Package | Description |
---|---|
de.tudresden.inf.lat.jcel.core.algorithm.rulebased |
Provides interfaces and classes to run a classification
algorithm based on completion rules.
|
de.tudresden.inf.lat.jcel.core.completion.basic |
Provides interfaces and classes of the basic
rules for the classification algorithm.
|
de.tudresden.inf.lat.jcel.core.completion.ext |
Provides interfaces and classes of the extended set of rules for the
classification algorithm.
|
Modifier and Type | Class and Description |
---|---|
class |
RuleProfiler
An object implementing this class is a profiler for completion rules.
|
class |
SChain
An object implementing this class is a completion rule chain for the set of
subsumers.
|
Modifier and Type | Method and Description |
---|---|
List<SObserverRule> |
SChain.getList()
Returns the list of subsumption observers.
|
Constructor and Description |
---|
RuleProfiler(SObserverRule rule)
Constructs a new profiler for an S-rule.
|
Constructor and Description |
---|
SChain(List<SObserverRule> ch)
Constructs a new chain for the set of subsumers.
|
Modifier and Type | Class and Description |
---|---|
class |
CR1SRule
CR-1 : if A ⊑ B ∈ T, (x, A) ∈ S
then S := S ∪ {(x, B)} Previous form: CR0 : if A ∈ S(X) and A ⊑ B ∈ O then S(X) := S(X) ∪ {B} This rule was not present in the original CEL algorithm. |
class |
CR2SRule
CR-2 : if A1 ⊓ A2 ⊑ B ∈
T, (x, A1) ∈ S, (x, A2) ∈
S
then S := S ∪ {(x, B)} Previous forms: CR-2 : if A1 ⊓ … ⊓ Ai ⊓ … ⊓ An ⊑ B ∈ T, (x, A1) ∈ S, … (x, Ai) ∈ S, … , (x, An) ∈ S then S := S ∪ {(x, B)} CR1 : if A1, … , An ∈ S(X) and A1 ⊓ … ⊓ An ⊑ B ∈ O and B ∉ S(X) then S(X) := S(X) ∪ {B} |
class |
CR3SRule
CR-3 : if A ⊑ ∃ r . B ∈ T, (x,
A) ∈ S
then R := R ∪{(r, x, B)} Previous form: CR2 : if A ∈ S(X) and A ⊑ ∃ r . B ∈ O and (X, B) ∉ R(r) then R(r) := R(r) ∪{(X, B)} |
class |
CR4SRule
CR-4 : if ∃ r . A ⊑ B ∈ T, (r, x,
y) ∈ R, (y, A) ∈ S
then S := S ∪ {(x, B)} Previous form: CR3 : if (X, Y) ∈ R(r) and A ∈ S(Y) and ∃ r . A ⊑ B ∈ O and B ∉ S(X) then S(X) := S(X) ∪ {B} |
class |
CR7SRule
CR-7 : if (r, x, y) ∈ R, (y, ⊥) ∈ S
then S := S ∪ {(x, ⊥)} Previous form: CR4 : if (X, Y) ∈ R(r) and ⊥ ∈ S(Y) and ⊥ ∉ S(X) then S(X) := S(X) ∪ {⊥} |
Modifier and Type | Class and Description |
---|---|
class |
CR3SExtRule
CR-3 : if A ⊑ ∃ r . B ∈ T , (x,
A) ∈ S
then if f(r) then v := (⊤ , {∃ r- . A}) if v ∉ V then V := V ∪ {v} S := S ∪ {(v, B)} ∪ {(v, ⊤)} R := R ∪ {(r, x, v)} else y := (B, ∅) R := R ∪ {(r, x, y)} |
class |
CR4SExtRule
CR-4 : if ∃ s . A ⊑ B ∈ T, (r, x,
y) ∈ R, (y, A) ∈ S, r ⊑T s
then S := S ∪ {(x, B)} Previous form: CR3 : if (X, Y) ∈ R(r) and A ∈ S(Y) and ∃ r . A ⊑ B ∈ O and B ∉ S(X) then S(X) := S(X) ∪ {B} |
class |
CR6SExtRule
CR-6 : if ∃ s- . A ⊑ B ∈
T, r ⊑T s, (r, x, y) ∈ R, (x, A)
∈ S , (y, B) ∉ S, y = (B', ψ)
then v := (B', ψ ∪ {∃ r - . A}) if v ∉ V then V := V ∪ {v} , S := S ∪ {(v, k) | (y, k) ∈ S} S := S ∪ {(v, B)} R := R ∪ {(r, x, v)} |
class |
CR8SExtRule
CR-8 : if A ⊑ ∃ r2- . B
∈ T , (r1, x, y) ∈ R, (y, A) ∈ S,
r1 ⊑T s, r2
⊑T s, f(s-)
then S := S ∪ {(x, B)} |
Copyright © 2009–2015 Chair of Automata Theory - TU Dresden. All rights reserved.