See: Description
Class | Description |
---|---|
CR1SRule |
CR-1 : if A ⊑ B ∈ T, (x, A) ∈ S
then S := S ∪ {(x, B)} Previous form: CR0 : if A ∈ S(X) and A ⊑ B ∈ O then S(X) := S(X) ∪ {B} This rule was not present in the original CEL algorithm. |
CR2SRule |
CR-2 : if A1 ⊓ A2 ⊑ B ∈
T, (x, A1) ∈ S, (x, A2) ∈
S
then S := S ∪ {(x, B)} Previous forms: CR-2 : if A1 ⊓ … ⊓ Ai ⊓ … ⊓ An ⊑ B ∈ T, (x, A1) ∈ S, … (x, Ai) ∈ S, … , (x, An) ∈ S then S := S ∪ {(x, B)} CR1 : if A1, … , An ∈ S(X) and A1 ⊓ … ⊓ An ⊑ B ∈ O and B ∉ S(X) then S(X) := S(X) ∪ {B} |
CR3SRule |
CR-3 : if A ⊑ ∃ r . B ∈ T, (x,
A) ∈ S
then R := R ∪{(r, x, B)} Previous form: CR2 : if A ∈ S(X) and A ⊑ ∃ r . B ∈ O and (X, B) ∉ R(r) then R(r) := R(r) ∪{(X, B)} |
CR4RRule |
CR-4 : if ∃ r . A ⊑ B ∈ T, (r,
x, y) ∈ R, (y, A) ∈ S
then S := S ∪ {(x, B)} Previous form: CR3 : if (X, Y) ∈ R(r) and A ∈ S(Y) and ∃ r . A ⊑ B ∈ O and B ∉ S(X) then S(X) := S(X) ∪ {B} |
CR4SRule |
CR-4 : if ∃ r . A ⊑ B ∈ T, (r, x,
y) ∈ R, (y, A) ∈ S
then S := S ∪ {(x, B)} Previous form: CR3 : if (X, Y) ∈ R(r) and A ∈ S(Y) and ∃ r . A ⊑ B ∈ O and B ∉ S(X) then S(X) := S(X) ∪ {B} |
CR5RRule |
CR-5 : if r ⊑ s ∈ T, (r, x, y) ∈ R
then R := R ∪ {(s, x, y)} Previous form: CR5 : if (X, Y) ∈ R(r) and r ⊑ s ∈ O and (X, Y) ∉ R(s) then R(s) := R(s) ∪ {(X, Y)} |
CR6RRule |
CR-6 : if r ∘ s ⊑ t ∈ T, (r, x, y)
∈ R, (s, y, z) ∈ R
then R := R ∪ {(t, x, z)} Previous form: CR6 : if (X, Y) ∈ R(r) and (Y,Z) ∈ R(s) and r ∘ s ⊑ t ∈ O and (X,Z) ∉ R(t) then R(t) := R(t) ∪ {(X, Z)} |
CR6RTrRule |
CR-6 : if r ∘ r ⊑ r ∈ T, (r, x, y)
∈ R, (r, y, z) ∈ R
then R := R ∪ {(r, x, z)} This is a particular case of role composition. |
CR7RRule |
CR-7 : if (r, x, y) ∈ R, (y, ⊥) ∈ S
then S := S ∪ {(x, ⊥)} Previous form: CR4 : if (X, Y) ∈ R(r) and ⊥ ∈ S(Y) and ⊥ ∉ S(X) then S(X) := S(X) ∪ {⊥} |
CR7SRule |
CR-7 : if (r, x, y) ∈ R, (y, ⊥) ∈ S
then S := S ∪ {(x, ⊥)} Previous form: CR4 : if (X, Y) ∈ R(r) and ⊥ ∈ S(Y) and ⊥ ∉ S(X) then S(X) := S(X) ∪ {⊥} |
Copyright © 2009–2015 Chair of Automata Theory - TU Dresden. All rights reserved.