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CHAPTER 1.  
INTRODUCTION

Welcome to the NMath Stats User’s Guide.

NMath Stats is part of CenterSpace Software’s NMath™ product suite, which 
provides object-oriented components for mathematical, engineering, scientific, 
and financial applications on the .NET platform. NMath Stats provides functions 
for statistical computation, including descriptive statistics, probability 
distributions, combinatorial functions, multiple linear regression, hypothesis 
testing, and analysis of variance.

Fully compliant with the Microsoft Common Language Specification, all NMath 
Stats routines are callable from any .NET language, including C#, Visual 
Basic.NET, and Managed C++.

1.1 Product Features

The features of NMath Stats include:

A data frame class for holding data of various types (numeric, string, 
boolean, datetime, and generic), with methods for appending, inserting, 
removing, sorting, and permuting rows and columns.

Functions for computing descriptive statistics, such as mean, variance, 
standard deviation, percentile, median, quartiles, geometric mean, 
harmonic mean, RMS, kurtosis, skewness, and many more. 

Special functions, such as factorial, log factorial, binomial coefficient, log 
binomial, log gamma, incomplete gamma, beta, and incomplete beta. 

Probability density function (PDF), cumulative distribution function 
(CDF), inverse CDF, and random variable moments for a variety of 
probability distributions. 

Multiple linear regression and logistic regression. 
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Basic hypothesis tests, such as z-test, t-test, F-test, and Pearson’s chi-square 
test, with calculation of p-values, critical values, and confidence intervals. 

One-way and two-way analysis of variance (ANOVA) and analysis of 
variance with repeated measures (RANOVA).

Non-parametric tests, such as the Kolmogorov-Smirnov test and Kruskal-
Wallis rank sum test.

Multivariate statistical analyses, including principal component analysis, 
factor analysis, hierarchical cluster analysis, and k-means cluster analysis.

Nonnegative matrix factorization (NMF), and data clustering using NMF.

Partial least squares (PLS).

Statistical process control.

Visualization using the Microsoft Chart Controls for .NET.

1.2 Software Requirements

NMath Stats requires the following additional software to be installed on your 
system:

NMath Stats depends on NMath, the foundational library in the NMath 
product suite. NMath must be installed on your system prior to building or 
executing NMath Stats code.

To use the NMath Stats library, you need the Microsoft .NET Framework 
installed on your system. The .NET Framework is available without cost 
from:

http://msdn.microsoft.com/netframework

Use of Microsoft Visual Studio .NET (or other .NET IDE) is strongly 
encouraged. However, the .NET Framework includes command line 
compilers for .NET languages, so an IDE is not strictly required. 

Viewing PDF documentation requires Adobe Acrobat Reader, available 
without cost from:

http://www.adobe.com 
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1.3 Namespaces

All types in NMath Stats are in the CenterSpace.NMath.Stats namespace. To 
avoid using fully qualified names, preface your code with an appropriate 
namespace statement. For example, in C#:

using CenterSpace.NMath.Stats;

In Visual Basic.NET:

imports CenterSpace.NMath.Stats

All NMath Stats code shown in this manual assumes the presence of such a 
namespace statement.

NOTE—In most cases, you must also preface your code with a namespace statement 
for the CenterSpace.NMath.Core namespace.

1.4 Building and Deploying NMath Stats 
Applications

The NMath Stats installer places assembly NMathStats.dll in directory 
<installdir>/Assemblies, and in your global assembly cache. To use NMath 
Stats types in your application, add a reference to NMathStats.dll. 

NMath Stats depends on NMath, the foundational library in the NMath product 
suite, so you must also add a reference to NMath.dll, as described in the NMath 
User’s Guide.

You can build your application using the Any CPU build configuration, and deploy 
to either 32-bit or 64-bit environments. (If you are building for .NET 4.5 or higher, 
also ensure that the Prefer 32-bit flag is unchecked, under Build | Platform 
target in your project properties.)

NOTE—A valid license key must accompany your deployed NMath Stats code. For 
more information, see “NMath License Key” in the NMath User’s Guide.
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1.5 Documentation

NMath Stats includes the following documentation:

The NMath Stats User’s Guide (this manual)

This document contains an overview of the product, and instructions on 
how to use it. You are encouraged to read the entire User’s Guide. The 
NMath Stats User’s Guide is installed in:

installdir/Docs/NMath.Stats.UsersGuide.pdf

An HTML version of the NMath Stats User’s Guide may be viewed online 
using your browser at:

http://www.centerspace.net/doc/NMathStats/user

The NMath Stats Reference

This document contains complete API reference documentation in com-
piled HTML Help format, enabling you to browse the NMath Stats library 
just like the .NET Framework Class Library. The NMath Stats Reference is 
installed in:

installdir/Docs/NMath.Stats.Reference.chm

NOTE—Links to types in the .NET Framework will be broken unless you 
have the .NET Framework installed on your machine.

HTML reference documentation may be viewed online using your browser 
at:

http://www.centerspace.net/doc/NMathSuite/ref

A readme file

This document describes the results of the installation process, how to 
build and run code examples, and lists any late-breaking product issues. 
The readme file is installed in:

installdir/readme.txt

This Manual

This manual assumes that you are familiar with the basics of .NET programming 
and object-oriented technology. 

Most code examples in this manual use C#; a few are shown in Visual Basic.NET. 
However, all NMath Stats routines are callable from any .NET language.
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This manual uses the following typographic conventions:

1.6 Visualization

NMath Stats can be easily combined with the free Microsoft Chart Controls for 
.NET to create a complete data analysis and visualization solution. The Microsoft 
Chart Controls for .NET are available as a separate download for .NET 3.5. 
Beginning in .NET 4.0, the Chart controls are part of the .NET Framework.

NMath Stats provides convenience methods for plotting NMath Stats types using 
the Microsoft Chart Controls.  For example, this code plots the probability density 
function (PDF) of the specified gamma distribution:

double alpha = 9.0;
double beta = 0.5;
GammaDistribution gamma = new GammaDistribution( alpha, beta );

NMathStatsChart.Show( gamma, 
  NMathStatsChart.DistributionFunction.PDF );

Table 1 – Typographic conventions

Convention Purpose Example

Courier Function names, code, direc-
tories, file names, examples, 
and operating system 
commands.

FDistribution.CDF()

the Assemblies directory

italic Conventional uses, such as 
emphasis and new terms.

The entries along the diagonal are 
the singular values.

bold Class names, product names, 
and commands from an 
interface.

TwoSamplePairedTTest

NMath Stats

Click OK.
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Figure 1 – Gamma distribution PDF

For more information, see the CenterSpace whitepaper “NMath Stats Visualization 
Using the Microsoft Chart Controls.”

1.7 Technical Support

Technical support is available according to the terms of your CenterSpace License 
Agreement. You can also purchase extended support contracts through the 
CenterSpace website:

http://www.centerspace.net

To obtain technical support, contact CenterSpace by email at:

mailto:support@centerspace.net

You can save time if you isolate the problem to a small test case before contacting 
Technical Support. 
6   NMath Stats User’s Guide



CHAPTER 2.  
DATA FRAMES

The statistical functions in NMath Stats support the NMath types DoubleVector 
and DoubleMatrix, as well as simple arrays of doubles. In many cases, these types 
are sufficient for storing and manipulating your statistical data. However, they 
suffer from two limitations: they can only store numeric data, and they have 
limited support for adding, inserting, removing, and reordering data. Because the 
underlying data is an array of doubles, data must be copied to new storage every 
time manipulation operations such as these are performed.

For these reasons, NMath Stats provides the DataFrame class which represents a 
two-dimensional data object consisting of a list of columns of the same length. 
Columns are themselves lists of different types of data: numeric, string, boolean, 
generic, and so on. 

Methods are provided for appending, inserting, removing, sorting, and permuting 
rows and columns in a data frame. Because the underlying data is in a list, 
elements can be added, removed, and reordered without having to copy all of the 
data to new storage.

A DataFrame can be viewed as a kind of virtual database table. Columns can be 
accessed by numeric index (0...n-1) or by a string name supplied at construction 
time. Rows can be accessed by numeric index (0...n-1) or by a key object. 
Column names and row keys do not need to be unique. For example, this output 
shows a formatted string representation of data from a sample data frame:

#             State  Weight  Married
John Smith    OR     165     true
Ruth Barnes   WA     147     true
Jane Jones    VT     115     false
Tim Travis    AK     230     false
Betsy Young   MA     130     true
Arthur Smith  CA     152     false
Emma Allen    OK     135     false
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This data frame contains three columns: column 0, named State, contains string 
data; column 1, named Weight, contains integer data; column 2, named Married, 
contains boolean data. There are eight rows of data in this data frame, and the 
subjects’ names are used as row keys.

This chapter describes how to use the DataFrame class.

2.1 Column Types

A DataFrame may contain columns of different types—the only constraint is that 
the columns must be of the same length. DFColumn, which implements the 
IDFColumn interface, is the abstract base class for data frame columns. NMath 
Stats provides the following derived classes for column types:

DFBoolColumn represents a column of logical data.

DFDateTimeColumn represents a column of temporal data.

DFGenericColumn represents a column of generic data.

DFIntColumn represents a column of integer data.

DFNumericColumn represents a column of double-precision floating 
point data.

DFStringColumn represents a column of string data.

Creating Columns

Empty columns are constructed by simply supplying a name for the column. For 
example:

DFDateTimeColumn col = new DFDateTimeColumn( “myCol” );

The name of a column can be used to access the column in a data frame. Once a 
column instance is constructed, the name cannot be changed. 

NOTE—Columns also provide a modifiable Label property for display purposes; see 
below.

Columns can also be initialized with an array of data at construction time:

bool[] bArray = { true, false, true, true, true, false, false };
DFBoolColumn col = new DFBoolColumn( “myCol”, bArray };
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Constructors that take an array of data use the params keyword, so values may 
also be passed as parameters:

DFStringColumn col =
  new DFStringColumn( “myCol”, “Jane”, “Joe”, “Mary”, “Bill” );

Some column types provide additional options for initializing data at construction 
time. For instance, this code initializes a numeric column with data from a 
DoubleVector:

DoubleVector v = new DoubleVector( 50, 0, .1 );
DFNumericColumn col = new DFNumericColumn( "myCol", v );

This code initializes a generic column with data from an ICollection:

ArrayList list = new ArrayList( 3 );
list.Add( 3.14 );
list.Add( "Hello World" );
list.Add( DateTime.Now );
DFGenericColumn col = new DFGenericColumn( "myCol", list );

Lastly, you can create a column from another column. For example, this code 
creates a DFIntColumn from a DFStringColumn:

DFStringColumn col =
  new DFStringColumn( “Col1”, “1”, “2”, “3”, “4” );
DFIntColumn col2 = new DFIntColumn( “Col2”, col1 );

A NMathFormatException is raised if the data in the given column cannot be 
converted to the appropriate type.

Adding and Removing Data

Once a column is constructed you can add or remove data from it. The Add() 
method appends an element to the end of the column:

DFStringColumn col = new DFStringColumn( “Name” );
col.Add( “Joe Smith” );
col.Add( “Jane Doe” );
col.Add( “John Davis” );

The Insert() method inserts an element into a column at a given index. For 
instance, this code insert a new element at the top of the column:

col.Insert( 0, “Sally Jones” );

The RemoveAt() method removes the element at a given index:

col.RemoveAt( 3 );
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Accessing Column Data

The data frame column classes provide standard indexing operators for getting 
and setting element values. Thus, col[i] always returns the ith element of the 
column:

DFStringColumn col =
  new DFStringColumn( “Names”, “Jane”, “Joe”, “Mary”, “Bill” );
col[0] = “Janet”;

The GetEnumerator() method returns an enumerator for the column data:

IEnumerator enumerator = col.GetEnumerator();
while ( enumerator.MoveNext() )
{
  // Do something with enumerator.Current
}

Column Properties

Data frame column types provide the following properties:

ColumnType gets the type of the objects held by the column.

Count gets the number of ojects in the column.

IsNumeric returns true if a column is of type DFIntColumn or 
DFNumericColumn.

Label gets and sets the label in the header of the column.

MissingValue gets and sets the value used to represent missing values in 
the column (see below).

Name gets the name of the column.

NOTE—The Name of a column can only be set in a constructor. Once a column is con-
structed, the name cannot be changed. For a modifiable label, see the Label property.

Reordering Column Data

You can use the Permute() method to arbitrarily reorder the elements in a column. 
This method accepts a permutation array of element indices and reorders the 
elements such that this[ permutation[i] ] is set to the ith object in the original 
column.
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For example, this code moves the last two elements to the head of the column:

DFStringColumn col =
   new DFStringColumn( "myCol", "a", "b", "c", "d", "e" );
col.Permute( 2, 3, 4, 0, 1 );

Missing Values

All column types—except DFBoolColumn, which has only two valid values—
support missing values. Most statistical functions in NMath Stats are 
accompanied by a paired function that ignores missing values (Section 3.2).

NOTE—To represent missing values in boolean data, use a DFIntColumn. For exam-
ple, use 1 for true, 0 for false, and -1 for missing.

At construction time, the missing value for a column is defined using a static 
variable in class StatsSettings, as shown in Table 2.

For instance, this code computes the mean of a column of integers, ignoring any 
missing values:

DFIntColumn col = new DFIntColumn( “myCol”, 5, 2, -1, 1, 0, 7 );
double mean = StatsFunctions.NaNMean( col );

By default, a missing value in a DFIntColumn is represented using the default 
setting of StatsFunctions.IntegerMissingValue, which is int.MinValue. You 
can change the way a missing value is represented for a particular column instance 
using the MissingValue property:

col.MissingValue = -1;
double mean = StatsFunctions.NaNMean( col );

In this example, all values in col equal to -1 are ignored when computing the 
mean.

Table 2 – Default missing values for data frame column types

Column Type StatsSettings Variable Default Value

DFDateTimeColumn DateTimeMissingValue DateTime.MinValue

DFGenericColumn GenericMissingValue null

DFIntColumn IntegerMissingValue int.MinValue

DFNumericColumn NumericMissingValue Double.NaN

DFStringColumn StringMissingValue “.”
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NOTE—For DFNumericColumn instances you can use the MissingValue property to 
indicate that missing values are represented by something other than the default value 
Double.NaN. However, Double.NaN will continue to be treated as missing, in addition 
to whatever value you set.

You can also change the default missing value for all columns of a particular type 
by setting the appropriate static variable in StatsSettings. Thus, this code sets the 
default missing value for integer columns to -1 for all subsequently constructed 
DFIntColumn instances:

StatsSettings.IntegerMissingValue = -1;

The Clean() method returns a new column with missing values removed.

Transforming Column Data

NMath Stats provides convenience methods for applying functions to elements of 
a column. Each of these methods takes a function delegate. The Apply() method 
returns a new column whose contents are the result of applying the given function 
to each element of the column. The Transform() method modifies a column object 
by applying the given function to each of its elements.

Suppose, for example, that you want to cap all numeric values in a 
DFNumericColumn at 100.0. You could write a simple function like this:

private static double Cap( double x )
{
  return x > 100.0 ? 100.0 : x;
}

Then encapsulate the function in a Func<double, double> delegate:

Func<double, double> capDelegate =
  new Func<double, double>( Cap );

This code caps all numeric values in column col:

col.Transform( capDelegate );

A common use of the Apply() functions is to create a new column whose values 
are a function of values in one or two existing column. For example, suppose you 
have FirstName and LastName string columns in data frame df, and want to 
create a new column containing customers’ full names. You could write a simple 
function like this:

private static string Cat( string first, string last )
{
  return first + " " + last;
}
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Then encapsulate the function in a Func<String, String, String> delegate:

Func<String, String, String> catDelegate =
  new Func<String, String, String>( Cat );

This code creates a new column containing the concatenated names:

DFStringColumn col =
  ( (DFStringColumn)data["FirstName"] ).Apply( “FullName”,   
    catDelegate, (DFStringColumn)data["LastName"] );

Exporting Column Data

Data from a column can be exported in various ways:

ToArray() exports the contents of a column to a strongly-typed array.

ToDoubleArray() extracts the contents of a column to an array of doubles 
(numeric columns only).  

ToDoubleVector() extracts the contents of a column to a DoubleVector 
(numeric columns only).  

ToIntArray() extracts the contents of a column to an array of integers 
(integer columns only).

ToString() returns a formatted string representation of a column.

ToStringArray() exports the contents of a column to an array of strings. 

2.2 Creating DataFrames

Data frames can be constructed in a variety of ways.

Creating Empty DataFrames

The default constructor creates an empty data frame with no rows or columns. 
Columns and rows can then be added to the new data frame. 

DataFrame df = new DataFrame();

// Add some columns
df.AddColumn( new DFStringColumn( "Sex" ));  
df.AddColumn( new DFStringColumn( "AgeGroup" ));
df.AddColumn( new DFIntColumn( "Weight" ) );
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// Add some rows
df.AddRow( "John Smith", "M", "Child", 45 );
df.AddRow( "Ruth Barnes", "F", "Senior", 115 );
df.AddRow( "Jane Jones", "F", "Adult", 115 );
df.AddRow( "Timmy Toddler", "M", "Child", 42 );
df.AddRow( "Betsy Young", "F", "Adult", 130 );
df.AddRow( "Arthur Smith", "M", "Senior", 142 );
df.AddRow( "Lucy Doe", "F", "Child", 30 );
df.AddRow( "Emma Allen", "F", "Child", 35 );

NOTE—The first parameter to the AddRow() method is the row key. See Section 2.3 
and Section 2.4, respectively, for more information on adding columns and rows to a 
data frame.

Creating DataFrames from Arrays of Columns

You can also construct and populate columns independently, then combine them 
into a data frame:

DFNumericColumn col1 =
  new DFNumericColumn( "Col1", 1.1, 2.2, 3.3, 4.4 );
DFBoolColumn col2 =
  new DFBoolColumn ( "Col2", true, true, false, true );
DFStringColumn col3 =
  new DFStringColumn ( "Col3", "John", "Paulo", "Sam", "Becky" );
DFColumn[] cols = new DFColumn[] { col1, col2, col3 };
DataFrame df = new DataFrame( cols );

An InvalidArgumentException is thrown if the columns are not all of the same 
length.

In this case, the row keys are set to nulls; they can later be initialized using the 
SetRowKeys() method. Alternatively, you can pass in a collection of row keys at 
construction time:

object[] keys = { "Row1", "Row2", "Row3", "Row4" };
DataFrame df = new DataFrame( cols, keys );

Creating DataFrames from Matrices

You can construct a data frame from a DoubleMatrix and an array of column 
names. A new DFNumericColumn is added for each column in the matrix. For 
instance, this code creates a data frame from an 8 x 3 matrix:

DoubleMatrix A = new DoubleMatrix( 8, 3, 0, 1 );
string[] colNames = { "A", "B", "C" };
DataFrame df = new DataFrame( A, colNames );
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The number of column names must match the number of columns in the matrix. 

Creating DataFrames from ADO.NET Objects

You can construct a data frame from an ADO.NET DataTable. For example, 
assuming table is a DataTable instance:

DataFrame df = new DataFrame( table );

In this case, the row keys are set to the default rowIndex + 1—that is, 1...n. You 
can also specify the row keys in various ways. This code passes in an array of row 
keys:

object[] keys = { “Row1”, “Row2”, “Row3”, “Row4” };
DataFrame df = new DataFrame( table, keys );

Alternatively, you can indicate a column in the DataTable, either by column index 
or column name, to use for the row keys. This code uses column ID for row keys:

DataFrame df = new DataFrame( table, "ID" );

Creating DataFrames from Strings

You can construct a data frame from a string representation. For example, if str is 
a tab-delimited string containing:

Key  Col1 Col2   Col3
Row1 1.1  true   A
Row2 2.2  true   B
Row3 3.3  false  A
Row4 4.4  true   C

Then you could construct a data frame like so:

DataFrame df = new DataFrame( str );

For more control, you can also indicate:

whether the first row of data contains column headers

whether the first column of data contains row keys

the delimiter used to separate columns

whether to parse the column types, or to treat everything as string data

For example, if str is a comma-delimited string containing column headers but no 
row keys:
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Col1,Col2,Col3
1.1,true,A
2.2,true,B
3.3,false,A
4.4,true,C

you could construct a data frame like so:

DataFrame df = new DataFrame( str, true, false, “,”, true );

2.3 Adding and Removing Columns

The AddColumn() method adds a column to a data frame:

DataFrame df = new DataFrame();
DFNumericColumn col = new DFNumericColumn( “myCol” );
df.AddColumn( col );

NOTE—The AddColumn() method raises a MismatchedSizeException if you attempt 
to add a column that is not the same length as any existing columns in a data frame.

You can also add all the columns from one data frame to another, optionally 
copying the data in the columns. For example, assuming df is a data frame, this 
code adds the columns of df to a new data frame and copies all the column data:

DataFrame df2 = new DataFrame();
df2.AddColumns( df, true ); 

Overloads of AddColumn() and AddColumns() accept ADO.NET DataColumn and 
DataColumnCollection instances, respectively. If the data frame already contains 
rows of data, you must also pass in a DataRowCollection of the same Count as the 
number of rows in the data frame.

InsertColumn() inserts a column at a given column index. This code adds a 
column in the first position:

DFStringColumn col = new DFStringColumn( “myCol” );
df.InsertColumn( 0, col );

RemoveColumn() removes the column at a given index:

df.RemoveColumn( 3 );

You can also identify a column by name:

df.RemoveColumn( “myCol” );
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Because column names are not constrained to be unique, this method will remove 
all columns in the data frame with the given name.

RemoveAllColumns() removes all columns from a data frame, but preserves the 
existing row keys. RemoveColumns() removes the columns specified in a given 
subset or slice.

Clear() method removes all columns and rows from a data frame. CleanCols() 
returns a new data frame containing only those columns in a data frame that do 
not contain missing values.

2.4 Adding and Removing Rows

The AddRow() method adds a row of data to a data frame. The first parameter is 
the row key; subsequent parameters are the row data. For example:

DataFrame df = new DataFrame();
df.AddColumn( new DFStringColumn( "Col1" ));  
df.AddColumn( new DFNumericColumn( "Col2" ) );
df.AddColumn( new DFNumericColumn( "Col3" ) );
df.AddRow( 1546, "Test1", 1.5445, 667.87 );

NOTE—The AddRow() method raises a MismatchedSizeException if the number of 
row elements does not match the number of columns in the data frame.

This example uses 1546 as an integer row key, perhaps representing some sort of 
ID. Row keys can be any object, and need not be unique.

Additional overloads of AddRow() accept data in various collections other than an 
array of objects. One overload takes an ICollection. For instance:

Queue myQ = new Queue();
myQ.Enqueue( "Hello" );
myQ.Enqueue( 47.0 );
myQ.Enqueue( -0.34 );
df.AddRow( "Row1", myQ );

Another overload accepts an IDictionary in which the keys are the column names 
and the values are the row data:

DataFrame df = new DataFrame();
df.AddColumn( new DFNumericColumn( "V1" ) );
df.AddColumn( new DFBoolColumn( "V2" ) );
df.AddColumn( new DFStringColumn( "V3" ) );
Hashtable myHT = new Hashtable();
myHT.Add( "V1", 3.14 );
myHT.Add( "V3", "Hello");
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myHT.Add( "V2", true );
df.AddRow( "Row1", myHT );

If all of the columns in your data frame are numeric, you can add a row as a 
DoubleVector:

DoubleVector v = new DoubleVector( 10, 0, 1 );
df.AddRow( “myKey”, v );

Other overloads of AddRow() and AddRows() accept ADO.NET DataRow and 
DataRowCollection instances, respectively.

InsertRow() inserts a row at a given row index. For example, this code inserts a 
row into the second position:

DataFrame df = new DataFrame();
df.AddColumn( new DFNumericColumn( "Col1" ) );
df.AddColumn( new DFNumericColumn( "Col2" ) );
df.AddColumn( new DFNumericColumn( "Col3" ) );
df.AddRow( "Row1", 2.5, 0.0, 3.4 );
df.AddRow( "Row2", 3.14, -.5, -.33 );
df.AddRow( "Row3", 0.1, 55.34, 12.02 );
df.AddRow( "Row4", 3.14, -33.2, 7.22 );
object[] myRow = { 5.5, 9.05, -6.11 };
df.InsertRow( 1, "Row1a", myRow );

Again, overloads are provided for adding row data in various collection types.

RemoveRow() removes the row at a given index:

df.RemoveRow( 0 );

You can also identify a row by key:

df.RemoveRow( “Row3” );

Because row keys are not constrained to be unique, this method will remove all 
rows in the data frame with the given key.

RemoveAllRows() removes all rows from a data frame, but preserves the existing 
columns. RemoveRows() removes the rows specified in a given subset or slice.

Clear() method removes all rows and columns from a data frame. CleanRows() 
returns a new data frame containing only those rows in a data frame that do not 
contain missing values.
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Modifying Row Keys

Unlike column names which are fixed at construction time, row keys can be 
changed at any time. The SetRowKey() method sets the key for a given row to a 
given value. Remember that row keys can be any object:

df.SetRowKey( 0, 1.14 );
df.SetRowKey( 1, “John Doe” );
df.SetRowKey( 2, true );

SetRowKeys() accepts a collection of row keys, and raises a 
MismatchedSizeException if if the number of elements in the collection does not 
equal the number of rows in this data frame:

object[] keys = { “Subject1”, “Subject2”, “Subject3” };
df.SetRowKeys( keys );

Finally, IndexRowKeys() resets the row keys for all rows to rowIndex + 1; that is, 
1...n.     

2.5 Properties of DataFrames

The DataFrame class provides the following properties:

Cols gets the number of columns.

ColumnNames gets an array of the column names.

ColumnHeaders gets and sets the array of column labels used for display 
purposes.

CreateDate gets the creation datetime for the date frame.

Name gets and sets the name of the data frame.

Rows gets the number of rows.

RowKeyHeader gets and sets the header for the row keys for display 
purposes. The default row key header is #.

RowKeys gets an object array of the row keys.

StringRowKeys gets a string array of the row keys.
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2.6 Accessing DataFrames

Class DataFrame provides a wide range of indexers and member functions 
accessing individual elements, columns, or rows in a data frame.

NOTE—For information on getting arbitrary sub-frames from a data frame, see 
Section 2.8.

Accessing Elements

Class DataFrame provides a two-dimensional indexing operator for getting and 
setting individual element values. Thus, df[i,j] always returns the ith element of 
the jth column:

df[3,0] = 1.0;

Accessing Columns

The one-dimensional indexing operator df[i] always returns the ith column:

DFNumericColumn col = df[3];

You can also access columns by name:

DFNumericColumn col = df[ “myCol” ];

Because column names are not constrained to be unique, this returns the first 
column with the given name, or null if a column by that name is not found.

The IndexOfColumn() method returns the index of the first column with a given 
name, or null if a column by that name is not found. IndicesOfColumn() returns 
an array of all column indices for a given column name.

You can also check whether a column of a given name exists in a data frame using 
the ContainsColumn() method:

if ( df.ContainsColumn( “myCol” ) )
{
  // Do something here with df[ “myCol” ]
}

Finally, the GetColumnDictionary() method returns an IDictionary of the values 
in a given column. For instance, this code gets a dictionary of the values in column 
2:

IDictionary dict = df.GetColumnDictionary( 2 );
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The row keys are used as keys in the dictionary. Alternatively, you can specify two 
column indices—the first is used for the dictionary keys, the second for the 
dictionary values:

IDictionary dict = df.GetColumnDictionary( 0, 2 );

In this example, the elements in column 0 are used as the dictionary keys.

Accessing Rows

Because the one-dimensional indexer df[i] is already used for accessing data 
frame columns, class DataFrame provides GetRow() methods for accessing 
individual rows. Thus, GetRow( i ) returns the data in the ith row as an array of 
objects:

object[] rowData = df.GetRow( 3 );

You can also access rows by key:

object[] rowData = df.GetRow( “myKey” );

Because row keys are not constrained to be unique, this returns the first row with 
the given key, or null if a row with that key is not found.

The IndexOfKey() method returns the index of the first row with a given key, or 
null if a row with that key is not found. IndicesOfKey() returns an array of all 
row indices for a given key.

You can also retrieve the indices of rows with a particular value in a given column. 
IndexOf() returns the first row with a particular value in a column; IndicesOf() 
returns all rows. For instance, this code gets an array of row indices for all rows 
which have the value “John Doe” in column 2:

int[] rowIndices = df.IndicesOf( 2, “John Doe” );

Lastly, the GetRowDictionary() method returns an IDictionary of the data in a 
given row, specified either by row index or row key. The column names are used 
as keys in the dictionary. Thus, this code gets a dictionary of the data in row 3:

IDictionary dict = df.GetRowDictionary( 3 );

2.7 Subsets

In addition to accessors for individual elements, columns, or rows in a data frame 
(Section 2.6), class DataFrame provides a large number of indexers and member 
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functions for accessing sub-frames containing any arbitrary subset of rows, 
columns, or both (Section 2.8).

Such indexers and methods accept the NMath types Slice and Range to indicate 
sets of row or column indices with constant spacing, as well as abstract values like 
Slice.All for indexing all elements.

In addition, NMath Stats introduces a new class called Subset. Like a Slice or 
Range, a Subset represents a collection of indices that can be used to view a subset 
of data from another data structure. Unlike a Slice or Range, however, a Subset 
need not be continuous, or even ordered. It is simply an arbitrary collection of 
indices.

This section describes the Subset class.

Creating Subsets

Subset instances can be constructed in a variety of ways. One constructor simply 
accepts an array of integers:

Subset sub = new Subset( new int[] { 5, 4, 0, 12 } );

Another constructor accepts an ICollection whose elements are all System.Int32.

A very useful constructor takes an array of boolean values and constructs a Subset 
containing the indices of all true elements in the array. This can used, for example, 
to create a subset from a DataFrame containing the indices of the rows or columns 
than meet a certain criteria.

Thus, this code creates a subset of row indices containing those rows where the 
value in column 2 is greater than the value in column 3:

bool[] bArray = new bool[ df.Rows ];
for ( int i = 0; i < df.Rows; i++ )
{
  bArray[i] = ( df[2][i] > df[3][i] );
}
Subset rowIndices = new Subset( bArray );

This Subset could be use to access the sub-frame containing only those rows that 
meet the criterion, as described in Section 2.8.

A Subset can also be constructed from an array of other subsets. The subsets are 
simply concatenated. To created a sorted Subset of the unique indices, you can call 
Unique() on the constructed Subset (see below). 
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Lastly, constructors are provided that construct subsets with continuous spacing, 
like slices and ranges. For instance, this code creates a subset starting at 2, with 5 
total elements, and a stepsize of 1:

Subset sub = new Subset( 2, 5, 1 );

Properties of Subsets

Class Subset provides the following read-only properties:

First gets the first index in the subset.

Length gets the total number of indices in the subset.

Indices gets the underlying array of integers.

Last gets the last index in the subset.

Accessing Elements

Class Subset provides an indexing operator for getting and setting element values. 
Thus, subset[i] returns the ith element of the underlying array of integers.

sub[ 3 ] = 4;

NOTE—Indexing starts at 0.

The Get( i ) method safely gets the index at a given position by looping around 
the end of the subset if i exceeds the length of the subset:

Subset sub = new Subset( new int[] { 3, 4, 5, 8, 9 } );
int index = sub.Get( 5 )
// index = 3

You can also create a Subset of a Subset using the indexing operator. For instance:

Subset sub1 = new Subset( new int[] { 1, 3, 4, 7, 9 } );
Subset sub2 = new Subset( new int[] { 0, 2, 4 } );
Subset sub3 = sub1[ sub2 ];
// sub3.Indices = 1, 4, 9

Logical Operations on Subsets

Operator == tests for equality of two subsets, and returns true if both subsets are 
the same length and all elements are equal; otherwise, false. Following the 
convention of the .NET Framework, if both objects are null, they test equal. 
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Operator != returns the logical negation of ==. The Equals() member function 
also tests for equality. 

Arithmetic Operations on Subsets

NMath Stats provides overloaded arithmetic operators for subsets with their 
conventional meanings for those .NET languages that support them, and 
equivalent named methods for those that do not. Table 3 lists the equivalent 
operators and methods.

Manipulating Subsets

The Append() method adds an index to the end of a subset:

sub.Append( 5 );

Remove() removes the first occurence of a given index from a subset. Reverse() 
reverses the indices of a subset. Unique() sorts the indices in a subset and removes 
any repetitions. Thus:

Subset sub = new Subset( new int[] { 0,5,3,2,7,5 } );
sub.Remove( 3 );
// sub.Indices = 0, 5, 2, 7, 5
sub.Reverse();
// sub.Indices = 5, 7, 2, 5, 0
sub.Unique();
// sub.Indices = 0, 2, 5, 7  

Table 3 – Arithmetic operators for subsets

Operator Equivalent Named Method

+ Add()

- Subtract()

* Multiply()

/ Divide()

Unary - Negate()

++ Increment()

-- Decrement()

& Intersection()

| Union()
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Similarly, ToReverse() returns a new subset containing the indices of a subset in 
the reverse order; ToUnique() returns a new subset containing the sorted indices 
of a subset, with all repetitions removed.

The Repeat() method creates a new subset by repeating the source subset until a 
given length is reached. For instance:

Subset sub1 = new Subset( 3 );
// sub1.Indices = 0,1,2
Subset sub2 = sub1.Repeat( 11 );
// sub2.Indices = 0,1,2,0,1,2,0,1,2,0,1

The Split() method splits a source subset into an arbitrary array of subsets. The 
parameters are the number of subsets into which to split the source subset, and 
another subset the same length as the source subset, the ith element of which 
indicates into which bin to place the ith element of the source subset. For example:

Subset sub = new Subset( 10 );
// sub.Indices = 0,1,2,3,4,5,6,7,8,9
Subset bins =
  new Subset( new int[] { 3, 1, 0, 2, 2, 1, 1, 2, 3, 0 } );
Subset[] subsetArray = sub.Split( 4, bins );
// subsetArray[0] = 2,9
// subsetArray[1] = 1,5,6
// subsetArray[2] = 3,4,7
// subsetArray[3] = 0,8

Lastly, the ToString() returns a comma-delimited string list of the indices in a 
subset.

Groupings

The static GetGroupings() methods on Subset create subsets from factors. One 
overload of this method accepts a single Factor and returns an array of subsets 
containing the indices for each level of the given factor. Another overload accepts 
two Factor objects and returns a two-dimensional jagged array of subsets 
containing the indices for each combination of levels in the two factors. See 
Section 2.10 for more information on factors and the GetGroupings() methods.

Random Samples

The static method Sample( n ) returns a random shuffle of 0..n-1. The returned 
Subset can be used to randomly reorder the rows in a data frame, as described in 
Section 2.8.
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2.8 Accessing Sub-Frames

In addition to accessing individual elements, columns, or rows in a data frame 
(Section 2.6), class DataFrame provides a large number of member functions and 
indexers for accessing sub-frames containing any arbitrary subset of rows, 
columns, or both. Such methods and indexers accept Slice and Subset objects to 
indicate which rows and columns to return. (See Section 2.7 for more information 
on the Subset class.)

For example, GetColumns() returns a new data frame containing the columns 
indicated by a given Slice or Subset. For instance, if df has 5 columns, this code 
creates a new data frame containing columns 0, 4, and 5:

Subset colSubset = new Subset( new int[] { 0, 4, 5 } );
DataFrame subDF = df.GetColumns( colSubset );

Similarly, GetRows() returns a new data frame containing the rows indicated by a 
given Slice or Subset. Thus, this code gets every other row in the source data 
frame:

Subset rowSubset = new Range( 0, df.Rows - 1, 2 );
DataFrame subDF = df.GetRows( rowSubset );

Class DataFrame also provides a wide range of indexers for accessing subframes:

this[int colIndex, Slice rowSlice]
this[int colIndex, Subset rowSubset]
this[Slice rowSlice, Slice colSlice]
this[Subset rowSubset, Subset colSubset]
this[Slice rowSlice, Subset colSubset]
this[Subset rowSubset, Slice colSlice]

These indexers can be used to return any portion of a data frame. For example, this 
code gets a new data frame containing columns 3-8 in reverse order, and all rows 
where column 0 equals Test1:

Range colRange = new Range( 8, 3, -1 );

bool[] bArray = new bool[ df.Rows ];
for ( int i = 0; i < df.Rows; i++ )
{
  bArray[i] = ( df[0][i] == “Test1” );
}
Subset rowSubset = new Subset( bArray );

DataFrame df2 = df[ rowSubset, colRange ];
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Finally, there is the GetSubRow() method. Whereas GetRow() returns an entire 
row for a given row index, GetSubRow() returns the portion of the row indicated 
by the given column Slice or Subset:

Slice colSlice = new Slice( 0, 3, 1 );
object[] subRow = df.GetSubRow( 3, colSlice );

2.9 Reordering DataFrames

The DataFrame class provides method for both sorting rows, and for arbitrarily 
reordering rows and columns.

Sorting Rows

The SortRows() method sorts the rows in a data frame according to a given 
ordered array of column indices. The first index is the primarily sort column, the 
second index is the secondary sort column, and so forth. For instance:

df.SortRows( 3, 0, 1 );

By default, all sorting is in ascending order.

For more control, you can also pass an array of SortingType enumerated values 
(Ascending or Descending):

int[] colIndices = { 3, 0, 1 };
SortingType[] sortingTypes = { SortingType.Ascending,  
                               SortingType.Descending, 
                               SortingType.Ascending };
df.SortRows( colIndices, sortingTypes );

Finally, the SortRowsByKeys() method sorts the rows in a data frame by their row 
keys, in the specified order:

df.SortRowsByKeys( SortingType.Ascending );

NOTE—StatsSettings.Sorting specifies the default SortingType.

Permuting Rows and Columns

The PermuteColumns() and PermuteRows() methods enable you to arbitrarily 
reorder the columns and rows in a data frame, respectively. Each method takes an 
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array of indices. The array must be same length as the number of columns or rows, 
and contain unique indices. In both cases:

new[ permutation[i] ] = old[ i ]

For example, assuming df has 3 columns, this code switches the last two columns:

df.PermuteColumns( 0, 2, 1 );

Assuming df has 5 rows, this code moves the second and fourth rows to the top:

df.PermuteRows( 2, 0, 3, 1, 4 );

2.10 Factors

The Factor class represents a categorical vector in which all elements are drawn 
from a finite number of factor levels. Thus, a Factor contains two parts: 

an object array of factor levels

an integer array of categorical data, of which each element is an index into 
the array of levels

For example, this string data:

“A”, “A”, “C”, “B”, “A”, “C”, “B”

could be presented as a Factor with the following levels and categorical data:

object[] levels = { “A”, “B”, “C” };
int[] data = { 0, 0, 2, 1, 0, 2, 1 };

Factors are usually constructed from a data frame column using the GetFactor() 
method, but they can also be constructed independently.

Creating Factors

The GetFactor() method on DataFrame accepts a column index or name and 
returns a Factor with levels for the sorted, unique elements in the given column:

Factor myColFactor = df.GetFactor( “myCol” );

Alternatively, you can provide the factor levels yourself. The order is preserved. 
Thus:

object[] levels = new object[] { “Q1”, “Q2”, “Q3”, “Q4” };
Factor myColFactor = df.GetFactor( “myCol”, levels );
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An InvalidArgumentException is raised if the specified column contains a value 
not present in the given array of levels.

You can also construct a Factor independently of a DataFrame. For example, you 
can construct a Factor from an array of values:

object[] strArray = { 1, 1, 3, 2, 1, 3, 2 };
Factor factor = new Factor( strArray );

Factor levels are constructed from a sorted list of unique values in the passed 
array.

Alternatively, you can construct a Factor from an array of factor levels, and a data 
array consisting of indices into the factor levels:

object[] levels = { 1, 2, 3 };
int[] data = { 0, 0, 2, 1, 0, 2, 1 };
Factor factor = new Factor( levels, data );

An InvalidArgumentException is thrown if the given data array contains an 
invalid index.

Properties of Factors

The Factor class provides the following properties:

Data gets the categorical data for the factor. Each element in the returned 
integer array is an index into Levels.

Levels gets the levels of the factor as an array of objects.

Length gets the length of the Data in the factor.

Name gets and set the name of the factor.

NumberOfLevels gets the number of levels in the factor.

Accessing Factors

A standard indexer is provided for accessing the element at a given index:

string str = (string)factor[2];

The indexer returns Levels[ Data[index] ]—that is, it returns the level at the 
given position.
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Creating Groupings with Factors

The principal use of factors is in conjunction with the GetGroupings() methods 
on Subset. One overload of this method accepts a single Factor and returns an 
array of subsets containing the indices for each level of the given factor. Another 
overload accepts two Factor objects and returns a two-dimensional jagged array of 
subsets containing the indices for each combination of levels in the two factors.

For example, suppose we weigh human subjects based on sex and age group. The 
data for 15 subject might look like this:

Table 4 – Sample data

In a DataFrame, each observation would be a row, like so:

DataFrame df = new DataFrame();
df.AddColumn( new DFStringColumn( "Sex" ) );  
df.AddColumn( new DFStringColumn( "AgeGroup" ));
df.AddColumn( new DFIntColumn( "Weight" ) );

df.AddRow( "John Smith", "Male", "Child", 45 );
df.AddRow( "Ruth Barnes", "Female", "Senior", 115 );
df.AddRow( "Jane Jones", "Female", "Adult", 115 );
df.AddRow( "Timmy Toddler", "Male", "Child", 42 );
df.AddRow( "Betsy Young", "Female", "Adult", 130 );
df.AddRow( "Arthur Smith", "Male", "Senior", 142 );
df.AddRow( "Lucy Young", "Female", "Child", 30 );
df.AddRow( "Emma Allen", "Female", "Child", 35 );
df.AddRow( "Roy Wilkenson", "Male", "Adult", 182 );
df.AddRow( "Susan Schwarz", "Female", "Senior", 110 );
df.AddRow( "Ming Tao", "Female", "Senior", 123 );
df.AddRow( "Johanna Glynn", "Female", "Child", 60 );
df.AddRow( "Randall Harvey", "Male", "Adult", 170 );
df.AddRow( "Tom Howard", "Male", "Senior", 155 );
df.AddRow( "Jennifer Watson", "Female", "Child", 40 );

In this case, we’re using the subjects’ names as row keys.

It is natural to construct factors from the Sex and AgeGroup columns:

Factor sex = df.GetFactor( "Sex" );
Factor age = df.GetFactor( "AgeGroup" );

Male Female

Child 45, 42 30, 35, 60, 40

Adult 182, 170 115, 130, 110

Senior 142, 155 115, 123
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We can then use these factors in conjunction with the GetGroupings() methods on 
Subset to create subsets representing the original rows, columns, and cells in 
Table 4:

Subset[] sexGroups = Subset.GetGroupings( sex );
Subset[] ageGroups = Subset.GetGroupings( age );
Subset[,] cellGroups = Subset.GetGroupings( sex, age );

These subsets can then be used to operate on the relevant portions of the data 
frame. For instance, this code prints out row means, column means, and cell means 
for Table 4:

Console.WriteLine( "\nTABLE ROW MEANS" ); 
for ( int i = 0; i < age.NumberOfLevels; i++ )
{
  double mean = StatsFunctions.Mean(
    df[ df.IndexOfColumn( "Weight" ), ageGroups[i] ] );
  Console.WriteLine( "Mean for {0} = {1}", age.Levels[i], mean );
}

Console.WriteLine( "\nTABLE COLUMN MEANS" ); 
for ( int i = 0; i < sex.NumberOfLevels; i++ )
{
  double mean = StatsFunctions.Mean(
    df[ df.IndexOfColumn( "Weight" ), sexGroups[i] ] );
  Console.WriteLine( "Mean for {0} = {1}", sex.Levels[i], mean );
}

Console.WriteLine( "\nTABLE CELL MEANS" );
for ( int i = 0; i < sex.NumberOfLevels; i++ )
{
  for ( int j = 0; j < age.NumberOfLevels; j++ )
  {
    double mean = StatsFunctions.Mean(
      df[ df.IndexOfColumn( "Weight" ), cellGroups[i,j] ] );
    Console.WriteLine( "Mean for {0} {1} = {2}",
      sex.Levels[i], age.Levels[j], mean );
  }
}

The output is:

TABLE ROW MEANS
Mean for Adult = 149.25
Mean for Child = 42
Mean for Senior = 129

TABLE COLUMN MEANS
Mean for Female = 84.2222222222222
Mean for Male = 122.666666666667
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TABLE CELL MEANS
Mean for Female Adult = 122.5
Mean for Female Child = 41.25
Mean for Female Senior = 116
Mean for Male Adult = 176
Mean for Male Child = 43.5
Mean for Male Senior = 148.5

See also the Tabulate() convenience methods on class DataFrame, as described in 
Section 2.11.

2.11 Cross-Tabulation

As described in Section 2.10, the DataFrame.GetFactor() method can be used in 
conjunction with Subset.GetGroupings() to access “cells” of data based on one 
or two grouping factors. This is such a common operation that class DataFrame 
also provides the Tabulate() methods as a convenience. This method accepts one 
or two grouping columns, a data column, and a delegate to apply to each data 
column subset. The results are returned in a new data frame.

Column Delegates

Overloads of Tabulate() accept static IDFColumn function delegates that return 
various types. For instance, this code encapsulates the static 
StatsFunctions.Mean() function in a Func<IDFColumn, double>:

Func<IDFColumn, double> mean =
  new Func<IDFColumn, double>(StatsFunctions.Mean);

Most of the static descriptive statistics functions on class StatsFunctions 
(Chapter 3) have overloads that accept an IDFColumn and return a double, and so 
can be encapsulated in this way. A few return integers.

For example, this code encapsulates StatsFunctions.Count(), which returns the 
number of items in a column, in a Func<IDFColumn, int>:

Func<IDFColumn, int> count =
  new Func<IDFColumn, int>(StatsFunctions.Count);
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Applying Column Delegates to Tabulated Data

The following code fills a DataFrame with some sales data:

DataFrame df = new DataFrame();
df.AddColumn( new DFStringColumn( "Product" ) );
df.AddColumn( new DFStringColumn("Month") );  
df.AddColumn( new DFIntColumn( "Quantity" ) );
df.AddColumn( new DFNumericColumn( "Price" ) );
df.AddColumn( new DFNumericColumn( "TotalSale" ) );

int rowID = 0;
df.AddRow( rowID++, "Squash", "Nov", 40, 1.50, 60.0 );
df.AddRow( rowID++, "Carrots", "Nov", 15, 1.20, 18.0 );
df.AddRow( rowID++, "Squash", "Nov", 37, 1.45, 53.65 );
df.AddRow( rowID++, "Carrots", "Nov", 18, 1.25, 22.50 );
df.AddRow( rowID++, "Squash", "Nov", 34, 1.39, 47.26 );
df.AddRow( rowID++, "Carrots", "Dec", 20, 1.30, 26.0 );
df.AddRow( rowID++, "Squash", "Dec", 31, 1.30, 40.30 );
df.AddRow( rowID++, "Carrots", "Dec", 25, 1.40, 35.0 );
df.AddRow( rowID++, "Squash", "Dec", 25, 1.25, 31.25 );
df.AddRow( rowID++, "Carrots", "Dec", 30, 1.45, 43.50 );
df.AddRow( rowID++, "Carrots", "Jan", 33, 1.50, 49.50 );
df.AddRow( rowID++, "Squash", "Jan", 19, 1.21, 22.99 );
df.AddRow( rowID++, "Carrots", "Jan", 40, 1.65, 66.0 );
df.AddRow( rowID++, "Squash", "Jan", 15, 1.11, 16.65 );
df.AddRow( rowID++, "Carrots", "Jan", 47, 1.80, 84.60 );
df.AddRow( rowID++, "Squash", "Jan", 10, 1.00, 10.0 );

This code displays the average sales for each product:

Func<IDFColumn, double> mean =
  new Func<IDFColumn, double>(StatsFunctions.Mean);
Console.WriteLine( df.Tabulate( "Product", "TotalSale", mean ) );

The Product column is used as a grouping column, TotalSale contains the data, 
and the mean delegate returns the mean of the value in each cell. The output is:

#         Results
Carrots   43.1375
Squash    35.2625
Overall   39.2000

The Tabulate() methods return a new data frame. If only one grouping factor is 
specified, as in this example, the row keys are the sorted, unique factor levels. The 
only column, named Results, contains the results of applying the given delegate 
to the values in the data column tabulated for each level of the factor. A final row is 
appended, with key Overall, containing the results of applying the given delegate 
to all values in the data column. 
   Chapter 2.   Data Frames 33



Similarly, this code displays the number of observations in each cell for every 
combination of Product and Month:

Func<IDFColumn, int> count =
  new Func<IDFColumn, int>( StatsFunctions.Count );
Console.WriteLine(
  df.Tabulate( "Product", "Month", "TotalSale", count ); 

The Product and Month columns are used as grouping columns, TotalSale 
contains the data, and the count delegate returns the number of items in each cell. 

The output is:

#         Dec  Jan  Nov  Overall
Carrots   3    3    2    8
Squash    2    3    3    8
Overall   5    6    5    16

When two grouping factors are specified, as in this case, the returned data frame 
has row keys containing the sorted, unique levels of the first grouping factor as 
strings. The columns in the data frame are named using the sorted, unique levels 
of the second grouping factor. 

NOTE—In this example the alphabetic sorting of the Month names has put them into 
non-chronological order. In the months had been stored as DateTime objects in an 
DFDateTimeColumn,  they would have been ordered chronologically.

Each cell in the data frame contains the results of applying the given delegate to 
the values in the data column tabulated for the appropriate combination of the two 
factors. A final column is appended, named Overall, containing the overall 
results for each level of the first factor. A final row is appended, with key Overall, 
containing the overall results for each level of the second factor. The lower right 
corner cell, accessed by indexer this["Overall","Overall"], contains the 
results of applying the given delegate to all values in the data column. 

2.12 Exporting Data from DataFrames

The contents of a data frame can be exported in various ways.

Exporting to a Matrix

The ToDoubleMatrix() method exports all the numeric data in a data frame to a 
DoubleMatrix. Non-numeric columns are ignored. For example, this code 
constructs a DataFrame from a DoubleMatrix, adds a column of string data, then 
exports the contents of the data frame to another DoubleMatrix:
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DoubleMatrix A = new DoubleMatrix( 8, 3, 0, .1 );
df = new DataFrame( A, new string[] { "A", "B", "C" } );

DFStringColumn col4 = new DFStringColumn( "D",
  new String[] { "x", "x", "x", "x", "x", "x", "x", "x" } );
df.AddColumn( col4 );

DoubleMatrix B = df.ToDoubleMatrix();

The two matrices are equal (A == B); the string column is ignored.

Exporting to a String

The ToString() method returns a formatted string representation of a data frame:

string str = df.ToString();

For more control, you can also indicate:

whether to export column headers (the default is true)

whether to export row keys (the default is true)

the delimiter to use to separate columns (the default is tab-delimited)

For instance, this code exports the column headers, but not the row keys, and uses 
a comma delimiter:

string str = df.ToString( true, false, “,” );

Convenience methods are also provided for persisting a text representation of a 
data frame to a text file. Save() exports the contents of the data frame to a given 
filename:

df.Save( “myData.txt” );

Again, you can also indicate whether to export column header or row keys, and 
specify the column delimiter:

df.Save( “myData.txt”, true, false, “,” );

The LaunchSaveFileDialog() method allows the end user to specify the 
filename. The OpenInEditor() method programmatically opens a data frame in 
the default text editor on the user’s system. The user can then edit the contents of 
the data frame. Lastly, the static Load() method imports a data frame from a text 
file:

DataFrame df = DataFrame.Load(  “myData.txt” );
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Again, you can indicate whether the text file includes column headers and row 
keys, and the delimiter used to separate the columns.

Exporting to an ADO.NET DataTable

The ToDataTable() method exports the data in a data frame to an ADO.NET 
DataTable object. The row keys are placed in a DataColumn named DFRowKeys. 
Thus, this code:

DataFrame df = new DataFrame();
df.AddColumn(
  new DFNumericColumn( "ids", new DoubleVector( 3, 3, -1 )));
df.AddColumn(
  new DFStringColumn( "names", "a", "b", "c" ));
df.AddColumn(
  new DFBoolColumn( "bools", true, false, true ));
df.SetRowKeys( new String[] { "Row1", "Row2", "Row3" } );
DataTable table = df.ToDataTable();

returns a DataTable that looks like this:

name: CenterSpace.NMath.Stats.DataFrame
#  DFRowKeys ids     names   bools
1  Row1      3.0000  a       True
2  Row2      2.0000  b       False
3  Row3      1.0000  c       True

If no name is assigned to a data frame before ToDataTable() is called, the name of 
the DataTable is set to the type: CenterSpace.NMath.Stats.DataFrame.

Binary and SOAP Serialization

Class DataFrame implements the ISerializable interface to control serialization 
and deserialization. Common Language Runtime (CLR) serialization Formatter 
classes call the provided GetObjectData() method at serialization time to 
populate a SerializationInfo object with all the data required to represent a 
DataFrame. For example, the BinaryFormatter class provides Serialize() and 
Deserialize() methods for persisting an object in binary format to a given 
stream. For example, this code serializes a data frame to a file:

using System.IO;
using System.Runtime.Serialization.Formatters.Binary;

FileStream binStream = File.Create( “myData.dat” );
BinaryFormatter binFormatter = new BinaryFormatter();
binFormatter.Serialize( binStream, df );
binStream.Close();
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This code restores the data frame from the file:
      
binStream = File.OpenRead( "myData.dat" );
DataFrame df2 = (DataFrame)binFormatter.Deserialize( binStream );
binStream.Close();
File.Delete( "myData.dat" );

Similarly, the SoapFormatter class persists an object in SOAP format to a given 
stream. Thus:

using System.IO;
using System.Runtime.Serialization.Formatters.Soap;

FileStream xmlStream = File.Create( "myData.xml" );
SoapFormatter xmlFormatter = new SoapFormatter();
xmlFormatter.Serialize( xmlStream, df );
xmlStream.Close();

This code restores the data frame from the file:

xmlStream = File.OpenRead( "myData.xml" );
DataFrame df2 = (DataFrame)xmlFormatter.Deserialize( xmlStream )
xmlStream.Close();
File.Delete( "myData.xml" );
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CHAPTER 3.  
DESCRIPTIVE STATISTICS

Class StatsFunctions provides a wide variety of static functions for computing 
descriptive statistics, such as mean, variance, standard deviation, percentile, 
median, quartiles, geometric mean, harmonic mean, RMS, kurtosis, skewness, and 
many more.

Method overloads accept data as an array of doubles, as a DoubleVector, or as a 
column in a DataFrame (Chapter 2). For example:

double[] dblArray = { 1.12, -2.0, 3.88, 1.2, 15.345 };
double mean1 = StatsFunctions.Mean( dblArray );

DoubleVector v =
  new DoubleVector( “1.12 -2.0 3.88 1.2 15.345”  );
double mean2 = StatsFunctions.Mean( v );

DataFrame df = new DataFrame();
df.AddColumn(
  new DFNumericColumn( "myData", 1.12, -2.0, 3.88, 1.2, 15.345 ) );
double mean3 = StatsFunctions.Mean( df[ “myData” ] );  

// mean1 == mean2 == mean3

In this chapter, where data is used in code examples, it should be understood to be 
an instance of any of these three types.

Class StatsFunctions also provides some special functions, including 
combinatorial functions, the gamma function, and the beta function. Such special 
functions are described in Chapter 4.

3.1 Column Types

Most functions in class StatsFunctions require numeric data, although they accept 
any instance of IDFColumn. If a column is not an instance of DFIntColumn or 
DFNumericColumn, an attempt is made to convert the data to double using 
System.Convert.ToDouble().
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NOTE—An NMathFormatException is raised if the data cannot be converted to 
double.

For instance, these functions will work with a DFStringColumn containing 
numbers represented as strings.

DFStringColumn col =
  new DFStringColumn( “Col1”, “1.5”, “2”, “1.33”, “4.76” );
double mean = StatsFunctions.Mean( col );;

However, there is a processing penalty due to such type conversion. If you need to 
perform many statistical functions on a column, first create a new DFIntColumn 
or DFNumericColumn from your data column, so type conversion occurs only 
once. For example, if column 4 in data frame df is a DFGenericColumn containing 
decimal types, this works:

double mean = StatsFunctions.Mean( df[4] );
double stdev = StatsFunctions.StandardDeviation( df[4] );

but the decimal data is converted to doubles twice. This code first creates a new 
DFNumericColumn containing doubles from the generic column, then computes 
the statistics:

DFNumericColumn col = new DFNumericColumn( df[4].Name, df[4] );
double mean = StatsFunctions.Mean( col );
double stdev = StatsFunctions.StandardDeviation( col );

In some cases, you may want to replace the original generic column in the data 
frame with the new DFNumericColumn:

df.RemoveColumn( 4 );
df.InsertColumn( 4, col );
double mean = StatsFunctions.Mean( df[4] );
double stdev = StatsFunctions.StandardDeviation( df[4] );

Note that sometimes you may not even be aware that your data is stored in a 
generic column. (You can always return the type of a column using the 
ColumnType property.) This is most likely to occur when you read data from a text 
file or database directly into a DataFrame. For example, if your database stores 
data using SQL NUMERIC or DECIMAL types, these get mapped to System.Decimal 
in ADO. NMath does not silently convert decimals to doubles, because of the loss 
of precision, so they are stored in the dataframe as objects in a DFGenericColumn. 
If you intend to perform multiple statistical functions on the data, convert the 
column to a DFNumericColumn first, as shown above.
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3.2 Missing Values

Most functions in class StatsFunctions are accompanied by a paired function that 
ignores missing values, such as Double.NaN in a DoubleVector, 
DFNumericColumn, or array of doubles. For example, there are Mean() and 
NaNMean() functions, Variance() and NaNVariance() functions, and so forth. 
Unless a function is explicitly designed to handle missing values, it may return 
NaN or have unexpected results if values are missing.

DoubleVector v =
  new DoubleVector( “[ 3.2 1.0 Double.NaN 4.5 -1.2 ]”); 

double mean1 = StatsFunctions.Mean( v );
// mean1 = Double.NaN

double mean2 = StatsFunctions.NaNMean( v );
// mean2 = 1.875

The provided convenience method NaNCheck() returns true if a given data set 
contains any missing values. NaNRemove() creates a copy of a data set with 
missing values removed. For two-dimensional data sets, such as matrices and data 
frames, NaNRemoveCols() creates a copy with only those columns that do not 
contain missing values. NaNRemoveRows() removes any rows containing missing 
data. The CleanCols() and CleanRows() methods on class DataFrame have the 
same effect.

As described in Section 2.1, data frame column types enable you to specify how 
missing values are represented within a particular column instance, or for all 
columns of a particular type. For example, this column stores numeric data in a 
string column, and uses NA to indicate a missing value:

DFStringColumn col =
  new DFStringColumn( “myCol”, “32.1”, “NA”, “6.0”, “34” );

This code identifies the missing value string, then computes the mean, ignoring 
missing values:

col.MissingValue = “NA”;
double mean = StatsFunctions.NaNMean( col );

Because the column is not an instance of DFIntColumn or DFNumericColumn, an 
attempt is made to convert the data to double using System.Convert.ToDouble() 
(Section 3.1). If StatsFunctions.Mean() was used, instead of 
StatsFunctions.NaNMean(), or if col.MissingValue was set to something other 
than NA (for example, the default value is “.”), an exception would be thrown.
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3.3 Counts and Sums

The static Count() method on class StatsFunctions returns the number of 
elements in a data set:

int numElements = StatsFunctions.Count( data );

Counts() returns an IDictionary of key-value pairs in which the keys are the 
unique elements in a given data set, and the values are the counts for each element.

CountIf() calculates how many elements in a data set return true when a logical 
function is applied. For example, suppose MeetsThreshold() is a method that 
returns true if a given numeric value is greater than 100:

public bool MeetsThreshold( double x )
{
  return ( x > 100 );
}

This code counts the number of elements in a data set that meet the criterion:

int num = StatsFunctions.CountIf( data, new 
  StatsFunctions.LogicalDoubleFunction( MeetsThreshold ) );

Similarly, the static Sum() method sums the elements in a data set.  SumIf() sums 
the elements in a data set that return true when a logical function is applied:

double sum = StatsFunctions.SumIf( data, new 
  StatsFunctions.LogicalDoubleFunction( MeetsThreshold ) );

An overload of SumIf() sums the elements in one data set based on evaluating a 
logical function on another data set. For instance, this code sums the elements in 
data2 that correspond to those elements in data where MeetsThreshold() 
returns true:

double sum = StatsFunctions.SumIf( data, function, data2 );

A MismatchedSizeException is raised if the two data sets do not have the same 
number of elements.
42   NMath Stats User’s Guide



3.4 Min/Max Functions

Class StatsFunctions provides static min/max finding methods that return the 
integer index of the element in a data set that meets the appropriate criterion:

MaxIndex() returns the index of the element with the greatest value.

MinIndex() returns the index of the element with the smallest value.

MaxAbsIndex() returns the index of the element with the greatest absolute 
value.

MinAbsIndex() returns the index of the element with the smallest absolute 
value.

Min/max value methods MaxValue(), MinValue(), MaxAbsValue(), and 
MinAbsValue() return the value of the element that meets the appropriate 
criterion. 

3.5 Ranks, Percentiles, Deciles, and Quartiles

The static Ranks() method on class StatsFunctions returns the rank of each 
element in a data set an as array of integers. For example:

int[] ranks  = StatsFunctions.Ranks( data );

By default, the ranks are calculated using ascending order. Alternatively, you can 
specify a sort order using a value from the SortingType enumeration. Thus:

int[] ranks  =
  StatsFunctions.Ranks( data, SortingType.Descending );

NOTE—StatsSettings.Sorting specifies the default SortingType.

The Rank() method returns where a given value would rank within a data set, if it 
were part of the data set. Again, the sorting order can be specified using a value 
from the SortingType enumeration. For instance:

double x = 5.342;
int rank = StatsFunctions.Rank( data, x, SortingType.Descending );

Percentile() calculates the value at the nth percentile of the elements in a data 
set, where . For example, to find the value at the 95th percentile:

double x = StatsFunctions.Percentile( data, 0.95 );

0 n 1≤ ≤
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PercentileRank() performs the inverse calculation, returning the percentile a 
given value would have if it were part of the data set:

double x = 23.653;
double percentile = StatsFunctions.Percentile( data, x );

The returned percentile value is between 0 and 1.

Similarly, Decile() calculates a given decile, specified as an integer between 0 
and 10, of the elements in a data set.  Quartile() calculates a given quartile, 
specified as an integer between 0 and 4. For example, this code finds the third 
quartile value:

double x = StatsFunctions.Quartile( data, 3 );

3.6 Central Tendency

Measures of central tendency are measures of the location of the middle or the 
center of a data set. For example, the static Mean() method on class StatsFunctions 
computes the arithmetic mean (average) of the elements in a data set:

double mean = StatsFunctions.Mean( data );

Median() calculates the median of the  elements in a data set:

double median = StatsFunctions.Median( data );

The median is the middle of the set—half the values are above the median and half 
are below the median. If there are an even number of elements, Median() returns 
the average of the middle two elements.

Mode() determines the most frequently occurring value in a data set:

double mode = StatsFunctions.Mode( data );

GeometricMean() calculates the geometric mean.

 

HarmonicMean() calculates the harmonic mean.
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TrimmedMean() calculates the mean of a data set after the specified trimming. A 
trimmed mean is calculated by discarding a certain percentage of the lowest and 
the highest values and then computing the mean of the remaining values. For 
example, a mean trimmed 50% is computed by discarding the lower and higher 
25% of the values and taking the mean of the remaining values. TrimmedMean() 
takes a trimming parameter, which is a value between 0.0 and 1.0. For example, 
this code computes the mean trimmed 50%:

double trimMean = StatsFunctions.TrimmedMean( data, 0.50 );

The median is the mean trimmed 1.0, and the arithmetic mean is the mean 
trimmed 0.0. 

WeightedMean() calculates the weighted average of all the elements in a data set 
using a given set of corresponding weights. The weighted mean is calculated as 

 

For instance:

DoubleVector v =
  new DoubleVector( "-0.3 -0.03 4 2.8 -12.3 -5 3 10" );
DoubleVector weights = new DoubleVector( "1 2 3 4 2 1 3 4" );
double weightedMean = StatsFunctions.WeightedMean( v, weights ))

A MismatchedSizeException is raised if the number of weights does not equal the 
number of elements in the data set. Note that if all the weights are equal, the 
weighted mean is the same as the arithmetic mean. 

Lastly, RMS() calculates the root mean square of the elements in a data set. RMS, 
sometimes called the quadratic mean, is the square root of the mean squared 
value.

3.7 Spread

Measures of spread are measures of the degree values in the data set differ from 
each other. For example, the static SumOfSquaredErrors() method on class 
StatsFunctions calculates the sum of squared errors (SSE) of the elements in the 
data set. SSE is the sum of the squared differences between each element and the 
mean. 

w1x1 w2x2 … wnxn+ + +

w1 w2 … wn+ + +
-------------------------------------------------------
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StandardDeviation() computes the biased standard deviation of the elements in 
a data set.  

For instance:

double stdev = StatsFunctions.StandardDeviation( data );

Alternatively, you can specify the unbiased standard deviation

using a value from the BiasType enumeration:

double stdev =
  StatsFunctions.StandardDeviation( data, BiasType.Unbiased );

NOTE—StatsSettings.Bias specifies the default BiasType.

Variance() calculates the variance of the elements in a data set. Variance is the 
square of the standard deviation. Again, you can specify a biased or unbiased 
estimator using values from the BiasType enumeration.

MeanDeviation() calculates the mean deviation of the elements in a data set. The 
mean deviation is the mean of the absolute deviations about the mean. The mean 
deviation is defined by

Similarly, MedianDeviationFromMean() calculates the median of the absolute 
deviations from the mean. MedianDeviationFromMedian() calculates the median 
of the absolute deviations from the median. 

Lastly, InterquartileRange() returns the difference between the median of the 
highest half and the median of the lowest half of the elements in a data set:

double iqr = StatsFunctions.InterQuartileRange( data );

3.8 Shape

The static Skewness() method on class StatsFunctions computes the skewness of 
the elements in a data set. Skewness is the degree of asymmetry of a distribution. 
A distribution is skewed if one of its tails is longer than the other. Thus:
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double skewness = StatsFunctions.Skewness( data );

By default, Skewness() uses a biased estimator of the standard deviation 
(Section 3.7). Alternatively, you can specify the unbiased standard deviation using 
a value from the BiasType enumeration:

double skewness =
  StatsFunctions.Skewness( data, BiasType.Unbiased );

NOTE—StatsSettings.Bias specifies the default BiasType.

Kurtosis() calculates the kurtosis of the elements in a data set. Kurtosis is a 
measure of the degree of peakedness of a distribution. Again, a biased estimator of 
the standard deviation is used by default—you can specify the unbiased standard 
deviation using a value from the BiasType enumeration.

Finally, CentralMoment() returns the moment about the mean of a data set 
specified by a positive integer order. The first central moment is equal to zero. The 
second central moment is the variance. The third central moment is the skewness. 
The fourth central moment is the kurtosis.

3.9 Covariance, Correlation, and 
Autocorrelation 

The static Covariance() method on class StatsFunctions computes the covariance 
of two data sets. Covariance is a measure of the tendency of two data sets to vary 
together, and is defined by

Each deviation score in the first data set is multiplied by the corresponding 
deviation score in the second data set. For example:

double cov = StatsFunctions.Covariance( data1, data2 );

You can also specify a biased or unbiased estimator using values from the 
BiasType enumeration.

CovarianceMatrix() creates a square, symmetric matrix containing the variances 
and covariances of the columns in a given data matrix. The diagonal elements 
represent the variances for the columns; the off-diagonal elements represent the 
covariances of each pair of columns. 

covx y,
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Correlation() calculates the correlation between two data sets. Correlation is 
covariance standardized by dividing by the standard deviation of each data set:

The resultant value is the Pearson product-moment correlation coefficient, more 
commonly known simply as the correlation.

Spearmans() calculates the Spearman rank correlation coefficient, commonly 
known as Spearman’s rho. Spearman’s rho differs from Pearson's correlation only in 
that the computation is done after the values in the data set are converted to ranks 
(Section 3.5).

Fisher() calculates the Fisher transformation at a given value, which can be used 
to perform hypothesis testing on the correlation coefficient. FisherInv() 
calculates the inverse Fisher transformation.

Cronbach() calculates the standardized Cronbach’s alpha test for reliability.

Autocorrelation is the correlation between members of a time series of 
observations. Class StatsFunctions provides two static methods for computing 
first-order autocorrelation:

DurbinWatson() calculates the Durbin-Watson statistic for the elements in 
a data set.

VonNeumannRatio() calculates the Von Neumann ratio for the elements in 
a data set.

For instance:

double dw = StatsFunctions.DurbinWatson( data );
double vnr = StatsFunctions.VonNeumannRatio( data );

3.10 Sorting

The static Sort() method on class StatsFunctions sorts the elements of a data set 
in ascending or descending order using the quicksort algorithm and returns a new 
data set containing the result. The sort order is specified using a value from the 
SortingType enumeration.

For example:

DoubleVector v = new DoubleVector( “5 7 1 3 9 4 5 2 1 0 11 3” );    
v = StatsFunctions.Sort( v, SortingType.Descending );

corx y,
covx y,
SxSy

----------------=
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NOTE—StatsSettings.Sorting specifies the default SortingType.

3.11 Logical Functions

The static If() method on class StatsFunctions creates an array of boolean values 
determined by applying a given logical function to the elements in a data set. 

For example, suppose OnInterval01() is a method that returns true if a given 
numeric value is between 0 and 1:

public bool OnInterval01( double x )
{
  return ( ( x >= 0 ) && ( x <= 1 ) );
}

This code creates an array of boolean values by applying the criterion to a data set:

bool[] bArray = StatsFunctions.If( data, new 
  StatsFunctions.LogicalDoubleFunction( OnInterval01 ) );

As described in Section 2.7, the resultant boolean array could be used to create a 
Subset containing the indices of all true elements in the array. The subset could 
then be used to create a sub-frame from a DataFrame containing the rows or 
columns than meet the criterion. 

An overload of If() creates a new data set by applying a logical function to the 
elements of another data set. Elements in the original data set that return true are 
set to a given true value in the new data set; elements that return false are not 
changed.

For instance, suppose GreaterThan100() is a method that returns true if a given 
numeric value is greater than 100. This code creates a new data in which all values 
in DoubleVector data that are greater than 100 are set to NaN:

DoubleVector data2 = StatsFunctions.If( data,
  new StatsFunctions.LogicalDoubleFunction( GreaterThan100 ),   
  Double.NaN );

You can also supply a false value, in which case elements in the original data set 
that return false are set to that value. 

Static CountIf() and SumIf() methods are also provided on class StatsFunctions. 
See Section 3.3 for more information. 
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CHAPTER 4.  
SPECIAL FUNCTIONS

In addition to the descriptive statistics described in Chapter 3, class 
StatsFunctions also provides several special functions useful for statistical 
computation, including combinatorial functions, the beta function, and the gamma 
function.

4.1 Combinatorial Functions

The static Factorial() method on class StatsFunctions returns n!, the number of 
ways that n objects can be permuted. A lookup table is used for  for faster 
access. For example:

int i = StatsFunctions.Factorial( 20 );
// i = 2,432,902,008,176,640,000

FactorialLn() returns the natural log factorial of n, .

The static Binomial() method returns the binomial coefficient. The binomial 
coefficient  (“n choose m”) is the number of ways of picking m unordered 
outcomes from n possibilities:

For instance:

int nCm = StatsFunctions.Binomial( 6, 4 );

BinomialLn() returns the natural log of the binomial coefficient. 

n 24<

ln n!( )

Cn m

Cn m
n!

n m–( )!m!
-----------------------=
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4.2 Gamma Function

The static GammaLn() method on class StatsFunctions evaluates the log of the 
gamma function at a value x. The gamma function is an extension of the 
factorial function to complex and real number arguments.

The “complete” gamma function  can be generalized to the incomplete 
gamma function , such that . The “lower” incomplete gamma 
function is given by:

IncompleteGamma() returns the value of the lower regularized incomplete gamma 
function. 

4.3 Beta Function

The static Beta() method on class StatsFunctions method evaluates the beta 
function , which is related to the gamma function  as follows:

 

The incomplete beta function  is a generalization of the beta function:

IncompleteBeta() returns the value of the incomplete beta function.
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CHAPTER 5.  
PROBABILITY DISTRIBUTIONS

NMath Stats provides classes for computing the probability density function 
(PDF), the cumulative distribution function (CDF), the inverse cumulative 
distribution function, and random variable moments for a variety of probability 
distributions, including beta, binomial, chi-square ( ), exponential, F, gamma, 
geometric, Johnson, logistic, log-normal, negative binomial, normal (Gaussian), 
Poisson, Student's t, triangular, uniform, and Weibull distributions. The 
distribution classes share a common interface, so once you learn how to use one 
distribution class, it’s easy to use any of the others.

This chapter describes the distribution classes and how to use them. This chapter 
also describes how to create correlated sets of random variables drawn from 
different distributions.

5.1 Distribution Classes

The NMath Stats probability distribution classes are listed in Table 5.

Table 5 – Probability Distribution Classes

Class Distribution

BetaDistribution Beta distribution

BinomialDistribution Binomial distribution

ChiSquareDistribution Chi-Square ( ) distribution

ExponentialDistribution Exponential distribution

FDistribution F distribution

GammaDistribution Gamma distribution

GeometricDistribution Geometric distribution

χ2

χ2
   Chapter 5.   Probability Distributions 53



All distribution classes share a common interface. Class ProbabilityDistribution is 
the abstract base class for the distribution classes, and provides the following 
abstract methods implemented by the derived classes:

PDF() computes the probability density function at a given x.

CDF() computes the cumulative distribution function at a given x.

InverseCDF() computes the inverse cumulative distribution function for a 
given probability p—that is, it returns x such that CDF( x ) = p. 

In addition, all NMath Stats distribution classes implement the 
IRandomVariableMoments interface, which provides the following read-only 
properties:

Mean gets the mean of the distribution.

Variance gets the variance of the distribution.

Kurtosis gets the kurtosis of the distribution.

Skewness gets the skewness of the distribution.

Variance is the square of the standard deviation. Kurtosis is a measure of the degree 
of peakednesss of a distribution; skewness is a measure of the degree of asymmetry.

JohnsonDistribution Johnson distribution

LogisticDistribution Logistic distribution

LognormalDistribution Log-normal distribution

NegativeBinomialDistribution Negative Binomial distribution

NormalDistribution Normal (Gaussian) distribution

PoissonDistribution Poisson distribution

TDistribution Student’s t distribution

TriangularDistribution Triangular distribution

UniformDistribution Uniform distribution

WeibullDistribution Weibull distribution

Table 5 – Probability Distribution Classes

Class Distribution
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Once you have constructed a derived distribution type, you can query it for the 
PDF, CDF, inverse CDF, and random variable moments. For example, this code 
constructs a NormalDistribution with mean 0 and variance 1, then queries it:

NormalDistribution dist = new NormalDistribution( 0, 1 );
double pdf = dist.PDF( 0 );
double cdf = dist.CDF( 0 );
double invCdf = dist.InverseCDF( .5 );
double mean = dist.Mean;
double var = dist.Variance;
double kurt = dist.Kurtosis;
double skew = dist.Skewness;

Beta Distribution

Class BetaDistribution represents the beta probability distribution. The beta 
distribution is a family of curves with two free parameters, usually labelled  and 

. Beta distributions are nonzero only on the interval (0 1).

The distribution function for the beta distribution is:

where  is the beta function. The beta CDF is the same as the incomplete beta 
function.

For example, this code constructs a BetaDistribution:

double alpha = 3;
double beta = 7;
BetaDistribution dist = new BetaDistribution( alpha, beta );

The default constructor creates a BetaDistribution with  and  equal to 1:

BetaDistribution dist = new BetaDistribution();

The provided Alpha and Beta properties can be used to get and set the shape 
parameters after construction:

dist.Alpha = 4;
dist.Beta = 10;

Once you have constructed a BetaDistribution object, you can query it for the 
PDF, CDF, inverse CDF, and random variable moments, as described in Section 5.1.

α
β

f x α β,( ) xα 1– 1 x–( )β 1–
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Binomial Distribution

Class BinomialDistribution represents the discrete probability distribution of 
obtaining exactly n successes in N trials where the probability of success on each 
trial is p. For example, this code constructs an BinomialDistribution:

int n = 20;
double p = 0.25;
BinomialDistribution bin = new BinomialDistribution( n, p );

The default constructor creates an BinomialDistribution with  and :

BinomialDistribution bin = new BinomialDistribution();

The provided N and P properties can be used to get and set the number of trials 
and the probability of success on each trial after construction:

bin.N = 75;
bin.P = 0.02;

Once you have constructed an BinomialDistribution object, you can query it for 
the PDF, CDF, inverse CDF, and random variable moments, as described in 
Section 5.1.

Chi-Square Distribution

Class ChiSquareDistribution represents the chi-square ( ) probability 
distribution. The chi-square distribution is a special case of the gamma distribution 
with  and , where df is the degrees of freedom.

For example, this code constructs a ChiSquareDistribution:

double df = 16;
ChiSquareDistribution chiSq = new ChiSquareDistribution( df );

The default constructor creates a ChiSquareDistribution with 1 degree of 
freedom:

ChiSquareDistribution chiSq = new ChiSquareDistribution();

The provided DegreesOfFreedom property can be used to get and set the degrees 
of freedom of the distribution after construction:

chiSq.DegreesOfFreedom = 10;

Once you have constructed a ChiSquareDistribution object, you can query it for 
the PDF, CDF, inverse CDF, and random variable moments, as described in 
Section 5.1.

n 2= p 0.5=

χ2

α df 2⁄= β 2=
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Exponential Distribution

Class ExponentialDistribution represents the exponential distribution. A random 
variable w is said to have an exponential distribution if it has a probability density 
function

where  is often called the rate parameter. The mean of an exponential 
distribution is , and the variance is . For example, this code constructs an 
ExponentialDistribution:

double lambda = 22;
ExponentialDistribution exp =
  new ExponentialDistribution( lambda );

The provided Lambda property can be used to get and set the rate after 
construction:

exp.Lambda = 15;

Once you have constructed an ExponentialDistribution object, you can query it 
for the PDF, CDF, inverse CDF, and random variable moments, as described in 
Section 5.1.

F Distribution

Class FDistribution represents the F probability distribution. The F distribution is 
the ratio of two chi-square distributions with degrees of freedom  df1 and df2, 
respectively, where each chi-square has first been divided by its degrees of 
freedom. For example, this code constructs an FDistribution:

double df1 = 11;
double df2 = 19;
FDistribution f = new FDistribution( df1, df2 );

The default constructor creates an FDistribution with both degrees of freedom 
equal to 1:

FDistribution f = new FDistribution();

The provided DegreesOfFreedom1 and DegreesOfFreedom2 properties can be 
used to get and set the degrees of freedom after construction:

f.DegreesOfFreedom1 = 15;
f.DegreesOfFreedom2 = 23;

Once you have constructed an FDistribution object, you can query it for the PDF, 
CDF, inverse CDF, and random variable moments, as described in Section 5.1.

g w( ) λe λw–
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Gamma Distribution

Class GammaDistribution represents the gamma probability distribution. The 
gamma distribution is a family of curves with two free parameters, usually 
labelled  and . The mean of the distribution is ; the variance is . When  
is large, the gamma distribution closely approximates a normal distribution.

The distribution function for the gamma distribution is:

where  is the Gamma function.

For example, this code constructs a GammaDistribution:

double alpha = 7;
double beta = 12;
GammaDistribution gamma = new GammaDistribution( alpha, beta );

The default constructor creates a GammaDistribution with  and  equal to 1:

GammaDistribution gamma = new GammaDistribution();

The provided Alpha and Beta properties can be used to get and set the shape 
parameters after construction:

gamma.Alpha = 10;
gamma.Beta = 15;

Once you have constructed a GammaDistribution object, you can query it for the 
PDF, CDF, inverse CDF, and random variable moments, as described in Section 5.1.

Geometric Distribution

Class GeometricDistribution represents the geometric distribution. The geometric 
distribution is the probability distribution of the number of failures before the first 
success. It is supported on the set .

A GeometricDistribution is constructed from a given probability of success p, 
where . For example:

double p = .25;
GeometricDistribution geo = new GeometricDistribution( p );

Class GeometricDistribution provides property P that gets and sets the 
probability for success for the distribution.

geo.P = .5;

α β αβ αβ2 α
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Once you have constructed a GeometricDistribution object, you can query it for 
the PDF, CDF, inverse CDF, and random variable moments, as described in 
Section 5.1.

Johnson Distribution

Class JohnsonDistribution represents the Johnson system of distributions. The 
Johnson system is based on three possible transformations of a normal random 
variable—exponential, logistic, and hyperbolic sine—plus the identity 
transformation:

where the transformation f() has four possible forms based on the distribution 
type:

Normal (SN): f(u) = exp(u)

Log Normal (SL): f(u) = u

Unbounded (SU):f(u) = u + sqrt(1+u^2)

Bounded (SB):f(u) = u/(1-u)

A JohnsonDistribution instance is constructed from a set of distribution 
parameter values, and a JohnsonTransformationType enumerated value 
specifying the transformation type. For instance:

double gamma = -0.18;
double delta = 2.55;
double xi = -0.14;
double lambda = 2.35;
JohnsonTransformationType type = JohnsonTransformationType.Normal;

JohnsonDistribution dist =
  new JohnsonDistribution( gamma, delta, xi, lambda, type );

Once you have constructed a JohnsonDistribution object, you can query it for the 
PDF, CDF, inverse CDF, and random variable moments, as described in Section 5.1.

z γ δln f u( )( ) where u+
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λ
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Class JohnsonDistribution also provides a static Fit() method for fitting a 
Johnson distribution to a data set. Estimation of the Johnson parameters is done 
from quantiles that correspond to the cumulative probabilities [0.05, 0.206, 
0.5, 0.794, 0.95] using the method of Wheeler (1980).1 For example:

DoubleVector data = new DoubleVector(-0.09736927, 0.21615254, 
  0.88246516, 0.20559750, -0.61643584, -0.73479925, -0.13180279, 
  0.31001699, -1.03968035, -0.18430887, 0.96726726, -0.10828009, -
  0.69842067, -0.27594517, 1.11464855, 0.55004396, 1.23667580, 
  0.13909786, 0.41027510, -0.55845691);
JohnsonDistribution dist = JohnsonDistribution.Fit(data);

The Transform() method transforms data using a JohnsonDistribution object.

Logistic Distribution

Class LogisticDistribution represents the logistic probability distribution with a 
specified location (mean) and scale. The logistic distribution with location m and 
scale b has distribution function: 

and density:

 

For example, this code constructs a LogisticDistribution:

double loc = 2.0;
double scale = 1.5;
LogisticDistribution logistic =
  new LogisticDistribution( loc, scale );

The provided Location and Scale properties can be used to get and set 
distribution parameters after construction:

logistic.Location = 7.123;
logistic.Scale = 4.5;

Once you have constructed a LogisticDistribution object, you can query it for the 
PDF, CDF, inverse CDF, and random variable moments, as described in Section 5.1.

1Wheeler, R.E. (1980). Quantile estimators of Johnson curve parameters. Biometrika. 67-3 725-728.
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Log-Normal Distribution

Class LognormalDistribution represents the log-normal distribution. A log-
normal distribution has a normal distribution as its logarithm:

 

For example, this code constructs an LognormalDistribution whose associated 
normal distribution has the specified mean and standard deviation:

double mu = -99;
double sigma = 6;
LognormalDistribution ln = new LognormalDistribution( mu, sigma );

The default constructor creates a LognormalDistribution whose associated 
normal distribution has mean 0 and standard deviation 1:

LognormalDistribution ln = new LognormalDistribution();

The Mu and Sigma properties can be used to get and set the mean and standard 
deviation after construction:

ln.Mu = 2.25;
ln.Sigma = .75;

Once you have constructed a LognormalDistribution object, you can query it for 
the PDF, CDF, inverse CDF, and random variable moments, as described in 
Section 5.1.

Negative Binomial Distribution

Class NegativeBinomialDistribution represents the discrete probability 
distribution of obtaining N successes in a series of x trials, where the probability of 
success on each trial is P.

For example, this code constructs an NegativeBinomialDistribution:

int n = 5;
double p = 0.25;
NegativeBinomialDistribution negBin =
  new NegativeBinomialDistribution( n, p );

The default constructor creates an NegativeBinomialDistribution with  and 
:

BinomialDistribution negBin = new BinomialDistribution();

f x( ) enormal µ σ,( )
=

n 2=
p 0.5=
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The provided N and P properties can be used to get and set the number of 
successes and the probability of success on each trial after construction:

negBin.N = 75;
negBin.P = 0.02;

Once you have constructed an NegativeBinomialDistribution object, you can 
query it for the PDF, CDF, inverse CDF, and random variable moments, as 
described in Section 5.1.

Normal Distribution

Class NormalDistribution represents the normal (Gaussian) probability 
distribution. with a specified mean and variance. For example, this code creates a 
normal distribution with a mean of 1 and variance of 2.5:

NormalDistribution norm = new NormalDistribution( 1, 2.5 );

The default constructor creates a NormalDistribution with mean 0 and variance 1:

NormalDistribution norm = new NormalDistribution();

The Mean and Variance properties inherited from IRandomVariableMoments 
can be used to get and set the mean and variance after construction:

norm.Mean = 2.25;
norm.Variance = .75;

Once you have constructed a NormalDistribution object, you can query it for the 
PDF, CDF, inverse CDF, and random variable moments, as described in Section 5.1.

Poisson Distribution

Class PoissonDistribution represents a poisson distribution with a specified  
parameter, which is both the mean and the variance of the distribution. The 
poisson distribution is the probability of obtaining exactly n successes in N trials. It 
is often used as a model for the number of events in a specific time period. Poisson 
(1837) showed that the Poisson distribution is the limiting case of a binomial 
distribution where N approaches infinity and p goes to zero while . The 
distribution function for the Poisson distribution is:

For example, this code constructs a PoissonDistribution:

double lambda = 150;
PoissonDistribution poisson = new PoissonDistribution( lambda );

λ

Np λ=
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The Mean and Variance properties inherited from IRandomVariableMoments 
can also be used to get and set  after construction:

poisson.Mean = 3;

Once you have constructed a PoissonDistribution object, you can query it for the 
PDF, CDF, inverse CDF, and random variable moments, as described in Section 5.1.

Student’s t Distribution

Class TDistribution represents Student's t distribution with specified degrees of 
freedom. As the number of degrees of freedom grows, the t distribution 
approaches the normal distribution with mean 0 and variance 1.

For example, this code constructs a TDistribution:

double df = 53;
TDistribution t = new TDistribution( df );

The default constructor creates a TDistribution with 1 degree of freedom:

TDistribution t = new TDistribution();

The provided DegreesOfFreedom property can be used to get and set the degrees 
of freedom of the distribution after construction:

t.DegreesOfFreedom = 54;

Once you have constructed a TDistribution object, you can query it for the PDF, 
CDF, inverse CDF, and random variable moments, as described in Section 5.1.

Triangular Distribution

Class TriangularDistribution represents the triangular distribution. The 
triangular distribution is defined by three parameters, a lower limit a, an upper 
limit b, and number c, between a and b, called the mode. The probability density 
function has the shape of a triangle in the X/Y plane with vertices (a, 0), (b, 0), and 
(c, y), where y is chosen so that the area of the triangle is 1.

For example, this code constructs an TriangularDistribution with the given 
parameters:

double lower = 3;
double upper = 10;
double mode = 8;
TriangularDistribution td =
  new TriangularDistribution( lower, upper, mode );

λ

   Chapter 5.   Probability Distributions 63



If you don’t specify the mode, the midpoint of the lower and upper limits is used.

The default constructor creates a TriangularDistribution with lower limit 0, upper 
limit 1, and mode 0.5:

TriangularDistribution td = new TriangularDistribution();

The LowerLimit, UpperLimit, and Mode properties can be used to get and set the 
distribution parameters after construction:

td.LowerLimit = 1.5;
td.UpperLimit = 3.5;
td.Mode = 2.75;

Once you have constructed a TriangularDistribution object, you can query it for 
the PDF, CDF, inverse CDF, and random variable moments, as described in 
Section 5.1.

Uniform Distribution

Class UniformDistribution represents the uniform distribution. For example, this 
code constructs an UniformDistribution with the specified lower and upper 
limits:

double lower = -.77;
double upper = 1.22;
UniformDistribution uni = new UniformDistribution( lower, upper );

The default constructor creates a UniformDistribution with lower limit 0 and 
upper limit 1:

UniformDistribution uni = new UniformDistribution();

The LowerLimit and UpperLimit properties can be used to get and set the lower 
and upper limits after construction:

uni.LowerLimit = 0;
uni.UpperLimit = 2.0;

Once you have constructed a UniformDistribution object, you can query it for the 
PDF, CDF, inverse CDF, and random variable moments, as described in Section 5.1.

Weibull Distribution

Class WeibullDistribution represents the Weibull distribution. The probability 
density function of the Weibull distribution is given by:
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where  is the shape parameter and  is the scale parameter of the 
distribution.

For example, this code constructs an WeibullDistribution with the specified 
distribution parameters:

double scale = 1.5;
double shape = 3;
WeibullDistribution wb = new WeibullDistribution( scale, shape );

The Scale and Shape properties can be used to get and set the distribution 
parameters after construction:

wb.Scale = .5;
wb.Shape = 2;

Once you have constructed a WeibullDistribution object, you can query it for the 
PDF, CDF, inverse CDF, and random variable moments, as described in Section 5.1.

5.2 Correlated Random Inputs

NMath Stats provides classes InputVariableCorrelator and 
ReducedVarianceInputCorrelator to induce a desired rank correlation among a 
set of random input variables. The correlated inputs retain the same marginal 
distributions as the original inputs but have a Spearman’s rank correlation matrix 
approximately equal to that specified by the user. The method used is that of Iman 
and Conover (1982).2

ReducedVarianceInputCorrelator performs the same function as 
InputVariableCorrelator class, but uses an algorithm that produces more accurate 
results, at some cost in performance.

Constructing Correlator Instances

Instances of InputVariableCorrelator and ReducedVarianceInputCorrelator are 
constructed from the number of samples and the desired correlation matrix. This 
code assume 500 samples of 6 input variables: 

2Iman, Ronald L. and W. J. Conover, “A Distribution-Free Approach to Inducing Rank Correlation 
Amoung Input Variables”, Commun. Statist.-Simula. Computation 11(3), pp. 311-334 (1982)

k 0> λ 0>
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int numSamples = 500;
string str = "6x6 [1 0 0 0 0 0 " +
                  "0 1 0 0 0 0 " +
                  "0 0 1 0 0 0 " +
                  "0 0 0 1 .75 -.70 " +
                  "0 0 0 .75 1 -.95 " +
                  "0 0 0 -.7 -.95 1]";
DoubleMatrix desiredCorrelations = new DoubleMatrix( str );

InputVariableCorrelator correlator = new
  InputVariableCorrelator( numSamples, desiredCorrelations );

Most of the work done by the correlation algorithm involves setting up a score 
matrix which has been transformed so that it's Spearman’s rank correlation matrix 
is equal to the desired correlation matrix. The computation of this score matrix 
requires only the number of samples and the desired correlation matrix, and is 
performed at construction time. Once you have constructed an 
InputVariableCorrelator or ReducedVarianceInputCorrelator instance, you can 
correlate batches of random inputs relatively quickly.

Correlating Random Inputs

The GetCorrelatedInputs() method on InputVariableCorrelator and 
ReducedVarianceInputCorrelator returns a matrix containing a given set of input 
variables values re-ordered so as to have the desired correlations.

For instance, this code creates a set of samples drawn from 4 different distributions 
(each row of the inputs matrix is a random sample of the 6 input variables), and 
induces the desired correlation:

RandGenBeta betaRng = new RandGenBeta();
RandGenUniform uniformRng = new RandGenUniform();
RandGenPoisson poissonRng = new RandGenPoisson();
RandGenNormal normalRng = new RandGenNormal();

DoubleMatrix inputs = new DoubleMatrix( numSamples, 6 );
betaRng.Fill( inputs.Col( 0 ).DataBlock.Data );
uniformRng.Fill( inputs.Col( 1 ).DataBlock.Data );
poissonRng.Fill( inputs.Col( 2 ).DataBlock.Data );
normalRng.Fill( inputs.Col( 3 ).DataBlock.Data );
betaRng.Fill( inputs.Col( 4 ).DataBlock.Data );
uniformRng.Fill( inputs.Col( 5 ).DataBlock.Data );

DoubleMatrix correlatedInputs =
  correlator.GetCorrelatedInputs( inputs );

You can compare the actual Spearman’s rank correlation matrix with the desired 
correlation matrix, like so:
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DoubleMatrix actualCorrelations =
  StatsFunctions.Spearmans( correlatedInputs );

Console.WriteLine( "Desired: " + desiredCorrelations );
Console.WriteLine( "Actual: " + actualCorrelations );

Correlator Properties

InputVariableCorrelator and ReducedVarianceInputCorrelator provide the 
following read-only properties:

Rstar gets the permuted score matrix which has been transformed to have 
the desired correlation matrix.

NumInputVariables gets the number of input variables.

SampleSize gets the sample size of the input variables.

Convenience Method

The static CorrelatedRandomInputs() convenience method is provided on class 
StatsFunctions for cases where you need only one set of correlated inputs. For 
example:

DoubleMatrix correlatedInputs =   
  StatsFunctions.CorrelatedRandomInputs( inputs, 
    desiredCorrelations );

In the special case of two input variables, an additional overload obviates the need 
for setting up the original input sample matrix. For instance, this code creates two 
sequences of 100 normally distributed random numbers which have, 
approximately, the specified rank correlation coefficient 0.8:

double mean1 = 43.2;
double var1 = 1.2;
RandGenNormal normalRng1 = new RandGenNormal( mean1, var1 );

double mean2 = 102.45;
double var2 = 8.098;
RandGenNormal normalRng2 = new RandGenNormal( mean2, var2 );

double desiredRankCorrelation = .8;

int numSamples = 100;

DoubleMatrix correlatedInputs = 
  StatsFunctions.CorrelatedRandomInputs( numSamples,
    desiredRankCorrelation, normalRng1, normalRng2 );
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5.3 Box-Cox Power Transformations

Box-Cox power transformations compute a rank-preserving transformation of 
data to stabilize variance and make the data more normal. The power 
transformation is defined as a continuously varying function, with respect to the 
power parameter , 

In NMath Stats, class BoxCox compute the Box-Cox power tranformations for a 
set of data points and parameter value . In addition, methods are provided for 
computing the corresponding log-likelihood function and the value of  which 
maximizes it.

For example:

DoubleVector data = new DoubleVector( "[.15 .09 .18 .10 .05 .12 .08 
.05 .08 .10 .07 .02 .01 .10 .10 .10 .02 .10 .01 .40 .10 .05 .03 .05 
.15 .10 .15 .09 .08 .18 .10 .20 .11 .30 .02 .20 .20 .30 .30 .40 .30 
.05]" );

Interval interval = new Interval( -5, 5, Interval.Type.Closed );

BoxCox bc = new BoxCox( data, interval );

Console.WriteLine( bc.Lambda );
Console.WriteLine( bc.TransformedData );

BoxCox searches from -5 to 5 until the best value of  is found (the value which 
maximizes the log-likelihood function). 

λ
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CHAPTER 6.  
HYPOTHESIS TESTS

Hypothesis tests use statistics to determine the probability that a given hypothesis 
is true. For example, could the differences between two sample means be 
explained away as sampling error? NMath Stats provides classes for many 
common hypothesis tests.

This chapter describes the hypothesis test classes. For non-parametric tests, see 
Chapter 10.

6.1 Common Interface

All hypothesis test classes share substantially the same interface. Once you learn 
how to use one test, it’s easy to use any of the others.

Static Properties

All hypothesis test classes have static DefaultAlpha properties that get and set the 
default alpha level associated with tests of that type. The default value is 0.01. For 
instance:

OneSampleTTest test1 = new OneSampleTTest();
// test1.Alpha == 0.01
OneSampleTTest.DefaultAlpha = 0.05;
OneSampleTTest test2 = new OneSampleTTest();
// test2.Alpha == 0.05

Similarly, all hypothesis test classes have static DefaultType properties that get 
and set the default form of the alternative hypothesis. The form is specified using 
the HypothesisType enumeration, with the following enumerated values:

Left indicates a one-sided form to the left, .

Right indicates a one-sided form to the right, .

TwoSided indicates a two-sided form, .

µ µ0<

µ µ0>
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The default value for all test classes is HypothesisType.TwoSided. For example:

OneSampleTTest test1 = new OneSampleTTest();
// test1.Type == HypothesisType.TwoSided
OneSampleTTest.DefaultType = HypothesisType.Left;
OneSampleTTest test2 = new OneSampleTTest();
// test2.Type == HypothesisType.Left

Creating Hypothesis Test Objects

All hypothesis test classes provide two paths for constructing instances of that 
type: 

A parameter-based method, in which all necessary sample and population 
parameters are explicitly specified.

A data-based method, in which sample parameters are computed from 
supplied sample data.

NOTE—In the data-based method, once sample parameters have been computed 
from the given data, the data is discarded, and cannot be recovered from the test 
object.

For example, a one-sample z-test compares a single sample mean to an expected 
mean from a normal distribution with known standard deviation. This code 
constructs a OneSampleZTest object by explicitly specifying a sample mean, 
sample size, population mean, and population standard deviation:

double xbar = 112.8;
int n = 9;
double mu0 = 100;
double sigma = 15;
OneSampleZTest test = new OneSampleZTest( xbar, n, mu0, sigma );

This code constructs a OneSampleZTest object by supplying a vector of sample 
data, and the necessary population parameters:

DoubleVector data =
  new DoubleVector( “[ 116 110 111 113 112 113 111 109 121 ]” );
double mu0 = 100;
double sigma = 15;
OneSampleZTest test = new OneSampleZTest( data, mu0, sigma );

In this case, the sample mean and sample size are calculated from the given data. 
The data-based method supports sample data in vectors, arrays, and data frame 
columns.

In both the parameter-based method and the data-based method, the alpha level 
for the hypothesis test is set to the current value specified by the static 
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DefaultAlpha property, and the form of the hypothesis test is set to the current 
DefaultType, as described above.

Constructors are also provided for all test classes that enable you to set the alpha 
level and hypothesis type to non-default values. For example:

OneSampleZTest test = new OneSampleZTest( data, mu0, sigma, 0.05, 
  HypothesisType.Left );

Properties of Hypothesis Test Objects

All hypothesis test classes provide the following read-only properties:

Distribution gets the distribution of the test statistic associated with the 
hypothesis test.  

Statistic gets the value of the test statistic associated with this hypothesis 
test.  

P gets the p-value associated with the test statistic.  

Reject tests whether the null hypothesis can be rejected, using the current 
hypothesis type and alpha level.  

LeftCriticalValue gets the one-sided to the left critical value based on 
the current probability distribution and alpha level.

RightCriticalValue gets the one-sided to the right critical value based on 
the current probability distribution and alpha level.  

LeftProbability gets the area under the probability distribution to the 
left of the test statistic.

RightProbability gets the area under the probability distribution to the 
right of the test statistic.

LowerConfidenceLimit gets the  lower confidence limit for the true 
mean.

UpperConfidenceLimit gets the  upper confidence limit for the true 
mean.

SEM gets the standard error of the mean.

The following read-write properties are also provided: 

Alpha gets and sets the alpha level associated with the hypothesis test.  

Type gets and sets the form of the alternative hypothesis associated with 
the hypothesis test.

1 α–

1 α–
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Additionally, each hypothesis test provides properties for accessing the specific 
sample and population parameters that define the test. For example, a 
OneSampleZTest has additional properties for accessing the sample mean, Xbar, 
the sample size, N, the population mean, Mu0, and the population standard 
deviation, Sigma. 

Modifying Hypothesis Test Objects

All hypothesis test classes provide Update() methods for modifying a test with 
new sample parameters or sample data, and new population parameters. For 
example, if test is a TwoSampleFTest instance, this code updates the test with 
two new samples, taken from two columns in a data frame df:

test.Update( df[3], df[7]  );

Printing Results

All hypothesis test classes provide a ToString() method that returns a formatted 
string representation of the test results. For instance:

DoubleVector data1 = new DoubleVector( "9.21 11.51 12.79 11.85 9.97 
  8.79 9.69 9.68 9.19" );
DoubleVector data2 = new DoubleVector( "7.53 7.48 8.08 8.09 10.15 
  8.40 10.88 6.13 7.90 7.05 7.48 7.58 8.11" );
TwoSampleFTest test = new TwoSampleFTest( data1, data2, 0.05, 
  HypothesisType.TwoSided );
Console.WriteLine( test.ToString() );

The output is:

Two Sample F Test
-----------------

Sample Sizes = 9 and 13
Standard Deviations = 1.39787139767736 and 1.23808008936914
Variances = 1.95404444444444 and 1.53284230769231
Ratio of Variances = 1.27478504125206
Computed F statistic: 1.27478504125206, num df = 8, denom df = 12

Hypothesis type: two-sided
Null hypothesis: true ratio of variances = 1
Alt hypothesis: true ratio of variances != 1
P-value: 0.679745985376403
RETAIN the null hypothesis for alpha = 0.05
0.95 confidence interval: 0.363002872041806 5.3536732579205
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6.2 One Sample Z-Test

Class OneSampleZTest determines whether a sample from a normal distribution 
with known standard deviation could have a given mean. For example, suppose 
we wish to determine whether the IQs of children from a particular school are 
above average, given that Wechsler IQ scores are normally distributed with a 
mean of 100 and standard deviation of 15. Sample scores from 9 students are 116 
110 111 113 112 113 111 109 121, with a mean of 112.8.

As described Section 6.1, all hypothesis test classes provide two paths for 
constructing instances of that type: a parameter-based method and a data-based 
method. Thus, you can construct a OneSampleZTest object by explicitly 
specifying a sample mean ( ), sample size ( ), population mean ( ), and 
population standard deviation ( ), like so:

double xbar = 112.8;
int n = 9;
double mu0 = 100;
double sigma = 15;
OneSampleZTest test = new OneSampleZTest( xbar, n, mu0, sigma );

Or by supplying a set of sample data, and the necessary population parameters:

DoubleVector data =
  new DoubleVector( “[ 116 110 111 113 112 113 111 109 121 ]” );
double mu0 = 100;
double sigma = 15;
OneSampleZTest test = new OneSampleZTest( data, mu0, sigma );

In this case, the sample mean and sample size are calculated from the given data.

In addition to the properties common to all hypothesis test objects (Section 6.1), a 
OneSampleZTest object provides the following read-only properties:

Xbar gets the sample mean.

N gets the sample size.

Mu0 gets the population mean.

Sigma gets the population standard deviation.

By default, a OneSampleZTest object performs a two-sided hypothesis test 
( ) with . In this example, we wish to test the one-sided form to 
the right ( ; that is, we wish to test whether the children in our sample 
have a higher than average IQ. Suppose also that we wish to set the alpha level to 
0.05. Non-default test parameters can be specified at the time of construction 
using constructor overloads, or after construction using the provided Alpha and 
Type properties, like so:

x n µ0

σ

H1:µ µ0≠ α 0.01=
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test.Type = HypothesisType.Right;
test.Alpha = 0.05;

Once you’ve constructed and configured a OneSampleZTest object, you can 
access the test results using the provided properties, as described in Section 6.1:

Console.WriteLine( "z-statistic = " + test.Statistic );
Console.WriteLine( "p-value = " + test.P );
Console.WriteLine( "reject the null hypothesis? " + test.Reject);

The output is:

z-statistic = 2.56
p-value = 0.00523360816355578
reject the null hypothesis? true

This indicates that we can reject the null hypotheses ( ). We can conclude 
that the children have IQs significantly above average.

Finally, remember that the ToString() method returns a formatted string 
representation of the complete test results:

One Sample Z Test
-----------------

Sample mean = 112.8
Sample size = 9
Population mean = 100
Population standard deviation = 15
Computed Z statistic: 2.56

Hypothesis type: one-sided to the right
Null hypothesis: sample mean = population mean
Alt hypothesis: sample mean > population mean
P-value: 0.00523360816355578
REJECT the null hypothesis for alpha = 0.05
0.95 confidence interval: 104.575731865243 Infinity

6.3 One Sample T-Test

Class OneSampleTTest determines whether a sample from a normal distribution 
with unknown standard deviation could have a given mean. For example, suppose 
we wish to determine whether the self-esteem of children from a particular school 
differ from average, given a known population value of 3.9 on the Rosenberg 
Self-Esteem Scale. 113 children are tested, with a mean score of 4.0408 and a 
standard deviation of .6542.

H0:µ µ0=
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As described Section 6.1, all hypothesis test classes provide two paths for 
constructing instances of that type: a parameter-based method and a data-based 
method. Thus, you can construct a OneSampleTTest object by explicitly 
specifying a sample mean ( ), sample standard deviation ( ), sample size ( ), and 
population mean ( ), like so:

double xbar = 4.0408;
double s = .6542;
int n = 113;
double mu0 = 3.9;
OneSampleTTest test = new OneSampleTTest( xbar, s, n, mu0 );

Or by supplying a set of sample data, and the necessary population parameters. 
For instance, if the sample data is in column 3 of DataFrame df:

double mu0 = 3.9;
OneSampleTTest test = new OneSampleTTest( df[3], mu0 );

In this case, the sample mean, standard deviation, and size are calculated from the 
given data.

In addition to the properties common to all hypothesis test objects (Section 6.1), a 
OneSampleTTest object provides the following read-only properties:

Xbar gets the sample mean.

S gets the sample standard deviation.

N gets the sample size.

Mu0 gets the population mean.

DegreesOfFreedom gets the degrees of freedom.

By default, a OneSampleTTest object performs a two-sided hypothesis test 
( ) with . Non-default test parameters can be specified at the time 
of construction using constructor overloads, or after construction using the 
provided Alpha and Type properties, like so:

test.Alpha = 0.05;

Once you’ve constructed and configured a OneSampleTTest object, you can 
access the various test results using the provided properties, as described in 
Section 6.1:

Console.WriteLine( "t-statistic = " + test.Statistic );
Console.WriteLine( "deg of freedom = " + test.DegreesOfFreedom );
Console.WriteLine( "p-value = " + test.P );
Console.WriteLine( "reject the null hypothesis? " + test.Reject);

x s n
µ0
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The output is:

t-statistic = 2.28786996397591
deg of freedom = 112
p-value = 0.0240223660991041
reject the null hypothesis? True

This indicates that we can reject the null hypotheses ( ). We can conclude 
that the children have self-esteem scores significantly different than average.

Finally, remember that the ToString() method returns a formatted string 
representation of the complete test results:

One Sample t Test
-----------------

Sample mean = 4.0408
Sample standard deviation = 0.6542
Sample size = 113
Population mean = 3.9
Computed t statistic: 2.28786996397591, df = 112

Hypothesis type: two-sided
Null hypothesis: sample mean = population mean
Alt hypothesis: sample mean != population mean
P-value: 0.0240223660991041
REJECT the null hypothesis for alpha = 0.05
0.95 confidence interval: 3.91886249658971 4.16273750341029

6.4 Two Sample Paired T-Test

Class TwoSamplePairedTTest tests the null hypothesis that the population mean 
of the paired differences of two samples is zero. Pairing involves matching up 
individuals in two samples so as to minimize their dissimilarity except in the 
factor under study. Paired samples often occur in pre-test/post-test studies in 
which subjects are measured before and after an intervention. They also occur in 
matched-pairs (for example, matching on age and sex), cross-over trials, and 
sequential observational samples. Paired samples are also called matched samples 
and dependent samples.

NOTE—TwoSamplePairedTTest is equivalent to performing a OneSampleTTest on 
the paired differences (see Section 6.3). 

For example, suppose we measure the thickness of plaque (mm) in the carotid 
artery of 10 randomly selected patients with mild atherosclerotic disease. Two 
measurements are taken: before treatment with Vitamin E (baseline), and after two 

H0:µ µ0=
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years of taking Vitamin E daily. The mean difference between paired 
measurements is 0.045 with a standard deviation of 0.0264.

As described Section 6.1, all hypothesis test classes provide two paths for 
constructing instances of that type: a parameter-based method and a data-based 
method. Thus, you can construct a TwoSamplePairedTTest object by explicitly 
specifying the mean difference between paired observations ( ), the standard 
deviation of the differences ( ), and the sample size ( ), like so:

double xbar = 0.045;
double s = 0.0264;
int n = 10;
TwoSamplePairedTTest test = new TwoSamplePairedTTest( xbar, s, n );

Alternatively, you can supply two sets of sample data. For instance, this code adds 
data to a DataFrame (Chapter 2):

DataFrame df = new DataFrame();
df.AddColumn( new DFNumericColumn( "Baseline" ) );
df.AddColumn( new DFNumericColumn( "Vit E" ) );
df.AddRow( 1, 0.66, 0.60 );
df.AddRow( 2, 0.72, 0.65 );
df.AddRow( 3, 0.85, 0.79 );
df.AddRow( 4, 0.62, 0.63 );
df.AddRow( 5, 0.59, 0.54 );
df.AddRow( 6, 0.63, 0.55 );
df.AddRow( 7, 0.64, 0.62 );
df.AddRow( 8, 0.70, 0.67 );
df.AddRow( 9, 0.73, 0.68 );
df.AddRow( 10, 0.68, 0.64 );

And this code constructs a TwoSamplePairedTTest from the two columns of data:

TwoSamplePairedTTest test =
   new TwoSamplePairedTTest( df[ “Baseline” ], df[ “Vit E” ] );

The mean difference between paired measurements, the standard deviation, and 
the sample size are calculated from the given data.

In addition to the properties common to all hypothesis test objects (Section 6.1), a 
TwoSamplePairedTTest object provides the following read-only properties:

Xbar gets the mean of the differences between paired observations.

S gets the standard deviation of the differences between paired 
observations.

N gets the number of pairs.

DegreesOfFreedom gets the degrees of freedom.

x
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By default, a TwoSamplePairedTTest object performs a two-sided hypothesis test 
( ) with . Non-default test parameters can be specified at the time 
of construction using constructor overloads, or after construction using the 
provided Type and Alpha properties.

Once you’ve constructed and configured a TwoSamplePairedTTest object, you 
can access the various test results using the provided properties, as described in 
Section 6.1:

Console.WriteLine( "t-statistic = " + test.Statistic );
Console.WriteLine( "deg of freedom = " + test.DegreesOfFreedom );
Console.WriteLine( "p-value = " + test.P );
Console.WriteLine( "reject the null hypothesis? " + test.Reject);

The output is:

t-statistic = 5.4
deg of freedom = 9
p-value = 0.000433006432003502
reject the null hypothesis? True

This indicates that we can reject the null hypotheses ( ). We can conclude 
that the true mean thickness of plaque after two years treatment with Vitamin E is 
significantly different than before treatment.

Finally, remember that the ToString() method returns a formatted string 
representation of the complete test results:

Two Sample t Test (Paired)
--------------------------

Mean of differences between pairs = 0.045
Standard deviation of differences between pairs = 
0.0263523138347365
Sample size (number of pairs) = 10
Computed t statistic: 5.4, df = 9

Hypothesis type: two-sided
Null hypothesis: true mean of differences between pairs = 0
Alt hypothesis: true mean of differences between pairs != 0
P-value: 0.000433006432003502
REJECT the null hypothesis for alpha = 0.01
0.99 confidence interval: 0.0179180371533991 0.0720819628466008

H1:µd 0≠ α 0.01=

H0:µd 0=
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6.5 Two Sample Unpaired T-Test

Class TwoSampleUnpairedTTest tests whether two samples from a normal 
distribution could have the same mean when the standard deviations are 
unknown but assumed to be equal, allowing for a pooled estimate of the variance.

Class TwoSampleUnpairedUnequalTTest assumes that the samples may come 
from populations with unequal variances, and the Welch-Satterthwaite 
approximation to the degrees of freedom is used. Unlike 
TwoSampleUnpairedTTest, a pooled estimate of the variance is not used.

For example, suppose we work for a company that makes plastic widgets and we 
want to compare plastic samples from two suppliers for strength. We record the 
breaking strength in psi (pounds per square inch) for random samples from each 
supplier and obtain the following data: 11 samples from the first supplier having a 
mean strength of 4.2 psi and a standard deviation of 4.68; 8 samples from the 
second supplier have a mean strength of 5.6 and a standard deviation of 3.92.

As described Section 6.1, all hypothesis test classes provide two paths for 
constructing instances of that type: a parameter-based method and a data-based 
method. Thus, you can construct a TwoSampleUnpairedTTest object by explicitly 
specifying the mean ( ), standard deviation ( ), and size ( ) of each sample, like 
so:

double xbar1 = 4.2;
double s1 = 4.68;
int n1 = 11;

double xbar2 = 5.6;
double s2 = 3.92;
int n2 = 8;

TwoSampleUnpairedTTest test = new TwoSampleUnpairedTTest( xbar1, 
s1, n1, xbar2, s2, n2 );

Or by supplying two sets of sample data. For instance, if the sample data is in two 
vectors supplier1 and supplier2:

TwoSampleUnpairedTTest test =
  new TwoSampleUnpairedTTest( supplier1, supplier2 );

The sample means, standard deviations, and sizes are calculated from the given 
data.

In addition to the properties common to all hypothesis test objects (Section 6.1), a 
TwoSampleUnpairedTTest object provides the following read-only properties:

Xbar1 and Xbar2 get the means of the samples.

x s n
   Chapter 6.   Hypothesis Tests 79



S1 and S2 get the standard deviations of the samples.

SPooled gets the pooled estimate of the standard deviation.

N1 and N2 get the sizes of the samples.

DegreesOfFreedom gets the degrees of freedom.

By default, a TwoSampleUnpairedTTest object performs a two-sided hypothesis 
test ( ) with . Non-default test parameters can be specified at 
the time of construction using constructor overloads, or after construction using 
the provided Type and Alpha properties.

Once you’ve constructed and configured a TwoSampleUnpairedTTest object, you 
can access the various test results using the provided properties, as described in 
Section 6.1:

Console.WriteLine( "t-statistic = " + test.Statistic );
Console.WriteLine( "pooled standard deviation = " + test.SPooled );
Console.WriteLine( "deg of freedom = " + test.DegreesOfFreedom );
Console.WriteLine( "p-value = " + test.P );
Console.WriteLine( "reject the null hypothesis? " + test.Reject);

The output is:

t-statistic = -0.687410859118054
pooled standard deviation = 4.38304755647859
degrees of freedom = 17
p-value = 0.501095386120306
reject the null hypothesis? False

This indicates that we cannot reject the null hypotheses ( ).

Finally, remember that the ToString() method returns a formatted string 
representation of the complete test results:

Two Sample t Test (Unpaired)
----------------------------

Sample means = 4.2 and 5.6
Sample standard deviations = 4.68 and 3.92
Sample sizes = 11 and 8
Difference in means = -1.4
Pooled standard deviation = 4.38304755647859
Computed t statistic: -0.687410859118054, df = 17

Hypothesis type: two-sided
Null hypothesis: true difference in means = 0
Alt hypothesis: true difference in means != 0
P-value: 0.501095386120306
Decision: RETAIN the null hypothesis for alpha = 0.05

H1:µ1 µ2– 0≠ α 0.01=

H0:µ1 µ2– 0=
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0.95 confidence interval: -5.69690885703539 2.8969088570354

6.6 Two Sample F-Test

Class TwoSampleFTest tests whether the variances of two populations are equal. 
For example, suppose random samples from two normal populations are taken. 
The first sample consists of 10 observations with a standard deviation of 5.203; 
the second sample consists of 25 observations with a standard deviation of 2.623. 
At the 0.10 significance level, is there sufficient evidence to suggest that the 
populations from which these samples were drawn have equal variances?

As described Section 6.1, all hypothesis test classes provide two paths for 
constructing instances of that type: a parameter-based method and a data-based 
method. Thus, you can construct a TwoSampleFTest object by explicitly 
specifying the standard deviation ( ),and size ( ) of each sample, like so:

double s1 = 5.203;
int n1 = 10;

double s2 = 2.623;
int n2 = 25;

TwoSampleFTest test = new TwoSampleFTest( s1, n1, s2, n2 );

Or by supplying two sets of sample data. For instance, if the sample data is in two 
vectors v1 and v2:

TwoSampleFTest test = new TwoSampleFTest( v1, v2 );

The sample standard deviations and sizes are calculated from the given data.

In addition to the properties common to all hypothesis test objects (Section 6.1), a 
TwoSampleFTest object provides the following read-only properties:

S1 and S2 get the standard deviations of the samples.

N1 and N2 get the sizes of the samples.

DegreesOfFreedom1 gets the numerator degrees of freedom.

DegreesOfFreedom2 gets the denomenator degrees of freedom.

By default, a TwoSampleFTest object performs a two-sided hypothesis test 
( ) with . Non-default test parameters can be specified at the 
time of construction using constructor overloads, or after construction using the 
provided Type and Alpha properties.
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Once you’ve constructed and configured a TwoSampleFTest object, you can access 
the various test results using the provided properties, as described in Section 6.1:

Console.WriteLine( "t-statistic = " + test.Statistic );
Console.WriteLine( "numerator df = " + test.DegreesOfFreedom1 );
Console.WriteLine( "denomenator df = " + test.DegreesOfFreedom2 );
Console.WriteLine( "p-value = " + test.P );
Console.WriteLine( "reject the null hypothesis? " + test.Reject);

The output is:

F-statistic = 3.93469497446923
numerator df = 9
denomenator df = 24
p-value = 0.00693561186501657
reject the null hypothesis? True

This indicates that we cannot reject the null hypotheses ( ).

Finally, remember that the ToString() method returns a formatted string 
representation of the complete test results:

Two Sample F Test
-----------------

Sample Sizes = 10 and 25
Standard Deviations = 5.203 and 2.623
Variances = 27.071209 and 6.880129
Computed F statistic: 3.93469497446923, num df = 9, denom df = 24

Hypothesis type: two-sided
Null hypothesis: true ratio of variances = 1
Alt hypothesis: true ratio of variances != 1
P-value: 0.00693561186501657
REJECT the null hypothesis for alpha = 0.01
0.99 confidence interval: 1.06490202325594 22.5425454339445

6.7 Pearson’s Chi-Square Test

NMath Stats provides class PearsonsChiSquareTest for performing Pearson's chi-
square test. Pearson's chi-square test is the most well-known of the chi-square 
tests, which are statistical procedures whose results are evaluated by reference to 
the chi-square distribution. It tests the null hypothesis that the frequency 
distribution of experimental outcomes are consistent with a particular theoretical 
distribution. The event outcomes considered must be mutually exclusive and have 
a total probability of 1. 

H0:s1
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Instances of PearsonsChiSquareTest are constructed either from raw data or tables 
of counts. For example, this code constructs a PearsonsChiSquareTest using 
outcomes from a series of experiment runs, along with the expected frequencies:

int[] outcomes = { 59, 20, 11, 10 };
DoubleVector probs =
    new DoubleVector( 0.5625, 0.1875, 0.1875, 0.0625 );
PearsonsChiSquareTest test =
    new PearsonsChiSquareTest( outcomes, probs );

This code uses a contingency table (or cross tabulation) to store the relation between 
two or more categorical variables:

int[,] data = new int[2, 2];
data[0, 0] = 4298;
data[0, 1] = 767;
data[1, 0] = 7136;
data[1, 1] = 643;
bool yatesCorrect = true;
PearsonsChiSquareTest test =
    new PearsonsChiSquareTest( data, yatesCorrect );

The Yates’ correction for continuity may optionally be applied.

Once you’ve constructed and configured a PearsonsChiSquareTest object, you can 
access the various test results using the provided properties, as described in 
Section 6.1:

Console.WriteLine( "chi-square statistic = " + 
    test.ChiSquareStatistic );
Console.WriteLine( "numerator df = " + test.DegreesOfFreedom );
Console.WriteLine( "p-value = " + test.P );
Console.WriteLine( "reject the null hypothesis? " + test.Reject );

The output is:

chi-square statistic = 147.761248704421
numerator df = 1
p-value = 0
reject the null hypothesis? True

Again, the ToString() method returns a formatted string representation of the 
complete test results:
   Chapter 6.   Hypothesis Tests 83



Pearson chi-square test
-----------------

Sample size = 12844
Yates corrected = True
Computed chi-square statistic: 147.761248704421, df = 1

P-value: 0
REJECT the null hypothesis for alpha = 0.01

6.8 Fisher’s Exact Test

StatsFunctions provides the FisherEactTest() method for performing a Fisher's 
Exact Test for a specified 2 x 2 contingency table. Fisher's Exact Test is a useful 
alternative to the chi-square test in cases where sample sizes are small.

Fisher's Exact Test is so-called because the significance of the deviation from a null 
hypothesis can be calculated exactly, rather than relying on an approximation. The 
usual rule of thumb for deciding whether the chi-squared approximation is good 
enough is whether the expected values in all cells of the contingency table is 
greater than or equal to 5.

You can perform a Fisher’s Exact Test by providing the cell values directly, plus an 
HypothesisType specifying the form of the alternative hypothesis:

int a = 12, b = 17, c = 4, d = 25;
double pvalue = StatsFunctions.FishersExactTest( a, b, c, d, 
  HypothesisType.TwoSided );

Values a, b, c and d are cell counts for contingency table:

a  b
c  d

If no hypothesis type is specified, FisherExactTest() returns the lesser of the 
right and left tail p-value.

Overloads are also provided for data in an int[,] array or DataFrame containg 
two DFIntColumn.
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CHAPTER 7.  
LINEAR REGRESSION

Class LinearRegression computes a multiple linear regression from an input 
matrix of independent variable values (the predictor matrix or regression matrix) and 
a vector of dependent variable values (the observation vector).

In a linear model, a quantity y depends on one or more independent variables a1, 
a2,...,an such that y = x0 + x1a1 + ... + xnan. (Parameter x0 is called the 
intercept parameter.) Several observations of the independent values ai are 
recorded, along with the corresponding values of the dependent variable y. If m 
observations are performed, and for the ith observation we denote the values of 
the independent variables ai1, ai2,...,ain and the corresponding dependent 
value of y as yi, then we form the linear system Ax = y, where matrix A = (aij) 
and vector y = (yi). The regression solution is the value of x that minimizes 
||Ax - y||.

This chapter describes how to use the LinearRegression class, and related 
supporting classes.

7.1 Creating Linear Regressions

A LinearRegression instance is constructed from a predictor matrix and 
observation vector, like so:

DoubleMatrix predictors =
  new DoubleMatrix( “ 8x4 [ 1 1450 .50 70
                            1 1600 .50 70
                            1 1450 .70 70
                            1 1600 .70 70
                            1 1450 .50 120
                            1 1600 .50 120
                            1 1450 .70 120
                            1 1600 .70 120 ]” );
DoubleVector obs =
  new DoubleVector( “[ 67 79 61 75 59 90 52 87 ]” );
LinearRegression lr = new LinearRegression( A, obs );
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A MismatchedSizeException is raised if the number of rows in the matrix A is not 
equal to the length of the vector obs.

You can also construct a LinearRegression instance from data in a DataFrame, by 
indicating which column contains the observations. Non-numeric columns are 
ignored. For instance, if column 8 contains the dependent variable, this code 
constructs a regression from the data:

LinearRegression lr = new LinearRegression( df, 8 );

Parameter Calculation by Least Squares Minimization

By default, class LinearRegression computes the model parameter values by the 
method of least squares using a QR factorization, but you may elect to use a complete 
orthogonal factorization or singular value decomposition instead.

IRegressionCalculation is the interface for classes used by LinearRegression to 
calculate regression parameters. NMath Stats includes three regression calculator 
classes: 

Class QRRegressionCalculation (the default) solves the regression 
problem using a QR decomposition. 

Class SVDRegressionCalculation solves the regression problem using a 
singular value decomposition. 

Class CORegressionCalculation solves least squares problems using a 
complete orthogonal decomposition.

You can specify a non-default regression calculation object in the constructor. For 
example:

CORegressionCalculation calcObj = new CORegressionCalculation();
calcObj.Tolerance = 1e-8;
LinearRegression lr =
  new LinearRegression( predictors, obs, calcObj );

The Tolerance property is used for computing numerical rank. Values with less 
than the specified tolerance are considered zero when computing the effective 
rank.

After construction, the regression calculator used by a LinearRegression instance 
can be changed using the RegressionCalculator property.

Intercept Parameters

If the linear model Ax = y contains a non-zero intercept parameter, then the first 
column of matrix A must be all ones. Some of the LinearRegression constructors 
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allow you to specify whether a column of ones should be prepended to the data in 
the input regression matrix, or whether the regression matrix should be used as it 
is given. Thus, this code prepends a column of ones:

LinearRegression lr =
  new LinearRegression( predictors, obs, true );

This code does not:

LinearRegression lr =
  new LinearRegression( predictors, obs, false );

7.2 Regression Results

Class LinearRegression provides the following properties for accessing the 
regression results:

IsGood gets a boolean value indicating whether or not the model 
parameters were successfully computed.

ParameterCalculationErrorMessage gets any error message produced 
by the regression calculation object.

Parameters gets the vector of computed model parameters.

ParameterEstimates gets an array of LinearRegressionParameter objects 
suitable for performing hypothesis testing on individual parameters (see 
Section 7.5).

Residuals gets the vector of residuals. This is the difference between the 
vector of observed values and the values predicted by the model.

Variance gets an estimate of the variance. This is the residual sum of 
squares divided by the degrees of freedom for the model. The degrees of 
freedom for the model is equal to the difference between the number of 
observations and the number of parameters.

CovarianceMatrix gets the covariance matrix (sometimes called the 
dispersion matrix or  variance-covariance matrix).

For more information about a linear regression fit, you can perform hypothesis 
tests on individual parameters (Section 7.5) or the overall model (Section 7.6).

You can also modify the model and recalculate the parameters, as described in 
Section 7.4.
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Variance Inflation Factor

The variance inflation factor (VIF) quantifies the severity of multicollinearity in a 
least squares regression analysis—that is, how much the variance of a coefficient is 
increased because of collinearity. Class LinearRegression provides methods 
VarianceInflationFactor() and VarianceInflationFactors() for this 
purpose. For instance:

DoubleVector vif = lr.VarianceInflationFactors();

7.3 Predictions

You can use a LinearRegression object to generate predictions. The 
PredictedObservation() method returns the response predicted by the model 
for a given set of predictor variable values. For example:

DoubleVector predictors =
  new DoubleVector( 150.0, 33.5, 0.66, 80.0 );
double predicted = lr.PredictedObservation( predictors );

A MismatchedSizeException is raised if the length of the given vector is not equal 
to the number of parameters in the model.

Similarly, the PredictedObservations() method returns the responses predicted 
by the model for a given collection of predictors:

DoubleMatrix predictors =
  new DoubleMatrix( "3x4 [ 150.0 33.5 0.66 80.0 
                           160.0 24.5 0.88 70.0 
                           170.0 22.6 0.56 60.0 ]" );
DoubleVector predicted = lr.PredictedObservations( predictors );

In the returned vector of predicted observations, the ith element is the predicted 
response for the set of predictor variable values in the ith row of the given matrix.

7.4 Accessing and Modifying the Model

 Class LinearRegression provides a variety of properties and member functions 
for accessing and modifying the predictors in the model, the observations, and the 
intercept option.
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Accessing and Modifying Predictors

Class LinearRegression provides the following properties for accessing the 
predictors in the model:

RegressionMatrix gets the regression matrix. 

PredictorMatrix gets the predictor matrix. If the model contains an 
intercept parameter, then the predictor matrix is obtained from the 
regression matrix by removing the leading column of ones. If the model 
does not have an intercept parameter then the predictor matrix is the same 
as the regression matrix.

NumberOfParameters gets the number of parameters in the model.

NumberOfPredictors gets the number of predictors in the model. If the 
model contains an intercept parameter then the number of predictors is 
equal to the number of parameters minus one. If the model does not 
contain an intercept parameter, then the number of predictors is equal to 
the number of parameters.

If you modify the data in the regression or predictor matrix using the reference 
returned by RegressionMatrix or PredictorMatrix, respectively, invoke 
method RecalculateParameters() to recalculate the regression parameters. For 
instance:

lr.PredictorMatrix[2,13] = 15.4;
lr.RecalculateParameters();

Member functions are also provided for adding and removing one or more 
predictors. The AddPredictor() method appends a given column of predictor 
values to the predictor matrix, and recalculates the parameters:

DoubleVector predictors = 
  new DoubleVector( “[ 1.43 5.5 0.43 14.2 9.0 ]” );

lr.AddPredictor( predictors );

A MismatchedSizeException is thrown if the number of predictor values is not 
equal to the number of rows in the regression matrix (also equal to the length of 
the observation vector).
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Similarly,  AddPredictors() adds a matrix of predictors. Each column of the 
input matrix is a set of observed predictor values. This, this code adds three 
predictors:

DoubleMatrix predictors =
  new DoubleMatrix( “ 8x3 [ 1450 .50 70
                            1600 .50 70
                            1450 .70 70
                            1600 .70 70
                            1450 .50 120
                            1600 .50 120
                            1450 .70 120
                            1600 .70 120 ]” );
lr.AddPredictor( predictors );

The RemovePredictor() method removes the ith predictor from the model and 
recalculates the parameters. This code removes the predictor at (zero-based) 
index 4:

lr.RemovePredictor( 4 );

If the model has an intercept parameter, removing the 0th predictor will not 
remove the intercept parameter. Use the RemoveInterceptParameter() method 
to remove the intercept parameter (see below).

RemovePredictors() removes the specified number of columns from the 
predictor matrix beginning with the specified column. Thus, this code removes the 
second, third, and fourth predictors:

lr.RemovePredictors( 1, 3 );

Accessing and Modifying Observations

The Observations property gets the vector of observations. If you use the 
returned reference to modify the observation vector, invoke method 
RecalculateParameters() to recalculate the regression parameters. For instance:

lr.Observations[5] = 0.965;
lr.RecalculateParameters();

The NumberOfObservations property gets the number of observations, which is 
simply the length of the observation vector, and also the number of rows in the 
regression matrix.

Member functions are also provided for adding and removing one or more 
observations. The AddObservation() method appends a given row of predictor 
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values to the predictor matrix and a given observation to the observation vector, 
and recalculates the parameters:

DoubleVector predictors = 
  new DoubleVector( “[ 1.43 5.5 0.43 14.2 9.0 ]” );
double obs = 2.5;

lr.AddObservation( predictors, obs );

NOTE—If the model has an intercept parameter, do not include the leading one in the 
predictors vector. It will be accounted for in the model.

A MismatchedSizeException is thrown if the length of the predictors vector is not 
equal to the number of predictors in the model.

Similarly,  AddObservations() adds a collection of observations:

DoubleMatrix predictors =
  new DoubleMatrix( "3x4 [ 150.0 33.5 0.66 80.0 
                           160.0 24.5 0.88 70.0 
                           170.0 22.6 0.56 60.0 ]" );
DoubleVector obs = new DoubleVector( “14.2, 15.5, 10.3” );

lr.AddObservation( predictors, obs );

RemoveObservation() removes the row at the indicated index from the predictor 
matrix and the corresponding element from the observation vector. This code 
removes the observation at (zero-based) index 3:

lr.RemoveObservation( 3 );

RemoveObservations() removes the specified number of rows from the predictor 
matrix beginning with the specified row. Thus, this code removes the third, fourth, 
fifth, and sixth observations:

lr.RemoveObservations( 2, 4 );

Accessing and Modifying the Intercept Option

The HasInterceptParameter property gets a boolean value indicating whether or 
not the model already has an intercept parameter.

The AddInterceptParameter() method adds an intercept parameter to the model 
and recalculates the parameters. Thus, this code prepends a column of one to the 
regression matrix:

lr.AddInterceptParameter()
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NOTE—If the model already has an intercept parameter AddInterceptParameter() 
has no effect.

The RemoveInterceptParameter() method removes the intercept parameter. 

Updating the Entire Model

Method SetRegressionData() updates the entire model by setting the regression 
matrix, the observation vector, and the intercept option to the specified values, and 
recalculating the model parameters. For instance:

DoubleMatrix A = new DoubleMatrix( “ 8x4 [ 1 1450 .50 70
                                           1 1600 .50 70
                                           1 1450 .70 70
                                           1 1600 .70 70
                                           1 1450 .50 120
                                           1 1600 .50 120
                                           1 1450 .70 120
                                           1 1600 .70 120 ]” );
DoubleVector obs = 
  new DoubleVector( “[ 67 79 61 75 59 90 52 87 ]” );

lr.SetRegressionData( A, obs, true );

7.5 Significance of Parameters

Instances of class LinearRegressionParameter test statistical hypothesis about 
individual parameters in a LinearRegression.

Creating Linear Regression Parameter Objects

You can construct a LinearRegressionParameter from a LinearRegression object 
and the index of the parameter you wish to test. For instance, this code creates a 
test object for the third parameter:

LinearRegressionParameter param =
  new LinearRegressionParameter( lr, 2 );

Alternatively, you can get an array of test objects for all parameters in a linear 
regression using the ParameterEstimates property on LinearRegression:

LinearRegressionParameter[] params = lr.ParameterEstimates; 
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Properties Linear Regression Parameters 

Class LinearRegressionParameter provides the following properties:

Value gets the value of the parameter.

StandardError gets the standard error of the parameter.

ParameterIndex gets the index of the parameter in the linear regresssion.

Hypothesis Tests

Class LinearRegressionParameter provides the following methods for testing 
statistical hypotheses regarding parameter values:

TStatisticPValue() returns the p-value for a two-sided t test with the 
null hypothesis that the parameter is equal to a given test value, versus the 
alternative hypothesis that it is not.

TStatistic() returns the value of the t statistic for the null hypothesis that 
the parameter value is equal to a given test value.

TStatisticCriticalValue() gets the critical value for the t-statistic for a 
given alpha level.

ConfidenceInterval() returns a  confidence interval for the 
parameter for a given alpha level.

For example, this code tests whether the fifth parameter in a model is significantly 
different than zero:

LinearRegressionParameter param =
  new LinearRegressionParameter( lr, 4 );
double tstat = param.TStatistic( 0.0 );
double pValue = param.TStatisticPValue( 0.0 );
double criticalValue = param.TStatisticCriticalValue( 0.05 );
Interval confidenceInterval = param.ConfidenceInterval( 0.05 );

Updating Linear Regression Parameters

The SetRegression() method updates the regression and parameter index in a 
parameter test object:

param.SetRegression( lr, 6 );

1 α–
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7.6 Significance of the Overall Model

Class LinearRegressionAnova tests the overall model significance for linear 
regressions. Simply construct a LinearRegressionAnova from a LinearRegression 
object:

LinearRegressionAnova lrAnova = new LinearRegressionAnova( lr );

A variety of properties are provided for assessing the significance of the overall 
model:

RegressionSumOfSquares gets the regression sum of squares. This 
quantity indicates the amount of variability explained by the model. It is 
the sum of the squares of the difference between the values predicted by 
the model and the mean.

ResidualSumOfSquares gets the residual sum of squares. This is the sum 
of the squares of the differences between the predicted and actual 
observations.

ModelDegreesOfFreedom gets the number of degrees of freedom for the 
model, which is equal to the number of predictors in the model.

ErrorDegreesOfFreedom gets the number of degress of freedom for the 
model error, which is equal to the number of observations minus the 
number of model paramters.

RSquared gets the coefficient of determination.

AdjustedRsquared gets the adjusted coefficient of determination.

MeanSquaredResidual gets the mean squared residual. This quantity is the 
equal to ResidualSumOfSquares / ErrorDegreesOfFreedom (equals the 
number of observations minus the number of model parameters).

MeanSquaredRegression gets the mean squared for the regression. This is 
equal to RegressionSumOfSquares / ModelDegreesOfFreedom (equals 
the number of predictors in the model).

FStatistic gets the overall F statistic for the model. This is equal to the 
ratio of MeanSquaredRegression / MeanSquaredResidual. This is the 
statistic for the hypothesis test where the null hypothesis,  is that all the 
parameters are equal to 0 and the alternative hypothesis is that at least one 
paramter is nonzero.   

FStatisticPValue gets the p-value for the F statistic.

H0
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For example:

LinearRegressionAnova lrAnova = new LinearRegressionAnova( lr );
double sse = lrAnova.ResidualSumOfSquares;
double r2 = lrAnova.RSquared;
double fstat = lrAnova.FStatistic;
double fstatPval = lrAnova.FStatisticPValue;

Lastly, the FStatisticCriticalValue() function computes the critical value for 
the F statistic at a given significance level:

double critVal = lrAnova.FStatisticCriticalValue(.05);
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CHAPTER 8.  
LOGISTIC REGRESSION

Class LogisticRegression performs a binomial logistic regression. 

Logistic regression is used to model the relationship between a binary response 
variable and one or more predictor variables, which may be either discrete or 
continuous. Binary outcome data is common in medical applications. For example, 
the binary response variable might indicate whether or not a patient is alive five 
years after treatment for cancer or whether the patient has an adverse reaction to a 
new drug. As in multiple linear regression (Chapter 7), we are interested in finding 
an appropriate combination of predictor variables to help explain the binary 
outcome.

This chapter describes how to use the LogisticRegression class, and related 
supporting classes.

8.1 Regression Calculators

Class LogisticRegression is templatized on the ILogisticRegressionCalc 
calculator to use to calculate the parameters of the logistic regression model. Two 
implementations are provided:

NewtonRaphsonParameterCalc computes the parameters to maximize the 
log likelihood function for the model using the Newton Raphson algorithm 
to compute the zeros of the first order partial derivatives of the log 
likelihood function. This algorithm is equivalent to, and sometimes 
referred to, as iteratively reweighted least squares. Each iteration involves 
solving a linear system of the form X'WX = b, where X is the regression 
matrix, X' is its transpose, and W is a diagonal matrix of weights.

The matrix X'WX will be singular if the matrix X does not have full rank. 
NewtonRaphsonParameterCalc has property FailIfNotFullRank which, 
if true, fails in this case. If FailIfNotFullRank is false, the linear system 
is solved using a pseudo-inverse, and the calculation will not fail.
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TrustRegionParameterCalc computes the parameters to maximize the log 
likelihood function for the model, using a trust region optimization 
algorithm to compute the zeros of the first order partial derivative of the 
log likelihood function. This approach is more robust than Newton 
Raphson with design matrices of less than full rank.

The minimization is performed by an instance of TrustRegionMinimizer, 
and TrustRegionParameterCalc instances may be constructed with a given 
minimizer with the desired algorithm properties.

8.2 Creating Logistic Regressions

A LogisticRegression object is constructed from data in the following format: a 
matrix whose rows contain the predictor variable values, and an IList<bool> for 
the observed values.

DoubleMatrix A = ...
bool[] obs = ...
var lr = new LogisticRegression<NewtonRaphsonParameterCalc>( 
  A, obs );

A MismatchedSizeException is raised if the number of rows in the matrix A is not 
equal to the length of the vector obs.

If you want the model to have an intercept parameter, you can specify that as well:

bool addIntercept = true;
var lr = new LogisticRegression<NewtonRaphsonParameterCalc>( 
  A, obs, addIntercept );

If true, a column of ones is prepended onto the data in the regression matrix A, 
thus adding an intercept to the model. If false, the data in the regression matrix is 
used as given.

You can also provide a regression calculator instance to use. For example, if you 
want regression to fail consistently when the regression matrix is rank deficient, 
you can construct a NewtonRaphsonParameterCalc object with the 
FailIfNotFullRank property set to true (see Section 8.1), then construct a 
LogisticRegression object with the resulting parameter calculation object:

var parameterCalc = new NewtonRaphsonParameterCalc() {   
  FailIfNotFullRank = true };
var lr = new LogisticRegression<NewtonRaphsonParameterCalc>(
  A, obs, addIntercept, parameterCalc );

Additional LogisticRegression constructors provide flexibility in how the 
observation values are specified. For example, you can provide a vector of floating 
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point observation values, which is converted to dichotomous values using a 
supplied Predictate<double> function. This code uses a lambda expression to 
specify the predicate:

DoubleVector v = ...
var lr = new LogisticRegression<NewtonRaphsonParameterCalc>(
  A, v, x => x >= 110.0, addIntercept);

Similarly, you can provide the observation values as one of the columns of the 
regression matrix:

int observationColIndex = 0;
var lr = new LogisticRegression<NewtonRaphsonParameterCalc>(
  A, observationColIndex, x => x != 0, addIntercept);

Design Variables

LogisticRegression provides static convenience method DesignVariables() for 
producing design, or dummy, variables using reference cell coding. If the categorical 
variable has k levels, there will be k - 1 design variables created. Reference cell 
coding involves setting all the design variable values to 0 for the reference group, 
and then setting a single design variable equal to 1 for each of the other groups.

For example, suppose we have a DataFrame df with a column of race values, 
which has three levels.

int raceColIndex = df.IndexOfColumn( "Race" );
DataFrame raceDesignVars = 
  LogisticRegression<NewtonRaphsonParameterCalc>.DesignVariables( 
    df[raceColIndex] );

Since the race variable has three levels there will be two design variables. By 
default they will be named Race_0 and Race_1.

We then replace the original race column with the two design variable columns, 
and convert the data frame to a matrix of floating point values.

df.RemoveColumn( raceColIndex );
for ( int c = 0; c < raceDesignVars.Cols; c++ )
{
  df.InsertColumn( raceColIndex + c, raceDesignVars[c] );
}
DoubleMatrix matrixDat = data.ToDoubleMatrix();
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8.3 Check for Convergence

After constructing a LogisticRegression object, first check that the parameter 
calculation was successful. For example, this code checks the IsGood property, and 
if the calculation failed, prints out some diagnostic information using the 
ParameterCalculationErrorMessage property.

if ( !lr.IsGood )
{
    Console.WriteLine(
      "Logistic regression parameter calculation failed:" );
    Console.WriteLine( lr.ParameterCalculationErrorMessage );

    var parameterCalc = lr.ParameterCalculator;
    Console.WriteLine( "Maximum iterations: " + 
      parameterCalc.MaxIterations );
    Console.WriteLine( "Number of iterations: " + 
      parameterCalc.Iterations );
    Console.WriteLine( "Converged? " + parameterCalc.Converged );
}

8.4 Goodness of Fit

Class LogisticRegressionFitAnalysis calculates goodness of fit statistics for a 
logistic regression model.

var fit = new 
  LogisticRegressionFitAnalysis<NewtonRaphsonParameterCalc>( lr );

Provided properties access the model statistics:

GStatistic gets the G statistic for the model. The G statistic is
   
   G = -2*ln[(likelihood without the variables)/
             (likelihood with the variables)]

GStatisticPValue gets the p-value for the G statistic.

LogLikelihood gets the log likelihood for the model.

For instance:

Console.WriteLine( "Log likelihood: " + fit.LogLikelihood );
Console.WriteLine( "G-statistic: " + fit.GStatistic );
Console.WriteLine( "G-statistic P-value: " + 
  fit.GStatisticPValue );
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Two methods on LogisticRegressionFitAnalysis provide access to additional 
statistics:

PearsonStatistic() computes the Pearson chi-square statistic, and 
related quantities from the Pearson residuals, to determine if two 
observations share the same covariate pattern. 

HLStatistic() calculates the Hosmer Lemeshow statistic for the model. 
This test assesses whether or not the observed event rates match expected 
event rates in subgroups of the model population.

For instance, this code calculates the Hosmer Lemeshow statistic using 10 groups.

var hosmerLemeshowStat = fit.HLStatistic(10);
Console.WriteLine(hosmerLemeshowStat);

8.5 Parameter Estimates

The ParameterEstimates property on LogisticRegression gets an array of 
LogisticRegressionParameter estimate objects. This class tests statistical 
hypotheses about estimated parameters in logistic regressions:

Value gets the value of the parameter.  

StandardError gets the standard error of the parameter.

ParameterIndex gets the index of the parameter in the linear regresssion. 

Beta gets the standardized beta coefficient. Beta coefficients are weighted 
by the ratio of the standard deviation of the independent variable over the 
standard deviation of the dependent variable.

ConfidenceInterval() returns the 1 - alpha confidence interval for the 
parameter.

TStatistic() returns the t-statistic for the null hypothesis that the 
parameter is equal to a given test value. 

TStatisticPValue() returns the p-value for a t-test with the null 
hypothesis that the parameter is equal to a given test value versus the 
alternative hypothesis that it is not.

TStatisticCriticalValue() gets the critical value of the t-statistic for the 
specified alpha level.
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For instance, this code prints out the model parameter estimates and standard 
error.

var parameterEstimates = lr.ParameterEstimates;
for ( int i = 0; i < parameterEstimates.Length; i++ )
{
  var estimate = parameterEstimates[i];
  if ( i == 0 )
  {
    Console.WriteLine( "Constant term = {0}, SE = {1}", 
      estimate.Value, estimate.StandardError);
  }
  else
  {
    Console.WriteLine( "Coefficient for {0} = {1}, SE = {2}", 
      df[i].Name, estimate.Value, estimate.StandardError);
  }
}

8.6 Predicted Probabilities

You can use a LogisticRegression object to generate predictions. The 
PredictedProbability() method returns the probability of a positive outcome 
predicted by the model for a given set of predictor values. For example:

 DoubleVector predictors =
  new DoubleVector( 150.0, 33.5, 0.66, 80.0 );
double predicted = lr.PredictedProbability( predictors );

A MismatchedSizeException is raised if the length of the given vector is not equal 
to the number of parameters in the model.

Similarly, the PredictedProbabilities() method returns a vector of predicted 
probabilities of a positive outcome for the predictor variable values contained in 
the rows of an input matrix.

DoubleMatrix predictors =
  new DoubleMatrix( "3x4 [ 150.0 33.5 0.66 80.0 
                           160.0 24.5 0.88 70.0 
                           170.0 22.6 0.56 60.0 ]" );
DoubleVector predicted = lr.PredictedProbabilities( predictors );

In the returned vector of predicted observations, the ith element is the predicted 
response for the set of predictor variable values in the ith row of the given matrix.
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CHAPTER 9.  
ANALYSIS OF VARIANCE

Analysis of variance (ANOVA) is the multigroup generalization of the t test 
(Chapter 6). Like the t test, ANOVA assumes that samples are randomly drawn 
from normally distributed populations with the same standard deviations. If 
differences between the observed means of the samples are larger than one would 
expect from the underlying population variability, estimated by the standard 
deviations within the samples, you can conclude that at least one of the samples 
has a different mean than the others.

NMath Stats provides classes for both one-way (or one-factor) and two-way (or 
two-factor) ANOVAs. One-way ANOVA is supported for both balanced and 
unbalanced designs, and with or without repeated measures (RANOVA). Two-
way ANOVA is supported for balanced designs only, with or without repeated 
measures.

This chapter describes the analysis of variance classes.

9.1 One-Way ANOVA

Class OneWayAnova computes and summarizes a traditional one-way (single 
factor) analysis of variance.

Creating One-Way ANOVA Objects

A OneWayAnova instance is constructed from numeric data organized into 
different groups. The groups need not contain the same number of observations. 
For example, this code constructs a OneWayAnova from an array of 
DoubleVector objects. Each vector in the array contains data for a single group:
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DoubleVector[] data = new DoubleVector[5];

data[0] = new DoubleVector( "[24 15 21 27 33 23]" );
data[1] = new DoubleVector( "[14 7 12 17 14 16]" );
data[2] = new DoubleVector( "[11 9 7 13 12 18]" );
data[3] = new DoubleVector( "[7 7 4 7 12 18]" );
data[4] = new DoubleVector( "[19 24 19 15 10 20]" );

OneWayAnova anova = new OneWayAnova( data );

This code constructs a OneWayAnova from a data frame df:

OneWayAnova anova = new OneWayAnova( df, 1, 3 );

Two column indices are also provided: a group column and a data column. A Factor 
is constructed from the group column using the DataFrame method GetFactor(), 
which creates a sorted array of the unique values. The specified data column must 
be of type DFNumericColumn.

Lastly, you can also construct a OneWayAnova from a DoubleMatrix:

DoubleMatrix Data = new DoubleMatrix( "6 x 5 [ 24 14 11 7 19 
                                               15 7 9 7 24
                                               21 12 7 7 19
                                               27 17 13 12 15
                                               33 14 12 12 10
                                               23 16 18 18 20 ]" );
OneWayAnova anova = new OneWayAnova( data );

Each column in the given matrix contains the data for a group. If your groups have 
different numbers of observations, you must pad the columns with Double.NaN 
values until they are all the same length, because a DoubleMatrix must be 
rectangular. Alternatively, use one of the other constructors described above. 

The One-Way ANOVA Table

Once you’ve constructed a OneWayAnova, you can display the complete ANOVA 
table:

Console.WriteLine( anova );

For example:

Source     Deg of Freedom    Sum Of Sq  Mean Sq     F      P
Between groups    4          803.0000   200.7500  9.0076  0.0001
Within groups     25         557.1667   22.2867   .       .
Total             29         1360.1667  46.9023   .       .
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Class OneWayAnovaTable is provided for summarizing the information in a 
traditional one-way ANOVA table. Class OneWayAnovaTable derives from 
DataFrame. An instance of OneWayAnovaTable can be obtained from a 
OneWayAnova object using the AnovaTable property. For example:

OneWayAnovaTable myTable = anova.AnovaTable;

Class OneWayAnovaTable provides the following read-only properties for 
accessing individual elements in the ANOVA table:

DegreesOfFreedomBetween gets the between-groups degrees of freedom.

DegreesOfFreedomWithin gets the within-groups degrees of freedom.

DegreesOfFreedomTotal gets the total degrees of freedom.

SumOfSquaresBetween gets the between-groups sum of squares.

SumOfSquaresWithin gets the within-groups sum of squares.

SumOfSquaresTotal gets the total sum of squares.

MeanSquareBetween gets the between-groups mean square. The between-
groups mean square is the between-groups sum of squares divided by the 
between-groups degrees of freedom.

MeanSquareWithin gets the within-group mean square. The within-groups 
mean square is the within-group sum of squares divided by the within-
group degrees of freedom.

MeanSquareTotal gets the total mean square. The total mean square is the 
total sum of squares divided by the total degrees of freedom. 

FStatistic gets the F statistic.  

FStatisticPValue gets the p-value for the F statistic.

Grand Mean, Group Means, and Group Sizes

Class OneWayAnova provides properties and methods for retrieving the grand 
mean, group means, and group sizes:

GrandMean gets the grand mean of the data. The grand mean is the mean of 
all of the data.

GroupMeans gets a vector of group means.

GroupSizes gets an array of group sizes.
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GroupNames gets an array of group names. If the anova was constructed 
from a data frame using a grouping column, the group names are the 
sorted, unique Factor levels created from the column values. If the anova 
object was constructed from a matrix or an array of vectors, the group 
names are simply Group_0, Group_1...Group_n.

GetGroupMean() returns the mean for a specified group, identified either 
by group name or group number (a zero-based index into the GroupMeans 
vector).

GetGroupSize() returns the mean for a specified group, identified either 
by group name or group number (a zero-based index into the GroupSizes 
array).

For example, if a OneWayAnova is constructed from a matrix, this code returns 
the mean for the group in the third column of the matrix:

double maleMean = anova.GetGroupMean( 2 );

If a OneWayAnova is constructed from a data frame using a grouping column 
with values male and female, this code returns the mean for the male group:

double maleMean = anova.GetGroupMean( “male” );

Critical Value of the F Statistic

Class OneWayAnova provides the convenience function 
FStatisticCriticalValue() which computes the critical value for the ANOVA 
F statistic at a given significance level. Thus:

double alpha = 0.05;
double critVal = anova.FStatisticCriticalValue( alpha );

Updating One-Way ANOVA Objects

Method SetData() updates an entire analysis of variance object with new data. As 
with the class constructors (see above), you can supply data as an array of group 
vectors, a matrix, or as a data frame. For instance, this code updates an ANOVA 
with data from DataFrame df, using column 2 as the group column and column 5 
as the data column:

anova.SetData( df, 2, 5 );
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9.2 One-Way Repeated Measures ANOVA

Class OneWayRanova calculates and summarizes the information of a one-way 
repeated measures analysis of variance (RANOVA). 

Creating One-Way RANOVA Objects

A OneWayRanova instance is constructed from numeric data for multiple 
treatments applied to each experimental subject. For example, this code constructs 
a OneWayRanova from a DoubleMatrix:

DoubleMatrix data = new DoubleMatrix( "8x4 [ 180 200 160 200
                                             230 250 200 220
                                             280 310 260 270
                                             180 200 160 200
                                             190 210 170 210
                                             140 160 120 110
                                             270 300 250 260 
                                             110 130 100 100 ]" );
OneWayRanova ranova = new OneWayRanova( data );

Each row of the matrix contains the data for an individual subject. There should be 
one column for each treatment. The example above shows 4 different 
measurements for each of 8 subjects.

NOTE—Data rows containing missing values (NaNs) are ignored by class 
OneWayRanova.

Similarly, you can also construct a OneWayRanova from a DataFrame:

OneWayRanova ranova = new OneWayRanova( df );

Each row in the DataFrame contains the data for an individual subject. There 
should be one column for each treatment.

Note that all numeric columns in the given DataFrame are interpreted as 
treatments; only non-numeric columns are ignored. If you have numeric columns 
in the data frame that you also wish to ignore, apply the appropriate Subset first. 
For instance:

Subset colIndices = new Subset( new int[] { 3, 14, 5, 8, 4 } );
OneWayRanova ranova =
  new OneWayRanova( df.GetColumns( colIndices ) );
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The One-Way RANOVA Table

Once you’ve constructed a OneWayRanova, you can display the complete 
RANOVA table:

Console.WriteLine( ranova );

For example:

Source   Deg of Freedom  Sum Of Sq   Mean Square     F       P
Subjects      9         102822.5000  11424.7222    .        .
Treatment     3         9247.5000    3082.5000     31.6755  0.0000
Error        27         2627.5000    97.3148       .        .
Total        39         114697.5000  2940.9615     .        .

Class OneWayRanovaTable is provided for summarizing the information in a 
traditional one-way RANOVA table. Class OneWayRanovaTable derives from 
DataFrame. An instance of OneWayRanovaTable can be obtained from a 
OneWayRanova object using the RanovaTable property. For example:

OneWayRanovaTable myTable = ranova.RanovaTable;

Class OneWayRanovaTable provides the following read-only properties for 
accessing individual elements in the RANOVA table:

DegreesOfFreedomTreatment gets the treatment degrees of freedom.

DegreesOfFreedomWithinSubject gets the within-subject degrees of 
freedom.

DegreesOfFreedomError gets the error degrees of freedom.

DegreesOfFreedomTotal gets the total degrees of freedom.

SumOfSquaresTreatment gets the treatment sum of squares.

SumOfSquaresWithinSubject gets the within-subject sum of squares.

SumOfSquaresTotal gets the total sum of squares.

SumOfSquaresError gets the error sum of squares.

MeanSquareTreatment gets the treatment mean square.

MeanSquareWithinSubject gets the within-subject mean square.

MeanSquareError gets the error mean square.

MeanSquareTotal gets the total mean square.

FStatistic gets the F statistic for the RANOVA.
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FStatisticPValue gets the p-value for the F statistic.

Grand Mean, Subject Means, and Treatment Means

Class OneWayRanova provides properties for retrieving the grand mean, subject 
means, and treatment means:

GrandMean gets the grand mean of the data. The grand mean is the mean of 
all of the data.

SubjectMeans gets a vector of means for each subject.

TreatmentMeans gets a vector of means for each treatment.

Critical Value of the F Statistic

Class OneWayRanova provides the convenience function 
FStatisticCriticalValue() which computes the critical value for the RANOVA 
F statistic at a given significance level. Thus:

double alpha = 0.01;
double critVal = ranova.FStatisticCriticalValue( alpha );

Updating One-Way RANOVA Objects

Method SetData() updates an entire repeated measures analysis of variance 
object with new data. As with the class constructors (see above), you can supply 
data as a matrix or as a data frame. For instance, this code updates a RANOVA 
with data from matrix A:

ranova.SetData( A );

9.3 Two-Way ANOVA

Class TwoWayAnova performs a balanced two-way analysis of variance. Two-way 
analysis of variance is a direct extension of one-way analysis of variance 
(Section 9.1). In this case, data are grouped according to two factors—for example, 
sex and age group—rather than a single factor. The total variability is partitioned 
into components associated with each of the two factors, their interaction, and the 
residual (or error).
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Creating Two-Way ANOVA Objects

A TwoWayAnova instance is constructed from data in a data frame. Three column 
indices are specified in the data frame: the column containing the first factor, the 
column containing the second factor, and the column containing the numeric data. 
For example, this code groups the numeric data in column 3 of DataFrame df by 
factors constructed from columns 0 and 4:

TwoWayAnova anova = new TwoWayAnova( df, 0, 4, 3 );

Factor objects are constructed from the factor columns using the DataFrame 
method GetFactor(), which creates a sorted array of the unique values 
(Section 2.10). The indicated data column must be of type DFNumericColumn.

NOTE—Class TwoWayAnova throws an InvalidArgumentException if the data con-
tains missing values (NaNs).

The Two-Way ANOVA Table

Once you’ve constructed a TwoWayAnova, you can display the complete 
ANOVA table:

Console.WriteLine( anova );

For example:

Source  Deg of Freedom  SumOfSq    Mean Square  F         P
FactorA      1          1782.0450  1782.0450    14.2121   0.0008
FactorB      1          2838.8113  2838.8113    22.6399   0.0001
Interaction  1          108.0450   108.0450     0.8617    0.3612
Error        28         3510.9075  125.3896     .         .
Total        31         8239.8088  .            .         .

Class TwoWayAnovaTable is provided for summarizing the information in a 
traditional two-way ANOVA table. Class TwoWayAnovaTable derives from 
DataFrame. An instance of TwoWayAnovaTable can be obtained from a 
TwoWayAnova object using the AnovaTable property. For example:

TwoWayAnovaTable myTable = anova.AnovaTable;

Class TwoWayAnovaTable provides the following member functions and 
read-only properties for accessing individual elements in the ANOVA table:

DegreesOfFreedom() gets the degrees of freedom for a specified factor.

ErrorDegreesOfFreedom gets the number of degrees of freedom for the 
error.
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InteractionDegreesOfFreedom gets the number of degrees of freedom 
for the interactions.

TotalDegreesOfFreedom gets the total number of degrees of freedom.

SumOfSquares() gets the sum of squares for a specified factor.

InteractionSumOfSquares gets the sum of squares for the interaction.

ErrorSumOfSquares gets the sum of squares for the error.

TotalSumOfSquares gets the total sum of squares.

MeanSquare() gets the mean square for a specified factor.

InteractionMeanSquare gets the mean square for the interaction.

ErrorMeanSquare gets the mean square for the error.

Fstatistic() gets the F statistic for a specified factor.

InteractionFstatistic gets the F statistic for the interaction.

FstatisticPvalue() gets the p-value for the F statistic for a specified 
factor.

InteractionFstatisticPvalue gets the p-value for the F statistic for the 
interaction.

Factors are identified to accessor methods by name, which corresponds to the 
name of the column in the original data frame that was used to create the Factor. 
For instance, if one factor in the ANOVA is named Dosage, this code gets the 
F statistic and p-value for that factor:

double Fstatistic = anova.AnovaTable.Fstatistic( “Dosage” );
double Pvalue = anova.AnovaTable.FstatisticPvalue( “Dosage” );

Cell Data

Class TwoWayAnova provides the GetCellData() method for accessing the data 
in a cell, as defined by a specified level of each of the factors in the ANOVA. For 
example, if anova has factor Sex with levels Male and Female, and factor AgeGroup 
with levels Child, Adult, and Senior, this code gets the data for adult females:

DFNumericColumn data =
  anova.GetCellData( “Sex”, “Female”, “AgeGroup”, “Adult” );

A copy of the data is returned as a DFNumericColumn object.
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Grand Mean, Cell Means, and Group Means

Class TwoWayAnova provides the following properties and member functions for 
accessing the grand mean, cell means, and group means: 

GrandMean gets the grand mean. The grand mean is the mean of all the 
data.

GetMeanForCell() returns the mean for a specified cell.

GetMeanForFactorLevel() returns the mean for a specified factor level.

Again, factors and factor levels are identified to accessor methods by name. For 
example, if anova has factor Sex with levels Male and Female, and factor AgeGroup 
with levels Child, Adult, and Senior, this code gets the mean for all males:

double meanM = anova.GetMeanForFactorLevel( “Sex”, “Male” );

This code gets the mean for male children:

double meanMChild =
  anova.GetMeanForCell( “Sex”, “Male”, “AgeGroup”, “Child” );

ANOVA Regression Parameters

NMath Stats solves the two-way ANOVA problem using multiple linear 
regression. If all you wish to know is the information in the standard ANOVA 
table, you can safely ignore the regression details, but properties and member 
functions are provided for retrieving information about the underlying regression 
parameters.

To solve the two-way ANOVA problem using multiple linear regression, NMath 
Stats creates a series of dummy variables to encode the different levels of each of the 
two factors. The specific encoding used, known as effects encoding, encodes dummy 
variables so that the coefficients of the dummy variables in the regression model 
quantify deviations of each group from the grand mean.1

In the effects encoding,  dummy variables are defined to encode the  levels 
of a factor, like so:

1S. A. Glantz and B. K. Slinker, Primer of Applied Regression & Analysis of Variance (2nd ed.), NewYork, 
McGraw-Hill, 2001, pp. 357-358.

k 1– k

E1

1 if group 1
1–  if group k
0 othewise






=
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and so on, up to  for group .

For example, suppose we have an experimental design with two factors: FactorA 
and FactorB. FactorA has two levels, labelled A1 and A1. Effects encoding defines 
one dummy variable for FactorA:

FactorB has three levels, labelled B1, B2, and B3. Effects encoding defines two 
dummy variable for FactorB:

Combined, these three dummy variables completely identify all the combinations 
of FactorA and FactorB. The multiple regression model is then:

where 

the intercept  is an estimate of the grand mean

 estimates the difference between the grand mean and the mean of A1

 is the difference between the grand mean and the mean of A2

E2

1 if group 2
1–  if group k
0 othewise






=

Ek 1–
k 1–

A
1 if group A1
1–  if group A2




=

B1

1 if group B1
0 if group B2
1 if group B3–






=

B2

0 if group B1
1 if group B2
1 if group B3–






=

Â b0 bAA bB1
B1 bB2

B2 bAB1
AB1 bAB2

AB2+ + + + +=

b0

bA

bA–
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 estimates the difference between the grand mean and the mean of B1

 estimates the difference between the grand mean and the mean of B2

 estimates the difference between the grand mean and the mean 
of B3

NMath Stats includes several classes that derive from 
LinearRegressionParameter, and provide access to the dummy variable 
regression parameters in an ANOVA analysis of variance:

Class AnovaRegressionParameter provides a SumOfSquares property that 
gets the sum of squares due to a parameter.

Class AnovaRegressionFactorParam derives from 
AnovaRegressionParameter and provides the additional properties 
FactorName, which gets the name of the ANOVA factor encoded by a 
dummy variable, FactorLevel, which gets the level of the ANOVA factor 
encoded by a dummy variable, and Encoding, which gets the actual 
encoding. The encoding is the value the dummy variable assumes when an 
ANOVA observation is made with the factor at that level.

Class AnovaRegressionInteractionParam also derives from 
AnovaRegressionParameter and provides the additional properties  
FactorAName and FactorALevel, which get the name and level of the first 
factor in the interaction, and FactorBName and FactorBLevel, which get 
the name and level of the second factor in the interaction.

Of course, these classes also inherit from LinearRegressionParameter methods 
such as TStatisticPValue(), TStatistic(), TStatisticCriticalValue(), and 
ConfidenceInterval() for testing statistical hypotheses regarding parameter 
values in a linear regression (Section 7.5).

Instances of these classes cannot be constructed independently. Instead, they are 
returned by properties and member functions on class TwoWayAnova:

RegressionInterceptParameter gets the intercept parameter in the linear 
regression as an AnovaRegressionParameter.

GetRegressionFactorParameter() returns the 
AnovaRegressionFactorParam associated with a specified factor level.

RegressionFactorParameters gets a complete array of 
AnovaRegressionFactorParam estimates for the different factor levels.

bB11

bB21

bB1
bB2

+( )–
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GetRegressionInteractionParameter() returns the 
AnovaRegressionInteractionParam associated with the specified 
interaction.

RegressionInteractionParameters gets a complete array of 
AnovaRegressionInteractionParam estimates for the interactions.

For example, this code gets the regression parameter for FactorA at level A1:

AnovaRegressionFactorParam param 
  anova.GetRegressionFactorParameter( "FactorA", "A1" );
Console.WriteLine( param );

Example output:

Value                          : 4.375
Standard Error                 : 1.63741694728596
t-Statistic for parameter = 0  : 2.67189124141632
p-value for t-Statistic        : 0.0155516784650136
0.05 confidence interval       : [9.3491E-001, 7.8151E+000]

Note that method GetRegressionFactorParameter() may return null. In the 
effects encoding method, there are  dummy variables defined to encode the  
levels of a factor. Hence, one level does not have a dummy variable associated 
with it in the linear regression, and a null reference may be returned even though a 
valid factor level is specified. Thus:

AnovaRegressionFactorParam param = 
  anova.GetRegressionFactorParameter( "FactorA", "A2" );
// param == null

Similarly, method GetRegressionInteractionParameter() may return null. If 
there are  different levels for the first factor and  different levels for the second 
factor, there are  dummy variables corresponding to the interactions. 
Hence, some interactions do not have a dummy variable associated with them in 
the linear regression, and a null reference may be returned even though valid 
interactions are specified.

This code prints out the intercept regression parameter, all factor regression 
parameters, and all interaction regression parameters:

k 1– k

j k
j 1–( ) k 1–( )
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Console.WriteLine( "Intercept" );
Console.WriteLine( anova.RegressionInterceptParameter );
Console.WriteLine();

AnovaRegressionFactorParam[] factorParams = 
  anova.RegressionFactorParameters;
for ( int i = 0; i < factorParams.Length; i++ )
{
  Console.WriteLine( factorParams[i].FactorLevel );
  Console.WriteLine( factorParams[i] );
  Console.WriteLine();
}

AnovaRegressionInteractionParam[] interactionParams = 
  anova.RegressionInteractionParameters;
for ( int i = 0; i < interactionParams.Length; i++ )
{
  Console.WriteLine( interactionParams[i].FactorALevel +  " x " + 
                     interactionParams[i].FactorBLevel );
  Console.WriteLine( interactionParams[i] );
  Console.WriteLine();
}

Example output:

Intercept
Value                        : 28.875
Standard Error               : 1.63741694728596
t-Statistic for parameter = 0: 17.6344821933477
p-value for t-Statistic      : 8.35997937542743E-13
0.05 confidence interval     : [2.5435E+001, 3.2315E+001]

A1
Value                        : 4.375
Standard Error               : 1.63741694728596
t-Statistic for parameter = 0: 2.67189124141632
p-value for t-Statistic      : 0.0155516784650136
0.05 confidence interval     : [9.3491E-001, 7.8151E+000]

B1
Value                        : 25.5
Standard Error               : 2.31565725411135
t-Statistic for parameter = 0: 11.0119923640365
p-value for t-Statistic      : 1.98637151171965E-09
0.05 confidence interval     : [2.0635E+001, 3.0365E+001]
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B2
Value                        : -7.25
Standard Error               : 2.31565725411135
t-Statistic for parameter = 0: -3.13086057408882
p-value for t-Statistic      : 0.00577563474636933
0.05 confidence interval     : [-1.2115E+001, -2.3850E+000]

A1 x B1
Value                        : 6
Standard Error               : 2.31565725411135
t-Statistic for parameter = 0: 2.59105702683213
p-value for t-Statistic      : 0.0184427158909004
0.05 confidence interval     : [1.1350E+000, 1.0865E+001]

A1 x B2
Value                        : -0.999999999999999
Standard Error               : 2.31565725411135
t-Statistic for parameter = 0: -0.431842837805354
p-value for t-Statistic      : 0.670984111233603
0.05 confidence interval     : [-5.8650E+000, 3.8650E+000]

9.4  Two-Way Repeated Measures ANOVA

NMath Stats provides two classes for calculating a two-way analysis of variance 
with repeated measures (RANOVA):

Class TwoWayRanova performs a balanced two-way analysis of variance 
with repeated measures on one factor.

Class TwoWayRanovaTwo performs a balanced two-way analysis of 
variance with repeated measures on both factors.

Both classes extend TwoWayAnova, and so inherit the methods and properties 
described in Section 9.3. Like TwoWayAnova, both TwoWayRanova and 
TwoWayRanovaTwo use multiple linear regression to compute the RANOVA 
values.

Creating Two-Way RANOVA Objects

Instances of both TwoWayRanova and TwoWayRanovaTwo are constructed from 
data in a data frame. Three column indices are specified in the data frame: the 
column containing the first factor, the column containing the second factor, and 
the column containing the numeric data. For TwoWayRanova, the first factor is 
the repeated factor; for TwoWayRanovaTwo, both factors are repeated.
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For example, this code groups the numeric data in column 3 of DataFrame df by 
factors constructed from columns 0 and 4:

TwoWayRanova ranova = new TwoWayRanova( df, 0, 4, 3 );

The factor constructed from column 0 is the repeated factor. In the following 
example, both factors are repeated:

TwoWayRanovaTwo ranova2 = new TwoWayRanovaTwo( df, 0, 4, 3 );

NOTE—Both TwoWayRanova and TwoWayRanovaTwo throw an InvalidArgumentEx-
ception if the data contains missing values (NaNs).

Two-Way RANOVA Tables

Once you’ve constructed a TwoWayRanova, you can display the complete 
RANOVA table:

TwoWayRanova ranova = new TwoWayRanova( df, 0, 4, 3 );
Console.WriteLine( ranova );

For instance:

Source  Deg of Freedom  SumOfSqu   Mean Square  F         P
FactorA      1          0.2032     0.2032       29.2322   0.0001
Subjects     14         1.7559     0.1254       .         .
FactorB      1          0.0205     0.0205       0.1635    0.6921
Interaction  1          0.0830     0.0830       11.9442   0.0039
Error        14         0.0973     0.0070       .         .
Total        31         2.1599     .            .         .

Class TwoWayRanovaTable summarizes the information in a traditional two-way 
RANOVA table with repeated measures on one factor. An instance of 
TwoWayRanovaTable can be obtained from a TwoWayRanova object using the 
RanovaTable property. For example:

TwoWayRanovaTable myTable = ranova.RanovaTable;

Class TwoWayRanovaTable derives from TwoWayAnovaTable, and so inherits 
the properties described in Section 9.3. In addition, TwoWayRanovaTable 
provides the following properties for accessing the new row in the RANOVA table 
for repeated measures on one factor:

SubjectsDegreesOfFreedom gets the subjects degrees of freedom.

SubjectsSumOfSquares gets the sum of squares for the subjects.

SubjectsMeanSquare gets the mean square for the subjects.
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Similarly, once you’ve constructed a TwoWayRanovaTwo, you can display the 
RANOVA table:

TwoWayRanovaTwo ranova2 = new TwoWayRanovaTwo( df, 0, 4, 3 );
Console.WriteLine( ranova2 );

For example:

Source  Deg of Freedom  SumOfSq    Mean Square  F         P
FactorA      1          1.4700     1.4700       88.2000   0.0000
FactorB      2         14.5654     7.2827       59.2348   0.0000
Interaction  2          3.3387     1.6694       18.9305   0.0001
A x Subject  14         1.7213     0.1229       .         .
B x Subject  7          0.1167     0.0167       .         .
Error        14         1.2346     0.0882       .         .
Total        47        29.3592     .            .         .

An instance of TwoWayRanovaTwoTable can be obtained from a 
TwoWayRanovaTwo object using the RanovaTable property. For example:

TwoWayRanovaTwoTable myTable = ranova2.RanovaTable;

Class TwoWayRanovaTwoTable also derives from TwoWayAnovaTable, and 
provides the following methods for accessing the additional rows in the RANOVA 
table with repeated measures on both factors:

SubjectInteractionDegreesOfFreedom() returns the degrees of freedom 
for the interaction between subjects and the specified factor.

SubjectInteractionSumOfSquares() returns the sum of squares for the 
interaction between subjects and the specified factor.

SubjectInteractionMeanSquare returns the mean square for the 
interaction between subjects and the specified factor.
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CHAPTER 10.  
NON-PARAMETRIC TESTS

Non-parametric (or distribution-free) tests make no assumptions about the 
probability distributions of the variables being assessed. NMath Stats provides 
classes for several common non-parametric tests:

Class OneSampleKSTest performs a Kolmogorov-Smirnov test of the 
distribution of one sample.

Class TwoSampleKSTest performs a two-sample Kolmogorov-Smirnov 
test to compare the distributions of values in two data sets.

Class ShapiroWilkTest tests the null hypothesis that the sample comes 
from a normally distributed population.

Class OneSampleAndersonDarlingTest performs a Anderson-Darling test 
of the distribution of one sample.

Class KruskalWallisTest performs a Kruskal-Wallis rank sum test.

This chapter describes the non-parametric test classes.

See Section 3.9 for Spearman’s rank correlation coefficient, commonly known as 
Spearman’s rho.

10.1 One Sample Kolmogorov-Smirnov Test

Class OneSampleKSTest performs a Kolmogorov-Smirnov test of the distribution 
of one sample. This class compares the distribution of a given sample to the 
hypothesized distribution defined by a specified cumulative distribution function 
(CDF). For each potential value x, the Kolmogorov-Smirnov test compares the 
proportion of values less than x with the expected number predicted by the 
specified CDF. The null hypothesis is that the given sample data follow the 
specified distribution. The alternative hypothesis that the data do not have that 
distribution.
   Chapter 10.   Non-Parametric Tests 121



Sample data can be passed to the constructor as a vector, numeric column in a data 
frame, or an array of doubles. The hypothesized distribution can be specified 
either by using an instance of ProbabilityDistribution or by supplying a delegate 
that encapsulates the CDF of the hypothesized distribution. For example, this code 
creates a OneSampleKSTest instance that compares the distribution of  data to a 
standard normal distribution:

NormalDistribution norm = new NormalDistribution();
OneSampleKSTest ks = new OneSampleKSTest( data, norm );

If myDist.CDF() is the CDF for some distribution, this code creates a 
OneSampleKSTest instance that compares the distribution of the data in column 3 
of DataFrame df to the hypothesized distribution:

OneSampleKSTest ks = new OneSampleKSTest( df[3],
  new Func<double, double>(myDist.CDF) );

By default, a OneSampleKSTest object performs the Kolmogorov-Smirnov test 
with . A different alpha level can be specified at the time of construction 
using constructor overloads, or after construction using the provided Alpha 
property.

Once you’ve constructed and configured a OneSampleKSTest object, you can 
access the various test results using the provided properties:

Console.WriteLine( "statistic = " + test.Statistic );
Console.WriteLine( "p-value = " + test.P );
Console.WriteLine( “alpha = “ + test.Alpha );
Console.WriteLine( "reject the null hypothesis? " + test.Reject);

10.2 Two Sample Kolmogorov-Smirnov Test

Class TwoSampleKSTest performs a two-sample Kolmogorov-Smirnov test to 
compare the distributions of values in two data sets. For each potential value x, the 
Kolmogorov-Smirnov test compares the proportion of values in the first sample 
less than x with the proportion of values in the second sample less than x. The null 
hypothesis is that the two samples have the same continuous distribution. The 
alternative hypothesis is that they have different continuous distributions.

Sample data can be passed to the constructor as vectors, numeric columns in a data 
frame, or arrays of doubles. Thus:

TwoSampleKSTest ks = new TwoSampleKSTest( data1, data2 );

By default, a TwoSampleKSTest object performs the Kolmogorov-Smirnov test 
with . A different alpha level can be specified at the time of construction 

α 0.01=

α 0.01=
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using constructor overloads, or after construction using the provided Alpha 
property.

Once you’ve constructed and configured a TwoSampleKSTest object, you can 
access the various test results using the provided properties:

Console.WriteLine( "statistic = " + test.Statistic );
Console.WriteLine( "p-value = " + test.P );
Console.WriteLine( “alpha = “ + test.Alpha );
Console.WriteLine( "reject the null hypothesis? " + test.Reject);

10.3 Shapiro-Wilk Test

Class ShapiroWilkTest tests the null hypothesis that a sample comes from a 
normally distributed population. The sample data provided must be of size 
between 3 and 5000. If the size becomes too large, then the test begins to perform 
poorly.

DoubleVector data = new DoubleVector(
  "4.6057571 5.0352571 2.5780990 3.8300667 3.9096730 0.3203129 " +
  "0.7165054 9.8681061 3.8967762 9.4639023 6.4092569 2.9835816 " +
  "8.1763496 8.5650066 10.2810477 7.7123572 2.6411587 2.5043797 " +
  "7.5617508 11.2223571" );

double alpha = 0.1;
ShapiroWilkTest test = new ShapiroWilkTest( data, alpha );

Once you’ve constructed and configured a TwoSampleKSTest object, you can 
access the various test results using the provided properties:

Console.WriteLine( "statistic = " + test.Statistic );
Console.WriteLine( "p-value = " + test.P );
Console.WriteLine( “alpha = “ + test.Alpha );
Console.WriteLine( "reject the null hypothesis? " + test.Reject);

10.4 One Sample Anderson-Darling Test

Class OneSampleAndersonDarlingTest performs a Anderson-Darling test of the 
distribution of one sample. An Anderson-Darling test compares the distribution of 
a given sample to normal distribution function (CDF). The alternative hypothesis 
that the data do not have a normal distribution.

int n = 100;
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DoubleVector data =
  new DoubleVector( n, new RandGenGamma( 23.0 ) );
OneSampleAndersonDarlingTest test =
  new OneSampleAndersonDarlingTest( data );

Console.WriteLine( "statistic = " + test.Statistic );
Console.WriteLine( "p-value = " + test.P );
Console.WriteLine( “alpha = “ + test.Alpha );
Console.WriteLine( "reject the null hypothesis? " + test.Reject);

10.5 Kruskall-Wallis Test

Class KruskalWallisTest performs a Kruskal-Wallis rank sum test. The Kruskal-
Wallis test is a non-parametric test for equality of population medians among 
groups. It is a non-parametric version of the classical one-way ANOVA. The 
interface for KruskalWallisTest is nearly identical to OneWayAnova.

Creating Kruskall-Wallis Objects

A KruskalWallisTest instance is constructed from numeric data organized into 
different groups. The groups need not contain the same number of observations. 
For example, this code constructs a KruskalWallisTest from an array of 
DoubleVector objects. Each vector in the array contains data for a single group:

DoubleVector a =
  new DoubleVector(6.4, 6.8, 7.2, 8.3, 8.4, 9.1, 9.4, 9.7);
DoubleVector b =
  new DoubleVector(2.5, 3.7, 4.9, 5.4, 5.9, 8.1, 8.2);
DoubleVector c = 
  new DoubleVector(1.3, 4.1, 4.9, 5.2, 5.5, 8.2);

DoubleVector[] data_ = new DoubleVector[] { a, b, c };

KruskalWallisTest test = new KruskalWallisTest( data_);

An optional boolean parameter may also be supplied to the constructor. If true, a 
standard correction for ties is applied.

bool correct_for_ties = true;
KruskalWallisTest test =
  new KruskalWallisTest( data, correct_for_ties_);

This correction usually makes little difference in the value of the test statistic, 
unless there are a large number of ties.
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This code constructs a KruskalWallisTest from a data frame df:

KruskalWallisTest test = new KruskalWallisTest( df, 1, 3 );

Two column indices are also provided: a group column and a data column. A Factor 
is constructed from the group column using the DataFrame method GetFactor(), 
which creates a sorted array of the unique values. The specified data column must 
be of type DFNumericColumn.

Lastly, you can also construct a KruskalWallisTest from a DoubleMatrix:

DoubleMatrix Data = new DoubleMatrix( "6 x 5 [ 24 14 11 7 19 
                                               15 7 9 7 24
                                               21 12 7 7 19
                                               27 17 13 12 15
                                               33 14 12 12 10
                                               23 16 18 18 20 ]" );

bool correct_for_ties = true;
KruskalWallisTest test =
  new KruskalWallisTest( data, correct_for_ties );

Each column in the given matrix contains the data for a group. If your groups have 
different numbers of observations, you must pad the columns with Double.NaN 
values until they are all the same length, because a DoubleMatrix must be 
rectangular. Alternatively, use one of the other constructors described above. 

The Kruskall-Wallis Table

Once you’ve constructed a KruskalWallisTest, you can display the complete 
results table:

Console.WriteLine( test );

For example:

Source     Deg of Freedom    Sum Of Sq  Mean Sq    Chi-sq   P
Between groups    2          13.5000   6.7500      0.7714   0.6800
Within groups     11         214       19.4545     .        .
Total             13         227.5000  .           .        .

Class KruskalWallisTable is provided for summarizing the information in the 
results table. Class KruskalWallisTable derives from DataFrame. An instance of 
KruskalWallisTable can be obtained from a KruskalWallisTest object using the 
Table property. For example:

KruskalWallisTable table = test.able;
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Class KruskalWallisTable provides the following read-only properties for 
accessing individual elements in the results table:

DegreesOfFreedomBetween gets the between-groups degrees of freedom.

DegreesOfFreedomWithin gets the within-groups degrees of freedom.

DegreesOfFreedomTotal gets the total degrees of freedom.

SumOfSquaresBetween gets the between-groups sum of squares.

SumOfSquaresWithin gets the within-groups sum of squares.

SumOfSquaresTotal gets the total sum of squares.

MeanSquareBetween gets the between-groups mean square. The between-
groups mean square is the between-groups sum of squares divided by the 
between-groups degrees of freedom.

MeanSquareWithin gets the within-group mean square. The within-groups 
mean square is the within-group sum of squares divided by the within-
group degrees of freedom.

MeanSquareTotal gets the total mean square. The total mean square is the 
total sum of squares divided by the total degrees of freedom. 

Statistic gets the test statistic.  

PValue gets the p-value for the test statistic.

Ranks, Grand Mean Ranks, Group Means Ranks, and 
Group Sizes

Class KruskalWallisTest provides properties and methods for retrieving the ranks, 
grand mean ranks, group means ranks, and group sizes:

Ranks gets an array of vectors containing the ranks of the data.

GrandMeanRank gets the grand mean rank of the data. The grand mean  
rank is the mean of all of the data ranks.

GroupMeanRanks gets a vector of group mean ranks.

GroupSizes gets an array of group sizes.

GroupNames gets an array of group names. If the test was constructed from 
a data frame using a grouping column, the group names are the sorted, 
unique Factor levels created from the column values. If the test object was 
constructed from a matrix or an array of vectors, the group names are 
simply Group_0, Group_1...Group_n.
126   NMath Stats User’s Guide



GetGroupRanks() returns the ranks for a specified group, identified either 
by group name or group number (a zero-based index into the Ranks array).

GetGroupMeanRank() returns the mean rank for a specified group, 
identified either by group name or group number (a zero-based index into 
the GroupMeanRanks vector).

GetGroupSize() returns the mean for a specified group, identified either 
by group name or group number (a zero-based index into the GroupSizes 
array).

For example, if a KruskalWallisTest is constructed from a matrix, this code returns 
the mean rank for the group in the third column of the matrix:

double mean = test.GetGroupMeanRank( 2 );

If a KruskalWallisTest is constructed from a data frame using a grouping column 
with values male and female, this code returns the mean rank for the male group:

double maleMean = test.GetGroupMeanRank( “male” );

Critical Value of the Test Statistic

Class KruskalWallisTest provides the convenience function 
StatisticCriticalValue() which computes the critical value for the test statistic 
at a given significance level. Thus:

double alpha = 0.05;
double critVal = test.StatisticCriticalValue( alpha );

Updating Kruskall-Wallis Test Objects

Method SetData() updates an entire test object with new data. As with the class 
constructors (see above), you can supply data as an array of group vectors, a 
matrix, or as a data frame. For instance, this code updates a test with data from 
DataFrame df, using column 2 as the group column and column 5 as the data 
column:

test.SetData( df, 2, 5 );
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CHAPTER 11.  
MULTIVARIATE TECHNIQUES

Multivariate statistical analysis techniques are useful when you need a concise 
understanding of large amounts of data. NMath Stats provides classes for 
dimension reduction using principal component analysis or factor analysis, and case 
reduction using hierarchical cluster analysis and k-means clustering.

This chapter describes the multivariate statistical analysis classes.

11.1 Principal Component Analysis

Principal component analysis (PCA) finds a smaller set of synthetic variables that 
capture the variance in an original data set. The first principal component accounts 
for as much of the variability in the data as possible, and each succeeding 
orthogonal component accounts for as much of the remaining variability as 
possible. In NMath Stats, classes DoublePCA and FloatPCA perform principal 
component analyses.

Creating Principal Component Analyses

A DoublePCA or FloatPCA instance is constructed from a matrix or a dataframe 
containing numeric data. Each column represents a variable, and each row 
represents an observation:

DoublePCA pca = new DoublePCA( data );

The data may optionally be zero-centered and scaled to have unit variance:

bool center = true;
bool scale = true;
DoublePCA pca = new DoublePCA( data, center, scale );

By default, variables are centered but not scaled.
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After construction, you can retrieve information about the data set using the 
provided read-only properties:

Data gets the data matrix. If centering or scaling were specified at 
construction time, the returned matrix may not match the original data.

NumberOfObservations gets the number of observations in the data 
matrix.

NumberOfVariables gets the number of variables in the data matrix.

IsCentered returns true if the data supplied at construction time was 
shifted to be zero-centered.

IsScaled returns true if the data supplied at construction time was scaled 
to have unit variance.

Means gets the column means of the data matrix. If centering is specified, 
the column means are substracted from the column values before analysis 
takes place.

Norms gets the column norms (1-norm). If scaling is specified, column 
values are scaled to have unit variance before analysis by dividing by the 
column norm.

Principal Component Analysis Results   

The Loadings property gets the complete loading matrix. Each column in the 
loading matrix is a principal component. The first principal component accounts 
for as much of the variability in the data as possible, and each succeeding 
orthogonal component accounts for as much of the remaining variability as 
possible. 

Console.WriteLine( "Loading Martrix = " + pca.Loadings );

The provided indexer also gets a specified principal component, referenced by 
zero-based index. For example:

Console.WriteLine( "First principal component = " + pca[0] );
Console.WriteLine( "Second principal component = " + pca[1] );

The VarianceProportions property gets an ordered vector containing the 
proportion of the total variance accounted for by each principal component. 
CumulativeVarianceProportions gets the cumulative variance proportions. 
Thus:

Console.WriteLine( "Variance Proportions = " + 
                   pca.VarianceProportions ); 
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Console.WriteLine( "Cumulative Variance Proportions = " + 
                   pca.CumulativeVarianceProportions );   

The Threshold() method calculates the number of principal components required 
to account for a given proportion of the total variance:

Console.WriteLine( "PCs that account for 99% of the variance = " +
                   pca.Threshold( .99 ) );

The StandardDeviations property gets the standard deviations of the principal 
components. Eigenvalues gets the eigenvalues of the covariance/correlation 
matrix, though the calculation is actually performed using the singular values of 
the data matrix. The eigenvalues of the covariance/correlation matrix are equal to 
the squares of the standard deviations of the principal components. 

Lastly, the Scores property gets the score matrix. The scores are the data formed 
by transforming the original data into the space of the principal components:

Console.WriteLine( "Scores = " + pca.Scores );

This code displays the data in the minimal synthetic dimensions required to 
account for 99% of the variance: 

Slice rowSlice = Slice.All;
Slice colSlice = new Slice( 0, pca.Threshold( .99 ) );
Console.WriteLine( pca.Scores[ rowSlice, colSlice ] );

11.2 Factor Analysis

Factor analysis describes the variability among observed, correlated variables in 
terms of a potentially lower number of unobserved variables, called factors.

In general, factor analysis consists of two steps:

In the extraction step, factors are extracted from the data.

In NMath Stats, IFactorExtraction is the interface for factor extraction algo-
rithms. Class PCFactorExtraction implements the principle component 
(PC) algorithm for factor extraction.

In the rotation step, the factors are rotated in order to maximize the 
relationship between the variables and the factors.

In NMath Stats, IFactorRotation is the interface for factor rotation algo-
rithms. Class VarimaxRotation computes the varimax rotation of the 
factors. Factors are rotated to maximize the sum of the variances of the 
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squared loadings. Kaiser normalization is optionally performed. Class 
NoRotation can be used when no rotation is desired.

Creating Factor Analyses

NMath Stats provides three classes for performing factor analysis:

FactorAnalysisCorrelation performs a factor analysis on given case data 
by forming the correlation matrix for the variables.

FactorAnalysisCovariation performs a factor analysis on given case data 
using the covariance matrix.

DoubleFactorAnalysis performs a factor analysis on a symmetric matrix of 
data, assumed to be either a correlation or covariance matrix, if you don’t 
have access to the original case data.

When case data is used, the data should provided in matrix form—the variable 
values in columns and each row representing a case.

All factor analysis are templatized on the extraction and rotation algorithm to use. 
For example:

var fa = new FactorAnalysisCorrelation<PCFactorExtraction, 
  VarimaxRotation>( data );

For greater control, construct the extraction and rotation objects explicitly. For 
example, a PCFactorExtraction instance can be constructed from a delegate for 
determining the number of factors to extract. The type of this argument is 
Func<DoubleVector, DoubleMatrix, int>. It takes as arguments the vector of 
eigenvalues and the matrix of eigenvectors, and returns the number of factors to 
extract. Class NumberOfFactors contains static methods for creating functors for 
several common strategies. This code extracts factors whose eigenvalues are 
greater than 1.2 times the mean of the eigenvalues:

var factorExtraction = new PCFactorExtraction( 
  NumberOfFactors.EigenvaluesGreaterThanMean( 1.2 ) );

The following code constructs a VarimaxRotation instance with a specified 
tolerance. Iteration stops when the relative change in the sum of the singular 
values is less than this number. We also specify that we do not want Kaiser 
normalization to be performed.

var factorRotation = new VarimaxRotation
{
  Tolerance = 1e-6,
  Normalize = false
};
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Once you’ve constructed your extraction and rotation objects, you can construct 
the factor analysis instance:

var fa = new FactorAnalysisCovariance<PCFactorExtraction, 
  VarimaxRotation>( data, BiasType.Biased, factorExtraction, 
    factorRotation );

Factor Analysis Results

Once you’ve constructed a factor analysis instance, you can access the results using 
the following properties:

NumberOfFactors get the number of factors extracted.

Factors gets the extracted factors. Each column of the matrix is a factor.  

RotatedFactors gets the rotated factors. Each column of the matrix is a 
factor. 

VarianceProportions gets a vector of proportion of variance explained by 
each factor.

CumulativeVarianceProportions gets the cumulative variance 
proportions. 

ExtractedCommunalities get the proportion of each variable's variance 
that can be explained by the extracted factors jointly. 

InitialCommunalities get the proportion of each variable's variance that 
can be explained by the factors jointly.

SumOfSquaredLoadings gets the sum of squared loadings for each 
extracted factor.

RotatedSumOfSquaredLoadings gets the sum of squared loadings for each 
rotated extracted factor.

For instance:

DoubleVector extractedCommunalities = fa.ExtractedCommunalities;
for ( int i = 0; i < data.Cols; i++ )
{
  Console.WriteLine( "{0}\t{1}", data[i].Name, 
    extractedCommunalities[i] );
}
Console.WriteLine();
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for ( int i = 0; i < fa.VarianceProportions.Length; i++ )
{
  double varProportion = fa.VarianceProportions[i] * 100.0;
  double cummlativeVarProportion = 
    fa.CumulativeVarianceProportions[i] * 100.0;
  double eigenValue = fa.FactorExtraction.Eigenvalues[i];
  Console.WriteLine( "{0}\t\t{1}\t{2}\t\t{3}", i, eigenValue, 
    varProportion, cummlativeVarProportion );
}
Console.WriteLine();

double eigenValueSum =
  NMathFunctions.Sum( fa.FactorExtraction.Eigenvalues );
DoubleVector RotatedSSLoadingsVarianceProportions = 
  fa.RotatedSumOfSquaredLoadings / eigenValueSum;
Console.WriteLine(
  "\nRotated Extraction Sums of Squared Loadings - " );
Console.WriteLine( "factor\tTotal\t% of Variance\tCummlative %" );
Console.WriteLine(
  "----------------------------------------------------" );
double cummlative = 0;

for ( int i = 0; i < fa.NumberOfFactors; i++ )
{
  double varProportion =
    RotatedSSLoadingsVarianceProportions[i] * 100.0;
  cummlative += RotatedSSLoadingsVarianceProportions[i];
  double cummlativeVarProportion = cummlative * 100.0;
  double sumSquaredLoading = fa.RotatedSumOfSquaredLoadings[i];
  Console.WriteLine( "{0}\t\t{1}\t{2}\t\t{3}", i, 
    sumSquaredLoading, varProportion, cummlativeVarProportion );
}
Console.WriteLine();

DoubleMatrix rotatedComponentMatrix = fa.RotatedFactors;
for ( int i = 0; i < data.Cols; i++ )
{
  var formatString = "{0}\t\t{1}\t{2}\t{3}";
  double comp0 = rotatedComponentMatrix.Row( i )[0];
  double comp1 = rotatedComponentMatrix.Row( i )[1];
  double comp2 = rotatedComponentMatrix.Row( i )[2];
  Console.WriteLine( "{0}\t{1}\t{2}\t{3}", data[i].Name,
    comp0, comp1, comp2 );
}
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Factor Scores

The case data values for new factor variables are contained in the factor scores 
matrix. The score for a given factor is a linear combination of all of the measures, 
weighted by the corresponding factor loading.

There are different algorithms for producing the factors scores. The 
FactorScores()method can be passed an object implementing the IFactorScores 
interface, specifying the algorithm to be used. If no argument is passed, the 
regression algorithm for computing factor scores is used, implemented in class 
RegressionFactorScores.

For example, this code print the factor scores for the first three cases. Data is 
normalized.

var rowSlice = new Slice( 0, 3 );
Console.WriteLine(
  fa.FactorScores()[rowSlice, Slice.All].ToTabDelimited() );

Factor scores are a linear combination of the original variable values. The 
coefficients used for the linear combination are found in the factor score coefficients 
matrix. This matrix may be obtained from the FactorScoreCoefficients() 
method on the factor analysis class. Like factor scores, the algorithm to use may be 
specified by passing an object implementing the IFactorScores interface to this 
method. By default, the regression algorithm is used.

The factor score coefficients can be used to compute scores for novel case data. For 
instance:

DoubleMatrix scoreCoefficients = fa.FactorScoreCoefficients();
DoubleMatrix newCaseData = new DoubleMatrix(
  "2x10 [0.0 38.9 3.8 196.0 115.4 71.9 177.0 3.972 17.5 27.8  " + 
        "1.0 46.0 2.5 220.0 101.6 73.4 168.6 3.75  19.0 20.0]" );
Console.WriteLine(
  NMathFunctions.Product( newCaseData, scoreCoefficients ) );

11.3 Hierarchical Cluster Analysis

Cluster analysis detects natural groupings in data. In hierarchical cluster analysis, 
each object is initially assigned to its own singleton cluster. The analysis then 
proceeds iteratively, at each stage joining the two most similar clusters into a new 
cluster, continuing until there is one overall cluster. In NMath Stats, class 
ClusterAnalysis performs hierarchical cluster analyses.
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Distance Functions

During clustering, the distance between individual objects is computed using a 
distance function. The distance function is encapsulated in a Distance.Function 
delegate, which takes two vectors and returns a measure of the distance 
(similarity) between them:

public delegate double Function( DoubleVector data1,
                                 DoubleVector data2 );

Delegates are provided as static variables on class Distance for many common 
distance functions:

Distance.EuclideanFunction computes the Euclidean distance between 
two data vectors (2 norm): 

Euclidean distance is simply the geometric distance in the multidimen-
sional space.

Distance.SquaredEuclideanFunction computes the squared Euclidean 
distance between two vectors: 

Squaring the simple Euclidean distance places progressively greater 
weight on objects that are further apart.

Distance.CityBlockFunction computes the city-block (Manhattan) 
distance between two vectors (1 norm): 

In most cases, the city-block distance measure yields results similar to the 
simple Euclidean distance. Note, however, that the effect of outliers is 
dampened, since they are not squared. 

dxy xi yi–( )2∑=

dxy xi yi–( )2∑=

dxy xi yi–∑=
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Distance.MaximumFunction computes the maximum (Chebychev) 
distance between two vectors: 

This distance measure may be appropriate in cases when you want to 
define two objects as different if they differ on any one of the dimensions. 

Distance.PowerFunction( double p, double r ) computes the power 
distance between two vectors:

where p and r are user-defined parameters. Parameter p controls the pro-
gressive weight that is placed on differences on individual dimensions; 
parameter r controls the progressive weight that is placed on larger differ-
ences between objects. Appropriate selections of p and r yield Euclidean, 
squared Euclidean, Minkowski, city-block, and many other distance met-
rics. For example, if p and r are equal to 2, the power distance is equal to 
the Euclidean distance. 

All provided distance functions allow missing values. Pairs of elements are 
excluded from the distance measure when their comparison returns NaN. If all 
pairs are excluded, NaN is returned for the distance measure.

You can also define your own Distance.Function delegate and use it to cluster 
your data. For example, if you have function MyDistance() that computes the 
distance between two vectors:

public double MyDistance( DoubleVector x, DoubleVector y );

You can define a Distance.Function delegate like so:

Distance.Function MyDistanceFunction =
  new Distance.Function( MyDistance );

Linkage Functions

During clustering, the distances between clusters of objects are computed using a 
linkage function. The linkage function is encapsulated in a Linkage.Function 
delegate. When two groups P and Q are united, a linkage function computes the 
distance between the new combined group P + Q and another group R. 

dxy maximum xi yi–=

dxy xi yi–
p∑( )

1 r⁄
=
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Figure 2 – Computing the distance between clusters using a linkage function

The parameters to the Linkage.Function—which may not necessarily all be used 
to calculate the result—are the distance between R and P, the distance between R 
and Q, the distance between P and Q, and the sizes (n) of all three groups:

public delegate double Function( double Drp, double Drq,
  double Dpq, double Nr, double Np, double Nq );

Delegates are provided as static variables on class Linkage for many common 
linkage functions:

Linkage.SingleFunction computes the distance between two clusters as 
the distance of the two closest objects (nearest neighbors) in the clusters. 
Adopting a friends-of-friends clustering strategy closely related to the 
minimal spanning tree, the single linkage method tends to result in long 
chains of clusters. 

Linkage.CompleteFunction computes the distance between two clusters 
as the greatest distance between any two objects in the different clusters 
(furthest neighbors). The complete linkage method tends to work well in 
cases where objects form naturally distinct clumps.  

Linkage.UnweightedAverageFunction computes the distance between 
two clusters as the average distance between all pairs of objects in the two 
different clusters. This method is sometimes referred to as unweighted 
pair-group method using arithmetic averages, and abbreviated UPGMA. 

Linkage.WeightedAverageFunction computes the distance between two 
clusters as the average distance between all pairs of objects in the two 
different clusters, using the size of each cluster as a weighting factor. This 
method is sometimes referred to as weighted pair-group method using 
arithmetic averages, and abbreviated WPGMA. 

Linkage.CentroidFunction computes the distance between two clusters 
as the difference between centroids. The centroid of a cluster is the average 
point in the multidimensional space. The centroid method is sometimes 
referred to as unweighted pair-group method using the centroid average, and 
abbreviated UPGMC. 

R
P

Q
+

?
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Linkage.MedianFunction computes the distance between two clusters as 
the difference between centroids, using the size of each cluster as a 
weighting factor. This is sometimes referred to as weighted pair-group method 
using the centroid average, and abbreviated WPGMC. 

Linkage.WardFunction computes the distance between two clusters using 
Ward’s method. Ward’s method uses an analysis of variance approach to 
evaluate the distances between clusters. The smaller the increase in the 
total within-group sum of squares as a result of joining two clusters, the 
closer they are. The within-group sum of squares of a cluster is defined as 
the sum of the squares of the distance between all objects in the cluster and 
the centroid of the cluster. Ward's method tends to produce compact 
groups of well-distributed size.

You can also define your own Linkage.Function delegate and use it to cluster 
your data. For example, if you have function MyLinkage() that computes the 
distance between two clusters:

public double MyLinkage( double Drp, double Drq, double Dpq,
                         double Nr, double Np, double Nq );

You can define a Linkage.Function delegate like so:

Linkage.Function MyLinkageFunction =
  new Linkage.Function( MyLinkage );

Creating Cluster Analyses

A ClusterAnalysis instance is constructed from a matrix or a dataframe containing 
numeric data. Each row in the data set represents an object to be clustered.

ClusterAnalysis ca = new ClusterAnalysis( data );

The current default distance and linkage delegates are used. The default distance 
and linkage delegates are Distance.EuclideanFunction and 
Linkage.SingleFunction, unless the defaults have been changed using the static 
DefaultDistanceFunction and DefaultLinkageFunction properties. For 
example:

ClusterAnalysis.DefaultDistanceFunction = Distance.MaximumFunction;
ClusterAnalysis.DefaultLinkageFunction = Linkage.CentroidFunction;

This changes the default distance and linkage functions for all subsequently 
constructed ClusterAnalysis objects.
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You can also specify non-default distance and linkage functions in the constructor:

ClusterAnalysis ca = new ClusterAnalysis( data,   
  Distance.PowerFunction( 1.25, 2.0 ), Linkage.CompleteFunction );

After construction, you can retrieve information about the ClusterAnalysis 
configuration using the provided properties:

N gets the total number of objects being clustered.

DistanceFunction gets and sets the distance function delegate used to 
measure the distance between individual objects. Setting the distance 
function using the DistanceFunction property has no effect until 
Update() is called with new data. (See below.)

LinkageFunction gets and sets the linkage function used to measure the 
distance between clusters of objects. Setting the linkage delegate using the 
LinkageFunction property has no effect until Update() is called with new 
data. (See below.)

Cluster Analysis Results

The Distances property gets the vector of distances between all possible object 
pairs, computed using the current distance delegate. For n objects, the distance 
vector is of length (n-1)(n/2), with distances arranged in the order:

(1,2), (1,3), ..., (1,n), (2,3), ..., (2,n), ..., ..., (n-1,n)

Linkages gets an (n-1) x 3 matrix containing the complete hierarchical linkage 
tree, computed from Distances using the current linkage delegate. At each level 
in the tree, columns 1 and 2 contain the indices of the clusters linked to form the 
next cluster. Column 3 contains the distances between the clusters. For example, 
this code clusters 8 random vectors of length 3, then shows a sample output of the 
hierarchical cluster tree:

DoubleMatrix data = new DoubleMatrix( 8, 3, new RandGenUniform() );
ClusterAnalysis ca = new ClusterAnalysis( data );
Console.WriteLine( ca.Linkages );

// Sample Output
// 
// 7x3 [
//        4 7 0.194409151975696
//        3 5 0.290431894003636
//        2 9 0.495557235783239
//        1 6 0.508966210536187
//        0 11 0.522321103698264
//        8 10 0.590187697768796
//        12 13 0.621675638177606 ]
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Each object is initially assigned to its own singleton cluster, numbered 0 to 7. The 
analysis then proceeds iteratively, at each stage joining the two most similar 
clusters into a new cluster, continuing until there is one overall cluster. The first 
new cluster formed by the linkage function is assigned index 8, the second is 
assigned index 9, and so forth. When these indices appear later in the tree, the 
clusters are being combined again into a still larger cluster.

The CutTree() method constructs a set of clusters by cutting the hierarchical 
linkage tree either at the specified height, or into the specified number of clusters. 
For example, this code cuts the linkage tree to form 3 clusters:

ca.CutTree( 3 );

This code cuts the linkage tree at a height of 0.75:

ca.CutTree( 0.75 );

The CutTree() method returns a ClusterSet object, which represents a collection 
of objects assigned to a finite number of clusters. The NumberOfClusters property

gets the number of clusters into which objects are grouped; N gets the number of 
objects. The Clusters property returns an array of integers that identifies the 
cluster into which each object was grouped. Cluster numbers are arbitrary, and 
range from 0 to NumberOfClusters - 1. The indexer gets the cluster to which a 
given object is assigned. The Cluster() method returns the objects assigned to a 
given cluster as an array of integers. For instance:

// Cluster 10 random vectors of length 4:
DoubleMatrix data =
  new DoubleMatrix( 10, 4, new RandGenUniform() );
ClusterAnalysis ca = new ClusterAnalysis( data );

// Cut the tree into 5 clusters
ClusterSet cut = ca.CutTree( 5 );

Console.WriteLine( "ClusterSet = " + cut );
Console.WriteLine( "Object 0 is in cluster: " + cut[0] );
Console.WriteLine( "Object 3 is in cluster: " + cut[3] );
Console.WriteLine( "Object 8 is in cluster: " + cut[8] );
int[] objects = cut.Cluster( 1 );
Console.Write( "Objects in cluster 1: " );
for (int i = 0; i < objects.Length; i++ )
{
  Console.Write( objects[i] + " " );
}
Console.WriteLine();
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// Sample Ouput
//
// ClusterSet = 0,1,2,1,1,1,3,1,4,1
// Object 0 is in cluster: 0
// Object 3 is in cluster: 1
// Object 8 is in cluster: 4
// Objects in cluster 1: 1 3 4 5 7 9

Lastly, the CopheneticDistances property on class ClusterAnalysis gets the 
vector of cophenetic distances between all possible object pairs. The cophenetic 
distance between two objects is defined to be the intergroup distance when the 
objects are first combined into a single cluster in the linkage tree. The format is the 
same as the distance vector returned by Distances.

The correlation between the original Distances and the CopheneticDistances is 
sometimes taken as a measure of the appropriateness of a cluster analysis relative 
to the original data:

ClusterAnalysis ca = new ClusterAnalysis( data );
double r = StatsFunctions.Correlation( ca.Distances, 
                                       ca.CopheneticDistances );

Reusing Cluster Analysis Objects

Method Update() updates an existing ClusterAnalysis instance with new data, 
and optionally with new distance and linkage functions. For example:

ClusterAnalysis ca = new ClusterAnalysis( data,   
  Linkage.SingleFunction );
Console.WriteLine( ca.Linkages );

ca.Update( data, Linkage.CompleteFunction );
Console.WriteLine( ca.Linkages );

11.4 K-Means Clustering

The k-means clustering method assigns data points into k groups such that the sum 
of squares from points to the computed cluster centers is minimized. In NMath 
Stats, class KMeansClustering performs k-means clustering.
142   NMath Stats User’s Guide



The algorithm used is that of Hartigan and Wong (A K-means clustering algorithm. 
Applied Statistics 28, 100–108. 1979):

1. For each point, move it to another cluster if that would lower the sum of 
squares from points to the computed cluster centers.

2. If a point is moved, immediately update the cluster centers of the two 
affected clusters.

3. Repeat until no points are moved, or the specified maximum number of 
iterations is reached.

Creating KMeansClustering Objects

A KMeansClustering instance is constructed from a matrix or a dataframe 
containing numeric data. Each row in the data set represents an object to be 
clustered.

KMeansClustering km = new KMeansClustering( data );

After construction, you can retrieve information about the KMeansClustering 
data using the provided properties:

N gets the total number of objects being clustered.

Data gets and set the data matrix

Stopping Criteria

Iteration stops when either clustering stabilizes, or the maximum number of 
iterations is reached. You can specify the maximum number of iterations in several 
ways:

The static DefaultMaxIterations property gets and sets the default 
maximum number of iterations for instances of KMeansClustering. 
(Initially set to 1000.)

You can specify a non-default maximum in the KMeansClustering 
constructor. For instance:

   KMeansClustering km = new KMeansClustering( data, 100 );

The MaxIterations property gets and sets the maximum number of 
iterations on an existing KMeansClustering instance.
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Clustering

The Cluster() method clusters the data into the specified number of clusters. The 
method accepts either k, the number of clusters, or a matrix of initial cluster 
centers:

If k is given, a set of distinct rows in the data matrix are chosen as the initial 
centers using the algorithm specified by a KMeanClustering.Start 
enumerated value. By default, rows are chosen at random.

If a matrix of initial cluster centers is given, k is inferred from the number of 
rows.

For example, this code clusters eight random vectors of length three into two 
clusters, using random starting cluster centers:

DoubleMatrix data = new DoubleMatrix( 8, 3, new RandGenUniform() );
KMeansClustering cl = new KMeansClustering( data );
ClusterSet clusters = cl.Cluster( 2 );

This code specifies the two starting centers:

DoubleMatrix centers = new DoubleMatrix("2x3 [ 0 0 0  1 1 1 ]");
ClusterSet clusters = cl.Cluster( centers );

Cluster Analysis Results

The Cluster() method returns a ClusterSet object, which represents a collection 
of objects assigned to a finite number of clusters. Properties on the 
KMeansClustering instance give additional information about the clustering just 
performed:

K gets the number of clusters.

InitialCenters gets the matrix of initial cluster centers.

FinalCenters gets the matrix of final cluster centers.

Clusters gets the cluster assignments.

WithinSumOfSquares gets the within-cluster sum of squares for each 
cluster.

Sizes gets the number of points in each cluster.

Iterations gets the number of iterations performed.

MaxIterationsMet returns true if the clustering stopped because the 
maximum number of iterations was reached; otherwise, false.
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For instance, this code clusters 30 random vectors of length three into three 
clusters, and prints out the results:

DoubleMatrix data = new DoubleMatrix(30, 3, new RandGenUniform());
KMeansClustering km = new KMeansClustering(data);
km.Cluster(3);

Console.WriteLine( "k = {0}", km.K );
Console.WriteLine( "Initial cluster centers:" );
Console.WriteLine( km.InitialCenters.ToTabDelimited() );
Console.WriteLine( "{0} iterations", km.Iterations );
Console.WriteLine("Stopped because max iterations of {0} met? {1}",
  km.MaxIterations, km.MaxIterationsMet);
Console.WriteLine( "Final cluster centers:" );
Console.WriteLine( km.FinalCenters.ToTabDelimited() );
Console.WriteLine( "Clustering assignments:" );
Console.WriteLine( km.Clusters );
for (int i = 0; i < km.K; i++) {
  Console.WriteLine( "Cluster {0} has {1} items", i, km.Sizes[i] );
}
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CHAPTER 12.  
NONNEGATIVE MATRIX FACTORIZATION

Nonnegative matrix factorization (NMF) approximately factors a matrix V into 
two matrices, W and H:

NMF differs from many other factorizations by enforcing the constraint that the 
factors W and H must be non-negative—that is, all elements must be equal to or 
greater than zero.

If a set of m n-dimensional data vectors are placed in an n x m matrix V, then NMF 
can be used to approximately factor V into an n x r matrix W and an r x m matrix H. 
Usually r is chosen to be much smaller than either m or n, so that W and H are 
smaller than the original matrix V. Thus, each column v of V is approximated by a 
linear combination of the columns of W, with the coefficients being the 
corresponding column h of H, v ≈  Wh. This extracts underlying features of the data 
as basis vectors in W, which can then be used for identification, classification, and 
compression. By not allowing negative entries in W and H, NMF enables a non-
subtractive combination of the parts to form a whole.

NMath Stats provides classes for basic NMF, and for data clustering using NMF. 
This chapter describes how to use the NMF classes.

12.1 Nonnegative Matrix Factorization

NMath Stats provides class NMFact for performing basic nonnegative matrix 
factorization (NMF). NMFact uses an iterative algorithm with the goal of 
minimizing a cost function. The cost function is usually , where  
denotes the Frobenius matrix norm. 

NMFact objects can factor data contained in either a DoubleMatrix or a 
DataFrame object. The factors W and H are then accessed through properties:

DataFrame data;      // data to be factored
int k;               // number of columns in W

V WH≈

V WH– .
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NMFact fact = new NMFact();
fact.Factor( data, k );
Console.WriteLine( “W = “ + fact.W );
Console.WriteLine( “H = “ + fact.H );

Parameters governing aspects of the computation are set through properties or 
passed as constructor arguments. ComputeCostAtEachStep determines whether 
or not the cost is computed at each step of the iteration. This can be an expensive 
calculation and so should generally be done only when you want to investigate 
convergence properties, such as the convergence rate. If ComputeCostAtEachStep 
is true, the DoubleVector of costs can be accessed through the StepCost 
property.

NumIterations specifies the number of iterations performed in the computing of 
the factorization. 

For example:

fact.ComputeCostAtEachStep = true;
fact.NumIterations = numIterations;

Update Algorithms

The iterative update step and cost function are specified in a class implementing 
the INMFUpdateAlgorithm interface. NMath Stats provides four such 
implementations. All matrices of uniform (0,1) random deviants as the initial 
values for W and H.

Class NMFAlsUpdate uses the Alternating Least Squares (ALS) update 
algorithm. ALS takes advantage of the fact that while the optimization 
problem is not simultaneously convex in W and H, it is convex in either W 
or H. Thus, given one matrix, the other can be found with a simple least 
squares computation:

1. Solve for H in matrix equation WTWH = WTV.

2. Set all negative elements of H to 0.

3. Solve for W in the matrix equation HHTWT = HVT.

4. Set all negative elements of W to 0.
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Class NMFDivergenceUpdate minimizes a divergence functional. The 
functional is related to the Poisson likelihood of generating V from W and 
H:

For more information, see Brunet, Jean-Philippe et al., “Metagenes and 
Molecular Pattern Discovery Using Matrix Factorization”, Proceedings of the 
National Academy of Sciences 101, no. 12 (March 23, 2004): 4164-4169. 

Class NMFGdClsUpdate uses the Gradient Descent - Constrained Least 
Squares (GDCLS) algorithm. In some cases it may be desirable to enforce a 
statistical sparsity constraint on the H matrix. As the sparsity of H 
increases, the basis vectors become more localized—that is, the parts-based 
representation of the data in W becomes more and more enhanced. The 
GDCLS algorithm enforces sparsity in H using a scheme that penalizes the 
number of non-zero entries in H. It is a hybrid algorithm that uses the 
multiplicative update rule for updating W, while H is calculated using a 
constrained least squares model as the metric. The algorithm follows:

Wic ← Wic((VHT)ic / (WHHT)ic)

Solve for H in the constrained least squares problem

(WTW + λI)H = WTV

Rephrase the constrained least squares step for finding H as 

MinH {||V - WH||2 + λ||H||2}

From this it is seen that the parameter λ is a regularization value that is 
used to balance the reduction of the metric

||V - WH||

with the enforcement of smoothness and sparsity of H.

Class NMFMultiplicativeUpdate uses a multiplicative update rule for W 
and H, as proposed by Lee and Seung.

Hcj ← Hcj( (W
TV)cj / (WTWH)cj )

Wic ← Wic((VHT)ic / (WHHT)ic)

This multiplicative method can be classified as a diagonally-scaled gradient 
descent method.

D Vi j,
Vi j,

WH( )i j,
--------------------- 

 log Vi j,– WH( )i j,+

i j,
∑=
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The update algorithm can be specified either as a constructor argument, or using 
the UpdateAlgorithm property. For instance:

INMFUpdateAlgorithm alg = new NMFAlsUpdate();
NMFact fact = new NMFact( alg );
fact.Factor( data, k );
Console.WriteLine( “ALS W = “ + fact.W );
Console.WriteLine( “ALS H = “ + fact.H );

fact.UpdateAlgorithm = new NMFGdClsUpdate();
fact.Factor( data, k );
Console.WriteLine( “GDCLS W = “ + fact.W );
Console.WriteLine( “GDCLS H = “ + fact.H );

12.2 Data Clustering Using NMF

NMath Stats provides class NMFClustering for performing data clustering using 
iterative nonnegative matrix factorization (NMF), where each iteration step 
produces a new W and H. At each iteration, each column v of V is placed into a 
cluster corresponding to the column w of W which has the largest coefficient in H. 
That is, column v of V is placed in cluster i if the entry hij in H is the largest entry in 
column hj of H. Results are returned as an adjacency matrix whose i, jth value is 1 if 
columns i and j of V are in the same cluster, and 0 if they are not.

Iteration stops when the clustering of the columns of the matrix V stabilizes. There 
are three parameters that control iteration:

the maximum number of iterations to perform

the stopping adjacency, which is the number of consecutive times the 
adjacency matrix remains unchanged before it is considered stabilized

the convergence check period. Computing the adjacency matrix can be a 
somewhat expensive operation, so you may want to perform this operation 
only every nth iteration.

For example, running a NMFClustering instance with maximum iterations 2000, 
stopping adjacency 40, and convergence check period 10, computes a new 
adjacency matrix every 10 iterations, and checks it against the previous adjacency 
matrix. If they are the same, a count is incremented. The iteration stops when 40 
consecutive unchanged adjacency matrices are recorded, or the maximum 2000 
iterations are reached.
150   NMath Stats User’s Guide



Creating NMFClustering Instances

Class NMFClustering is parameterized on the NMF update algorithm to use 
(Section 12.1). For instance:
NMFClustering<NMFDivergenceUpdate> nmfClustering =
  new NMFClustering<NMFDivergenceUpdate>();

The update algorithm can be changed post-construction using the Updater 
property.

nmfClustering.Updater = new NMFGdClsUpdate();

The maximum iterations, stopping adjacency, and convergence check period can 
be specified either as constructor parameters, or post-construction using the 
MaxFactorizationIterations, StoppingAdjacency, and 
ConvergenceCheckPeriod properties, respectively. The default maximum 
number of iterations is 2000, the default stopping adjacency is 40, and the default 
convergence check period is 10.

Performing the Factorization

The Factor() method performs the actual iterative factorization:

DoubleMatrix data;   // data to be factored
int k;               // number of columns in W
nmfClustering.Factor( data, k );

NMFClustering objects can factor data contained in either a DoubleMatrix or a 
DataFrame object. 

Cluster Results

After clustering, the Converged property checks if the iterative factorization 
converged before hitting the default maximum number of iterations. Iterations 
gets the total number of iterations performed in the most recent calculation. For 
example:

if ( nmfClustering.Converged ) {
  Console.WriteLine( "Factorization converged in {0} iterations.", 
    nmfClustering.Iterations );
}
else {
  Console.WriteLine( 
    "Factorization failed to converge in {0} iterations.", 
    nmfClustering.MaxFactorizationIterations );
}
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If clustering converged, the final factors W and H are accessed through properties 
W and H:

Console.WriteLine( “W = “ + nmfClustering.W );
Console.WriteLine( “H = “ + nmfClustering.H );

The Connectivity property returns the final adjacency matrix as an instance of 
ConnectivityMatrix. The connectivity matrix is an adjacency matrix, A, such that 
columns of the factored matrix are in the same cluster if A[i,j] == 1, and are in 
different clusters if A[i,j] == 0. For instance:

ConnectivityMatrix connectivity = nmfClustering.Connectivity;  
Console.WriteLine( "Connectivity Matrix: " );
Console.WriteLine( connectivity.ToTabDelimited() );

The ClusterSet property returns a ClusterSet (Section 11.3) describing the final 
clusters:    

ClusterSet cs = nmfClustering.ClusterSet;

// Print out the cluster each column belongs to
for ( int i = 0; i < cs.N; i++ ) {
  Console.WriteLine( "Column {0} belongs to cluster {1}",
    i, cs[i] );
}

// Print out the the members of each cluster
for ( int i = 0; i < cs.NumberOfClusters; i++ ) {
  int[] members = cs.Cluster( i );
  Console.Write( "Cluster number {0} contains: ", i );
  for ( int j = 0; j < members.Length; j++ ) {
    Console.Write( "{0} ", j );
  }
  Console.WriteLine();
}

Lastly, the Cost property gets the value of the cost function for the factorization.

double cost = nmfClustering.Cost;

The cost function is the function that is minimized by the NMF update algorithm.

Computing a Consensus Matrix

NMF uses an iterative algorithm with random starting values for W and H. This, 
coupled with the fact that the factorization is not unique, means that if you cluster 
the columns of V multiple times, you may get different final clusterings. The 
consensus matrix is a way to average multiple clusterings, to produce a probability 
estimate that any pair of columns will be clustered together.
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To compute the consensus matrix, the columns of V are clustered using NMF n 
times. Each clustering yields a connectivity matrix. Recall that the connectivity 
matrix is a symmetric matrix whose i, jth entry is 1 if columns i and j of V are 
clustered together, and 0 if they are not. The consensus matrix is also a symmetric 
matrix, whose i, jth entry is formed by taking the average of the i, jth entries of the 
n connectivity matrices. 

Thus, each i, jth entry of the consensus matrix is a value between 0, when columns 
i and j are not clustered together on any of the runs, and 1, when columns i and j 
were clustered together on all runs. The i, jth entry of a consensus matrix may be 
considered, in some sense, a “probability” that columns i and j belong to the same 
cluster. 

NMath Stats provides class NMFConsensusMatrix for compute a consensus 
matrix. NMFConsensusMatrix is parameterized on the NMF update algorithm to 
use (Section 12.1). Additional constructor parameters specify the matrix to factor, 
the order k of the NMF factorization (the number of columns in W), and the 
number of clustering runs. For example:

DoubleMatrix data;   // data to be factored
int k;               // number of columns in W
int numberOfRuns = 70;

NMFConsensusMatrix<NMFDivergenceUpdate> consensusMatrix = 
  new NMFConsensusMatrix<NMFDivergenceUpdate>(data, k, 
    numberOfRuns);

The consensus matrix is computed at construction time, so be aware that this may 
be an expensive operation. Post-construction, the NumberOfConvergedRuns 
property gets the number of clustering runs where the NMF computation 
converged:

Console.WriteLine( "{0} runs out of {1} converged.", 
  consensusMatrix.NumberOfConvergedRuns, numberOfRuns );

NMFConsensusMatrix provides a standard indexer for getting the element value 
at a specified row and column in the consensus matrix. For example, this code gets 
the probability that columns 2 and 7 will be clustered together:

double p = consensusMatrix[2, 7];

This code prints the entire consensus matrix:

Console.WriteLine( "Consensus Matrix:" );
Console.WriteLine( consensusMatrix.ToTabDelimited() );
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A consensus matrix, C, can also used to perform a hierarhical clustering of the 
columns of V (Section 11.3), using the distance function:

A ClusterAnalysis instance is constructed from a matrix containing numeric data. 
Each row in the data set represents an object to be clustered. In this case, you’re 
simply clustering the column numbers of V, so construct a matrix with one colunm 
containing the numbers 0 to n-1, where n is the number of columns of V (and the 
order of of the consensus matrix):

DoubleMatrix colNumbers =
  new DoubleMatrix( consensusMatrix.Order, 1, 0, 1 );

Distance.Function distance =
  delegate( DoubleVector data1, DoubleVector data2 ) {
    int i = (int)data1[0];
    int j = (int)data2[0];
    return 1.0 - consensusMatrix[i, j];
  };

ClusterAnalysis ca =
  new ClusterAnalysis( colNumbers, distance );

After you’ve created a ClusterAnalysis object, the CutTree() method constructs a 
set of clusters by cutting the hierarchical linkage tree either at the specified height, 
or into the specified number of clusters. For example, this code cuts the linkage 
tree to form three clusters: 

ClusterSet clusters = ca.CutTree( 3 );

for ( int i = 0; i < clusters.NumberOfClusters; i++ ) {
  int[] members = clusters.Cluster( i );
  Console.Write( "Cluster {0} contains: ", i );
  for ( int j = 0; j < members.Length; j++ ) {
    Console.Write( "{0} ", members[j] );
  }
  Console.WriteLine();
}

distancei j, 1.0 Ci j,–=
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CHAPTER 13.  
PARTIAL LEAST SQUARES

Partial Least Squares (PLS) is a technique that generalizes and combines features 
from principal component analysis (Section 11.1) and multiple linear regression 
(Chapter 7). It is particularly useful when you need to predict a set of response 
(dependent) variables from a large set of predictor (independent variables).

As in multiple linear regression, the goal of PLS regression is to construct a linear 
model

where Y is n cases by m variables response matrix, X is a n cases by p variables 
predictor matrix, B is a p by m regression coefficients matrix, and E is a noise term 
for the model which has the same dimensions as Y.

As in principal components regression, PLS regression produces factor scores as 
linear combinations of the original predictor variables, so that there is no 
correlation between the factor score variables used in the predictive regression 
model. For example, suppose that we have a matrix of response variables Y, and a 
large number of predictive variables X (in matrix form), some of which may be 
highly correlated. A regression using factor extraction for this data computes the 
score matrix T=XW for an appropriate matrix of weights W, and then considers the 
linear regression model Y=TQ+E, where Q is a matrix of regression coefficient, 
called loadings, for T, and E is an error term. Once the loadings Q are computed, 
the above regression model is equivalent to Y=XB+E, with B=WQ, which can be 
used as a predictive model.

PLS regression differs from principal components regression in the methods used 
for extracting factor scores. While principal components regression computes the 
weight matrix W reflecting the covariance structure between predictor variables, 
PLS regression produces the weight matrix W reflecting the covariance structure 
between the predictor and response variables.

For establishing the model with c factors, or components, PLS regression produces 
a p by c weight matrix W for X such that T=XW. These weights are computed so 
that each of them maximizes the covariance between responses and the 
corresponding factor scores. Ordinary least squares regression of Y on T are then 

Y XB E+=
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performed to produce Q, the loadings for Y (or weights for Y) such that Y=TQ+E. 
Once Q is computed, we have Y=XB+E, where B=WQ.

13.1 Computing a PLS Regression

NMath Stats provides two classes for performing partial least squares (PLS) 
regression, PLS1 and PLS2:

PLS1 is used when the responses, Y, in the model Y=XB+E consist of a 
single variable. In this case Y is a vector containing the n response values.

PLS2 is used when the responses are multivariate. In this case Y is a matrix 
composed of n rows with each row containing the m response variable 
values.

Computing a PLS regression is accomplished by simply constructing a PLS1 or 
PLS2 instance. The basic parameters are:

the matrix of predictor variables values

the response variable values (a vector for PLS1 and a matrix for PLS2)

an integer specifying the number of factors or components

For example:

DoubleMatrix A = ...
DoubleVector y = = ...
int numComponents = 3;

PLS1 pls = new PLS1( A, y, numComponents );

You can also invoke the Calculate() function on PLS1 or PLS2 to calculate a 
regression on an existing instance:

pls.Calculate( A, y, numComponents );

13.2 Error Checking

After computing a PLS regression, always check the IsGood property to ensure 
that there were no errors in performing the calculation. If IsGood returns the 
false, the Message property will contain a message indicating the nature of the 
error. For example, the following code checks that the calculation succeeded, and if 
not, prints out the error message and returns:
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if (pls.IsGood) {
  Console.WriteLine("Success");
}
else {
  Console.WriteLine("PLS calculation failed: " + pls.Message);
  return;
}

One common source of calculation failure occurs when the number of components 
specified for the calculation is greater than the rank of X, the matrix of predictor 
variables. If this occurs, try decreasing the number of components for the 
regression until the calculation succeeds. You can also use Cross Validation 
(Section 13.6) to determine the optimal number of components.

If the calculation fails due to the non-convergence of the Iterative Power Method 
for computing dominant eigenvectors, you may want to adjust the maximum 
number of iterations and/or the tolerance for this method (Section 13.5).

13.3 Predicted Values

Once you’ve performed a PLS regression (Section 13.1), you can calculate the 
predicted value of the response variable for a given value of the predictor variable.

double plsYhat = pls.Predict(x);

or for a set of predictor values:

DoubleVector plsYhatVec = pls.Predict(A);

13.4 Analysis of Variance

NMath Stats provides the classes PLS1Anova and PLS2Anova for performing a 
classic analysis of variance (ANOVA) for PLS1 and PLS2 regression models. These 
classes calculate the sum of squares total, sum of squares residual, mean square 
error for prediction, and the coefficient of determination. For instance:

PLS2Anova plsAnova = new PLS2Anova(pls);
DoubleVector ssTotal = plsAnova.SumOfSquaresTotal;
DoubleVector ssResiduals = plsAnova.SumOfSquaresResiduals;
DoubleVector se = plsAnova.StandardError;
DoubleVector rms = plsAnova.RootMeanSqrErrorPrediction;
DoubleVector rSquared = plsAnova.CoefficientOfDetermination;
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13.5 PLS Algorithms

NMath Stats provides classes PLS1NipalsAlgorithm and PLS2NipalsAlgorithm 
which implement the Nonlinear Iterative PArtial Least Squares (NIPALS) 
algorithm for PLS1 and PLS2 respectively, and class PLS2SimplsAlgorithm 
which implements the Straightforward IMplementation of PLS (SIMPLS) 
algorithm for PLS2.

The algorithm to use may be specified in the constructor for a PLS1 or PLS2 object, 
or set through the Calculator property:

PLS2SimplsAlgorithm calculator = new PLS2SimplsAlgorithm();
pls.Calculator = calculator;

NOTE—Note that setting the calculator through the property forces a recalculation if 
data is present. 

The SIMPLS algorithm for PLS2 uses the Iterative Power Method for computing 
dominant eigenvectors. This algorithm produces a candidate eigenvector during 
each iteration which is normalized with respect to the l-infinity norm. When the 
two-norm of the difference between the current eigenvector, ei, and the 
eigenvector computed on the previous iteration, ei-1, is less than a specified 
tolerance, the algorithm stops. The maximum number of iteration to perform as 
well as the tolerance may be specified on the algorithm object.

If your PLS2 with SIMPLS calculation fails because the power method failed to 
converge, you may want to adjust these values.(If the calculation failure is due to 
non-convergence of the power method, this will be indicated in the Message 
property of the PLS2 object.

13.6 Cross Validation

Cross validation is a model evaluation method which measures how well a model 
makes predictions for data that it has not already sees (as with residuals). To 
accomplish this, some of the data is removed before the model is constructed. 
Once the model is constructed, the data that was removed can be used to test the 
performance of the model on the “new” data. The following methods are typically 
used:

The Holdout Method

The simplest kind of cross validation is the holdout method. The data set is 
separated into two sets, called the training set and the testing set. The PLS 
regression is constructed using the training set, then the regression model 
is asked to make predictions for the responses for the predictor data in the 
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training set. The errors it makes are accumulated to give the mean square 
error.

K-fold Cross Validation

In k-fold cross validation, the data set is divided into k subsets, and the hold-
out method is repeated k times. Each time one of the k subsets is used as the 
test set and the other k-1 subsets are put together to form a training set. The 
average mean square error is then computed across all k trials.

Leave-One-Out Cross Validation

Leave-one-out cross validation is the result of taking k-fold cross validation 
to its logical extreme, with k equal to n, the number of data points in the set. 
That means that n separate times, the PLS model is computed using all the 
data except for one point and a prediction is made for that point. As before 
the average mean square error is computed and used to evaluate the 
model.

NMath Stats provides two classes for doing k-fold cross validation on PLS models. 
PLS1CrossValidation is used when the response data is univariate, and 
PLS2CrossValidation is used when the response data is multivariate. To perform 
a cross validation calculation, you need to specify the data (Section 13.1), a PLS 
calculation algorithm (Section 13.5), and an algorithm for dividing the data into 
subsets.

To specify how subsets for k-fold cross validation are generated from the data, you 
must provide the cross validation class with an object implementing the 
ICrossValidationSubsets interface. NMath Stats provides classes 
LeaveOneOutSubsets, which implement the leave-one-out strategy, and 
KFoldSubsets, which implements k-fold with arbitrary k. 

The average mean square error for the cross validation calculation is available as a 
property on the cross validation object. Also available is an array of 
PLS1CrossValidationResult or PLS2CrossValidationResult objects. Each result 
object contains testing and training data that was used for each cross validation 
calculation and the associated mean square error.
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CHAPTER 14.  
GOODNESS OF FIT

NMath Stats provides classes GoodnessOfFit and GoodnessOfFitParameter for 
testing the goodness of fit of least squares model-fitting classes, such as 
LinearRegression, PolynomialLeastSquares, and OneVariableFunctionFitter:

Available statistics include the residual standard error, the coefficient of 
determination (R2 and "adjusted" R2), the F-statistic for the overall model with its 
numerator and denominator degrees of freedom, and standard errors, t-statistics, 
and corresponding (two-sided) p-values for the model parameters.

This chapter describes how to use the goodness of fit classes.

NOTE—GoodnessOfFit and GoodnessOfFitParameter are a generalization of classes 
LinearRegressionAnova and LinearRegressionParameter (Chapter 7), respectively. As 
such, they duplicate the functionality of those classes for testing the goodness of fit of a 
LinearRegression, with the exception of the beta coefficients.

14.1 Significance of the Overall Model

Class GoodnessOfFit tests the overall model significance for least squares model-
fitting classes, such as LinearRegression, PolynomialLeastSquares, and 
OneVariableFunctionFitter. 

GoodnessOfFit instances can be constructed from:

A LinearRegression object.

A PolynomialLeastSquares object, plus the vectors of x and y data.

A OneVariableFunctionFitter object, plus the vectors of x and y data and 
the solution found by the fitter.
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For example:

DoubleVector x = new DoubleVector(0.3330, 0.1670, 0.0833, 0.0416, 
  0.0208, 0.0104, 0.0052);
DoubleVector y = new DoubleVector(3.636, 3.636, 3.236, 2.660, 
  2.114, 1.466, 0.866);

int degree = 2;
PolynomialLeastSquares pls = 
  new PolynomialLeastSquares(degree, x, y);

GoodnessOfFit gof = new GoodnessOfFit(pls, x, y);

A variety of properties are provided for assessing the significance of the overall 
model:

RegressionSumOfSquares gets the regression sum of squares. This 
quantity indicates the amount of variability explained by the model. It is 
the sum of the squares of the difference between the values predicted by 
the model and the mean.

ResidualSumOfSquares gets the residual sum of squares. This is the sum 
of the squares of the differences between the predicted and actual 
observations.

ModelDegreesOfFreedom gets the number of degrees of freedom for the 
model, which is equal to the number of predictors in the model.

ErrorDegreesOfFreedom gets the number of degress of freedom for the 
model error, which is equal to the number of observations minus the 
number of model paramters.

RSquared gets the coefficient of determination.

AdjustedRsquared gets the adjusted coefficient of determination.

MeanSquaredResidual gets the mean squared residual. This quantity is the 
equal to ResidualSumOfSquares / ErrorDegreesOfFreedom (equals the 
number of observations minus the number of model parameters).

MeanSquaredRegression gets the mean squared for the regression. This is 
equal to RegressionSumOfSquares / ModelDegreesOfFreedom (equals 
the number of predictors in the model).

FStatistic gets the overall F statistic for the model. This is equal to the 
ratio of MeanSquaredRegression / MeanSquaredResidual. This is the 
statistic for the hypothesis test where the null hypothesis,  is that all the 
parameters are equal to 0 and the alternative hypothesis is that at least one 
paramter is nonzero.   

FStatisticPValue gets the p-value for the F statistic.

H0
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For example, if lr is a LinearRegression object:

GoodnessOfFit gof = new GoodnessOfFit( lr );
double sse = gof.ResidualSumOfSquares;
double r2 = gof.RSquared;
double fstat = gof.FStatistic;
double fstatPval = gof.FStatisticPValue;

Lastly, the FStatisticCriticalValue() function computes the critical value for 
the F statistic at a given significance level:

double critVal = gof.FStatisticCriticalValue(.05);

14.2 Significance of Parameters

Instances of class GoodnessOfFitParameter test statistical hypothesis about 
individual parameters in a least squares model-fit.

Creating Goodness of Fit Parameter Objects

You can get an array of test objects for all parameters in a GoodnessOfFit using the 
Parameters property:

GoodnessOfFitParameter[] params = gof.Parameters; 

Properties of Goodness of Fit Parameters 

Class GoodnessOfFitParameter provides the following properties:

Index gets the index of the parameter in the overall model.

Value gets the value of the parameter.

StandardError gets the standard error of the parameter.

DegreesOfFreedom gets the degrees of freedom of the parameter.
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Hypothesis Tests

Class GoodnessOfFitParameter provides the following methods for testing 
statistical hypotheses regarding parameter values:

TStatisticPValue() returns the p-value for a two-sided t test with the 
null hypothesis that the parameter is equal to a given test value, versus the 
alternative hypothesis that it is not.

TStatistic() returns the value of the t statistic for the null hypothesis that 
the parameter value is equal to a given test value.

TStatisticCriticalValue() gets the critical value for the t-statistic for a 
given alpha level.

ConfidenceInterval() returns a  confidence interval for the 
parameter for a given alpha level.

For example, this code tests whether a parameter in a model is significantly 
different than zero:

double tstat = param.TStatistic( 0.0 );
double pValue = param.TStatisticPValue( 0.0 );
double criticalValue = param.TStatisticCriticalValue( 0.05 );
Interval confidenceInterval = param.ConfidenceInterval( 0.05 );

1 α–
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CHAPTER 15.  
PROCESS CONTROL

Statistical process control uses statistical measures to monitor and control a 
process. NMath Stats provides classes for measuring process quality capability 
(Cp, Cpm, and Cpk), performance (Pp and Ppk), and Z bench.

15.1 Process Capability

Class ProcessCapability computes the process capability parameters Cp, Cpm, 
Cpk for normally distributed data. If the data are not normal, the BoxCox 
transform can be used.

Instance of ProcessCapability are constructed from a vector of input data 
measurements, a subgroup size (the data must laid out in continuous subgroups of 
equal size), lower and upper specification limits, and the control target process 
mean.

DoubleVector data = ...
int size = 5;
double LSL = 73.95;
double USL = 74.05;
double target = 74.0;
var pc = new ProcessCapability( data, size, LSL, USL, target );

If no target is given, the mean of the specification limits is used.

The standard deviation is computed using the mean of the ranges method, referred 
to as the UWAVE-R method in the R qcc package.

ProcessCapability provides the following properties:

CI95 gets the 95% confidence interval. 95% of the time the process mean 
will reside within this interval. The estimate is based on the t-distribution 
(t-score) if there are 30 or fewer samples; otherwise, the normal distribution 
is used (z-score).

Cp gets the process capability. 
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Cpk gets the process capability index. 

Cpm gets the Taguchi capability index. 

ProcessSigma gets the estimate of the process standard deviations used to 
compute Cp, Cpk, and Cpm. The standard deviation is estimated using the 
unweighted averages of the subgroup ranges.

IQR gets the interquartile range using the Minitab interpolation method. 
This method uses interpolation to find the upper and lower quartiles before 
returning the IQR. Therefore, the IQR may be computed from points that 
do not exist in the data set.

15.2 Process Performance

Class ProcessPerformance computes the process performance indices Ppk and Pp 
for normally distributed data. If the data are not normal, the BoxCox transform can 
be used.

Instance of ProcessPerformance are constructed from a vector of input data 
measurements, and lower and upper specification limits.

ProcessPerformance provides the following properties:

Ppk gets the process performance index.

Pp gets the process performance.

For example:

DoubleVector data = ...
double LSL = 1.90;
double USL = 2.10;
var pp = new ProcessPerformance( data, LSL, USL );
Console.WriteLine( pp.Ppk );

15.3 Z Bench

Class ZBench computes the Z bench (the Z value that corresponds to the total 
probability of a defect,) the percent defective, and the parts per million defective.
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Instance of ZBench are constructed from a vector of input data measurements, and 
lower and upper specification limits. 

DoubleVector data = ...
double LSL = 1.90;
double USL = 2.10;
var zb = new ZBench( data, LSL, USL );

Alternatively, a single-sided test can be performed using only a lower or upper 
specification limit. The test type is specified using a value from the ControlLimits 
enumeration: DoubleEnded, LowerOnly, or UpperOnly. For example:

DoubleVector data = ...
double USL = 2.10;
var zb = new ZBench( data, ControlLimits.UpperOnly, USL );

Class ZBench provides the following properties:

ZBench gets the Z Bench.

PercentDefective gets the percent defective.

PPMDefective gets the parts per million defective.
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