
NMath Stats
User’s Guide

Version 3.6

NMATH STATS USER’S GUIDE

© 2013 Copyright CenterSpace Software, LLC. All Rights Reserved.

The correct bibliographic reference for this document is:
NMath Stats User’s Guide, Version 3.6, CenterSpace Software, Corvallis, OR.

Printed in the United States.
Printing Date: March, 2013

CENTERSPACE SOFTWARE

Address: 622 NW 32nd St., Corvallis, OR 97330 USA
Phone: (541) 896-1301
Web: http://www.centerspace.net

Technical Support: support@centerspace.net

CONTENTS

Chapter 1. Introduction ...1

1.1 Product Features...1

1.2 Software Requirements...2

1.3 Namespaces ...3

1.4 Building and Deploying NMath Stats Applications3

1.5 Documentation ...4

This Manual 4

1.6 Visualization...5

1.7 Technical Support ..6

Chapter 2. Data Frames ..7

2.1 Column Types ..8

Creating Columns 8
Adding and Removing Data 9
Accessing Column Data 10
Column Properties 10
Reordering Column Data 10
Missing Values 11
Transforming Column Data 12
Exporting Column Data 13

2.2 Creating DataFrames... 13

Creating Empty DataFrames 13
Creating DataFrames from Arrays of Columns 14
Creating DataFrames from Matrices 14
Creating DataFrames from ADO.NET Objects 15
Creating DataFrames from Strings 15
 iii

2.3 Adding and Removing Columns ..16

2.4 Adding and Removing Rows ...17

Modifying Row Keys 19

2.5 Properties of DataFrames ..19

2.6 Accessing DataFrames...20

Accessing Elements 20
Accessing Columns 20
Accessing Rows 21

2.7 Subsets ...21

Creating Subsets 22
Properties of Subsets 23
Accessing Elements 23
Logical Operations on Subsets 23
Arithmetic Operations on Subsets 24
Manipulating Subsets 24
Groupings 25
Random Samples 25

2.8 Accessing Sub-Frames ...26

2.9 Reordering DataFrames ...27

Sorting Rows 27
Permuting Rows and Columns 27

2.10 Factors..28

Creating Factors 28
Properties of Factors 29
Accessing Factors 29
Creating Groupings with Factors 30

2.11 Cross-Tabulation...32

Column Delegates 32
Applying Column Delegates to Tabulated Data 33

2.12 Exporting Data from DataFrames ..34

Exporting to a Matrix 34
Exporting to a String 35
Exporting to an ADO.NET DataTable 36
Binary and SOAP Serialization 36
iv NMath Stats User’s Guide

Chapter 3. Descriptive Statistics ..39

3.1 Column Types..39

3.2 Missing Values ..41

3.3 Counts and Sums ..42

3.4 Min/Max Functions ...43

3.5 Ranks, Percentiles, Deciles, and Quartiles43

3.6 Central Tendency ...44

3.7 Spread ...45

3.8 Shape..46

3.9 Covariance, Correlation, and Autocorrelation47

3.10 Sorting ..48

3.11 Logical Functions ..49

Chapter 4. Special Functions ..51

4.1 Combinatorial Functions ...51

4.2 Gamma Function ..52

4.3 Beta Function ...52

Chapter 5. Probability Distributions ..53

5.1 Distribution Classes ..53

Beta Distribution 55
Binomial Distribution 56
Chi-Square Distribution 56
Exponential Distribution 57
F Distribution 57
Gamma Distribution 58
Geometric Distribution 58
Johnson Distribution 59
Logistic Distribution 60
Log-Normal Distribution 61
 v

Negative Binomial Distribution 61
Normal Distribution 62
Poisson Distribution 62
Student’s t Distribution 63
Triangular Distribution 63
Uniform Distribution 64
Weibull Distribution 64

5.2 Correlated Random Inputs ..65

Constructing Correlator Instances 65
Correlating Random Inputs 66
Correlator Properties 67
Convenience Method 67

5.3 Box-Cox Power Transformations ..68

Chapter 6. Hypothesis Tests ..69

6.1 Common Interface ..69

Static Properties 69
Creating Hypothesis Test Objects 70
Properties of Hypothesis Test Objects 71
Modifying Hypothesis Test Objects 72
Printing Results 72

6.2 One Sample Z-Test...73

6.3 One Sample T-Test ..74

6.4 Two Sample Paired T-Test..76

6.5 Two Sample Unpaired T-Test ..79

6.6 Two Sample F-Test...81

6.7 Pearson’s Chi-Square Test ...82

6.8 Fisher’s Exact Test ..84

Chapter 7. Linear Regression...85

7.1 Creating Linear Regressions ...85

Parameter Calculation by Least Squares Minimization 86
Intercept Parameters 86
vi NMath Stats User’s Guide

7.2 Regression Results..87

Variance Inflation Factor 88

7.3 Predictions ..88

7.4 Accessing and Modifying the Model..88

Accessing and Modifying Predictors 89
Accessing and Modifying Observations 90
Accessing and Modifying the Intercept Option 91
Updating the Entire Model 92

7.5 Significance of Parameters ...92

Creating Linear Regression Parameter Objects 92
Properties Linear Regression Parameters 93
Hypothesis Tests 93
Updating Linear Regression Parameters 93

7.6 Significance of the Overall Model...94

Chapter 8. Logistic Regression ..97

8.1 Regression Calculators...97

8.2 Creating Logistic Regressions..98

Design Variables 99

8.3 Check for Convergence.. 100

8.4 Goodness of Fit .. 100

8.5 Parameter Estimates ... 101

8.6 Predicted Probabilities.. 102

Chapter 9. Analysis of Variance... 103

9.1 One-Way ANOVA.. 103

Creating One-Way ANOVA Objects 103
The One-Way ANOVA Table 104
Grand Mean, Group Means, and Group Sizes 105
Critical Value of the F Statistic 106
Updating One-Way ANOVA Objects 106

9.2 One-Way Repeated Measures ANOVA 107
 vii

Creating One-Way RANOVA Objects 107
The One-Way RANOVA Table 108
Grand Mean, Subject Means, and Treatment Means 109
Critical Value of the F Statistic 109
Updating One-Way RANOVA Objects 109

9.3 Two-Way ANOVA ..109

Creating Two-Way ANOVA Objects 110
The Two-Way ANOVA Table 110
Cell Data 111
Grand Mean, Cell Means, and Group Means 112
ANOVA Regression Parameters 112

9.4 Two-Way Repeated Measures ANOVA117

Creating Two-Way RANOVA Objects 117
Two-Way RANOVA Tables 118

Chapter 10. Non-Parametric Tests...121

10.1 One Sample Kolmogorov-Smirnov Test121

10.2 Two Sample Kolmogorov-Smirnov Test.............................122

10.3 Shapiro-Wilk Test ..123

10.4 One Sample Anderson-Darling Test123

10.5 Kruskall-Wallis Test ...124

Creating Kruskall-Wallis Objects 124
The Kruskall-Wallis Table 125
Ranks, Grand Mean Ranks, Group Means Ranks, and Group Sizes 126
Critical Value of the Test Statistic 127
Updating Kruskall-Wallis Test Objects 127

Chapter 11. Multivariate Techniques ..129

11.1 Principal Component Analysis..129

Creating Principal Component Analyses 129
Principal Component Analysis Results 130

11.2 Factor Analysis..131

Creating Factor Analyses 132
Factor Analysis Results 133
Factor Scores 135
viii NMath Stats User’s Guide

11.3 Hierarchical Cluster Analysis .. 135

Distance Functions 136
Linkage Functions 137
Creating Cluster Analyses 139
Cluster Analysis Results 140
Reusing Cluster Analysis Objects 142

11.4 K-Means Clustering .. 142

Creating KMeansClustering Objects 143
Stopping Criteria 143
Clustering 144
Cluster Analysis Results 144

Chapter 12. Nonnegative Matrix Factorization 147

12.1 Nonnegative Matrix Factorization ... 147

Update Algorithms 148

12.2 Data Clustering Using NMF ... 150

Creating NMFClustering Instances 151
Performing the Factorization 151
Cluster Results 151
Computing a Consensus Matrix 152

Chapter 13. Partial Least Squares .. 155

13.1 Computing a PLS Regression.. 156

13.2 Error Checking... 156

13.3 Predicted Values... 157

13.4 Analysis of Variance... 157

13.5 PLS Algorithms ... 158

13.6 Cross Validation .. 158

Chapter 14. Goodness of Fit ... 161

14.1 Significance of the Overall Model.. 161

14.2 Significance of Parameters.. 163
 ix

Creating Goodness of Fit Parameter Objects 163
Properties of Goodness of Fit Parameters 163
Hypothesis Tests 164

Chapter 15. Process Control...165

15.1 Process Capability..165

15.2 Process Performance ..166

15.3 Z Bench..166

Index ...169
x NMath Stats User’s Guide

CHAPTER 1.
INTRODUCTION

Welcome to the NMath Stats User’s Guide.

NMath Stats is part of CenterSpace Software’s NMath™ product suite, which
provides object-oriented components for mathematical, engineering, scientific,
and financial applications on the .NET platform. NMath Stats provides functions
for statistical computation, including descriptive statistics, probability
distributions, combinatorial functions, multiple linear regression, hypothesis
testing, and analysis of variance.

Fully compliant with the Microsoft Common Language Specification, all NMath
Stats routines are callable from any .NET language, including C#, Visual
Basic.NET, and Managed C++.

1.1 Product Features

The features of NMath Stats include:

A data frame class for holding data of various types (numeric, string,
boolean, datetime, and generic), with methods for appending, inserting,
removing, sorting, and permuting rows and columns.

Functions for computing descriptive statistics, such as mean, variance,
standard deviation, percentile, median, quartiles, geometric mean,
harmonic mean, RMS, kurtosis, skewness, and many more.

Special functions, such as factorial, log factorial, binomial coefficient, log
binomial, log gamma, incomplete gamma, beta, and incomplete beta.

Probability density function (PDF), cumulative distribution function
(CDF), inverse CDF, and random variable moments for a variety of
probability distributions.

Multiple linear regression and logistic regression.
 Chapter 1. Introduction 1

Basic hypothesis tests, such as z-test, t-test, F-test, and Pearson’s chi-square
test, with calculation of p-values, critical values, and confidence intervals.

One-way and two-way analysis of variance (ANOVA) and analysis of
variance with repeated measures (RANOVA).

Non-parametric tests, such as the Kolmogorov-Smirnov test and Kruskal-
Wallis rank sum test.

Multivariate statistical analyses, including principal component analysis,
factor analysis, hierarchical cluster analysis, and k-means cluster analysis.

Nonnegative matrix factorization (NMF), and data clustering using NMF.

Partial least squares (PLS).

Statistical process control.

Visualization using the Microsoft Chart Controls for .NET.

1.2 Software Requirements

NMath Stats requires the following additional software to be installed on your
system:

NMath Stats depends on NMath, the foundational library in the NMath
product suite. NMath must be installed on your system prior to building or
executing NMath Stats code.

To use the NMath Stats library, you need the Microsoft .NET Framework
installed on your system. The .NET Framework is available without cost
from:

http://msdn.microsoft.com/netframework

Use of Microsoft Visual Studio .NET (or other .NET IDE) is strongly
encouraged. However, the .NET Framework includes command line
compilers for .NET languages, so an IDE is not strictly required.

Viewing PDF documentation requires Adobe Acrobat Reader, available
without cost from:

http://www.adobe.com
2 NMath Stats User’s Guide

1.3 Namespaces

All types in NMath Stats are in the CenterSpace.NMath.Stats namespace. To
avoid using fully qualified names, preface your code with an appropriate
namespace statement. For example, in C#:

using CenterSpace.NMath.Stats;

In Visual Basic.NET:

imports CenterSpace.NMath.Stats

All NMath Stats code shown in this manual assumes the presence of such a
namespace statement.

NOTE—In most cases, you must also preface your code with a namespace statement
for the CenterSpace.NMath.Core namespace.

1.4 Building and Deploying NMath Stats
Applications

The NMath Stats installer places assembly NMathStats.dll in directory
<installdir>/Assemblies, and in your global assembly cache. To use NMath
Stats types in your application, add a reference to NMathStats.dll.

NMath Stats depends on NMath, the foundational library in the NMath product
suite, so you must also add a reference to NMath.dll, as described in the NMath
User’s Guide.

You can build your application using the Any CPU build configuration, and deploy
to either 32-bit or 64-bit environments. (If you are building for .NET 4.5 or higher,
also ensure that the Prefer 32-bit flag is unchecked, under Build | Platform
target in your project properties.)

NOTE—A valid license key must accompany your deployed NMath Stats code. For
more information, see “NMath License Key” in the NMath User’s Guide.
 Chapter 1. Introduction 3

1.5 Documentation

NMath Stats includes the following documentation:

The NMath Stats User’s Guide (this manual)

This document contains an overview of the product, and instructions on
how to use it. You are encouraged to read the entire User’s Guide. The
NMath Stats User’s Guide is installed in:

installdir/Docs/NMath.Stats.UsersGuide.pdf

An HTML version of the NMath Stats User’s Guide may be viewed online
using your browser at:

http://www.centerspace.net/doc/NMathStats/user

The NMath Stats Reference

This document contains complete API reference documentation in com-
piled HTML Help format, enabling you to browse the NMath Stats library
just like the .NET Framework Class Library. The NMath Stats Reference is
installed in:

installdir/Docs/NMath.Stats.Reference.chm

NOTE—Links to types in the .NET Framework will be broken unless you
have the .NET Framework installed on your machine.

HTML reference documentation may be viewed online using your browser
at:

http://www.centerspace.net/doc/NMathSuite/ref

A readme file

This document describes the results of the installation process, how to
build and run code examples, and lists any late-breaking product issues.
The readme file is installed in:

installdir/readme.txt

This Manual

This manual assumes that you are familiar with the basics of .NET programming
and object-oriented technology.

Most code examples in this manual use C#; a few are shown in Visual Basic.NET.
However, all NMath Stats routines are callable from any .NET language.
4 NMath Stats User’s Guide

This manual uses the following typographic conventions:

1.6 Visualization

NMath Stats can be easily combined with the free Microsoft Chart Controls for
.NET to create a complete data analysis and visualization solution. The Microsoft
Chart Controls for .NET are available as a separate download for .NET 3.5.
Beginning in .NET 4.0, the Chart controls are part of the .NET Framework.

NMath Stats provides convenience methods for plotting NMath Stats types using
the Microsoft Chart Controls. For example, this code plots the probability density
function (PDF) of the specified gamma distribution:

double alpha = 9.0;
double beta = 0.5;
GammaDistribution gamma = new GammaDistribution(alpha, beta);

NMathStatsChart.Show(gamma,
 NMathStatsChart.DistributionFunction.PDF);

Table 1 – Typographic conventions

Convention Purpose Example

Courier Function names, code, direc-
tories, file names, examples,
and operating system
commands.

FDistribution.CDF()

the Assemblies directory

italic Conventional uses, such as
emphasis and new terms.

The entries along the diagonal are
the singular values.

bold Class names, product names,
and commands from an
interface.

TwoSamplePairedTTest

NMath Stats

Click OK.
 Chapter 1. Introduction 5

Figure 1 – Gamma distribution PDF

For more information, see the CenterSpace whitepaper “NMath Stats Visualization
Using the Microsoft Chart Controls.”

1.7 Technical Support

Technical support is available according to the terms of your CenterSpace License
Agreement. You can also purchase extended support contracts through the
CenterSpace website:

http://www.centerspace.net

To obtain technical support, contact CenterSpace by email at:

mailto:support@centerspace.net

You can save time if you isolate the problem to a small test case before contacting
Technical Support.
6 NMath Stats User’s Guide

CHAPTER 2.
DATA FRAMES

The statistical functions in NMath Stats support the NMath types DoubleVector
and DoubleMatrix, as well as simple arrays of doubles. In many cases, these types
are sufficient for storing and manipulating your statistical data. However, they
suffer from two limitations: they can only store numeric data, and they have
limited support for adding, inserting, removing, and reordering data. Because the
underlying data is an array of doubles, data must be copied to new storage every
time manipulation operations such as these are performed.

For these reasons, NMath Stats provides the DataFrame class which represents a
two-dimensional data object consisting of a list of columns of the same length.
Columns are themselves lists of different types of data: numeric, string, boolean,
generic, and so on.

Methods are provided for appending, inserting, removing, sorting, and permuting
rows and columns in a data frame. Because the underlying data is in a list,
elements can be added, removed, and reordered without having to copy all of the
data to new storage.

A DataFrame can be viewed as a kind of virtual database table. Columns can be
accessed by numeric index (0...n-1) or by a string name supplied at construction
time. Rows can be accessed by numeric index (0...n-1) or by a key object.
Column names and row keys do not need to be unique. For example, this output
shows a formatted string representation of data from a sample data frame:

State Weight Married
John Smith OR 165 true
Ruth Barnes WA 147 true
Jane Jones VT 115 false
Tim Travis AK 230 false
Betsy Young MA 130 true
Arthur Smith CA 152 false
Emma Allen OK 135 false
Roy Wilkenson WI 182 true
 Chapter 2. Data Frames 7

This data frame contains three columns: column 0, named State, contains string
data; column 1, named Weight, contains integer data; column 2, named Married,
contains boolean data. There are eight rows of data in this data frame, and the
subjects’ names are used as row keys.

This chapter describes how to use the DataFrame class.

2.1 Column Types

A DataFrame may contain columns of different types—the only constraint is that
the columns must be of the same length. DFColumn, which implements the
IDFColumn interface, is the abstract base class for data frame columns. NMath
Stats provides the following derived classes for column types:

DFBoolColumn represents a column of logical data.

DFDateTimeColumn represents a column of temporal data.

DFGenericColumn represents a column of generic data.

DFIntColumn represents a column of integer data.

DFNumericColumn represents a column of double-precision floating
point data.

DFStringColumn represents a column of string data.

Creating Columns

Empty columns are constructed by simply supplying a name for the column. For
example:

DFDateTimeColumn col = new DFDateTimeColumn(“myCol”);

The name of a column can be used to access the column in a data frame. Once a
column instance is constructed, the name cannot be changed.

NOTE—Columns also provide a modifiable Label property for display purposes; see
below.

Columns can also be initialized with an array of data at construction time:

bool[] bArray = { true, false, true, true, true, false, false };
DFBoolColumn col = new DFBoolColumn(“myCol”, bArray };
8 NMath Stats User’s Guide

Constructors that take an array of data use the params keyword, so values may
also be passed as parameters:

DFStringColumn col =
 new DFStringColumn(“myCol”, “Jane”, “Joe”, “Mary”, “Bill”);

Some column types provide additional options for initializing data at construction
time. For instance, this code initializes a numeric column with data from a
DoubleVector:

DoubleVector v = new DoubleVector(50, 0, .1);
DFNumericColumn col = new DFNumericColumn("myCol", v);

This code initializes a generic column with data from an ICollection:

ArrayList list = new ArrayList(3);
list.Add(3.14);
list.Add("Hello World");
list.Add(DateTime.Now);
DFGenericColumn col = new DFGenericColumn("myCol", list);

Lastly, you can create a column from another column. For example, this code
creates a DFIntColumn from a DFStringColumn:

DFStringColumn col =
 new DFStringColumn(“Col1”, “1”, “2”, “3”, “4”);
DFIntColumn col2 = new DFIntColumn(“Col2”, col1);

A NMathFormatException is raised if the data in the given column cannot be
converted to the appropriate type.

Adding and Removing Data

Once a column is constructed you can add or remove data from it. The Add()
method appends an element to the end of the column:

DFStringColumn col = new DFStringColumn(“Name”);
col.Add(“Joe Smith”);
col.Add(“Jane Doe”);
col.Add(“John Davis”);

The Insert() method inserts an element into a column at a given index. For
instance, this code insert a new element at the top of the column:

col.Insert(0, “Sally Jones”);

The RemoveAt() method removes the element at a given index:

col.RemoveAt(3);
 Chapter 2. Data Frames 9

Accessing Column Data

The data frame column classes provide standard indexing operators for getting
and setting element values. Thus, col[i] always returns the ith element of the
column:

DFStringColumn col =
 new DFStringColumn(“Names”, “Jane”, “Joe”, “Mary”, “Bill”);
col[0] = “Janet”;

The GetEnumerator() method returns an enumerator for the column data:

IEnumerator enumerator = col.GetEnumerator();
while (enumerator.MoveNext())
{
 // Do something with enumerator.Current
}

Column Properties

Data frame column types provide the following properties:

ColumnType gets the type of the objects held by the column.

Count gets the number of ojects in the column.

IsNumeric returns true if a column is of type DFIntColumn or
DFNumericColumn.

Label gets and sets the label in the header of the column.

MissingValue gets and sets the value used to represent missing values in
the column (see below).

Name gets the name of the column.

NOTE—The Name of a column can only be set in a constructor. Once a column is con-
structed, the name cannot be changed. For a modifiable label, see the Label property.

Reordering Column Data

You can use the Permute() method to arbitrarily reorder the elements in a column.
This method accepts a permutation array of element indices and reorders the
elements such that this[permutation[i]] is set to the ith object in the original
column.
10 NMath Stats User’s Guide

For example, this code moves the last two elements to the head of the column:

DFStringColumn col =
 new DFStringColumn("myCol", "a", "b", "c", "d", "e");
col.Permute(2, 3, 4, 0, 1);

Missing Values

All column types—except DFBoolColumn, which has only two valid values—
support missing values. Most statistical functions in NMath Stats are
accompanied by a paired function that ignores missing values (Section 3.2).

NOTE—To represent missing values in boolean data, use a DFIntColumn. For exam-
ple, use 1 for true, 0 for false, and -1 for missing.

At construction time, the missing value for a column is defined using a static
variable in class StatsSettings, as shown in Table 2.

For instance, this code computes the mean of a column of integers, ignoring any
missing values:

DFIntColumn col = new DFIntColumn(“myCol”, 5, 2, -1, 1, 0, 7);
double mean = StatsFunctions.NaNMean(col);

By default, a missing value in a DFIntColumn is represented using the default
setting of StatsFunctions.IntegerMissingValue, which is int.MinValue. You
can change the way a missing value is represented for a particular column instance
using the MissingValue property:

col.MissingValue = -1;
double mean = StatsFunctions.NaNMean(col);

In this example, all values in col equal to -1 are ignored when computing the
mean.

Table 2 – Default missing values for data frame column types

Column Type StatsSettings Variable Default Value

DFDateTimeColumn DateTimeMissingValue DateTime.MinValue

DFGenericColumn GenericMissingValue null

DFIntColumn IntegerMissingValue int.MinValue

DFNumericColumn NumericMissingValue Double.NaN

DFStringColumn StringMissingValue “.”
 Chapter 2. Data Frames 11

NOTE—For DFNumericColumn instances you can use the MissingValue property to
indicate that missing values are represented by something other than the default value
Double.NaN. However, Double.NaN will continue to be treated as missing, in addition
to whatever value you set.

You can also change the default missing value for all columns of a particular type
by setting the appropriate static variable in StatsSettings. Thus, this code sets the
default missing value for integer columns to -1 for all subsequently constructed
DFIntColumn instances:

StatsSettings.IntegerMissingValue = -1;

The Clean() method returns a new column with missing values removed.

Transforming Column Data

NMath Stats provides convenience methods for applying functions to elements of
a column. Each of these methods takes a function delegate. The Apply() method
returns a new column whose contents are the result of applying the given function
to each element of the column. The Transform() method modifies a column object
by applying the given function to each of its elements.

Suppose, for example, that you want to cap all numeric values in a
DFNumericColumn at 100.0. You could write a simple function like this:

private static double Cap(double x)
{
 return x > 100.0 ? 100.0 : x;
}

Then encapsulate the function in a Func<double, double> delegate:

Func<double, double> capDelegate =
 new Func<double, double>(Cap);

This code caps all numeric values in column col:

col.Transform(capDelegate);

A common use of the Apply() functions is to create a new column whose values
are a function of values in one or two existing column. For example, suppose you
have FirstName and LastName string columns in data frame df, and want to
create a new column containing customers’ full names. You could write a simple
function like this:

private static string Cat(string first, string last)
{
 return first + " " + last;
}

12 NMath Stats User’s Guide

Then encapsulate the function in a Func<String, String, String> delegate:

Func<String, String, String> catDelegate =
 new Func<String, String, String>(Cat);

This code creates a new column containing the concatenated names:

DFStringColumn col =
 ((DFStringColumn)data["FirstName"]).Apply(“FullName”,
 catDelegate, (DFStringColumn)data["LastName"]);

Exporting Column Data

Data from a column can be exported in various ways:

ToArray() exports the contents of a column to a strongly-typed array.

ToDoubleArray() extracts the contents of a column to an array of doubles
(numeric columns only).

ToDoubleVector() extracts the contents of a column to a DoubleVector
(numeric columns only).

ToIntArray() extracts the contents of a column to an array of integers
(integer columns only).

ToString() returns a formatted string representation of a column.

ToStringArray() exports the contents of a column to an array of strings.

2.2 Creating DataFrames

Data frames can be constructed in a variety of ways.

Creating Empty DataFrames

The default constructor creates an empty data frame with no rows or columns.
Columns and rows can then be added to the new data frame.

DataFrame df = new DataFrame();

// Add some columns
df.AddColumn(new DFStringColumn("Sex"));
df.AddColumn(new DFStringColumn("AgeGroup"));
df.AddColumn(new DFIntColumn("Weight"));
 Chapter 2. Data Frames 13

// Add some rows
df.AddRow("John Smith", "M", "Child", 45);
df.AddRow("Ruth Barnes", "F", "Senior", 115);
df.AddRow("Jane Jones", "F", "Adult", 115);
df.AddRow("Timmy Toddler", "M", "Child", 42);
df.AddRow("Betsy Young", "F", "Adult", 130);
df.AddRow("Arthur Smith", "M", "Senior", 142);
df.AddRow("Lucy Doe", "F", "Child", 30);
df.AddRow("Emma Allen", "F", "Child", 35);

NOTE—The first parameter to the AddRow() method is the row key. See Section 2.3
and Section 2.4, respectively, for more information on adding columns and rows to a
data frame.

Creating DataFrames from Arrays of Columns

You can also construct and populate columns independently, then combine them
into a data frame:

DFNumericColumn col1 =
 new DFNumericColumn("Col1", 1.1, 2.2, 3.3, 4.4);
DFBoolColumn col2 =
 new DFBoolColumn ("Col2", true, true, false, true);
DFStringColumn col3 =
 new DFStringColumn ("Col3", "John", "Paulo", "Sam", "Becky");
DFColumn[] cols = new DFColumn[] { col1, col2, col3 };
DataFrame df = new DataFrame(cols);

An InvalidArgumentException is thrown if the columns are not all of the same
length.

In this case, the row keys are set to nulls; they can later be initialized using the
SetRowKeys() method. Alternatively, you can pass in a collection of row keys at
construction time:

object[] keys = { "Row1", "Row2", "Row3", "Row4" };
DataFrame df = new DataFrame(cols, keys);

Creating DataFrames from Matrices

You can construct a data frame from a DoubleMatrix and an array of column
names. A new DFNumericColumn is added for each column in the matrix. For
instance, this code creates a data frame from an 8 x 3 matrix:

DoubleMatrix A = new DoubleMatrix(8, 3, 0, 1);
string[] colNames = { "A", "B", "C" };
DataFrame df = new DataFrame(A, colNames);
14 NMath Stats User’s Guide

The number of column names must match the number of columns in the matrix.

Creating DataFrames from ADO.NET Objects

You can construct a data frame from an ADO.NET DataTable. For example,
assuming table is a DataTable instance:

DataFrame df = new DataFrame(table);

In this case, the row keys are set to the default rowIndex + 1—that is, 1...n. You
can also specify the row keys in various ways. This code passes in an array of row
keys:

object[] keys = { “Row1”, “Row2”, “Row3”, “Row4” };
DataFrame df = new DataFrame(table, keys);

Alternatively, you can indicate a column in the DataTable, either by column index
or column name, to use for the row keys. This code uses column ID for row keys:

DataFrame df = new DataFrame(table, "ID");

Creating DataFrames from Strings

You can construct a data frame from a string representation. For example, if str is
a tab-delimited string containing:

Key Col1 Col2 Col3
Row1 1.1 true A
Row2 2.2 true B
Row3 3.3 false A
Row4 4.4 true C

Then you could construct a data frame like so:

DataFrame df = new DataFrame(str);

For more control, you can also indicate:

whether the first row of data contains column headers

whether the first column of data contains row keys

the delimiter used to separate columns

whether to parse the column types, or to treat everything as string data

For example, if str is a comma-delimited string containing column headers but no
row keys:
 Chapter 2. Data Frames 15

Col1,Col2,Col3
1.1,true,A
2.2,true,B
3.3,false,A
4.4,true,C

you could construct a data frame like so:

DataFrame df = new DataFrame(str, true, false, “,”, true);

2.3 Adding and Removing Columns

The AddColumn() method adds a column to a data frame:

DataFrame df = new DataFrame();
DFNumericColumn col = new DFNumericColumn(“myCol”);
df.AddColumn(col);

NOTE—The AddColumn() method raises a MismatchedSizeException if you attempt
to add a column that is not the same length as any existing columns in a data frame.

You can also add all the columns from one data frame to another, optionally
copying the data in the columns. For example, assuming df is a data frame, this
code adds the columns of df to a new data frame and copies all the column data:

DataFrame df2 = new DataFrame();
df2.AddColumns(df, true);

Overloads of AddColumn() and AddColumns() accept ADO.NET DataColumn and
DataColumnCollection instances, respectively. If the data frame already contains
rows of data, you must also pass in a DataRowCollection of the same Count as the
number of rows in the data frame.

InsertColumn() inserts a column at a given column index. This code adds a
column in the first position:

DFStringColumn col = new DFStringColumn(“myCol”);
df.InsertColumn(0, col);

RemoveColumn() removes the column at a given index:

df.RemoveColumn(3);

You can also identify a column by name:

df.RemoveColumn(“myCol”);
16 NMath Stats User’s Guide

Because column names are not constrained to be unique, this method will remove
all columns in the data frame with the given name.

RemoveAllColumns() removes all columns from a data frame, but preserves the
existing row keys. RemoveColumns() removes the columns specified in a given
subset or slice.

Clear() method removes all columns and rows from a data frame. CleanCols()
returns a new data frame containing only those columns in a data frame that do
not contain missing values.

2.4 Adding and Removing Rows

The AddRow() method adds a row of data to a data frame. The first parameter is
the row key; subsequent parameters are the row data. For example:

DataFrame df = new DataFrame();
df.AddColumn(new DFStringColumn("Col1"));
df.AddColumn(new DFNumericColumn("Col2"));
df.AddColumn(new DFNumericColumn("Col3"));
df.AddRow(1546, "Test1", 1.5445, 667.87);

NOTE—The AddRow() method raises a MismatchedSizeException if the number of
row elements does not match the number of columns in the data frame.

This example uses 1546 as an integer row key, perhaps representing some sort of
ID. Row keys can be any object, and need not be unique.

Additional overloads of AddRow() accept data in various collections other than an
array of objects. One overload takes an ICollection. For instance:

Queue myQ = new Queue();
myQ.Enqueue("Hello");
myQ.Enqueue(47.0);
myQ.Enqueue(-0.34);
df.AddRow("Row1", myQ);

Another overload accepts an IDictionary in which the keys are the column names
and the values are the row data:

DataFrame df = new DataFrame();
df.AddColumn(new DFNumericColumn("V1"));
df.AddColumn(new DFBoolColumn("V2"));
df.AddColumn(new DFStringColumn("V3"));
Hashtable myHT = new Hashtable();
myHT.Add("V1", 3.14);
myHT.Add("V3", "Hello");
 Chapter 2. Data Frames 17

myHT.Add("V2", true);
df.AddRow("Row1", myHT);

If all of the columns in your data frame are numeric, you can add a row as a
DoubleVector:

DoubleVector v = new DoubleVector(10, 0, 1);
df.AddRow(“myKey”, v);

Other overloads of AddRow() and AddRows() accept ADO.NET DataRow and
DataRowCollection instances, respectively.

InsertRow() inserts a row at a given row index. For example, this code inserts a
row into the second position:

DataFrame df = new DataFrame();
df.AddColumn(new DFNumericColumn("Col1"));
df.AddColumn(new DFNumericColumn("Col2"));
df.AddColumn(new DFNumericColumn("Col3"));
df.AddRow("Row1", 2.5, 0.0, 3.4);
df.AddRow("Row2", 3.14, -.5, -.33);
df.AddRow("Row3", 0.1, 55.34, 12.02);
df.AddRow("Row4", 3.14, -33.2, 7.22);
object[] myRow = { 5.5, 9.05, -6.11 };
df.InsertRow(1, "Row1a", myRow);

Again, overloads are provided for adding row data in various collection types.

RemoveRow() removes the row at a given index:

df.RemoveRow(0);

You can also identify a row by key:

df.RemoveRow(“Row3”);

Because row keys are not constrained to be unique, this method will remove all
rows in the data frame with the given key.

RemoveAllRows() removes all rows from a data frame, but preserves the existing
columns. RemoveRows() removes the rows specified in a given subset or slice.

Clear() method removes all rows and columns from a data frame. CleanRows()
returns a new data frame containing only those rows in a data frame that do not
contain missing values.
18 NMath Stats User’s Guide

Modifying Row Keys

Unlike column names which are fixed at construction time, row keys can be
changed at any time. The SetRowKey() method sets the key for a given row to a
given value. Remember that row keys can be any object:

df.SetRowKey(0, 1.14);
df.SetRowKey(1, “John Doe”);
df.SetRowKey(2, true);

SetRowKeys() accepts a collection of row keys, and raises a
MismatchedSizeException if if the number of elements in the collection does not
equal the number of rows in this data frame:

object[] keys = { “Subject1”, “Subject2”, “Subject3” };
df.SetRowKeys(keys);

Finally, IndexRowKeys() resets the row keys for all rows to rowIndex + 1; that is,
1...n.

2.5 Properties of DataFrames

The DataFrame class provides the following properties:

Cols gets the number of columns.

ColumnNames gets an array of the column names.

ColumnHeaders gets and sets the array of column labels used for display
purposes.

CreateDate gets the creation datetime for the date frame.

Name gets and sets the name of the data frame.

Rows gets the number of rows.

RowKeyHeader gets and sets the header for the row keys for display
purposes. The default row key header is #.

RowKeys gets an object array of the row keys.

StringRowKeys gets a string array of the row keys.
 Chapter 2. Data Frames 19

2.6 Accessing DataFrames

Class DataFrame provides a wide range of indexers and member functions
accessing individual elements, columns, or rows in a data frame.

NOTE—For information on getting arbitrary sub-frames from a data frame, see
Section 2.8.

Accessing Elements

Class DataFrame provides a two-dimensional indexing operator for getting and
setting individual element values. Thus, df[i,j] always returns the ith element of
the jth column:

df[3,0] = 1.0;

Accessing Columns

The one-dimensional indexing operator df[i] always returns the ith column:

DFNumericColumn col = df[3];

You can also access columns by name:

DFNumericColumn col = df[“myCol”];

Because column names are not constrained to be unique, this returns the first
column with the given name, or null if a column by that name is not found.

The IndexOfColumn() method returns the index of the first column with a given
name, or null if a column by that name is not found. IndicesOfColumn() returns
an array of all column indices for a given column name.

You can also check whether a column of a given name exists in a data frame using
the ContainsColumn() method:

if (df.ContainsColumn(“myCol”))
{
 // Do something here with df[“myCol”]
}

Finally, the GetColumnDictionary() method returns an IDictionary of the values
in a given column. For instance, this code gets a dictionary of the values in column
2:

IDictionary dict = df.GetColumnDictionary(2);
20 NMath Stats User’s Guide

The row keys are used as keys in the dictionary. Alternatively, you can specify two
column indices—the first is used for the dictionary keys, the second for the
dictionary values:

IDictionary dict = df.GetColumnDictionary(0, 2);

In this example, the elements in column 0 are used as the dictionary keys.

Accessing Rows

Because the one-dimensional indexer df[i] is already used for accessing data
frame columns, class DataFrame provides GetRow() methods for accessing
individual rows. Thus, GetRow(i) returns the data in the ith row as an array of
objects:

object[] rowData = df.GetRow(3);

You can also access rows by key:

object[] rowData = df.GetRow(“myKey”);

Because row keys are not constrained to be unique, this returns the first row with
the given key, or null if a row with that key is not found.

The IndexOfKey() method returns the index of the first row with a given key, or
null if a row with that key is not found. IndicesOfKey() returns an array of all
row indices for a given key.

You can also retrieve the indices of rows with a particular value in a given column.
IndexOf() returns the first row with a particular value in a column; IndicesOf()
returns all rows. For instance, this code gets an array of row indices for all rows
which have the value “John Doe” in column 2:

int[] rowIndices = df.IndicesOf(2, “John Doe”);

Lastly, the GetRowDictionary() method returns an IDictionary of the data in a
given row, specified either by row index or row key. The column names are used
as keys in the dictionary. Thus, this code gets a dictionary of the data in row 3:

IDictionary dict = df.GetRowDictionary(3);

2.7 Subsets

In addition to accessors for individual elements, columns, or rows in a data frame
(Section 2.6), class DataFrame provides a large number of indexers and member
 Chapter 2. Data Frames 21

functions for accessing sub-frames containing any arbitrary subset of rows,
columns, or both (Section 2.8).

Such indexers and methods accept the NMath types Slice and Range to indicate
sets of row or column indices with constant spacing, as well as abstract values like
Slice.All for indexing all elements.

In addition, NMath Stats introduces a new class called Subset. Like a Slice or
Range, a Subset represents a collection of indices that can be used to view a subset
of data from another data structure. Unlike a Slice or Range, however, a Subset
need not be continuous, or even ordered. It is simply an arbitrary collection of
indices.

This section describes the Subset class.

Creating Subsets

Subset instances can be constructed in a variety of ways. One constructor simply
accepts an array of integers:

Subset sub = new Subset(new int[] { 5, 4, 0, 12 });

Another constructor accepts an ICollection whose elements are all System.Int32.

A very useful constructor takes an array of boolean values and constructs a Subset
containing the indices of all true elements in the array. This can used, for example,
to create a subset from a DataFrame containing the indices of the rows or columns
than meet a certain criteria.

Thus, this code creates a subset of row indices containing those rows where the
value in column 2 is greater than the value in column 3:

bool[] bArray = new bool[df.Rows];
for (int i = 0; i < df.Rows; i++)
{
 bArray[i] = (df[2][i] > df[3][i]);
}
Subset rowIndices = new Subset(bArray);

This Subset could be use to access the sub-frame containing only those rows that
meet the criterion, as described in Section 2.8.

A Subset can also be constructed from an array of other subsets. The subsets are
simply concatenated. To created a sorted Subset of the unique indices, you can call
Unique() on the constructed Subset (see below).
22 NMath Stats User’s Guide

Lastly, constructors are provided that construct subsets with continuous spacing,
like slices and ranges. For instance, this code creates a subset starting at 2, with 5
total elements, and a stepsize of 1:

Subset sub = new Subset(2, 5, 1);

Properties of Subsets

Class Subset provides the following read-only properties:

First gets the first index in the subset.

Length gets the total number of indices in the subset.

Indices gets the underlying array of integers.

Last gets the last index in the subset.

Accessing Elements

Class Subset provides an indexing operator for getting and setting element values.
Thus, subset[i] returns the ith element of the underlying array of integers.

sub[3] = 4;

NOTE—Indexing starts at 0.

The Get(i) method safely gets the index at a given position by looping around
the end of the subset if i exceeds the length of the subset:

Subset sub = new Subset(new int[] { 3, 4, 5, 8, 9 });
int index = sub.Get(5)
// index = 3

You can also create a Subset of a Subset using the indexing operator. For instance:

Subset sub1 = new Subset(new int[] { 1, 3, 4, 7, 9 });
Subset sub2 = new Subset(new int[] { 0, 2, 4 });
Subset sub3 = sub1[sub2];
// sub3.Indices = 1, 4, 9

Logical Operations on Subsets

Operator == tests for equality of two subsets, and returns true if both subsets are
the same length and all elements are equal; otherwise, false. Following the
convention of the .NET Framework, if both objects are null, they test equal.
 Chapter 2. Data Frames 23

Operator != returns the logical negation of ==. The Equals() member function
also tests for equality.

Arithmetic Operations on Subsets

NMath Stats provides overloaded arithmetic operators for subsets with their
conventional meanings for those .NET languages that support them, and
equivalent named methods for those that do not. Table 3 lists the equivalent
operators and methods.

Manipulating Subsets

The Append() method adds an index to the end of a subset:

sub.Append(5);

Remove() removes the first occurence of a given index from a subset. Reverse()
reverses the indices of a subset. Unique() sorts the indices in a subset and removes
any repetitions. Thus:

Subset sub = new Subset(new int[] { 0,5,3,2,7,5 });
sub.Remove(3);
// sub.Indices = 0, 5, 2, 7, 5
sub.Reverse();
// sub.Indices = 5, 7, 2, 5, 0
sub.Unique();
// sub.Indices = 0, 2, 5, 7

Table 3 – Arithmetic operators for subsets

Operator Equivalent Named Method

+ Add()

- Subtract()

* Multiply()

/ Divide()

Unary - Negate()

++ Increment()

-- Decrement()

& Intersection()

| Union()
24 NMath Stats User’s Guide

Similarly, ToReverse() returns a new subset containing the indices of a subset in
the reverse order; ToUnique() returns a new subset containing the sorted indices
of a subset, with all repetitions removed.

The Repeat() method creates a new subset by repeating the source subset until a
given length is reached. For instance:

Subset sub1 = new Subset(3);
// sub1.Indices = 0,1,2
Subset sub2 = sub1.Repeat(11);
// sub2.Indices = 0,1,2,0,1,2,0,1,2,0,1

The Split() method splits a source subset into an arbitrary array of subsets. The
parameters are the number of subsets into which to split the source subset, and
another subset the same length as the source subset, the ith element of which
indicates into which bin to place the ith element of the source subset. For example:

Subset sub = new Subset(10);
// sub.Indices = 0,1,2,3,4,5,6,7,8,9
Subset bins =
 new Subset(new int[] { 3, 1, 0, 2, 2, 1, 1, 2, 3, 0 });
Subset[] subsetArray = sub.Split(4, bins);
// subsetArray[0] = 2,9
// subsetArray[1] = 1,5,6
// subsetArray[2] = 3,4,7
// subsetArray[3] = 0,8

Lastly, the ToString() returns a comma-delimited string list of the indices in a
subset.

Groupings

The static GetGroupings() methods on Subset create subsets from factors. One
overload of this method accepts a single Factor and returns an array of subsets
containing the indices for each level of the given factor. Another overload accepts
two Factor objects and returns a two-dimensional jagged array of subsets
containing the indices for each combination of levels in the two factors. See
Section 2.10 for more information on factors and the GetGroupings() methods.

Random Samples

The static method Sample(n) returns a random shuffle of 0..n-1. The returned
Subset can be used to randomly reorder the rows in a data frame, as described in
Section 2.8.
 Chapter 2. Data Frames 25

2.8 Accessing Sub-Frames

In addition to accessing individual elements, columns, or rows in a data frame
(Section 2.6), class DataFrame provides a large number of member functions and
indexers for accessing sub-frames containing any arbitrary subset of rows,
columns, or both. Such methods and indexers accept Slice and Subset objects to
indicate which rows and columns to return. (See Section 2.7 for more information
on the Subset class.)

For example, GetColumns() returns a new data frame containing the columns
indicated by a given Slice or Subset. For instance, if df has 5 columns, this code
creates a new data frame containing columns 0, 4, and 5:

Subset colSubset = new Subset(new int[] { 0, 4, 5 });
DataFrame subDF = df.GetColumns(colSubset);

Similarly, GetRows() returns a new data frame containing the rows indicated by a
given Slice or Subset. Thus, this code gets every other row in the source data
frame:

Subset rowSubset = new Range(0, df.Rows - 1, 2);
DataFrame subDF = df.GetRows(rowSubset);

Class DataFrame also provides a wide range of indexers for accessing subframes:

this[int colIndex, Slice rowSlice]
this[int colIndex, Subset rowSubset]
this[Slice rowSlice, Slice colSlice]
this[Subset rowSubset, Subset colSubset]
this[Slice rowSlice, Subset colSubset]
this[Subset rowSubset, Slice colSlice]

These indexers can be used to return any portion of a data frame. For example, this
code gets a new data frame containing columns 3-8 in reverse order, and all rows
where column 0 equals Test1:

Range colRange = new Range(8, 3, -1);

bool[] bArray = new bool[df.Rows];
for (int i = 0; i < df.Rows; i++)
{
 bArray[i] = (df[0][i] == “Test1”);
}
Subset rowSubset = new Subset(bArray);

DataFrame df2 = df[rowSubset, colRange];
26 NMath Stats User’s Guide

Finally, there is the GetSubRow() method. Whereas GetRow() returns an entire
row for a given row index, GetSubRow() returns the portion of the row indicated
by the given column Slice or Subset:

Slice colSlice = new Slice(0, 3, 1);
object[] subRow = df.GetSubRow(3, colSlice);

2.9 Reordering DataFrames

The DataFrame class provides method for both sorting rows, and for arbitrarily
reordering rows and columns.

Sorting Rows

The SortRows() method sorts the rows in a data frame according to a given
ordered array of column indices. The first index is the primarily sort column, the
second index is the secondary sort column, and so forth. For instance:

df.SortRows(3, 0, 1);

By default, all sorting is in ascending order.

For more control, you can also pass an array of SortingType enumerated values
(Ascending or Descending):

int[] colIndices = { 3, 0, 1 };
SortingType[] sortingTypes = { SortingType.Ascending,
 SortingType.Descending,
 SortingType.Ascending };
df.SortRows(colIndices, sortingTypes);

Finally, the SortRowsByKeys() method sorts the rows in a data frame by their row
keys, in the specified order:

df.SortRowsByKeys(SortingType.Ascending);

NOTE—StatsSettings.Sorting specifies the default SortingType.

Permuting Rows and Columns

The PermuteColumns() and PermuteRows() methods enable you to arbitrarily
reorder the columns and rows in a data frame, respectively. Each method takes an
 Chapter 2. Data Frames 27

array of indices. The array must be same length as the number of columns or rows,
and contain unique indices. In both cases:

new[permutation[i]] = old[i]

For example, assuming df has 3 columns, this code switches the last two columns:

df.PermuteColumns(0, 2, 1);

Assuming df has 5 rows, this code moves the second and fourth rows to the top:

df.PermuteRows(2, 0, 3, 1, 4);

2.10 Factors

The Factor class represents a categorical vector in which all elements are drawn
from a finite number of factor levels. Thus, a Factor contains two parts:

an object array of factor levels

an integer array of categorical data, of which each element is an index into
the array of levels

For example, this string data:

“A”, “A”, “C”, “B”, “A”, “C”, “B”

could be presented as a Factor with the following levels and categorical data:

object[] levels = { “A”, “B”, “C” };
int[] data = { 0, 0, 2, 1, 0, 2, 1 };

Factors are usually constructed from a data frame column using the GetFactor()
method, but they can also be constructed independently.

Creating Factors

The GetFactor() method on DataFrame accepts a column index or name and
returns a Factor with levels for the sorted, unique elements in the given column:

Factor myColFactor = df.GetFactor(“myCol”);

Alternatively, you can provide the factor levels yourself. The order is preserved.
Thus:

object[] levels = new object[] { “Q1”, “Q2”, “Q3”, “Q4” };
Factor myColFactor = df.GetFactor(“myCol”, levels);
28 NMath Stats User’s Guide

An InvalidArgumentException is raised if the specified column contains a value
not present in the given array of levels.

You can also construct a Factor independently of a DataFrame. For example, you
can construct a Factor from an array of values:

object[] strArray = { 1, 1, 3, 2, 1, 3, 2 };
Factor factor = new Factor(strArray);

Factor levels are constructed from a sorted list of unique values in the passed
array.

Alternatively, you can construct a Factor from an array of factor levels, and a data
array consisting of indices into the factor levels:

object[] levels = { 1, 2, 3 };
int[] data = { 0, 0, 2, 1, 0, 2, 1 };
Factor factor = new Factor(levels, data);

An InvalidArgumentException is thrown if the given data array contains an
invalid index.

Properties of Factors

The Factor class provides the following properties:

Data gets the categorical data for the factor. Each element in the returned
integer array is an index into Levels.

Levels gets the levels of the factor as an array of objects.

Length gets the length of the Data in the factor.

Name gets and set the name of the factor.

NumberOfLevels gets the number of levels in the factor.

Accessing Factors

A standard indexer is provided for accessing the element at a given index:

string str = (string)factor[2];

The indexer returns Levels[Data[index]]—that is, it returns the level at the
given position.
 Chapter 2. Data Frames 29

Creating Groupings with Factors

The principal use of factors is in conjunction with the GetGroupings() methods
on Subset. One overload of this method accepts a single Factor and returns an
array of subsets containing the indices for each level of the given factor. Another
overload accepts two Factor objects and returns a two-dimensional jagged array of
subsets containing the indices for each combination of levels in the two factors.

For example, suppose we weigh human subjects based on sex and age group. The
data for 15 subject might look like this:

Table 4 – Sample data

In a DataFrame, each observation would be a row, like so:

DataFrame df = new DataFrame();
df.AddColumn(new DFStringColumn("Sex"));
df.AddColumn(new DFStringColumn("AgeGroup"));
df.AddColumn(new DFIntColumn("Weight"));

df.AddRow("John Smith", "Male", "Child", 45);
df.AddRow("Ruth Barnes", "Female", "Senior", 115);
df.AddRow("Jane Jones", "Female", "Adult", 115);
df.AddRow("Timmy Toddler", "Male", "Child", 42);
df.AddRow("Betsy Young", "Female", "Adult", 130);
df.AddRow("Arthur Smith", "Male", "Senior", 142);
df.AddRow("Lucy Young", "Female", "Child", 30);
df.AddRow("Emma Allen", "Female", "Child", 35);
df.AddRow("Roy Wilkenson", "Male", "Adult", 182);
df.AddRow("Susan Schwarz", "Female", "Senior", 110);
df.AddRow("Ming Tao", "Female", "Senior", 123);
df.AddRow("Johanna Glynn", "Female", "Child", 60);
df.AddRow("Randall Harvey", "Male", "Adult", 170);
df.AddRow("Tom Howard", "Male", "Senior", 155);
df.AddRow("Jennifer Watson", "Female", "Child", 40);

In this case, we’re using the subjects’ names as row keys.

It is natural to construct factors from the Sex and AgeGroup columns:

Factor sex = df.GetFactor("Sex");
Factor age = df.GetFactor("AgeGroup");

Male Female

Child 45, 42 30, 35, 60, 40

Adult 182, 170 115, 130, 110

Senior 142, 155 115, 123
30 NMath Stats User’s Guide

We can then use these factors in conjunction with the GetGroupings() methods on
Subset to create subsets representing the original rows, columns, and cells in
Table 4:

Subset[] sexGroups = Subset.GetGroupings(sex);
Subset[] ageGroups = Subset.GetGroupings(age);
Subset[,] cellGroups = Subset.GetGroupings(sex, age);

These subsets can then be used to operate on the relevant portions of the data
frame. For instance, this code prints out row means, column means, and cell means
for Table 4:

Console.WriteLine("\nTABLE ROW MEANS");
for (int i = 0; i < age.NumberOfLevels; i++)
{
 double mean = StatsFunctions.Mean(
 df[df.IndexOfColumn("Weight"), ageGroups[i]]);
 Console.WriteLine("Mean for {0} = {1}", age.Levels[i], mean);
}

Console.WriteLine("\nTABLE COLUMN MEANS");
for (int i = 0; i < sex.NumberOfLevels; i++)
{
 double mean = StatsFunctions.Mean(
 df[df.IndexOfColumn("Weight"), sexGroups[i]]);
 Console.WriteLine("Mean for {0} = {1}", sex.Levels[i], mean);
}

Console.WriteLine("\nTABLE CELL MEANS");
for (int i = 0; i < sex.NumberOfLevels; i++)
{
 for (int j = 0; j < age.NumberOfLevels; j++)
 {
 double mean = StatsFunctions.Mean(
 df[df.IndexOfColumn("Weight"), cellGroups[i,j]]);
 Console.WriteLine("Mean for {0} {1} = {2}",
 sex.Levels[i], age.Levels[j], mean);
 }
}

The output is:

TABLE ROW MEANS
Mean for Adult = 149.25
Mean for Child = 42
Mean for Senior = 129

TABLE COLUMN MEANS
Mean for Female = 84.2222222222222
Mean for Male = 122.666666666667
 Chapter 2. Data Frames 31

TABLE CELL MEANS
Mean for Female Adult = 122.5
Mean for Female Child = 41.25
Mean for Female Senior = 116
Mean for Male Adult = 176
Mean for Male Child = 43.5
Mean for Male Senior = 148.5

See also the Tabulate() convenience methods on class DataFrame, as described in
Section 2.11.

2.11 Cross-Tabulation

As described in Section 2.10, the DataFrame.GetFactor() method can be used in
conjunction with Subset.GetGroupings() to access “cells” of data based on one
or two grouping factors. This is such a common operation that class DataFrame
also provides the Tabulate() methods as a convenience. This method accepts one
or two grouping columns, a data column, and a delegate to apply to each data
column subset. The results are returned in a new data frame.

Column Delegates

Overloads of Tabulate() accept static IDFColumn function delegates that return
various types. For instance, this code encapsulates the static
StatsFunctions.Mean() function in a Func<IDFColumn, double>:

Func<IDFColumn, double> mean =
 new Func<IDFColumn, double>(StatsFunctions.Mean);

Most of the static descriptive statistics functions on class StatsFunctions
(Chapter 3) have overloads that accept an IDFColumn and return a double, and so
can be encapsulated in this way. A few return integers.

For example, this code encapsulates StatsFunctions.Count(), which returns the
number of items in a column, in a Func<IDFColumn, int>:

Func<IDFColumn, int> count =
 new Func<IDFColumn, int>(StatsFunctions.Count);
32 NMath Stats User’s Guide

Applying Column Delegates to Tabulated Data

The following code fills a DataFrame with some sales data:

DataFrame df = new DataFrame();
df.AddColumn(new DFStringColumn("Product"));
df.AddColumn(new DFStringColumn("Month"));
df.AddColumn(new DFIntColumn("Quantity"));
df.AddColumn(new DFNumericColumn("Price"));
df.AddColumn(new DFNumericColumn("TotalSale"));

int rowID = 0;
df.AddRow(rowID++, "Squash", "Nov", 40, 1.50, 60.0);
df.AddRow(rowID++, "Carrots", "Nov", 15, 1.20, 18.0);
df.AddRow(rowID++, "Squash", "Nov", 37, 1.45, 53.65);
df.AddRow(rowID++, "Carrots", "Nov", 18, 1.25, 22.50);
df.AddRow(rowID++, "Squash", "Nov", 34, 1.39, 47.26);
df.AddRow(rowID++, "Carrots", "Dec", 20, 1.30, 26.0);
df.AddRow(rowID++, "Squash", "Dec", 31, 1.30, 40.30);
df.AddRow(rowID++, "Carrots", "Dec", 25, 1.40, 35.0);
df.AddRow(rowID++, "Squash", "Dec", 25, 1.25, 31.25);
df.AddRow(rowID++, "Carrots", "Dec", 30, 1.45, 43.50);
df.AddRow(rowID++, "Carrots", "Jan", 33, 1.50, 49.50);
df.AddRow(rowID++, "Squash", "Jan", 19, 1.21, 22.99);
df.AddRow(rowID++, "Carrots", "Jan", 40, 1.65, 66.0);
df.AddRow(rowID++, "Squash", "Jan", 15, 1.11, 16.65);
df.AddRow(rowID++, "Carrots", "Jan", 47, 1.80, 84.60);
df.AddRow(rowID++, "Squash", "Jan", 10, 1.00, 10.0);

This code displays the average sales for each product:

Func<IDFColumn, double> mean =
 new Func<IDFColumn, double>(StatsFunctions.Mean);
Console.WriteLine(df.Tabulate("Product", "TotalSale", mean));

The Product column is used as a grouping column, TotalSale contains the data,
and the mean delegate returns the mean of the value in each cell. The output is:

Results
Carrots 43.1375
Squash 35.2625
Overall 39.2000

The Tabulate() methods return a new data frame. If only one grouping factor is
specified, as in this example, the row keys are the sorted, unique factor levels. The
only column, named Results, contains the results of applying the given delegate
to the values in the data column tabulated for each level of the factor. A final row is
appended, with key Overall, containing the results of applying the given delegate
to all values in the data column.
 Chapter 2. Data Frames 33

Similarly, this code displays the number of observations in each cell for every
combination of Product and Month:

Func<IDFColumn, int> count =
 new Func<IDFColumn, int>(StatsFunctions.Count);
Console.WriteLine(
 df.Tabulate("Product", "Month", "TotalSale", count);

The Product and Month columns are used as grouping columns, TotalSale
contains the data, and the count delegate returns the number of items in each cell.

The output is:

Dec Jan Nov Overall
Carrots 3 3 2 8
Squash 2 3 3 8
Overall 5 6 5 16

When two grouping factors are specified, as in this case, the returned data frame
has row keys containing the sorted, unique levels of the first grouping factor as
strings. The columns in the data frame are named using the sorted, unique levels
of the second grouping factor.

NOTE—In this example the alphabetic sorting of the Month names has put them into
non-chronological order. In the months had been stored as DateTime objects in an
DFDateTimeColumn, they would have been ordered chronologically.

Each cell in the data frame contains the results of applying the given delegate to
the values in the data column tabulated for the appropriate combination of the two
factors. A final column is appended, named Overall, containing the overall
results for each level of the first factor. A final row is appended, with key Overall,
containing the overall results for each level of the second factor. The lower right
corner cell, accessed by indexer this["Overall","Overall"], contains the
results of applying the given delegate to all values in the data column.

2.12 Exporting Data from DataFrames

The contents of a data frame can be exported in various ways.

Exporting to a Matrix

The ToDoubleMatrix() method exports all the numeric data in a data frame to a
DoubleMatrix. Non-numeric columns are ignored. For example, this code
constructs a DataFrame from a DoubleMatrix, adds a column of string data, then
exports the contents of the data frame to another DoubleMatrix:
34 NMath Stats User’s Guide

DoubleMatrix A = new DoubleMatrix(8, 3, 0, .1);
df = new DataFrame(A, new string[] { "A", "B", "C" });

DFStringColumn col4 = new DFStringColumn("D",
 new String[] { "x", "x", "x", "x", "x", "x", "x", "x" });
df.AddColumn(col4);

DoubleMatrix B = df.ToDoubleMatrix();

The two matrices are equal (A == B); the string column is ignored.

Exporting to a String

The ToString() method returns a formatted string representation of a data frame:

string str = df.ToString();

For more control, you can also indicate:

whether to export column headers (the default is true)

whether to export row keys (the default is true)

the delimiter to use to separate columns (the default is tab-delimited)

For instance, this code exports the column headers, but not the row keys, and uses
a comma delimiter:

string str = df.ToString(true, false, “,”);

Convenience methods are also provided for persisting a text representation of a
data frame to a text file. Save() exports the contents of the data frame to a given
filename:

df.Save(“myData.txt”);

Again, you can also indicate whether to export column header or row keys, and
specify the column delimiter:

df.Save(“myData.txt”, true, false, “,”);

The LaunchSaveFileDialog() method allows the end user to specify the
filename. The OpenInEditor() method programmatically opens a data frame in
the default text editor on the user’s system. The user can then edit the contents of
the data frame. Lastly, the static Load() method imports a data frame from a text
file:

DataFrame df = DataFrame.Load(“myData.txt”);
 Chapter 2. Data Frames 35

Again, you can indicate whether the text file includes column headers and row
keys, and the delimiter used to separate the columns.

Exporting to an ADO.NET DataTable

The ToDataTable() method exports the data in a data frame to an ADO.NET
DataTable object. The row keys are placed in a DataColumn named DFRowKeys.
Thus, this code:

DataFrame df = new DataFrame();
df.AddColumn(
 new DFNumericColumn("ids", new DoubleVector(3, 3, -1)));
df.AddColumn(
 new DFStringColumn("names", "a", "b", "c"));
df.AddColumn(
 new DFBoolColumn("bools", true, false, true));
df.SetRowKeys(new String[] { "Row1", "Row2", "Row3" });
DataTable table = df.ToDataTable();

returns a DataTable that looks like this:

name: CenterSpace.NMath.Stats.DataFrame
DFRowKeys ids names bools
1 Row1 3.0000 a True
2 Row2 2.0000 b False
3 Row3 1.0000 c True

If no name is assigned to a data frame before ToDataTable() is called, the name of
the DataTable is set to the type: CenterSpace.NMath.Stats.DataFrame.

Binary and SOAP Serialization

Class DataFrame implements the ISerializable interface to control serialization
and deserialization. Common Language Runtime (CLR) serialization Formatter
classes call the provided GetObjectData() method at serialization time to
populate a SerializationInfo object with all the data required to represent a
DataFrame. For example, the BinaryFormatter class provides Serialize() and
Deserialize() methods for persisting an object in binary format to a given
stream. For example, this code serializes a data frame to a file:

using System.IO;
using System.Runtime.Serialization.Formatters.Binary;

FileStream binStream = File.Create(“myData.dat”);
BinaryFormatter binFormatter = new BinaryFormatter();
binFormatter.Serialize(binStream, df);
binStream.Close();
36 NMath Stats User’s Guide

This code restores the data frame from the file:

binStream = File.OpenRead("myData.dat");
DataFrame df2 = (DataFrame)binFormatter.Deserialize(binStream);
binStream.Close();
File.Delete("myData.dat");

Similarly, the SoapFormatter class persists an object in SOAP format to a given
stream. Thus:

using System.IO;
using System.Runtime.Serialization.Formatters.Soap;

FileStream xmlStream = File.Create("myData.xml");
SoapFormatter xmlFormatter = new SoapFormatter();
xmlFormatter.Serialize(xmlStream, df);
xmlStream.Close();

This code restores the data frame from the file:

xmlStream = File.OpenRead("myData.xml");
DataFrame df2 = (DataFrame)xmlFormatter.Deserialize(xmlStream)
xmlStream.Close();
File.Delete("myData.xml");
 Chapter 2. Data Frames 37

38 NMath Stats User’s Guide

CHAPTER 3.
DESCRIPTIVE STATISTICS

Class StatsFunctions provides a wide variety of static functions for computing
descriptive statistics, such as mean, variance, standard deviation, percentile,
median, quartiles, geometric mean, harmonic mean, RMS, kurtosis, skewness, and
many more.

Method overloads accept data as an array of doubles, as a DoubleVector, or as a
column in a DataFrame (Chapter 2). For example:

double[] dblArray = { 1.12, -2.0, 3.88, 1.2, 15.345 };
double mean1 = StatsFunctions.Mean(dblArray);

DoubleVector v =
 new DoubleVector(“1.12 -2.0 3.88 1.2 15.345”);
double mean2 = StatsFunctions.Mean(v);

DataFrame df = new DataFrame();
df.AddColumn(
 new DFNumericColumn("myData", 1.12, -2.0, 3.88, 1.2, 15.345));
double mean3 = StatsFunctions.Mean(df[“myData”]);

// mean1 == mean2 == mean3

In this chapter, where data is used in code examples, it should be understood to be
an instance of any of these three types.

Class StatsFunctions also provides some special functions, including
combinatorial functions, the gamma function, and the beta function. Such special
functions are described in Chapter 4.

3.1 Column Types

Most functions in class StatsFunctions require numeric data, although they accept
any instance of IDFColumn. If a column is not an instance of DFIntColumn or
DFNumericColumn, an attempt is made to convert the data to double using
System.Convert.ToDouble().
 Chapter 3. Descriptive Statistics 39

NOTE—An NMathFormatException is raised if the data cannot be converted to
double.

For instance, these functions will work with a DFStringColumn containing
numbers represented as strings.

DFStringColumn col =
 new DFStringColumn(“Col1”, “1.5”, “2”, “1.33”, “4.76”);
double mean = StatsFunctions.Mean(col);;

However, there is a processing penalty due to such type conversion. If you need to
perform many statistical functions on a column, first create a new DFIntColumn
or DFNumericColumn from your data column, so type conversion occurs only
once. For example, if column 4 in data frame df is a DFGenericColumn containing
decimal types, this works:

double mean = StatsFunctions.Mean(df[4]);
double stdev = StatsFunctions.StandardDeviation(df[4]);

but the decimal data is converted to doubles twice. This code first creates a new
DFNumericColumn containing doubles from the generic column, then computes
the statistics:

DFNumericColumn col = new DFNumericColumn(df[4].Name, df[4]);
double mean = StatsFunctions.Mean(col);
double stdev = StatsFunctions.StandardDeviation(col);

In some cases, you may want to replace the original generic column in the data
frame with the new DFNumericColumn:

df.RemoveColumn(4);
df.InsertColumn(4, col);
double mean = StatsFunctions.Mean(df[4]);
double stdev = StatsFunctions.StandardDeviation(df[4]);

Note that sometimes you may not even be aware that your data is stored in a
generic column. (You can always return the type of a column using the
ColumnType property.) This is most likely to occur when you read data from a text
file or database directly into a DataFrame. For example, if your database stores
data using SQL NUMERIC or DECIMAL types, these get mapped to System.Decimal
in ADO. NMath does not silently convert decimals to doubles, because of the loss
of precision, so they are stored in the dataframe as objects in a DFGenericColumn.
If you intend to perform multiple statistical functions on the data, convert the
column to a DFNumericColumn first, as shown above.
40 NMath Stats User’s Guide

3.2 Missing Values

Most functions in class StatsFunctions are accompanied by a paired function that
ignores missing values, such as Double.NaN in a DoubleVector,
DFNumericColumn, or array of doubles. For example, there are Mean() and
NaNMean() functions, Variance() and NaNVariance() functions, and so forth.
Unless a function is explicitly designed to handle missing values, it may return
NaN or have unexpected results if values are missing.

DoubleVector v =
 new DoubleVector(“[3.2 1.0 Double.NaN 4.5 -1.2]”);

double mean1 = StatsFunctions.Mean(v);
// mean1 = Double.NaN

double mean2 = StatsFunctions.NaNMean(v);
// mean2 = 1.875

The provided convenience method NaNCheck() returns true if a given data set
contains any missing values. NaNRemove() creates a copy of a data set with
missing values removed. For two-dimensional data sets, such as matrices and data
frames, NaNRemoveCols() creates a copy with only those columns that do not
contain missing values. NaNRemoveRows() removes any rows containing missing
data. The CleanCols() and CleanRows() methods on class DataFrame have the
same effect.

As described in Section 2.1, data frame column types enable you to specify how
missing values are represented within a particular column instance, or for all
columns of a particular type. For example, this column stores numeric data in a
string column, and uses NA to indicate a missing value:

DFStringColumn col =
 new DFStringColumn(“myCol”, “32.1”, “NA”, “6.0”, “34”);

This code identifies the missing value string, then computes the mean, ignoring
missing values:

col.MissingValue = “NA”;
double mean = StatsFunctions.NaNMean(col);

Because the column is not an instance of DFIntColumn or DFNumericColumn, an
attempt is made to convert the data to double using System.Convert.ToDouble()
(Section 3.1). If StatsFunctions.Mean() was used, instead of
StatsFunctions.NaNMean(), or if col.MissingValue was set to something other
than NA (for example, the default value is “.”), an exception would be thrown.
 Chapter 3. Descriptive Statistics 41

3.3 Counts and Sums

The static Count() method on class StatsFunctions returns the number of
elements in a data set:

int numElements = StatsFunctions.Count(data);

Counts() returns an IDictionary of key-value pairs in which the keys are the
unique elements in a given data set, and the values are the counts for each element.

CountIf() calculates how many elements in a data set return true when a logical
function is applied. For example, suppose MeetsThreshold() is a method that
returns true if a given numeric value is greater than 100:

public bool MeetsThreshold(double x)
{
 return (x > 100);
}

This code counts the number of elements in a data set that meet the criterion:

int num = StatsFunctions.CountIf(data, new
 StatsFunctions.LogicalDoubleFunction(MeetsThreshold));

Similarly, the static Sum() method sums the elements in a data set. SumIf() sums
the elements in a data set that return true when a logical function is applied:

double sum = StatsFunctions.SumIf(data, new
 StatsFunctions.LogicalDoubleFunction(MeetsThreshold));

An overload of SumIf() sums the elements in one data set based on evaluating a
logical function on another data set. For instance, this code sums the elements in
data2 that correspond to those elements in data where MeetsThreshold()
returns true:

double sum = StatsFunctions.SumIf(data, function, data2);

A MismatchedSizeException is raised if the two data sets do not have the same
number of elements.
42 NMath Stats User’s Guide

3.4 Min/Max Functions

Class StatsFunctions provides static min/max finding methods that return the
integer index of the element in a data set that meets the appropriate criterion:

MaxIndex() returns the index of the element with the greatest value.

MinIndex() returns the index of the element with the smallest value.

MaxAbsIndex() returns the index of the element with the greatest absolute
value.

MinAbsIndex() returns the index of the element with the smallest absolute
value.

Min/max value methods MaxValue(), MinValue(), MaxAbsValue(), and
MinAbsValue() return the value of the element that meets the appropriate
criterion.

3.5 Ranks, Percentiles, Deciles, and Quartiles

The static Ranks() method on class StatsFunctions returns the rank of each
element in a data set an as array of integers. For example:

int[] ranks = StatsFunctions.Ranks(data);

By default, the ranks are calculated using ascending order. Alternatively, you can
specify a sort order using a value from the SortingType enumeration. Thus:

int[] ranks =
 StatsFunctions.Ranks(data, SortingType.Descending);

NOTE—StatsSettings.Sorting specifies the default SortingType.

The Rank() method returns where a given value would rank within a data set, if it
were part of the data set. Again, the sorting order can be specified using a value
from the SortingType enumeration. For instance:

double x = 5.342;
int rank = StatsFunctions.Rank(data, x, SortingType.Descending);

Percentile() calculates the value at the nth percentile of the elements in a data
set, where . For example, to find the value at the 95th percentile:

double x = StatsFunctions.Percentile(data, 0.95);

0 n 1≤ ≤
 Chapter 3. Descriptive Statistics 43

PercentileRank() performs the inverse calculation, returning the percentile a
given value would have if it were part of the data set:

double x = 23.653;
double percentile = StatsFunctions.Percentile(data, x);

The returned percentile value is between 0 and 1.

Similarly, Decile() calculates a given decile, specified as an integer between 0
and 10, of the elements in a data set. Quartile() calculates a given quartile,
specified as an integer between 0 and 4. For example, this code finds the third
quartile value:

double x = StatsFunctions.Quartile(data, 3);

3.6 Central Tendency

Measures of central tendency are measures of the location of the middle or the
center of a data set. For example, the static Mean() method on class StatsFunctions
computes the arithmetic mean (average) of the elements in a data set:

double mean = StatsFunctions.Mean(data);

Median() calculates the median of the elements in a data set:

double median = StatsFunctions.Median(data);

The median is the middle of the set—half the values are above the median and half
are below the median. If there are an even number of elements, Median() returns
the average of the middle two elements.

Mode() determines the most frequently occurring value in a data set:

double mode = StatsFunctions.Mode(data);

GeometricMean() calculates the geometric mean.

HarmonicMean() calculates the harmonic mean.

n

x1 x1…xn⋅n

n
1
x1
---- 1

x2
---- … 1

xn
----+ + +

44 NMath Stats User’s Guide

TrimmedMean() calculates the mean of a data set after the specified trimming. A
trimmed mean is calculated by discarding a certain percentage of the lowest and
the highest values and then computing the mean of the remaining values. For
example, a mean trimmed 50% is computed by discarding the lower and higher
25% of the values and taking the mean of the remaining values. TrimmedMean()
takes a trimming parameter, which is a value between 0.0 and 1.0. For example,
this code computes the mean trimmed 50%:

double trimMean = StatsFunctions.TrimmedMean(data, 0.50);

The median is the mean trimmed 1.0, and the arithmetic mean is the mean
trimmed 0.0.

WeightedMean() calculates the weighted average of all the elements in a data set
using a given set of corresponding weights. The weighted mean is calculated as

For instance:

DoubleVector v =
 new DoubleVector("-0.3 -0.03 4 2.8 -12.3 -5 3 10");
DoubleVector weights = new DoubleVector("1 2 3 4 2 1 3 4");
double weightedMean = StatsFunctions.WeightedMean(v, weights))

A MismatchedSizeException is raised if the number of weights does not equal the
number of elements in the data set. Note that if all the weights are equal, the
weighted mean is the same as the arithmetic mean.

Lastly, RMS() calculates the root mean square of the elements in a data set. RMS,
sometimes called the quadratic mean, is the square root of the mean squared
value.

3.7 Spread

Measures of spread are measures of the degree values in the data set differ from
each other. For example, the static SumOfSquaredErrors() method on class
StatsFunctions calculates the sum of squared errors (SSE) of the elements in the
data set. SSE is the sum of the squared differences between each element and the
mean.

w1x1 w2x2 … wnxn+ + +

w1 w2 … wn+ + +

 Chapter 3. Descriptive Statistics 45

StandardDeviation() computes the biased standard deviation of the elements in
a data set.

For instance:

double stdev = StatsFunctions.StandardDeviation(data);

Alternatively, you can specify the unbiased standard deviation

using a value from the BiasType enumeration:

double stdev =
 StatsFunctions.StandardDeviation(data, BiasType.Unbiased);

NOTE—StatsSettings.Bias specifies the default BiasType.

Variance() calculates the variance of the elements in a data set. Variance is the
square of the standard deviation. Again, you can specify a biased or unbiased
estimator using values from the BiasType enumeration.

MeanDeviation() calculates the mean deviation of the elements in a data set. The
mean deviation is the mean of the absolute deviations about the mean. The mean
deviation is defined by

Similarly, MedianDeviationFromMean() calculates the median of the absolute
deviations from the mean. MedianDeviationFromMedian() calculates the median
of the absolute deviations from the median.

Lastly, InterquartileRange() returns the difference between the median of the
highest half and the median of the lowest half of the elements in a data set:

double iqr = StatsFunctions.InterQuartileRange(data);

3.8 Shape

The static Skewness() method on class StatsFunctions computes the skewness of
the elements in a data set. Skewness is the degree of asymmetry of a distribution.
A distribution is skewed if one of its tails is longer than the other. Thus:

SSE
n

SSE
n 1–

1
n
--- xi x–

i 1=

n

∑

46 NMath Stats User’s Guide

double skewness = StatsFunctions.Skewness(data);

By default, Skewness() uses a biased estimator of the standard deviation
(Section 3.7). Alternatively, you can specify the unbiased standard deviation using
a value from the BiasType enumeration:

double skewness =
 StatsFunctions.Skewness(data, BiasType.Unbiased);

NOTE—StatsSettings.Bias specifies the default BiasType.

Kurtosis() calculates the kurtosis of the elements in a data set. Kurtosis is a
measure of the degree of peakedness of a distribution. Again, a biased estimator of
the standard deviation is used by default—you can specify the unbiased standard
deviation using a value from the BiasType enumeration.

Finally, CentralMoment() returns the moment about the mean of a data set
specified by a positive integer order. The first central moment is equal to zero. The
second central moment is the variance. The third central moment is the skewness.
The fourth central moment is the kurtosis.

3.9 Covariance, Correlation, and
Autocorrelation

The static Covariance() method on class StatsFunctions computes the covariance
of two data sets. Covariance is a measure of the tendency of two data sets to vary
together, and is defined by

Each deviation score in the first data set is multiplied by the corresponding
deviation score in the second data set. For example:

double cov = StatsFunctions.Covariance(data1, data2);

You can also specify a biased or unbiased estimator using values from the
BiasType enumeration.

CovarianceMatrix() creates a square, symmetric matrix containing the variances
and covariances of the columns in a given data matrix. The diagonal elements
represent the variances for the columns; the off-diagonal elements represent the
covariances of each pair of columns.

covx y,

xi µx–() yi µy–()∑
n

--=
 Chapter 3. Descriptive Statistics 47

Correlation() calculates the correlation between two data sets. Correlation is
covariance standardized by dividing by the standard deviation of each data set:

The resultant value is the Pearson product-moment correlation coefficient, more
commonly known simply as the correlation.

Spearmans() calculates the Spearman rank correlation coefficient, commonly
known as Spearman’s rho. Spearman’s rho differs from Pearson's correlation only in
that the computation is done after the values in the data set are converted to ranks
(Section 3.5).

Fisher() calculates the Fisher transformation at a given value, which can be used
to perform hypothesis testing on the correlation coefficient. FisherInv()
calculates the inverse Fisher transformation.

Cronbach() calculates the standardized Cronbach’s alpha test for reliability.

Autocorrelation is the correlation between members of a time series of
observations. Class StatsFunctions provides two static methods for computing
first-order autocorrelation:

DurbinWatson() calculates the Durbin-Watson statistic for the elements in
a data set.

VonNeumannRatio() calculates the Von Neumann ratio for the elements in
a data set.

For instance:

double dw = StatsFunctions.DurbinWatson(data);
double vnr = StatsFunctions.VonNeumannRatio(data);

3.10 Sorting

The static Sort() method on class StatsFunctions sorts the elements of a data set
in ascending or descending order using the quicksort algorithm and returns a new
data set containing the result. The sort order is specified using a value from the
SortingType enumeration.

For example:

DoubleVector v = new DoubleVector(“5 7 1 3 9 4 5 2 1 0 11 3”);
v = StatsFunctions.Sort(v, SortingType.Descending);

corx y,
covx y,
SxSy

----------------=
48 NMath Stats User’s Guide

NOTE—StatsSettings.Sorting specifies the default SortingType.

3.11 Logical Functions

The static If() method on class StatsFunctions creates an array of boolean values
determined by applying a given logical function to the elements in a data set.

For example, suppose OnInterval01() is a method that returns true if a given
numeric value is between 0 and 1:

public bool OnInterval01(double x)
{
 return ((x >= 0) && (x <= 1));
}

This code creates an array of boolean values by applying the criterion to a data set:

bool[] bArray = StatsFunctions.If(data, new
 StatsFunctions.LogicalDoubleFunction(OnInterval01));

As described in Section 2.7, the resultant boolean array could be used to create a
Subset containing the indices of all true elements in the array. The subset could
then be used to create a sub-frame from a DataFrame containing the rows or
columns than meet the criterion.

An overload of If() creates a new data set by applying a logical function to the
elements of another data set. Elements in the original data set that return true are
set to a given true value in the new data set; elements that return false are not
changed.

For instance, suppose GreaterThan100() is a method that returns true if a given
numeric value is greater than 100. This code creates a new data in which all values
in DoubleVector data that are greater than 100 are set to NaN:

DoubleVector data2 = StatsFunctions.If(data,
 new StatsFunctions.LogicalDoubleFunction(GreaterThan100),
 Double.NaN);

You can also supply a false value, in which case elements in the original data set
that return false are set to that value.

Static CountIf() and SumIf() methods are also provided on class StatsFunctions.
See Section 3.3 for more information.
 Chapter 3. Descriptive Statistics 49

50 NMath Stats User’s Guide

CHAPTER 4.
SPECIAL FUNCTIONS

In addition to the descriptive statistics described in Chapter 3, class
StatsFunctions also provides several special functions useful for statistical
computation, including combinatorial functions, the beta function, and the gamma
function.

4.1 Combinatorial Functions

The static Factorial() method on class StatsFunctions returns n!, the number of
ways that n objects can be permuted. A lookup table is used for for faster
access. For example:

int i = StatsFunctions.Factorial(20);
// i = 2,432,902,008,176,640,000

FactorialLn() returns the natural log factorial of n, .

The static Binomial() method returns the binomial coefficient. The binomial
coefficient (“n choose m”) is the number of ways of picking m unordered
outcomes from n possibilities:

For instance:

int nCm = StatsFunctions.Binomial(6, 4);

BinomialLn() returns the natural log of the binomial coefficient.

n 24<

ln n!()

Cn m

Cn m
n!

n m–()!m!
-----------------------=
 Chapter 4. Special Functions 51

4.2 Gamma Function

The static GammaLn() method on class StatsFunctions evaluates the log of the
gamma function at a value x. The gamma function is an extension of the
factorial function to complex and real number arguments.

The “complete” gamma function can be generalized to the incomplete
gamma function , such that . The “lower” incomplete gamma
function is given by:

IncompleteGamma() returns the value of the lower regularized incomplete gamma
function.

4.3 Beta Function

The static Beta() method on class StatsFunctions method evaluates the beta
function , which is related to the gamma function as follows:

The incomplete beta function is a generalization of the beta function:

IncompleteBeta() returns the value of the incomplete beta function.

Γ x()

Γ x()
Γ a x,() Γ a() Γ a 0,()=

P x a,()
1

Γ a()
---------- ta 1– e t– d

0

x

∫=

B n m,() Γ x()

B n m,() Γ n()Γ n()
Γ n m+()
------------------------ n 1–()! m 1–()!

n m 1–+()!
--------------------------------------= =

Bz n m,()

Bz a x,() ua 1– 1 u–()b 1–
du

0

z

∫=
52 NMath Stats User’s Guide

CHAPTER 5.
PROBABILITY DISTRIBUTIONS

NMath Stats provides classes for computing the probability density function
(PDF), the cumulative distribution function (CDF), the inverse cumulative
distribution function, and random variable moments for a variety of probability
distributions, including beta, binomial, chi-square (), exponential, F, gamma,
geometric, Johnson, logistic, log-normal, negative binomial, normal (Gaussian),
Poisson, Student's t, triangular, uniform, and Weibull distributions. The
distribution classes share a common interface, so once you learn how to use one
distribution class, it’s easy to use any of the others.

This chapter describes the distribution classes and how to use them. This chapter
also describes how to create correlated sets of random variables drawn from
different distributions.

5.1 Distribution Classes

The NMath Stats probability distribution classes are listed in Table 5.

Table 5 – Probability Distribution Classes

Class Distribution

BetaDistribution Beta distribution

BinomialDistribution Binomial distribution

ChiSquareDistribution Chi-Square () distribution

ExponentialDistribution Exponential distribution

FDistribution F distribution

GammaDistribution Gamma distribution

GeometricDistribution Geometric distribution

χ2

χ2
 Chapter 5. Probability Distributions 53

All distribution classes share a common interface. Class ProbabilityDistribution is
the abstract base class for the distribution classes, and provides the following
abstract methods implemented by the derived classes:

PDF() computes the probability density function at a given x.

CDF() computes the cumulative distribution function at a given x.

InverseCDF() computes the inverse cumulative distribution function for a
given probability p—that is, it returns x such that CDF(x) = p.

In addition, all NMath Stats distribution classes implement the
IRandomVariableMoments interface, which provides the following read-only
properties:

Mean gets the mean of the distribution.

Variance gets the variance of the distribution.

Kurtosis gets the kurtosis of the distribution.

Skewness gets the skewness of the distribution.

Variance is the square of the standard deviation. Kurtosis is a measure of the degree
of peakednesss of a distribution; skewness is a measure of the degree of asymmetry.

JohnsonDistribution Johnson distribution

LogisticDistribution Logistic distribution

LognormalDistribution Log-normal distribution

NegativeBinomialDistribution Negative Binomial distribution

NormalDistribution Normal (Gaussian) distribution

PoissonDistribution Poisson distribution

TDistribution Student’s t distribution

TriangularDistribution Triangular distribution

UniformDistribution Uniform distribution

WeibullDistribution Weibull distribution

Table 5 – Probability Distribution Classes

Class Distribution
54 NMath Stats User’s Guide

Once you have constructed a derived distribution type, you can query it for the
PDF, CDF, inverse CDF, and random variable moments. For example, this code
constructs a NormalDistribution with mean 0 and variance 1, then queries it:

NormalDistribution dist = new NormalDistribution(0, 1);
double pdf = dist.PDF(0);
double cdf = dist.CDF(0);
double invCdf = dist.InverseCDF(.5);
double mean = dist.Mean;
double var = dist.Variance;
double kurt = dist.Kurtosis;
double skew = dist.Skewness;

Beta Distribution

Class BetaDistribution represents the beta probability distribution. The beta
distribution is a family of curves with two free parameters, usually labelled and

. Beta distributions are nonzero only on the interval (0 1).

The distribution function for the beta distribution is:

where is the beta function. The beta CDF is the same as the incomplete beta
function.

For example, this code constructs a BetaDistribution:

double alpha = 3;
double beta = 7;
BetaDistribution dist = new BetaDistribution(alpha, beta);

The default constructor creates a BetaDistribution with and equal to 1:

BetaDistribution dist = new BetaDistribution();

The provided Alpha and Beta properties can be used to get and set the shape
parameters after construction:

dist.Alpha = 4;
dist.Beta = 10;

Once you have constructed a BetaDistribution object, you can query it for the
PDF, CDF, inverse CDF, and random variable moments, as described in Section 5.1.

α
β

f x α β,() xα 1– 1 x–()β 1–

B α β,()
---------------------------------------=

B x y,()

α β
 Chapter 5. Probability Distributions 55

Binomial Distribution

Class BinomialDistribution represents the discrete probability distribution of
obtaining exactly n successes in N trials where the probability of success on each
trial is p. For example, this code constructs an BinomialDistribution:

int n = 20;
double p = 0.25;
BinomialDistribution bin = new BinomialDistribution(n, p);

The default constructor creates an BinomialDistribution with and :

BinomialDistribution bin = new BinomialDistribution();

The provided N and P properties can be used to get and set the number of trials
and the probability of success on each trial after construction:

bin.N = 75;
bin.P = 0.02;

Once you have constructed an BinomialDistribution object, you can query it for
the PDF, CDF, inverse CDF, and random variable moments, as described in
Section 5.1.

Chi-Square Distribution

Class ChiSquareDistribution represents the chi-square () probability
distribution. The chi-square distribution is a special case of the gamma distribution
with and , where df is the degrees of freedom.

For example, this code constructs a ChiSquareDistribution:

double df = 16;
ChiSquareDistribution chiSq = new ChiSquareDistribution(df);

The default constructor creates a ChiSquareDistribution with 1 degree of
freedom:

ChiSquareDistribution chiSq = new ChiSquareDistribution();

The provided DegreesOfFreedom property can be used to get and set the degrees
of freedom of the distribution after construction:

chiSq.DegreesOfFreedom = 10;

Once you have constructed a ChiSquareDistribution object, you can query it for
the PDF, CDF, inverse CDF, and random variable moments, as described in
Section 5.1.

n 2= p 0.5=

χ2

α df 2⁄= β 2=
56 NMath Stats User’s Guide

Exponential Distribution

Class ExponentialDistribution represents the exponential distribution. A random
variable w is said to have an exponential distribution if it has a probability density
function

where is often called the rate parameter. The mean of an exponential
distribution is , and the variance is . For example, this code constructs an
ExponentialDistribution:

double lambda = 22;
ExponentialDistribution exp =
 new ExponentialDistribution(lambda);

The provided Lambda property can be used to get and set the rate after
construction:

exp.Lambda = 15;

Once you have constructed an ExponentialDistribution object, you can query it
for the PDF, CDF, inverse CDF, and random variable moments, as described in
Section 5.1.

F Distribution

Class FDistribution represents the F probability distribution. The F distribution is
the ratio of two chi-square distributions with degrees of freedom df1 and df2,
respectively, where each chi-square has first been divided by its degrees of
freedom. For example, this code constructs an FDistribution:

double df1 = 11;
double df2 = 19;
FDistribution f = new FDistribution(df1, df2);

The default constructor creates an FDistribution with both degrees of freedom
equal to 1:

FDistribution f = new FDistribution();

The provided DegreesOfFreedom1 and DegreesOfFreedom2 properties can be
used to get and set the degrees of freedom after construction:

f.DegreesOfFreedom1 = 15;
f.DegreesOfFreedom2 = 23;

Once you have constructed an FDistribution object, you can query it for the PDF,
CDF, inverse CDF, and random variable moments, as described in Section 5.1.

g w() λe λw–
=

λ 0>
1 λ⁄ 1 λ2⁄
 Chapter 5. Probability Distributions 57

Gamma Distribution

Class GammaDistribution represents the gamma probability distribution. The
gamma distribution is a family of curves with two free parameters, usually
labelled and . The mean of the distribution is ; the variance is . When
is large, the gamma distribution closely approximates a normal distribution.

The distribution function for the gamma distribution is:

where is the Gamma function.

For example, this code constructs a GammaDistribution:

double alpha = 7;
double beta = 12;
GammaDistribution gamma = new GammaDistribution(alpha, beta);

The default constructor creates a GammaDistribution with and equal to 1:

GammaDistribution gamma = new GammaDistribution();

The provided Alpha and Beta properties can be used to get and set the shape
parameters after construction:

gamma.Alpha = 10;
gamma.Beta = 15;

Once you have constructed a GammaDistribution object, you can query it for the
PDF, CDF, inverse CDF, and random variable moments, as described in Section 5.1.

Geometric Distribution

Class GeometricDistribution represents the geometric distribution. The geometric
distribution is the probability distribution of the number of failures before the first
success. It is supported on the set .

A GeometricDistribution is constructed from a given probability of success p,
where . For example:

double p = .25;
GeometricDistribution geo = new GeometricDistribution(p);

Class GeometricDistribution provides property P that gets and sets the
probability for success for the distribution.

geo.P = .5;

α β αβ αβ2 α

f x α β,() xα 1– e
x–

β

βαΓ α()
--------------------=

Γ x()

α β

0 1 2 3 …, , , ,{ }

0 p 1≤<
58 NMath Stats User’s Guide

Once you have constructed a GeometricDistribution object, you can query it for
the PDF, CDF, inverse CDF, and random variable moments, as described in
Section 5.1.

Johnson Distribution

Class JohnsonDistribution represents the Johnson system of distributions. The
Johnson system is based on three possible transformations of a normal random
variable—exponential, logistic, and hyperbolic sine—plus the identity
transformation:

where the transformation f() has four possible forms based on the distribution
type:

Normal (SN): f(u) = exp(u)

Log Normal (SL): f(u) = u

Unbounded (SU):f(u) = u + sqrt(1+u^2)

Bounded (SB):f(u) = u/(1-u)

A JohnsonDistribution instance is constructed from a set of distribution
parameter values, and a JohnsonTransformationType enumerated value
specifying the transformation type. For instance:

double gamma = -0.18;
double delta = 2.55;
double xi = -0.14;
double lambda = 2.35;
JohnsonTransformationType type = JohnsonTransformationType.Normal;

JohnsonDistribution dist =
 new JohnsonDistribution(gamma, delta, xi, lambda, type);

Once you have constructed a JohnsonDistribution object, you can query it for the
PDF, CDF, inverse CDF, and random variable moments, as described in Section 5.1.

z γ δln f u()() where u+
x ξ–

λ
------------- 

 = =
 Chapter 5. Probability Distributions 59

Class JohnsonDistribution also provides a static Fit() method for fitting a
Johnson distribution to a data set. Estimation of the Johnson parameters is done
from quantiles that correspond to the cumulative probabilities [0.05, 0.206,
0.5, 0.794, 0.95] using the method of Wheeler (1980).1 For example:

DoubleVector data = new DoubleVector(-0.09736927, 0.21615254,
 0.88246516, 0.20559750, -0.61643584, -0.73479925, -0.13180279,
 0.31001699, -1.03968035, -0.18430887, 0.96726726, -0.10828009, -
 0.69842067, -0.27594517, 1.11464855, 0.55004396, 1.23667580,
 0.13909786, 0.41027510, -0.55845691);
JohnsonDistribution dist = JohnsonDistribution.Fit(data);

The Transform() method transforms data using a JohnsonDistribution object.

Logistic Distribution

Class LogisticDistribution represents the logistic probability distribution with a
specified location (mean) and scale. The logistic distribution with location m and
scale b has distribution function:

and density:

For example, this code constructs a LogisticDistribution:

double loc = 2.0;
double scale = 1.5;
LogisticDistribution logistic =
 new LogisticDistribution(loc, scale);

The provided Location and Scale properties can be used to get and set
distribution parameters after construction:

logistic.Location = 7.123;
logistic.Scale = 4.5;

Once you have constructed a LogisticDistribution object, you can query it for the
PDF, CDF, inverse CDF, and random variable moments, as described in Section 5.1.

1Wheeler, R.E. (1980). Quantile estimators of Johnson curve parameters. Biometrika. 67-3 725-728.

f x() 1
1 e x m–()– b⁄

+
------------------------------------=

f x() e x m–()– b⁄

b 1 e x m–()– b⁄
+[]

2
--=
60 NMath Stats User’s Guide

Log-Normal Distribution

Class LognormalDistribution represents the log-normal distribution. A log-
normal distribution has a normal distribution as its logarithm:

For example, this code constructs an LognormalDistribution whose associated
normal distribution has the specified mean and standard deviation:

double mu = -99;
double sigma = 6;
LognormalDistribution ln = new LognormalDistribution(mu, sigma);

The default constructor creates a LognormalDistribution whose associated
normal distribution has mean 0 and standard deviation 1:

LognormalDistribution ln = new LognormalDistribution();

The Mu and Sigma properties can be used to get and set the mean and standard
deviation after construction:

ln.Mu = 2.25;
ln.Sigma = .75;

Once you have constructed a LognormalDistribution object, you can query it for
the PDF, CDF, inverse CDF, and random variable moments, as described in
Section 5.1.

Negative Binomial Distribution

Class NegativeBinomialDistribution represents the discrete probability
distribution of obtaining N successes in a series of x trials, where the probability of
success on each trial is P.

For example, this code constructs an NegativeBinomialDistribution:

int n = 5;
double p = 0.25;
NegativeBinomialDistribution negBin =
 new NegativeBinomialDistribution(n, p);

The default constructor creates an NegativeBinomialDistribution with and
:

BinomialDistribution negBin = new BinomialDistribution();

f x() enormal µ σ,()
=

n 2=
p 0.5=
 Chapter 5. Probability Distributions 61

The provided N and P properties can be used to get and set the number of
successes and the probability of success on each trial after construction:

negBin.N = 75;
negBin.P = 0.02;

Once you have constructed an NegativeBinomialDistribution object, you can
query it for the PDF, CDF, inverse CDF, and random variable moments, as
described in Section 5.1.

Normal Distribution

Class NormalDistribution represents the normal (Gaussian) probability
distribution. with a specified mean and variance. For example, this code creates a
normal distribution with a mean of 1 and variance of 2.5:

NormalDistribution norm = new NormalDistribution(1, 2.5);

The default constructor creates a NormalDistribution with mean 0 and variance 1:

NormalDistribution norm = new NormalDistribution();

The Mean and Variance properties inherited from IRandomVariableMoments
can be used to get and set the mean and variance after construction:

norm.Mean = 2.25;
norm.Variance = .75;

Once you have constructed a NormalDistribution object, you can query it for the
PDF, CDF, inverse CDF, and random variable moments, as described in Section 5.1.

Poisson Distribution

Class PoissonDistribution represents a poisson distribution with a specified
parameter, which is both the mean and the variance of the distribution. The
poisson distribution is the probability of obtaining exactly n successes in N trials. It
is often used as a model for the number of events in a specific time period. Poisson
(1837) showed that the Poisson distribution is the limiting case of a binomial
distribution where N approaches infinity and p goes to zero while . The
distribution function for the Poisson distribution is:

For example, this code constructs a PoissonDistribution:

double lambda = 150;
PoissonDistribution poisson = new PoissonDistribution(lambda);

λ

Np λ=

f x λ() e λ– λx

x!
--------------=
62 NMath Stats User’s Guide

The Mean and Variance properties inherited from IRandomVariableMoments
can also be used to get and set after construction:

poisson.Mean = 3;

Once you have constructed a PoissonDistribution object, you can query it for the
PDF, CDF, inverse CDF, and random variable moments, as described in Section 5.1.

Student’s t Distribution

Class TDistribution represents Student's t distribution with specified degrees of
freedom. As the number of degrees of freedom grows, the t distribution
approaches the normal distribution with mean 0 and variance 1.

For example, this code constructs a TDistribution:

double df = 53;
TDistribution t = new TDistribution(df);

The default constructor creates a TDistribution with 1 degree of freedom:

TDistribution t = new TDistribution();

The provided DegreesOfFreedom property can be used to get and set the degrees
of freedom of the distribution after construction:

t.DegreesOfFreedom = 54;

Once you have constructed a TDistribution object, you can query it for the PDF,
CDF, inverse CDF, and random variable moments, as described in Section 5.1.

Triangular Distribution

Class TriangularDistribution represents the triangular distribution. The
triangular distribution is defined by three parameters, a lower limit a, an upper
limit b, and number c, between a and b, called the mode. The probability density
function has the shape of a triangle in the X/Y plane with vertices (a, 0), (b, 0), and
(c, y), where y is chosen so that the area of the triangle is 1.

For example, this code constructs an TriangularDistribution with the given
parameters:

double lower = 3;
double upper = 10;
double mode = 8;
TriangularDistribution td =
 new TriangularDistribution(lower, upper, mode);

λ

 Chapter 5. Probability Distributions 63

If you don’t specify the mode, the midpoint of the lower and upper limits is used.

The default constructor creates a TriangularDistribution with lower limit 0, upper
limit 1, and mode 0.5:

TriangularDistribution td = new TriangularDistribution();

The LowerLimit, UpperLimit, and Mode properties can be used to get and set the
distribution parameters after construction:

td.LowerLimit = 1.5;
td.UpperLimit = 3.5;
td.Mode = 2.75;

Once you have constructed a TriangularDistribution object, you can query it for
the PDF, CDF, inverse CDF, and random variable moments, as described in
Section 5.1.

Uniform Distribution

Class UniformDistribution represents the uniform distribution. For example, this
code constructs an UniformDistribution with the specified lower and upper
limits:

double lower = -.77;
double upper = 1.22;
UniformDistribution uni = new UniformDistribution(lower, upper);

The default constructor creates a UniformDistribution with lower limit 0 and
upper limit 1:

UniformDistribution uni = new UniformDistribution();

The LowerLimit and UpperLimit properties can be used to get and set the lower
and upper limits after construction:

uni.LowerLimit = 0;
uni.UpperLimit = 2.0;

Once you have constructed a UniformDistribution object, you can query it for the
PDF, CDF, inverse CDF, and random variable moments, as described in Section 5.1.

Weibull Distribution

Class WeibullDistribution represents the Weibull distribution. The probability
density function of the Weibull distribution is given by:

f x k λ,() k
λ
--- x

λ
--- 

  k 1–
e x λ⁄()k–

=

64 NMath Stats User’s Guide

where is the shape parameter and is the scale parameter of the
distribution.

For example, this code constructs an WeibullDistribution with the specified
distribution parameters:

double scale = 1.5;
double shape = 3;
WeibullDistribution wb = new WeibullDistribution(scale, shape);

The Scale and Shape properties can be used to get and set the distribution
parameters after construction:

wb.Scale = .5;
wb.Shape = 2;

Once you have constructed a WeibullDistribution object, you can query it for the
PDF, CDF, inverse CDF, and random variable moments, as described in Section 5.1.

5.2 Correlated Random Inputs

NMath Stats provides classes InputVariableCorrelator and
ReducedVarianceInputCorrelator to induce a desired rank correlation among a
set of random input variables. The correlated inputs retain the same marginal
distributions as the original inputs but have a Spearman’s rank correlation matrix
approximately equal to that specified by the user. The method used is that of Iman
and Conover (1982).2

ReducedVarianceInputCorrelator performs the same function as
InputVariableCorrelator class, but uses an algorithm that produces more accurate
results, at some cost in performance.

Constructing Correlator Instances

Instances of InputVariableCorrelator and ReducedVarianceInputCorrelator are
constructed from the number of samples and the desired correlation matrix. This
code assume 500 samples of 6 input variables:

2Iman, Ronald L. and W. J. Conover, “A Distribution-Free Approach to Inducing Rank Correlation
Amoung Input Variables”, Commun. Statist.-Simula. Computation 11(3), pp. 311-334 (1982)

k 0> λ 0>
 Chapter 5. Probability Distributions 65

int numSamples = 500;
string str = "6x6 [1 0 0 0 0 0 " +
 "0 1 0 0 0 0 " +
 "0 0 1 0 0 0 " +
 "0 0 0 1 .75 -.70 " +
 "0 0 0 .75 1 -.95 " +
 "0 0 0 -.7 -.95 1]";
DoubleMatrix desiredCorrelations = new DoubleMatrix(str);

InputVariableCorrelator correlator = new
 InputVariableCorrelator(numSamples, desiredCorrelations);

Most of the work done by the correlation algorithm involves setting up a score
matrix which has been transformed so that it's Spearman’s rank correlation matrix
is equal to the desired correlation matrix. The computation of this score matrix
requires only the number of samples and the desired correlation matrix, and is
performed at construction time. Once you have constructed an
InputVariableCorrelator or ReducedVarianceInputCorrelator instance, you can
correlate batches of random inputs relatively quickly.

Correlating Random Inputs

The GetCorrelatedInputs() method on InputVariableCorrelator and
ReducedVarianceInputCorrelator returns a matrix containing a given set of input
variables values re-ordered so as to have the desired correlations.

For instance, this code creates a set of samples drawn from 4 different distributions
(each row of the inputs matrix is a random sample of the 6 input variables), and
induces the desired correlation:

RandGenBeta betaRng = new RandGenBeta();
RandGenUniform uniformRng = new RandGenUniform();
RandGenPoisson poissonRng = new RandGenPoisson();
RandGenNormal normalRng = new RandGenNormal();

DoubleMatrix inputs = new DoubleMatrix(numSamples, 6);
betaRng.Fill(inputs.Col(0).DataBlock.Data);
uniformRng.Fill(inputs.Col(1).DataBlock.Data);
poissonRng.Fill(inputs.Col(2).DataBlock.Data);
normalRng.Fill(inputs.Col(3).DataBlock.Data);
betaRng.Fill(inputs.Col(4).DataBlock.Data);
uniformRng.Fill(inputs.Col(5).DataBlock.Data);

DoubleMatrix correlatedInputs =
 correlator.GetCorrelatedInputs(inputs);

You can compare the actual Spearman’s rank correlation matrix with the desired
correlation matrix, like so:
66 NMath Stats User’s Guide

DoubleMatrix actualCorrelations =
 StatsFunctions.Spearmans(correlatedInputs);

Console.WriteLine("Desired: " + desiredCorrelations);
Console.WriteLine("Actual: " + actualCorrelations);

Correlator Properties

InputVariableCorrelator and ReducedVarianceInputCorrelator provide the
following read-only properties:

Rstar gets the permuted score matrix which has been transformed to have
the desired correlation matrix.

NumInputVariables gets the number of input variables.

SampleSize gets the sample size of the input variables.

Convenience Method

The static CorrelatedRandomInputs() convenience method is provided on class
StatsFunctions for cases where you need only one set of correlated inputs. For
example:

DoubleMatrix correlatedInputs =
 StatsFunctions.CorrelatedRandomInputs(inputs,
 desiredCorrelations);

In the special case of two input variables, an additional overload obviates the need
for setting up the original input sample matrix. For instance, this code creates two
sequences of 100 normally distributed random numbers which have,
approximately, the specified rank correlation coefficient 0.8:

double mean1 = 43.2;
double var1 = 1.2;
RandGenNormal normalRng1 = new RandGenNormal(mean1, var1);

double mean2 = 102.45;
double var2 = 8.098;
RandGenNormal normalRng2 = new RandGenNormal(mean2, var2);

double desiredRankCorrelation = .8;

int numSamples = 100;

DoubleMatrix correlatedInputs =
 StatsFunctions.CorrelatedRandomInputs(numSamples,
 desiredRankCorrelation, normalRng1, normalRng2);
 Chapter 5. Probability Distributions 67

5.3 Box-Cox Power Transformations

Box-Cox power transformations compute a rank-preserving transformation of
data to stabilize variance and make the data more normal. The power
transformation is defined as a continuously varying function, with respect to the
power parameter ,

In NMath Stats, class BoxCox compute the Box-Cox power tranformations for a
set of data points and parameter value . In addition, methods are provided for
computing the corresponding log-likelihood function and the value of which
maximizes it.

For example:

DoubleVector data = new DoubleVector("[.15 .09 .18 .10 .05 .12 .08
.05 .08 .10 .07 .02 .01 .10 .10 .10 .02 .10 .01 .40 .10 .05 .03 .05
.15 .10 .15 .09 .08 .18 .10 .20 .11 .30 .02 .20 .20 .30 .30 .40 .30
.05]");

Interval interval = new Interval(-5, 5, Interval.Type.Closed);

BoxCox bc = new BoxCox(data, interval);

Console.WriteLine(bc.Lambda);
Console.WriteLine(bc.TransformedData);

BoxCox searches from -5 to 5 until the best value of is found (the value which
maximizes the log-likelihood function).

λ

y λ() yλ 1–
λ

--------------=

λ
λ

λ

68 NMath Stats User’s Guide

CHAPTER 6.
HYPOTHESIS TESTS

Hypothesis tests use statistics to determine the probability that a given hypothesis
is true. For example, could the differences between two sample means be
explained away as sampling error? NMath Stats provides classes for many
common hypothesis tests.

This chapter describes the hypothesis test classes. For non-parametric tests, see
Chapter 10.

6.1 Common Interface

All hypothesis test classes share substantially the same interface. Once you learn
how to use one test, it’s easy to use any of the others.

Static Properties

All hypothesis test classes have static DefaultAlpha properties that get and set the
default alpha level associated with tests of that type. The default value is 0.01. For
instance:

OneSampleTTest test1 = new OneSampleTTest();
// test1.Alpha == 0.01
OneSampleTTest.DefaultAlpha = 0.05;
OneSampleTTest test2 = new OneSampleTTest();
// test2.Alpha == 0.05

Similarly, all hypothesis test classes have static DefaultType properties that get
and set the default form of the alternative hypothesis. The form is specified using
the HypothesisType enumeration, with the following enumerated values:

Left indicates a one-sided form to the left, .

Right indicates a one-sided form to the right, .

TwoSided indicates a two-sided form, .

µ µ0<

µ µ0>

µ µ0≠
 Chapter 6. Hypothesis Tests 69

The default value for all test classes is HypothesisType.TwoSided. For example:

OneSampleTTest test1 = new OneSampleTTest();
// test1.Type == HypothesisType.TwoSided
OneSampleTTest.DefaultType = HypothesisType.Left;
OneSampleTTest test2 = new OneSampleTTest();
// test2.Type == HypothesisType.Left

Creating Hypothesis Test Objects

All hypothesis test classes provide two paths for constructing instances of that
type:

A parameter-based method, in which all necessary sample and population
parameters are explicitly specified.

A data-based method, in which sample parameters are computed from
supplied sample data.

NOTE—In the data-based method, once sample parameters have been computed
from the given data, the data is discarded, and cannot be recovered from the test
object.

For example, a one-sample z-test compares a single sample mean to an expected
mean from a normal distribution with known standard deviation. This code
constructs a OneSampleZTest object by explicitly specifying a sample mean,
sample size, population mean, and population standard deviation:

double xbar = 112.8;
int n = 9;
double mu0 = 100;
double sigma = 15;
OneSampleZTest test = new OneSampleZTest(xbar, n, mu0, sigma);

This code constructs a OneSampleZTest object by supplying a vector of sample
data, and the necessary population parameters:

DoubleVector data =
 new DoubleVector(“[116 110 111 113 112 113 111 109 121]”);
double mu0 = 100;
double sigma = 15;
OneSampleZTest test = new OneSampleZTest(data, mu0, sigma);

In this case, the sample mean and sample size are calculated from the given data.
The data-based method supports sample data in vectors, arrays, and data frame
columns.

In both the parameter-based method and the data-based method, the alpha level
for the hypothesis test is set to the current value specified by the static
70 NMath Stats User’s Guide

DefaultAlpha property, and the form of the hypothesis test is set to the current
DefaultType, as described above.

Constructors are also provided for all test classes that enable you to set the alpha
level and hypothesis type to non-default values. For example:

OneSampleZTest test = new OneSampleZTest(data, mu0, sigma, 0.05,
 HypothesisType.Left);

Properties of Hypothesis Test Objects

All hypothesis test classes provide the following read-only properties:

Distribution gets the distribution of the test statistic associated with the
hypothesis test.

Statistic gets the value of the test statistic associated with this hypothesis
test.

P gets the p-value associated with the test statistic.

Reject tests whether the null hypothesis can be rejected, using the current
hypothesis type and alpha level.

LeftCriticalValue gets the one-sided to the left critical value based on
the current probability distribution and alpha level.

RightCriticalValue gets the one-sided to the right critical value based on
the current probability distribution and alpha level.

LeftProbability gets the area under the probability distribution to the
left of the test statistic.

RightProbability gets the area under the probability distribution to the
right of the test statistic.

LowerConfidenceLimit gets the lower confidence limit for the true
mean.

UpperConfidenceLimit gets the upper confidence limit for the true
mean.

SEM gets the standard error of the mean.

The following read-write properties are also provided:

Alpha gets and sets the alpha level associated with the hypothesis test.

Type gets and sets the form of the alternative hypothesis associated with
the hypothesis test.

1 α–

1 α–
 Chapter 6. Hypothesis Tests 71

Additionally, each hypothesis test provides properties for accessing the specific
sample and population parameters that define the test. For example, a
OneSampleZTest has additional properties for accessing the sample mean, Xbar,
the sample size, N, the population mean, Mu0, and the population standard
deviation, Sigma.

Modifying Hypothesis Test Objects

All hypothesis test classes provide Update() methods for modifying a test with
new sample parameters or sample data, and new population parameters. For
example, if test is a TwoSampleFTest instance, this code updates the test with
two new samples, taken from two columns in a data frame df:

test.Update(df[3], df[7]);

Printing Results

All hypothesis test classes provide a ToString() method that returns a formatted
string representation of the test results. For instance:

DoubleVector data1 = new DoubleVector("9.21 11.51 12.79 11.85 9.97
 8.79 9.69 9.68 9.19");
DoubleVector data2 = new DoubleVector("7.53 7.48 8.08 8.09 10.15
 8.40 10.88 6.13 7.90 7.05 7.48 7.58 8.11");
TwoSampleFTest test = new TwoSampleFTest(data1, data2, 0.05,
 HypothesisType.TwoSided);
Console.WriteLine(test.ToString());

The output is:

Two Sample F Test

Sample Sizes = 9 and 13
Standard Deviations = 1.39787139767736 and 1.23808008936914
Variances = 1.95404444444444 and 1.53284230769231
Ratio of Variances = 1.27478504125206
Computed F statistic: 1.27478504125206, num df = 8, denom df = 12

Hypothesis type: two-sided
Null hypothesis: true ratio of variances = 1
Alt hypothesis: true ratio of variances != 1
P-value: 0.679745985376403
RETAIN the null hypothesis for alpha = 0.05
0.95 confidence interval: 0.363002872041806 5.3536732579205
72 NMath Stats User’s Guide

6.2 One Sample Z-Test

Class OneSampleZTest determines whether a sample from a normal distribution
with known standard deviation could have a given mean. For example, suppose
we wish to determine whether the IQs of children from a particular school are
above average, given that Wechsler IQ scores are normally distributed with a
mean of 100 and standard deviation of 15. Sample scores from 9 students are 116
110 111 113 112 113 111 109 121, with a mean of 112.8.

As described Section 6.1, all hypothesis test classes provide two paths for
constructing instances of that type: a parameter-based method and a data-based
method. Thus, you can construct a OneSampleZTest object by explicitly
specifying a sample mean (), sample size (), population mean (), and
population standard deviation (), like so:

double xbar = 112.8;
int n = 9;
double mu0 = 100;
double sigma = 15;
OneSampleZTest test = new OneSampleZTest(xbar, n, mu0, sigma);

Or by supplying a set of sample data, and the necessary population parameters:

DoubleVector data =
 new DoubleVector(“[116 110 111 113 112 113 111 109 121]”);
double mu0 = 100;
double sigma = 15;
OneSampleZTest test = new OneSampleZTest(data, mu0, sigma);

In this case, the sample mean and sample size are calculated from the given data.

In addition to the properties common to all hypothesis test objects (Section 6.1), a
OneSampleZTest object provides the following read-only properties:

Xbar gets the sample mean.

N gets the sample size.

Mu0 gets the population mean.

Sigma gets the population standard deviation.

By default, a OneSampleZTest object performs a two-sided hypothesis test
() with . In this example, we wish to test the one-sided form to
the right (; that is, we wish to test whether the children in our sample
have a higher than average IQ. Suppose also that we wish to set the alpha level to
0.05. Non-default test parameters can be specified at the time of construction
using constructor overloads, or after construction using the provided Alpha and
Type properties, like so:

x n µ0

σ

H1:µ µ0≠ α 0.01=
H1:µ µ0>
 Chapter 6. Hypothesis Tests 73

test.Type = HypothesisType.Right;
test.Alpha = 0.05;

Once you’ve constructed and configured a OneSampleZTest object, you can
access the test results using the provided properties, as described in Section 6.1:

Console.WriteLine("z-statistic = " + test.Statistic);
Console.WriteLine("p-value = " + test.P);
Console.WriteLine("reject the null hypothesis? " + test.Reject);

The output is:

z-statistic = 2.56
p-value = 0.00523360816355578
reject the null hypothesis? true

This indicates that we can reject the null hypotheses (). We can conclude
that the children have IQs significantly above average.

Finally, remember that the ToString() method returns a formatted string
representation of the complete test results:

One Sample Z Test

Sample mean = 112.8
Sample size = 9
Population mean = 100
Population standard deviation = 15
Computed Z statistic: 2.56

Hypothesis type: one-sided to the right
Null hypothesis: sample mean = population mean
Alt hypothesis: sample mean > population mean
P-value: 0.00523360816355578
REJECT the null hypothesis for alpha = 0.05
0.95 confidence interval: 104.575731865243 Infinity

6.3 One Sample T-Test

Class OneSampleTTest determines whether a sample from a normal distribution
with unknown standard deviation could have a given mean. For example, suppose
we wish to determine whether the self-esteem of children from a particular school
differ from average, given a known population value of 3.9 on the Rosenberg
Self-Esteem Scale. 113 children are tested, with a mean score of 4.0408 and a
standard deviation of .6542.

H0:µ µ0=
74 NMath Stats User’s Guide

As described Section 6.1, all hypothesis test classes provide two paths for
constructing instances of that type: a parameter-based method and a data-based
method. Thus, you can construct a OneSampleTTest object by explicitly
specifying a sample mean (), sample standard deviation (), sample size (), and
population mean (), like so:

double xbar = 4.0408;
double s = .6542;
int n = 113;
double mu0 = 3.9;
OneSampleTTest test = new OneSampleTTest(xbar, s, n, mu0);

Or by supplying a set of sample data, and the necessary population parameters.
For instance, if the sample data is in column 3 of DataFrame df:

double mu0 = 3.9;
OneSampleTTest test = new OneSampleTTest(df[3], mu0);

In this case, the sample mean, standard deviation, and size are calculated from the
given data.

In addition to the properties common to all hypothesis test objects (Section 6.1), a
OneSampleTTest object provides the following read-only properties:

Xbar gets the sample mean.

S gets the sample standard deviation.

N gets the sample size.

Mu0 gets the population mean.

DegreesOfFreedom gets the degrees of freedom.

By default, a OneSampleTTest object performs a two-sided hypothesis test
() with . Non-default test parameters can be specified at the time
of construction using constructor overloads, or after construction using the
provided Alpha and Type properties, like so:

test.Alpha = 0.05;

Once you’ve constructed and configured a OneSampleTTest object, you can
access the various test results using the provided properties, as described in
Section 6.1:

Console.WriteLine("t-statistic = " + test.Statistic);
Console.WriteLine("deg of freedom = " + test.DegreesOfFreedom);
Console.WriteLine("p-value = " + test.P);
Console.WriteLine("reject the null hypothesis? " + test.Reject);

x s n
µ0

H1:µ µ0≠ α 0.01=
 Chapter 6. Hypothesis Tests 75

The output is:

t-statistic = 2.28786996397591
deg of freedom = 112
p-value = 0.0240223660991041
reject the null hypothesis? True

This indicates that we can reject the null hypotheses (). We can conclude
that the children have self-esteem scores significantly different than average.

Finally, remember that the ToString() method returns a formatted string
representation of the complete test results:

One Sample t Test

Sample mean = 4.0408
Sample standard deviation = 0.6542
Sample size = 113
Population mean = 3.9
Computed t statistic: 2.28786996397591, df = 112

Hypothesis type: two-sided
Null hypothesis: sample mean = population mean
Alt hypothesis: sample mean != population mean
P-value: 0.0240223660991041
REJECT the null hypothesis for alpha = 0.05
0.95 confidence interval: 3.91886249658971 4.16273750341029

6.4 Two Sample Paired T-Test

Class TwoSamplePairedTTest tests the null hypothesis that the population mean
of the paired differences of two samples is zero. Pairing involves matching up
individuals in two samples so as to minimize their dissimilarity except in the
factor under study. Paired samples often occur in pre-test/post-test studies in
which subjects are measured before and after an intervention. They also occur in
matched-pairs (for example, matching on age and sex), cross-over trials, and
sequential observational samples. Paired samples are also called matched samples
and dependent samples.

NOTE—TwoSamplePairedTTest is equivalent to performing a OneSampleTTest on
the paired differences (see Section 6.3).

For example, suppose we measure the thickness of plaque (mm) in the carotid
artery of 10 randomly selected patients with mild atherosclerotic disease. Two
measurements are taken: before treatment with Vitamin E (baseline), and after two

H0:µ µ0=
76 NMath Stats User’s Guide

years of taking Vitamin E daily. The mean difference between paired
measurements is 0.045 with a standard deviation of 0.0264.

As described Section 6.1, all hypothesis test classes provide two paths for
constructing instances of that type: a parameter-based method and a data-based
method. Thus, you can construct a TwoSamplePairedTTest object by explicitly
specifying the mean difference between paired observations (), the standard
deviation of the differences (), and the sample size (), like so:

double xbar = 0.045;
double s = 0.0264;
int n = 10;
TwoSamplePairedTTest test = new TwoSamplePairedTTest(xbar, s, n);

Alternatively, you can supply two sets of sample data. For instance, this code adds
data to a DataFrame (Chapter 2):

DataFrame df = new DataFrame();
df.AddColumn(new DFNumericColumn("Baseline"));
df.AddColumn(new DFNumericColumn("Vit E"));
df.AddRow(1, 0.66, 0.60);
df.AddRow(2, 0.72, 0.65);
df.AddRow(3, 0.85, 0.79);
df.AddRow(4, 0.62, 0.63);
df.AddRow(5, 0.59, 0.54);
df.AddRow(6, 0.63, 0.55);
df.AddRow(7, 0.64, 0.62);
df.AddRow(8, 0.70, 0.67);
df.AddRow(9, 0.73, 0.68);
df.AddRow(10, 0.68, 0.64);

And this code constructs a TwoSamplePairedTTest from the two columns of data:

TwoSamplePairedTTest test =
 new TwoSamplePairedTTest(df[“Baseline”], df[“Vit E”]);

The mean difference between paired measurements, the standard deviation, and
the sample size are calculated from the given data.

In addition to the properties common to all hypothesis test objects (Section 6.1), a
TwoSamplePairedTTest object provides the following read-only properties:

Xbar gets the mean of the differences between paired observations.

S gets the standard deviation of the differences between paired
observations.

N gets the number of pairs.

DegreesOfFreedom gets the degrees of freedom.

x
s n
 Chapter 6. Hypothesis Tests 77

By default, a TwoSamplePairedTTest object performs a two-sided hypothesis test
() with . Non-default test parameters can be specified at the time
of construction using constructor overloads, or after construction using the
provided Type and Alpha properties.

Once you’ve constructed and configured a TwoSamplePairedTTest object, you
can access the various test results using the provided properties, as described in
Section 6.1:

Console.WriteLine("t-statistic = " + test.Statistic);
Console.WriteLine("deg of freedom = " + test.DegreesOfFreedom);
Console.WriteLine("p-value = " + test.P);
Console.WriteLine("reject the null hypothesis? " + test.Reject);

The output is:

t-statistic = 5.4
deg of freedom = 9
p-value = 0.000433006432003502
reject the null hypothesis? True

This indicates that we can reject the null hypotheses (). We can conclude
that the true mean thickness of plaque after two years treatment with Vitamin E is
significantly different than before treatment.

Finally, remember that the ToString() method returns a formatted string
representation of the complete test results:

Two Sample t Test (Paired)

Mean of differences between pairs = 0.045
Standard deviation of differences between pairs =
0.0263523138347365
Sample size (number of pairs) = 10
Computed t statistic: 5.4, df = 9

Hypothesis type: two-sided
Null hypothesis: true mean of differences between pairs = 0
Alt hypothesis: true mean of differences between pairs != 0
P-value: 0.000433006432003502
REJECT the null hypothesis for alpha = 0.01
0.99 confidence interval: 0.0179180371533991 0.0720819628466008

H1:µd 0≠ α 0.01=

H0:µd 0=
78 NMath Stats User’s Guide

6.5 Two Sample Unpaired T-Test

Class TwoSampleUnpairedTTest tests whether two samples from a normal
distribution could have the same mean when the standard deviations are
unknown but assumed to be equal, allowing for a pooled estimate of the variance.

Class TwoSampleUnpairedUnequalTTest assumes that the samples may come
from populations with unequal variances, and the Welch-Satterthwaite
approximation to the degrees of freedom is used. Unlike
TwoSampleUnpairedTTest, a pooled estimate of the variance is not used.

For example, suppose we work for a company that makes plastic widgets and we
want to compare plastic samples from two suppliers for strength. We record the
breaking strength in psi (pounds per square inch) for random samples from each
supplier and obtain the following data: 11 samples from the first supplier having a
mean strength of 4.2 psi and a standard deviation of 4.68; 8 samples from the
second supplier have a mean strength of 5.6 and a standard deviation of 3.92.

As described Section 6.1, all hypothesis test classes provide two paths for
constructing instances of that type: a parameter-based method and a data-based
method. Thus, you can construct a TwoSampleUnpairedTTest object by explicitly
specifying the mean (), standard deviation (), and size () of each sample, like
so:

double xbar1 = 4.2;
double s1 = 4.68;
int n1 = 11;

double xbar2 = 5.6;
double s2 = 3.92;
int n2 = 8;

TwoSampleUnpairedTTest test = new TwoSampleUnpairedTTest(xbar1,
s1, n1, xbar2, s2, n2);

Or by supplying two sets of sample data. For instance, if the sample data is in two
vectors supplier1 and supplier2:

TwoSampleUnpairedTTest test =
 new TwoSampleUnpairedTTest(supplier1, supplier2);

The sample means, standard deviations, and sizes are calculated from the given
data.

In addition to the properties common to all hypothesis test objects (Section 6.1), a
TwoSampleUnpairedTTest object provides the following read-only properties:

Xbar1 and Xbar2 get the means of the samples.

x s n
 Chapter 6. Hypothesis Tests 79

S1 and S2 get the standard deviations of the samples.

SPooled gets the pooled estimate of the standard deviation.

N1 and N2 get the sizes of the samples.

DegreesOfFreedom gets the degrees of freedom.

By default, a TwoSampleUnpairedTTest object performs a two-sided hypothesis
test () with . Non-default test parameters can be specified at
the time of construction using constructor overloads, or after construction using
the provided Type and Alpha properties.

Once you’ve constructed and configured a TwoSampleUnpairedTTest object, you
can access the various test results using the provided properties, as described in
Section 6.1:

Console.WriteLine("t-statistic = " + test.Statistic);
Console.WriteLine("pooled standard deviation = " + test.SPooled);
Console.WriteLine("deg of freedom = " + test.DegreesOfFreedom);
Console.WriteLine("p-value = " + test.P);
Console.WriteLine("reject the null hypothesis? " + test.Reject);

The output is:

t-statistic = -0.687410859118054
pooled standard deviation = 4.38304755647859
degrees of freedom = 17
p-value = 0.501095386120306
reject the null hypothesis? False

This indicates that we cannot reject the null hypotheses ().

Finally, remember that the ToString() method returns a formatted string
representation of the complete test results:

Two Sample t Test (Unpaired)

Sample means = 4.2 and 5.6
Sample standard deviations = 4.68 and 3.92
Sample sizes = 11 and 8
Difference in means = -1.4
Pooled standard deviation = 4.38304755647859
Computed t statistic: -0.687410859118054, df = 17

Hypothesis type: two-sided
Null hypothesis: true difference in means = 0
Alt hypothesis: true difference in means != 0
P-value: 0.501095386120306
Decision: RETAIN the null hypothesis for alpha = 0.05

H1:µ1 µ2– 0≠ α 0.01=

H0:µ1 µ2– 0=
80 NMath Stats User’s Guide

0.95 confidence interval: -5.69690885703539 2.8969088570354

6.6 Two Sample F-Test

Class TwoSampleFTest tests whether the variances of two populations are equal.
For example, suppose random samples from two normal populations are taken.
The first sample consists of 10 observations with a standard deviation of 5.203;
the second sample consists of 25 observations with a standard deviation of 2.623.
At the 0.10 significance level, is there sufficient evidence to suggest that the
populations from which these samples were drawn have equal variances?

As described Section 6.1, all hypothesis test classes provide two paths for
constructing instances of that type: a parameter-based method and a data-based
method. Thus, you can construct a TwoSampleFTest object by explicitly
specifying the standard deviation (),and size () of each sample, like so:

double s1 = 5.203;
int n1 = 10;

double s2 = 2.623;
int n2 = 25;

TwoSampleFTest test = new TwoSampleFTest(s1, n1, s2, n2);

Or by supplying two sets of sample data. For instance, if the sample data is in two
vectors v1 and v2:

TwoSampleFTest test = new TwoSampleFTest(v1, v2);

The sample standard deviations and sizes are calculated from the given data.

In addition to the properties common to all hypothesis test objects (Section 6.1), a
TwoSampleFTest object provides the following read-only properties:

S1 and S2 get the standard deviations of the samples.

N1 and N2 get the sizes of the samples.

DegreesOfFreedom1 gets the numerator degrees of freedom.

DegreesOfFreedom2 gets the denomenator degrees of freedom.

By default, a TwoSampleFTest object performs a two-sided hypothesis test
() with . Non-default test parameters can be specified at the
time of construction using constructor overloads, or after construction using the
provided Type and Alpha properties.

s n

H1:s1
2 s2

2⁄ 1≠ α 0.01=
 Chapter 6. Hypothesis Tests 81

Once you’ve constructed and configured a TwoSampleFTest object, you can access
the various test results using the provided properties, as described in Section 6.1:

Console.WriteLine("t-statistic = " + test.Statistic);
Console.WriteLine("numerator df = " + test.DegreesOfFreedom1);
Console.WriteLine("denomenator df = " + test.DegreesOfFreedom2);
Console.WriteLine("p-value = " + test.P);
Console.WriteLine("reject the null hypothesis? " + test.Reject);

The output is:

F-statistic = 3.93469497446923
numerator df = 9
denomenator df = 24
p-value = 0.00693561186501657
reject the null hypothesis? True

This indicates that we cannot reject the null hypotheses ().

Finally, remember that the ToString() method returns a formatted string
representation of the complete test results:

Two Sample F Test

Sample Sizes = 10 and 25
Standard Deviations = 5.203 and 2.623
Variances = 27.071209 and 6.880129
Computed F statistic: 3.93469497446923, num df = 9, denom df = 24

Hypothesis type: two-sided
Null hypothesis: true ratio of variances = 1
Alt hypothesis: true ratio of variances != 1
P-value: 0.00693561186501657
REJECT the null hypothesis for alpha = 0.01
0.99 confidence interval: 1.06490202325594 22.5425454339445

6.7 Pearson’s Chi-Square Test

NMath Stats provides class PearsonsChiSquareTest for performing Pearson's chi-
square test. Pearson's chi-square test is the most well-known of the chi-square
tests, which are statistical procedures whose results are evaluated by reference to
the chi-square distribution. It tests the null hypothesis that the frequency
distribution of experimental outcomes are consistent with a particular theoretical
distribution. The event outcomes considered must be mutually exclusive and have
a total probability of 1.

H0:s1
2 s2

2⁄ 1=
82 NMath Stats User’s Guide

Instances of PearsonsChiSquareTest are constructed either from raw data or tables
of counts. For example, this code constructs a PearsonsChiSquareTest using
outcomes from a series of experiment runs, along with the expected frequencies:

int[] outcomes = { 59, 20, 11, 10 };
DoubleVector probs =
 new DoubleVector(0.5625, 0.1875, 0.1875, 0.0625);
PearsonsChiSquareTest test =
 new PearsonsChiSquareTest(outcomes, probs);

This code uses a contingency table (or cross tabulation) to store the relation between
two or more categorical variables:

int[,] data = new int[2, 2];
data[0, 0] = 4298;
data[0, 1] = 767;
data[1, 0] = 7136;
data[1, 1] = 643;
bool yatesCorrect = true;
PearsonsChiSquareTest test =
 new PearsonsChiSquareTest(data, yatesCorrect);

The Yates’ correction for continuity may optionally be applied.

Once you’ve constructed and configured a PearsonsChiSquareTest object, you can
access the various test results using the provided properties, as described in
Section 6.1:

Console.WriteLine("chi-square statistic = " +
 test.ChiSquareStatistic);
Console.WriteLine("numerator df = " + test.DegreesOfFreedom);
Console.WriteLine("p-value = " + test.P);
Console.WriteLine("reject the null hypothesis? " + test.Reject);

The output is:

chi-square statistic = 147.761248704421
numerator df = 1
p-value = 0
reject the null hypothesis? True

Again, the ToString() method returns a formatted string representation of the
complete test results:
 Chapter 6. Hypothesis Tests 83

Pearson chi-square test

Sample size = 12844
Yates corrected = True
Computed chi-square statistic: 147.761248704421, df = 1

P-value: 0
REJECT the null hypothesis for alpha = 0.01

6.8 Fisher’s Exact Test

StatsFunctions provides the FisherEactTest() method for performing a Fisher's
Exact Test for a specified 2 x 2 contingency table. Fisher's Exact Test is a useful
alternative to the chi-square test in cases where sample sizes are small.

Fisher's Exact Test is so-called because the significance of the deviation from a null
hypothesis can be calculated exactly, rather than relying on an approximation. The
usual rule of thumb for deciding whether the chi-squared approximation is good
enough is whether the expected values in all cells of the contingency table is
greater than or equal to 5.

You can perform a Fisher’s Exact Test by providing the cell values directly, plus an
HypothesisType specifying the form of the alternative hypothesis:

int a = 12, b = 17, c = 4, d = 25;
double pvalue = StatsFunctions.FishersExactTest(a, b, c, d,
 HypothesisType.TwoSided);

Values a, b, c and d are cell counts for contingency table:

a b
c d

If no hypothesis type is specified, FisherExactTest() returns the lesser of the
right and left tail p-value.

Overloads are also provided for data in an int[,] array or DataFrame containg
two DFIntColumn.
84 NMath Stats User’s Guide

CHAPTER 7.
LINEAR REGRESSION

Class LinearRegression computes a multiple linear regression from an input
matrix of independent variable values (the predictor matrix or regression matrix) and
a vector of dependent variable values (the observation vector).

In a linear model, a quantity y depends on one or more independent variables a1,
a2,...,an such that y = x0 + x1a1 + ... + xnan. (Parameter x0 is called the
intercept parameter.) Several observations of the independent values ai are
recorded, along with the corresponding values of the dependent variable y. If m
observations are performed, and for the ith observation we denote the values of
the independent variables ai1, ai2,...,ain and the corresponding dependent
value of y as yi, then we form the linear system Ax = y, where matrix A = (aij)
and vector y = (yi). The regression solution is the value of x that minimizes
||Ax - y||.

This chapter describes how to use the LinearRegression class, and related
supporting classes.

7.1 Creating Linear Regressions

A LinearRegression instance is constructed from a predictor matrix and
observation vector, like so:

DoubleMatrix predictors =
 new DoubleMatrix(“ 8x4 [1 1450 .50 70
 1 1600 .50 70
 1 1450 .70 70
 1 1600 .70 70
 1 1450 .50 120
 1 1600 .50 120
 1 1450 .70 120
 1 1600 .70 120]”);
DoubleVector obs =
 new DoubleVector(“[67 79 61 75 59 90 52 87]”);
LinearRegression lr = new LinearRegression(A, obs);
 Chapter 7. Linear Regression 85

A MismatchedSizeException is raised if the number of rows in the matrix A is not
equal to the length of the vector obs.

You can also construct a LinearRegression instance from data in a DataFrame, by
indicating which column contains the observations. Non-numeric columns are
ignored. For instance, if column 8 contains the dependent variable, this code
constructs a regression from the data:

LinearRegression lr = new LinearRegression(df, 8);

Parameter Calculation by Least Squares Minimization

By default, class LinearRegression computes the model parameter values by the
method of least squares using a QR factorization, but you may elect to use a complete
orthogonal factorization or singular value decomposition instead.

IRegressionCalculation is the interface for classes used by LinearRegression to
calculate regression parameters. NMath Stats includes three regression calculator
classes:

Class QRRegressionCalculation (the default) solves the regression
problem using a QR decomposition.

Class SVDRegressionCalculation solves the regression problem using a
singular value decomposition.

Class CORegressionCalculation solves least squares problems using a
complete orthogonal decomposition.

You can specify a non-default regression calculation object in the constructor. For
example:

CORegressionCalculation calcObj = new CORegressionCalculation();
calcObj.Tolerance = 1e-8;
LinearRegression lr =
 new LinearRegression(predictors, obs, calcObj);

The Tolerance property is used for computing numerical rank. Values with less
than the specified tolerance are considered zero when computing the effective
rank.

After construction, the regression calculator used by a LinearRegression instance
can be changed using the RegressionCalculator property.

Intercept Parameters

If the linear model Ax = y contains a non-zero intercept parameter, then the first
column of matrix A must be all ones. Some of the LinearRegression constructors
86 NMath Stats User’s Guide

allow you to specify whether a column of ones should be prepended to the data in
the input regression matrix, or whether the regression matrix should be used as it
is given. Thus, this code prepends a column of ones:

LinearRegression lr =
 new LinearRegression(predictors, obs, true);

This code does not:

LinearRegression lr =
 new LinearRegression(predictors, obs, false);

7.2 Regression Results

Class LinearRegression provides the following properties for accessing the
regression results:

IsGood gets a boolean value indicating whether or not the model
parameters were successfully computed.

ParameterCalculationErrorMessage gets any error message produced
by the regression calculation object.

Parameters gets the vector of computed model parameters.

ParameterEstimates gets an array of LinearRegressionParameter objects
suitable for performing hypothesis testing on individual parameters (see
Section 7.5).

Residuals gets the vector of residuals. This is the difference between the
vector of observed values and the values predicted by the model.

Variance gets an estimate of the variance. This is the residual sum of
squares divided by the degrees of freedom for the model. The degrees of
freedom for the model is equal to the difference between the number of
observations and the number of parameters.

CovarianceMatrix gets the covariance matrix (sometimes called the
dispersion matrix or variance-covariance matrix).

For more information about a linear regression fit, you can perform hypothesis
tests on individual parameters (Section 7.5) or the overall model (Section 7.6).

You can also modify the model and recalculate the parameters, as described in
Section 7.4.
 Chapter 7. Linear Regression 87

Variance Inflation Factor

The variance inflation factor (VIF) quantifies the severity of multicollinearity in a
least squares regression analysis—that is, how much the variance of a coefficient is
increased because of collinearity. Class LinearRegression provides methods
VarianceInflationFactor() and VarianceInflationFactors() for this
purpose. For instance:

DoubleVector vif = lr.VarianceInflationFactors();

7.3 Predictions

You can use a LinearRegression object to generate predictions. The
PredictedObservation() method returns the response predicted by the model
for a given set of predictor variable values. For example:

DoubleVector predictors =
 new DoubleVector(150.0, 33.5, 0.66, 80.0);
double predicted = lr.PredictedObservation(predictors);

A MismatchedSizeException is raised if the length of the given vector is not equal
to the number of parameters in the model.

Similarly, the PredictedObservations() method returns the responses predicted
by the model for a given collection of predictors:

DoubleMatrix predictors =
 new DoubleMatrix("3x4 [150.0 33.5 0.66 80.0
 160.0 24.5 0.88 70.0
 170.0 22.6 0.56 60.0]");
DoubleVector predicted = lr.PredictedObservations(predictors);

In the returned vector of predicted observations, the ith element is the predicted
response for the set of predictor variable values in the ith row of the given matrix.

7.4 Accessing and Modifying the Model

 Class LinearRegression provides a variety of properties and member functions
for accessing and modifying the predictors in the model, the observations, and the
intercept option.
88 NMath Stats User’s Guide

Accessing and Modifying Predictors

Class LinearRegression provides the following properties for accessing the
predictors in the model:

RegressionMatrix gets the regression matrix.

PredictorMatrix gets the predictor matrix. If the model contains an
intercept parameter, then the predictor matrix is obtained from the
regression matrix by removing the leading column of ones. If the model
does not have an intercept parameter then the predictor matrix is the same
as the regression matrix.

NumberOfParameters gets the number of parameters in the model.

NumberOfPredictors gets the number of predictors in the model. If the
model contains an intercept parameter then the number of predictors is
equal to the number of parameters minus one. If the model does not
contain an intercept parameter, then the number of predictors is equal to
the number of parameters.

If you modify the data in the regression or predictor matrix using the reference
returned by RegressionMatrix or PredictorMatrix, respectively, invoke
method RecalculateParameters() to recalculate the regression parameters. For
instance:

lr.PredictorMatrix[2,13] = 15.4;
lr.RecalculateParameters();

Member functions are also provided for adding and removing one or more
predictors. The AddPredictor() method appends a given column of predictor
values to the predictor matrix, and recalculates the parameters:

DoubleVector predictors =
 new DoubleVector(“[1.43 5.5 0.43 14.2 9.0]”);

lr.AddPredictor(predictors);

A MismatchedSizeException is thrown if the number of predictor values is not
equal to the number of rows in the regression matrix (also equal to the length of
the observation vector).
 Chapter 7. Linear Regression 89

Similarly, AddPredictors() adds a matrix of predictors. Each column of the
input matrix is a set of observed predictor values. This, this code adds three
predictors:

DoubleMatrix predictors =
 new DoubleMatrix(“ 8x3 [1450 .50 70
 1600 .50 70
 1450 .70 70
 1600 .70 70
 1450 .50 120
 1600 .50 120
 1450 .70 120
 1600 .70 120]”);
lr.AddPredictor(predictors);

The RemovePredictor() method removes the ith predictor from the model and
recalculates the parameters. This code removes the predictor at (zero-based)
index 4:

lr.RemovePredictor(4);

If the model has an intercept parameter, removing the 0th predictor will not
remove the intercept parameter. Use the RemoveInterceptParameter() method
to remove the intercept parameter (see below).

RemovePredictors() removes the specified number of columns from the
predictor matrix beginning with the specified column. Thus, this code removes the
second, third, and fourth predictors:

lr.RemovePredictors(1, 3);

Accessing and Modifying Observations

The Observations property gets the vector of observations. If you use the
returned reference to modify the observation vector, invoke method
RecalculateParameters() to recalculate the regression parameters. For instance:

lr.Observations[5] = 0.965;
lr.RecalculateParameters();

The NumberOfObservations property gets the number of observations, which is
simply the length of the observation vector, and also the number of rows in the
regression matrix.

Member functions are also provided for adding and removing one or more
observations. The AddObservation() method appends a given row of predictor
90 NMath Stats User’s Guide

values to the predictor matrix and a given observation to the observation vector,
and recalculates the parameters:

DoubleVector predictors =
 new DoubleVector(“[1.43 5.5 0.43 14.2 9.0]”);
double obs = 2.5;

lr.AddObservation(predictors, obs);

NOTE—If the model has an intercept parameter, do not include the leading one in the
predictors vector. It will be accounted for in the model.

A MismatchedSizeException is thrown if the length of the predictors vector is not
equal to the number of predictors in the model.

Similarly, AddObservations() adds a collection of observations:

DoubleMatrix predictors =
 new DoubleMatrix("3x4 [150.0 33.5 0.66 80.0
 160.0 24.5 0.88 70.0
 170.0 22.6 0.56 60.0]");
DoubleVector obs = new DoubleVector(“14.2, 15.5, 10.3”);

lr.AddObservation(predictors, obs);

RemoveObservation() removes the row at the indicated index from the predictor
matrix and the corresponding element from the observation vector. This code
removes the observation at (zero-based) index 3:

lr.RemoveObservation(3);

RemoveObservations() removes the specified number of rows from the predictor
matrix beginning with the specified row. Thus, this code removes the third, fourth,
fifth, and sixth observations:

lr.RemoveObservations(2, 4);

Accessing and Modifying the Intercept Option

The HasInterceptParameter property gets a boolean value indicating whether or
not the model already has an intercept parameter.

The AddInterceptParameter() method adds an intercept parameter to the model
and recalculates the parameters. Thus, this code prepends a column of one to the
regression matrix:

lr.AddInterceptParameter()
 Chapter 7. Linear Regression 91

NOTE—If the model already has an intercept parameter AddInterceptParameter()
has no effect.

The RemoveInterceptParameter() method removes the intercept parameter.

Updating the Entire Model

Method SetRegressionData() updates the entire model by setting the regression
matrix, the observation vector, and the intercept option to the specified values, and
recalculating the model parameters. For instance:

DoubleMatrix A = new DoubleMatrix(“ 8x4 [1 1450 .50 70
 1 1600 .50 70
 1 1450 .70 70
 1 1600 .70 70
 1 1450 .50 120
 1 1600 .50 120
 1 1450 .70 120
 1 1600 .70 120]”);
DoubleVector obs =
 new DoubleVector(“[67 79 61 75 59 90 52 87]”);

lr.SetRegressionData(A, obs, true);

7.5 Significance of Parameters

Instances of class LinearRegressionParameter test statistical hypothesis about
individual parameters in a LinearRegression.

Creating Linear Regression Parameter Objects

You can construct a LinearRegressionParameter from a LinearRegression object
and the index of the parameter you wish to test. For instance, this code creates a
test object for the third parameter:

LinearRegressionParameter param =
 new LinearRegressionParameter(lr, 2);

Alternatively, you can get an array of test objects for all parameters in a linear
regression using the ParameterEstimates property on LinearRegression:

LinearRegressionParameter[] params = lr.ParameterEstimates;
92 NMath Stats User’s Guide

Properties Linear Regression Parameters

Class LinearRegressionParameter provides the following properties:

Value gets the value of the parameter.

StandardError gets the standard error of the parameter.

ParameterIndex gets the index of the parameter in the linear regresssion.

Hypothesis Tests

Class LinearRegressionParameter provides the following methods for testing
statistical hypotheses regarding parameter values:

TStatisticPValue() returns the p-value for a two-sided t test with the
null hypothesis that the parameter is equal to a given test value, versus the
alternative hypothesis that it is not.

TStatistic() returns the value of the t statistic for the null hypothesis that
the parameter value is equal to a given test value.

TStatisticCriticalValue() gets the critical value for the t-statistic for a
given alpha level.

ConfidenceInterval() returns a confidence interval for the
parameter for a given alpha level.

For example, this code tests whether the fifth parameter in a model is significantly
different than zero:

LinearRegressionParameter param =
 new LinearRegressionParameter(lr, 4);
double tstat = param.TStatistic(0.0);
double pValue = param.TStatisticPValue(0.0);
double criticalValue = param.TStatisticCriticalValue(0.05);
Interval confidenceInterval = param.ConfidenceInterval(0.05);

Updating Linear Regression Parameters

The SetRegression() method updates the regression and parameter index in a
parameter test object:

param.SetRegression(lr, 6);

1 α–
 Chapter 7. Linear Regression 93

7.6 Significance of the Overall Model

Class LinearRegressionAnova tests the overall model significance for linear
regressions. Simply construct a LinearRegressionAnova from a LinearRegression
object:

LinearRegressionAnova lrAnova = new LinearRegressionAnova(lr);

A variety of properties are provided for assessing the significance of the overall
model:

RegressionSumOfSquares gets the regression sum of squares. This
quantity indicates the amount of variability explained by the model. It is
the sum of the squares of the difference between the values predicted by
the model and the mean.

ResidualSumOfSquares gets the residual sum of squares. This is the sum
of the squares of the differences between the predicted and actual
observations.

ModelDegreesOfFreedom gets the number of degrees of freedom for the
model, which is equal to the number of predictors in the model.

ErrorDegreesOfFreedom gets the number of degress of freedom for the
model error, which is equal to the number of observations minus the
number of model paramters.

RSquared gets the coefficient of determination.

AdjustedRsquared gets the adjusted coefficient of determination.

MeanSquaredResidual gets the mean squared residual. This quantity is the
equal to ResidualSumOfSquares / ErrorDegreesOfFreedom (equals the
number of observations minus the number of model parameters).

MeanSquaredRegression gets the mean squared for the regression. This is
equal to RegressionSumOfSquares / ModelDegreesOfFreedom (equals
the number of predictors in the model).

FStatistic gets the overall F statistic for the model. This is equal to the
ratio of MeanSquaredRegression / MeanSquaredResidual. This is the
statistic for the hypothesis test where the null hypothesis, is that all the
parameters are equal to 0 and the alternative hypothesis is that at least one
paramter is nonzero.

FStatisticPValue gets the p-value for the F statistic.

H0
94 NMath Stats User’s Guide

For example:

LinearRegressionAnova lrAnova = new LinearRegressionAnova(lr);
double sse = lrAnova.ResidualSumOfSquares;
double r2 = lrAnova.RSquared;
double fstat = lrAnova.FStatistic;
double fstatPval = lrAnova.FStatisticPValue;

Lastly, the FStatisticCriticalValue() function computes the critical value for
the F statistic at a given significance level:

double critVal = lrAnova.FStatisticCriticalValue(.05);
 Chapter 7. Linear Regression 95

96 NMath Stats User’s Guide

CHAPTER 8.
LOGISTIC REGRESSION

Class LogisticRegression performs a binomial logistic regression.

Logistic regression is used to model the relationship between a binary response
variable and one or more predictor variables, which may be either discrete or
continuous. Binary outcome data is common in medical applications. For example,
the binary response variable might indicate whether or not a patient is alive five
years after treatment for cancer or whether the patient has an adverse reaction to a
new drug. As in multiple linear regression (Chapter 7), we are interested in finding
an appropriate combination of predictor variables to help explain the binary
outcome.

This chapter describes how to use the LogisticRegression class, and related
supporting classes.

8.1 Regression Calculators

Class LogisticRegression is templatized on the ILogisticRegressionCalc
calculator to use to calculate the parameters of the logistic regression model. Two
implementations are provided:

NewtonRaphsonParameterCalc computes the parameters to maximize the
log likelihood function for the model using the Newton Raphson algorithm
to compute the zeros of the first order partial derivatives of the log
likelihood function. This algorithm is equivalent to, and sometimes
referred to, as iteratively reweighted least squares. Each iteration involves
solving a linear system of the form X'WX = b, where X is the regression
matrix, X' is its transpose, and W is a diagonal matrix of weights.

The matrix X'WX will be singular if the matrix X does not have full rank.
NewtonRaphsonParameterCalc has property FailIfNotFullRank which,
if true, fails in this case. If FailIfNotFullRank is false, the linear system
is solved using a pseudo-inverse, and the calculation will not fail.
 Chapter 8. Logistic Regression 97

TrustRegionParameterCalc computes the parameters to maximize the log
likelihood function for the model, using a trust region optimization
algorithm to compute the zeros of the first order partial derivative of the
log likelihood function. This approach is more robust than Newton
Raphson with design matrices of less than full rank.

The minimization is performed by an instance of TrustRegionMinimizer,
and TrustRegionParameterCalc instances may be constructed with a given
minimizer with the desired algorithm properties.

8.2 Creating Logistic Regressions

A LogisticRegression object is constructed from data in the following format: a
matrix whose rows contain the predictor variable values, and an IList<bool> for
the observed values.

DoubleMatrix A = ...
bool[] obs = ...
var lr = new LogisticRegression<NewtonRaphsonParameterCalc>(
 A, obs);

A MismatchedSizeException is raised if the number of rows in the matrix A is not
equal to the length of the vector obs.

If you want the model to have an intercept parameter, you can specify that as well:

bool addIntercept = true;
var lr = new LogisticRegression<NewtonRaphsonParameterCalc>(
 A, obs, addIntercept);

If true, a column of ones is prepended onto the data in the regression matrix A,
thus adding an intercept to the model. If false, the data in the regression matrix is
used as given.

You can also provide a regression calculator instance to use. For example, if you
want regression to fail consistently when the regression matrix is rank deficient,
you can construct a NewtonRaphsonParameterCalc object with the
FailIfNotFullRank property set to true (see Section 8.1), then construct a
LogisticRegression object with the resulting parameter calculation object:

var parameterCalc = new NewtonRaphsonParameterCalc() {
 FailIfNotFullRank = true };
var lr = new LogisticRegression<NewtonRaphsonParameterCalc>(
 A, obs, addIntercept, parameterCalc);

Additional LogisticRegression constructors provide flexibility in how the
observation values are specified. For example, you can provide a vector of floating
98 NMath Stats User’s Guide

point observation values, which is converted to dichotomous values using a
supplied Predictate<double> function. This code uses a lambda expression to
specify the predicate:

DoubleVector v = ...
var lr = new LogisticRegression<NewtonRaphsonParameterCalc>(
 A, v, x => x >= 110.0, addIntercept);

Similarly, you can provide the observation values as one of the columns of the
regression matrix:

int observationColIndex = 0;
var lr = new LogisticRegression<NewtonRaphsonParameterCalc>(
 A, observationColIndex, x => x != 0, addIntercept);

Design Variables

LogisticRegression provides static convenience method DesignVariables() for
producing design, or dummy, variables using reference cell coding. If the categorical
variable has k levels, there will be k - 1 design variables created. Reference cell
coding involves setting all the design variable values to 0 for the reference group,
and then setting a single design variable equal to 1 for each of the other groups.

For example, suppose we have a DataFrame df with a column of race values,
which has three levels.

int raceColIndex = df.IndexOfColumn("Race");
DataFrame raceDesignVars =
 LogisticRegression<NewtonRaphsonParameterCalc>.DesignVariables(
 df[raceColIndex]);

Since the race variable has three levels there will be two design variables. By
default they will be named Race_0 and Race_1.

We then replace the original race column with the two design variable columns,
and convert the data frame to a matrix of floating point values.

df.RemoveColumn(raceColIndex);
for (int c = 0; c < raceDesignVars.Cols; c++)
{
 df.InsertColumn(raceColIndex + c, raceDesignVars[c]);
}
DoubleMatrix matrixDat = data.ToDoubleMatrix();
 Chapter 8. Logistic Regression 99

8.3 Check for Convergence

After constructing a LogisticRegression object, first check that the parameter
calculation was successful. For example, this code checks the IsGood property, and
if the calculation failed, prints out some diagnostic information using the
ParameterCalculationErrorMessage property.

if (!lr.IsGood)
{
 Console.WriteLine(
 "Logistic regression parameter calculation failed:");
 Console.WriteLine(lr.ParameterCalculationErrorMessage);

 var parameterCalc = lr.ParameterCalculator;
 Console.WriteLine("Maximum iterations: " +
 parameterCalc.MaxIterations);
 Console.WriteLine("Number of iterations: " +
 parameterCalc.Iterations);
 Console.WriteLine("Converged? " + parameterCalc.Converged);
}

8.4 Goodness of Fit

Class LogisticRegressionFitAnalysis calculates goodness of fit statistics for a
logistic regression model.

var fit = new
 LogisticRegressionFitAnalysis<NewtonRaphsonParameterCalc>(lr);

Provided properties access the model statistics:

GStatistic gets the G statistic for the model. The G statistic is

 G = -2*ln[(likelihood without the variables)/
 (likelihood with the variables)]

GStatisticPValue gets the p-value for the G statistic.

LogLikelihood gets the log likelihood for the model.

For instance:

Console.WriteLine("Log likelihood: " + fit.LogLikelihood);
Console.WriteLine("G-statistic: " + fit.GStatistic);
Console.WriteLine("G-statistic P-value: " +
 fit.GStatisticPValue);
100 NMath Stats User’s Guide

Two methods on LogisticRegressionFitAnalysis provide access to additional
statistics:

PearsonStatistic() computes the Pearson chi-square statistic, and
related quantities from the Pearson residuals, to determine if two
observations share the same covariate pattern.

HLStatistic() calculates the Hosmer Lemeshow statistic for the model.
This test assesses whether or not the observed event rates match expected
event rates in subgroups of the model population.

For instance, this code calculates the Hosmer Lemeshow statistic using 10 groups.

var hosmerLemeshowStat = fit.HLStatistic(10);
Console.WriteLine(hosmerLemeshowStat);

8.5 Parameter Estimates

The ParameterEstimates property on LogisticRegression gets an array of
LogisticRegressionParameter estimate objects. This class tests statistical
hypotheses about estimated parameters in logistic regressions:

Value gets the value of the parameter.

StandardError gets the standard error of the parameter.

ParameterIndex gets the index of the parameter in the linear regresssion.

Beta gets the standardized beta coefficient. Beta coefficients are weighted
by the ratio of the standard deviation of the independent variable over the
standard deviation of the dependent variable.

ConfidenceInterval() returns the 1 - alpha confidence interval for the
parameter.

TStatistic() returns the t-statistic for the null hypothesis that the
parameter is equal to a given test value.

TStatisticPValue() returns the p-value for a t-test with the null
hypothesis that the parameter is equal to a given test value versus the
alternative hypothesis that it is not.

TStatisticCriticalValue() gets the critical value of the t-statistic for the
specified alpha level.
 Chapter 8. Logistic Regression 101

For instance, this code prints out the model parameter estimates and standard
error.

var parameterEstimates = lr.ParameterEstimates;
for (int i = 0; i < parameterEstimates.Length; i++)
{
 var estimate = parameterEstimates[i];
 if (i == 0)
 {
 Console.WriteLine("Constant term = {0}, SE = {1}",
 estimate.Value, estimate.StandardError);
 }
 else
 {
 Console.WriteLine("Coefficient for {0} = {1}, SE = {2}",
 df[i].Name, estimate.Value, estimate.StandardError);
 }
}

8.6 Predicted Probabilities

You can use a LogisticRegression object to generate predictions. The
PredictedProbability() method returns the probability of a positive outcome
predicted by the model for a given set of predictor values. For example:

 DoubleVector predictors =
 new DoubleVector(150.0, 33.5, 0.66, 80.0);
double predicted = lr.PredictedProbability(predictors);

A MismatchedSizeException is raised if the length of the given vector is not equal
to the number of parameters in the model.

Similarly, the PredictedProbabilities() method returns a vector of predicted
probabilities of a positive outcome for the predictor variable values contained in
the rows of an input matrix.

DoubleMatrix predictors =
 new DoubleMatrix("3x4 [150.0 33.5 0.66 80.0
 160.0 24.5 0.88 70.0
 170.0 22.6 0.56 60.0]");
DoubleVector predicted = lr.PredictedProbabilities(predictors);

In the returned vector of predicted observations, the ith element is the predicted
response for the set of predictor variable values in the ith row of the given matrix.

102 NMath Stats User’s Guide

CHAPTER 9.
ANALYSIS OF VARIANCE

Analysis of variance (ANOVA) is the multigroup generalization of the t test
(Chapter 6). Like the t test, ANOVA assumes that samples are randomly drawn
from normally distributed populations with the same standard deviations. If
differences between the observed means of the samples are larger than one would
expect from the underlying population variability, estimated by the standard
deviations within the samples, you can conclude that at least one of the samples
has a different mean than the others.

NMath Stats provides classes for both one-way (or one-factor) and two-way (or
two-factor) ANOVAs. One-way ANOVA is supported for both balanced and
unbalanced designs, and with or without repeated measures (RANOVA). Two-
way ANOVA is supported for balanced designs only, with or without repeated
measures.

This chapter describes the analysis of variance classes.

9.1 One-Way ANOVA

Class OneWayAnova computes and summarizes a traditional one-way (single
factor) analysis of variance.

Creating One-Way ANOVA Objects

A OneWayAnova instance is constructed from numeric data organized into
different groups. The groups need not contain the same number of observations.
For example, this code constructs a OneWayAnova from an array of
DoubleVector objects. Each vector in the array contains data for a single group:
 Chapter 9. Analysis of Variance 103

DoubleVector[] data = new DoubleVector[5];

data[0] = new DoubleVector("[24 15 21 27 33 23]");
data[1] = new DoubleVector("[14 7 12 17 14 16]");
data[2] = new DoubleVector("[11 9 7 13 12 18]");
data[3] = new DoubleVector("[7 7 4 7 12 18]");
data[4] = new DoubleVector("[19 24 19 15 10 20]");

OneWayAnova anova = new OneWayAnova(data);

This code constructs a OneWayAnova from a data frame df:

OneWayAnova anova = new OneWayAnova(df, 1, 3);

Two column indices are also provided: a group column and a data column. A Factor
is constructed from the group column using the DataFrame method GetFactor(),
which creates a sorted array of the unique values. The specified data column must
be of type DFNumericColumn.

Lastly, you can also construct a OneWayAnova from a DoubleMatrix:

DoubleMatrix Data = new DoubleMatrix("6 x 5 [24 14 11 7 19
 15 7 9 7 24
 21 12 7 7 19
 27 17 13 12 15
 33 14 12 12 10
 23 16 18 18 20]");
OneWayAnova anova = new OneWayAnova(data);

Each column in the given matrix contains the data for a group. If your groups have
different numbers of observations, you must pad the columns with Double.NaN
values until they are all the same length, because a DoubleMatrix must be
rectangular. Alternatively, use one of the other constructors described above.

The One-Way ANOVA Table

Once you’ve constructed a OneWayAnova, you can display the complete ANOVA
table:

Console.WriteLine(anova);

For example:

Source Deg of Freedom Sum Of Sq Mean Sq F P
Between groups 4 803.0000 200.7500 9.0076 0.0001
Within groups 25 557.1667 22.2867 . .
Total 29 1360.1667 46.9023 . .
104 NMath Stats User’s Guide

Class OneWayAnovaTable is provided for summarizing the information in a
traditional one-way ANOVA table. Class OneWayAnovaTable derives from
DataFrame. An instance of OneWayAnovaTable can be obtained from a
OneWayAnova object using the AnovaTable property. For example:

OneWayAnovaTable myTable = anova.AnovaTable;

Class OneWayAnovaTable provides the following read-only properties for
accessing individual elements in the ANOVA table:

DegreesOfFreedomBetween gets the between-groups degrees of freedom.

DegreesOfFreedomWithin gets the within-groups degrees of freedom.

DegreesOfFreedomTotal gets the total degrees of freedom.

SumOfSquaresBetween gets the between-groups sum of squares.

SumOfSquaresWithin gets the within-groups sum of squares.

SumOfSquaresTotal gets the total sum of squares.

MeanSquareBetween gets the between-groups mean square. The between-
groups mean square is the between-groups sum of squares divided by the
between-groups degrees of freedom.

MeanSquareWithin gets the within-group mean square. The within-groups
mean square is the within-group sum of squares divided by the within-
group degrees of freedom.

MeanSquareTotal gets the total mean square. The total mean square is the
total sum of squares divided by the total degrees of freedom.

FStatistic gets the F statistic.

FStatisticPValue gets the p-value for the F statistic.

Grand Mean, Group Means, and Group Sizes

Class OneWayAnova provides properties and methods for retrieving the grand
mean, group means, and group sizes:

GrandMean gets the grand mean of the data. The grand mean is the mean of
all of the data.

GroupMeans gets a vector of group means.

GroupSizes gets an array of group sizes.
 Chapter 9. Analysis of Variance 105

GroupNames gets an array of group names. If the anova was constructed
from a data frame using a grouping column, the group names are the
sorted, unique Factor levels created from the column values. If the anova
object was constructed from a matrix or an array of vectors, the group
names are simply Group_0, Group_1...Group_n.

GetGroupMean() returns the mean for a specified group, identified either
by group name or group number (a zero-based index into the GroupMeans
vector).

GetGroupSize() returns the mean for a specified group, identified either
by group name or group number (a zero-based index into the GroupSizes
array).

For example, if a OneWayAnova is constructed from a matrix, this code returns
the mean for the group in the third column of the matrix:

double maleMean = anova.GetGroupMean(2);

If a OneWayAnova is constructed from a data frame using a grouping column
with values male and female, this code returns the mean for the male group:

double maleMean = anova.GetGroupMean(“male”);

Critical Value of the F Statistic

Class OneWayAnova provides the convenience function
FStatisticCriticalValue() which computes the critical value for the ANOVA
F statistic at a given significance level. Thus:

double alpha = 0.05;
double critVal = anova.FStatisticCriticalValue(alpha);

Updating One-Way ANOVA Objects

Method SetData() updates an entire analysis of variance object with new data. As
with the class constructors (see above), you can supply data as an array of group
vectors, a matrix, or as a data frame. For instance, this code updates an ANOVA
with data from DataFrame df, using column 2 as the group column and column 5
as the data column:

anova.SetData(df, 2, 5);
106 NMath Stats User’s Guide

9.2 One-Way Repeated Measures ANOVA

Class OneWayRanova calculates and summarizes the information of a one-way
repeated measures analysis of variance (RANOVA).

Creating One-Way RANOVA Objects

A OneWayRanova instance is constructed from numeric data for multiple
treatments applied to each experimental subject. For example, this code constructs
a OneWayRanova from a DoubleMatrix:

DoubleMatrix data = new DoubleMatrix("8x4 [180 200 160 200
 230 250 200 220
 280 310 260 270
 180 200 160 200
 190 210 170 210
 140 160 120 110
 270 300 250 260
 110 130 100 100]");
OneWayRanova ranova = new OneWayRanova(data);

Each row of the matrix contains the data for an individual subject. There should be
one column for each treatment. The example above shows 4 different
measurements for each of 8 subjects.

NOTE—Data rows containing missing values (NaNs) are ignored by class
OneWayRanova.

Similarly, you can also construct a OneWayRanova from a DataFrame:

OneWayRanova ranova = new OneWayRanova(df);

Each row in the DataFrame contains the data for an individual subject. There
should be one column for each treatment.

Note that all numeric columns in the given DataFrame are interpreted as
treatments; only non-numeric columns are ignored. If you have numeric columns
in the data frame that you also wish to ignore, apply the appropriate Subset first.
For instance:

Subset colIndices = new Subset(new int[] { 3, 14, 5, 8, 4 });
OneWayRanova ranova =
 new OneWayRanova(df.GetColumns(colIndices));
 Chapter 9. Analysis of Variance 107

The One-Way RANOVA Table

Once you’ve constructed a OneWayRanova, you can display the complete
RANOVA table:

Console.WriteLine(ranova);

For example:

Source Deg of Freedom Sum Of Sq Mean Square F P
Subjects 9 102822.5000 11424.7222 . .
Treatment 3 9247.5000 3082.5000 31.6755 0.0000
Error 27 2627.5000 97.3148 . .
Total 39 114697.5000 2940.9615 . .

Class OneWayRanovaTable is provided for summarizing the information in a
traditional one-way RANOVA table. Class OneWayRanovaTable derives from
DataFrame. An instance of OneWayRanovaTable can be obtained from a
OneWayRanova object using the RanovaTable property. For example:

OneWayRanovaTable myTable = ranova.RanovaTable;

Class OneWayRanovaTable provides the following read-only properties for
accessing individual elements in the RANOVA table:

DegreesOfFreedomTreatment gets the treatment degrees of freedom.

DegreesOfFreedomWithinSubject gets the within-subject degrees of
freedom.

DegreesOfFreedomError gets the error degrees of freedom.

DegreesOfFreedomTotal gets the total degrees of freedom.

SumOfSquaresTreatment gets the treatment sum of squares.

SumOfSquaresWithinSubject gets the within-subject sum of squares.

SumOfSquaresTotal gets the total sum of squares.

SumOfSquaresError gets the error sum of squares.

MeanSquareTreatment gets the treatment mean square.

MeanSquareWithinSubject gets the within-subject mean square.

MeanSquareError gets the error mean square.

MeanSquareTotal gets the total mean square.

FStatistic gets the F statistic for the RANOVA.
108 NMath Stats User’s Guide

FStatisticPValue gets the p-value for the F statistic.

Grand Mean, Subject Means, and Treatment Means

Class OneWayRanova provides properties for retrieving the grand mean, subject
means, and treatment means:

GrandMean gets the grand mean of the data. The grand mean is the mean of
all of the data.

SubjectMeans gets a vector of means for each subject.

TreatmentMeans gets a vector of means for each treatment.

Critical Value of the F Statistic

Class OneWayRanova provides the convenience function
FStatisticCriticalValue() which computes the critical value for the RANOVA
F statistic at a given significance level. Thus:

double alpha = 0.01;
double critVal = ranova.FStatisticCriticalValue(alpha);

Updating One-Way RANOVA Objects

Method SetData() updates an entire repeated measures analysis of variance
object with new data. As with the class constructors (see above), you can supply
data as a matrix or as a data frame. For instance, this code updates a RANOVA
with data from matrix A:

ranova.SetData(A);

9.3 Two-Way ANOVA

Class TwoWayAnova performs a balanced two-way analysis of variance. Two-way
analysis of variance is a direct extension of one-way analysis of variance
(Section 9.1). In this case, data are grouped according to two factors—for example,
sex and age group—rather than a single factor. The total variability is partitioned
into components associated with each of the two factors, their interaction, and the
residual (or error).
 Chapter 9. Analysis of Variance 109

Creating Two-Way ANOVA Objects

A TwoWayAnova instance is constructed from data in a data frame. Three column
indices are specified in the data frame: the column containing the first factor, the
column containing the second factor, and the column containing the numeric data.
For example, this code groups the numeric data in column 3 of DataFrame df by
factors constructed from columns 0 and 4:

TwoWayAnova anova = new TwoWayAnova(df, 0, 4, 3);

Factor objects are constructed from the factor columns using the DataFrame
method GetFactor(), which creates a sorted array of the unique values
(Section 2.10). The indicated data column must be of type DFNumericColumn.

NOTE—Class TwoWayAnova throws an InvalidArgumentException if the data con-
tains missing values (NaNs).

The Two-Way ANOVA Table

Once you’ve constructed a TwoWayAnova, you can display the complete
ANOVA table:

Console.WriteLine(anova);

For example:

Source Deg of Freedom SumOfSq Mean Square F P
FactorA 1 1782.0450 1782.0450 14.2121 0.0008
FactorB 1 2838.8113 2838.8113 22.6399 0.0001
Interaction 1 108.0450 108.0450 0.8617 0.3612
Error 28 3510.9075 125.3896 . .
Total 31 8239.8088 . . .

Class TwoWayAnovaTable is provided for summarizing the information in a
traditional two-way ANOVA table. Class TwoWayAnovaTable derives from
DataFrame. An instance of TwoWayAnovaTable can be obtained from a
TwoWayAnova object using the AnovaTable property. For example:

TwoWayAnovaTable myTable = anova.AnovaTable;

Class TwoWayAnovaTable provides the following member functions and
read-only properties for accessing individual elements in the ANOVA table:

DegreesOfFreedom() gets the degrees of freedom for a specified factor.

ErrorDegreesOfFreedom gets the number of degrees of freedom for the
error.
110 NMath Stats User’s Guide

InteractionDegreesOfFreedom gets the number of degrees of freedom
for the interactions.

TotalDegreesOfFreedom gets the total number of degrees of freedom.

SumOfSquares() gets the sum of squares for a specified factor.

InteractionSumOfSquares gets the sum of squares for the interaction.

ErrorSumOfSquares gets the sum of squares for the error.

TotalSumOfSquares gets the total sum of squares.

MeanSquare() gets the mean square for a specified factor.

InteractionMeanSquare gets the mean square for the interaction.

ErrorMeanSquare gets the mean square for the error.

Fstatistic() gets the F statistic for a specified factor.

InteractionFstatistic gets the F statistic for the interaction.

FstatisticPvalue() gets the p-value for the F statistic for a specified
factor.

InteractionFstatisticPvalue gets the p-value for the F statistic for the
interaction.

Factors are identified to accessor methods by name, which corresponds to the
name of the column in the original data frame that was used to create the Factor.
For instance, if one factor in the ANOVA is named Dosage, this code gets the
F statistic and p-value for that factor:

double Fstatistic = anova.AnovaTable.Fstatistic(“Dosage”);
double Pvalue = anova.AnovaTable.FstatisticPvalue(“Dosage”);

Cell Data

Class TwoWayAnova provides the GetCellData() method for accessing the data
in a cell, as defined by a specified level of each of the factors in the ANOVA. For
example, if anova has factor Sex with levels Male and Female, and factor AgeGroup
with levels Child, Adult, and Senior, this code gets the data for adult females:

DFNumericColumn data =
 anova.GetCellData(“Sex”, “Female”, “AgeGroup”, “Adult”);

A copy of the data is returned as a DFNumericColumn object.
 Chapter 9. Analysis of Variance 111

Grand Mean, Cell Means, and Group Means

Class TwoWayAnova provides the following properties and member functions for
accessing the grand mean, cell means, and group means:

GrandMean gets the grand mean. The grand mean is the mean of all the
data.

GetMeanForCell() returns the mean for a specified cell.

GetMeanForFactorLevel() returns the mean for a specified factor level.

Again, factors and factor levels are identified to accessor methods by name. For
example, if anova has factor Sex with levels Male and Female, and factor AgeGroup
with levels Child, Adult, and Senior, this code gets the mean for all males:

double meanM = anova.GetMeanForFactorLevel(“Sex”, “Male”);

This code gets the mean for male children:

double meanMChild =
 anova.GetMeanForCell(“Sex”, “Male”, “AgeGroup”, “Child”);

ANOVA Regression Parameters

NMath Stats solves the two-way ANOVA problem using multiple linear
regression. If all you wish to know is the information in the standard ANOVA
table, you can safely ignore the regression details, but properties and member
functions are provided for retrieving information about the underlying regression
parameters.

To solve the two-way ANOVA problem using multiple linear regression, NMath
Stats creates a series of dummy variables to encode the different levels of each of the
two factors. The specific encoding used, known as effects encoding, encodes dummy
variables so that the coefficients of the dummy variables in the regression model
quantify deviations of each group from the grand mean.1

In the effects encoding, dummy variables are defined to encode the levels
of a factor, like so:

1S. A. Glantz and B. K. Slinker, Primer of Applied Regression & Analysis of Variance (2nd ed.), NewYork,
McGraw-Hill, 2001, pp. 357-358.

k 1– k

E1

1 if group 1
1– if group k
0 othewise






=

112 NMath Stats User’s Guide

and so on, up to for group .

For example, suppose we have an experimental design with two factors: FactorA
and FactorB. FactorA has two levels, labelled A1 and A1. Effects encoding defines
one dummy variable for FactorA:

FactorB has three levels, labelled B1, B2, and B3. Effects encoding defines two
dummy variable for FactorB:

Combined, these three dummy variables completely identify all the combinations
of FactorA and FactorB. The multiple regression model is then:

where

the intercept is an estimate of the grand mean

 estimates the difference between the grand mean and the mean of A1

 is the difference between the grand mean and the mean of A2

E2

1 if group 2
1– if group k
0 othewise






=

Ek 1–
k 1–

A
1 if group A1
1– if group A2




=

B1

1 if group B1
0 if group B2
1 if group B3–






=

B2

0 if group B1
1 if group B2
1 if group B3–






=

Â b0 bAA bB1
B1 bB2

B2 bAB1
AB1 bAB2

AB2+ + + + +=

b0

bA

bA–
 Chapter 9. Analysis of Variance 113

 estimates the difference between the grand mean and the mean of B1

 estimates the difference between the grand mean and the mean of B2

 estimates the difference between the grand mean and the mean
of B3

NMath Stats includes several classes that derive from
LinearRegressionParameter, and provide access to the dummy variable
regression parameters in an ANOVA analysis of variance:

Class AnovaRegressionParameter provides a SumOfSquares property that
gets the sum of squares due to a parameter.

Class AnovaRegressionFactorParam derives from
AnovaRegressionParameter and provides the additional properties
FactorName, which gets the name of the ANOVA factor encoded by a
dummy variable, FactorLevel, which gets the level of the ANOVA factor
encoded by a dummy variable, and Encoding, which gets the actual
encoding. The encoding is the value the dummy variable assumes when an
ANOVA observation is made with the factor at that level.

Class AnovaRegressionInteractionParam also derives from
AnovaRegressionParameter and provides the additional properties
FactorAName and FactorALevel, which get the name and level of the first
factor in the interaction, and FactorBName and FactorBLevel, which get
the name and level of the second factor in the interaction.

Of course, these classes also inherit from LinearRegressionParameter methods
such as TStatisticPValue(), TStatistic(), TStatisticCriticalValue(), and
ConfidenceInterval() for testing statistical hypotheses regarding parameter
values in a linear regression (Section 7.5).

Instances of these classes cannot be constructed independently. Instead, they are
returned by properties and member functions on class TwoWayAnova:

RegressionInterceptParameter gets the intercept parameter in the linear
regression as an AnovaRegressionParameter.

GetRegressionFactorParameter() returns the
AnovaRegressionFactorParam associated with a specified factor level.

RegressionFactorParameters gets a complete array of
AnovaRegressionFactorParam estimates for the different factor levels.

bB11

bB21

bB1
bB2

+()–
114 NMath Stats User’s Guide

GetRegressionInteractionParameter() returns the
AnovaRegressionInteractionParam associated with the specified
interaction.

RegressionInteractionParameters gets a complete array of
AnovaRegressionInteractionParam estimates for the interactions.

For example, this code gets the regression parameter for FactorA at level A1:

AnovaRegressionFactorParam param
 anova.GetRegressionFactorParameter("FactorA", "A1");
Console.WriteLine(param);

Example output:

Value : 4.375
Standard Error : 1.63741694728596
t-Statistic for parameter = 0 : 2.67189124141632
p-value for t-Statistic : 0.0155516784650136
0.05 confidence interval : [9.3491E-001, 7.8151E+000]

Note that method GetRegressionFactorParameter() may return null. In the
effects encoding method, there are dummy variables defined to encode the
levels of a factor. Hence, one level does not have a dummy variable associated
with it in the linear regression, and a null reference may be returned even though a
valid factor level is specified. Thus:

AnovaRegressionFactorParam param =
 anova.GetRegressionFactorParameter("FactorA", "A2");
// param == null

Similarly, method GetRegressionInteractionParameter() may return null. If
there are different levels for the first factor and different levels for the second
factor, there are dummy variables corresponding to the interactions.
Hence, some interactions do not have a dummy variable associated with them in
the linear regression, and a null reference may be returned even though valid
interactions are specified.

This code prints out the intercept regression parameter, all factor regression
parameters, and all interaction regression parameters:

k 1– k

j k
j 1–() k 1–()
 Chapter 9. Analysis of Variance 115

Console.WriteLine("Intercept");
Console.WriteLine(anova.RegressionInterceptParameter);
Console.WriteLine();

AnovaRegressionFactorParam[] factorParams =
 anova.RegressionFactorParameters;
for (int i = 0; i < factorParams.Length; i++)
{
 Console.WriteLine(factorParams[i].FactorLevel);
 Console.WriteLine(factorParams[i]);
 Console.WriteLine();
}

AnovaRegressionInteractionParam[] interactionParams =
 anova.RegressionInteractionParameters;
for (int i = 0; i < interactionParams.Length; i++)
{
 Console.WriteLine(interactionParams[i].FactorALevel + " x " +
 interactionParams[i].FactorBLevel);
 Console.WriteLine(interactionParams[i]);
 Console.WriteLine();
}

Example output:

Intercept
Value : 28.875
Standard Error : 1.63741694728596
t-Statistic for parameter = 0: 17.6344821933477
p-value for t-Statistic : 8.35997937542743E-13
0.05 confidence interval : [2.5435E+001, 3.2315E+001]

A1
Value : 4.375
Standard Error : 1.63741694728596
t-Statistic for parameter = 0: 2.67189124141632
p-value for t-Statistic : 0.0155516784650136
0.05 confidence interval : [9.3491E-001, 7.8151E+000]

B1
Value : 25.5
Standard Error : 2.31565725411135
t-Statistic for parameter = 0: 11.0119923640365
p-value for t-Statistic : 1.98637151171965E-09
0.05 confidence interval : [2.0635E+001, 3.0365E+001]
116 NMath Stats User’s Guide

B2
Value : -7.25
Standard Error : 2.31565725411135
t-Statistic for parameter = 0: -3.13086057408882
p-value for t-Statistic : 0.00577563474636933
0.05 confidence interval : [-1.2115E+001, -2.3850E+000]

A1 x B1
Value : 6
Standard Error : 2.31565725411135
t-Statistic for parameter = 0: 2.59105702683213
p-value for t-Statistic : 0.0184427158909004
0.05 confidence interval : [1.1350E+000, 1.0865E+001]

A1 x B2
Value : -0.999999999999999
Standard Error : 2.31565725411135
t-Statistic for parameter = 0: -0.431842837805354
p-value for t-Statistic : 0.670984111233603
0.05 confidence interval : [-5.8650E+000, 3.8650E+000]

9.4 Two-Way Repeated Measures ANOVA

NMath Stats provides two classes for calculating a two-way analysis of variance
with repeated measures (RANOVA):

Class TwoWayRanova performs a balanced two-way analysis of variance
with repeated measures on one factor.

Class TwoWayRanovaTwo performs a balanced two-way analysis of
variance with repeated measures on both factors.

Both classes extend TwoWayAnova, and so inherit the methods and properties
described in Section 9.3. Like TwoWayAnova, both TwoWayRanova and
TwoWayRanovaTwo use multiple linear regression to compute the RANOVA
values.

Creating Two-Way RANOVA Objects

Instances of both TwoWayRanova and TwoWayRanovaTwo are constructed from
data in a data frame. Three column indices are specified in the data frame: the
column containing the first factor, the column containing the second factor, and
the column containing the numeric data. For TwoWayRanova, the first factor is
the repeated factor; for TwoWayRanovaTwo, both factors are repeated.
 Chapter 9. Analysis of Variance 117

For example, this code groups the numeric data in column 3 of DataFrame df by
factors constructed from columns 0 and 4:

TwoWayRanova ranova = new TwoWayRanova(df, 0, 4, 3);

The factor constructed from column 0 is the repeated factor. In the following
example, both factors are repeated:

TwoWayRanovaTwo ranova2 = new TwoWayRanovaTwo(df, 0, 4, 3);

NOTE—Both TwoWayRanova and TwoWayRanovaTwo throw an InvalidArgumentEx-
ception if the data contains missing values (NaNs).

Two-Way RANOVA Tables

Once you’ve constructed a TwoWayRanova, you can display the complete
RANOVA table:

TwoWayRanova ranova = new TwoWayRanova(df, 0, 4, 3);
Console.WriteLine(ranova);

For instance:

Source Deg of Freedom SumOfSqu Mean Square F P
FactorA 1 0.2032 0.2032 29.2322 0.0001
Subjects 14 1.7559 0.1254 . .
FactorB 1 0.0205 0.0205 0.1635 0.6921
Interaction 1 0.0830 0.0830 11.9442 0.0039
Error 14 0.0973 0.0070 . .
Total 31 2.1599 . . .

Class TwoWayRanovaTable summarizes the information in a traditional two-way
RANOVA table with repeated measures on one factor. An instance of
TwoWayRanovaTable can be obtained from a TwoWayRanova object using the
RanovaTable property. For example:

TwoWayRanovaTable myTable = ranova.RanovaTable;

Class TwoWayRanovaTable derives from TwoWayAnovaTable, and so inherits
the properties described in Section 9.3. In addition, TwoWayRanovaTable
provides the following properties for accessing the new row in the RANOVA table
for repeated measures on one factor:

SubjectsDegreesOfFreedom gets the subjects degrees of freedom.

SubjectsSumOfSquares gets the sum of squares for the subjects.

SubjectsMeanSquare gets the mean square for the subjects.
118 NMath Stats User’s Guide

Similarly, once you’ve constructed a TwoWayRanovaTwo, you can display the
RANOVA table:

TwoWayRanovaTwo ranova2 = new TwoWayRanovaTwo(df, 0, 4, 3);
Console.WriteLine(ranova2);

For example:

Source Deg of Freedom SumOfSq Mean Square F P
FactorA 1 1.4700 1.4700 88.2000 0.0000
FactorB 2 14.5654 7.2827 59.2348 0.0000
Interaction 2 3.3387 1.6694 18.9305 0.0001
A x Subject 14 1.7213 0.1229 . .
B x Subject 7 0.1167 0.0167 . .
Error 14 1.2346 0.0882 . .
Total 47 29.3592 . . .

An instance of TwoWayRanovaTwoTable can be obtained from a
TwoWayRanovaTwo object using the RanovaTable property. For example:

TwoWayRanovaTwoTable myTable = ranova2.RanovaTable;

Class TwoWayRanovaTwoTable also derives from TwoWayAnovaTable, and
provides the following methods for accessing the additional rows in the RANOVA
table with repeated measures on both factors:

SubjectInteractionDegreesOfFreedom() returns the degrees of freedom
for the interaction between subjects and the specified factor.

SubjectInteractionSumOfSquares() returns the sum of squares for the
interaction between subjects and the specified factor.

SubjectInteractionMeanSquare returns the mean square for the
interaction between subjects and the specified factor.
 Chapter 9. Analysis of Variance 119

120 NMath Stats User’s Guide

CHAPTER 10.
NON-PARAMETRIC TESTS

Non-parametric (or distribution-free) tests make no assumptions about the
probability distributions of the variables being assessed. NMath Stats provides
classes for several common non-parametric tests:

Class OneSampleKSTest performs a Kolmogorov-Smirnov test of the
distribution of one sample.

Class TwoSampleKSTest performs a two-sample Kolmogorov-Smirnov
test to compare the distributions of values in two data sets.

Class ShapiroWilkTest tests the null hypothesis that the sample comes
from a normally distributed population.

Class OneSampleAndersonDarlingTest performs a Anderson-Darling test
of the distribution of one sample.

Class KruskalWallisTest performs a Kruskal-Wallis rank sum test.

This chapter describes the non-parametric test classes.

See Section 3.9 for Spearman’s rank correlation coefficient, commonly known as
Spearman’s rho.

10.1 One Sample Kolmogorov-Smirnov Test

Class OneSampleKSTest performs a Kolmogorov-Smirnov test of the distribution
of one sample. This class compares the distribution of a given sample to the
hypothesized distribution defined by a specified cumulative distribution function
(CDF). For each potential value x, the Kolmogorov-Smirnov test compares the
proportion of values less than x with the expected number predicted by the
specified CDF. The null hypothesis is that the given sample data follow the
specified distribution. The alternative hypothesis that the data do not have that
distribution.
 Chapter 10. Non-Parametric Tests 121

Sample data can be passed to the constructor as a vector, numeric column in a data
frame, or an array of doubles. The hypothesized distribution can be specified
either by using an instance of ProbabilityDistribution or by supplying a delegate
that encapsulates the CDF of the hypothesized distribution. For example, this code
creates a OneSampleKSTest instance that compares the distribution of data to a
standard normal distribution:

NormalDistribution norm = new NormalDistribution();
OneSampleKSTest ks = new OneSampleKSTest(data, norm);

If myDist.CDF() is the CDF for some distribution, this code creates a
OneSampleKSTest instance that compares the distribution of the data in column 3
of DataFrame df to the hypothesized distribution:

OneSampleKSTest ks = new OneSampleKSTest(df[3],
 new Func<double, double>(myDist.CDF));

By default, a OneSampleKSTest object performs the Kolmogorov-Smirnov test
with . A different alpha level can be specified at the time of construction
using constructor overloads, or after construction using the provided Alpha
property.

Once you’ve constructed and configured a OneSampleKSTest object, you can
access the various test results using the provided properties:

Console.WriteLine("statistic = " + test.Statistic);
Console.WriteLine("p-value = " + test.P);
Console.WriteLine(“alpha = “ + test.Alpha);
Console.WriteLine("reject the null hypothesis? " + test.Reject);

10.2 Two Sample Kolmogorov-Smirnov Test

Class TwoSampleKSTest performs a two-sample Kolmogorov-Smirnov test to
compare the distributions of values in two data sets. For each potential value x, the
Kolmogorov-Smirnov test compares the proportion of values in the first sample
less than x with the proportion of values in the second sample less than x. The null
hypothesis is that the two samples have the same continuous distribution. The
alternative hypothesis is that they have different continuous distributions.

Sample data can be passed to the constructor as vectors, numeric columns in a data
frame, or arrays of doubles. Thus:

TwoSampleKSTest ks = new TwoSampleKSTest(data1, data2);

By default, a TwoSampleKSTest object performs the Kolmogorov-Smirnov test
with . A different alpha level can be specified at the time of construction

α 0.01=

α 0.01=
122 NMath Stats User’s Guide

using constructor overloads, or after construction using the provided Alpha
property.

Once you’ve constructed and configured a TwoSampleKSTest object, you can
access the various test results using the provided properties:

Console.WriteLine("statistic = " + test.Statistic);
Console.WriteLine("p-value = " + test.P);
Console.WriteLine(“alpha = “ + test.Alpha);
Console.WriteLine("reject the null hypothesis? " + test.Reject);

10.3 Shapiro-Wilk Test

Class ShapiroWilkTest tests the null hypothesis that a sample comes from a
normally distributed population. The sample data provided must be of size
between 3 and 5000. If the size becomes too large, then the test begins to perform
poorly.

DoubleVector data = new DoubleVector(
 "4.6057571 5.0352571 2.5780990 3.8300667 3.9096730 0.3203129 " +
 "0.7165054 9.8681061 3.8967762 9.4639023 6.4092569 2.9835816 " +
 "8.1763496 8.5650066 10.2810477 7.7123572 2.6411587 2.5043797 " +
 "7.5617508 11.2223571");

double alpha = 0.1;
ShapiroWilkTest test = new ShapiroWilkTest(data, alpha);

Once you’ve constructed and configured a TwoSampleKSTest object, you can
access the various test results using the provided properties:

Console.WriteLine("statistic = " + test.Statistic);
Console.WriteLine("p-value = " + test.P);
Console.WriteLine(“alpha = “ + test.Alpha);
Console.WriteLine("reject the null hypothesis? " + test.Reject);

10.4 One Sample Anderson-Darling Test

Class OneSampleAndersonDarlingTest performs a Anderson-Darling test of the
distribution of one sample. An Anderson-Darling test compares the distribution of
a given sample to normal distribution function (CDF). The alternative hypothesis
that the data do not have a normal distribution.

int n = 100;
 Chapter 10. Non-Parametric Tests 123

DoubleVector data =
 new DoubleVector(n, new RandGenGamma(23.0));
OneSampleAndersonDarlingTest test =
 new OneSampleAndersonDarlingTest(data);

Console.WriteLine("statistic = " + test.Statistic);
Console.WriteLine("p-value = " + test.P);
Console.WriteLine(“alpha = “ + test.Alpha);
Console.WriteLine("reject the null hypothesis? " + test.Reject);

10.5 Kruskall-Wallis Test

Class KruskalWallisTest performs a Kruskal-Wallis rank sum test. The Kruskal-
Wallis test is a non-parametric test for equality of population medians among
groups. It is a non-parametric version of the classical one-way ANOVA. The
interface for KruskalWallisTest is nearly identical to OneWayAnova.

Creating Kruskall-Wallis Objects

A KruskalWallisTest instance is constructed from numeric data organized into
different groups. The groups need not contain the same number of observations.
For example, this code constructs a KruskalWallisTest from an array of
DoubleVector objects. Each vector in the array contains data for a single group:

DoubleVector a =
 new DoubleVector(6.4, 6.8, 7.2, 8.3, 8.4, 9.1, 9.4, 9.7);
DoubleVector b =
 new DoubleVector(2.5, 3.7, 4.9, 5.4, 5.9, 8.1, 8.2);
DoubleVector c =
 new DoubleVector(1.3, 4.1, 4.9, 5.2, 5.5, 8.2);

DoubleVector[] data_ = new DoubleVector[] { a, b, c };

KruskalWallisTest test = new KruskalWallisTest(data_);

An optional boolean parameter may also be supplied to the constructor. If true, a
standard correction for ties is applied.

bool correct_for_ties = true;
KruskalWallisTest test =
 new KruskalWallisTest(data, correct_for_ties_);

This correction usually makes little difference in the value of the test statistic,
unless there are a large number of ties.
124 NMath Stats User’s Guide

This code constructs a KruskalWallisTest from a data frame df:

KruskalWallisTest test = new KruskalWallisTest(df, 1, 3);

Two column indices are also provided: a group column and a data column. A Factor
is constructed from the group column using the DataFrame method GetFactor(),
which creates a sorted array of the unique values. The specified data column must
be of type DFNumericColumn.

Lastly, you can also construct a KruskalWallisTest from a DoubleMatrix:

DoubleMatrix Data = new DoubleMatrix("6 x 5 [24 14 11 7 19
 15 7 9 7 24
 21 12 7 7 19
 27 17 13 12 15
 33 14 12 12 10
 23 16 18 18 20]");

bool correct_for_ties = true;
KruskalWallisTest test =
 new KruskalWallisTest(data, correct_for_ties);

Each column in the given matrix contains the data for a group. If your groups have
different numbers of observations, you must pad the columns with Double.NaN
values until they are all the same length, because a DoubleMatrix must be
rectangular. Alternatively, use one of the other constructors described above.

The Kruskall-Wallis Table

Once you’ve constructed a KruskalWallisTest, you can display the complete
results table:

Console.WriteLine(test);

For example:

Source Deg of Freedom Sum Of Sq Mean Sq Chi-sq P
Between groups 2 13.5000 6.7500 0.7714 0.6800
Within groups 11 214 19.4545 . .
Total 13 227.5000 . . .

Class KruskalWallisTable is provided for summarizing the information in the
results table. Class KruskalWallisTable derives from DataFrame. An instance of
KruskalWallisTable can be obtained from a KruskalWallisTest object using the
Table property. For example:

KruskalWallisTable table = test.able;
 Chapter 10. Non-Parametric Tests 125

Class KruskalWallisTable provides the following read-only properties for
accessing individual elements in the results table:

DegreesOfFreedomBetween gets the between-groups degrees of freedom.

DegreesOfFreedomWithin gets the within-groups degrees of freedom.

DegreesOfFreedomTotal gets the total degrees of freedom.

SumOfSquaresBetween gets the between-groups sum of squares.

SumOfSquaresWithin gets the within-groups sum of squares.

SumOfSquaresTotal gets the total sum of squares.

MeanSquareBetween gets the between-groups mean square. The between-
groups mean square is the between-groups sum of squares divided by the
between-groups degrees of freedom.

MeanSquareWithin gets the within-group mean square. The within-groups
mean square is the within-group sum of squares divided by the within-
group degrees of freedom.

MeanSquareTotal gets the total mean square. The total mean square is the
total sum of squares divided by the total degrees of freedom.

Statistic gets the test statistic.

PValue gets the p-value for the test statistic.

Ranks, Grand Mean Ranks, Group Means Ranks, and
Group Sizes

Class KruskalWallisTest provides properties and methods for retrieving the ranks,
grand mean ranks, group means ranks, and group sizes:

Ranks gets an array of vectors containing the ranks of the data.

GrandMeanRank gets the grand mean rank of the data. The grand mean
rank is the mean of all of the data ranks.

GroupMeanRanks gets a vector of group mean ranks.

GroupSizes gets an array of group sizes.

GroupNames gets an array of group names. If the test was constructed from
a data frame using a grouping column, the group names are the sorted,
unique Factor levels created from the column values. If the test object was
constructed from a matrix or an array of vectors, the group names are
simply Group_0, Group_1...Group_n.
126 NMath Stats User’s Guide

GetGroupRanks() returns the ranks for a specified group, identified either
by group name or group number (a zero-based index into the Ranks array).

GetGroupMeanRank() returns the mean rank for a specified group,
identified either by group name or group number (a zero-based index into
the GroupMeanRanks vector).

GetGroupSize() returns the mean for a specified group, identified either
by group name or group number (a zero-based index into the GroupSizes
array).

For example, if a KruskalWallisTest is constructed from a matrix, this code returns
the mean rank for the group in the third column of the matrix:

double mean = test.GetGroupMeanRank(2);

If a KruskalWallisTest is constructed from a data frame using a grouping column
with values male and female, this code returns the mean rank for the male group:

double maleMean = test.GetGroupMeanRank(“male”);

Critical Value of the Test Statistic

Class KruskalWallisTest provides the convenience function
StatisticCriticalValue() which computes the critical value for the test statistic
at a given significance level. Thus:

double alpha = 0.05;
double critVal = test.StatisticCriticalValue(alpha);

Updating Kruskall-Wallis Test Objects

Method SetData() updates an entire test object with new data. As with the class
constructors (see above), you can supply data as an array of group vectors, a
matrix, or as a data frame. For instance, this code updates a test with data from
DataFrame df, using column 2 as the group column and column 5 as the data
column:

test.SetData(df, 2, 5);
 Chapter 10. Non-Parametric Tests 127

128 NMath Stats User’s Guide

CHAPTER 11.
MULTIVARIATE TECHNIQUES

Multivariate statistical analysis techniques are useful when you need a concise
understanding of large amounts of data. NMath Stats provides classes for
dimension reduction using principal component analysis or factor analysis, and case
reduction using hierarchical cluster analysis and k-means clustering.

This chapter describes the multivariate statistical analysis classes.

11.1 Principal Component Analysis

Principal component analysis (PCA) finds a smaller set of synthetic variables that
capture the variance in an original data set. The first principal component accounts
for as much of the variability in the data as possible, and each succeeding
orthogonal component accounts for as much of the remaining variability as
possible. In NMath Stats, classes DoublePCA and FloatPCA perform principal
component analyses.

Creating Principal Component Analyses

A DoublePCA or FloatPCA instance is constructed from a matrix or a dataframe
containing numeric data. Each column represents a variable, and each row
represents an observation:

DoublePCA pca = new DoublePCA(data);

The data may optionally be zero-centered and scaled to have unit variance:

bool center = true;
bool scale = true;
DoublePCA pca = new DoublePCA(data, center, scale);

By default, variables are centered but not scaled.
 Chapter 11. Multivariate Techniques 129

After construction, you can retrieve information about the data set using the
provided read-only properties:

Data gets the data matrix. If centering or scaling were specified at
construction time, the returned matrix may not match the original data.

NumberOfObservations gets the number of observations in the data
matrix.

NumberOfVariables gets the number of variables in the data matrix.

IsCentered returns true if the data supplied at construction time was
shifted to be zero-centered.

IsScaled returns true if the data supplied at construction time was scaled
to have unit variance.

Means gets the column means of the data matrix. If centering is specified,
the column means are substracted from the column values before analysis
takes place.

Norms gets the column norms (1-norm). If scaling is specified, column
values are scaled to have unit variance before analysis by dividing by the
column norm.

Principal Component Analysis Results

The Loadings property gets the complete loading matrix. Each column in the
loading matrix is a principal component. The first principal component accounts
for as much of the variability in the data as possible, and each succeeding
orthogonal component accounts for as much of the remaining variability as
possible.

Console.WriteLine("Loading Martrix = " + pca.Loadings);

The provided indexer also gets a specified principal component, referenced by
zero-based index. For example:

Console.WriteLine("First principal component = " + pca[0]);
Console.WriteLine("Second principal component = " + pca[1]);

The VarianceProportions property gets an ordered vector containing the
proportion of the total variance accounted for by each principal component.
CumulativeVarianceProportions gets the cumulative variance proportions.
Thus:

Console.WriteLine("Variance Proportions = " +
 pca.VarianceProportions);
130 NMath Stats User’s Guide

Console.WriteLine("Cumulative Variance Proportions = " +
 pca.CumulativeVarianceProportions);

The Threshold() method calculates the number of principal components required
to account for a given proportion of the total variance:

Console.WriteLine("PCs that account for 99% of the variance = " +
 pca.Threshold(.99));

The StandardDeviations property gets the standard deviations of the principal
components. Eigenvalues gets the eigenvalues of the covariance/correlation
matrix, though the calculation is actually performed using the singular values of
the data matrix. The eigenvalues of the covariance/correlation matrix are equal to
the squares of the standard deviations of the principal components.

Lastly, the Scores property gets the score matrix. The scores are the data formed
by transforming the original data into the space of the principal components:

Console.WriteLine("Scores = " + pca.Scores);

This code displays the data in the minimal synthetic dimensions required to
account for 99% of the variance:

Slice rowSlice = Slice.All;
Slice colSlice = new Slice(0, pca.Threshold(.99));
Console.WriteLine(pca.Scores[rowSlice, colSlice]);

11.2 Factor Analysis

Factor analysis describes the variability among observed, correlated variables in
terms of a potentially lower number of unobserved variables, called factors.

In general, factor analysis consists of two steps:

In the extraction step, factors are extracted from the data.

In NMath Stats, IFactorExtraction is the interface for factor extraction algo-
rithms. Class PCFactorExtraction implements the principle component
(PC) algorithm for factor extraction.

In the rotation step, the factors are rotated in order to maximize the
relationship between the variables and the factors.

In NMath Stats, IFactorRotation is the interface for factor rotation algo-
rithms. Class VarimaxRotation computes the varimax rotation of the
factors. Factors are rotated to maximize the sum of the variances of the
 Chapter 11. Multivariate Techniques 131

squared loadings. Kaiser normalization is optionally performed. Class
NoRotation can be used when no rotation is desired.

Creating Factor Analyses

NMath Stats provides three classes for performing factor analysis:

FactorAnalysisCorrelation performs a factor analysis on given case data
by forming the correlation matrix for the variables.

FactorAnalysisCovariation performs a factor analysis on given case data
using the covariance matrix.

DoubleFactorAnalysis performs a factor analysis on a symmetric matrix of
data, assumed to be either a correlation or covariance matrix, if you don’t
have access to the original case data.

When case data is used, the data should provided in matrix form—the variable
values in columns and each row representing a case.

All factor analysis are templatized on the extraction and rotation algorithm to use.
For example:

var fa = new FactorAnalysisCorrelation<PCFactorExtraction,
 VarimaxRotation>(data);

For greater control, construct the extraction and rotation objects explicitly. For
example, a PCFactorExtraction instance can be constructed from a delegate for
determining the number of factors to extract. The type of this argument is
Func<DoubleVector, DoubleMatrix, int>. It takes as arguments the vector of
eigenvalues and the matrix of eigenvectors, and returns the number of factors to
extract. Class NumberOfFactors contains static methods for creating functors for
several common strategies. This code extracts factors whose eigenvalues are
greater than 1.2 times the mean of the eigenvalues:

var factorExtraction = new PCFactorExtraction(
 NumberOfFactors.EigenvaluesGreaterThanMean(1.2));

The following code constructs a VarimaxRotation instance with a specified
tolerance. Iteration stops when the relative change in the sum of the singular
values is less than this number. We also specify that we do not want Kaiser
normalization to be performed.

var factorRotation = new VarimaxRotation
{
 Tolerance = 1e-6,
 Normalize = false
};
132 NMath Stats User’s Guide

Once you’ve constructed your extraction and rotation objects, you can construct
the factor analysis instance:

var fa = new FactorAnalysisCovariance<PCFactorExtraction,
 VarimaxRotation>(data, BiasType.Biased, factorExtraction,
 factorRotation);

Factor Analysis Results

Once you’ve constructed a factor analysis instance, you can access the results using
the following properties:

NumberOfFactors get the number of factors extracted.

Factors gets the extracted factors. Each column of the matrix is a factor.

RotatedFactors gets the rotated factors. Each column of the matrix is a
factor.

VarianceProportions gets a vector of proportion of variance explained by
each factor.

CumulativeVarianceProportions gets the cumulative variance
proportions.

ExtractedCommunalities get the proportion of each variable's variance
that can be explained by the extracted factors jointly.

InitialCommunalities get the proportion of each variable's variance that
can be explained by the factors jointly.

SumOfSquaredLoadings gets the sum of squared loadings for each
extracted factor.

RotatedSumOfSquaredLoadings gets the sum of squared loadings for each
rotated extracted factor.

For instance:

DoubleVector extractedCommunalities = fa.ExtractedCommunalities;
for (int i = 0; i < data.Cols; i++)
{
 Console.WriteLine("{0}\t{1}", data[i].Name,
 extractedCommunalities[i]);
}
Console.WriteLine();
 Chapter 11. Multivariate Techniques 133

for (int i = 0; i < fa.VarianceProportions.Length; i++)
{
 double varProportion = fa.VarianceProportions[i] * 100.0;
 double cummlativeVarProportion =
 fa.CumulativeVarianceProportions[i] * 100.0;
 double eigenValue = fa.FactorExtraction.Eigenvalues[i];
 Console.WriteLine("{0}\t\t{1}\t{2}\t\t{3}", i, eigenValue,
 varProportion, cummlativeVarProportion);
}
Console.WriteLine();

double eigenValueSum =
 NMathFunctions.Sum(fa.FactorExtraction.Eigenvalues);
DoubleVector RotatedSSLoadingsVarianceProportions =
 fa.RotatedSumOfSquaredLoadings / eigenValueSum;
Console.WriteLine(
 "\nRotated Extraction Sums of Squared Loadings - ");
Console.WriteLine("factor\tTotal\t% of Variance\tCummlative %");
Console.WriteLine(
 "--");
double cummlative = 0;

for (int i = 0; i < fa.NumberOfFactors; i++)
{
 double varProportion =
 RotatedSSLoadingsVarianceProportions[i] * 100.0;
 cummlative += RotatedSSLoadingsVarianceProportions[i];
 double cummlativeVarProportion = cummlative * 100.0;
 double sumSquaredLoading = fa.RotatedSumOfSquaredLoadings[i];
 Console.WriteLine("{0}\t\t{1}\t{2}\t\t{3}", i,
 sumSquaredLoading, varProportion, cummlativeVarProportion);
}
Console.WriteLine();

DoubleMatrix rotatedComponentMatrix = fa.RotatedFactors;
for (int i = 0; i < data.Cols; i++)
{
 var formatString = "{0}\t\t{1}\t{2}\t{3}";
 double comp0 = rotatedComponentMatrix.Row(i)[0];
 double comp1 = rotatedComponentMatrix.Row(i)[1];
 double comp2 = rotatedComponentMatrix.Row(i)[2];
 Console.WriteLine("{0}\t{1}\t{2}\t{3}", data[i].Name,
 comp0, comp1, comp2);
}

134 NMath Stats User’s Guide

Factor Scores

The case data values for new factor variables are contained in the factor scores
matrix. The score for a given factor is a linear combination of all of the measures,
weighted by the corresponding factor loading.

There are different algorithms for producing the factors scores. The
FactorScores()method can be passed an object implementing the IFactorScores
interface, specifying the algorithm to be used. If no argument is passed, the
regression algorithm for computing factor scores is used, implemented in class
RegressionFactorScores.

For example, this code print the factor scores for the first three cases. Data is
normalized.

var rowSlice = new Slice(0, 3);
Console.WriteLine(
 fa.FactorScores()[rowSlice, Slice.All].ToTabDelimited());

Factor scores are a linear combination of the original variable values. The
coefficients used for the linear combination are found in the factor score coefficients
matrix. This matrix may be obtained from the FactorScoreCoefficients()
method on the factor analysis class. Like factor scores, the algorithm to use may be
specified by passing an object implementing the IFactorScores interface to this
method. By default, the regression algorithm is used.

The factor score coefficients can be used to compute scores for novel case data. For
instance:

DoubleMatrix scoreCoefficients = fa.FactorScoreCoefficients();
DoubleMatrix newCaseData = new DoubleMatrix(
 "2x10 [0.0 38.9 3.8 196.0 115.4 71.9 177.0 3.972 17.5 27.8 " +
 "1.0 46.0 2.5 220.0 101.6 73.4 168.6 3.75 19.0 20.0]");
Console.WriteLine(
 NMathFunctions.Product(newCaseData, scoreCoefficients));

11.3 Hierarchical Cluster Analysis

Cluster analysis detects natural groupings in data. In hierarchical cluster analysis,
each object is initially assigned to its own singleton cluster. The analysis then
proceeds iteratively, at each stage joining the two most similar clusters into a new
cluster, continuing until there is one overall cluster. In NMath Stats, class
ClusterAnalysis performs hierarchical cluster analyses.
 Chapter 11. Multivariate Techniques 135

Distance Functions

During clustering, the distance between individual objects is computed using a
distance function. The distance function is encapsulated in a Distance.Function
delegate, which takes two vectors and returns a measure of the distance
(similarity) between them:

public delegate double Function(DoubleVector data1,
 DoubleVector data2);

Delegates are provided as static variables on class Distance for many common
distance functions:

Distance.EuclideanFunction computes the Euclidean distance between
two data vectors (2 norm):

Euclidean distance is simply the geometric distance in the multidimen-
sional space.

Distance.SquaredEuclideanFunction computes the squared Euclidean
distance between two vectors:

Squaring the simple Euclidean distance places progressively greater
weight on objects that are further apart.

Distance.CityBlockFunction computes the city-block (Manhattan)
distance between two vectors (1 norm):

In most cases, the city-block distance measure yields results similar to the
simple Euclidean distance. Note, however, that the effect of outliers is
dampened, since they are not squared.

dxy xi yi–()2∑=

dxy xi yi–()2∑=

dxy xi yi–∑=
136 NMath Stats User’s Guide

Distance.MaximumFunction computes the maximum (Chebychev)
distance between two vectors:

This distance measure may be appropriate in cases when you want to
define two objects as different if they differ on any one of the dimensions.

Distance.PowerFunction(double p, double r) computes the power
distance between two vectors:

where p and r are user-defined parameters. Parameter p controls the pro-
gressive weight that is placed on differences on individual dimensions;
parameter r controls the progressive weight that is placed on larger differ-
ences between objects. Appropriate selections of p and r yield Euclidean,
squared Euclidean, Minkowski, city-block, and many other distance met-
rics. For example, if p and r are equal to 2, the power distance is equal to
the Euclidean distance.

All provided distance functions allow missing values. Pairs of elements are
excluded from the distance measure when their comparison returns NaN. If all
pairs are excluded, NaN is returned for the distance measure.

You can also define your own Distance.Function delegate and use it to cluster
your data. For example, if you have function MyDistance() that computes the
distance between two vectors:

public double MyDistance(DoubleVector x, DoubleVector y);

You can define a Distance.Function delegate like so:

Distance.Function MyDistanceFunction =
 new Distance.Function(MyDistance);

Linkage Functions

During clustering, the distances between clusters of objects are computed using a
linkage function. The linkage function is encapsulated in a Linkage.Function
delegate. When two groups P and Q are united, a linkage function computes the
distance between the new combined group P + Q and another group R.

dxy maximum xi yi–=

dxy xi yi–
p∑()

1 r⁄
=

 Chapter 11. Multivariate Techniques 137

Figure 2 – Computing the distance between clusters using a linkage function

The parameters to the Linkage.Function—which may not necessarily all be used
to calculate the result—are the distance between R and P, the distance between R
and Q, the distance between P and Q, and the sizes (n) of all three groups:

public delegate double Function(double Drp, double Drq,
 double Dpq, double Nr, double Np, double Nq);

Delegates are provided as static variables on class Linkage for many common
linkage functions:

Linkage.SingleFunction computes the distance between two clusters as
the distance of the two closest objects (nearest neighbors) in the clusters.
Adopting a friends-of-friends clustering strategy closely related to the
minimal spanning tree, the single linkage method tends to result in long
chains of clusters.

Linkage.CompleteFunction computes the distance between two clusters
as the greatest distance between any two objects in the different clusters
(furthest neighbors). The complete linkage method tends to work well in
cases where objects form naturally distinct clumps.

Linkage.UnweightedAverageFunction computes the distance between
two clusters as the average distance between all pairs of objects in the two
different clusters. This method is sometimes referred to as unweighted
pair-group method using arithmetic averages, and abbreviated UPGMA.

Linkage.WeightedAverageFunction computes the distance between two
clusters as the average distance between all pairs of objects in the two
different clusters, using the size of each cluster as a weighting factor. This
method is sometimes referred to as weighted pair-group method using
arithmetic averages, and abbreviated WPGMA.

Linkage.CentroidFunction computes the distance between two clusters
as the difference between centroids. The centroid of a cluster is the average
point in the multidimensional space. The centroid method is sometimes
referred to as unweighted pair-group method using the centroid average, and
abbreviated UPGMC.

R
P

Q
+

?

138 NMath Stats User’s Guide

Linkage.MedianFunction computes the distance between two clusters as
the difference between centroids, using the size of each cluster as a
weighting factor. This is sometimes referred to as weighted pair-group method
using the centroid average, and abbreviated WPGMC.

Linkage.WardFunction computes the distance between two clusters using
Ward’s method. Ward’s method uses an analysis of variance approach to
evaluate the distances between clusters. The smaller the increase in the
total within-group sum of squares as a result of joining two clusters, the
closer they are. The within-group sum of squares of a cluster is defined as
the sum of the squares of the distance between all objects in the cluster and
the centroid of the cluster. Ward's method tends to produce compact
groups of well-distributed size.

You can also define your own Linkage.Function delegate and use it to cluster
your data. For example, if you have function MyLinkage() that computes the
distance between two clusters:

public double MyLinkage(double Drp, double Drq, double Dpq,
 double Nr, double Np, double Nq);

You can define a Linkage.Function delegate like so:

Linkage.Function MyLinkageFunction =
 new Linkage.Function(MyLinkage);

Creating Cluster Analyses

A ClusterAnalysis instance is constructed from a matrix or a dataframe containing
numeric data. Each row in the data set represents an object to be clustered.

ClusterAnalysis ca = new ClusterAnalysis(data);

The current default distance and linkage delegates are used. The default distance
and linkage delegates are Distance.EuclideanFunction and
Linkage.SingleFunction, unless the defaults have been changed using the static
DefaultDistanceFunction and DefaultLinkageFunction properties. For
example:

ClusterAnalysis.DefaultDistanceFunction = Distance.MaximumFunction;
ClusterAnalysis.DefaultLinkageFunction = Linkage.CentroidFunction;

This changes the default distance and linkage functions for all subsequently
constructed ClusterAnalysis objects.
 Chapter 11. Multivariate Techniques 139

You can also specify non-default distance and linkage functions in the constructor:

ClusterAnalysis ca = new ClusterAnalysis(data,
 Distance.PowerFunction(1.25, 2.0), Linkage.CompleteFunction);

After construction, you can retrieve information about the ClusterAnalysis
configuration using the provided properties:

N gets the total number of objects being clustered.

DistanceFunction gets and sets the distance function delegate used to
measure the distance between individual objects. Setting the distance
function using the DistanceFunction property has no effect until
Update() is called with new data. (See below.)

LinkageFunction gets and sets the linkage function used to measure the
distance between clusters of objects. Setting the linkage delegate using the
LinkageFunction property has no effect until Update() is called with new
data. (See below.)

Cluster Analysis Results

The Distances property gets the vector of distances between all possible object
pairs, computed using the current distance delegate. For n objects, the distance
vector is of length (n-1)(n/2), with distances arranged in the order:

(1,2), (1,3), ..., (1,n), (2,3), ..., (2,n), ..., ..., (n-1,n)

Linkages gets an (n-1) x 3 matrix containing the complete hierarchical linkage
tree, computed from Distances using the current linkage delegate. At each level
in the tree, columns 1 and 2 contain the indices of the clusters linked to form the
next cluster. Column 3 contains the distances between the clusters. For example,
this code clusters 8 random vectors of length 3, then shows a sample output of the
hierarchical cluster tree:

DoubleMatrix data = new DoubleMatrix(8, 3, new RandGenUniform());
ClusterAnalysis ca = new ClusterAnalysis(data);
Console.WriteLine(ca.Linkages);

// Sample Output
//
// 7x3 [
// 4 7 0.194409151975696
// 3 5 0.290431894003636
// 2 9 0.495557235783239
// 1 6 0.508966210536187
// 0 11 0.522321103698264
// 8 10 0.590187697768796
// 12 13 0.621675638177606]
140 NMath Stats User’s Guide

Each object is initially assigned to its own singleton cluster, numbered 0 to 7. The
analysis then proceeds iteratively, at each stage joining the two most similar
clusters into a new cluster, continuing until there is one overall cluster. The first
new cluster formed by the linkage function is assigned index 8, the second is
assigned index 9, and so forth. When these indices appear later in the tree, the
clusters are being combined again into a still larger cluster.

The CutTree() method constructs a set of clusters by cutting the hierarchical
linkage tree either at the specified height, or into the specified number of clusters.
For example, this code cuts the linkage tree to form 3 clusters:

ca.CutTree(3);

This code cuts the linkage tree at a height of 0.75:

ca.CutTree(0.75);

The CutTree() method returns a ClusterSet object, which represents a collection
of objects assigned to a finite number of clusters. The NumberOfClusters property

gets the number of clusters into which objects are grouped; N gets the number of
objects. The Clusters property returns an array of integers that identifies the
cluster into which each object was grouped. Cluster numbers are arbitrary, and
range from 0 to NumberOfClusters - 1. The indexer gets the cluster to which a
given object is assigned. The Cluster() method returns the objects assigned to a
given cluster as an array of integers. For instance:

// Cluster 10 random vectors of length 4:
DoubleMatrix data =
 new DoubleMatrix(10, 4, new RandGenUniform());
ClusterAnalysis ca = new ClusterAnalysis(data);

// Cut the tree into 5 clusters
ClusterSet cut = ca.CutTree(5);

Console.WriteLine("ClusterSet = " + cut);
Console.WriteLine("Object 0 is in cluster: " + cut[0]);
Console.WriteLine("Object 3 is in cluster: " + cut[3]);
Console.WriteLine("Object 8 is in cluster: " + cut[8]);
int[] objects = cut.Cluster(1);
Console.Write("Objects in cluster 1: ");
for (int i = 0; i < objects.Length; i++)
{
 Console.Write(objects[i] + " ");
}
Console.WriteLine();
 Chapter 11. Multivariate Techniques 141

// Sample Ouput
//
// ClusterSet = 0,1,2,1,1,1,3,1,4,1
// Object 0 is in cluster: 0
// Object 3 is in cluster: 1
// Object 8 is in cluster: 4
// Objects in cluster 1: 1 3 4 5 7 9

Lastly, the CopheneticDistances property on class ClusterAnalysis gets the
vector of cophenetic distances between all possible object pairs. The cophenetic
distance between two objects is defined to be the intergroup distance when the
objects are first combined into a single cluster in the linkage tree. The format is the
same as the distance vector returned by Distances.

The correlation between the original Distances and the CopheneticDistances is
sometimes taken as a measure of the appropriateness of a cluster analysis relative
to the original data:

ClusterAnalysis ca = new ClusterAnalysis(data);
double r = StatsFunctions.Correlation(ca.Distances,
 ca.CopheneticDistances);

Reusing Cluster Analysis Objects

Method Update() updates an existing ClusterAnalysis instance with new data,
and optionally with new distance and linkage functions. For example:

ClusterAnalysis ca = new ClusterAnalysis(data,
 Linkage.SingleFunction);
Console.WriteLine(ca.Linkages);

ca.Update(data, Linkage.CompleteFunction);
Console.WriteLine(ca.Linkages);

11.4 K-Means Clustering

The k-means clustering method assigns data points into k groups such that the sum
of squares from points to the computed cluster centers is minimized. In NMath
Stats, class KMeansClustering performs k-means clustering.
142 NMath Stats User’s Guide

The algorithm used is that of Hartigan and Wong (A K-means clustering algorithm.
Applied Statistics 28, 100–108. 1979):

1. For each point, move it to another cluster if that would lower the sum of
squares from points to the computed cluster centers.

2. If a point is moved, immediately update the cluster centers of the two
affected clusters.

3. Repeat until no points are moved, or the specified maximum number of
iterations is reached.

Creating KMeansClustering Objects

A KMeansClustering instance is constructed from a matrix or a dataframe
containing numeric data. Each row in the data set represents an object to be
clustered.

KMeansClustering km = new KMeansClustering(data);

After construction, you can retrieve information about the KMeansClustering
data using the provided properties:

N gets the total number of objects being clustered.

Data gets and set the data matrix

Stopping Criteria

Iteration stops when either clustering stabilizes, or the maximum number of
iterations is reached. You can specify the maximum number of iterations in several
ways:

The static DefaultMaxIterations property gets and sets the default
maximum number of iterations for instances of KMeansClustering.
(Initially set to 1000.)

You can specify a non-default maximum in the KMeansClustering
constructor. For instance:

 KMeansClustering km = new KMeansClustering(data, 100);

The MaxIterations property gets and sets the maximum number of
iterations on an existing KMeansClustering instance.
 Chapter 11. Multivariate Techniques 143

Clustering

The Cluster() method clusters the data into the specified number of clusters. The
method accepts either k, the number of clusters, or a matrix of initial cluster
centers:

If k is given, a set of distinct rows in the data matrix are chosen as the initial
centers using the algorithm specified by a KMeanClustering.Start
enumerated value. By default, rows are chosen at random.

If a matrix of initial cluster centers is given, k is inferred from the number of
rows.

For example, this code clusters eight random vectors of length three into two
clusters, using random starting cluster centers:

DoubleMatrix data = new DoubleMatrix(8, 3, new RandGenUniform());
KMeansClustering cl = new KMeansClustering(data);
ClusterSet clusters = cl.Cluster(2);

This code specifies the two starting centers:

DoubleMatrix centers = new DoubleMatrix("2x3 [0 0 0 1 1 1]");
ClusterSet clusters = cl.Cluster(centers);

Cluster Analysis Results

The Cluster() method returns a ClusterSet object, which represents a collection
of objects assigned to a finite number of clusters. Properties on the
KMeansClustering instance give additional information about the clustering just
performed:

K gets the number of clusters.

InitialCenters gets the matrix of initial cluster centers.

FinalCenters gets the matrix of final cluster centers.

Clusters gets the cluster assignments.

WithinSumOfSquares gets the within-cluster sum of squares for each
cluster.

Sizes gets the number of points in each cluster.

Iterations gets the number of iterations performed.

MaxIterationsMet returns true if the clustering stopped because the
maximum number of iterations was reached; otherwise, false.
144 NMath Stats User’s Guide

For instance, this code clusters 30 random vectors of length three into three
clusters, and prints out the results:

DoubleMatrix data = new DoubleMatrix(30, 3, new RandGenUniform());
KMeansClustering km = new KMeansClustering(data);
km.Cluster(3);

Console.WriteLine("k = {0}", km.K);
Console.WriteLine("Initial cluster centers:");
Console.WriteLine(km.InitialCenters.ToTabDelimited());
Console.WriteLine("{0} iterations", km.Iterations);
Console.WriteLine("Stopped because max iterations of {0} met? {1}",
 km.MaxIterations, km.MaxIterationsMet);
Console.WriteLine("Final cluster centers:");
Console.WriteLine(km.FinalCenters.ToTabDelimited());
Console.WriteLine("Clustering assignments:");
Console.WriteLine(km.Clusters);
for (int i = 0; i < km.K; i++) {
 Console.WriteLine("Cluster {0} has {1} items", i, km.Sizes[i]);
}

 Chapter 11. Multivariate Techniques 145

146 NMath Stats User’s Guide

CHAPTER 12.
NONNEGATIVE MATRIX FACTORIZATION

Nonnegative matrix factorization (NMF) approximately factors a matrix V into
two matrices, W and H:

NMF differs from many other factorizations by enforcing the constraint that the
factors W and H must be non-negative—that is, all elements must be equal to or
greater than zero.

If a set of m n-dimensional data vectors are placed in an n x m matrix V, then NMF
can be used to approximately factor V into an n x r matrix W and an r x m matrix H.
Usually r is chosen to be much smaller than either m or n, so that W and H are
smaller than the original matrix V. Thus, each column v of V is approximated by a
linear combination of the columns of W, with the coefficients being the
corresponding column h of H, v ≈ Wh. This extracts underlying features of the data
as basis vectors in W, which can then be used for identification, classification, and
compression. By not allowing negative entries in W and H, NMF enables a non-
subtractive combination of the parts to form a whole.

NMath Stats provides classes for basic NMF, and for data clustering using NMF.
This chapter describes how to use the NMF classes.

12.1 Nonnegative Matrix Factorization

NMath Stats provides class NMFact for performing basic nonnegative matrix
factorization (NMF). NMFact uses an iterative algorithm with the goal of
minimizing a cost function. The cost function is usually , where
denotes the Frobenius matrix norm.

NMFact objects can factor data contained in either a DoubleMatrix or a
DataFrame object. The factors W and H are then accessed through properties:

DataFrame data; // data to be factored
int k; // number of columns in W

V WH≈

V WH– .
 Chapter 12. Nonnegative Matrix Factorization 147

NMFact fact = new NMFact();
fact.Factor(data, k);
Console.WriteLine(“W = “ + fact.W);
Console.WriteLine(“H = “ + fact.H);

Parameters governing aspects of the computation are set through properties or
passed as constructor arguments. ComputeCostAtEachStep determines whether
or not the cost is computed at each step of the iteration. This can be an expensive
calculation and so should generally be done only when you want to investigate
convergence properties, such as the convergence rate. If ComputeCostAtEachStep
is true, the DoubleVector of costs can be accessed through the StepCost
property.

NumIterations specifies the number of iterations performed in the computing of
the factorization.

For example:

fact.ComputeCostAtEachStep = true;
fact.NumIterations = numIterations;

Update Algorithms

The iterative update step and cost function are specified in a class implementing
the INMFUpdateAlgorithm interface. NMath Stats provides four such
implementations. All matrices of uniform (0,1) random deviants as the initial
values for W and H.

Class NMFAlsUpdate uses the Alternating Least Squares (ALS) update
algorithm. ALS takes advantage of the fact that while the optimization
problem is not simultaneously convex in W and H, it is convex in either W
or H. Thus, given one matrix, the other can be found with a simple least
squares computation:

1. Solve for H in matrix equation WTWH = WTV.

2. Set all negative elements of H to 0.

3. Solve for W in the matrix equation HHTWT = HVT.

4. Set all negative elements of W to 0.
148 NMath Stats User’s Guide

Class NMFDivergenceUpdate minimizes a divergence functional. The
functional is related to the Poisson likelihood of generating V from W and
H:

For more information, see Brunet, Jean-Philippe et al., “Metagenes and
Molecular Pattern Discovery Using Matrix Factorization”, Proceedings of the
National Academy of Sciences 101, no. 12 (March 23, 2004): 4164-4169.

Class NMFGdClsUpdate uses the Gradient Descent - Constrained Least
Squares (GDCLS) algorithm. In some cases it may be desirable to enforce a
statistical sparsity constraint on the H matrix. As the sparsity of H
increases, the basis vectors become more localized—that is, the parts-based
representation of the data in W becomes more and more enhanced. The
GDCLS algorithm enforces sparsity in H using a scheme that penalizes the
number of non-zero entries in H. It is a hybrid algorithm that uses the
multiplicative update rule for updating W, while H is calculated using a
constrained least squares model as the metric. The algorithm follows:

Wic ← Wic((VHT)ic / (WHHT)ic)

Solve for H in the constrained least squares problem

(WTW + λI)H = WTV

Rephrase the constrained least squares step for finding H as

MinH {||V - WH||2 + λ||H||2}

From this it is seen that the parameter λ is a regularization value that is
used to balance the reduction of the metric

||V - WH||

with the enforcement of smoothness and sparsity of H.

Class NMFMultiplicativeUpdate uses a multiplicative update rule for W
and H, as proposed by Lee and Seung.

Hcj ← Hcj((W
TV)cj / (WTWH)cj)

Wic ← Wic((VHT)ic / (WHHT)ic)

This multiplicative method can be classified as a diagonally-scaled gradient
descent method.

D Vi j,
Vi j,

WH()i j,
--------------------- 

 log Vi j,– WH()i j,+

i j,
∑=
 Chapter 12. Nonnegative Matrix Factorization 149

The update algorithm can be specified either as a constructor argument, or using
the UpdateAlgorithm property. For instance:

INMFUpdateAlgorithm alg = new NMFAlsUpdate();
NMFact fact = new NMFact(alg);
fact.Factor(data, k);
Console.WriteLine(“ALS W = “ + fact.W);
Console.WriteLine(“ALS H = “ + fact.H);

fact.UpdateAlgorithm = new NMFGdClsUpdate();
fact.Factor(data, k);
Console.WriteLine(“GDCLS W = “ + fact.W);
Console.WriteLine(“GDCLS H = “ + fact.H);

12.2 Data Clustering Using NMF

NMath Stats provides class NMFClustering for performing data clustering using
iterative nonnegative matrix factorization (NMF), where each iteration step
produces a new W and H. At each iteration, each column v of V is placed into a
cluster corresponding to the column w of W which has the largest coefficient in H.
That is, column v of V is placed in cluster i if the entry hij in H is the largest entry in
column hj of H. Results are returned as an adjacency matrix whose i, jth value is 1 if
columns i and j of V are in the same cluster, and 0 if they are not.

Iteration stops when the clustering of the columns of the matrix V stabilizes. There
are three parameters that control iteration:

the maximum number of iterations to perform

the stopping adjacency, which is the number of consecutive times the
adjacency matrix remains unchanged before it is considered stabilized

the convergence check period. Computing the adjacency matrix can be a
somewhat expensive operation, so you may want to perform this operation
only every nth iteration.

For example, running a NMFClustering instance with maximum iterations 2000,
stopping adjacency 40, and convergence check period 10, computes a new
adjacency matrix every 10 iterations, and checks it against the previous adjacency
matrix. If they are the same, a count is incremented. The iteration stops when 40
consecutive unchanged adjacency matrices are recorded, or the maximum 2000
iterations are reached.
150 NMath Stats User’s Guide

Creating NMFClustering Instances

Class NMFClustering is parameterized on the NMF update algorithm to use
(Section 12.1). For instance:
NMFClustering<NMFDivergenceUpdate> nmfClustering =
 new NMFClustering<NMFDivergenceUpdate>();

The update algorithm can be changed post-construction using the Updater
property.

nmfClustering.Updater = new NMFGdClsUpdate();

The maximum iterations, stopping adjacency, and convergence check period can
be specified either as constructor parameters, or post-construction using the
MaxFactorizationIterations, StoppingAdjacency, and
ConvergenceCheckPeriod properties, respectively. The default maximum
number of iterations is 2000, the default stopping adjacency is 40, and the default
convergence check period is 10.

Performing the Factorization

The Factor() method performs the actual iterative factorization:

DoubleMatrix data; // data to be factored
int k; // number of columns in W
nmfClustering.Factor(data, k);

NMFClustering objects can factor data contained in either a DoubleMatrix or a
DataFrame object.

Cluster Results

After clustering, the Converged property checks if the iterative factorization
converged before hitting the default maximum number of iterations. Iterations
gets the total number of iterations performed in the most recent calculation. For
example:

if (nmfClustering.Converged) {
 Console.WriteLine("Factorization converged in {0} iterations.",
 nmfClustering.Iterations);
}
else {
 Console.WriteLine(
 "Factorization failed to converge in {0} iterations.",
 nmfClustering.MaxFactorizationIterations);
}

 Chapter 12. Nonnegative Matrix Factorization 151

If clustering converged, the final factors W and H are accessed through properties
W and H:

Console.WriteLine(“W = “ + nmfClustering.W);
Console.WriteLine(“H = “ + nmfClustering.H);

The Connectivity property returns the final adjacency matrix as an instance of
ConnectivityMatrix. The connectivity matrix is an adjacency matrix, A, such that
columns of the factored matrix are in the same cluster if A[i,j] == 1, and are in
different clusters if A[i,j] == 0. For instance:

ConnectivityMatrix connectivity = nmfClustering.Connectivity;
Console.WriteLine("Connectivity Matrix: ");
Console.WriteLine(connectivity.ToTabDelimited());

The ClusterSet property returns a ClusterSet (Section 11.3) describing the final
clusters:

ClusterSet cs = nmfClustering.ClusterSet;

// Print out the cluster each column belongs to
for (int i = 0; i < cs.N; i++) {
 Console.WriteLine("Column {0} belongs to cluster {1}",
 i, cs[i]);
}

// Print out the the members of each cluster
for (int i = 0; i < cs.NumberOfClusters; i++) {
 int[] members = cs.Cluster(i);
 Console.Write("Cluster number {0} contains: ", i);
 for (int j = 0; j < members.Length; j++) {
 Console.Write("{0} ", j);
 }
 Console.WriteLine();
}

Lastly, the Cost property gets the value of the cost function for the factorization.

double cost = nmfClustering.Cost;

The cost function is the function that is minimized by the NMF update algorithm.

Computing a Consensus Matrix

NMF uses an iterative algorithm with random starting values for W and H. This,
coupled with the fact that the factorization is not unique, means that if you cluster
the columns of V multiple times, you may get different final clusterings. The
consensus matrix is a way to average multiple clusterings, to produce a probability
estimate that any pair of columns will be clustered together.
152 NMath Stats User’s Guide

To compute the consensus matrix, the columns of V are clustered using NMF n
times. Each clustering yields a connectivity matrix. Recall that the connectivity
matrix is a symmetric matrix whose i, jth entry is 1 if columns i and j of V are
clustered together, and 0 if they are not. The consensus matrix is also a symmetric
matrix, whose i, jth entry is formed by taking the average of the i, jth entries of the
n connectivity matrices.

Thus, each i, jth entry of the consensus matrix is a value between 0, when columns
i and j are not clustered together on any of the runs, and 1, when columns i and j
were clustered together on all runs. The i, jth entry of a consensus matrix may be
considered, in some sense, a “probability” that columns i and j belong to the same
cluster.

NMath Stats provides class NMFConsensusMatrix for compute a consensus
matrix. NMFConsensusMatrix is parameterized on the NMF update algorithm to
use (Section 12.1). Additional constructor parameters specify the matrix to factor,
the order k of the NMF factorization (the number of columns in W), and the
number of clustering runs. For example:

DoubleMatrix data; // data to be factored
int k; // number of columns in W
int numberOfRuns = 70;

NMFConsensusMatrix<NMFDivergenceUpdate> consensusMatrix =
 new NMFConsensusMatrix<NMFDivergenceUpdate>(data, k,
 numberOfRuns);

The consensus matrix is computed at construction time, so be aware that this may
be an expensive operation. Post-construction, the NumberOfConvergedRuns
property gets the number of clustering runs where the NMF computation
converged:

Console.WriteLine("{0} runs out of {1} converged.",
 consensusMatrix.NumberOfConvergedRuns, numberOfRuns);

NMFConsensusMatrix provides a standard indexer for getting the element value
at a specified row and column in the consensus matrix. For example, this code gets
the probability that columns 2 and 7 will be clustered together:

double p = consensusMatrix[2, 7];

This code prints the entire consensus matrix:

Console.WriteLine("Consensus Matrix:");
Console.WriteLine(consensusMatrix.ToTabDelimited());
 Chapter 12. Nonnegative Matrix Factorization 153

A consensus matrix, C, can also used to perform a hierarhical clustering of the
columns of V (Section 11.3), using the distance function:

A ClusterAnalysis instance is constructed from a matrix containing numeric data.
Each row in the data set represents an object to be clustered. In this case, you’re
simply clustering the column numbers of V, so construct a matrix with one colunm
containing the numbers 0 to n-1, where n is the number of columns of V (and the
order of of the consensus matrix):

DoubleMatrix colNumbers =
 new DoubleMatrix(consensusMatrix.Order, 1, 0, 1);

Distance.Function distance =
 delegate(DoubleVector data1, DoubleVector data2) {
 int i = (int)data1[0];
 int j = (int)data2[0];
 return 1.0 - consensusMatrix[i, j];
 };

ClusterAnalysis ca =
 new ClusterAnalysis(colNumbers, distance);

After you’ve created a ClusterAnalysis object, the CutTree() method constructs a
set of clusters by cutting the hierarchical linkage tree either at the specified height,
or into the specified number of clusters. For example, this code cuts the linkage
tree to form three clusters:

ClusterSet clusters = ca.CutTree(3);

for (int i = 0; i < clusters.NumberOfClusters; i++) {
 int[] members = clusters.Cluster(i);
 Console.Write("Cluster {0} contains: ", i);
 for (int j = 0; j < members.Length; j++) {
 Console.Write("{0} ", members[j]);
 }
 Console.WriteLine();
}

distancei j, 1.0 Ci j,–=
154 NMath Stats User’s Guide

CHAPTER 13.
PARTIAL LEAST SQUARES

Partial Least Squares (PLS) is a technique that generalizes and combines features
from principal component analysis (Section 11.1) and multiple linear regression
(Chapter 7). It is particularly useful when you need to predict a set of response
(dependent) variables from a large set of predictor (independent variables).

As in multiple linear regression, the goal of PLS regression is to construct a linear
model

where Y is n cases by m variables response matrix, X is a n cases by p variables
predictor matrix, B is a p by m regression coefficients matrix, and E is a noise term
for the model which has the same dimensions as Y.

As in principal components regression, PLS regression produces factor scores as
linear combinations of the original predictor variables, so that there is no
correlation between the factor score variables used in the predictive regression
model. For example, suppose that we have a matrix of response variables Y, and a
large number of predictive variables X (in matrix form), some of which may be
highly correlated. A regression using factor extraction for this data computes the
score matrix T=XW for an appropriate matrix of weights W, and then considers the
linear regression model Y=TQ+E, where Q is a matrix of regression coefficient,
called loadings, for T, and E is an error term. Once the loadings Q are computed,
the above regression model is equivalent to Y=XB+E, with B=WQ, which can be
used as a predictive model.

PLS regression differs from principal components regression in the methods used
for extracting factor scores. While principal components regression computes the
weight matrix W reflecting the covariance structure between predictor variables,
PLS regression produces the weight matrix W reflecting the covariance structure
between the predictor and response variables.

For establishing the model with c factors, or components, PLS regression produces
a p by c weight matrix W for X such that T=XW. These weights are computed so
that each of them maximizes the covariance between responses and the
corresponding factor scores. Ordinary least squares regression of Y on T are then

Y XB E+=
 Chapter 13. Partial Least Squares 155

performed to produce Q, the loadings for Y (or weights for Y) such that Y=TQ+E.
Once Q is computed, we have Y=XB+E, where B=WQ.

13.1 Computing a PLS Regression

NMath Stats provides two classes for performing partial least squares (PLS)
regression, PLS1 and PLS2:

PLS1 is used when the responses, Y, in the model Y=XB+E consist of a
single variable. In this case Y is a vector containing the n response values.

PLS2 is used when the responses are multivariate. In this case Y is a matrix
composed of n rows with each row containing the m response variable
values.

Computing a PLS regression is accomplished by simply constructing a PLS1 or
PLS2 instance. The basic parameters are:

the matrix of predictor variables values

the response variable values (a vector for PLS1 and a matrix for PLS2)

an integer specifying the number of factors or components

For example:

DoubleMatrix A = ...
DoubleVector y = = ...
int numComponents = 3;

PLS1 pls = new PLS1(A, y, numComponents);

You can also invoke the Calculate() function on PLS1 or PLS2 to calculate a
regression on an existing instance:

pls.Calculate(A, y, numComponents);

13.2 Error Checking

After computing a PLS regression, always check the IsGood property to ensure
that there were no errors in performing the calculation. If IsGood returns the
false, the Message property will contain a message indicating the nature of the
error. For example, the following code checks that the calculation succeeded, and if
not, prints out the error message and returns:
156 NMath Stats User’s Guide

if (pls.IsGood) {
 Console.WriteLine("Success");
}
else {
 Console.WriteLine("PLS calculation failed: " + pls.Message);
 return;
}

One common source of calculation failure occurs when the number of components
specified for the calculation is greater than the rank of X, the matrix of predictor
variables. If this occurs, try decreasing the number of components for the
regression until the calculation succeeds. You can also use Cross Validation
(Section 13.6) to determine the optimal number of components.

If the calculation fails due to the non-convergence of the Iterative Power Method
for computing dominant eigenvectors, you may want to adjust the maximum
number of iterations and/or the tolerance for this method (Section 13.5).

13.3 Predicted Values

Once you’ve performed a PLS regression (Section 13.1), you can calculate the
predicted value of the response variable for a given value of the predictor variable.

double plsYhat = pls.Predict(x);

or for a set of predictor values:

DoubleVector plsYhatVec = pls.Predict(A);

13.4 Analysis of Variance

NMath Stats provides the classes PLS1Anova and PLS2Anova for performing a
classic analysis of variance (ANOVA) for PLS1 and PLS2 regression models. These
classes calculate the sum of squares total, sum of squares residual, mean square
error for prediction, and the coefficient of determination. For instance:

PLS2Anova plsAnova = new PLS2Anova(pls);
DoubleVector ssTotal = plsAnova.SumOfSquaresTotal;
DoubleVector ssResiduals = plsAnova.SumOfSquaresResiduals;
DoubleVector se = plsAnova.StandardError;
DoubleVector rms = plsAnova.RootMeanSqrErrorPrediction;
DoubleVector rSquared = plsAnova.CoefficientOfDetermination;
 Chapter 13. Partial Least Squares 157

13.5 PLS Algorithms

NMath Stats provides classes PLS1NipalsAlgorithm and PLS2NipalsAlgorithm
which implement the Nonlinear Iterative PArtial Least Squares (NIPALS)
algorithm for PLS1 and PLS2 respectively, and class PLS2SimplsAlgorithm
which implements the Straightforward IMplementation of PLS (SIMPLS)
algorithm for PLS2.

The algorithm to use may be specified in the constructor for a PLS1 or PLS2 object,
or set through the Calculator property:

PLS2SimplsAlgorithm calculator = new PLS2SimplsAlgorithm();
pls.Calculator = calculator;

NOTE—Note that setting the calculator through the property forces a recalculation if
data is present.

The SIMPLS algorithm for PLS2 uses the Iterative Power Method for computing
dominant eigenvectors. This algorithm produces a candidate eigenvector during
each iteration which is normalized with respect to the l-infinity norm. When the
two-norm of the difference between the current eigenvector, ei, and the
eigenvector computed on the previous iteration, ei-1, is less than a specified
tolerance, the algorithm stops. The maximum number of iteration to perform as
well as the tolerance may be specified on the algorithm object.

If your PLS2 with SIMPLS calculation fails because the power method failed to
converge, you may want to adjust these values.(If the calculation failure is due to
non-convergence of the power method, this will be indicated in the Message
property of the PLS2 object.

13.6 Cross Validation

Cross validation is a model evaluation method which measures how well a model
makes predictions for data that it has not already sees (as with residuals). To
accomplish this, some of the data is removed before the model is constructed.
Once the model is constructed, the data that was removed can be used to test the
performance of the model on the “new” data. The following methods are typically
used:

The Holdout Method

The simplest kind of cross validation is the holdout method. The data set is
separated into two sets, called the training set and the testing set. The PLS
regression is constructed using the training set, then the regression model
is asked to make predictions for the responses for the predictor data in the
158 NMath Stats User’s Guide

training set. The errors it makes are accumulated to give the mean square
error.

K-fold Cross Validation

In k-fold cross validation, the data set is divided into k subsets, and the hold-
out method is repeated k times. Each time one of the k subsets is used as the
test set and the other k-1 subsets are put together to form a training set. The
average mean square error is then computed across all k trials.

Leave-One-Out Cross Validation

Leave-one-out cross validation is the result of taking k-fold cross validation
to its logical extreme, with k equal to n, the number of data points in the set.
That means that n separate times, the PLS model is computed using all the
data except for one point and a prediction is made for that point. As before
the average mean square error is computed and used to evaluate the
model.

NMath Stats provides two classes for doing k-fold cross validation on PLS models.
PLS1CrossValidation is used when the response data is univariate, and
PLS2CrossValidation is used when the response data is multivariate. To perform
a cross validation calculation, you need to specify the data (Section 13.1), a PLS
calculation algorithm (Section 13.5), and an algorithm for dividing the data into
subsets.

To specify how subsets for k-fold cross validation are generated from the data, you
must provide the cross validation class with an object implementing the
ICrossValidationSubsets interface. NMath Stats provides classes
LeaveOneOutSubsets, which implement the leave-one-out strategy, and
KFoldSubsets, which implements k-fold with arbitrary k.

The average mean square error for the cross validation calculation is available as a
property on the cross validation object. Also available is an array of
PLS1CrossValidationResult or PLS2CrossValidationResult objects. Each result
object contains testing and training data that was used for each cross validation
calculation and the associated mean square error.
 Chapter 13. Partial Least Squares 159

160 NMath Stats User’s Guide

CHAPTER 14.
GOODNESS OF FIT

NMath Stats provides classes GoodnessOfFit and GoodnessOfFitParameter for
testing the goodness of fit of least squares model-fitting classes, such as
LinearRegression, PolynomialLeastSquares, and OneVariableFunctionFitter:

Available statistics include the residual standard error, the coefficient of
determination (R2 and "adjusted" R2), the F-statistic for the overall model with its
numerator and denominator degrees of freedom, and standard errors, t-statistics,
and corresponding (two-sided) p-values for the model parameters.

This chapter describes how to use the goodness of fit classes.

NOTE—GoodnessOfFit and GoodnessOfFitParameter are a generalization of classes
LinearRegressionAnova and LinearRegressionParameter (Chapter 7), respectively. As
such, they duplicate the functionality of those classes for testing the goodness of fit of a
LinearRegression, with the exception of the beta coefficients.

14.1 Significance of the Overall Model

Class GoodnessOfFit tests the overall model significance for least squares model-
fitting classes, such as LinearRegression, PolynomialLeastSquares, and
OneVariableFunctionFitter.

GoodnessOfFit instances can be constructed from:

A LinearRegression object.

A PolynomialLeastSquares object, plus the vectors of x and y data.

A OneVariableFunctionFitter object, plus the vectors of x and y data and
the solution found by the fitter.
 Chapter 14. Goodness of Fit 161

For example:

DoubleVector x = new DoubleVector(0.3330, 0.1670, 0.0833, 0.0416,
 0.0208, 0.0104, 0.0052);
DoubleVector y = new DoubleVector(3.636, 3.636, 3.236, 2.660,
 2.114, 1.466, 0.866);

int degree = 2;
PolynomialLeastSquares pls =
 new PolynomialLeastSquares(degree, x, y);

GoodnessOfFit gof = new GoodnessOfFit(pls, x, y);

A variety of properties are provided for assessing the significance of the overall
model:

RegressionSumOfSquares gets the regression sum of squares. This
quantity indicates the amount of variability explained by the model. It is
the sum of the squares of the difference between the values predicted by
the model and the mean.

ResidualSumOfSquares gets the residual sum of squares. This is the sum
of the squares of the differences between the predicted and actual
observations.

ModelDegreesOfFreedom gets the number of degrees of freedom for the
model, which is equal to the number of predictors in the model.

ErrorDegreesOfFreedom gets the number of degress of freedom for the
model error, which is equal to the number of observations minus the
number of model paramters.

RSquared gets the coefficient of determination.

AdjustedRsquared gets the adjusted coefficient of determination.

MeanSquaredResidual gets the mean squared residual. This quantity is the
equal to ResidualSumOfSquares / ErrorDegreesOfFreedom (equals the
number of observations minus the number of model parameters).

MeanSquaredRegression gets the mean squared for the regression. This is
equal to RegressionSumOfSquares / ModelDegreesOfFreedom (equals
the number of predictors in the model).

FStatistic gets the overall F statistic for the model. This is equal to the
ratio of MeanSquaredRegression / MeanSquaredResidual. This is the
statistic for the hypothesis test where the null hypothesis, is that all the
parameters are equal to 0 and the alternative hypothesis is that at least one
paramter is nonzero.

FStatisticPValue gets the p-value for the F statistic.

H0
162 NMath Stats User’s Guide

For example, if lr is a LinearRegression object:

GoodnessOfFit gof = new GoodnessOfFit(lr);
double sse = gof.ResidualSumOfSquares;
double r2 = gof.RSquared;
double fstat = gof.FStatistic;
double fstatPval = gof.FStatisticPValue;

Lastly, the FStatisticCriticalValue() function computes the critical value for
the F statistic at a given significance level:

double critVal = gof.FStatisticCriticalValue(.05);

14.2 Significance of Parameters

Instances of class GoodnessOfFitParameter test statistical hypothesis about
individual parameters in a least squares model-fit.

Creating Goodness of Fit Parameter Objects

You can get an array of test objects for all parameters in a GoodnessOfFit using the
Parameters property:

GoodnessOfFitParameter[] params = gof.Parameters;

Properties of Goodness of Fit Parameters

Class GoodnessOfFitParameter provides the following properties:

Index gets the index of the parameter in the overall model.

Value gets the value of the parameter.

StandardError gets the standard error of the parameter.

DegreesOfFreedom gets the degrees of freedom of the parameter.
 Chapter 14. Goodness of Fit 163

Hypothesis Tests

Class GoodnessOfFitParameter provides the following methods for testing
statistical hypotheses regarding parameter values:

TStatisticPValue() returns the p-value for a two-sided t test with the
null hypothesis that the parameter is equal to a given test value, versus the
alternative hypothesis that it is not.

TStatistic() returns the value of the t statistic for the null hypothesis that
the parameter value is equal to a given test value.

TStatisticCriticalValue() gets the critical value for the t-statistic for a
given alpha level.

ConfidenceInterval() returns a confidence interval for the
parameter for a given alpha level.

For example, this code tests whether a parameter in a model is significantly
different than zero:

double tstat = param.TStatistic(0.0);
double pValue = param.TStatisticPValue(0.0);
double criticalValue = param.TStatisticCriticalValue(0.05);
Interval confidenceInterval = param.ConfidenceInterval(0.05);

1 α–
164 NMath Stats User’s Guide

CHAPTER 15.
PROCESS CONTROL

Statistical process control uses statistical measures to monitor and control a
process. NMath Stats provides classes for measuring process quality capability
(Cp, Cpm, and Cpk), performance (Pp and Ppk), and Z bench.

15.1 Process Capability

Class ProcessCapability computes the process capability parameters Cp, Cpm,
Cpk for normally distributed data. If the data are not normal, the BoxCox
transform can be used.

Instance of ProcessCapability are constructed from a vector of input data
measurements, a subgroup size (the data must laid out in continuous subgroups of
equal size), lower and upper specification limits, and the control target process
mean.

DoubleVector data = ...
int size = 5;
double LSL = 73.95;
double USL = 74.05;
double target = 74.0;
var pc = new ProcessCapability(data, size, LSL, USL, target);

If no target is given, the mean of the specification limits is used.

The standard deviation is computed using the mean of the ranges method, referred
to as the UWAVE-R method in the R qcc package.

ProcessCapability provides the following properties:

CI95 gets the 95% confidence interval. 95% of the time the process mean
will reside within this interval. The estimate is based on the t-distribution
(t-score) if there are 30 or fewer samples; otherwise, the normal distribution
is used (z-score).

Cp gets the process capability.
 Chapter 15. Process Control 165

Cpk gets the process capability index.

Cpm gets the Taguchi capability index.

ProcessSigma gets the estimate of the process standard deviations used to
compute Cp, Cpk, and Cpm. The standard deviation is estimated using the
unweighted averages of the subgroup ranges.

IQR gets the interquartile range using the Minitab interpolation method.
This method uses interpolation to find the upper and lower quartiles before
returning the IQR. Therefore, the IQR may be computed from points that
do not exist in the data set.

15.2 Process Performance

Class ProcessPerformance computes the process performance indices Ppk and Pp
for normally distributed data. If the data are not normal, the BoxCox transform can
be used.

Instance of ProcessPerformance are constructed from a vector of input data
measurements, and lower and upper specification limits.

ProcessPerformance provides the following properties:

Ppk gets the process performance index.

Pp gets the process performance.

For example:

DoubleVector data = ...
double LSL = 1.90;
double USL = 2.10;
var pp = new ProcessPerformance(data, LSL, USL);
Console.WriteLine(pp.Ppk);

15.3 Z Bench

Class ZBench computes the Z bench (the Z value that corresponds to the total
probability of a defect,) the percent defective, and the parts per million defective.
166 NMath Stats User’s Guide

Instance of ZBench are constructed from a vector of input data measurements, and
lower and upper specification limits.

DoubleVector data = ...
double LSL = 1.90;
double USL = 2.10;
var zb = new ZBench(data, LSL, USL);

Alternatively, a single-sided test can be performed using only a lower or upper
specification limit. The test type is specified using a value from the ControlLimits
enumeration: DoubleEnded, LowerOnly, or UpperOnly. For example:

DoubleVector data = ...
double USL = 2.10;
var zb = new ZBench(data, ControlLimits.UpperOnly, USL);

Class ZBench provides the following properties:

ZBench gets the Z Bench.

PercentDefective gets the percent defective.

PPMDefective gets the parts per million defective.
 Chapter 15. Process Control 167

168 NMath Stats User’s Guide

INDEX
Symbols
.NET Framework 2, 4

A
adjacency matrix 152
adjusted R2 161
ADO.NET objects

converting to data frames 15
creating from data frames 36

alpha levels 69
ALS 148
Alternating Least Squares (ALS) 148
analysis of variance (ANOVA) 103
ANOVA 103
ANOVA regression parameters 112
AnovaRegressionFactorParam 114
AnovaRegressionInteractionParam 11

4
AnovaRegressionParameter 114
Any CPU build configuration 3
API documentation 4
applying functions 12
arithmetic mean 44
Assemblies 3
autocorrelation 48

B
beta distribution 55
beta function 52
BetaDistribution 53, 55
BiasType 46, 47

binary serialization 36
binomial coefficient 51
binomial distribution 56
BinomialDistribution 53, 56
boolean columns 8
Box-Cox power transformations 68

C
categorical vectors 28
CDF 54
cell data 110, 111
cell means 112
CenterSpace.NMath.Stats

namespace 3
central moments 47
central tendency 44
centroid linkage 138
charting 5
chi-square distribution 56
ChiSquareDistribution 53, 56
choose function 51
city-block (Manhattan) distance 136
cluster analysis 135
ClusterAnalysis 135, 139, 154
clustering 150
ClusterSet 141, 144
code examples 4
coefficient of determination 161
column names 7, 8, 19
columns

accessing 10
Index 169

170 NMa
adding data 9
creating 8
exporting to a string 13
exporting to a vector 13
exporting to an array 13
properties 10
removing data 9
reordering 10

combinatorial functions 51
Common Language Specification 1
compiled Help 4
complete linkage 138
complete orthogonal decomposition 86
confidence interval 165
consensus matrix 152
contacting technical support 6
contingency table 83
convergence check period 150
cophenetic distance 142
CORegressionCalculation 86
correlated random inputs 65
correlation 48
counts 42
covariance 47
covariance matrix 47
Cp 165
Cpk 165, 166
Cpm 165, 166
critical values 106, 109, 127
Cronbach’s alpha 48
cross validation 159
cross-tabulation 32
cumulative distribution function 54

D
data frames

adding columns 16
adding rows 17
column properties 10
column types 8
creating 13
exporting to a matrix 34

exporting to a string 35
exporting to ADO.NET 36
permuting rows and columns 27
properties 19
removing columns 16
removing rows 17
sorting 27

DataFrame 7–37
datetime columns 8
deciles 43
decimal types 40
descriptive statistics 39
design variables 99
DFBoolColumn 8
DFColumn 8
DFDateTimeColumn 8
DFGenericColumn 8
DFIntColumn 8
DFNumericColumn 8
DFStringColumn 8
diagonally-scaled gradient descent 149
Distance 136
distance functions 136
Distance.Function 136
distribution classes 53
documentation 4

readme 4
Reference Guide 4
User’s Guide 4

dummy variable regression parameters
in ANOVA 114

dummy variables 99
Durbin-Watson statistic 48

E
effects encoding 112
Euclidean distance 136
exponential distribution 57
ExponentialDistribution 53, 57

F
F distribution 57
th Stats User’s Guide

F test 81
Factor 25, 28, 104, 125
Factor analysis 131
factor extraction 131
factor rotation 131
factor score 155
factor score coefficients 135
factor scores 135
factorial 51
factors 28

accessing 29
creating 28
grouping by 30
properties 29

FDistribution 53, 57
Fisher transformation 48
Fisher's Exact Test 84
Frobenius matrix norm 147

G
G statistic 100
gamma distribution 58
gamma function 52
GammaDistribution 53, 58
gaussian distribution 62
GDCLS 149, 150
generic columns 8
generic functions 12
geometric distribution 58
geometric mean 44
GeometricDistribution 53, 58
goodness of fit 100, 161
GoodnessOfFit 161
GoodnessOfFitParameter 161, 163
Gradient Descent - Constrained Least

Squares (GDCLS) 149
grand mean 105, 109, 112
graphing 5
group means 105, 112
grouping by factors 25, 30
groupings 25, 30

H
harmonic mean 44
hold out method 158
Hosmer Lemeshow statistic 101
hypothesis tests 69

creating 70
properties 69, 71

HypothesisType 69

I
IDFColumn 8
ILogisticRegressionCalc 97
incomplete beta 52
incomplete gamma 52
InputVariableCorrelator 65
integer columns 8
intercept parameter 85
intercept parameters 86
interquartile range 46, 166
inverse CDF 54
inverse cumulative distribution

function 54
inverse Fisher transformation 48
IRandomVariableMoments 54
IRegressionCalculation 86
ISerializable interface 36
Iterative Power Method 157

J
Johnson system of distributions 59
JohnsonDistribution 59

K
k-fold cross validation 159
KMeansClustering 142, 143
Kolmogorov-Smirnov test 121, 122
Kruskal-Wallis rank sum test 121, 124
KruskalWallisTest 124
kurtosis 47, 54
Index 171

172 NMa
L
least squares minimization 86
linear regressions 85

creating 85
modifying 89
predictions 88, 102
results 87
significance of parameters 92
significance of the overall model 94

LinearRegression 85
LinearRegressionAnova 94
LinearRegressionParameter 92, 93, 114
Linkage 137
linkage functions 137
linkage tree 140
Linkage.Function 137
loading matrix 130
log binomial 51
log factorial 51
log gamma 52
logical functions 42, 49
logistic regression 97
LogisticDistribution 54, 60
LogisticRegression 97
LogisticRegressionFitAnalysis 100
log-normal distribution 61
LognormalDistribution 54, 61

M
matrices

converting to data frames 14
creating from data frames 34

maximum (Chebychev) distance 137
mean 44, 54
mean deviation 46
mean of the ranges method 165
median 44
median deviation from mean 46
median linkage 139
Microsoft Chart Controls for .NET 5
min/max functions 43

missing values 11, 41
mode 44
multiple linear regression 85
multiplicative update rule 149
multivariate techniques 129

N
namespaces 3
NaN values 41
negative binomial distribution 61
NegativeBinomialDistribution 54, 61
NewtonRaphsonParameterCalc 97
NIPALS 158
NMath Core 2, 3
NMathStatsChart 5
NMF 147
NMFClustering 150, 153
Nonlinear Iterative PArtial Least

Squares (NIPALS) 158
nonnegative matrix factorization

(NMF) 147, 150
Non-parametric tests 121
normal distribution 62
NormalDistribution 54, 62
Not-A-Number values 41
numeric columns 8

O
OneSampleKSTest 121
OneSampleTTest 74
OneSampleZTest 73
one-way ANOVA 103

accessing the ANOVA table 105,
126

one-way RANOVA 107
accessing the RANOVA table 108

OneWayAnova 103
OneWayAnovaTable 105, 125
OneWayRanova 107
OneWayRanovaTable 108
th Stats User’s Guide

P
Partial Least Squares 155
parts per million defective 166, 167
PDF 54
Pearson chi-square statistic 101
Pearson correlation 48
Pearson's chi-square test 82
PearsonsChiSquareTest 82
percent defective 166, 167
percentiles 43
permuting columns 10
permuting data frames 27
plotting 5
poisson distribution 62
PoissonDistribution 54, 62
power distance 137
Pp 165, 166
Ppk 165, 166
predictions 88, 102
predictor matrix 89
principal component analysis 129
probability density function 54
probability distributions 53
ProbabilityDistribution 54
process capability 165
process capability index 166
process performance 166
ProcessCapability 165
ProcessPerformance 166
product

documentation 4
features 1
overview 1
software requirements 2

Q
QR decomposition 86
QRRegressionCalculation 86
quadratic mean 45
quartiles 43

R
R2 161
random samples 25
ranks 43
readme file 4
ReducedVarianceInputCorrelator 65
regression calculators 86
regression matrix 89
regularization 149
reordering columns 10
reordering data frames 27
residual standard error 161
RMS 45
root mean square 45
row keys 7, 17, 19

modifying 19

S
sampling 25
serialization 36
SIMPLS 158
single linkage 138
singular value decomposition 86
skewness 46, 54
SOAP serialization 36
software requirements 2
SortingType 27, 43, 48
sparsity 149
Spearman’s rank correlation

coefficient 121
Spearman’s rho 48, 121
special functions 51
spread 45
squared Euclidean distance 136
SSE 45
standard deviation 46
statistical functions 39

data types 39
missing values 41

statistical process control 165
StatsFunctions 39–52
Index 173

174 NMa
StatsSettings 11
stopping adjacency 150
Straightforward IMplementation of PLS

(SIMPLS) 158
string columns 8
Student’s t distribution 63
subject means 109
Subset 22
subsets 21

accessing elements 23
arithmetic operations 24
creating 22
logical operations 23
properties 23

sum of squared errors 45
sums 42
SVDRegressionCalculation 86

T
t test 74, 76, 79
tabulation 32
Taguchi capability index 166
TDistribution 54, 63
technical support 6
time series 48
treatment means 109
triangular distribution 63
TriangularDistribution 54, 63
trimmed mean 45
trimming data 45
TrustRegionParameterCalc 98
TwoSampleFTest 81
TwoSampleKSTest 121, 122
TwoSamplePairedTTest 76
TwoSampleUnpairedTTest 79
TwoSampleUnpairedUnequalTTest 79
two-way ANOVA 109

accessing the ANOVA table 110
two-way RANOVA 117
TwoWayAnova 109
TwoWayAnovaTable 110

TwoWayRanova 117
TwoWayRanovaTable 118
TwoWayRanovaTwo 117
TwoWayRanovaTwoTable 119
typographic conventions 5

U
uniform distribution 64
UniformDistribution 54, 64
unweighted average linkage 138

V
variance 46, 54
variance inflation factor 88
varimax rotation 131
visualization 5
Von Neumann ratio 48

W
Ward’s linkage 139
Weibull distribution 64
WeibullDistribution 54, 64
weighted average linkage 138
weighted mean 45

Z
Z Bench 167
Z bench 165, 166
z test 73
ZBench 166
th Stats User’s Guide

	Contents
	Chapter 1. Introduction
	1.1 Product Features
	1.2 Software Requirements
	1.3 Namespaces
	1.4 Building and Deploying NMath Stats Applications
	1.5 Documentation
	This Manual

	1.6 Visualization
	1.7 Technical Support

	Chapter 2. Data Frames
	2.1 Column Types
	Creating Columns
	Adding and Removing Data
	Accessing Column Data
	Column Properties
	Reordering Column Data
	Missing Values
	Transforming Column Data
	Exporting Column Data

	2.2 Creating DataFrames
	Creating Empty DataFrames
	Creating DataFrames from Arrays of Columns
	Creating DataFrames from Matrices
	Creating DataFrames from ADO.NET Objects
	Creating DataFrames from Strings

	2.3 Adding and Removing Columns
	2.4 Adding and Removing Rows
	Modifying Row Keys

	2.5 Properties of DataFrames
	2.6 Accessing DataFrames
	Accessing Elements
	Accessing Columns
	Accessing Rows

	2.7 Subsets
	Creating Subsets
	Properties of Subsets
	Accessing Elements
	Logical Operations on Subsets
	Arithmetic Operations on Subsets
	Manipulating Subsets
	Groupings
	Random Samples

	2.8 Accessing Sub-Frames
	2.9 Reordering DataFrames
	Sorting Rows
	Permuting Rows and Columns

	2.10 Factors
	Creating Factors
	Properties of Factors
	Accessing Factors
	Creating Groupings with Factors

	2.11 Cross-Tabulation
	Column Delegates
	Applying Column Delegates to Tabulated Data

	2.12 Exporting Data from DataFrames
	Exporting to a Matrix
	Exporting to a String
	Exporting to an ADO.NET DataTable
	Binary and SOAP Serialization

	Chapter 3. Descriptive Statistics
	3.1 Column Types
	3.2 Missing Values
	3.3 Counts and Sums
	3.4 Min/Max Functions
	3.5 Ranks, Percentiles, Deciles, and Quartiles
	3.6 Central Tendency
	3.7 Spread
	3.8 Shape
	3.9 Covariance, Correlation, and Autocorrelation
	3.10 Sorting
	3.11 Logical Functions

	Chapter 4. Special Functions
	4.1 Combinatorial Functions
	4.2 Gamma Function
	4.3 Beta Function

	Chapter 5. Probability Distributions
	5.1 Distribution Classes
	Beta Distribution
	Binomial Distribution
	Chi-Square Distribution
	Exponential Distribution
	F Distribution
	Gamma Distribution
	Geometric Distribution
	Johnson Distribution
	Logistic Distribution
	Log-Normal Distribution
	Negative Binomial Distribution
	Normal Distribution
	Poisson Distribution
	Student’s t Distribution
	Triangular Distribution
	Uniform Distribution
	Weibull Distribution

	5.2 Correlated Random Inputs
	Constructing Correlator Instances
	Correlating Random Inputs
	Correlator Properties
	Convenience Method

	5.3 Box-Cox Power Transformations

	Chapter 6. Hypothesis Tests
	6.1 Common Interface
	Static Properties
	Creating Hypothesis Test Objects
	Properties of Hypothesis Test Objects
	Modifying Hypothesis Test Objects
	Printing Results

	6.2 One Sample Z-Test
	6.3 One Sample T-Test
	6.4 Two Sample Paired T-Test
	6.5 Two Sample Unpaired T-Test
	6.6 Two Sample F-Test
	6.7 Pearson’s Chi-Square Test
	6.8 Fisher’s Exact Test

	Chapter 7. Linear Regression
	7.1 Creating Linear Regressions
	Parameter Calculation by Least Squares Minimization
	Intercept Parameters

	7.2 Regression Results
	Variance Inflation Factor

	7.3 Predictions
	7.4 Accessing and Modifying the Model
	Accessing and Modifying Predictors
	Accessing and Modifying Observations
	Accessing and Modifying the Intercept Option
	Updating the Entire Model

	7.5 Significance of Parameters
	Creating Linear Regression Parameter Objects
	Properties Linear Regression Parameters
	Hypothesis Tests
	Updating Linear Regression Parameters

	7.6 Significance of the Overall Model

	Chapter 8. Logistic Regression
	8.1 Regression Calculators
	8.2 Creating Logistic Regressions
	Design Variables

	8.3 Check for Convergence
	8.4 Goodness of Fit
	8.5 Parameter Estimates
	8.6 Predicted Probabilities

	Chapter 9. Analysis of Variance
	9.1 One-Way ANOVA
	Creating One-Way ANOVA Objects
	The One-Way ANOVA Table
	Grand Mean, Group Means, and Group Sizes
	Critical Value of the F Statistic
	Updating One-Way ANOVA Objects

	9.2 One-Way Repeated Measures ANOVA
	Creating One-Way RANOVA Objects
	The One-Way RANOVA Table
	Grand Mean, Subject Means, and Treatment Means
	Critical Value of the F Statistic
	Updating One-Way RANOVA Objects

	9.3 Two-Way ANOVA
	Creating Two-Way ANOVA Objects
	The Two-Way ANOVA Table
	Cell Data
	Grand Mean, Cell Means, and Group Means
	ANOVA Regression Parameters

	9.4 Two-Way Repeated Measures ANOVA
	Creating Two-Way RANOVA Objects
	Two-Way RANOVA Tables

	Chapter 10. Non-Parametric Tests
	10.1 One Sample Kolmogorov-Smirnov Test
	10.2 Two Sample Kolmogorov-Smirnov Test
	10.3 Shapiro-Wilk Test
	10.4 One Sample Anderson-Darling Test
	10.5 Kruskall-Wallis Test
	Creating Kruskall-Wallis Objects
	The Kruskall-Wallis Table
	Ranks, Grand Mean Ranks, Group Means Ranks, and Group Sizes
	Critical Value of the Test Statistic
	Updating Kruskall-Wallis Test Objects

	Chapter 11. Multivariate Techniques
	11.1 Principal Component Analysis
	Creating Principal Component Analyses
	Principal Component Analysis Results

	11.2 Factor Analysis
	Creating Factor Analyses
	Factor Analysis Results
	Factor Scores

	11.3 Hierarchical Cluster Analysis
	Distance Functions
	Linkage Functions
	Creating Cluster Analyses
	Cluster Analysis Results
	Reusing Cluster Analysis Objects

	11.4 K-Means Clustering
	Creating KMeansClustering Objects
	Stopping Criteria
	Clustering
	Cluster Analysis Results

	Chapter 12. Nonnegative Matrix Factorization
	12.1 Nonnegative Matrix Factorization
	Update Algorithms

	12.2 Data Clustering Using NMF
	Creating NMFClustering Instances
	Performing the Factorization
	Cluster Results
	Computing a Consensus Matrix

	Chapter 13. Partial Least Squares
	13.1 Computing a PLS Regression
	13.2 Error Checking
	13.3 Predicted Values
	13.4 Analysis of Variance
	13.5 PLS Algorithms
	13.6 Cross Validation

	Chapter 14. Goodness of Fit
	14.1 Significance of the Overall Model
	14.2 Significance of Parameters
	Creating Goodness of Fit Parameter Objects
	Properties of Goodness of Fit Parameters
	Hypothesis Tests

	Chapter 15. Process Control
	15.1 Process Capability
	15.2 Process Performance
	15.3 Z Bench

	Index

