a size can be given of 4 or 8 to select single or double
precision data.

“DOUBLE” A double-precision floating point number (8 bytes). This is the
same as specifying “FLOAT” with a SIZE value of 8.

“STRING” A string of text, with a specific length allocated in the record as
specified by the SIZE field

“UNICODE” A string of Unicode (UTF-16) text, with a specific length allo-
cated in the record specified by the SIZE field.

“VARYING” A string of text of varying length. The maximum amount of space
the string can take is specified in the SIZE field. An additional
integer value is read or written that contains the actual length of
the string in the buffer.

“BOOLEAN” A single byte of data containing 1 or 0 to represent true or false
values.

Note that using a record definition array means that the value(s) to be written to the file must reside in
variables; they cannot be expressions since the name of the variable must be given in the array.

You can use the FIELD statement to create a definition of the contents of each data record in the file.
This is then automatically used when a PUT statement writes data. For example,

JBasic Userʼs Guide!

121

! FIELD #1, STRING(30) AS NAME, INTEGER AS ID
! PUT #1

The PUT statement uses the values in the variables NAME and ID to store data in each record of the file.
The FIELD stays in effect until another FIELD statement creates a new definition or a CLEAR FIELD
statement removes the field definition completely. See the documentation on the FIELD statement for
more information.

JBasic Userʼs Guide!

122

QUIT

The QUIT statement terminates JBasic. If you have modified any of the programs in stored memory,
JBasic will prompt you to see if you really mean to QUIT before issuing a SAVE command.

When JBasic prompts the user if they wish to preserve un-saved changes, it uses the prompt string
SYS$SAVEPROMPT, which is automatically initialized to the default:

! There are unsaved programs. You must use the SAVE
! command to store them in a workspace.

! Are you sure you want to QUIT [y/n]?

You can modify the SYS$SAVEPROMPT variable to contain any string you wish, and that is used as the
prompt string. If you set the variable to an empty string, it disables the prompting entirely, and JBasic will
quit without any warning to the user about unsaved programs when a QUIT command is given.

JBasic Userʼs Guide!

123

RANDOMIZE

The RANDOMIZE statement is used to set the initial “seed” for the random number pseudo variable RND.

! RANDOMIZE integer-expression

! RANDOMIZE TIMER

The first version requires an integer expression. This value is used to provide a starting value for the
pseudo-random number function used by the RND variable. This function guarantees that for any given
seed value, the sequence of random numbers will be the same. This allows you to write code that as-
sumes randomness, but test it with a predictable sequence of random numbers.

The second form uses a timer-based internal function to generate the seed value. This results in an un-
predictable sequence of numbers from the RND function, and more closely approximates a true random
number.

Note that in all cases, the RND function generates an artificial random number that is always in the range
-32768 < x < 32767, and is always an integer value. The RANDOM() function generates a dramatically
more random distribution of values, which also can be coerced into specific ranges using the function pa-
rameters.

In place of the RND variable, you can use the RNDVAL() function which returns the exact same informa-
tion.

The RANDOMIZE statement and the RND pseudo-variable are provided for compatibility with programs
written in GW-Basic or similar dialects supporting these operations.

JBasic Userʼs Guide!

124

READ

The READ statement is used to access values defined in DATA statements and store those values in vari-
ables that can be used in the running program.

! READ X, Y
! DATA 3, "Tom"

The above statements reads two values and stores them in the variables X and Y. The values read are
the next to items in a DATA statement somewhere in the program. The DATA statement does not have to
be executed, or located near the READ statement. See the documentation on the DATA statement for
more information.

If a READ statement is given and there is no DATA statement anywhere in the current program, then an
error is generated. If a READ statement is executed and all the DATA statement elements have been read,
then the READ statement starts again at the first DATA statement value found in the program.

The function EOD() can be used to determine if the next READ statement will read a new value or if an
end-of-DATA condition will cause it to start at the first DATA statement again.

The variable being read can specify scope qualifiers to define the attributes of the variable. See the
documentation on the LET statement for more information on scope qualifiers.

You can specify arbitrarily complex expressions representing the location in which the data value that is
read is to be stored. For example, this assumes an array of employee records and sets the value of the
employee name in an element of the array:

! READ EMPLOYEES[EMPID].NAME

In this example, the variable EMPID is used to locate a specific record in the EMPLOYEES array and then
set the value of the DATA item read into the member NAME in that record. When used in an READ state-
ment (or an LINE INPUT, INPUT, or LET statement), if the array index position or record member does
not exist, then it is created.

JBasic Userʼs Guide!

125

REM

The REM verb is used to indicate lines which are to be treated as comments in some other dialects of BA-
SIC. In JBasic, comments are marked with double-slashes “//” and can be at the end of a line as well as
making up the entire line.

! 100 REM This is a test program
! 110 // It was written by J. DOE

Both of these are valid comments in JBasic. However, the first line will have the REM keyword removed
and replaced with the double-slashes automatically by JBasic. You would see this if you LIST the pro-
gram, or if you SAVE the workspace; the REM keyword would be replaced by the “//” characters.

Note that you can put comments after a statement as well.

! ...
! 250 COUNT = COUNT + 1 // Allocate additional inventory
! ...

The statement ignores the “//” and any characters that come after it to the end of the line, so comments
can be placed on the line with the statement if you wish, as well as on lines by themselves.

For compatibility with other dialects of BASIC you can also make comments using a single quote charac-
ter (the apostrophe character). This is converted to the “//” notation automatically. Note that you cannot
use this format at the end of a statement, only at the start of a line to mark the entire line as a comment.
For example, consider the following source fragment:

! 100 ‘ AVERAGE
! 110 ‘
! 120 ‘ Compute the average of a number of grades entered
! 130 ‘ by the user.
! 140 DIM GRADES[100]
! ! ...

JBasic Userʼs Guide!

126

RENUMBER

Programs created at the console always have line numbers, which identify the sequence in which the
statements are stored and executed (see the documentation section regarding Stored Programs for more
information). The line numbers are arbitrary positive integers. Sometimes, it is convenient to renumber
them, particularly to make new room for additional statements to be added between existing statements.

 RENUMBER [start [increment]]

The optional starting line number identifies what the first line number of the program should be. The de-
fault is 100. The optional increment indicates what the increment between line numbers should be. The
default increment is 10.

Remember that the RENUMBER command will change line numbers if they are used as the destination of a
REWIND, GOTO or IF..THEN statement.

JBasic Userʼs Guide!

127

RESUME

The RESUME command is used to restart execution of a program that has stopped due to a STOP state-
ment or by triggering a breakpoint while running under control of the DEBUG command.

! RESUME

! or

! RESUME RESET

The RESUME statement can only be given when a program is under control of the debugger. It causes the
program to resume execution after it has stopped. The program will continue until another STOP state-
ment or breakpoint returns control to the debugger, or the program terminates normally.

Normally, when a breakpoint becomes active (is “triggered”) it will stop the program when the trigger oc-
curs. For example, a break point created with BREAK WHEN I > 5 will stop execution the first time that
the variable I becomes greater than the value 5. However, subsequent statements will execute even
though the value of I is still greater than 5. This is because the breakpoint occurs only when the condi-
tion first becomes true.

You can use the RESUME RESET to reset all breakpoints so they are no longer considered triggered. The
next statement will evaluate breakpoints and stop only if a breakpoint becomes triggered on any given
statement. This is particularly useful if you have reset the value of I and want to cause the debugger to
begin checking for the condition of being greater than 5 again.

JBasic Userʼs Guide!

128

RETURN

The RETURN statement ends execution of a program or function. It may specify a value to be returned to
the caller of the function or program. If there is no calling program, then control is returned to the user. For
example,

! RETURN RSLT*2

The RETURN statement is also used to return from an internal subroutine invoked with a GOSUB state-
ment. See the documentation on the GOSUB command for examples and more information.

JBasic Userʼs Guide!

129

REWIND

The REWIND statement is used to direct the next READ statement to begin with the first DATA statement in
the program, even if that is not the next place to READ.

! DATA 101, 102, 103
 ! READ X, Y
 ! REWIND
 ! READ Z

In the above sequence, the value of Z will be 101, since the REWIND tells JBasic to start with the first
DATA element. Optionally, the program can specify a specific line to mark as the next place to read by
using a line number or statement label, as in the following example:

! 100! DATA 101, 102, 103, 104
! 110! DATA 201, 202, 203, 204
! 120! READ X, Y
! 130! REWIND 110
! 140! READ Z

The first two READ statements will read the first two data items (101 and 102). The REWIND statement
then indicates that the next READ statement should begin with the first DATA item at line 110. Therefore,
the next READ statement will store the value 201 in the variable Z.

See the documentation on the READ and DATA statements for more information.

You can also use the REWIND statement to rewind a BINARY format file to the first byte of the file, so that
the next GET or PUT statement will read or write starting at the beginning of the file.

! 100! REWIND FILE FOO
! 110! GET FILE FOO, USING BOB

The REWIND statement repositions the file to the start of the file so the GET statement reads the record
located at the first byte of the file. This is equivalent to using the SEEK statement to position at byte zero.

You can also REWIND FILE on an INPUT mode file, and it causes the next INPUT or LINE INPUT op-
eration to read data from the first line of the input file. This has no effect on files that are connected to a
TERMINAL device such as the console.

It is an error to use the REWIND operation on a file that is not opened for BINARY or INPUT modes.

JBasic Userʼs Guide!

130

RUN

The RUN statement executes a stored PROGRAM. By default, the current program is run. The current pro-
gram is the last program that was RUN, or the program identified by the last NEW or OLD statement. Op-
tionally you can specify the name of an existing stored program to RUN.

! RUN

! RUN BENCHMARK

When a program is executed via a RUN command, the variable $MODE in the local symbol table is set to
"RUN". This helps differentiate between programs that were executed via the RUN command versus exe-
cuted via a CALL statement

You can add the DEBUG keyword after RUN to indicate that the program is to be run under control of the
debugger. See the introductory section on debugging for more information.

! RUN DEBUG PI_TEST

This runs the program PI_TEST under control of the debugger. If the name of the program is omitted,
then the current program is run with the debugger.

JBasic Userʼs Guide!

131

SAVE

The SAVE command saves the current program to a disk file in a human-readable text format, suitable for
use later with a LOAD command to read a program into memory.

 SAVE "file name"

The filename must be explicitly specified; there is no default name. You can save a program into a differ-
ent file than the one it was loaded from, for example.

Note that the SAVE command saves only the current program to disk. If you wish to save all programs at
once, you can use the SAVE WORKSPACE to save all programs into a single workspace file.

JBasic Userʼs Guide!

132

SAVE PROTECTED
You can save just the current program as an encoded XML file that can be loaded via the LOAD command
or transmitted to another program as an XML file. The contents of the file are not human-readable but
conform to the XML standards.

! SAVE PROTECTED "file.xml"

This saves the current program as "file.xml". The source code for the program is not stored with the
program, only the information necessary to reconstruct the internal byte code representation of the pro-
gram. Unlike the PROTECT command, this command does not modify the program in memory; the cur-
rent program still exists in its unprotected form - only the disk representation created is protected.

The resulting file can be read back into memory using the LOAD command which automatically recog-
nizes when a file contains an XML protected program definition as opposed to a text program description.
The resulting program in memory will be protected at that point.

JBasic Userʼs Guide!

133

SAVE WORKSPACE

The SAVE WORKSPACE command saves the current workspace; that is, all programs currently in stored
program memory that have been modified by the user. This includes programs previously brought into
memory with the LOAD command as well as any programs created or changed in this session. The work-
space contains all such programs.

 SAVE WORKSPACE ["workspace name"]

If a name is not given, then the default is "Workspace.jbasic". If a name is given, it becomes the new de-
fault name for this session; subsequent SAVE WORKSPACE commands will be written to the same named
workspace file.

When JBasic first starts up, it automatically loads all programs it finds in the default workspace file
“Workspace.jbasic” located in the current userʼs home directory, if that file exists. You can determine
the home directory used via PROPERTY("user.home") which corresponds to the Java property of the
same name.

You can determine the current default workspace name by looking in the SYS$WORKSPACE global variable
which contains the full path name of the workspace.

JBasic Userʼs Guide!

134

SAVE XML
You can save just the current program as an XML file that can be loaded via the LOAD command or
transmitted to another program as an XML file.

! SAVE XML "file.xml"

This saves the current program as "file.xml". This command cannot be placed in a running program; it
can only be executed from the console or via the JBasic run() method in an embedded program.

The resulting file can be read back into memory using the LOAD command which automatically recog-
nizes when a file contains an XML program definition as opposed to a text program description.

JBasic Userʼs Guide!

135

SEEK

The SEEK command is used to position a BINARY file to a specific location in preparation for a GET or
PUT operation to read or write binary data. The BINARY file has a file pointer which is an integer value
describing which byte to read or write next. The first byte in the file is numbered zero.

A BINARY file is organized as a stream of bytes. A byte is the smallest addressable unit of memory in a
computer, and typically holds a value from 0-255. This can hold a value like true or false, or other small
amounts of data. Multiple bytes are used together to hold larger or more complex values. For example, an
integer value takes four bytes, which allows it to store numbers in the range of -2147483648 to
2147483647. Similarly, character data is stored using one byte for each character, and optionally includes
four additional bytes to hold the length of the string. Here is the complete table of types and how many
bytes it takes to store each one:

TYPE BYTES Description

“INTEGER” 1, 2, or 4 An integer value. The default is a 4-byte value in the range from
-2147483648 to 2147483647. An optional SIZE value may spec-
ify sizes of 1, 2, or 4 to indicate byte, word, or integer values.

“DOUBLE” 8 A double-precision floating point number. This is the same as
FLOAT with a SIZE value of 8.

“FLOAT” 4 or 8 A floating point number. The default is a 4-byte single precision
number. However, an optional SIZE value may specify 4 or 8,
indicating single or double precision.

“STRING” length A string of text. One byte is used for each character. The size is
defined by the SIZE record field.

“UNICODE” length * 2 A string of UNICODE text. Each character takes two bytes of
data.

“VARYING” length + 4 A varying length string of text. One byte is used for each charac-
ter, plus an additional 4 bytes to hold the actual string length
within the fixed-sized buffer.

“BOOLEAN” 1 A single byte of data containing 1 or 0 to represent true or false
values.

An important reason why a program might use a BINARY file rather than a standard text file is that the
storage for a value takes a known number of bytes, and that known number of bytes means that you can
calculate the position of any value in the file.

JBasic Userʼs Guide!

136

Imagine a file that has the following data, representing employee information:

Value Description

“NAME” A 30-character name for an employee

“ID” An integer with the employee id number

“WAGE” A double precision value with the hourly wage.

To express this, letʼs create an array definition that describes the record, as documented in the sections
on the GET and PUT statements:

! DIM EMPREC[3]
! EMPREC[1] = { NAME:”NAME”, TYPE:”STRING”, SIZE:30 }
! EMPREC[2] = { NAME:”ID”, TYPE:”INTEGER”, SIZE:4 }
! EMPREC[3] = { NAME:”WAGE”, TYPE:”FLOAT”, SIZE:8 }

Because we know the size of each type, we can calculate the width of the record in bytes. That is, we can
calculate how many bytes it take to store the entire record. This would be

! RECSIZE = 30 + 4 + 8

Given this calculation, it is now possible to position the BINARY file to write any given employeeʼs infor-
mation. If the first byte in the file is numbered zero, then the calculation RECSIZE*(RECNUM-1) will cal-
culate the byte position for record numbers starting at record one. For example,

! PROGRAM WRITE_EMP(BD, NAME, ID, WAGE)
! DIM EMPREC[3]
! EMPREC[1] = { NAME:”NAME”, TYPE:”STRNG”, SIZE:30 }
! EMPREC[2] = { NAME:”ID”, TYPE:”INTEGER”, SIZE:4 }
! EMPREC[3] = { NAME:”WAGE”, TYPE:”FLOAT”, SIZE:8 }
! RECSIZE = 30 + 4 + 8

! SEEK FILE BD, RECSIZE*(ID-1)
! PUT FILE BD, USING EMPREC
! RETURN

In this example, a program is written that will write an employee record to the file. The employee identifi-
cation number is also the record number in the file. The SEEK statement positions the file to the location
corresponding to the employee number, and then the PUT statement writes the data to the file at the cur-
rent position just set by the SEEK statement. A program can also use the FILEPOS(ID) function to get
the position of the file indicated by the file identifier variable ID.

JBasic Userʼs Guide!

137

You can also use a FIELD statement to create a record definition, and then seek to the specific record in
the file using that record definition. For example,

 FIELD EMPREC AS STRING(30) NAME, INTEGER(4) ID
 SEEK FILE BD, USING EMPREC, N

In this example, the file is positioned to record N, which is a 1-based position indicator. That is, the value
of N should be 1 for the first record in the file, 2 for the second record, etc. The FIELD definition is used to
automatically calculate how large each record is (using the same formulas described above) and the file
is positioned accordingly.

You can also use the FIELD statement to create a definition of the contents of each data record in the file.
This is then automatically used when a SEEK statement calculates a file position. For example,

! FIELD #1, STRING(30) AS NAME, INTEGER AS ID
! SEEK #1, N

The statement calculates the size of the FIELD definition because it is bound to the file specification, and
computes the correct position for record N using this size information. The FIELD stays in effect until an-
other FIELD statement creates a new definition or a CLEAR FIELD statement removes the field definition
completely. See the documentation on the FIELD statement for more information.

JBasic Userʼs Guide!

138

SIGNAL

The SIGNAL command generates a runtime error. This can be used in a program to simulate an error, or
to invoke an ON unit previously defined with the ON statement.

 SIGNAL code [(argument)]

The "code" is the name of a predefined status code like SYNTAX, or a user-defined message created with
the MESSAGE statement. If the message has a substitution value used in formatting a message, you can
specify that after the signal code.

For example:

! SIGNAL SYNTAX("unexpected comma")

! SIGNAL ARRAY

 SIGNAL USING(BOB) ("unexpected data")

The last example uses the expression (in this case, a variable BOB) to define the code. If BOB was equal
to "SYNTAX", then the first and third examples have similar output.

JBasic Userʼs Guide!

139

SLEEP

The SLEEP command causes the current thread to pause execution for a specified amount of time. This
is most often used when a thread needs to wait a short period of time to allow other threads to complete
execution.

 SLEEP count [unit]

The unit parameter is used to describe the units that count represents. The default is SECONDS if no unit
is given; keywords can be singular or plural as needed for readability. The effect of the unit keyword is to
multiply the count by a suitable value to convert it to seconds (or fractions of a second). The allowed
keywords and multipliers are:

Keyword Multiplier

MILLISECONDS 0.001

SECONDS 1.0

MINUTES 60.0

HOURS 3600.0

DAYS 86400.0

WEEKS 604800.0

The "count" parameter is the number of units to sleep. The count can be an integer value or a double
value; sleeping for fractions of a unit such as a second is permitted. The actual minimum amount of time
that the thread will sleep depends on the implementation of Java and the underlying operating system but
is usually accurate to within a millisecond (0.001 seconds).

JBasic Userʼs Guide!

140

SORT

The SORT statement is used to sort an array into ascending order. The array elements must all be of the
same type - you cannot mix strings and numbers. Additionally, the array may only contain scalar values
(strings and numbers) and may not contain records or other arrays.

 X[1] = "Tom"
 X[2] = "Debbie"
 X[3] = "Robert"
 X[4] = "Nancy"
 SORT X
 PRINT X

The above will result in a printout similar to

 ["Debbie", "Nancy", "Robert", "Tom"]

You can also use the SORT() function with an array name as the parameter, and it will return a new array
in sorted order. Using the above array example,

! Y = SORT(X)

This would result in a new array called Y that is a sorted version of X.

You can also use the SORT statement to sort an array of records, and specify the field in the record(s) to
be used as the sort key value.

! X[1] = { NAME: "Bob", AGE: 45 }
 ! X[2] = { NAME: "Sue", AGE: 35 }
 ! X[3] = { NAME: "Dave", AGE: 36 }
 ! X[4] = { NAME: "Amy", AGE: 42 }
! SORT X BY NAME

The BY clause identifies a field name in the records to be sorted. The example above will result in the re-
cord with NAME:"Amy" being the first element in the array, and NAME:"Sue" being the last. The field
values must all be the same type (just like sorting a standard array) and all the records must have a field
of the given name. !

JBasic Userʼs Guide!

141

STEP

The STEP command is used to control program execution in the debugger. See the introductory section
on debugging to get more information on how to run a program under control of the debugger. The STEP
command can only be used when the debugger is active.

The STEP command has several formats, each of which are described here.

! STEP [count]

!

This steps (executes) one or more statements in the program. The value n defines how many statements
to execute. If not specified, then one statement is executed. This is the same as just pressing return at the
DBG> prompt without entering a command.

! STEP INTO

By default, when a program calls another program (as a CALL statement, or a function call, or a verb) the
debugger runs the called program in its entirety as a single STEP operation. However, STEP INTO can be
entered and if the next statement to execute invokes another program, that program is executed under
control of the debugger as well. This command only takes effect on the statement about to be executed.

! STEP RETURN

If a STEP INTO has been issued and the user is debugging a program that was called by another pro-
gram, it may be desirable to resume execution at the caller's program again. The STEP RETURN com-
mand causes the program to run until the next RETURN statement, where the debugger regains control.

JBasic Userʼs Guide!

142

STRING

The STRING statement declares one or more variables as string variables, and assigns them initial val-
ues. Optionally, the value can be declared as an array of string values by using an array size. For exam-
ple,

! STRING NAMES[10], STATE=”NC”

This statement creates an array with ten elements, each of type STRING. The array is initialized to the
default value for the type, so in this case it is an array of empty string values. The array size must be
specified using square brackets, not parenthesis.

The statement also creates a single STRING value named STATE, which is initialized to a specific value of
“NC”.

This statement has the same effect of using the DIM statement with an explicit type of STRING, but also
allows you to specify an initial value for each item.

JBasic Userʼs Guide!

143

SUB

The SUB statement defines a local subroutine or function in the current program. Unlike a PROGRAM or
FUNCTION statement that causes a new program object to be created, a SUB routine is part of the current
program, and can only be called or invoked from the current program.

 PROGRAM FOO
 X = DBL(3.5)
 PRINT “Result is “; X
 SUB DBL(V)
 Y = V * 2
 RETURN Y

In this program named FOO, there is a local subroutine named DBL. This can be used either in a CALL
statement as a subroutine, or as a function. When used as a function, it must return a value or an error
occurs. In the example above, the function DBL returns its argument multiplied by two. You could imple-
ment this with a statement function (See the DEFFN statement) but a SUB routine can be an arbitrarily
complex muti-statement function.

The code above could be executed with a CALL statement rather than as a function. In this case, the
$MODE local variable would contain the value “FUNCTION” rather than “CALL”, allowing the SUB routine
to determine how to return control to the calling program if needed.

When a SUB routine is called or invoked as a function, the variable $THIS is set to the name of the called
routine, and $FROM is set to the name of the main program. In both cases, the global variable SYS$CUR-
RENT_PROGRAM will refer to the containing program FOO.

Note that in the example above, execution of the PRINT statement is followed by terminating the pro-
gram. You cannot “execute” a SUB statement; there is an implied END statement before the SUB statement
that prevents flow of control into the subroutine other than by a CALL or function invocation.

Like a PROGRAM or FUNCTION, the SUB routine can have multiple arguments, a varying argument list, and
explicit types on the arguments. See the documentation on the PROGRAM statement for more information.

! 100 PROGRAM FOO2
! 110 X = CALC(12)
! 120 Y = CALC(15, 5)
! 150 PRINT X, Y
! 200! SUB CALC(VALUE, COUNT=10)
! 205! SUM = 0.0
! 210! FOR I = 1 TO COUNT
! 220! SUM = SUM + VALUE
! 230! NEXT I
! 240! RETURN SUM

JBasic Userʼs Guide!

144

In this case, if the function invocation that calls the SUB routine CALC does not supply a second parameter
for COUNT, then the variable will contain 10 by default. If a program does not have parameters in its SUB
definition, then it can be executed by a CALL statement but cannot have parameters passed to it.

The type of the parameters can be optionally specified.

! 200 SUB CALC(INTEGER X, DOUBLE Y)

In this example, the parameters have explicit types given to them. When the type is given, whatever data
is passed to the SUB routine is converted to the given type before being stored in the local argument vari-
able. So the above example guarantees that the first value will be an integer, and the second will be a
double, regardless of the values passed to the function. If the type names are not given, then the argu-
ment variables take on whatever type the passed parameter was in CALL statement that invokes the rou-
tine.

JBasic Userʼs Guide!

145

SUBTRACT

The SUBTRACT statement subtracts the value of an expression from an existing variable.

! SUBTRACT (HOURS*RATE) FROM PAY

The above statement calculates the expression and subtracts it to the existing value of PAY. If the vari-
able PAY does not exist, then this statement generates a runtime error. This is essentially equivalent to
the statement LET PAY = PAY - (HOURS*RATE).

Note that if this expression uses pre- or post-increment or decrement operators in the target expression,
they are processed after the statement completes the storage of the new value in the target. For exam-
ple,

 B = 3
 SUBTRACT X+B FROM EMPS[B++]

The increment operation of B will take place after the difference of the element less X+B is stored in the
array EMPS at the location of the current value of B (3 in this case).

The SUBTRACT statement can also be used to delete a substring from a string value:

 X = “FANCY RED APPLES”
 SUBTRACT “RED “ FROM X

The result is that the variable contains the string “FANCY APPLES”. This requires that both subtrahends
be string values for the difference to be a new string value. Only the first instance of the substring is de-
leted from the string.

JBasic Userʼs Guide!

146

SYSTEM

The SYSTEM statement executes a single statement in the native command line environment. For Win-
dows, this is a DOS emulation command. For Unix systems, it is a command in your current default shell.
For VMS, it is a DCL command.

 SYSTEM expression

The command to be executed is defined by the expression, which can be any string expression. It can be
a simple quoted string or a more complex string expression. The system variable SYS$STATUS is created
if it does not exist and is set to a status record describing how the subprocess completed. The CODE field
is always “*SYSTEM” and the PARM field is a string representation of the numeric return code from the
executed command. Normally zero means success for all systems except OpenVMS where any odd
number means success.

Here is an example of using this statement on a Unix computer:

 BASIC> system “ls -l”

 total 960
 drwxr-xr-x 5 tom tom 170 Sep 6 08:07 CVS
 -rw-r--r-- 1 tom tom 741 Aug 9 14:53 GET-STARTED.TXT
 -rw-r--r-- 1 tom tom 138459 Oct 2 08:49 JBASIC-HELP.TXT
 drwxr-xr-x 4 tom tom 136 Apr 5 10:52 META-INF
 drwxr-xr-x 4 tom tom 136 Sep 27 08:29 bin
 -rw-r--r-- 1 tom tom 2201 Jun 2 08:59 build.xml
 drwxr-xr-x 24 tom tom 816 Oct 2 08:49 doc
 -rw-r--r-- 1 tom tom 554 Jun 15 08:56 javadoc.xml
 -rw-r--r-- 1 tom tom 335961 Sep 28 14:42 jbasic.jar
 drwxr-xr-x 10 tom tom 340 Sep 7 14:43 moredoc
 drwxr-xr-x 4 tom tom 136 Aug 4 15:55 src

JBasic Userʼs Guide!

147

TABLE
The TABLE statement is used to define a TABLE data type. For an overview of the use of the TABLE data
type, see the section on Tables in the introductory section of this manual. A TABLE is an array of records
where the member names and types of each row are identical. That is, each row is guaranteed to have
the same member names and data types as every other row. This is used to store rectangular data in a
fashion similar to a conventional database.

A TABLE must be defined before it can be used because you must indicate the column names and data
types.

 ! TABLE EMP_DATA AS INTEGER ID, STRING LAST, STRING FIRST, DOUBLE RATE

This example creates a table named EMP_DATA which has four columns (ID, LAST, FIRST, and RATE)
with the given JBasic data types.

Once this table is created you can add rows to it using the “+” operator to add an array or record type (as
long as the type, number, and - in the case of a record - member names match). You can also use the
INPUT ROW OF notation to read a row in from a file or the console.

If you PRINT a table, the output is formatted with the column headings created using the column names
from the TABLE declaration.

JBasic Userʼs Guide!

148

UNLOCK
The UNLOCK command is used to release locks, which are objects used to protect critical regions of a
JBasic program. Specify one or more lock names in a list to be unlocked.

 ! UNLOCK COUNT_L, COUNT_Q

 or

 UNLOCK ALL LOCKS

The first statement release two locks COUNT_L and COUNT_Q. The locks must exist and be held by the
current thread or an error is reported. The second example releases all locks held by the current thread
unconditionally.

When a program has created a dynamic lock name, where the name is stored in a string variable, the
UNLOCK statement will accept a USING clause, as in:

! UNLOCK USING(“LOCK_” + LCKID)

This example assumes that an integer value LCKID will be appended to the string “LOCK_” to indicate the
specific lock being released.

Note that you cannot UNLOCK a lock that you didn't lock. If you LOCK the same named lock more than
once, you must unlock it the same number of times before it is available for another process to use. If a
thread exits while it still holds a LOCK then that lock is released.

See the documentation for the LOCK statement for examples of how to use locks in a JBasic program
running with threads. The SHOW LOCKS command can be used to display the locks currently in the sys-
tem. The CLEAR LOCK command is used to delete locks, and the LOCKS() function is used to get an
array of records describing all known locks.

JBasic Userʼs Guide!

149

UNTIL

The UNTIL statement defines the end of a DO...UNTIL block, and contains the expression that would
end the loop. See the documentation on the DO statement for more information and examples like the
following:

! 100 DO
! 110 SUM = SUM + VALUE[I]
! 120 I = I + 1
! 130 UNTIL SUM > 100.0

Looping statements like DO...UNTIL cannot be executed directly from the command line but can only
appear in programs.

For compatibility with other dialects of BASIC you can use the keyword LOOP UNTIL as a synonym for
UNTIL, as in the following example:

! 100 DO
! 110 SUM = SUM + VALUE[I]
! 120 I = I + 1
! 130 LOOP UNTIL SUM > 100.0

JBasic Userʼs Guide!

150

VERB

The VERB statement appears in a text file and identifies a block of statements to be stored as code to be
executed when the corresponding command (a "verb") is given in JBasic. This is very similar to a PRO-
GRAM except it will be automatically run by JBasic when the verb is given as a statement.

 VERB SUPPLY

This defines a verb that will be named SUPPLY. This must be the first line of a new program that you cre-
ate. In fact, the NEW command will automatically create a first line containing a PROGRAM statement for
you. You will need to modify this statement to be a VERB statement if you are writing a statement exten-
sion to JBasic.

A VERB has access to the rest of the statement text that follows it. The rest of the line is parsed into indi-
vidual tokens, and these are stored in the $ARGS[] array that is passed to the program. So if you entered
the statement

 SUPPLY DEPOT 3

The element $ARGS[1] would contain "DEPOT" and $ARGS[2] would contain "3". Note that the argu-
ments are always strings, but you can use them as numbers if you know they contain only numeric val-
ues. So $ARGS[2] * 2 would be equal to 6 in the above example.

 SUPPLY A <> 3

If your statement has punctuation, the punctuation will be parsed as individual tokens as well. So the
above example will have three tokens in the array: {“A”, “<>”, “3”}

In addition to the array of individually parsed tokens, the entire text of the command as given by the user
is available in the string variable $COMMAND_LINE.

You can define additional characteristics of the verb you create by using the DEFINE() clause following
the function argument list. See the documentation on the PROGRAM statement for more details.

JBasic Userʼs Guide!

151

WHILE

The WHILE statement defines the end of a DO...WHILE block, and contains the expression that would
end the loop. See the documentation on the DO statement for more information and a description of how
examples like this work:

! 100 DO
! 110 SUM = SUM + VALUE[I]
! 120! I = I + 1
! 130 WHILE I < MAXVALUE

Looping statements like DO...WHILE cannot be executed directly from the command line but can only
appear in programs.

For compatibility with other dialects of BASIC you can use the keyword LOOP WHILE as a synonym for
WHILE, as in the following example:

! 100 DO
! 110 SUM = SUM + VALUE[I]
! 120 I = I + 1
! 130 LOOP WHILE I < MAXVALUE

JBasic Userʼs Guide!

152

Built-In Functions

This section contains a short description of each of the built-in functions that are available in the JBasic
language to use as part of any expression. A function is identified by a function name, followed by zero or
more arguments in parenthesis. If more than one argument is present, the arguments must be separated
by commas.

There are numerous dialects of BASIC, and each have slightly different lists of available functions. More
confusingly, they also can have different spellings for the same function. The spellings documented here
are the preferred spellings for JBasic programs. However, often an alternative spelling is available to
match other dialects. For example, the LENGTH() function can be written a LEN(), and the LEFT() func-
tion can be written as LEFT$(). The global variable SYS$FUNCTION_MAP contains an array of records
defining “old” and “new” names for functions, and is used to map function names to the preferred format.
You can add to this array if you need to specify other function name mappings.

The remainder of this section describes each function.

ARRAYTOSTR()
sval = ARRAYTOSTR(array)

Returns an string, where each element of the array is has been concatenated into the string. The string
length will be the sum of the length of each array element.

ABS()
val = ABS(val)

Returns the absolute (positive) value of the argument, which must be an integer or floating point number.

ARCCOS()
fval = ARCCOS(val)

Returns the inverse cosine of the value val expressed in radians.

JBasic Userʼs Guide!

153

ARCSIN()
fval = ARCSIN(val)

Returns the inverse sine of the value val expressed in radians.

ARCTAN()
fval = ARCTAN(val)

Returns the inverse tangent of the value val expressed in radians.

ARRAY()
aval = ARRAY(v1 [, v2…])

Returns an array whose members are the arguments. The first argument is the first element of the array,
the second argument is the second element of the array, etc.

ASCII()
ival = ASCII(string)

Returns an integer containing the ASCII or UNICODE value of the first character of the given string. If the
string is empty, the result is zero.

BASENAME()
sval = BASENAME(file-name-string)

Returns a string containing the base file name of a file name string. For example, returns “myprogram” for
the file name string “/Users/tom/myprogram.jbasic”.

JBasic Userʼs Guide!

154

BINARY()
sval = BINARY(integer)

 ival = BINARY(string)

Returns a string containing the integer value converted to hexadecimal notation. This function is the same
as calling RADIX() with a radix value of 16. In the second case, the string is processed as a binary value
and the result is returned as an integer. For example, BINARY(“101”) results in 5.

BOOLEAN()
bval = BOOLEAN(val)

The argument is converted to a Boolean (true/false) value. If the value is a number, then zero is the same
as false, and non-zero means true. If the value is a string, then the value “true” is converted to true, and
all other strings are false.

BYNAME()
rval = BYNAME(input-string, name-array)

The first argument is a string containing one or more named values, separated by commas. This is the
same input format as the INPUT BY NAME clause. The second argument is an array of unique string
names. These are the names of the value expected to be found in the input buffer. The result is a record
containing members for each expected variable. In addition, a member named _UNEXPECTED contains all
other input values found in the input string that were not enumerated in the name array. If the input buffer
contains values that are invalid syntax, the global variable SYS$STATUS is set with the error message
triggered during processing of the input buffer.

CEILING()
ival = CEILING(val)

If val is an exact integer, the integer is returned. If val is a floating point value, then it is rounded up to
the next largest integer and that integer is returned.

JBasic Userʼs Guide!

155

CHARACTER()
sval = CHARACTER(integer-expression)

Returns a string containing a single character, which is the character encoded value of the integer-
expression. For example, the integer value 65 translates in UNICODE to the single character string "A".

CIPHER()
sval = CIPHER(string-expression [, key-string])

Returns a string containing cipher (encrypted version) of the string expression. If a key string is given,
then that key string is used to construct the cipher, and must be given again when deciphering the string.
If a key-string is not given, then an internal key string is used. This function requires that installation of the
java.crypt cryptography package on your system or an error is generated when using this function.

COS()
fval = COS(val)

Returns the cosine of the value val expressed in radians.

CSV()
sval = CSV(argument-list)

Returns the arguments expressed as a comma-separated list. If an argument is an array, each element of
the array is returned as a comma-separated value. If an argument is a record, the record member values
are returned in alphabetical order by member name. If not specified, the delimiter defaults to a comma,
but can be explicitly set to some other string by setting the global variable SYS$CSVDELIMITER to the
desired string value.

DATE()
val = DATE([date-value [,format-string]])

By default, DATE() returns a string containing the formatted value of the current date and time. The first
optional parameter is the date value, and the second optional parameter is a format specification.

JBasic Userʼs Guide!

156

If the date is given as a floating point number, it must be the number of milliseconds since the start of the
epoch, and that date is formatted as the date value. If a string is given as the first argument, then the
string is parsed to extract a valid date value from the string and returned as a double that contains the
date value encoded in milliseconds.

The second argument is the format pattern used to format or parse the data. This is a string containing
one or more date elements. Values not in this list are processed literally; i.e. a "/" character is just copied
to the output string when the format is "MM/dd/yyyy", for example.

Code Description Example Output

G Era designator AD

y Year 1996; 96

M Month in year July; Jul; 07

w Week in year 27

W Week in month 2

D Day in year 189

d Day in month 10

F Day of week in month 2

E Day in week Tuesday; Tue

a Am/pm marker PM

H Hour in day (0-23) 0

k Hour in day (1-24) 24

K Hour in am/pm (0-11) 0

h Hour in am/pm (1-12) 12

m Minute in hour 30

s Second in minute 55

S Millisecond 978

z Time zone PST; GMT-08:00

Z Time zone -800

The default format string is "EEE, d MMM yyyy HH:mm:ss Z" if the second argument with the format-
ting pattern is not given. This which results in output like "Sun, 28 Sep 2008 20:05:34 -0400".

JBasic Userʼs Guide!

157

DECIPHER()
sval = DECIPHER(string-expression [, key-string])

Returns the argument deciphered to its original form. If a key string was given when the string was origi-
nally encoded, this same key string must be given again in the DECIPHER() invocation. If the wrong key
string is given, the result is always an empty string rather than the decrypted value.

DOUBLE()
fval = DOUBLE(val)

Returns the argument converted to a double precision floating point number.

EOD()
bval = EOD()

Returns a Boolean value indicating if there is more DATA that can be used to satisfy a READ statement. If
the value is true, then it means that end-of-data has been reached, and the next READ will access the first
DATA item again. If the value is false, then there is still at least one more DATA item to read before start-
ing over. See the documentation on DATA and READ for more information.

EOF()
bval = EOF(file-identifier)

Returns a Boolean expression indicating if the named file (as given by the file identifier from the OPEN
statement) is positioned at the end-of-file or not. If the function returns false, then it is possible to read
more data from the file without error.

EXISTS()
bval = EXISTS(file-name-string)

Returns a Boolean value to indicate if a file exists or not, as defined by a string expression containing its
name.

JBasic Userʼs Guide!

158

EXP()
val = EXP(value)

Returns the value of “e” raised to the given exponent.

EXPRESSION()
val = EXPRESSION(string)

Returns the results of evaluating the expression in the string. For example, EXPRESSION("3+5") returns
the value 8. The expression can be a string or numeric expression, and reference any active variable. The
result type is based on the expression type.

EXTENSION()
sval = EXTENSION(file-name-string)

Returns a string containing the file name extension of a file name string. For example, returns “.jbasic” for
the file name string “/Users/tom/myprogram.jbasic”.

FILEPARSE()
rval = FILEPARSE(file-name-string)

Returns a record containing the individual elements of the filename as string values in the record. This
functions independently of the underlying native file system; that is, this function works regardless of
whether the call is made on Mac, Windows, or Unix systems. The resulting record has the following fields,
and uses the example of a Unix file name of “/Users/tom/myprogram.jbasic”:

Name Description

EXTENSION The file extension, such as “.jbasic”

NAME The file name without the extension, such as “myprogram”

PATH The path that contains the file, such as “/Users/tom”

JBasic Userʼs Guide!

159

FILES()
array = FILES(path-string)

Returns an array with the name of each file located in the path given by the path string. If the directory is
invalid or empty, then an empty array is returned. This function is different from FILETYPES() in that it
just returns an array of string names, where FILETYPES() returns a full descriptive record for each file in
the path.

FILETYPE()
array = FILETYPE(filename)

Returns a record describing the file indicated by the string parameter. The array will be empty if the file is
invalid.

The record has the following fields:

Name Description

PATH The directory path of the file.

NAME The name of the file itself.

READ A Boolean indicating if the file can be read.

WRITE A Boolean indicating if the file can be written.

HIDDEN A Boolean indicating if the file is normally hidden.

FILE A Boolean indicating if the object is a file.

DIRECTORY A Boolean indicating if the object is a directory.

An example record might look like { PATH: "/Users/tom", NAME: "jbasic", READ: true,
WRITE: false, DIRECTORY:true, FILE:false }. This indicates a that "jbasic" is a directory,
can be read but not written, and is not hidden.

Note that FILETYPES(path) returns an array of the same kind of information that FILETYPE(file)
returns. FILETYPE() returns the information about a single file; FILETYPES() returns the information
about all files in a directory.

JBasic Userʼs Guide!

160

FILETYPES()
array = FILETYPES(path)

Returns an array describing the files found in the file system path described by the string parameter. The
array will be empty if the path is invalid or if the directory has no files.

The resulting array has a record in each element, of the same kind of information as the FILETYPE()
function.

Note that FILETYPES(path) returns an array of the same kind of information that FILETYPE(file)
returns. FILETYPE() returns the information about a single file; FILETYPES() returns the information
about all files in a directory.

FLOOR()
dvalue = FLOOR(dvalue)

Returns the arithmetic floor of the argument; the next smallest cardinal integer value less than the argu-
ment if the argument is not already an integral value.

FORMAT()
sval = FORMAT(expression, format-string)

The result of the expression is formatted using the format string. The format string indicates how the data
(which must be numeric) will appear by using sequences of special characters to define how each char-
acter of the output will appear.

The format characters are described in the following table.

Character Description

Represents a digit. If left of a decimal point, this will be blank if there is no signifi-
cant digit to its left. If right of the decimal point, this will be zero of there is no cor-
responding significant digit to the right.

0 Represents a digit. This will always be zero if there is no significant digit in this
place in the string.

. Indicates where the decimal point is to appear in the formatted value string.

JBasic Userʼs Guide!

161

Character Description

$ Indicates a dollar-sign character that is to appear at this position. If there are more
than one $ in the string, then the dollar sign “floats” and will appear directly to the
left of the first non-zero digit.

() When parenthesis are included in the format, they enclose the digit format. If the
formatted value is positive, then blanks are displayed in these positions. When the
value is negative, then the parenthesis are printed, allowing accounting-style des-
ignation of the sign of the number.

The following table contains some examples of format operations on various values.

Format Operation Resulting String

format(3.5, "###.##") 3.50

format(3.5, “000.##”) 3.50

format(3.5, “$$$.##”) $3.50

format(-3.5, “(##.##”) (3.50)

format(6, “0000”) 6

format(22, “###”) 22

The result of the format function call is a string that can be used to print output to the console or a file, or
for other display purposes. You can use the same format operations in a PRINT USING statement, docu-
mented elsewhere in this guide, which lets you format multiple values at one time using a single format
string, which can also include descriptive text or labels.

GETPOS()
ival = GETPOS(fileid)

Returns an integer with the current file position of the BINARY format file identified by the file identifier.

JBasic Userʼs Guide!

162

HEXADECIMAL()
sval = HEXADECIMAL(integer)

 ival = HEXADECIMAL(string)

The first case returns a string containing the integer value converted to hexadecimal notation. This func-
tion is the same as calling RADIX() with a radix value of 16. In the second case, the string value is proc-
essed as a hexadecimal value and the result is the decimal equivalent as an integer value.

INTEGER()
ival = INTEGER(numeric-expression)

Returns the numeric expression converted to an integer data type. If the value is already an integer then
no work is performed. Otherwise, the value is converted according to the standard JBasic rules for con-
version.

INPUT()
aval = INPUT(format-spec, input-buffer)

Uses an input specification to process a string buffer, and returns an array of values that were processed
from the input buffer. The type of the array elements is determined by the input specification elements.
See the documentation on the INFORMAT statement for more information.

ISOBJECT()
bval = ISOBJECT(variable)

Returns a Boolean flag indicating if the given variable is an OBJECT created by the NEW() function or by
a CLASS definition.

LEFT()
sval = LEFT(string, count)

 aval = LEFT(array, count)

Returns a string containing the 'count' left-most characters of the string. If the count is less than 1 then an
empty string is returned.

In the second form, the operation can be performed on an array. In this case, the result is an array that
contains the first count elements of the first parameter, which must be an array. For example, the expres-
sion LEFT([“T”, 3, 8.2], 2) results in the array [“T”, 3].

JBasic Userʼs Guide!

163

LENGTH()

 ival = LENGTH(array)
 ival = LENGTH(string-expression)

If the argument is an array name, returns the number of elements in the array. If the argument is a string,
returns the number of characters in the string.

LOADED()
bval = LOADED(program-name)

Returns a Boolean value to say if a given program is loaded in memory or not. The program is identified
by a string expression that must match the PROGRAM name.

LOCATE()
ival = LOCATE(value, array)

Returns the location of a given value in an array. If the first parameter is an array or the second parameter
is not an array, then the index value returned is -1 to indicate a parameter error. If the value cannot be
found in the array, then a zero is returned to indicate "not found." If the value is found in the array (by ex-
act match of both data type and value), then the index into the array is returned.

LOCKS()
aval = LOCKS()

Returns an array describing each JBasic lock in the current process (shared among all users and threads
in the same process). The array indicates if the lock is held by any process, if it is held by the current
process, the number of locks holds on the lock, and the number of other threads that are waiting on the
same lock. This same information can be displayed on the console using the SHOW LOCKS command.

The array of records contains the following fields:

JBasic Userʼs Guide!

164

Field Description

“HOLDCOUNT” The number of current active LOCK operations holding the lock.

“ISLOCKED” A boolean indicating if the lock is actively locked at this time.

“ISMINE” A boolean indicating if the lock is owned by the current thread.

“ISZOMBIE” A boolean indicating if the lock was held by a thread that has exited.

“NAME” The name of the lock

“OWNER” The name of the JBasic session that owns the lock.

“WAITCOUNT” The approximate number of other threads currently blocked while waiting on
the lock to become available.

See the documentation on the LOCK and UNLOCK statements for additional information about how locks
are used in thread-intensive programs.

LOWERCASE()
sval = LOWERCASE(string)

Returns a string with the alphabetic characters in the string converted to lower case if they are upper-
case.

MATCHES()
bval = ISOBJECT(pattern, string-expression)

Returns a Boolean indicator telling if the string expression matches the Regular Expression pattern given
as the first argument.

See http://java.sun.com/j2se/1.4.2/docs/api/java/util/regex/Pattern.html for additional information on how
to formulate and use Regular Expressions in pattern matching.

MAX()
val = MAX(arg [, arg...])

Returns the numerically largest value in the argument list, which must contain at least one item.

JBasic Userʼs Guide!

165

http://java.sun.com/j2se/1.4.2/docs/api/java/util/regex/Pattern.html
http://java.sun.com/j2se/1.4.2/docs/api/java/util/regex/Pattern.html

MEMBER()
val = MEMBER(record, "key")

Returns the member of the record identified by the string expression "key". This is used to do indirect ac-
cess to record members. Consider the following example:

 x = { name: "Sue", age: 3 }
 y = x.name
 z = member(x, "name")

This code sets y and z to the same value ("Sue"). However, the difference is that the MEMBER() function
call allows the key to be specified by a dynamic expression rather than a fixed identifier. See the descrip-
tion of the function MEMBERS() for how to get a list of the valid keys for a record.

MEMBERS()
array = MEMBERS(record)

Returns an array of strings, containing the names of the members of the record passed as a parameter. If
the parameter is not a record, then generates an error. Consider the following example.

 x = { name:"Sue", age: 3 }
 y = members(x)

This results in the variable Y containing the array ["AGE", "NAME"], with each element being a field
name (in alphabetical order) from the original record.

MEMORY()
ival = MEMORY([type-string])

Returns size of memory. The parameter is a string that contains the type of memory value to return. If
none is specified, then "USED" is assumed. If an invalid type string value is given, the function returns a
value of -1.

The valid memory status types are shown in the following table.

JBasic Userʼs Guide!

166

Memory Type Description

“FREE” The amount of free memory in the process space.

“USED” The amount of memory in use by the process.

“TOTAL” The total memory consumed (used + free)

“MAX” The maximum memory that the process can use.

“GC” The memory after garbage collection has occurred.

MESSAGE()
sval = MESSAGE(status-variable)

sval = MESSAGE(code-string [, parm-string])

Returns a string with a formatted message. If the parameter is a status code variable (such as SYS$STA-
TUS or the return code from an EXECUTE..RETURNING statement) the contents of the status code are
used to format a message. Alternatively, you can use a string containing the signal code name and op-
tionally a parameter to be formatted with the message if it has a parameter.

MESSAGES()
array = MESSAGES()

Returns an array of strings containing the message names of all currently defined messages. These can
be used with the MESSAGE() function to get the message text of all messages, for example.

MIN()
val = MIN(arg [, arg...])

Returns the numerically smallest value in the argument list, which must contain at least one item.

MIXEDCASE()
sval = MIXEDCASE(string)

JBasic Userʼs Guide!

167

Returns a string of the argument in mixed case. For example, MIXEDCASE("bob") is "Bob"; that is, the
first character is upper case and the rest of the string is lower case.

MKDIR()
bval = MKDIR(path-string [,flag])

Create a directory specified by the path-string. Returns true if the directory was created, or false if the
directory already existed. By default, any intermediate directories are also created. That is, if the path is “/
tmp/a/b/c” then “/tmp/a” and “/tmp/a/b” will be created if needed. If only the exact path given is to be cre-
ated, pass a flag value of false.

MOD()
ival = MOD(value, imod)

Returns the value modulo the imod parameter. For example, MOD(7,2) returns 1 because that is the re-
mainder of dividing 7 by 2. The value parameter can be any numeric expression but is converted to an
integer. The imod parameter must be an integer value. The result is always an integer. This function has
the same as the “%” operator.

MQUOTE()
sval = MQUOTE(value)

Returns the value enclosed in the required characters to make it a macro string. See the section on using
Macros for more information on a macro string. This function is useful because the literal macro quote
characters cannot be expressed as part of program source code, so a program that writes out a macro
template will often use this function.

NUMBER()
val = NUMBER(string)

Returns a numeric value that is the contents of the string expression parsed as a number. For example,
NUMBER("33") returns the numeric value 33.

JBasic Userʼs Guide!

168

OBJECT()
rval = OBJECT(var)

Returns a record describing the characteristics of the OBJECT var. If the parameter is not an object vari-
able then an error is signaled. Use the ISOBJECT() function to determine if a given variable is an object
(created by the NEW() function or a CLASS definition).

OBJECTMETHODS()
aval = OBJECT(var)

Returns an array describing the methods available for the Java object var. Each element of the array is a
fully-qualified string description of each method supported by the object. If the parameter is not a Java
object variable then an error is signaled. You can see if an object is a Java object by first using the
ISOBJECT() call to see if it is an object, then looking at the OBJECT() data for it to see if there is a field
named ISJAVA which will be set to true.

OCTAL()
sval = OCTAL(integer)

 ival = OCTAL(string)

The first form returns a string containing the integer value converted to octal notation. This function is the
same as calling RADIX() with a radix value of 16. In the second case, if the value is a string the value is
converted to a decimal number and returned as the result.

PAD()
sval = PAD(string, count)

Returns a string of the argument, padded with blanks to ensure that it is 'count' bytes long. If 'count' is a
negative number, padding is done the left; if 'count' is a positive number, then padding is done to the right.

PATHNAME()
sval = PATHNAME(file-name-string)

JBasic Userʼs Guide!

169

Returns a string containing the path component of a file name string. For example, returns “/Users/tom”
for the file name string “/Users/tom/myprogram.jbasic”.

PROGRAM()
sval = PROGRAM(program-name-string)

Returns a record containing information about the program identified using the string argument. The re-
sulting record contains the fields described in the following table.

Type Description

ACTIVE A Boolean that indicates if the program is currently running or not. This can
include the current program and the program(s) that called it.

BYTECODES The count of instructions that make up the program, if it has been linked.

COUNT The number of times this program has been executed in this thread.

HASDATA A Boolean that is true if the program has any DATA statements.

LINES An array of strings for each source line in the program. If the program is pro-
tected, then this array is empty.

LINKED A Boolean that is true if the program has been linked.

LOOPS A count of the active nested loops, such as FOR..NEXT loops in the pro-
gram.

MODIFIED A Boolean that indicates if the program has been modified since it was
loaded.

NAME The name of the program.

PROTECTED A Boolean that is true if the program is proteced.

STATICTYPES A Boolean that indicates if the program automatically assumes static data
type definitions based on the last character of variable names.

USER A Boolean that indicates if the program was created by the user versus
loaded from the JBasic jar file.

JBasic Userʼs Guide!

170

RADIX()
sval = RADIX(ival, rval)

 ival = RADIX(string, integer)

The first form returns a string containing the integer value converted to the given radix notation. For ex-
ample, to convert the integer in ival to a binary string, use an rval of 2. To convert it to a hexadecimal
value, use an rval of 16. The second form processes a string containing a value expressed in the given
integer radix, and returns it as a decimal integer. So RADIX(“101”, 2) returns a value of 5, which is the
decimal integer value of the binary value 101.

REPEAT()
sval = REPEAT(string, count)

Returns a string containing the first argument repeated as many times as specified by the second nu-
meric argument. The string can be a single character or a longer string. If the string is empty or count is
less than one, then an empty string is returned.

RANDOM()
dval = RANDOM()

 dval = RANDOM(maxval)
 dval = RANDOM(minval, maxval)

Generates a floating point random number. If no arguments are given, then a number x, such that 0.0 <=
x < 1.0 is generated. If one argument is given, then x is between 0.0 and that given value. If two argu-
ments are given, they are the minimum and maximum values returned by the function.

RANDOMLIST()
array = RANDOMLIST(max)

 array = RANDOMLIST(min, max)

Generate an array of integers sorted in a random order. If one argument is given, then the list contains
integers between 1 and that maximum value. If two arguments are given, the array contains integers be-
tween the minimum and maximum values. In a RANDOMLIST() array, no integer appears more than once
and all possible integers in the range are represented.

JBasic Userʼs Guide!

171

For example, consider the statement cards = RANDOMLIST(52). This will generate an array named
cards[] that has 52 elements numbered from 1 to 52, in random order. This can be used to create a
shuffled deck of cards for a game, for example.

RIGHT()
sval = RIGHT(string, count)

 aval = RIGHT(array, count)

Returns a string containing the 'count' right-most characters from the string argument. If count is less than
one, then an empty string is returned.

In the second form, the operation can be performed on an array. In this case, the result is an array that
contains the last count elements first parameter, which must be an array. For example, the expression
RIGHT([“T”, 3, 8.2], 2) results in the array [3, 8.2]

SECONDS()
dval = SECONDS()

Returns a floating point value that is the number of seconds since JBasic was started, accurate to about a
millisecond. This can be used to time events, etc.

STRTOARRAY()
array = STRTOARRAY(string)

Returns an array, where each element of the array is a single character from the string. The array length
will be the same as the length of the string argument.

SUBSTRING()
sval = SUBSTRING(string, start, end)

 aval = SUBSTRING(array, start, end)

Returns a string value that is a substring of the first argument, starting with the 'start' character and end-
ing with the 'end' character positions. If end-start is less than one, an empty string is returned. If start is
less than one or end is greater than the length of the string, then one and string length are assumed.

JBasic Userʼs Guide!

172

In the second form, the operation can be performed on an array. In this case, the result is an array that
contains elements start through end of the first parameter, which must be an array. For example, the ex-
pression SUBSTR([“T”, 3, 8.2], 2, 3) results in the array [3, 8.2]

SUM()
val = SUM(arg [, arg...])

Returns the numeric sum of the arguments. Differs from TOTAL() in that it cannot handle string argu-
ments.

SYMBOL()
rval = SYMBOL(“variable” [, “table”])

Returns a structure that describes the symbol named in the first string parameter. If the table parameter is
given, it is a string that contains the name of the table to search for the symbol; if omitted then the search
begins in the local table. The resulting record contains the following fields:

Type Description

LENGTH The length of the value. For an array or record, this is the number of ele-
ments in the value; for any other type it is the length in characters of the
value when printed.

NAME The name of the symbol

TABLE The symbol table that contains the symbol

TYPE An integer value indicating the type of the value

TYPENAME A string value indicating the type of the value

VALUE A string containing the formatted value suitable for printing.

SYMBOLS()
avalue = SYMBOLS([“table”])

Returns an array that contains the names of all the symbols in the given table. If the table string parame-
ter is missing, then the local table is assumed. The resulting array is not guaranteed to be in any particu-
lar order. Use the SYMBOL() function to gather information about each symbol represented in the array.

JBasic Userʼs Guide!

173

TABLES()
avalue = TABLES()

Returns an array that contains the names of all the symbol tables, in the order of most-local to most-
global. That is, the first element in the array is always the local symbol table being used to execute the
function. This is followed by any nested tables and then the global tables (usually “Global”, “Constants”,
and “Root”). These names can be used with the SYMBOLS() function to get a list of symbols in each ta-
ble.

TOTAL()
sum = TOTAL(arg [, arg...])

Returns the numerical sum of its arguments if they are numeric, or a concatenation of the arguments if
they are strings. This differs from SUM() in that SUM() can only operate on integer or double numeric
values.

TYPE()
sval = TYPE(expression)

Returns an string value that describes the data type of the expression. If the expression is a single vari-
able, returns the type of that variable. Return types are “BOOLEAN”, “INTEGER”, “STRING”, “DOUBLE”,
“RECORD”, or “ARRAY”.

TYPECHK()
bval = TYPE(expression, descriptor-string)

Returns a boolean value indicating if the expression matches the descriptor string. For simple scalar
types, this is the same string as returned by the TYPE() function. However, the descriptor string can
contain array and record definitions as well, such that you can compare the type of a complex operator.
For example, TYPECHK(EMPDATA, “{NAME:STRING, AGE:INTEGER,SALARY:NUMBER}” requires
that the data value be a record with three members NAME, AGE, and SALARY. The types of NAME and AGE
are specific scalar data types. The SALARY field can be either an INTEGER or a DOUBLE. The descriptor
string can be arbitrarily complex; arrays must have the same number of elements and element types as

JBasic Userʼs Guide!

174

the descriptor, and records must have the same members to be considered a match. The special type
ANY will match any type.

This function is particularly helpful when used in a user-written function that wants to verify that all the
arguments are the correct type. When a user-written function is called, all the function arguments are in
the array $ARGS. So the code can use the TYPECHK() function to determine if the members of the
$ARGS array are of the correct type to determine if the function arguments were correctly expressed.

UPPERCASE()
sval = UPPERCASE(string)

Returns a string with each alphabetic character in the string converted to uppercase.

XML()
sval = XML(value [, formatted])

Converts any JBasic value into an XML representation in a string. This XML value can be transmitted to
another instance of JBasic and reconstructed using the XMLPARSE() function to convert back to a value.
See the section on XML earlier in this Userʼs Guide for more information.

If the optional second parameter is given, it must be a Boolean flag indicating if the XML is formatted with
line breaks and indentation to make it more readable. The default is true.

XMLPARSE()
value = XMLPARSE(string [, root-tag])

Returns a JBasic value that contains the information encoded in the XML string. A runtime error occurs if
the XML is not valid. See the section on XML earlier in this Userʼs Guide for more information. The default
root tag that the function searches for to convert the JBasic value is the tag <Value>. You can specify a
different name than “Value” by passing it as the optional second parameter of the function call. The tag
name is not case-sensitive, and must not include the “<>” characters.

JBasic Userʼs Guide!

175

This page intentionally left blank.

JBasic Userʼs Guide!

176

BASIC Compatibility

Every version of BASIC has some implementation-specific features or choices made about how to imple-
ment the BASIC programming language. And that language has evolved considerably over time from its
relatively simple beginnings at Dartmouth College to the modern-day graphically intensive versions of the
language.

It would be difficult if not impossible to catalog the differences between JBasic and every other dialect or
variant. However, there are a few common stumbling blocks to converting programs from one version of
BASIC to another, and this section will point out the issues youʼre most likely to encounter when moving
programs to JBasic.

Expressions and Variables

Array Notation

In JBasic, an array subscript must always be identified by square bracket characters “[“ and “]”. For ex-
ample, an array reference to the third element of an array of names might be NAMES[3]. This distinction
is important to differentiate an array reference from a function call, which always uses parenthesis. So a
function call NAMES(3) is always distinct from an array references NAMES[3].

This is different than many dialects of BASIC which use the parenthesis for array references. Converting
a program from other dialects to JBasic may involve having to change all array references from parenthe-
sis to brackets.

Variable Typing

In JBasic, by default a variableʼs type is dynamic. That is, a variableʼs type is based on whatever value it
currently contains. Over the life of a running program, a variable may contain more than one type of data.
Additionally, JBasic attempts to convert data from one type to another automatically when needed. For
example, an IF statement requires a Boolean expression that yields true or false, but any numeric ex-
pression can be used since it can be converted to a zero/non-zero value and then to a true Boolean
value.

By contrast, most dialects of BASIC assign one value type to a variable for the life of the program. This
static (or unchanging) typing can be used in JBasic, but it is not the default. Additionally, in many dialects
of BASIC, the variable nameʼs last character can be used to declare the variable type. For example, going
all the way back to the earliest versions of BASIC, a dollar sign “$” character means that the variable is
always a string value.

You can use the DEFINE() option of a PROGRAM statement to enable static data types for that program.
In that case, the first type a variable receives becomes the type the variable retains until the program ter-
minates or the variable is explicitly cleared from memory with a CLEAR statement. Additionally, when
strong typing is enabled, the trailing character of a variable name is used to determine its initial type if it is
not explicitly declared with a given type using a statement like STRING or INTEGER, or in a DIM state-
ment.

JBasic Userʼs Guide!

177

Defining Variables

As discussed above, you can use dynamic or static data typing for variables to determine what the vari-
able type is. You can also use declaration statements like STRING, BOOLEAN, DOUBLE, or INTEGER to
define variables and optionally give them initial values. The DIM statement can also be used to define
both arrays and scalar values with specific types.

Other dialects of BASIC may have different statements for this purpose. Additionally, some dialects allow
a statement that defines a range of variables names to have a specific type. For example, some dialects
allow DEFSTR to define a range of variables that are always assumed to be STRING variables, regardless
of name suffix.

Functions

JBasic considers four possible ways you can define a function. You can have a standalone program that
acts as a function based on using the FUNCTION statement as the first statement of the program. You can
use the SUB statement to define code within a program to be used either as a function or a subroutine.
You can use the DEFFN statement to define a statement function which is a single expression that is en-
coded as a function. Finally, you can use built-in functions that are provided by the JBasic runtime.

Other dialects have somewhat different mechanisms for defining a function. For example, they may allow
a statement function using a different syntax like

 DEF FNL(OFFSET) = CVL(MID$(BUFFER$, OFFSET, 4))

JBasic allows relatively relaxed function argument standards, on the assumption that the programmer can
decide if this flexibility allows a function to perform slightly different actions based on the type of the ar-
guments, etc. Additionally, JBasic allows varying length argument lists using the ellipsis “...” notation.
These features may not be supported in other BASIC dialects. When writing a function in JBasic, you can
always examine the $ARGS array in the local symbol table of every function. This contains each of the
arguments expressed as an array that you can inspect or use.

Additionally, some dialects of BASIC assume that the function result will be returned in a variable with the
same name as the function. For example,

 FUN DOUBLE(X)
 DOUBLE = X * 2
 RETURN

In this example, the variable DOUBLE is the same as the function name, and is where the result must be
stored. In these dialects, the value may be stored at any time during the function code, and is passed
back to the caller whenever a RETURN statement is executed. By contrast, in JBasic, the value to be re-
turned must be explicitly given as in the RETURN statement that exits from the function;

JBasic Userʼs Guide!

178

 FUN DOUBLE(X)
 RETURN X * 2

Control Statements

Multi-line IF statements

In JBasic, the IF statement can be all expressed on one line, or can span multiple lines. When expressed
as a multi-line IF statement, it has a specific syntax. The IF statement itself must have a trailing THEN
keyword with no statement following the THEN. If an ELSE block is required, the ELSE keyword must be
on a line by itself. And the end of the mutli-line IF statement block is marked with an END IF statement.

By contrast, some dialects of BASIC use slightly different syntax to define a multi-line IF statement.
Some dialects use an ENDIF statement to terminate the multi-statement block, rather than the two-word
statement END IF. In another example, some advanced versions of BASIC have an ELSEIF statement
which has the special meaning of defining both the “false” condition for the initial test and a new secon-
dary condition for the next block of code. This creates a “cascading IF statement” without having to use
the kind of nesting that would be required in JBasic. For example, in some dialects you can use:

 IF SALARY < 5 THEN
 PAY = SALARY * HOURS * 1.2
 ELSEIF SALARY < 10 THEN
 PAY = SALARY * HOURS * 1.1
 ELSE
 PAY = SALARY * HOURS
 END IF

Because JBasic does not have an ELSEIF construct, the same code would have to be expressed this
way in JBasic. Because there is no ELSEIF statement, a second level of nesting is required, along with
an additional END IF statement to balance the IF statements.

 IF SALARY < 5 THEN
 PAY = SALARY * HOURS * 1.2
 ELSE
 IF SALARY < 10 THEN
 PAY = SALARY * HOURS * 1.1
 ELSE
 PAY = SALARY * HOURS
 END IF
 END IF

JBasic Userʼs Guide!

179

DO WHILE and DO UNTIL

JBasic implements most modern looping constructs. One difference is that when the condition is put at
the end of the loop body, the keyword LOOP is optional in JBasic; you can directly specify the WHILE or
UNTIL clauses without the LOOP keyword if you wish.

Additionally, some variations of BASIC have an alternate version of the WHILE loop using the WHILE
keyword and the WEND keyword to identify the starting and ending statements of the condition. You can
change the WHILE..WEND block to a DO WHILE..LOOP block and it should have the same meaning.

CONTINUE LOOP and END LOOP

In JBasic, the CONTINUE LOOP and END LOOP statements are used to transfer control back to the top of
the loop body or out of the loop body, respectively. These statements can be used within a FOR..NEXT
loop or any of the DO..LOOP constructs.

By contrast, some versions of JBasic have different statements for achieving the same function. For ex-
ample, some dialects use the EXIT LOOP or EXIT FOR statement to exit out of the body of a loop. The
keyword after EXIT determines the kind of loop to be exited. In either case, substitute this with an END
LOOP statement in JBasic.

A few versions of BASIC (particularly those that are compiled) are able to detect when a GOTO statement
transfers control out of a loop, and treats it as an END LOOP operation, including discarding any runtime
information about the loop. JBasic does not have this ability. If you use a GOTO to exit out of a loop and
then attempt to re-execute the loop, an error will occur because JBasic will think you have duplicated ac-
tive index variables. For example, the following code will not work in JBasic:

 START: FOR I = 1 TO 10
 PRINT “Index = “; I
 IF I = 5 THEN GOTO START
 NEXT I

The GOTO statement will not correctly discard the pending FOR..NEXT loop, but will instead attempt to cre-
ate a new loop with the same index variable as an active loop, which is a runtime error. Change the code
to use CONTINUE LOOP to iterate to the next loop of the FOR..NEXT block, or END LOOP to exit from the
bottom of the loop (after the NEXT statement) where execution can be redirected back to the FOR state-
ment if needed.

JBasic Userʼs Guide!

180

Binary File I/O

FIELD statements

In JBasic, the FIELD statement is used to identify the individual data types and sizes in a binary file re-
cord. The FIELD statement can either store the definition in a variable (actually a JBasic record with a
specific data structure) or it can bind it directly to an open file. When bound to an open file, the binary re-
cord definition is automatically used with GET and PUT statements that do not specify data or record in-
formation explicitly. There can be only one FIELD definition linked to a file at a time; the last FIELD
statement executed defines the record definition used. When stored in a record variable, the FIELD defi-
nition can be referenced explicitly by the GET and PUT statements, or can be linked later to a file with the
FIELD..USING statement.

In some modern versions of BASIC, the record definition is created as a Type instead. You will have to
translate these Type definitions into FIELD statements manually. Most of the data types are supported in
both languages, though some versions of BASIC refer to an INTEGER(4) as a LONG and INTEGER(2)
as a SHORT.

Finally, JBasic supports a VARYING STRING and a UNICODE STRING data type that are not generally
supported by other dialects of BASIC. Do not use these in a program where you expect to port your pro-
gram to other dialects if you can help it. Additionally, VARYING STRING creates a data type on disk that is
not readable by other programs without understanding the internal representation of a varying length
string in JBasic. Avoid this type if you plan on sharing data with other programs.

Binary Data versus Strings

In JBasic, the FIELD statement specifies the data type for each individual data item in the record. A GET
or PUT statement using that FIELD definition uses this information to determine what data types to use to
read or write the data values to or from the binary file.

By contrast, some older versions of BASIC only specify the size of the field, and all data is stored in string
variables. It becomes the responsibility of the program to then read the binary data stored in the string
variables by converting them as appropriate to integers, floating point values, etc. You will have to change
such programs to directly specify the data types in the FIELD statement.

JBasic Userʼs Guide!

181

This page intentionally left blank.

JBasic Userʼs Guide!

182

MULTIUSER Mode

Normally, JBasic runs on behalf of a single user - the one who invoked JBasic from a command line, or
perhaps ran a program that uses JBasic as its scripting language. In this mode (referred to as SINGLE
USER mode) there are no special considerations for user identity, permissions, or control of file access.
These are instead managed by the operating system on behalf of the user, as they are for any running
program.

JBasic also supports a mode where multiple users are connected to the same instance of JBasic. This is
called MULTIUSER mode. In this mode, there is a single JBasic program running, which accepts connec-
tions via a Telnet-style communication protocol, and creates a thread for each incoming connection. Each
thread has its own JBasic instance, but they are managed more like a tree of threads (see the documen-
tation on CALL for information on threads) than as individual connections.

These individual users have a user identity that is not the identity they have on their connection computer
but rather the identity they log in with when connection to the MULTIUSER server. These identities are
used to manage the location where the user is allowed to read and write files or save programs, and what
permissions they have (including do they even have permission to read files, for example).

This mode is intended to support/host a student environment where multiple students may wish to use
JBasic under the control of an instructor who places limits on their ability to interact with the hosting com-
puter that is running the actual JBasic server. This mode is not intended for conventional use, because
there are significant limits placed on the remote users who connect to a server.

Preparing for MULTIUSER Mode
To run a multiuser user, you need to decide what port the users will all connect on to make the initial con-
tact with the server, and you must also create a user database that describes the identity, permissions,
and file system areas that the users will have access to when connecting to your server. Finally you must
prepare the directory areas for student use.

The port selection defaults to port number 6100. That is, this is the port number that students will use by
default to connect to a JBasic server on your host computer. However, only one server at a time can use
any given port number, so if you have multiple servers (for example, one server for each class) then each
one must be assigned a unique port number. Additionally, these numbers must not collide with any other
well-known port numbers on your system. If in doubt, contact your system or network administrator for
suggested port numbers or ranges to use. The global variable SYS$PORT must be defined on each
server instance of JBasic before the server is started with the SERVER START command.

User data entry can be done in one of two ways. You can create or edit a text file that contains the user
data definitions, or you can use the SERVER command to create or modify each user identity record. The
easiest way to do this is often to use the SERVER ADD command to create one or two records and then
save the database to a text file that you can then edit (using the existing records as a template). You may
also wish to consider writing a JBasic program that can help you create the user data programatically.

The server database is an XML file that describes the list of logical names and the characteristics of each
user. Because the XML data can be complex, the information in the file is most easily managed using the
various SERVER commands documented in this section.

Logical Names
Logical names are a mechanism for abstracting real physical locations on the computer where the server
runs, and presenting a set of locations to remote users that are independent of those real, physical file

JBasic Userʼs Guide!

183

and directory paths. JBasic allows the administrator to create logical names that identify locations in the
host computerʼs real physical file system that are then hidden from the users, who can only reference
those locations by logical name.

Logical names are most often used to identify temporary space where students can write data or the loca-
tion where the default workspace files are loaded from for the users. The workspace file name itself con-
tains the userʼs name by default so all workspace files can go in the same directory identified by a logical
name. If the logical name begins with an underscore “_” character, then it cannot be viewed by the FILES
command or otherwise inspected by the remote user; only JBasic can load files from these locations.

See the SERVER DEFINE and SHOW SERVER LOGICAL NAMES commands for defining or viewing logi-
cal names in the following sections.

Home Directories
When students log into the server, they will probably need to have a place to read and write files as well
as to save JBasic programs they write. Each student is typically given a different directory area in which
to work.

This is set in the user record and should not be created using a logical name. Each userʼs file activity
(both loading and saving programs as well as files read or written by their user programs) are automati-
cally constrained to the home directory of the user. This prevents users from being able to access each
others files, or files outside the defined area of the file system.

Do not specify a home directory that is also used for any other purpose.

For example, do not use your own home directory as this will mean that your students can access (read
and write or delete) your files. It is recommended that a subdirectory of your computerʼs temporary space
(/tmp or c:\temp, for example) be used for student file system space. When the SERVER START command
is issued, the user home directories are created if they do not already exist.

Functions
There are a few JBasic functions that are designed to assist running programs in participating success-
fully in a multiuser environment. These are listed below:

PERMISSION()
aval = PERMISSION()

! or
 bval = PERMISSION(“permission-name”)

If no argument is given, this returns an array of strings containing the names of the permissions granted
to the current user. If not in MULTIUSER mode, this will always return an empty array; use the SYS$MODE
system variable to determine if the function is meaningful for the current mode. If a permission name is
given as a string argument, the function returns a boolean true or false value indicating if the current user
has the given permission. If not in MULTIUSER mode, this always returns true.

JBasic Userʼs Guide!

184

USERS()
aval = USERS()

Returns an array containing records describing each of the users currently known to the MULTIUSER
server. If not in MULTIUSER mode, this returns an empty array. The fields in the resulting record array
are:

Permission Function

ACCOUNT The account name for this user, or an empty string if none given.

ACTIVE A boolean flag indicating if this user is currently logged on.

LOGINCOUNT The number of times this user has successfully logged into the server.

NAME The descriptive name for this user, or an empty string if none given.

USER The user name of this user record.

WORKSPACE The name of the default workspace file for this user.

Controlling the Server
The subsequent sections of this manual will describe the SERVER and SHOW SERVER commands in detail.
These commands are used to manage the user database, start and stop the server, and display the
status of the server and its users. In general, the intent is that the instructor or other administrator starts
JBasic, loads the user data, and starts the server mode on behalf of the students. As long as the JBasic
server is running, the students have access.

It should be noted that the user database exists in the memory of the server instance of JBasic. You can
modify the user characteristics, but you must save them to disk to persist them to be used in the future.
See the SERVER LOAD and SERVER SAVE commands for more information.

Previous versions of JBasic used the SET SERVER command to change the state of the server. This cre-
ated awkward syntax. Starting with release 2.4, these commands are given with the verb SERVER. For
compatibility, the previous SET SERVER syntax will be supported, but will no longer be documented.

JBasic Userʼs Guide!

185

SET PASSWORD

This command is used by a user who is connected to a multi-user server, to change their own password
entry in the user database.

! SET PASSWORD “my$secret33”

The password can be any string expression; in this example, the command sets the password to the
string “my$secret33” in the user database for the current user.

This command cannot be issued except from a remote user session. The password data is encrypted and
stored in the user database. The user must have the ADMIN_USER or PASSWORD privilege to be able to
issue this command.

JBasic Userʼs Guide!

186

SERVER ADD USER

The SERVER ADD command is used to add a new user to the current user database. The database exists
in memory in the JBasic server, and is populated either by a SERVER LOAD command or by one or more
SERVER ADD commands.

 SERVER ADD USER “SDAVIS” PASSWORD “k234”
! ACCOUNT “CS11”
! HOME “/tmp/sdavis/”
! WORKSPACE “workspace-sdavis.jbasic”

This command creates a new user “SDAVIS” and assigns an initial password of “k234”. The user has an
account of “CS11” that might be used to designate a class, for example. The home directory for the user
is given as well. The workspace defines a file that contains the userʼs default workspace that is loaded
when they log in, and can be saved with a SAVE WORKSPACE command.

Note that while the home directory is “/tmp/sdavis”, the user themselves will not see that as part of any
file name or directory operation. As far as the user is concerned, they have sole use of the file system for
their files, but are in fact actually only seeing files and directories located within “/tmp/sdavis” in this
example.

The workspace is not located in the userʼs home directory, but is a file name (or path and file name) in the
serverʼs process context. That is, the workspace file is loaded and saved in the current directory of the
server itself in the above example. This allows the instructor to keep the workspace files separate from
the data or individual files that a student might create or use. The user must have FILE_IO privilege to
be able to save a file or program in their home directory, but they can issue a SAVE WORKSPACE at any
time to write the current user programs to the workspace even if they have no permissions. This lets the
instructor have students “turn in their assignments” by saving to a workspace that can be inspected/
graded by the instructor without having to locate files in the userʼs account areas.

The password is specified in plain text in this command, but is immediately converted to a hashed value
in memory and saved in the hashed form when written to disk. So the user must use the password “k123”
to log in, but no one who sees the password file will know what the actual password is. If the user is suit-
able privileged, they will be able to change the password.

The only required keywords in the SERVER ADD command are the USER and the PASSWORD. All others will
be generated as default values if needed.

JBasic Userʼs Guide!

187

SERVER DEFINE

The SERVER DEFINE command is used create a logical name. This logical name can be used by remote
users to reference physical file locations by abstract names.

! SERVER DEFINE TMP = “/tmp/jbasic/userdata”!

In this example, a logical name TMP is created that points to a location in the file system. The remote us-
ers cannot reference this location directly themselves, but they can reference it by using the logical name
TMP in their file names. For example,

! OPEN OUTPUT FILE “TMP::MYDATA.TXT” AS #1

The user of the logical name (identified by the “::” characters in the path name) tells JBasic to create this
file in the temporary location identified above. The resulting path “/tmp/jbasic/userdata/MYDATA.TXT” is
used for the actual physical file, even though this is outside the userʼs home directory area. This is the
only way that a user can access files outside their home directory, so logical names should never be cre-
ated that reference important file locations on the host system.

JBasic Userʼs Guide!

188

SERVER DELETE USER

The SERVER DELETE USER command is used to delete a user record from the database. The database
exists in memory in the JBasic server, and is populated either by a SERVER LOAD command or by one or
more SERVER ADD commands. Because of this, the SERVER DELETE USER function must be followed by
a SERVER SAVE command to make the change permanent on disk.

! SERVER DELETE USER “SDAVIS”

This command deletes the user data for the user record “SDAVIS”. If the user is still logged in, their ses-
sion will be terminated by this command, just as if a SERVER QUIT command had been given. The user is
also prevented from logging in again.

Because this change only happens to the copy of the database in memory, you can exit the server and
the record will still exist on disk; you will have only prevented access during the time that the server was
running. A subsequent invocation of the server will load the data file again.

JBasic Userʼs Guide!

189

SERVER GRANT

The SERVER GRANT command is used to grant a permission to a user. These permissions are required to
perform operations in JBasic that could consume resources or compromise the security of the JBasic
server, and so should be granted only as needed. Note that permissions are only checked when in multi-
user mode; programs running in single user mode implicitly have all permissions and can perform any
operation in the language. This means that a program may run without error in single user mode, but will
result in a permission failure when the same program is run by a user in multi-user mode.

SERVER GRANT USER “tom” PERMISSION “ADMIN_SERVER”

This command grants the permission “ADMIN_SERVER” to the user named “tom”. It is an error if the user
does not exist. Additionally, the permission must be a valid permission name. Here is a table of the per-
missions that supported by JBasic:

Permission Function

ADMIN_SERVER The user is allowed to issue SERVER commands that affect the state of the
server such as stopping or starting it.

ADMIN_USER The user is allowed to issue SERVER commands that affect individual users or
their permissions.

ASM The user is allowed to use the ASM statement to assemble arbitrary bytecode
streams. This permission can be used by the user to subvert other permis-
sions and should not be granted except to trusted users.

DIR_IO The user is allowed to use the FILES command and the various functions that
read the directory and present information about files in the directory. This
privilege is already required to be able to use the KILL statement to delete a
file by name.

FILE_IO The user is allowed to open files using the OPEN statement. The user can use
OPEN to access databases or queues without this permission. This is also re-
quired to be able to load or save individual programs using LOAD and SAVE.

JAVA The user is allowed to create Java objects via the NEW() function or have
Java objects created and passed into JBasic via the addObject() method.

PASSWORD The user is allowed to change their password using the SET PASSWORD
command.

JBasic Userʼs Guide!

190

Permission Function

SHELL The user is allowed to use the SYSTEM command to execute native commands
in the shell. These commands run in the context of the user who started the
JBasic server and should only be awarded to trusted users.

THREADS The user is allowed to create threads using the CALL statement, and to man-
age threads created by the user programs.

Permissions must be granted before a user logs in to be able to access the permissions; the information
about the permissions of a user are copied to the specific user session(s) at the time of log in to the multi-
user server. If a user is logged in and additional permissions are granted, new instances of that user will
get the new permissions but existing sessions will not.

Granted permissions are stored in the user dictionary in memory; you must execute a SERVER SAVE
command to ensure that these permissions persist in the user database for future JBasic sessions.

See the documentation on the SERVER REVOKE command for information on how to remove permissions
from a user dictionary.

JBasic Userʼs Guide!

191

SERVER LOAD

The SERVER LOAD command loads the user database from a disk file into memory. This is a required step
before a server can be started.

! SERVER LOAD [“filename”]

If the file name is not given, then JBasic looks for a file “JBasic-users.xml” in the current directory
where the JBasic server was started from. If an explicit file name is given, then it will be remembered and
used when a SERVER SAVE command is issued. The file name is relative to the server process, not a user
process (even if the command is executed by a remote user).

If you do not explicitly issue a SERVER LOAD command and there are no users defined when a server
start operation is performed, an implicit SERVER LOAD of the default file is performed automatically. Note
that loading users causes them to be added to the database in memory; if there are already users defined
they will not be replaced unless a user record with the exact name is found in the input database file.

This command must be performed by the controlling session (the JBasic session launched by the admin-
istrator to act as the server) or may be performed by a remote user if they have ADMIN_USER privileges.

JBasic Userʼs Guide!

192

SERVER MODIFY

The SERVER MODIFY command is used to modify an existing user record in the in-memory database.
The user must have already been created with a SERVER ADD command or by loading from a disk reposi-
tory of the database.

! SERVER MODIFY USER “SDAVIS” ACCOUNT “CS23”

This command modifies the ACCOUNT setting for user “SDAVIS”. You can specify one or more account
attributes on the command line. Each attribute consists of a keyword followed by a string constant or
string expression.

The following table describes the attributes and their meaning. Also shown is the default value for that
attribute if none is given when the user is created or loaded from the disk file.

Attribute Default Meaning

PASSWORD No default The password the user must give to log in.

ACCOUNT “DEFAULT” A descriptive string about the account, such as class
name or department code.

NAME “DEFAULT” The full name of the user of the account.

HOME “/tmp/jbasic/user” The home directory in the native file system where the
user is allowed to read and write files.

WORKSPACE “workspace-user.jbasic” The location in the native file system where the userʼs
WORKSPACE is saved.

There is no default for the password because a password must be given when the account is created or
loaded from disk, or an error is signaled.

The only user attributes that is not set by this command are the user permissions, which must be handled
with the SERVER GRANT and SERVER REVOKE privileges.

The SERVER MODIFY command can be given by the user of the controlling session, or by any remote
user with the ADMIN_USER privilege.

JBasic Userʼs Guide!

193

SERVER QUIT

This command is used to force a remote user session to terminate, as if the user in that session had is-
sued a QUIT command.

! SERVER QUIT “JBASIC_44”

The above command causes the remote user session with instance id JBASIC_44 to be logged out. Any
unsaved work is lost; this command should not be used unless it is necessary to prevent misuse of the
server, etc. If the instance ID does not represent an active session, an error is reported.

You can get the instance ID number of each session by using the SERVER SHOW SESSIONS command.
This command may be issued by the controlling session, or by any remote user with ADMIN_USER privi-
leges.

JBasic Userʼs Guide!

194

SERVER REVOKE

The SERVER REVOKE command is used to remove or delete a permission to a user. These permissions
are required to perform operations in JBasic that could consume resources or compromise the security of
the JBasic server, and so should be granted only as needed.

! SERVER REVOKE USER “tom” PERMISSION “ADMIN_SERVER”

This command takes away the permission “ADMIN_SERVER” from the user named “tom”. It is an error if
the user does not exist.

See the documentation on the SERVER GRANT command for additional information on the valid permis-
sion names and their meaning, and how and when server permissions are assigned to user sessions.

JBasic Userʼs Guide!

195

SERVER SAVE

The SERVER SAVE command save the user database in memory to a disk file. This is required if the
changes made during the current user session are to be made permanent and in effect the next time the
server is run.

! SERVER SAVE [“filename”]

If the file name is not given, then JBasic stores the data in the file “JBasic-users.txt” in the current
directory where the JBasic server was started from. If an explicit file name is given on the last SERVER
LOAD command issued, then it will be remembered and used when the SERVER SAVE command is given.
The file name is relative to the server process, not a user process (even if the command is executed by a
remote user).

This command may be performed by the controlling session (the JBasic session launched by the adminis-
trator to act as the server) or may be performed by a remote user if they have ADMIN_USER privileges.

JBasic Userʼs Guide!

196

SERVER START

The SERVER START command is used to initiate the multi-user mode. Until this is done, the server is not
running and will not accept incoming connections.

! SERVER START [PORT=port-number] [LOGGING=logging-level] [SHELL=program]

By default, the server will use port number 6100 to accept new incoming connections. However, you can
specify the port number by including it optionally on the command line with the PORT= clause, or by set-
ting the global variable SYS$PORT to the desired port number before starting the server. Once the server
is started, it will use this same port number until it is stopped and restarted; you cannot change the port
number of the server without stopping and restarting the server.

Once the server is started, the command prompt changes automatically to “SERVER>” to remind you that
the current session is the controlling server. You can use the SERVER SHOW command to display the cur-
rent state. When the server is running, users connect to the server using a standard Telnet client of their
choice. For example, this session running on a Mac OS X system connects to a remote server:

[MyMac:~] macnerd% telnet server.jbasic.net 6100
Trying 192.168.1.33:6100...
Connected to server.jbasic.net.
Escape character is '^]'.

Please log in to JBasic

Username: tom
Password:

JBASIC Version 2.6 (Fri Feb 20 23:22:16 EDT 2009), by Tom Cole

[tom] BASIC>

In this example, the user connects to a server on the system named “server.jbasic.net” and specifically
identifies port 6100 as the connection port. The user is logged into the server, and must identify himself
using the JBasic user database credentials. The password is not echoed to the console. Note that the
prompt for the user includes his JBasic user identity.

Once logged in to JBasic, the user has a remote JBasic session and can use any JBasic feature as long
as he has the appropriate permissions (see the SERVER GRANT command for details).

The logging level set by the LOGGING= keyword determines if messages about the state of the server are
reported on the main JBasic console. The logging levels are the same as the SET LOGGING command.

JBasic Userʼs Guide!

197

If the SHELL option is used, this specifies a specific program to be run instead of a command-line shell.
When a shell program is given, then no user authentication is required or performed; all users who con-
nect to the port are allowed to run a copy of the program.

! SERVER START PORT=6101 SHELL=”ELIZA_SHELL”

The shell name is any string expression that references the name of a program already in memory. The
example shows creating a server to run the program ELIZA_SHELL, which is really a shell around the
ELIZA program included in the default Library in JBasic. The server then allows anonymous server ses-
sions to be created that run code and respond to the userʼs request. In these cases, the running pro-
gramʼs input comes from the remote connection and the output is directed back to the remote connection
just like a normal remote user connection.

Obviously, in these cases it is very important that the shell program be written in a fashion that prevents
the user from accessing resources incorrectly; the resulting program should not all the user to execute file
system I/O, etc.

When a shell is created in this way, the user program has all privileges and must carefully ensure that the
programʼs functions cannot be misused by the remote user.

JBasic Userʼs Guide!

198

SERVER STOP

The SERVER STOP command stops a running multi-user server. All users currently logged in are discon-
nected, and their work is lost. Do not do this without warning your users.

! SERVER STOP

Currently there is no mechanism to warn logged in users of an impending shutdown, or to warn the ad-
ministrator that there are still active users.

When the server stops, the command prompt for the session reverts back to the default prompt, which is
normally “BASIC>”.

If the JBasic session that initially starts the server exits (such as by the user issuing a QUIT command)
then this has the effect of stopping the server and disconnecting the users as well.

JBasic Userʼs Guide!

199

SET LOGGING

This command sets the logging level for the current instance of JBasic. This determines if error, warning,
informational, or debugging messages are sent to the console when events occur within JBasic. In gen-
eral, these are used by the multi-user mode to notify the primary JBasic console about events that are
occurring in the other sessions of the server.

! SET LOGGING=2

This command sets the logging level to 2, which indicates that error, warning, and informational mes-
sages are to be sent to the console. The table below shows what kind of messages are generated for
each logging level. The default level is zero, which produces only error messages.

Logging Level Description

0 Only error messages are sent to the console. This is the default log-
ging level.

1 Error and warning messages are sent to the console.

2 Error, warning, and informational messages are sent to the console.

3 Error, warning, informational and debugging messages are sent to the
console.

JBasic Userʼs Guide!

200

SHOW SERVER

The SHOW SERVER command displays information about the state of the multiuser server.

BASIC> show server
SERVER=MULTIUSER (CONTROLLING SESSION)
 STARTED=Fri Nov 02 20:24:20 EDT 2007
 PORT=6100
 DATABASE=/Users/tom/workspace/jbasic/JBasic-users.txt
 ACTIVE USERS=TOM

This example shows the SHOW SERVER output of a running server. The server is running because it is in
MULTUSER mode. If the mode was SINGLEUSER then the server is not running and the JBasic session is
only serving a single (current) user. In addition, the message indicates that the session that issued the
command is the CONTROLLING SESSION - the session that started the server. If this session quits then
the server will stop running. The output could also have said REMOTE SESSION in which case the session
where the SHOW SERVER command was executed is a remote session logged into the server but with
permission to examine the server state.

Additionally the command shows when the server was started and on what port the server is listening for
new connections.

The command also displays the location of the user database (from the SERVER LOAD command or the
default location) and the current list of active users. In this case, only user “TOM” is currently logged into
the server. You can use the SHOW SERVER USERS command to get more information about the users.

JBasic Userʼs Guide!

201

SHOW SERVER LOGICAL NAMES

The SHOW SERVER LOGICAL NAMES displays the logical names that are available to the user to specify
abstract file path names.

! SHOW SERVER LOGICAL NAMES

See the documentation on logical names and the SERVER DEFINE command for more information.

JBasic Userʼs Guide!

202

SHOW SERVER SESSIONS

The SHOW SERVER SESSIONS enumerates the currently-active login sessions. Information is printed
about each session, including the instance ID and user name, and information about what that session is
currently running.

! SHOW SERVER SESSIONS

The output of this command can be used to get the instance ID of a session that is to be stopped using
the SERVER QUIT command.

SERVER> show server sessions
 17: TOM Fri Nov 09 20:09:26 EST 2007
 CURRENT PGM: AVERAGE
 STMTS EXEC: 6
 BCODE EXEC: 3451
 23: MARY Fri Nov 09 21:33:49 EST 2007
 CURRENT PGM: PAYROLL_RUN
 STMTS EXEC: 31
 BCODE EXEC: 12938

2 sessions

This example shows two active sessions, with session IDʼs of 17 and 23 respectively. The display shows
the username and current start time of the session. The output also displays the current programs and an
indication of how much work has been done by each session.

JBasic Userʼs Guide!

203

SHOW SERVER USERS

The SHOW SERVER USERS command displays the current user database. If a user is currently logged in,
then it also displays information about the userʼs current state.

BASIC> show server users
 MARY
 LAST LOGIN NEVER
 ACCOUNT: Home
 FULL NAME: Mary Cole
 HOME DIR: /private/tmp/jbasic/mary
 WORKSPACE: workspace-mary.jbasic
 PERMISSIONS: ["DIR_IO", "FILE_IO"]

 TOM
 LAST LOGIN Fri Nov 02 10:24:17 EDT 2007
 ACCOUNT: Home
 FULL NAME: Tom Cole
 HOME DIR: /private/tmp/jbasic/tom
 WORKSPACE: workspace-tom.jbasic
 PERMISSIONS: ["DIR_IO", "ADMIN_USER", "FILE_IO"]

This sample shows the output of the command when run with two users defined in the database. The dis-
play for “MARY” shows that she has not logged in since the server was started, and lists the basic ac-
count characteristics from the user database.

The user “TOM” has logged in (because he is shown with a LAST LOGIN). Use the SHOW SERVER SES-
SIONS to see if the user is stilled logged in, and what he is running.

JBasic Userʼs Guide!

204

Inside JBasic

JBasic is written entirely in Java, and is open source. You can use JBasic for any purpose, view the
source, or make modifications for your own purposes. This section will describe (in general terms) the
structure of JBasic and its internal operation, so you can more easily navigate through the source code or
just to better understand its operation.

While developing features for JBasic, or debugging problems encountered running JBasic programs, it is
often helpful to understand the internal structure of JBasic, and to be able to use diagnostic tools that
support the development of JBasic itself (as opposed to debugging JBasic programs themselves).

This section will (eventually) describe the internals of JBasic, and also describe debugging and diagnostic
tools available to the end-user who wants to know more about what is going on “under the hood” in
JBasic.

This section will (also eventually) describe how to add additions to the JBasic language without having to
modify JBasic itself. Specifically, JBasic allows the addition of statements and functions to the language.
This is particularly useful when JBasic is being used as an embedded language processor within another
Java program. The extensions allow application-specific statements to be added to the JBasic language
and intermingle their operation with the normal JBasic language elements for data manipulation, flow-of-
control, etc.

Finally, commands not normally used or needed by the typical JBasic user are described in the following
sections.

JBasic Internal Architecture
JBasic has a series of object types that define the major functional areas of the language and the runtime
environment. This section will describe them.

The following figure is a rough generalization of the relationship of some of the key object classes. This is
followed by a table that describes the most important characteristics of the individual classes that make
up a JBasic session.

Note that in this drawing, it shows a single Program with only three Statement objects. This drawing is
simplified to illustrate the basic relationships between objects, but is not representative of the typical
number of these objects. In normal operation, a JBasic object has many programs, each of which may
contain dozens or hundreds of statements.

JBasic Userʼs Guide!

205

Calling Program
Symbol TableCalling Program

Symbol TableCalling Program
Symbol Table

JBasic Session

Program Object

ByteCode for program

Statement

Statement

Statement

Program Symbol
Table Global Symbol

TablesGlobal Symbol
TablesGlobal Symbol

Tables

Here is additional information about each object class in the above figure:

Class Description

JBasic This is the primary container for a session. Almost all ob-
jects contain a reference pointer to the containing object,
which is used to locate shared data structures and object
types. There is always at least one JBasic object active for
JBasic to be running.

When a program uses JBasic internally, it creates a JBasic
object for each separate execution context that it needs.

When JBasic is run from the command line, the main()
method instantiates a JBasic object and then sends con-
sole commands to that object to execute.

When a SHELL or CALL... AS THREAD operation is
performed, new JBasic objects are created as children of
the initial JBasic object.

JBasic Userʼs Guide!

206

Class Description

Program This is an executable element of JBasic language code. A
program can contain a standard user-written program. It
can also implement a VERB that is a program that is exe-
cuted automatically when a statement starts with the ap-
propriate verb. It can also be a FUNCTION, which is a
program that is executed as part of expression evaluation
and returns a result.

Programs contain vectors of statements, which are com-
prised of the individual lines of user-written program code.

Programs also contain the interpreted byte-code that is run
when a program is executed.

ByteCode This is a vector of pseudo-instructions that perform the
actual work of a Program. The process of preparing a pro-
gram for execution consists of compiling each statement
into a short string of one or more instructions in a Byte-
Code object.

The program is then linked, which means that the byte-
code associated with each statement is concatenated to-
gether into a single ByteCode object that is attached to
each Program. This ByteCode object contains all the in-
structions necessary to run the userʼs program.

When a ByteCode stream is executed, a symbol table ob-
ject is created for it to use for that specific execution con-
text. This allows the same code to be run multiple times (in
parallel, recursively, or serially) and each time has a
unique symbol table.

SymbolTable The SymbolTable class describes the symbols available to
a given instance of running ByteCode. Each symbol table
has a parent symbol table which is the symbol table of the
ByteCode that invoked it, or the symbol table owned by the
command line shell.

When a symbol is accessed, the current symbol table is
searched first. If the symbol table cannot be located in the
current table, the parent is searched. This continues until
all symbol tables have been searched, including the Global
Tables.

New symbols are always created in the current symbol
table (unless specific instructions are given to select parent
or global tables). This means that the operation X = X +
1 may take the value of X from a parent table (the calling
programʼs symbol table) and store the new value in the
local table.

JBasic Userʼs Guide!

207

Class Description

Global Tables This is not a specific class, but rather specific instances of
the SymbolTable. When a JBasic object initializes, it cre-
ates a symbol table named “Global” which is the root of all
symbol tables created in that session. The “Global” table
has as its root a table called “Constants” which has as its
root a table called “Root”. The “Root” and “Constants” ta-
bles are shared by all instances of JBasic in a single proc-
ess, including multiple threads. So data stored in “Root” is
available to any JBasic program at any time.

Command Execution
This section describes what happens when a command is typed in at a console prompt or passed into the
JBasic object by the run() method. In both cases, a string of text describes what the user or calling pro-
gram wishes to do, and JBasic must act on that command.

The first action is to create a Statement object. The Statement object both maintains the information
about the statement (the program text, any executable code) but is also the basic object that gets exe-
cuted when a single command text is given.

The statement object is passed the text via the store() method, which is responsible for determine how to
handle the statement. This is when the statement is compiled, if compilation is possible. This also in-
cludes determining if the statement is to be executed directly versus stored in a program.

The statement store() method performs the following steps:

1. If SYS$RETOKENIZE is true, the text of the line is reformatted by tokenizing it and then reassembling
the line from the discrete tokens. This gives all statements a uniform format and appearance in stored
programs and messaging.

2. If the statement begins with a line number, this statement is to be stored in the current program, as
opposed to being executed immediately. The line number is removed and a flag set indicating if this is
an immediate statement or not.

3. The statement may have a label on it as well (an identifier followed by a “:” character). In this case,
remove the label from the program text and store it separately in the statement object. This label may
be used later as the designation of a branch.

4. If the statement is an assignment statement (determined by examining the first few tokens of the
statement text) then a LET verb is prepended to the text. For example, this converts the userʼs state-
ment X = 3 into the conventional form LET X = 3.

5. The statement verb is compared against the list of aliases in the SYS$ALIASES variable. These are
verbs that are replaced with another string before parsing occurs. For example, the “DIR” command
is replaced with “SHOW PROGRAMS”, and the “?” command is replaced with the “PRINT” command.

6. The statement compiler is called. This attempts to locate a class for handling the verb (the first token
of the statement). Statement classes are always of the form VerbStatement, which is always a sub-
class of Statement. The Verb in the class name is the command verb with the first letter capitalized.

JBasic Userʼs Guide!

208

For example, the class responsible for the PRINT verb is called PrintStatement. The search for a
class includes the JBasic jar or class path itself, as well as any locations in the SYS$PATH array vari-
able. If a suitable method is located, then its compile() method is called if it exists. This causes the
statement-specific method to parse the remainder of the tokens and generate byte code into the
statementʼs ByteCode object handle. If there is no compile() method, then the statement object gen-
erates an _EXEC ByteCode that causes the interpreted run() method to be called instead during run-
time.

7. If the compile cannot be performed because there is no class for the given verb, then JBasic attempts
to locate a program called VERB$Verb that will be executed to process the statement. For example,
the DISASM command is implemented by the program VERB$DISASM. If the program cannot be
found, the system attempts to load a program called verb.jbasic from the SYS$PATH location(s) to see
if it exists but has not been brought into the program space. If a verb program can be found, or loaded
and successfully compiled, then it is executed immediately to perform the operation of the statement.
The remainder of the tokens from the command text are stored in the $ARGS[] array available to the
running verb program.

8. As part of the compile operation, if the statement was to be stored in the current program rather than
executed immediately, the store() method arranges for this store operation to be performed. If there is
no current program, a NEW command is executed on behalf of the user automatically.

9. If the statement is to be executed immediately, the statement then calls the execute() method which
runs the statement. This involves calling the ByteCode.run() method to run the byte-code stored in
the statement by the compile operation. If this statement is executed via a JBasic.run() method call
from another Java program, then the symbol table used to execute the statement is the Global sym-
bol table. In the case of a console or shell statement, a symbol table “Local to Console” or “Local to
Shell” has been created and is used as the default table. This table exists as long as the console or
shell is running.

10. At the completion of execution, JBasic prompts for another statement or returns to the caller of the
JBasic.run() method as appropriate.

Program Execution
Some statements result in the user explicitly or implicitly requesting that a Program object be executed.
The most common case is the RUN command, but others including just using an expression that calls a
JBasic function program or using a verb implemented as a JBasic program can result in the execution of
a Program objectʼs compiled code.

To use a simple example, imagine that the RUN command is given. The RUN command itself is compiled
into a byte code stream associated with the command line, and then the byte code is executed (invoking
a _CALLP program call).

The program execution is usually accomplished by looking up the appropriate Program object, using the
JBasic.findProgram() method that takes a string name for the program to locate. This may be the name
stored in the SYS$CURRENT_PROGRAM global variable if the RUN command was executed with no op-
tions. The JBasic.findProgram() method returns a Program object, and its run() method is called.

When a Program.run() method is called, the Program object prepares itself for execution, and the calls
the ByteCode interpreter for its stored program code. The general steps are:

JBasic Userʼs Guide!

209

1. The program is linked if it was not previously linked. This operation collects up the byte-code gener-
ated for each statement in the program, and concatenates it into a new ByteCode object that is asso-
ciated with the Program object. It then resolves internal line number and label references to specific
byte-code addresses. Finally, if SYS$OPTIMIZE is true, it calls the Optimizer.optimize() method on
the ByteCode that scans over the code looking for ways to make the generated code more efficient,
and rewrites the code as needed.

2. If the program has any DATA statements, the byte-code generated for each data element is collected
into a vector associated with the Program object that is used to process the READ statement opera-
tion.

3. A new ON statement stack element is created if the byte code has any ON statements (implemented
using the _ERROR byte code). There is a stack (maintained in the JBasic context object) for each exe-
cution context that stores any active ON statement information. This allows each program to have a
unique mechanism for handling errors, or to allow the stack to be traversed to locate the parentʼs ON
statement handlers, etc.

4. A new symbol table is created for this execution of the program. This ensures that each program can
have local variables that do not interfere with variables that may be active in the callerʼs (or the con-
soleʼs) local symbol table.

5. The byte-code for the program is executed by calling its run() method. The ByteCode class is dis-
cussed separately.

6. When the byte-code for the program finishes, the local symbol table is destroyed and any ON state-
ment element for this program execution is removed. The status result of the execution of the byte-
code is stored in SYS$STATUS and returned to the caller as well. If the caller is another program, then
the error (if any) is signaled in that program. If the caller was a console or shell, then the error mes-
sage (if any) is printed on the console.

Global Symbols
There are system variables and flags that modify the behavior of the JBasic execution environment. Most
of these are only useful for debugging problems, since they may render the normal use of JBasic impos-
sible when set to non-default values.

Note that these symbols reside in the GLOBAL table, and all are prefixed with the string “SYS$”. Any
symbol created with this prefix is automatically stored in the GLOBAL symbol table.

Symbol Name Default Description

SYS$AUTOCOMMENT true Are comments automatically added to new programs
that identify the author and date the program was
created?

SYS$AUTORENUMBER false Are programs automatically renumbered when loaded
from a workspace? (Regardless of this setting, pro-
grams without line numbers are numbered).

JBasic Userʼs Guide!

210

Symbol Name Default Description

SYS$DEBUG_DEFAULTCMD “STEP 1” The default command executed when the user just
presses the RETURN key at the debugger prompt.
This default steps the program one statement.

SYS$DEBUG_PROMPT “DBG> “ The default debugger prompt text.

SYS$DISASSEMBLE false When true, a SHOW PROGRAMS includes the disas-
sembly of the byte-code associated with the program.

SYS$FUNCTION_MAP [...] This is an array of records, created during processing
of the MAIN program. Each record defines the map-
ping of a function name from an allowed alternate
spelling to the internal function name. For example,
TRM$ is remapped to TRIM.

SYS$INDENT 2 The number of spaces to indent FOR-NEXT, DO-
WHILE, and DO-UNTIL loops in program listings.

SYS$INPUT_PROMPT “? “ The default prompt for LINE INPUT and INPUT
statements.

SYS$INSTANCE_ID 1 A unique integer associated with each instance of the
JBasic object. This is useful when more than one ob-
ject is created under control of threads or when used
within another Java program.

SYS$INSTANCE_NAME “JBasic
Console”

A text string associated with the JBasic object when it
is created.

SYS$ISTHREAD false This is true if the current JBasic object was created
as part of a CREATE THREAD operation, and is run-
ning as a child thread of another JBasic instance.

SYS$LABELWIDTH 10 The width of the area in a program listing for label
text before the program statements. A smaller num-
ber makes for “tighter” listings unless very long (8
character or more) program labels are used.

SYS$LANGUAGE “EN” The current language used to translate message text.
The default is actually taken from the Java runtime
environment when it is available.

SYS$LOAD_LIST [...] This is an array describing every object that a load
request has been made for. This includes files auto-
matically loaded as verbs as well as LOAD com-
mands. The array contains records describing the
loaded name, the path it was found in, and a status
indicating if the load was successful or not.

SYS$OPTIMIZE true If true, the optimizer is run as part of the LINK opera-
tion to generate more efficient byte-code.

JBasic Userʼs Guide!

211

Symbol Name Default Description

SYS$PACKAGES [...] This is an array of strings which identify the package
names that will be searched when locating statement
handlers at compile and run times. This is a read-only
variable and is modified when the enclosing program
calls the JBasic addPackage() method.

SYS$PATH [...] This is an array that contains the locations where
JBasic should search for language objects. For ex-
ample, when searching for a statement handler for a
verb that has been parsed, this list is used to search
for a suitable class. Extending this list allows user-
written statement handlers to be added to the lan-
guage dynamically at runtime.

SYS$PROGRAMS [...] This array contains the name of every executable
program object (programs, verbs, and functions) ac-
tive in the current JBasic object.

SYS$PROMPT “BASIC>” This is the default command prompt for JBasic.

SYS$RETOKENIZE true When true, statements are reformatted based on in-
ternal rules for capitalization, spacing, etc.

SYS$SAVEPROMPT “...” This is the prompt string that is displayed if the user
attempts to quit JBasic but there are unsaved pro-
gram modifications. If the string is empty, then no
prompt is issued.

SYS$SHELL_LEVEL 0 This is the numbers of layers of SHELL commands
active. A SHELL command creates a new instance of
JBasic and runs it until it exits, then resumes the cur-
rent JBasic instance. Unlike a thread, the current
JBasic does not continue executing.

SYS$START_TIME floating
point

This floating point number indicates (in seconds) how
long it took JBasic to initialize. This does not include
the time it takes Java to initialize, but is the time from
the creation of the first JBasic instance to the first
command prompt or execution of a user program
statement.

SYS$STATIC_TYPES false When true, variables have static types; that is, they
have one type for the life of the variable. This type
can be set with a DIM statement, or defaults based
on variable name. Static types may be required for
programs written for some dialects of BASIC but are
slower than dynamic (default) data types.

JBasic Userʼs Guide!

212

Symbol Name Default Description

SYS$STRUCTURE_POOLING false When a program has a large number of structure
constants, turning this on results in a single copy of
the structure being created, and all other instance of
the constant are references to the one copy. This is a
performance win if the structure has more than 3
members and is used more than 5 times.

SYS$THREADS [] This is an array of records that describes all the child
threads of this JBasic object.

SYS$TIME_GC true When true, the TIME command initiates a Java gar-
bage collection operation before running the program,
to reduce the variability of the memory map when
running benchmark programs.

SYS$TRACE_BYTECODE false When true, each byte-code operation that is executed
is displayed on the console, along with the current top
of the data stack. This is used to trace program exe-
cution at the byte-code level, but is very slow and
produces a lot of output.

Runtime Statistics
There is a special subcategory of global symbols that are used to hold runtime statistics. These variables
all have the prefix “SYS$$” and have the special property of being associated with specific Java variables
inside the JBasic object hierarchy.

Symbol Name Description

SYS$$FCACHE_HITS The number of times that a lookup of a function name could
be satisfied from the local cache rather than requiring the full
Java-based search for a suitable class and method.

SYS$$FCACHE_TRIES The number of times that a function lookup was attempted on
the function cache. The ratio of this variable to SYS$$F-
CACHE_HITS tells how efficient the cache is.

SYS$$INSTRUCTIONS_EXECUTED This is the number of byte-code instructions executed.

SYS$$STATEMENTS The number of JBasic statements executed.

SYS$$STATEMENTS_COMPILED This is the number of statements that have been successfully
compiled into byte-codes.

SYS$$STATEMENTS_EXECUTED This is the number of statements executed as byte-code.

SYS$$STATEMENTS_INTERPRETED This is the number of statements executed that had to be
handled interpretively (via a run() method) rather than being
compiled into byte-code.

JBasic Userʼs Guide!

213

Value Representations
Perhaps the most important internal object class in JBasic is the Value class, which is used to hold all
information (numeric, string, array, or record) created by or manipulated by user commands and pro-
grams.

• All variables in JBasic are implemented as Value objects, using Symbol Tables.

• Executed ByteCode instructions also manipulate Value objects on a runtime stack.

• Symbol Tables are data structures containing Values that are mapped to names.

An object of type Value can have any supported data type, though it can only have one type at a time.
The Value object can be created with a specific type and data value, or it can be created and the type and
value set independently.

Value objects have accessor functions to get and set the value. They also have utility methods to format
the value for printing, or for converting the value to a different type. And Value objects can be compared
for equality by determining if two Value objects represent the same numeric or string value.

ByteCode Execution
All statements are compiled into ByteCode objects, which contain the instructions for how to execute the
statement. This portion of the document will describe the nature of ByteCode instructions and the runtime
environment they are used in.

Each statement has a ByteCode object, which must be initialized by the compile() method of the appro-
priate statement handler class within JBasic or a user-supplied class library. If the statement cannot be
successfully compiled, the ByteCode is discarded.

In addition, there is a ByteCode object associated with each program that is created by the Linker before
a program is run. This is a concatenation of the ByteCode for each statement in the program, with internal
references to line numbers and labels converted to pointers to specific ByteCode instructions.

In both cases (individual statements executed as commands, and complete programs), the execution of
the ByteCode is essentially the same, and involves calling the run() method of the ByteCode object, pass-
ing it a pointer to the current local symbol table.

The ByteCode executes as a stack-oriented pseudo-instruction-set architecture. The ByteCode consists
of an array of Instruction objects, each of which defines a single fundamental operation in the JBasic lan-
guage or specific sub-semantics of JBasic language elements. The Instruction also contains any needed
arguments to the instruction. In addition to the information in the instruction, the ByteCode object main-
tains a data stack that is a simple LIFO stack of Value objects, and a stack pointer indicating how many
items are on the stack. The ByteCode also contains an “instruction pointer” that is an integer index into
the Instruction vector that tells which instruction is to be executed next.

Each Instruction object contains the following fields:

JBasic Userʼs Guide!

214

Object Field Description

opCode An integer describing which instruction this is to perform. The
ByteCode class defines a list of constants for this purpose. For
example, ByteCode._ADDI is used to represent the _ADDI
instruction.

integerValid A Boolean that indicates if this instruction has a valid integer
operand.

integerOperand The integer value in the instruction, assuming integerValid
is true.

doubleValid A Boolean that indicates if this instruction has a valid double
floating point operand.

doubleOperand The double value in the instruction, assuming doubleValid is
true.

stringValid A Boolean indicating if this instruction has a valid string oper-
and.

stringOperand The string value of the instruction operand, assuming
stringValid is true. If there is no string operand, this object
field is null.

ByteCode programs start with an empty data stack, and begin at the first Instruction found in vector loca-
tion zero. The opcode field of the instruction is used to locate the execute() method of the appropriate
class that supports the instruction. For example, the ByteCode called _ADDI (add integer) is implemented
in the class OpADDI located in the org.fernwood.jbasic.opcodes package. All Instruction imple-
mentations are in this package.

The instruction method has the responsibility of using the additional operand fields of the Instruction, as
well as any data needed from the data stack, to perform its operation. The instruction methods are all void
methods, so any value they return must be put back on the data stack. If an error is detected by the in-
struction, a JBasicException signal is thrown. The ByteCode run() method uses this information to signal
an error as appropriate.

In the example of the _ADDI instruction, the instruction removes the top Value from the data stack, co-
erces it to be an integer value, adds the integer operand in the instruction to the value, and pushes the
resulting new value back on the stack.

An instruction that changes flow of control from the normal order of just executing the next Instruction in
the ByteCode vector modifies the “instruction pointer” to point to the next instruction to be executed as
appropriate. For example, the _BZ instruction removes the top stack item to determine if it is equal to zero
or Boolean false. If so, then it uses the integer operand to set the new instruction pointer, so the next in-
struction executed is the one described in the _BZ instruction.

JBasic Userʼs Guide!

215

This page intentionally left blank.

JBasic Userʼs Guide!

216

Internal Commands

The remainder of this document contains descriptions of commands that are not generally used by the
end-user, but are to support development and debugging of JBasic itself.

Unlike typical language statements, these are more likely to change as needed without regard for com-
patibility with previous versions of JBasic, or for conformance with other dialects of BASIC. As such, exer-
cise caution in using them directly in programs since their function may change in the future.

JBasic Userʼs Guide!

217

ASM

The ASM command is used to immediately process text descriptions of bytecodes and store them in a
statement for execution. If used in immediate mode (as a statement entered at a command prompt) the
assembled bytecodes are executed immediately. When used as a statement in a program, the specified
bytecodes are stored as the compiled statement instructions. This allows arbitrary sequences of
bytecodes to be generated and tested.

! 100! ASM _INTEGER 3, _ADDI 5, _OUTNL 0

This results in the number 8 being printed on the default console, since the statement bytecodes gener-
ated will load an integer 3, add an integer 5, and print the result. Each bytecode must be separated by
commas, and consists of an opcode value and optionally an integer, double, and string argument. No at-
tempt is made to determine if the bytecode is constructed in a valid fashion; that is determined at runtime
when the statement is executed.

There is currently no documentation on individual bytecode operations. You can use the DISASM com-
mand to see examples of bytecode streams generated by specific JBasic statements. In sand-boxed or
multiuser mode you must have the ASM privilege to be able to use this statement.

You can assemble a sequence of bytecodes that have been stored as strings in an array. For example,

! 100 CODE = [“_INTEGER 3”, “_ADDI 5”, “OUTNL 0”]
! 110 ASM USING(CODE)

In this case, the value passed to the ASM USING() statement must be an array of strings. Each array
element is the definition of a single bytecode operation. This array can also be created using the
COMPILE() function.

JBasic Userʼs Guide!

218

COMPILE

This statement is used internally to test byte-code compilation and optimization. The command accepts a
complete statement as the rest of the command, and compiles it into byte-code. The resulting byte-code
is displayed, and if it can be optimized, the resulting optimization is also displayed. The statement is then
executed.

 COMPILE PRINT "This is a test of "; ME

The above will compile the PRINT statement, display the resulting byte-code, and then execute the
statement.

JBasic Userʼs Guide!

219

COMPILE()

The COMPILE() function is used to compile a single statement and generate an array of bytecode defini-
tions that describe the statement. This array can be used with the ASM USING() statement to execute
the bytecode at a later time. For example,

! 100 CODE = COMPILE(“X = 33”)
! 110 ASM USING(CODE)

The first statement compiles the program statement to assign the value 33 to the variable X. At the time of
this compilation, the assignment to X is not executed, only compiled, and the representation of the
bytecodes is stored in the variable CODE. Only when the ASM USING() statement is executed does the
assignment to the variable X occur.

In the above example, the variable CODE contains the array describing the bytecodes, which will be some-
thing like ["_STMT 0", "_STORINT 3 \"X\"", "_END"]

The COMPILE() function is normally used just for diagnostic purposes, but can be used to determine how
to store away encrypted code. For example, you could define a critical statement using the COMPILE()
function and then use the XML() function to express it as a string and the CIPHER() function to encode
it. The resulting bytecode would be unintelligible to any user or program until the DECIPHER() and
XMLPARSE() functions where used to restore it to a form that could be executed by ASM USING().

JBasic Userʼs Guide!

220

DISASM

The DISASM command (like the COMPILE command) is used internally to develop and debug issues with
byte-code compilation. Most (but not all) JBasic statements are compiled into a simpler semantic repre-
sentation called byte-code, which defines the actual operations required by the JBasic statement given.
The DISASM command is used to list a program, function, verb, or test, and also display the byte-code
instructions associated with the JBasic statements in the named program unit.

 DISASM type name

Where type must be one of PROGRAM, FUNCTION, TEST, or VERB. This is followed by name, which is the
name of the object to be listed. For example,

 DISASM PROGRAM BENCHMARK
! ! or
 DISASM FUNCTION UPPERCASE

If no type or name is given, then the current program is disassembled. If the program has not been run
yet, then each individual statement is disassembled. If the program has been run at least once then it has
been linked, which means all the statements have been combined into a single byte-code stream, and
symbolic labels have been converted to specific byte-code locations.

JBasic Userʼs Guide!

221

LINK

The LINK statement forces the link operation to be performed on the current program. When a program is
linked, the code generated for each program statement is assembled into a single byte-code stream and
internal labels and statement number references are resolved. Additionally, the optimizer performs a pass
over the final program as long as SET OPTIMIZE is in effect (it is on by default).

! LINK

When a program is first loaded from the workspace, it is compiled but not linked. That is, each statement
is compiled as it is entered, but the byte-code is stored with each statement object.

When the link is performed, each statementʼs byte-code is collected up and stored in the program execu-
table byte-code object. This is the byte-code that is run when a program is executed.

When a new statement is added or deleted from the program, the linked byte-code is destroyed. This is
because new statements can change the relationship between statements, add labels, or delete code.

When a program is run, if it has not been linked, it is linked automatically before execution (this includes
functions and subprograms). As such, the LINK command is never required to be executed by the user.
However, you can use the LINK command to force the link operation. This is most useful in combination
with the DISASM and UNLINK commands to view the completed program or to review the effectiveness of
the optimizer.

JBasic Userʼs Guide!

222

SET

The SET command is used to set options that effect the runtime behavior of JBasic. You can use the
SHOW OPTIONS command to display the current settings.

To set an option, just name it. To turn the option off, prefix it with NO. For example,

 SET OPTIMIZE // Enable the optimizing compiler
 SET NOTRACE // Disable byte code execution tracing

You can specify more than one option at a time by separating them by commas:

 SET TRACE, PROMPT="BAS> "

This illustrates that some options (such as PROMPT) accept a value in the command.

There are a few commands that are not reflected in the SHOW OPTIONS output. One example is the
command that controls the way that source code is formatted.

 SET NEW_FORMATTER // OR USE NONEW_FORMATTER TO TURN OFF

When source code is automatically formatted by JBasic, there are two styles of formatting. The old ver-
sion of the formatter (used in versions prior to JBasic 2.8) included lots of spaces in the output for maxi-
mum readability, but caused the source lines to be much longer than needed. Starting in JBasic 2.8, the
default formatter uses far fewer spaces, which makes lines of text shorter and denser. For example,

100 MID$(A, B, B + 2) = “XX” // OLD STYLE

! ! ! ...versus...

 100 MID$(A,B,B+2)=”XX” // NEW STYLE

You can select which formatter is used with the SET [NO]NEW_FORMATTER. The default is to use the
new format rules. When you change this setting, if there is a current program then it is reformatted using
the newly-set format rules.

JBasic Userʼs Guide!

223

SHELL

The SHELL command is create a new instance of a JBasic object, and run a single command or access a
console to accept user input.

! SHELL [“command”]

If the command is not given, then the newly created JBasic object prompts for input. When a console or
command is running under the control of a shell, the system variable SYS$SHELL_LEVEL is set to a non-
zero number, indicating the ʻdepthʼ of active shells. The first shell created has a level of 1, and if it creates
a shell, that will have a depth of 2, etc.

Shells exist until either the command given completes execution, or if no command is given, until a QUIT
operation is performed within that shell.

While a shell is running, all other program execution of the parent JBasic object is suspended. So if a
program uses the SHELL command to execute a command or statement, the program stops until the shell
command completes.

The advantage of a shell is to create an environment that can be cleaned up simply by completing the
command or exiting from the shell. Since the shell has its own global symbol table, you can create a shell
to experiment with different runtime settings or diagnostics. When the experiment is over, QUIT the shell
and you are still in JBasic but have discarded the modified JBasic execution environment.

From an internal point of view, the SHELL mechanism is what is used by the CREATE THREAD statement,
but the shell is started on another thread rather than in the current thread.

The command prompt for a shell is “SHELL_n> “ where n is the shell level number.

JBasic Userʼs Guide!

224

SHOW CALLS

The SHOW CALLS command is used to display the current active call stack. This describes which pro-
grams have called which other programs or functions.

For example, consider a program FOO that calls a program BAR that calls the user-written function
CARDS(). While debugging this set of programs, the user issues STEP INTO commands to step into each
program as it is called. While in the CARDS() function, a SHOW CALLS command is given.

DBG> show calls

 1: FUNCTION CARD 150 IF(N < 1) OR(N > 52) THEN RETURN "<Invalid>"
 2: CALL BAR 220 LET X = CARD(3)
 3: RUN FOO 100 CALL BAR

3 stack frames

This example shows that the current (#1) item in the call stack is the current invocation of the CARD()
function (note that each level indicates how it was invoked, so in this example CARD was called as a func-
tion). The statement about to be executed (the current statement) is displayed along with its line number.

The second item in the call stack shows the line in the program BAR that invoked the function, and its line
number. The third item in the call stack shows the original calling program FOO that invoked the program
BAR.

In all there are said to be three stack frames (a frame describes all the contextual information needed for
a given invocation of a program, such as the program itself, its symbol table, etc.) The currently executing
statement is at the top of the list.

JBasic Userʼs Guide!

225

SHOW FILES

The SHOW FILES command displays information about the currently open files in JBasic. This describes
the external information about the file (such as its name) and the internal information including how it is
referenced in user programs and whether it is a system file or not.

Consider the following file open operations:

! 100! open file "acctdata.txt" for output as #1
! 110! open file "usernames.txt" for input as uns

See the documentation on the OPEN statement for more details about the syntax of this command. If the
above statements are active in a program, and a SHOW FILES command is issued, the output might look
something like this:

BASIC> show files

CONSOLE_INPUT { FILENAME: "%console", MODE: "INPUT", SEQNO: 1, SYSTEM: true }
CONSOLE_OUTPUT { FILENAME: "%console", MODE: "OUTPUT", SEQNO: 2, SYSTEM: true }
#1 { FILENAME: "acctdata.txt", MODE: "OUTPUT", SEQNO: 4, SYSTEM: false }
UNS { FILENAME: "usernames.txt", MODE: "INPUT", SEQNO: 5, SYSTEM: false }

This lists all files that are currently open and that can be used for input/output operations such as PRINT
or LINE INPUT commands. Each file is described by a name and a record value. In general, the name is
an active symbol in the current symbol table, and points to the actual record value displayed here. For
example, you can issue a PRINT CONSOLE_INPUT command to see the description of this file.

The first two files are system files (the SYSTEM field value is true). This means they were created by
JBasic and cannot be closed by a user program. These two files are always available for use by a pro-
gram, and are the default locations where PRINT, INPUT, and LINE INPUT operations are directed if no
explicit FILE clause is used on those statements.

The third entry describes a file created with the numeric format (#1, in this case). A symbol name is cre-
ated on behalf of the user (__FILE_1) that identify this file, but it is displayed using the #n convention.
The SYSTEM attribute is false, which means it is a user file that can be closed by a user program.

The fourth entry was opened using the JBasic version of the OPEN statement where an identifier is given
in the OPEN statement that holds the data record describing the open file, and can be passed to any FILE
clause in other statements such as LINE INPUT to acquire input records from that file.

In each file record, there is a MODE field. This describes the mode that the file can be used in, and comes
from the list supported by the OPEN statement, with values such as INPUT, OUTPUT, or DATABASE. The
SEQNO field is a unique number used to identify each individual open file in the life of the JBasic session;
no two files will ever have the same sequence number.

JBasic Userʼs Guide!

226

SHOW FUNCTIONS

The SHOW FUNCTIONS command is used to display the currently defined runtime functions available for
use in a program. An example output is:

BASIC> show functions
 ABS() ARCCOS() ARCSIN()
 ARCTAN() ARRAY() ASCII()
 BASENAME() BOOLEAN() CEILING()
 CHARACTER() CIPHER() COS()
 DATE() DECIPHER() DOUBLE()
 EOD() EOF() EXISTS()
 EXP() EXPRESSION() EXTENSION()
 FILEPARSE() FILES() FILETYPE()
 FILETYPES() FLOOR() FORMAT()
 GETPOS() HEXADECIMAL() INTEGER()
 ISOBJECT() LEFT() LENGTH()
 LOADED() LOCATE() LOWERCASE()
 MATCHES() MAX() MEMBER()
 MEMBERS() MEMORY() MESSAGE()
 MESSAGES() MIN() MOD()
 NAN() NEW() NUMBER()
 OBJECT() OCTAL() OPENFILES()
 PARSE() PATHNAME() PROGRAM()
 PROPERTIES() PROPERTY() QUOTE()
 RADIX() RANDOM() RANDOMLIST()
 RECORD() REPEAT() REPLACE()
 RIGHT() ROUND() SECONDS()
 SIN() SIZEOF() SORT()
 SQRT() STRING() SUBSTR()
 SUM() SYMBOL() SYMBOLS()
 TABLES() TAN() THREAD()
 THREADS() TIMECODE() TOKENIZE()
 TOTAL() TRIM() TYPE()
 UNIQUENAME() UNIQUENUMBER() UPPERCASE()

 USER-WRITTEN FUNCTIONS:
 ARRAYTOSTR() CARD() ENCODE()
 ISOBJECT() MIXEDCASE() PAD()
 *PARITY() PATH() PI()
 STRTOARRAY() UID()

This lists the built-in functions and the “user written” functions, which are functions implemented in JBasic
itself. The “*” character indicates that the function was loaded from a user program as opposed to the
built-in library of pre-supplied JBasic functions.

JBasic Userʼs Guide!

227

You can display a single function by using the SHOW FUNCTION command followed by a function name. If
the function is implemented as a JBasic program, the function program code is displayed. If the function
is a built-in compile-time or run-time function, that information is displayed:

BASIC> show function pad

PROGRAM FUNC$PAD

 100 FUNCTION PAD(STR, INTEGER SIZE)
 110
 120 // PAD(string, length)
 130 //
 140 // Returns a string with enough blanks to make a string
 150 // exactly "length" characters long.
 160
 170 IF SIZE = 0 THEN RETURN ""
 180 IF SIZE > 0 THEN
 190 RETURN LEFT(STR || REPEAT(" ", SIZE), SIZE)
 200 ELSE
 210 LET SIZE = - SIZE
 220 RETURN RIGHT(REPEAT(" ", SIZE) || STR, SIZE)
 230 END IF
 240 END

BASIC> show function sum
SUM is a compiled-in JBasic function

BASIC> show function xml
XML is a runtime JBasic function

JBasic Userʼs Guide!

228

SHOW LOCKS

The SHOW LOCKS command is used to display the list of known locks available to the current JBasic proc-
ess. This includes the primary session, all shell sessions, all remote user sessions, and all threads - each
of which shares a common lock database, to support locking of critical regions of code.

! BASIC> show locks
! 3 locks defined:
! 1: *ACTIVE_USER(1/0)
! 2: DB_HEADER (1/2)
! 3: USER_LIST (2/5)

The SHOW LOCKS command displays all locks. In the above example, there are three locks. The “*” aster-
isk character indicates that the current thread holds the lock at the time of the display. This is followed by
the name of the lock, and lock count information.

The first lock count value shows the number of times the lock has been acquired by the current thread.
This number must be zero before the lock can be acquired by another thread. The count is increased if
more than one LOCK statement is given for the same lock already held by the current process. In the ex-
ample above, most locks have the default value of one. However, the lock USER_LIST has a hold count
of two, which means that whatever thread holds the lock has actually locked it twice, and will need to is-
sue an UNLOCK statement twice to make the lock available.

The second number shows the number of other threads that are currently waiting on the lock. Each of
these represents another thread of execution that is stalled out until the owning thread fully releases the
lock. The the case of the lock ACTIVE_USER the, the current thread holds the lock but no other thread is
waiting on the lock. The lock DB_HEADER is held by one thread (not the current thread) and two other
threads are waiting to acquire the lock before they can resume execution. The lock USER_LIST has five
threads waiting for the lock to become available.

See the documentation on the LOCK and UNLOCK commands for more information on using locks in
threaded JBasic programs. Use the CLEAR LOCK command to delete locks that are no longer needed.

JBasic Userʼs Guide!

229

SHOW MESSAGES

The SHOW MESSAGES command displays the current mapping of signal names to message text strings.
This includes the messages that are defined by default when JBasic initializes, as well as any new mes-
sage mappings created by the MESSAGE command since the session started.

Here is a sample excerpt of the output of the SHOW MESSAGES command:

BASIC> show messages
 *BRANCH(EN) Branch execution
 *NOCOMPILE(EN) No compilation support for %s statement
 *NOCOMPILE(FR) Ne peut pas compiler le rapport
 *QUIT(EN) Quit JBasic
 *RETURN(EN) Return from program or function
 *STMTADDED(EN) JBasicStatement added to active program
 *SUCCESS(EN) No error
 *SUCCESS(ES) Ning?n error
 *SUCCESS(FR) Aucune erreur
 *SYSTEM(EN) SYSTEM process return code %s
 *UNSAVED(EN) QUIT cancelled
 ARGERR(EN) Argument list error
 ARGERROR(ES) Error en par?metros de la funci?n
 ARGNOTGIVEN(EN) Argument not given for %s
 ARGNOTGIVEN(ES) Par?metro no dado para %s
 ARGTYPE(EN) Argument of wrong type

For any given message code, the leading asterisk character (“*”) indicates that the message is consid-
ered a successful condition and does not cause termination of a program.

Each message code has a language code associated with it. There is an English message string for all
codes, and additional message strings may be added for other languages over time. The message code
is a two-character string corresponding to the Java language codes. For example,

Code Language

EN English

ES Spanish

FR French

Finally the text of the individual message is displayed. The “%s” element describes where the substitution
string (error message parameter) is inserted into the text of the message, if there is a parameter.

JBasic Userʼs Guide!

230

SHOW OPTIONS

The SHOW OPTIONS command displays the settings of common runtime options that can be modified us-
ing the SET command, also documented in this section on internal commands. For example,

BASIC> show options
Options: PROMPT="BASIC> ",
 TOKENIZE,
 OPTIMIZE,
 NOTRACE,
 NOSTATIC_TYPES,
 NOPOOLING
! ! ...

This sample output shows the various settings, which are also reflected in internal system variables:

Option System Variable Description

PROMPT SYS$PROMPT The console prompt; the default is “BASIC>”

INPUTPROMPT SYS$INPUT_PROMPT The INPUT and LINE INPUT prompt; the default
is “? “

DEBUGPROMPT SYS$DEBUG_PROMPT The Debugger command prompt; default “DBG> ”

LANGUAGE SYS$LANGUAGE The default language for messaging. The default
is the current language setting for Java.

LABELWIDTH SYS$LABELWIDTH The number of spaces reserved in listings for
statement labels. The default is ten characters.

OPTIMIZE SYS$OPTIMIZE When true, all statements are processed by an
optimizer to improve program performance. The
default is true, and should only be turned off when
a bug in the optimizer is suspected.

TOKENIZE SYS$RETOKENIZE When true, program statements are reformatted to
make uniformly formatted program statements.
The default is true.

TRACE SYS$TRACE_BYTECODE When set, all byte code instructions are traced by
displaying them to the console, along with the cur-
rent size of the data stack and the top stack item.
This is used to debug internal bytecode errors,
and the default setting is false, which displays no
trace data.

JBasic Userʼs Guide!

231

Option System Variable Description

STATIC_TYPES SYS$STATIC_TYPES This determines if variables are statically typed for
new programs that do not explicitly have a type
designation. See the documentation on the PRO-
GRAM statement for more information. The default
is false which means variables are dynamically
typed and can change type at runtime.

AUTOCOMMENT SYS$AUTOCOMMENT When true, programs created with the NEW state-
ment automatically have a header comment gen-
erated for them. When false, a NEW program is
empty.

AUTORENUMBER SYS$AUTORENUMBER When true, programs are automatically renum-
bered when they are loaded from external files via
LOAD or LOAD WORKSPACE commands.

TIMEGC SYS$TIME_GC When true, the TIME command first does a “gar-
bage collection” operation in memory to free up
unused storage previously allocated to variables,
etc. This makes the TIME command more consis-
tent between executions because the memory
allocation for JBasic is more likely to be compara-
ble between executions.

PROMPTMODE none When set, JBasic prompts for each command line
most command-line programs and tools, using the
default PROMPT string. When clear, JBasic only
prints a prompt after a program runs or is loaded,
which emulates older BASIC user environments.

STATEMENT_TEXT none Wen set, JBasic stores the text of each program
statement in the _STMT bytecode in the compiled
program. This makes disassembly easier to read
but takes up more storage. When clear, the
_STMT bytecode only contains the line number,
not the full program text.

NEEDPROMPT none Indicates that a prompt should be printed in the
shell when the current program or command
completes.

JBasic Userʼs Guide!

232

SHOW PROGRAM

The SHOW PROGRAM command can be used to display all programs, a specific program, or provide inter-
nal diagnostic data about a program.

! SHOW PROGRAMS

The SHOW PROGRAMS variation displays the currently available programs that are in the workspace. These
are listed in alphabetical order, and have an indicator that shows if the program is a user-written program
(“*”) or a user-written program that has been modified but not saved (“#”). When the user quits JBasic, if
there are program that are modified but not saved, the user is warned to use SAVE or SAVE WORKSPACE
to prevent losing those changes.

! SHOW PROGRAM MYPGM

This displays the text of a specific program named MYPGM. This is the same function as the LIST com-
mand, but can operate on a program other than the current program.

! SHOW PROGRAM(DISASM) MYPGM

This variation displays the bytecode disassembly along with the program text. For programs that are not
linked, the individual byte code for each statement is displayed after each statement. For programs that
are linked, the complete bytecode (including all statement label mapping) is displayed after the initial
PROGRAM statement. This is the same output as the DISASM command.

In addition, any program that has used the DEFFN statement to define local functions will have the
ByteCodes for each function statement displayed after the program listing.

! SHOW PROGRAM(PROFILE) MYPGM

This command outputs the same information as the SHOW PROGRAM(DISASM) option above, with the
addition of counters for each bytecode showing how many times it has been executed. This is only dis-
played for linked programs; once a program is modified or unlinked this data is lost. This is used to de-
termine what parts of a program are being most heavily executed to look for performance improvements
or optimizer opportunities.

JBasic Userʼs Guide!

233

SHOW STATUS

The SHOW STATUS command displays a summary of information about the current session. Here is an
example output:

JBasic Status as of Sat Sep 13 13:24:52 EDT 2008
 JBasic version: 2.6 (Built Fri Feb 20 23:21:37 EDT 2009)
 Current program: PI_TEST
 Global symbol table: 53 entries
 ON Statement stack: 0 call levels
 Open files: 3 files
 Stored programs: 43 programs
 User programs: 26
 Functions: 14
 Verbs: 3
 Tests: 62
 Error messages: 177 messages
 Uptime: 12 minutes, 47 seconds
 Statement Statistics:
 Executed: 1261
 Compiled: 7625
 Exec as bytecode: 146
 Instructions executed: 146053
 Memory:
 In use: 4983728 Free: 2815056 Total: 7798784

 Options: PROMPT="BASIC> ",
 INPUTPROMPT="? ",
 DEBUGPROMPT="DBG> ",
 LANGUAGE="EN",
 LABELWIDTH=10,
 OPTIMIZE,
 NOTRACE,
 TOKENIZE,
 NOSTATIC_TYPES,
 NOPOOLING,
 AUTOCOMMENT,
 NOAUTORENUMBER,
 TIMEGC,
 PROMPTMODE,
 NOSTATEMENT_TEXT

This information is a summary of data that can be collected from various global symbol table variables or
runtime functions, but is presented as a summary of the status for the convenience of the user.

JBasic Userʼs Guide!

234

SHOW SYMBOLS

The SHOW SYMBOLS command is used to display the currently active symbol table, or specific symbol ta-
bles, or the entire tree of symbols. For each symbol, the name of the symbol, itʼs value, and additional
descriptive information is displayed on the console. For example:

DBG> SHOW SYMBOLS

Table: Local to BAR
 $ARGS = arrayValue[0 values] = [] (readonly)
 $MODE = "CALL" (readonly)
 $PARENT = "FOO" (readonly)
 $START_TIME = 1.182352703804E12 (readonly)
 $THIS = "BAR" (readonly)
 DEPT = "Stock Management"
 PAY = 793.875

Table: Local to FOO
 $ARGS = arrayValue[0 values] = [] (readonly)
 $MODE = "RUN" (readonly)
 $PARENT = "FOO" (readonly)
 $START_TIME = 1.182352703804E12 (readonly)
 HOURS = 43.5
 MYNAME = "Tom"
 RATE = 18.25

Table: Local to Console
 $PARENT = "Console" (readonly)

This command displays the current symbol table, and all parent symbol tables up to and including the
command shell symbol table. If the user ran program FOO that called program BAR and the SHOW
SYMBOLS command was issued in program BAR (or from the debugger while running BAR) then the de-
fault symbol table display would be the symbols for BAR, the symbols for FOO, and any symbols created at
the command shell level.

By default, hidden symbols are not displayed. A hidden symbol is one whose name starts with two un-
derscore (“__”) characters. These are symbols that may be created by JBasic to support execution of a
statement or other operation. Additionally, symbols created by the debugger to track the current line and
program are stored as hidden symbols. You can display all symbols including the hidden ones by using
the SHOW HIDDEN SYMBOLS command.

The output of SHOW SYMBOLS includes that all programs have some read-only symbols created by JBasic
that indicate the current programʼs name, how it was called, who called it, what arguments if any where
passed to it, and when it started running.

In addition, the above example output shows variables created during execution of each program, such
as HOURS, RATE, and DEPT.

JBasic Userʼs Guide!

235

You can place a table descriptor name after the SHOW SYMBOLS command to display a specific table only
rather than the currently active symbol tree. These keywords have the following meanings:

Table Keyword Description

LOCAL Display only the symbol table for the current program.

PARENT Display the symbol table for the caller of the current program.

GLOBAL Display the system global symbol table

MACRO Symbols used for macro substitution

ALL Display all active symbol tables.

JBasic Userʼs Guide!

236

SHOW VERBS

The SHOW VERBS command displays information about all user-written verbs added to JBasic. A user-
written verb is a JBasic program that uses the VERB keyword instead of the PROGRAM keyword to define
its entry point. Verbs can be invoked just like JBasic statements, and the text of the statement following
the verb is available to the program to control its operation. See the documentation on the VERB state-
ment for more information.

Verbs can be defined as part of JBasic itself, or loaded from a workspace or a text program. The SHOW
VERBS command displays the verbs that are available:

BASIC> show verbs

Verb programs:
 CLS 14 statements 0 invocations
 DEAL 11 statements 0 invocations

In this example, there are two verbs currently defined, CLS and DEAL. The information displayed about
them indicates how many statements are in each program and how many times each program has been
invoked as a verb.

You can display the program text of the verb by naming it on the command, as in this example:

BASIC> show verb deal

PROGRAM VERB$DEAL

 100 VERB DEAL
 110
 120 LET COUNT = 5
 130 IF LENGTH($ARGS) > 0 THEN COUNT = NUMBER($ARGS[1])
 140
 150 LET CARDS = RANDOMLIST(1, 52)
 160
 170 FOR I = 1 TO COUNT
 180 PRINT CARD(CARDS[I])
 190 NEXT I
 200 RETURN

This shows the text of a verb (all verbʼs have a prefix of VERB$ to differentiate them from program or func-
tion names). The program uses the $ARGS array that contains the keywords from the command line to
decide how many cards to deal.

If the verb is an internal Java class such as PRINT, the SHOW VERB command displays that information.

JBasic Userʼs Guide!

237

SHOW VERSION

The SHOW VERSION command displays the current version of the JBasic executable jar file.

! SHOW VERSION

This is the same value that is stored in the variable $VERSION that is located in the ROOT symbol table.
The string contains the program version and the date that the main entry point was last compiled.

JBasic Userʼs Guide!

238

TEST

The TEST command invokes built-in unit tests that are used to validate the correct behavior of JBasic.
TEST is a built-in verb that scans the list of loaded programs for tests, which always begin with the string
"TEST$".

Note that the TEST verb is loaded from an internal workspace that also contains all the actual test pro-
grams. Therefore, there will be no TEST programs visible until you issue the TEST command for the first
time. After that, there will be additional programs in memory, all with the “TEST$” prefix.

! TEST

You can get a list of the available tests by issuing the command with no arguments. If the tests are not in
memory yet, this command will cause them to be loaded. After issuing this command, a SHOW TESTS
command will list the tests by name.

 TEST ALL

This causes all the tests to be run. The program reports any test that fails.

! TEST ERROR1 ERROR2

This executes just tests ERROR1 and ERROR2. You may specify as many tests as you wish on the com-
mand line. You can also put the keyword TRACE on the command line and it will cause the individual test
programs to be traced, so each statement executed is displayed on the console - this is useful when de-
bugging a failed test case, for example.

JBasic Userʼs Guide!

239

TIME

The TIME statement takes another statement and executes it, and then prints the number of statements
executed (if the statement is a RUN or CALL) and the elapsed time.

 TIME CALL BENCHMARK()

This invokes the statement (which itself calls a program in memory) and displays the results.

Because benchmarking often involves running the same test several times and averaging the results, this
capability is built into the TIME command.

 TIME(100) CALL BENCHMARK()

This executes the command 100 times and prints the average. When the count is greater than 1, the
output includes the number of iterations and the total elapsed time. The count must be an integer con-
stant; expressions are not permitted.

JBasic Userʼs Guide!

240

TRACE

The TRACE statement takes another statement and executes it, and prints the JBasic statements and
byte code execute to perform the operation.

 TRACE PRINT “Answer = “; X+3

 ByteCode 00000: Stack element[0] - no object on stack!
 00000: _STMT 0 "TRACE PRINT "Answer = ";X+3"

 ByteCode 00001: Stack element[0] - no object on stack!
 00001: _TRACE 1

 ByteCode 00002: Stack element[0] - no object on stack!
 00002: _STMT 0 "PRINT "Answer = ";X+3"

 ByteCode 00003: Stack element[0] - no object on stack!
 00003: _STRING "Answer = "

 ByteCode 00004: Stack element[1] string object(1089cc5e) = "Answer = "
 00004: _LOADREF "X"

 ByteCode 00005: Stack element[2] int object(46c837cd) = 55 <symbol>
 00005: _ADDI 3

 ByteCode 00006: Stack element[2] int object(2c79809) = 58
 00006: _CVT 21

 ByteCode 00007: Stack element[2] string object(2c79809) = "58"
 00007: _CONCAT

 ByteCode 00008: Stack element[1] string object(7dce784b) = "Answer = 58"
 00008: _OUTNL 0

 Answer = 58
 ByteCode 00009: Stack element[0] - no object on stack!
 00009: _NOOP

 ByteCode 00010: Stack element[0] - no object on stack!
 00010: _TRACE 0

JBasic Userʼs Guide!

241

UNLINK

The UNLINK statement forces the removal of the linked ByteCode, and the recompilation of the individual
statements. This is the same operation that is performed when a new statement is added to the program
or a statement is deleted.

! UNLINK

When a program is first loaded from the workspace, it is compiled but not linked. That is, each statement
is compiled as it is entered, but the byte-code is stored with each statement object.

When the link is performed, each statementʼs byte-code is collected up and stored in the program execu-
table byte-code object. This is the byte-code that is actually run when a program is executed.

When a new statement is added or deleted from the program, the linked byte-code is destroyed. This is
because new statements can change the relationship between statements, add labels, or delete code.

When a program is run, if it has not been linked, it is linked automatically before execution (this includes
functions and subprograms). However, you can use the LINK command to force the link operation. This is
most useful in combination with the DISASM command to view the completed program or to review the
effectiveness of the optimizer.

To return the program to the pre-optimized state, use the UNLINK command to delete the linked program
and recompile the individual statements.

JBasic Userʼs Guide!

242

Product Revision History

This section summarizes the product revision history. Detailed descriptions of most changes made in the
last several years can be found in the files CHANGES-ARCHIVE.TXT and in the CHANGES section of the
help file JBASIC-HELP.TXT, both of which are found in the root level of the Eclipse project directory for
JBasic.

Version Date Description

1.0 2002 JBasic began as a learning experiment in programming Java, and started as
nothing more than an expression evaluator.

1.1 2003 Almost a year after writing the expression evaluator, I wanted to try to learn some
new Java again and added some elementary language elements to JBasic. This
included the idea of programs, branch and subroutine functions, and a move to-
wards a BASIC-like dialect.

1.2 Aug. 2004 Early 2004 saw the introduction of the first program IO, the Library as default lo-
cation to load programs from, and user-written verbs. HELP was the first user-
written verb. Structured symbol tables and symbol attributes added.

1.3 Sept. 2005 ANT-based builds, user documentation, and allowing JBasic to be used within
another Java program. Signals and messages added. Lots of small bug fixing and
feature additions like new functions, etc.

1.4 Jan 1, 2006 Java programs can add statements to the language. ByteCode introduced to con-
vert from a lexical interpreter to a ByteCode compiler. ByteCode linker added to
create a single stream of ByteCodes to execute a program. DATA statements
added to language. JavaDoc cleanup means that the generated documentation
can be used by a Java programmer to include JBasic in their program.

1.5 Mar 1, 2006 Repackaging into sub-packages as JBasic becomes more than 100 classes. By-
teCode execution moved from large “switch statement” to individual classes for
each opcode. Binary file IO added. Major bug fix push in improving language fea-
tures. ByteCode optimizer added to compile and link phases. JBasic object data
types introduced.

1.6 Sept. 2006 Debugger added to assist JBasic program development. JDBC support added
with DATABASE file type. Thread-safe changes created to allow user THREADS,
with QUEUE pipes to communicate between threads. Major performance im-
provements and bug fixing. GW-BASIC compatibility, full line number support
(including RENUMBER) added.

1.7 Jan. 2007 Improved “BASIC-like” program LOAD and SAVE operations in addition to the
WORKSPACE model. New input and output format features. Another major round
of bug-fixes. Added COMMON blocks to share variables between CHAIN pro-
grams. New features for data type declaration, strong typing of variables.

2.0 Nov. 2007 Added MULTIUSER mode based on threading and program/symbol isolation
work. Added the open source TelnetD implementation by Dieter Wimberger to
support this server mode.

2.1 Jan. 2008 Bug fixes, with some internal Java code cleanup and updated documentation.

JBasic Userʼs Guide!

243

Version Date Description

2.2 May 1, 2008 More bug fixes. Internal error handling model for runtime mode changed to be
based on Java exceptions which encapsulated Status objects. Cleanup of online
help and documentation for spelling and grammar goofs.

2.3 Jun 28, 2008 Added XML support for storing or transmitting JBasic values using standards-
based representation. Added SAVE XML to save a program as XML, which can
be reloaded using the LOAD command which automatically detects XML. You can
input an XML string as a value by using INPUT.. AS XML.

This release also has major bug fixes for file path handling in multi-user mode, so
that logical names are handled consistently and physical paths are not visible to
remote users.

2.4 Nov 30, 2008 Primarily a bug-fix release, but added complex statement notation on the left side
of an assignment operation and added PRINT X= notation that prints the variable
name as well as the value. Surfaced COMPILE() which compiles a statement into
a bytecode variable, and added ASM USING which uses that array to process the
bytecodes for execution. Added INPUT BY NAME for user-directed variable input.
Added ON..THEN GOSUB to provide subroutine support for error handling. DO
WHILE..LOOP and DO UNTIL..LOOP syntax was added to allow loop control to
occur at the top of a loop rather than the bottom.

2.5 Feb 7, 2009 Improved support for automatic validation and creation of user directories in
SERVER mode, and default logical name creation. Added new PIPE file type.
Added FLOAT, VARYING STRING, and UNICODE STRING binary file record
types. Added sizes for INTEGER and FLOAT binary types. Added a FIELD state-
ment to replace the RECORD statement, which also allows binding of a record
definition to a file for compatibility with other variants of BASIC. Added multi-line
IF statements. SUB statement allows local subroutines and functions. Added the
“Compatibility” section of this manual.

2.6 May 2009 Added new support for direct manipulation of Java objects from within JBasic.
Java objects can be created in JBasic or created outside JBasic and passed in for
use by JBasic. Additionally, object methods and fields are directly accessible to
JBasic programs.

Created new preferred syntax for DIM statements that mirrors the FIELD state-
ment syntax with the type before the variable name.

Programs can be called as functions if they have a RETURN statement. Func-
tions can explicitly set the type of the return value in the FUNCTION declaration.

Documented LOCK, UNLOCK, and related commands that surface blocking locks
available to JBasic threads to protect critical regions.

JBasic Userʼs Guide!

244

Version Date Description

2.7 October 2009 Lots of bug fixes dominate this release. This includes internal simplifications for
classes such as Value, and removal of vestigial code left over from when pro-
grams didnʼt have to be linked to run. The Java stack trace mechanism is par-
tially replaced to allow much faster throws of signals. Status classes can be more
usefully nested, and reporting of such errors is now more human-readable.

Significant cleanup and improvement was also done across the board in state-
ment compilers, so poorly constructed statements were more accurately detected
and reported. Now, statements in error are left in the program, but attempts to
RUN or LINK the programs reports the compile errors as unresolved.

Numerous byte code classes where corrected, particularly with respect to when a
Value reference versus a copy of the Value reference were required.

2.8 Dec 2010 Introduced TABLE data type which is used to store rectangular regular arrays of
data similar to a database table. JOIN, WHERE, and SORT operators are added
to allow construction of queries.

Added socket file types so a client/server set of programs can be written. Added
URL parsing operations and indirect file identifiers so a single server can handle
multiple client connections.

Introduced pre- and post-increment and decrement operators. Added arithmetic
statements ADD, SUBTRACT, MULTIPLY, and DIVIDE. SAVE PROTECTED now
uses encrypted XML to store protected code.

Added selector and indicator arrays as a method for selecting subsets of an array.

Added simple macro facility for creating program templates.

JBasic Userʼs Guide!

245

