
.NET Statistical Computation
with NMath Stats

Technical Report No. 4

 Introduction 1

Introduction

NMath Stats is part of CenterSpace Software’s NMath™ product suite, which
provides object-oriented components for mathematical, engineering, scientific,
and financial applications on the .NET platform. NMath Stats provides functions
and data structures for statistical computation, including descriptive statistics,
probability distributions, combinatorial functions, multiple linear regression,
hypothesis testing, and analysis of variance.

Fully compliant with the Microsoft Common Language Specification (CLS), all
NMath Stats routines are callable from any .NET language, including C#, Visual
Basic.NET, and F#.

NOTE—Code samples in this document are shown in C#. Complete NMath Stats code
examples in C#, Visual Basic.NET, and F# are available on the CenterSpace website:

http://www.centerspace.net/examples/NMath/Stats/

Features

The features of NMath Stats include:

A data frame class for holding data of various types (numeric, string,
boolean, datetime, and generic), with methods for appending, inserting,
removing, sorting, and permuting rows and columns.

Functions for computing descriptive statistics, such as mean, variance,
standard deviation, percentile, median, quartiles, geometric mean,
harmonic mean, RMS, kurtosis, skewness, and many more.

Special functions, such as factorial, log factorial, binomial coefficient, log
binomial, log gamma, incomplete gamma, beta, and incomplete beta.

Probability density function (PDF), cumulative distribution function
(CDF), inverse CDF, and random variable moments for a variety of
probability distributions, including normal (Gaussian), Poisson, chi-square,
gamma, beta, Student's t, F, binomial, and negative binomial.

Multiple linear regression and logistic regression.

2 .NET Statistical Computation with NMath Stats

Basic hypothesis tests, such as z-test, t-test, F-test, and Pearson’s chi-square
test, with calculation of p-values, critical values, and confidence intervals.

One-way and two-way analysis of variance (ANOVA) and analysis of
variance with repeated measures (RANOVA).

Non-parametric tests, such as the Kolmogorov-Smirnov test and Kruskal-
Wallis rank sum test.

Multivariate statistical analyses, including principal component analysis,
factor analysis, hierarchical cluster analysis, and k-means cluster analysis.

Nonnegative matrix factorization (NMF), and data clustering using NMF.

Partial least squares (PLS).

Statistical process control.

Visualization using the Microsoft Chart Controls for .NET.

Design

NMath Stats is built on NMath, the foundational library in the NMath product
suite. NMath includes general vector and matrix classes, complex number classes,
random number generators, and numerical integration methods. For more
information on NMath, see .NET Numerical Applications with NMath (Technical
Report #1, CenterSpace Software).

Data Frames

The statistical functions in NMath Stats support the NMath types DoubleVector
and DoubleMatrix, as well as simple arrays of doubles. In many cases, these types
are sufficient for storing and manipulating your statistical data. However, they
suffer from two limitations: they can only store numeric data, and they have
limited support for adding, inserting, removing, and reordering data. Because the
underlying data is an array of doubles, data must be copied to new storage every
time manipulation operations such as these are performed.

For these reasons, NMath Stats provides the DataFrame class which represents a
two-dimensional data object consisting of a list of columns of the same length.
Columns are themselves lists of different types of data: numeric, string, boolean,
generic, and so on.

A DataFrame can be viewed as a kind of virtual database table. Columns can be
accessed by numeric index (0...n-1) or by a string name supplied at construction
time. Rows can be accessed by numeric index (0...n-1) or by a key object.

 Design 3

Data frames can be constructed in a variety of ways. The default constructor
creates an empty data frame with no rows or columns. Columns and rows can then
be added to the new data frame. For example:

DataFrame df = new DataFrame();

// Add some columns
df.AddColumn(new DFStringColumn("Sex"));
df.AddColumn(new DFStringColumn("AgeGroup"));
df.AddColumn(new DFNumericColumn("Weight"));

// Add some rows
df.AddRow("John Smith", "M", "Child", 45);
df.AddRow("Ruth Barnes", "F", "Senior", 115);
df.AddRow("Jane Jones", "F", "Adult", 115);
df.AddRow("Timmy Toddler", "M", "Child", 42);
df.AddRow("Betsy Young", "F", "Adult", 130);
df.AddRow("Arthur Smith", "M", "Senior", 142);
df.AddRow("Lucy Doe", "F", "Child", 30);

This data frame contains three columns: column 0, named Sex, contains string
data; column 1, named AgeGroup, also contains string data; column 2, named
Weight, contains numeric data. There are seven rows of data in this data frame,
and the subjects’ names are used as row keys.

Methods are provided for appending, inserting, removing, sorting, and permuting
rows and columns in a data frame. This code manipulates a data frame:

// switch last two columns
df.PermuteColumns(0, 2, 1);

// sort rows primarily by AgeGroup in ascending order,
// and secondarily by Sex in descending order
int[] colIndices = { 2, 0 };
SortingType[] sortingTypes = { SortingType.Ascending,
 SortingType.Descending };
df.SortRows(colIndices, sortingTypes);

// delete a row by key
df.RemoveRow(“Lucy Doe”);

// export to a ADO.NET DataTable
DataTable dt = df.ToDataTable();

Because the underlying data is in a list, elements can be added, removed, and
reordered without having to copy all of the data to new storage.

4 .NET Statistical Computation with NMath Stats

Subsets

In addition to accessors for individual elements, columns, or rows in a data frame,
class DataFrame provides a large number of indexers and member functions for
accessing sub-frames containing any arbitrary subset of rows, columns, or both.

Such indexers and methods accept the NMath types Slice and Range to indicate
sets of row or column indices with constant spacing. In addition, NMath Stats
introduces a new class called Subset. Like a Slice or Range, a Subset represents a
collection of indices that can be used to view a subset of data from another data
structure. Unlike a Slice or Range, however, a Subset need not be continuous, or
even ordered. It is simply an arbitrary collection of indices.

For example, this code gets a new data frame containing columns 3-8 in reverse
order, and all rows where the value in column 0 in greater than the value in
column 1:

Range colRange = new Range(8, 3, -1);

bool[] bArray = new bArray[df.Rows];
for (int i = 0; i < df.Rows; i++)
{
 bArray[i] = (df[0][i] > df[1][i]);
}
Subset rowSubset = new Subset(bArray);

DataFrame df2 = df[rowSubset, colRange];

This code utilizes a very useful Subset constructor which takes an array of boolean
values and constructs a Subset containing the indices of all true elements in the
array.

Factors

The Factor class represents a categorical vector in which all elements are drawn
from a finite number of factor levels. Thus, a Factor contains two parts: an object
array of factor levels, and an integer array of categorical data, of which each
element is an index into the array of levels. For example, this string data:

“A”, “A”, “C”, “B”, “A”, “C”, “B”

could be presented as a Factor with the following levels and categorical data:

object[] levels = { “A”, “B”, “C” };
int[] data = { 0, 0, 2, 1, 0, 2, 1 };

 Design 5

Factors are usually constructed from a data frame column using the GetFactor()
method, which creates a Factor with levels for the sorted, unique values in the
column.

The principal use of factors is in conjunction with the GetGroupings() methods
on Subset. One overload of this method accepts a single Factor and returns an
array of subsets containing the indices for each level of the given factor. Another
overload accepts two Factor objects and returns a two-dimensional jagged array of
subsets containing the indices for each combination of levels in the two factors.

For example, this code constructs factors from the values in the Sex and AgeGroup
columns of a data frame, then uses these factors in conjunction with the
GetGroupings() methods on Subset to create subsets representing the groups for
each level of the factors, as well as all combinations of the factors:

Factor sex = df.GetFactor(“Sex”);
Factor age = df.GetFactor(“AgeGroup”);

Subset[] sexGroups = Subset.GetGroupings(sex);
Subset[] ageGroups = Subset.GetGroupings(age);
Subset[,] cellGroups = Subset.GetGroupings(sex, age);

These subsets can then be used to operate on the relevant portions of the data
frame, as described above.

Descriptive Statistics

Class StatsFunctions provides a wide variety of static functions for computing
descriptive statistics, such as mean, variance, standard deviation, percentile,
median, quartiles, geometric mean, harmonic mean, RMS, kurtosis, skewness, and
many more. Method overloads accept data as an array of doubles, as a
DoubleVector, or as a numeric column in a DataFrame. For example:

double[] dblArray = { 1.12, -2.0, 3.88, 1.2, 15.345 };
double mean1 = StatsFunctions.Mean(dblArray);

DoubleVector v =
 new DoubleVector(“1.12 -2.0 3.88 1.2 15.345”);
double mean2 = StatsFunctions.Mean(v);

DataFrame df = new DataFrame();
df.AddColumn(
 new DFNumericColumn("myData", 1.12, -2.0, 3.88, 1.2, 15.345));
double mean3 = StatsFunctions.Mean(df[“myData”]);

Most functions in class StatsFunctions are accompanied by a paired function
which ignores values that are Not-a-Number (NaN). For example, there are

6 .NET Statistical Computation with NMath Stats

Mean() and NaNMean() functions, Variance() and NaNVariance() functions, and
so forth. Unless a function is explicitly designed to handle missing values, it may
return NaN or have unexpected results if values are missing.

Special Functions

Class StatsFunctions also provides several special functions useful for statistical
computation, including combinatorial functions, the beta function, and the gamma
function. For example. the static Factorial() method returns n!, the number of
ways that n objects can be permuted:

int i = StatsFunctions.Factorial(20);
// i = 2,432,902,008,176,640,000

The static Binomial() method returns the binomial coefficient. The binomial
coefficient (“n choose m”) is the number of ways of picking m unordered
outcomes from n possibilities:

int nCm = StatsFunctions.Binomial(6, 4);

Probability Distributions

NMath Stats provides classes for computing the probability density function
(PDF), the cumulative distribution function (CDF), the inverse cumulative
distribution function, and random variable moments for a variety of probability
distributions, including normal (Gaussian), Poisson, chi-square (), gamma, beta,
Student's t, F, binomial, and negative binomial. For example, this code constructs
an F distribution object with degrees of freedom 11,19, then queries it:

int df1 = 11;
int df2 = 19;
FDistribution dist = new FDistribution(df1, df2);

double pdf = dist.PDF(1.45);
double cdf = dist.CDF(1.45);
double invCdf = dist.InverseCDF(.95);
double mean = dist.Mean;
double var = dist.Variance;
double kurt = dist.Kurtosis;
double skew = dist.Skewness;

Hypothesis Tests

NMath Stats provides classes for many common hypothesis tests, such as the
z-test, t-test, F-test, and Kolmogorov-Smirnov test, with calculation of p-values,
critical values, and confidence intervals.

Cn m

χ2

 Design 7

For example, class OneSampleZTest determines whether a sample from a normal
distribution with known standard deviation could have a given mean. If the
sample data is vectors data, this code constructs a hypothesis test object:

double mu0 = 100;
double sigma = 15;
OneSampleZTest test = new OneSampleZTest(data, mu0, sigma);

By default, a OneSampleZTest object performs a two-sided hypothesis test
() with . Non-default test parameters can be specified at the time
of construction using constructor overloads, or after construction using the
provided Type and Alpha properties:

test.Type = HypothesisType.Right;
test.Alpha = 0.05;

All hypothesis test classes provide a ToString() method that returns a formatted
string representation of the test results:

One Sample Z Test

Sample mean = 112.8
Sample size = 9
Population mean = 100
Population standard deviation = 15
Computed Z statistic: 2.56

Hypothesis type: one-sided to the right
Null hypothesis: sample mean = population mean
Alt hypothesis: sample mean > population mean
P-value: 0.00523360816355578
REJECT the null hypothesis for alpha = 0.05
0.95 confidence interval: 104.575731865243 Infinity

Properties are also provided for accessing individual elements in the test results.

Linear Regression

Class LinearRegression computes a multiple linear regression from an input
matrix of independent variable values (the predictor matrix or regression matrix) and
a vector of dependent variable values (the observation vector). For example:

H1:µ µ0≠ α 0.01=

8 .NET Statistical Computation with NMath Stats

DoubleMatrix predictors =
 new DoubleMatrix(“ 8x4 [1 1450 .50 70
 1 1600 .50 70
 1 1450 .70 70
 1 1600 .70 70
 1 1450 .50 120
 1 1600 .50 120
 1 1450 .70 120
 1 1600 .70 120]”);
DoubleVector obs =
 new DoubleVector(“[67 79 61 75 59 90 52 87]”);
LinearRegression lr = new LinearRegression(A, obs);

By default, model parameter values are computed by the method of least squares
using a QR factorization, but you may elect to use a complete orthogonal
factorization or singular value decomposition instead.

The y-intercept is the first element of the parameter array returned by the
regression, and the slope is the second:

Console.WriteLine("y-intercept = {0}", regression.Parameters[0]);
Console.WriteLine("Slope = {0}", regression.Parameters[1]);

You can also use a linear regression object to generate predictions:

DoubleVector predictors =
 new DoubleVector(150.0, 33.5, 0.66, 80.0);

double predicted = lr.PredictedObservation(predictors);

NMath Stats also provides the LinearRegressionParameter class for testing
statistical hypotheses about individual parameters in a LinearRegression. This
code tests whether the fifth parameter in a model is significantly different than
zero:

LinearRegressionParameter param =
 new LinearRegressionParameter(lr, 4);
double tstat = param.TStatistic(0.0);
double pValue = param.TStatisticPValue(0.0);
double criticalValue = param.TStatisticCriticalValue(0.05);
Interval confidenceInterval = param.ConfidenceInterval(0.05);

Class LinearRegressionAnova tests the overall model significance for linear
regressions:

LinearRegressionAnova lrAnova = new LinearRegressionAnova(lr);
double sse = lrAnova.ResidualSumOfSquares;
double r2 = lrAnova.RSquared;
double fstat = lrAnova.FStatistic;
double fstatPval = lrAnova.FStatisticPValue;

 Design 9

Analysis of Variance

NMath Stats provides classes for both one-way (one-factor) and two-way
(two-factor) ANOVAs. One-way ANOVA is supported for both balanced and
unbalanced designs, and with or without repeated measures (RANOVA). Two-
way ANOVA is supported for balanced designs only, with or without repeated
measures.

For example, this code constructs a two-way ANOVA by grouping the numeric
data in column 3 of DataFrame df by factors constructed from columns 0 and 4:

TwoWayAnova anova = new TwoWayAnova(df, 0, 4, 3);

Once you’ve constructed an ANOVA object, you can display the complete ANOVA
table:

Console.WriteLine(anova);

For example:

Source Deg of Freedom SumOfSq Mean Square F P
FactorA 1 1782.0450 1782.0450 14.2121 0.0008
FactorB 1 2838.8113 2838.8113 22.6399 0.0001
Interaction 1 108.0450 108.0450 0.8617 0.3612
Error 28 3510.9075 125.3896 . .
Total 31 8239.8088 .

Properties are provided for accessing individual elements in the ANOVA table.

NMath Stats solves the two-way ANOVA problem using multiple linear
regression. If all you wish to know is the information in the standard ANOVA
table, you can safely ignore the regression details, but properties and member
functions are provided for retrieving information about the underlying regression
parameters.

Multivariate Statistics

NMath Stats provides classes for dimension reduction using principal component
analysis (PCA) and factor analysis, and case reduction using hierarchical cluster
analysis and k-means cluster analysis. Principal component analysis finds a smaller
set of synthetic variables that capture the variance in an original data set. The first
principal component accounts for as much of the variability in the data as possible,
and each succeeding orthogonal component accounts for as much of the remaining
variability as possible. A FloatPCA or DoublePCA instance is constructed from a
matrix or a dataframe containing numeric data. Each column represents a variable,
and each row represents an observation. The data may optionally be zero-centered
and scaled to have unit variance.

10 .NET Statistical Computation with NMath Stats

bool center = true;
bool scale = true;
DoublePCA pca =
 new PrincipalComponentAnalysis(data, center, scale);
Console.WriteLine("Loading Martrix = " + pca.Loadings);
Console.WriteLine("Variance Proportions = " +
 pca.VarianceProportions);
Console.WriteLine("Cumulative Variance Proportions = " +
 pca.CumulativeVarianceProportions);
Console.WriteLine("Scores = " + pca.Scores);

Hierarchical cluster analysis detects natural groupings in data. Each object is
initially assigned to its own singleton cluster. The analysis then proceeds
iteratively, at each stage joining the two most similar clusters into a new cluster,
continuing until there is one overall cluster.

During clustering, the distance between individual objects is computed using a
distance function delegate. Delegates are provided as static variables on class
Distance for euclidean, squared euclidean, city-block (Manhattan), maximum
(Chebychev), and power distance functions. You can also create your own distance
function delegate. The distances between clusters of objects are computed using a
linkage function delegate. Delegates are provided as static variables on class
Linkage for single, complete, unweighted average, weighted average, centroid,
median, and Ward's linkage functions. Again, you can also create your own
linkage function delegate. For example, this code clusters 8 random vectors of
length 3:

DoubleMatrix data = new DoubleMatrix(8, 3, new RandGenUniform());
ClusterAnalysis ca = new ClusterAnalysis(data,
 Distance.SquaredEuclideanFunction, Linkage.CompleteFunction);

Property Distances gets the vector of distances between all possible object pair;
Linkages gets the complete hierarchical linkage tree. The CutTree() method
constructs a set of clusters by cutting the hierarchical linkage tree either at the
specified height, or into the specified number of clusters.

Console.WriteLine(ca.Distances);
Console.WriteLine(ca.Linkages);

// cut linkage tree to form 3 clusters Console.WriteLine(
ca.CutTree(3));

// cut linkage tree at height of 0.75 Console.WriteLine(
ca.CutTree(0.75));

 Design 11

Nonnegative Matrix Factorization

Nonnegative matrix factorization (NMF) factors a matrix V into two matrices, W
and H. NMF differs from many other factorizations by enforcing the constraint
that the factors W and H must be non-negative—that is, all elements must be equal
to or greater than zero.

If a set of n-dimensional m data vectors are placed in an n x m matrix V, then NMF
can be used to approximately factor V into an n x r matrix W and an r x m matrix H.
Usually r is chosen to be much smaller than either m or n, so that W and H are
smaller than the original matrix V. Thus, each column v of V is approximated by a
linear combination of the columns of W, with the coefficients being the
corresponding column of H, v ≈ Wh. This extracts underlying features of the data
as basis vectors in W, which can then be used for identification and classification.
By not allowing negative entries in W and H, NMF enables a non-subtractive
combination of the parts to form a whole.

NMath Stats provides classes for NMFact for basic NMF, and NMFClustering for
data clustering using NMF. For example, the following code clusters data in a
DoubleMatrix using NMF, and prints the results:

DoubleMatrix data = ... // data to be factored
int k = ... // number of columns in W

NMFClustering<NMFDivergenceUpdate> nmfClustering =
 new NMFClustering<NMFDivergenceUpdate>();

nmfClustering.Factor(data, k);

ClusterSet cs = nmfClustering.ClusterSet;

// Print out the cluster each column belongs to
for (int i = 0; i < cs.N; i++) {
 Console.WriteLine("Column {0} belongs to cluster {1}",
 i, cs[i]);
}

// Print out the the members of each cluster
for (int i = 0; i < cs.NumberOfClusters; i++) {
 int[] members = cs.Cluster(i);
 Console.Write("Cluster number {0} contains: ", i);
 for (int j = 0; j < members.Length; j++) {
 Console.Write("{0} ", j);
 }
 Console.WriteLine();
}

Since NMF uses random starting values for W and H, and the factorization is not
unique, you can get different clusterings for the columns of V on different runs. A

12 .NET Statistical Computation with NMath Stats

consensus matrix is a way to average multiple clusterings, to produce a probability
estimate that any pair of columns will be clustered together. NMath Stats provides
class NMFConsensusMatrix for compute a consensus matrix using NMF.

Partial Least Squares

Partial Least Squares (PLS) is a technique that generalizes and combines features
from principal component analysis and multiple linear regression. It is particularly
useful when you need to predict a set of response (dependent) variables from a
large set of predictor (independent variables). NMath Stats supports both the
Nonlinear Iterative PArtial Least Squares (NIPALS) and Straightforward
IMplementation of Partial Least Squares (SIMPLS) algorithms.

NMath Stats provides two classes for performing PLS regression:

PLS1 is used when the responses, Y, in the model Y=XB+E consist of a
single variable. In this case Y is a vector containing the n response values.

PLS2 is used when the responses are multivariate. In this case Y is a matrix
composed of n rows with each row containing the m response variable
values.

Computing a PLS regression is accomplished by simply constructing a PLS1 or
PLS2 instance. The basic parameters are:

the matrix of predictor variables values

the response variable values (a vector for PLS1 and a matrix for PLS2)

an integer specifying the number of factors or components

For example:

DoubleMatrix A = ...
DoubleVector y = = ...
int numComponents = 3;

PLS1 pls = new PLS1(A, y, numComponents);

NMath Stats also provides the classes PLS1Anova and PLS2Anova for
performing a classic ANOVA for PLS1 and PLS2 regression models. These classes
calculate the sum of squares total, sum of squares residual, mean square error for
prediction, and the coefficient of determination.

 Visualization 13

Visualization

NMath Stats can be easily combined with the free Microsoft Chart Controls for
.NET to create a complete data analysis and visualization solution. The Microsoft
Chart Controls for .NET are available as a separate download for .NET 3.5.
Beginning in .NET 4.0, the Chart controls are part of the .NET Framework.

NMath Stats provides convenience methods for plotting NMath Stats types using
the Microsoft Chart Controls. For example, this code plots the probability density
function (PDF) of the specified gamma distribution:

double alpha = 9.0;
double beta = 0.5;
GammaDistribution gamma = new GammaDistribution(alpha, beta);

NMathStatsChart.Show(gamma,
 NMathStatsChart.DistributionFunction.PDF);

14 .NET Statistical Computation with NMath Stats

Figure 1 – Gamma distribution PDF

For more information, see CenterSpace whitepaper “NMath Stats Visualization
Using the Microsoft Chart Controls.”

Conclusions

NMath Stats is a powerful, easy-to-use component library for data manipulation
and statistical analysis on the .NET platform.

Fully compliant with the Microsoft Common Language Specification, all NMath
Stats routines are callable from any .NET language, including C#, Visual
Basic.NET, and Managed C++.

.NET STATISTICAL COMPUTATION WITH NMATH STATS

© 2013 Copyright CenterSpace Software, LLC. All Rights Reserved.

The correct bibliographic reference for this document is:
.NET Statistical Computation with NMath Stats, Technical Report No. 4, CenterSpace Software,
Corvallis, OR.

Printed in the United States.
Printing Date: March, 2013

CENTERSPACE SOFTWARE

Address: 622 NW 32nd St., Corvallis, OR 97330 USA
Phone: (541) 896-1301
Web: http://www.centerspace.net

Technical Support: support@centerspace.net

