Package | Description |
---|---|
de.tudresden.inf.lat.jcel.core.algorithm.rulebased |
Provides interfaces and classes to run a classification
algorithm based on completion rules.
|
de.tudresden.inf.lat.jcel.core.completion.basic |
Provides interfaces and classes of the basic
rules for the classification algorithm.
|
de.tudresden.inf.lat.jcel.core.completion.ext |
Provides interfaces and classes of the extended set of rules for the
classification algorithm.
|
Modifier and Type | Class and Description |
---|---|
class |
RChain
An object implementing this class is a completion rule chain for the set of
relations.
|
class |
RuleProfiler
An object implementing this class is a profiler for completion rules.
|
Modifier and Type | Method and Description |
---|---|
List<RObserverRule> |
RChain.getList()
Returns the list of relation observers.
|
Constructor and Description |
---|
RuleProfiler(RObserverRule rule)
Constructs a new profiler for an R-rule.
|
Constructor and Description |
---|
RChain(List<RObserverRule> ch)
Constructs a new chain for the set of relations.
|
Modifier and Type | Class and Description |
---|---|
class |
CR4RRule
CR-4 : if ∃ r . A ⊑ B ∈ T, (r,
x, y) ∈ R, (y, A) ∈ S
then S := S ∪ {(x, B)} Previous form: CR3 : if (X, Y) ∈ R(r) and A ∈ S(Y) and ∃ r . A ⊑ B ∈ O and B ∉ S(X) then S(X) := S(X) ∪ {B} |
class |
CR5RRule
CR-5 : if r ⊑ s ∈ T, (r, x, y) ∈ R
then R := R ∪ {(s, x, y)} Previous form: CR5 : if (X, Y) ∈ R(r) and r ⊑ s ∈ O and (X, Y) ∉ R(s) then R(s) := R(s) ∪ {(X, Y)} |
class |
CR6RRule
CR-6 : if r ∘ s ⊑ t ∈ T, (r, x, y)
∈ R, (s, y, z) ∈ R
then R := R ∪ {(t, x, z)} Previous form: CR6 : if (X, Y) ∈ R(r) and (Y,Z) ∈ R(s) and r ∘ s ⊑ t ∈ O and (X,Z) ∉ R(t) then R(t) := R(t) ∪ {(X, Z)} |
class |
CR6RTrRule
CR-6 : if r ∘ r ⊑ r ∈ T, (r, x, y)
∈ R, (r, y, z) ∈ R
then R := R ∪ {(r, x, z)} This is a particular case of role composition. |
class |
CR7RRule
CR-7 : if (r, x, y) ∈ R, (y, ⊥) ∈ S
then S := S ∪ {(x, ⊥)} Previous form: CR4 : if (X, Y) ∈ R(r) and ⊥ ∈ S(Y) and ⊥ ∉ S(X) then S(X) := S(X) ∪ {⊥} |
Modifier and Type | Class and Description |
---|---|
class |
CR4RExtRule
CR-4 : if ∃ s . A ⊑ B ∈ T, (r,
x, y) ∈ R, (y, A) ∈ S, r ⊑T s
then S := S ∪ {(x, B)} Previous form: CR3 : if (X, Y) ∈ R(r) and A ∈ S(Y) and ∃ r . A ⊑ B ∈ O and B ∉ S(X) then S(X) := S(X) ∪ {B} |
class |
CR5RExtRule
CR-5 : if s ∘ s ⊑ s ∈ T ,
(r1, x, y) ∈ R, (r2, y, z) ∈ R,
r1 ⊑T s, r2
⊑T s
then R := R ∪ {(s, x, z)} |
class |
CR6RExtRule
CR-6 : if ∃ s- . A ⊑ B ∈
T, r ⊑T s, (r, x, y) ∈ R, (x, A)
∈ S , (y, B) ∉ S, y = (B', ψ)
then v := (B', ψ ∪ {∃ r - . A}) if v ∉ V then V := V ∪ {v} , S := S ∪ {(v, k) | (y, k) ∈ S} S := S ∪ {(v, B)} R := R ∪ {(r, x, v)} |
class |
CR7RExtRule
CR-7 : if ∃ s- . A ⊑ B ∈
T , (r2, x, y) ∈ R, x = (A', φ) , y = (B',
ψ),
r ∘ r ⊑ r ∈ T, r1 ⊑T r, r2 ⊑T r, ∃ r1- . A ∈ φ, r ⊑T s then v := (B', ψ ∪ {∃ r- . A}) if v ∉ V then V := V ∪ {v} , S := S ∪ {(v, k) | (y, k) ∈ S} S := S ∪ {(v, B)} R := R ∪ {(r2, x, v)} |
class |
CR8RExtRule
CR-8 : if A ⊑ ∃ r2- . B
∈ T , (r1, x, y) ∈ R, (y, A) ∈ S,
r1 ⊑T s, r2
⊑T s, f(s-)
then S := S ∪ {(x, B)} |
class |
CR9RExtOptRule
CR-9 (optimized) : if (r1, x, y1) ∈
R, (r2, x, y2) ∈ R, …, (rn,
x, yn) ∈ R,
r1 ⊑T s, r2 ⊑T s, …, rn ⊑T s, yi = (⊤ , ψi) for 1 ≤ i ≤ n, yi ≠ yj for 1 ≤ i < j ≤ n, f(s) then v := (⊤ , ψ1 ∪ … ∪ ψn) if v ∉ V then V := V ∪ {v} S := S ∪ {(v, k) | (y1, k) ∈ S} ∪ … ∪ {(v, k) | (yn, k) ∈ S} R := R ∪ {(r1, x, v)} |
class |
CR9RExtRule
CR-9 : if (r1, x, y) ∈ R, (r2,
x, z) ∈ R, r1 ⊑T s, r2
⊑T s, y = (⊤ , ψ), z = (⊤ , φ), y
≠ z, f(s)
then v := (⊤ , ψ ∪ φ) if v ∉ V then V := V ∪ {v} S := S ∪ {(v, k) | (y, k) ∈ S} ∪ {(v, k) | (z, k) ∈ S} R := R ∪ {(r1, x, v)} |
Copyright © 2009–2015 Chair of Automata Theory - TU Dresden. All rights reserved.