
MegaGraph V1

About the Author

DosaidSoft (aka Synaps3) is a one man programming company. I specialize in VB and Flash

applications. If you would like to report a bug in this program please email:

synaps3@hushmail.me. This program is released without a license as freeware (with no

limitations), although I did put many weeks of work into this program. This program has no copy

protection or other bloatware because it’s tard to try to protect against it. If you appreciate the

work I put into this program, buy it for $10.

Equations Section

This section has three panels: f(x), conditions, and color. The f(x) list contains all of your

equations. To graph an equation, you first have to add one to the list by pressing the “Enter

Equation” button. When you choose a custom equation, a list of functions (sin, cos, etc.) will

appear to help you. If you are typing a more complex equation, use the reference in this help file

to see the symbols, operators, and constants that can be used in your equation. When you add a

new function to the list, a random color is automatically assigned. Click the color box afterward

if you need to change it. This color represents the color of the line on the graph.

The conditions list contains if statements. For example, “if x < 3”. This allows you to use certain

functions only when the condition you specify is met. This is used for Piecewise Functions. You

enter new conditions when you press the add button. To edit a condition or equation, double

click on the item in the list.

Input & Output

This section allows you to plug numbers into your equation for either Y or X. First select the

equation you want to use from the list of equations then just type your number in a box and press

the Get X or Get Y button to get your answer. Getting the Y value is very quick and accurate, but

getting the X value may take a few seconds and the result may not be accurate (when I say that I

mean like 0.001 off, nothing major). If you are not getting all the answers, you can lower the

sensitivity by clicking the bubble next to low. If it is a quadratic or something else with more

than one result, it should give all of them. If you look under the tools menu, you may notice that

there is no option to find zeros. Doing this is simple. Just put zero for Y (it should be zero by

default) and press Get X. That will give you the zeros.

mailto:synaps3@hushmail.me

Use the View All button to see a list of all the points (x, y). You can change the range and step

of these points by changing the xmax, xmin, and xstep numbers. Xstep can be a decimal if

you wish. Make sure you don’t type something that will make the list have millions of

answers because you will lock up the program.

Graph Settings

This section contains the view settings for the graph. It allows you to change what part of the

graph is focused on. It’s like the window button on a graphing calculator. Pretty much all of this

is self explanatory, so I am not going to go into too much detail. If you don’t understand this

section, then you shouldn’t be using the program.

Info Log

This box displays information about the selected equation in the f(x) list. To see the information,

you need to select one of the options in the tools menu. You will be able to select options such as

domain, range, minimum, and maximum. After you choose, the results will be displayed in the

box.

Tools Menu

Stat Plot/Regression - This allows you to enter a list of points and have a “best fit” equation

generated. It’s is similar to the Stat button on a graphing calculator. You add X and Y points to

the list by typing in the boxes below each list. Press one of the buttons to generate an

approximate equation. This equation can then be added to the equation list on the main window.

Before pressing OK, remember to enable the Show Stat so you can see your data points on the

graph along with your approximated equation.

Intersect - The intersect button allows you to approximate the intersection between two of your

equations. Both equations have to be added to the list prior to using this feature. When you press

the button a new window will appear. Select both of your equations there. You may also need to

adjust the sensitivity of the algorithm. If you are not getting all (or none) of the intersects, you

should lower the sensitivity. If you are getting too many answers, you should raise it. I did

my best to make the results as concise as possible, so you should not get a million answers to

read through. I put a lot of time into getting this algorithm right.

clsMathParser

Symbols, operators and functions

This version uses clsMathParser.

http://digilander.libero.it/foxes/mathparser/MathExpressionsParser.htm

Function Description Note
+ addition
- subtraction
* multiplication
/ division 35/4 = 8.75
% percentage 35% = 0.35
\ integer division 35\4 = 8
^ raise to power 3^1.8 = 7.22467405584208 (°)
| | absolute value |-5|=5 (the same as abs)
! factorial 5!=120 (the same as fact)
abs(x) absolute value abs(-5)= 5
atn(x), atan(x) inverse tangent atn(pi/4) = 1
cos(x) cosine argument in radiant
sin(x) sin argument in radiant
exp(x) exponential exp(1) = 2.71828182845905
fix(x) integer part fix(-3.8) = 3
int(x) integer part int(-3.8) = −4
dec(x) decimal part dec(-3.8) = -0.8
ln(x), log(x) logarithm natural argument x>0
logN(x,n) N-base logarithm logN(16,2) = 4
rnd(x) random returns a random number between x and 0
sgn(x) sign returns 1 if x >0 , 0 if x=0, -1 if x<0
sqr(x) square root sqr(2) =1.4142135623731, also 2^(1/2)
cbr(x) cube root x, example cbr(2) = 1.2599, cbr(-2) = -1.2599
tan(x) tangent argument (in radian) x k*/2 with k =  1,  2…
acos(x) inverse cosine argument -1  x  1
asin(x) Inverse sine argument -1  x  1
cosh(x) hyperbolic cosine x
sinh(x) hyperbolic sine x
tanh(x) hyperbolic tangent x
acosh(x) Inverse hyperbolic cosine argument x  1
asinh(x) Inverse hyperbolic sine x
atanh(x) Inverse hyperbolic tangent -1 < x < 1
root(x,n) n-th root (the same as x^(1/n) argument n  0 , x  0 if n even , x if n odd
mod(a,b) Division remainder mod(29,6) = 5 mod(-29 ,6) = -5

Function Description Note
fact(x) factorial argument 0  x  170
comb(n,k) combinations comb(6,3) = 20 , comb(6,6) = 1
perm(n,k) permutations perm(8,4) = 1680 ,
min(a,b,...) minimum min(13,24) = 13
max(a,b,...) maximum max(13,24) = 24
mcd(a,b,...) maximum common divisor mcd(4346,174) = 2
mcm(a,b,...) minimum common multiple mcm(1440,378,1560,72,1650) = 21621600
gcd(a,b,...) greatest common divisor The same as mcd
lcm(a,b,...) lowest common multiple The same as mcm
csc(x) cosecant argument (in radiant) x k* with k = 0,  1,  2…
sec(x) secant argument (in radiant) x k*/2 with k =  1,  2…
cot(x) cotangent argument (in radiant) x k* with k = 0,  1,  2…
acsc(x) inverse cosecant
asec(x) inverse secant
acot(x) inverse cotangent
csch(x) hyperbolic cosecant argument x>0
sech(x) hyperbolic secant argument x>1
coth(x) hyperbolic cotangent argument x>2
acsch(x) inverse hyperbolic cosecant
asech(x) inverse hyperbolic secant argument 0  x  1
acoth(x) inverse hyperbolic cotangent argument x<-1 or x>1
rad(x) radiant conversion converts radiant into current unit of angle
deg(x) degree sess. conversion converst sess. degree into current unit of angle
grad(x) degree cent. conversion converts cent. degree into current unit of angle
round(x,d) round a number with d decimal round(1.35712, 2) = 1.36
> greater than return 1 (true) 0 (false)
>= equal or greater than return 1 (true) 0 (false)
< less than return 1 (true) 0 (false)
<= equal or less than return 1 (true) 0 (false)
= equal return 1 (true) 0 (false)
<> not equal return 1 (true) 0 (false)
and logic and and(a,b) = return 0 (false) if a=0 or b=0
or logic or or(a,b) = return 0 (false) only if a=0 and b=0
not logic not not(a) = return 0 (false) if a  0 , else 1
xor logic exclusive-or xor(a,b) = return 1 (true) only if a  b
nand logic nand nand(a,b) = return 1 (true) if a=1 or b=1
nor logic nor nor(a,b) = return 1 (true) only if a=0 and b=0
nxor logic exclusive-nor nxor(a,b) = return 1 (true) only if a=b
Psi(x) Function psi
DNorm(x,μ,σ) Normal density function x, μ > 0 , σ > 0
CNorm(x,m,d) Normal cumulative function x, μ > 0 , σ > 1
DPoisson(x,k) Poisson density function x >0, k = 1, 2, 3 ...
CPoisson(x,k) Poisson cumulative function k = 1, 2,3 ... x >0, k = 1, 2, 3 ...

DBinom(k,n,x) Binomial density for k successes for n trials k , n = 1, 2, 3…, k < n , x 1

CBinom(k,n,x) Binomial cumulative for k successes for n trials k , n = 1, 2, 3…, k < n , x 1
Si(x) Sine integral x
Ci(x) Cosine integral x >0
FresnelS(x) Fresnel's sine integral x

Function Description Note
FresnelC(x) Fresnel's cosine integral x
J0(x) Bessel's function of 1st kind x 0
Y0(x) Bessel's function of 2st kind x 0
I0(x) Bessel's function of 1st kind, modified x 0
K0(x) Bessel's function of 2st kind, modified x 0
BesselJ(x,n) Bessel's function of 1st kind, nth order x 0 , n = 0, 1, 2, 3…
BesselY(x,n) Bessel's function of 2st kind, nth order x 0 , n = 0,1, 2, 3…
BesselI(x,n) Bessel's function of 1st kind, nth order, modified x 0 , n = 0,1, 2, 3…
BesselK(x,n) Bessel's function of 2st kind, nth order, modified x 0 , n = 0,1, 2, 3…
HypGeom(x,a,b,c) Hypergeometric function -1 < x <1 a,b >0 c  0, −1, −2…
PolyCh(x,n) Chebycev's polynomials x , orthog. for -1  x 1
PolyLe(x,n) Legendre's polynomials x , orthog. for -1  x 1
PolyLa(x,n) Laguerre's polynomials x , orthog. for 0  x 1
PolyHe(x,n) Hermite's polynomials x , orthog. for −∞  x  +∞
AiryA(x) Airy function Ai(x) x
AiryB(x) Airy function Bi(x) x
Elli1(x) Elliptic integral of 1st kind  , 0 < k < 1
Elli2(x) Elliptic integral of 2st kind  , 0 < k < 1
Erf(x) Error Gauss's function x >0
gamma(x) Gamma function x, x  0, −1, −2, −3… (x > 172 overflow error)
gammaln(x) Logarithm Gamma function x >0
gammai(a,x) Gamma Incomplete function  x a > 0
digamma(x) psi(x) Digamma function x  0, −1, −2, −3…
beta(a,b) Beta function a >0 b >0
betaI(x,a,b) Beta Incomplete function x >0 , a >0 , b >0
Ei(x) Exponential integral x 0
Ein(x,n) Exponential integral of n order x >0 , n = 1, 2, 3…
zeta(x) zeta Riemman's function x <-1 or x >1
Clip(x,a,b) Clipping function return a if x<a , return b if x>b, otherwise return x.
WTRI(t,p) Triangular wave t = time, p = period
WSQR(t,p) Square wave t = time, p = period
WRECT(t,p,d) Rectangular wave t = time, p = period, d= duty-cycle
WTRAPEZ(t,p,d) Trapez. wave t = time, p = period, d= duty-cycle
WSAW(t,p) Saw wave t = time, p = period
WRAISE(t,p) Rampa wave t = time, p = period
WLIN(t,p,d) Linear wave t = time, p = period, d= duty-cycle
WPULSE(t,p,d) Rectangular pulse wave t = time, p = period, d= duty-cycle
WSTEPS(t,p,n) Steps wave t = time, p = period, n = steps number
WEXP(t,p,a) Exponential pulse wave t = time, p = period, a= dumping factor
WEXPB(t,p,a) Exponential bipolar pulse wave t = time, p = period, a= dumping factor
WPULSEF(t,p,a) Filtered pulse wave t = time, p = period, a= dumping factor

WRING(t,p,a,fm) Ringing wave

t = time, p = period, a= dumping factor,

fm = frequency
WPARAB(t,p) Parabolic pulse wave t = time, p = period
WRIPPLE(t,p,a) Ripple wave t = time, p = period, a= dumping factor

WAM(t,fo,fm,m) Amplitude modulation

t = time, p = period, fo = carrier freq.,

fm = modulation freq., m = modulation factor

Function Description Note

WFM(t,fo,fm,m) Frequecy modulation

t = time, p = period, fo = carrier freq.,

fm = modulation freq., m = modulation factor

Year(d) year d = dateserial

Month(d) month d = dateserial

Day(d) day d = dateserial

Hour(d) hour d = dateserial

Minute(d) minute d = dateserial
Second(d) second d = dateserial
DateSerial(a,m,d) Dateserial from date a = year, m = month, d = day

TimeSerial(h,m,s) Timeserial from time h = hour, m = minute, s = second

time# system time
date# system date

now# system timestamp

Sum(a,b,...) Sum sum(8,9,12,9,7,10) = 55

Mean(a,b,...) Arithmetic mean mean(8,9,12,9,7,10) = 9.16666666666667

Meanq(a,b,...) Quadratic mean meanq(8,9,12,9,7,10) = 9.30053761886914

Meang(a,b,...) Arithmetic mean meang(8,9,12,9,7,10) = 9.03598945281812

Var(a,b,...) Variance var(1,2,3,4,5,6,7) = 4.66666666666667

Varp(a,b,...) Variance pop. varp(1,2,3,4,5,6,7) = 4

Stdev(a,b,...) Standard deviation Stdev(1,2,3,4,5,6,7) = 2.16024689946929

Stdevp(a,b,...) Standard deviation pop. Stdevp(1,2,3,4,5,6,7) = 2

Step(x,a) Haveside's step function Returns 1 if x  a , 0 otherwise

Typical mixed math-physical expressions

1+(2-5)*3+8/(5+3)^2 sqr(2)

(a+b)*(a-b) x^2+3*x+1

300 km + 123000 m (3000000 km/s)/144 Mhz

256.33*Exp(-t/12 us) (1+(2-5)*3+8/(5+3)^2)/sqr(5^2+3^2)

2+3x+2x^2 0.25x + 3.5y + 1

0.1uF*6.8kohm sqr(4^2+3^2)

(12.3 mm)/(856.6 us) (-1)^(2n+1)*x^n/n!

And((x<2);(x<=5)) sin(2*pi*x)+cos(2*pi*x)

Variables can be any alphanumeric string and must start with a letter

x y a1 a2 time alpha beta

Also the symbol "_" is accepted for writing variables in "programming style"..

time_1 alpha_b1 rise_time

Implicit multiplication is not supported because of its intrinsic ambiguity. So "xy" stands for a

variable named "xy" and not for x*y. The multiplication symbol "*" cannot generally be omitted.

It can be omitted only for coefficients of the three classic math variables x, y, z. It means that

strings like “2x” and “2*x” are equivalent

2x 3.141y 338z^2  2*x 3.141*y 338*z^2

On the contrary, the following expressions are illegal.

2a 3(x+1) 334omega 2pi

Constant numbers can be integers, decimal, or exponential

2 -3234 1.3333 -0.00025 1.2345E-12

From version 4.2, MathParser accepts both decimal symbols "." or ",". See international setting

Physical numbers are numbers followed by a unit of measure

"1s" for 1 second "200m" for 200 meters "25kg" for 25 kilograms

For better reading they may contain a blank

"1 s" "200 m" "25 kg" "150 MHz" "0.15 uF" "3600 kohm"

They may also contain the following multiplying factors:

T=10^12 G=10^9 M=10^6 k=10^3 m=10^-3 u=10^-6 n=10^-9 p=10^-12

Functions are called by their function-name followed by parentheses. Arguments can be:

numbers, variables, expressions, or even other functions

sin(x) log(x) cos(2*pi*t+phi) atan(4*sin(x))

For functions which have more than one argument, the successive arguments are separated by

commas (default)

max(a,b) root(x,y) BesselJ(x,n) HypGeom(x,a,b,c)

Note. From version 4.2 , the argument separator depends on the MathParser decimal separator

setting. If decimal symbol is point "." (i.e. 3.14) , the argument separator is ",". If it is comma ","

(i.e. 3,14) , the argument separator is ";".

Logical expressions are now supported

x<1 x+2y >= 4 x^2+5x-1>0 t<>0 (0<x<1)

Logical expressions return always 1 (True) or 0 (False). Compact expressions, like “0<x<1” , are

now supported; you can enter: (0<x<1) as well (0<x)*(x<1)

Numerical range can be inserted using logical symbols and Boolean functions. For example:

For 2<x<5 insert (2<x)*(x<5) or also (2<x<5)

For x<2 , x>=10 insert OR(x<2, x>=10) or also (x<2)+(x>=10)

For -1<x<1 insert (x>-1)*(x<1) or (-1<x<1) or also
|x|<1

Percentage. (changed) Now it simply returns the argument divided by 100

3% => returns the number 3/100 = 0.03

Math Constants supported are: Pi Greek (), Euler-Mascheroni () , Euler-Napier’s (e),

Goldean mean (). Constant numbers must be suffixed with # symbol (except pi-greek that can

written also without a suffix for compatibility with previous versions)

pi = 3.14159265358979 or pi# = 3.14159265358979

pi2# = 1.5707963267949 ( /2), pi4# = 0.785398163397448 ( /4))

eu# = 0.577215664901533

e# = 2.71828182845905

phi# = 1.61803398874989

Note: pi-greek constant can be indicated with “pi” or “PI” as well. All other constants are case

sensitive.

Angle expressions

This version supports angles in radians, sexagesimal degrees, or centesimal degrees. The right

angle unit can be set by the property AngleUnit ("RAD" is the default unit). This affects all angle

computation of the parser.

For example if you set the unit "DEG", all angles will be read and converted in degree

sin(120) => 0.86602540378444

asin(0.86602540378444) => 60

rad(pi/2) => 90 grad(400) => 360 deg(360) => 360

Angles can also be written in ddmmss format like for example 45° 12' 13"

sin(29°59'60") => 0.5 29°59'60" => 30

sin(29d 59m 60s) => 0.5 29d 59s 60m => 30

Physical Constants supported are:

Planck constant h# 6.6260755e-34 J s

Boltzmann constant K# 1.380658e-23 J/K

Elementary charge q# 1.60217733e-19 C

Avogadro number A# 6.0221367e23 particles/mol

Speed of light c# 2.99792458e8 m/s

Permeability of vacuum () mu# 12.566370614e-7 T
2
m

3
/J

Permittivity of vacuum () eps# 8.854187817e-12 C
2
/Jm

Electron rest mass me# 9.1093897e-31 kg

Proton rest mass mp# 1.6726231e-27 kg

Neutron rest mass mn# n 1.6749286e-27 kg

Gas constant R# 8.31451 m
2
kg/s

2
k mol

Gravitational constant G# 6.672e-11 m
3
/kg s

2

Acceleration due to gravity g# 9.80665 m/s
2

Physical constants can be used like any other symbolic math constant.

Just remember that they have their own dimension units listed in the above table.

Example of physical formulas are:

 m*c# ^2 1/(4*pi*eps#)*q#/r^2 eps# * S/d

 sqr(m*h*g#) s0+v*t+0.5*g#*t^2

