
DC0121270 Microvision Scanner SDK for Windows v2.0 Introduction, Rev. A.6 Page 1

Microvision Scanner SDK for Windows v2.0 Introduction

The SDK for Windows allows developers to quickly and easily integrate bar code scanning into a

Windows application. The SDK package includes the C Application Programming Interface (API),

ActiveX control, documentation, and sample projects that demonstrate how to create a scanner interface.

Sample applications were developed and built using Visual Studio 2005.

The SDK package contains:

 BcsSdkWindows

 ReadMeFirst.pdf This document
 \BcsSdk
 Bcs.h The header file to include when creating an SDK interface
 BcsMsgs.h The header file that contains the messages used in the SDK
 Bcs.dll The DLL file that containing the SDK API
 Bcs.lib Library file to statically link the SDK functions into your project
 BcsCtl.dll ActiveX control file
 \Docs Documentation directory
 DC0121181 EULA.pdf SDK End User License Agreement
 DA0120591 Microvision Scanner

Programming Guide.pdf

Detailed Scanner Programming and Interface Guide that

includes scanner commands, communications protocols, and

interface best practices
 \Samples
 \BcsActiveX.CS-NET*.* C# demo project utilizing the ActiveX control
 \BcsActiveX.VB-NET*.* Visual Basic.Net demo project utilizing the ActiveX control
 \BcsActiveX.VB6*.* Visual Basic 6 demo project utilizing the ActiveX control
 \BcsBarCode.C*.* Demo Project utilizing the native C API
 \BcsBarCode.CS-NET*.* C# demo project interfacing with the full API
 \BcsBarCode.VB-NET*.* Visual Basic.Net demo project interfacing with the full API
 \BcsConsole.C*.*

\Wtl\wedge*.*

Simple Console Application demonstrating the basic usage of

the native C API functions

Advanced Scanner Wedge Application Sample utilizing the C

language API and C++ Windows Template Library (WTL)

Select ActiveX control or C-language API

The SDK for Windows includes an ActiveX control as well as a C API Library. The ActiveX control

handles the requirements of most applications and it makes it very easy to create a scanner interface. Use

the C API when you need a very fine level of scanner control. The SDK package includes demo projects

in a variety of Windows languages. Each project includes fully documented source code with

Intellisense comments. Review the interface guidelines in this document and then proceed to examine

one of the demo projects.

If you decide to use the C API then you also have the option of using a DLL or statically linking the API

library into your application. For the .NET languages (C#, VB) the SDK provides a .NET component

which allows your .NET application to access the C functions in the API.

Microvision recommends that you first consider using the ActiveX control. It handles the interface

requirements of most applications, it is very simple, and the complete source code interface requires

very little code. Review the ActiveX demo projects prior to making a final decision on your

implementation. If the ActiveX control does not suit your requirements then use the C API.

DC0121270 Microvision Scanner SDK for Windows v2.0 Introduction, Rev. A.6 Page 2

Install the DLL

The C API can be accessed using either a statically linked library or a DLL. If you are using the DLL

then copy the Bcs.dll file to the system directory on your host computer. If you are using the ActiveX

control then you must register the control before you can use it.

• Copy the ActiveX BcsCtl.dll file to a directory on your host computer. If you have a single

scanner project then we recommend copying the ActiveX control to your application directory. If

you have multiple scanner applications, then copy the control to a directory common to your

applications.

• Get into a DOS prompt by selecting Start � Programs � Accessories � Command Prompt.

• Navigate to the directory that contains the BcsCtl.dll file. Register the DLL by entering

Regsvr32 BcsCtl.dll. You should see a dialog box that tells you that the DLL was registered

successfully.

The Scanner Interface

The Microvision SDK for Windows allows you to easily create an interface between your host computer

and the ROV scanner. This section explains the integration process. The scanner interface requires each

of these steps described below. Please refer to the appropriate demo project for more details.

Enumerating Scanners

The first step in the communication process is creating a connection by discovering and/or

enumerating the scanners. The SDK can enumerate new scanners and show details about

scanners that are already paired. Normally you use “0000” as the PIN when pairing Bluetooth-

enabled scanners.

C SDK: Call BcsEnumConnections to discover and enumerate scanners. Press and release the

scan button to put the scanner into Discoverable mode (the LED should double-blink repeatedly).

BcsEnumConnections takes a callback function as an argument. This callback is invoked with

each connection. Typical applications use the callback function to create a list of scanners and

the user selects the specific scanner to connect to.

ActiveX: The ActiveX control is displayed as a list box that lists the Bluetooth scanners and the

valid COM ports for serial scanners. Call .AddBluetoothDevice to refresh the device list.

Connecting to the Scanner

After enumerating the scanners you must connect to a specific scanner. Normally, you display a

list of scanners from the previous step and select the scanner from this list.

C SDK: Call BcsOpenConnection to open a connection to a specific scanner.

BcsOpenConnection takes an Event Handler callback function as an argument. This Event

Handler Callback handles the scanner-related system events.

DC0121270 Microvision Scanner SDK for Windows v2.0 Introduction, Rev. A.6 Page 3

ActiveX: Call the .Open method to open a connection to the scanner highlighted in the list box

of the ActiveX control.

Events and Event Handling (SDK Only)

As part of the communication, the SDK generates a number of events in response to scanner data

that was sent or received. These events allow the application to monitor, and act upon, the

behavior of the connected scanner. The SDK can generate these events:

 eEventFlicBanner Banner received from the scanner

 eEventDataReceived Data received from the scanner

 eEventBarCodeDataReceived Bar code data received from scanner

 eEventCommandPacket Packet that will be sent to the scanner

 eEventResponsePacket Packet received from scanner

 eEventBluetoothAttemptingToConnect Trying to connect to a Bluetooth device

 eEventBluetoothConnectionLost Connection with Bluetooth device lost

 eEventBluetoothDeviceConnected Bluetooth connection established

With these event notifications your application can display scanned data, display a live status

showing that your Bluetooth scanner is in or out of range, and so on. You can also ignore the

events that do not concern your application. For example, if your application does not need to

know if a Bluetooth scanner is connected or out of range then simply ignore the Bluetooth

connection events.

The Event Handler Callback function passed in the BcsOpenConnection call can respond to the

desired events. The actions taken by the Event Handler Callback will vary depending on your

requirements and on your scanner configuration. The SDK samples demonstrate how to use the

Event Handler Callback.

Reading Bar Codes (C API Only)

When the API detects scanner data it generates an eEventDataReceived event. Your application

should then post a system notification to alert the application to process the bar codes. We

normally create a custom notification called SW_GETBARCODES that is typically defined as WM_APP

+ 0x100. Your application event loop then calls a bar code reading function after it detects the

SW_GETBARCODES notification. This function calls BcsGetBarCodes to send a download request

to the scanner. One of the parameters to BcsGetBarCodes is a callback function that is called for

each bar code downloaded. If the host receives a batch of bar codes then the callback function is

called for each bar code. Your application handles the bar codes one at a time through the

callback function.

Reading Bar Codes (ActiveX Only)

Each bar code that arrives at the host generates a BarCode event. You then create a callback

function that processes the bar code data. Display the events from the property list of the

ActiveX control. Select the BarCode event and Visual Studio will add a skeleton callback

function in your application. Add code in this callback function to process the bar code data.

Below is a C# example that formats the bar code data and displays the data in the OutputWindow

field:

DC0121270 Microvision Scanner SDK for Windows v2.0 Introduction, Rev. A.6 Page 4

// Display the bar code and the bar code details.

OutputWindow.SelectedText =

eventArgs.barCode +

"\t(si: " + eventArgs.symbology +

", ts: " + eventArgs.timeStamp +

", tt: " + eventArgs.timeType + ")\r\n";

Scanner Configuration

The Microvision Scanner Programming Guide contains the complete list of scanner properties

and their descriptions. It also contains a list of commands to get and set the scanner properties.

The developer can get and/or set properties of a connected scanner in two ways:

• The BcsCommand SDK function or the .Command ActiveX method sends a command

to the scanner. Use BcsCommand to get and set scanner properties, send a download

request, clear scanner data, etc.

• The BcsGetProp / BcsSetProp SDK functions or the .GetProp / .SetProp ActiveX

methods get and set a specific scanner property. These require the property name to

set or get. The Set functions also require the value of the property to set (see the

Programming Guide for details).

Disconnect Scanner

Calls the BcsCloseConnection SDK function or the ActiveX .Close method to terminate the

scanner connection.

The BcsActiveX Demo Projects

The SDK includes sample projects that demonstrate how to create an scanner interface application using

the ActiveX control. These projects include full source code and are provided for Visual Basic 6 (VB6),

Visual Basic.NET (VB.NET), and C#.NET.

You may use any of these demo projects as an example or you may cut and paste source code directly

into your project.

The BcsBarCode Demo Projects

The SDK also includes sample projects that demonstrate how to create an scanner interface application

using the C language API.

The Wedge Demo Project

The Wedge sample project demonstrates an implementation of a full featured scanner wedge utilizing

the C language API. The wedge also utilizes Windows Template Library (WTL), which is a C++ library

for developing Windows applications and UI components. It extends ATL (Active Template Library)

and provides a set of classes for controls, dialogs, frame windows, etc. The WTL version 8.0 can be

downloaded from http://sourceforge.net/projects/wtl/

DC0121270 Microvision Scanner SDK for Windows v2.0 Introduction, Rev. A.6 Page 5

Support

Contact Microvision Product Support

Telephone: 1(866) 333 3542

Email: scannersupport@microvision.com

Web: http://www.microvision.com/barcode/support

