c: 2:, NovoSync

NovoTest
V1.00.00

By NovoSync Mobility, Inc

Contents
e =T =To TS LTy LT PPN 2
OVEBIVIBW ...ttt ettt ettt ettt e ettt e e sttt e s sttt e e s bt e e e s abe e e e s nb e e e e e mbe e e s s abe e e e s mbeeeeenbeeeeenbeeesennreeessanreeesennranes 2
[o=T 0 1 [o= SO PP PP PPPPPPTN 2
N A T o T = V7Y o o T <ot £ 2
FRATUIES ettt e s et e a e e s et e e s e e e s e e e s a e e e s e e e e 3
TeST Cas@ GNEIATION ...eeiiiiiiee it 3
State Maching t0 TEST CASES ...cocueiiierieeriieite ettt ettt sttt e re e s me e s sare bt e neenee 3
(2 To 18]V F= T VN o] oo [To] o - PSPPI 4
COMBINGTIONS ..ttt ettt st sttt et e bt e s bt e s et san e e bt e b e b e e s reesreesaneeane s 5
o [V TRV 11T Vol l o= T w14 [o 11 Y= SRS 6
TEST TOOIS ..ttt ettt b e b e sh et s at e e e bt e bt e e bt e e bt e eae e sabeeabe e bt e beeebe e eheeeaeeenbeenbeenbeenaeenas 7
Compatibility Test Platform Priorities.........ccocuieii ittt e e etee e e et e e e earee e e e e 7
Automation Defect Avoidance and Stability CONtrol.........cccueeeeiiiiiiiciiieee e 10
Network Bandwidth UTIlIZErcooeiiiiiiiieeee ettt 11
Regression Test via Defect Probability........ccueeiiiiei it 11
B IS A 3= oY L N 13

(o Yo o ol I =E] = 1Y 13

Prerequisites

e Microsoft Windows
e _NET Framework 3.5
e Microsoft Word (for .docx Test Reports)

Overview

NovoTest is a powerful test tool to supplement your current test tool set and test
management system. It uses QA industry best practices and proprietary test designs,
techniques and methodologies. It allows test case generation for finite state machine models,
boundary conditions, equivalence partitioning, and combinations. For test toolsets, it
determines and prioritizes target platforms for compatibility testing, assists in ensuring test
automation code is stable and thus not allowing false negatives or false positives, determines
which product features to perform test execution for regression cycles based on the probability
calculated for finding a defect for a set of features, and allows testing under variable network
conditions via a bandwidth utilizer feature. Also, export your generated test cases to TestRail
Test Management System. With such features, NovoTest’s aim is to ensure there is higher test
coverage and also to ensure the appropriate testing is comprehensive so that the product can
be released with higher quality.

Licensing

The license for NovoTest is a single-node license (see EULA agreement for details). If the project
has been activated, the Project menu item will be enabled. Once the activation key is provided (contact
fqureshi@novosync.biz) and the software is activated, DO NOT ALTER OR CHANGE THE LOCATION OF
THE GENERATED LICENSE FILE).

New or Saved Projects

Once NovoTest is activated, you need to create a new project. After the project has been
created and used, save the project for future use. This generates a project XML file. When returning to
a saved project, simply open the previously saved XML project file. Only when creating new projects or

mailto:fqureshi@novosync.biz

opening existing projects, will the features be enabled. The project files are stored in the working
directory.

Features

Test Case Generation

State Machine to Test Cases

This features generates test cases from a provided finite state machine. The test cases will test
the paths of every possible state from the start state given the correct inputs and will have an expected
result of the final state based on the inputs. To generate the test cases, select “Finite State Machine”
from the “Test Case Creation” menu item and select your file containing the state machine information.

The file must be a .csv file with no comma at the end of last value on each line. State #1 should
be the start state. The format should be as follows:

<# of states>,<# of transitions>
<state 1 name>, <state #>

<state 2 name>,<state #>

<state n name>, <state #>

<input value for going from state x to state y>,<state x #>,<state y #>

<input value for going from state x to state y>,<state x #>,<state y #>

<input value for going from state x to state y>,<state x #>,<state y #>

<input value for going from state x to state y>,<state x #>,<state y #>

Example FSM file .csv

6,10
statel,1
state2,2
state3,3
state4,4
state5,5
state6,6
2,13
3,1,5
4,16
6,2,4
10,2,5
5,3,2
7,46
11,5,3
8,6,5

9,6,4

Boundary Conditions

The test cases generated are those based on the input range entered where the test cases will
test (-1,at,+1) from the lower bound, 2 random values within range, and (-1,at,+1) for the upper bound.

When entering the test steps, use the character ‘X’ for where the value will apply. Also, select the data
type of the input values.

For example:

Boundary Conditions - =

Erter Test Steps for generc test case. Use chamacter ' to denote varable input (ot actual value):

0o Bl iritizlize product Erter variable valid range:

Lower bound value:

STl click Submit

enter X Upper bound value:

Enter variable type:

Step 10:

Combinations

The tests generated here will generate every possible combination of provided value
sets. When entering the test steps, use the character ‘X’ with a number (starting with one and
incrementally increasing). Such as ‘X1’, ‘X2’, ‘X3’... When X1 values are enter, click “Next” to
enter values for X2 and so on. When finished, click “Done”.

Note, the complexity of combination is n!/ so keep this in mind.

For example:

Combinations - bt
Enter Test Steps for generic test
== ol Wl initialize product

Step 2:

T
e
e
e
e
e

Step 10:

¥1 (enter all possible values separated by comma):

10.20,30.40,50
= [oone

Equivalence Partitioning

https://en.wikipedia.org/wiki/Equivalence partitioning

When entering the generic test steps, use the character ‘X’ (only, without a number appended) where
the value will replace it. Click “Next” for the next partition range and “Done” when complete.

For example:

https://en.wikipedia.org/wiki/Equivalence_partitioning

Equivalence Partitioning — x

2 group data input I:ru:lt actual *.«'E||IJE=::'Z

et R El iritilize product Enter equivalence group 1 data range:

Lower bound value:
Step 2 EpEged

I

click output Upper bound value:

I

Enter group data type:

i
4
0
t

<

5 _

Test Tools

Compatibility Test Platform Priorities

This is a proprietary algorithm that determines which platforms to test on in priority order when
testing for compatibility which gives the widest possible test coverage as it would be impossible to test
every platform and variant given time and resources. Examples of platforms could be mobile devices,
web browsers, etc. Examples of attributes could be screen resolution, memory, processing speed, OS

version, etc. The algoritm bases the wide coverage based on Q-distance. The weights used give more or
less importance to certain attributes.

Q-distance determines the “distance” from a “seed” to another platform. Based on the
value, the set of platforms to test on can be systematically chosen. The method used to calculate the Q-
distance utilizes a relative scaling times a priority weight. Multiplying the scale value by the priority
weight is performed on a chosen set of attributes of each smart-phone. The priority weight is chosen by
the tester which should represent how important the attribute is for the product. After this is done on
the chosen set of attributes, the results are summed for that particular platform. The result of the sum
is called the Q-Value (a new unit of measure required for Q-distance calculations). Once all Q-Values
have been calculated, the “seed” is the platform that has a Q-Value as a median (or closest to median).
This platform is called S. The Q-distance is the difference of S and the other platform. Once this is
determined, the highest priority set of platforms to test on are the ones with the largest Q-distance,
including S, and are categorized as PO devices. The Q-distance is marked as positive or negative relative
to S. At each selection, one device must be from positive, and the other from negative. The next in line
are the platforms that have the next largest Q-distance. This continues till constrained by time and/or
resources. This way, there is the widest test coverage and have reduced the probability of failure on
non-tested platforms. If the attribute is not quantifiable, it can be assigned sequential integer values
relatively from smallest to largest.

Example

Devices:

D1, D2, D3, D4,D5, D6
Attributes:

A1l = dpi, A2 = Memory, A3 = OS version

Al A2 A3
D1 96 256 MB 2
D2 126 512 MB 1
D3 200 1024 MB 3
D4 220 256 MB 3
D5 150 512 MB 1
D6 200 512 MB 2

Weights: W1=3,W2=1, W3=2

S = D6 (closest to the middle)

Q-distance(S,1) 0.417 -
Q-distance(S,2) 0.414 -
Q-distance(S,3) 0.329 +
Q-distance(S,4) 0.139 +
Q-distance(S,5) 0.324 -
Thus:

PO devices = D6, D1, D3
P1 devices = D2, D4

No time to test D5!

Compatibility Test Platform Pricrities

Platform -1

Attribute #1 Val

Attribute #2 Val

Platfo

Attribute #3 Val

Attribute #4 Val

am

Flatfo

Platform - 10

Rl S=msung Galaxy Mote

Weight #1 Weight #2 Weight #3 Weight 4

Automation Defect Avoidance and Stability Control

Automation is a critical part of Software Testing. Before test cycles begin, whether it be for
Agile or Waterfall models, there is a test development phase for creating either manual or automated
tests, or both. Automation is vital as it can allow wide test coverage that executes rapidly without the
need for additional resources. It can prove to be a tremendous time-saver as the tests can run in
parallel with manual test execution. However, there can be a detrimental drawback to automation if
not developed accurately; bugs in the test code that create false positives and false negatives.

If there are bugs in the code for automation, the false positives and false negatives are worse
than a defect in the product itself. The reason for this is that the impact affects the company internally
as well as externally during production, whereas a defect in the product software has a direct impact
externally. First, a false positive allows the defect to be missed. Second, false negatives waste testers’
and developers’ time and resources internally during development, due to incorrect bug reports
generated.

Therefore, robust test code is more difficult to develop as there can absolutely be defects in it.
This is opposed to the product code, where defects are initially expected. Only a perfect system can
“destroy” correctly, but “creation” is allowed to be flawed. This is proven by the necessity of Test and
Validation, and no “Test and Validation” for the testers automated code in the same sense.

However, to minimize the defects in the automation code, a simple process can be followed to
lower the probability of serious internal and external impacts. The model is called Automation Defect
Avoidance and Stability Control, or ADASC.

This feature assists in ensuring automation test code is stable by following a guided process. To
use the tool, enter the number of automated test cases and click “Setup”. Then SELECT the test case
being worked on. As you follow through the flow chart/process for ensuring the code is stable, mark the
test as “STABLE” or “UNSTABLE” and the current step you left off at for returning to the tool at a later
time. You can also “Reset” the test to restart the process for that test case.

Automation Defect Aveidance and Stability Control — *
Enter # of Automated Tests B4 1:STABLE

SetState: AR ~ Set Current Flow Chart tem #:

Test Code
Completed

Is released SW
available for feature)7

Unreleased SW
available for X [not open defects
uuT) for test?

4

Run test code on 5W for

Mark testcase code
UNSTABLE (re-evaluste feature X
when defect fived)

Mark all test
code UNSTABLE
3

Testcase failed?
Mark testcaze
code STABLE

(a)

Network Bandwidth Utilizer

This tool allows testing the product while network bandwidth is being used at the set level by
the trackbar on the main application. This is done by setting the gateway IP address and then start the
tool which will use the amount of bandwidth set by the trackbar. This simulates testing the product as
networks vary.

Regression Test via Defect Probability

This feature determines how likely it is to find a regression defect for a particular feature. It uses a
proprietary algorithm to determine the probability of finding a defect in that feature. To use the tool:

1)enter the feature name
2) set the code linkage level to the feature where there were the most bug fixes in the previous build

3) enter the total number of bugs found in this feature in previous testing

4) enter the code complexity of the feature

5) check whether this feature was tested in the previous build (do not check if it was not)

This process can be repeated for any of the product features, thus resulting in which of those features
have higher priority to test given the probability of finding a bug.

Regression Test via Defect Probability — X

Enter feature name: [EEECE=lses

code linkageinteraction to the feature where there were the most bug fixes most in the last build: [UENERN G ~

Enter the total number of bugs for this feature found in previous testing:
Select the complexity of this feature: [glsgieehys=50g w

Thig feature was tested in the previous build

Calculate Probability for Finding a Defect

Sometimes, it is not so easy to determine what to test for regression when a new build

of software resolves certain defects. Also, in many cases, it is not viable to retest everything
due to limited time and/or resources. Thus, smart decisions have to be made as to what to
perform regression testing on to reduce the risk of releasing with potential defects.

One solution for determining what to perform regression testing on is based on what
parts of code the defect fix most closely couples with or interacts with. Another solution would
be to base the regression testing on the feature’s likelihood of failure and its impact of failure,
which should be determined prior to starting any test execution. There are other criteria, but
any one criterion on its own, is inefficient and ultimately inaccurate to the reality of what other
areas are truly impacted by the defect resolution.

There should be a systematic mechanism to easily and accurately determine which
features of software should be tested for regression. Thus, using a formula that incorporates
multiple criteria would provide a better and more efficient solution for the determination. The

formula is probabilistic due to the uncertainty of whether or not a defect will actually be
discovered as it is based on future and unknown events.

Test Report

Once test cases have been generated and executed, you can create a Test Report. This creates a
Word .docx document in the working directory.

Export Test Cases

Once test cases have been generated, you can export the tests to TestRail XML format. The file
is stored in the working directoy. After the tests have been exported, they can be imported by TestRail.
TestRail is a Test Management System by Gurock.

NOTE: DO NOT CHANGE THE LOCATION OF THIS DOCUMENT

