
© Copyright IBM Corporation, 2008. All Rights Reserved.
1

Object Life Cycle Explorer
for WebSphere Business Modeler
Version 1.1.2

User Guide September 2008
 IBM Zurich Research Laboratory

Contents

1. Overview 3

• Introduction to the user interface

• Integration and Business editions

2. Installing Object Life Cycle Explorer for WebSphere Business Modeler 7

• Software prerequisites

• How to install Object Life Cycle Explorer

• How to uninstall Object Life Cycle Explorer

• Configuring image generation using dot from Graphviz

3. Getting Started 10

• Adding states to a business item

• Specifying business item states in a process model

• Extracting an object life cycle from a process model

4. Tutorial 1: Eliciting End-to-end Object Life Cycles 18

• Ensuring a correct state specification using object life cycles

• Generating object life cycles with subprocess traversal

• Generating object life cycles from several process models

• Exporting object life cycles

5. Tutorial 2: Reference-driven Process Modeling 36

• Creating a new object life cycle

• Generating a process model from one object life cycle

• Importing object life cycles

• Checking consistency of a process model against object life cycles

• Generating a process model from several object life cycles

6. Resolving Inconsistencies between Process Models and Object Life Cycles 46

• Inconsistency types and resolutions

• Resolution side-effects

• Exercise

new in V1.1.0

© Copyright IBM Corporation, 2008. All Rights Reserved.
2

7. Advanced Topics 59

• Specifying states using activity pre/postconditions

• Opening object life cycles in WebSphere Integration Developer as Business State

Machines

• How this technology works

8. Current Limitations 63

9. References 64

10. Authors 65

© Copyright IBM Corporation, 2008. All Rights Reserved.
3

1. Overview

Process modeling has proven to be an essential tool for the analysis, design and

implementation of applications that automate business process logic. As part of achieving

a business goal, a business process typically manipulates several business objects,

transforming their states as the process progresses. Understanding the complete state

evolution of a single business object is often required for monitoring, governance and

compliance purposes, but eliciting such object life cycle information correctly from

complex process models can be very challenging. Object Life Cycle Explorer for

WebSphere Business Modeler alleviates this problem by allowing you to analyze and

design an application from both the process and the object life cycle perspectives.

Object Life Cycle Explorer is a set of plug-ins for WebSphere Business Modeler, a tool

that natively supports modeling of business processes, business objects (referred to as

business items), resources, etc. WebSphere Business Modeler V6.1 additionally allows

you to define a set of possible states for a business item and associate states with object

flows in a process model. Object Life Cycle Explorer complements this functionality

with the following features:

1. Object life cycle modeling and visualization, which allows you to associate state

transition diagrams with business items to represent their life cycles. An object

life cycle can also be viewed as a state transition table, more suitable for

exploring complex life cycles.

2. Extraction of object life cycles from process models, which generates object life

cycle models capturing state evolution of business items across selected process

models. Several options for traversal of subprocesses are provided to produce

object life cycles of different granularity.

3. Checking consistency of process models against given object life cycles, which

identifies activities in process models that induce non-conformant state changes

for business items and determines whether some parts of object life cycles are not

covered by any process model. Inconsistency resolution support partially

automates the process of resolving detected inconsistencies.

4. Generation of a process model from object life cycles, which synthesizes a

process model that manipulates the given business items in accordance with their

intended life cycles.

5. Import and export capabilities, which facilitate the exchange of object life cycle

models between projects and additionally allows users to save object life cycle

information in a table format or as an image for use in reports. It is also possible

to open an object life cycle model as a Business State Machine in WebSphere

Integration Developer for proceeding to build deployable components.

new in V1.1.0

see Section 6

© Copyright IBM Corporation, 2008. All Rights Reserved.
4

Introduction to the user interface

Object Life Cycle Explorer adds a new menu, a state transition diagram editor and

several new views to WebSphere Business Modeler:

Options in the Object Life Cycle menu:

Options in the context menu in the Object Life Cycles view:

Object Life Cycle editor

State Transition Table view

Inconsistencies view

Object Life Cycles view

Object Life Cycle menu

© Copyright IBM Corporation, 2008. All Rights Reserved.
5

Integration and Business editions

Object Life Cycle Explorer for WebSphere Business Modeler is available in two editions:

Integration and Business. The Integration edition includes all the outlined features, while

the Business edition supports only the extraction of object life cycles from process

models and some supporting features. The state transition diagram editor is provided in

the Integration edition only. In the Business edition, menu items corresponding to

disabled features are grayed-out.

Feature I B

Object life cycle modeling and visualization

• Create a new object life cycle
Object Life Cycle menu: New…

+ -

• Open all object life cycles for a project
Object Life Cycle menu: Open → All Object Life Cycles

+ +

• Open all object life cycles for a business item
Object Life Cycle menu: Open → Object Life Cycles for Business Item

+ +

• Rename an object life cycle
Object Life Cycles view: Edit object life cycle name

+ +

• Create a copy of an object life cycle
Object Life Cycles view: Copy object life cycle

+ -

• Delete an object life cycle
Object Life Cycles view: Delete object life cycle

+ +

• Open a life cycle as a state transition table
Object Life Cycles view: Open state transition table

Object Life Cycles view: Double-click on entry (Business edition)

+ +

• Open a life cycle as a state transition diagram
Object Life Cycles view: Double-click on entry (Integration edition)

+ -

• Synchronize object life cycle states with business item states
Object Life Cycles view: Business item states -> Object life cycle states

+ -

Extraction of object life cycles from process models
Object Life Cycles view: Transform → Processes -> Object Life Cycles

+ +

Checking consistency of process models against given object life cycles
Object Life Cycles view: Check → Process/Object Life Cycle Consistency

+ -

Generation of a process model from object life cycles
Object Life Cycles view: Transform → Object Life Cycles -> Processes

+ -

Import and export capabilities

• Table format export
State Transition Table view: Click on Save button

+ +

• Image format export
Object Life Cycles view: Save as image

+ +

• Archive export for project interchange
Object Life Cycle menu: Import/Export → Export…

+ +

• Archive import for project interchange
Object Life Cycle menu: Import/Export → Import…

+ +

© Copyright IBM Corporation, 2008. All Rights Reserved.
6

In the remainder of this user guide, parts of the documentation that are only relevant to

• Integration edition will be marked as

• Business edition will be marked as

Installations of these two editions have different software prerequisites, as described in

the next section.

B

I

© Copyright IBM Corporation, 2008. All Rights Reserved.
7

2. Installing Object Life Cycle Explorer for WebSphere
Business Modeler

The download package comprises the following directories and files:

• license directory with multi-lingual licensing information

• samples directory containing sample models used in tutorials and a completed

subdirectory with models demonstrating tutorial solutions

• Object Life Cycle Explorer Business Update Site directory containing installation

files for the Business edition of Object Life Cycle Explorer

• Object Life Cycle Explorer Integration Update Site directory containing

installation files for the Integration edition of Object Life Cycle Explorer

• this document, user guide and tutorials.pdf, which includes an overview of all

the tool features, installation instructions, several step-by-step tutorials and an

account of current limitations

Software prerequisites

Operating system:

• Windows

Software:

• WebSphere Business Modeler Advanced Version 6.1.X

• WebSphere Business Modeler Advanced Version 6.1.X installed as a set of plug-

ins into WebSphere Integration Developer Version 6.1.X

How to install Object Life Cycle Explorer

Open WebSphere Business Modeler.

1. Extract the contents of the download package into a …\Temp directory.

2. Select Help → Software Updates → Find and Install…

3. In the Install/Update dialog box, select Search for new features to install and

click on Next.

4. In the Install dialog box, click on New Local Site.

5. In the file dialog box, navigate to the …\Temp\Object Life Cycle Explorer

Integration Update Site or …\Temp\Object Life Cycle Explorer Business

Update Site directory, depending which edition you want to install. Click on OK.

6. Click on OK in the Edit Local Site dialog box.

I

B

© Copyright IBM Corporation, 2008. All Rights Reserved.
8

7. A new site for Object Life Cycle Explorer is added to the Sites list. Make sure this

site is selected and click on Finish.

8. In the Updates dialog box, select all features for this site and click on Next.

9. Read the license information and, if you agree, select I accept the terms in the

license agreement. Click on Next.

© Copyright IBM Corporation, 2008. All Rights Reserved.
9

10. Click on Finish on the next page to confirm the Installation Location. Because

the feature is not digitally signed, a warning might be displayed. Click on Install

if you want to continue.

11. In the final dialog box, click on Yes to restart WebSphere Business Modeler.

Attention: It is not recommended to have the Integration and the Business editions

installed on the same machine at the same time, even if you have two installations of

WebSphere Business Modeler (one standalone and the other in WebSphere Integration

Developer). Make sure that you uninstall one edition before installing the other.

How to uninstall Object Life Cycle Explorer

Open WebSphere Business Modeler.

1. Select Help → Software Updates → Manage Configuration.

2. Expand the Feature Tree to see installed features.

3. Right-click on Object Life Cycle Explorer feature and select Uninstall.

Configuring image generation using dot from Graphviz

Object Life Cycle Explorer allows you to export an object life cycle as an image. This is

especially valuable for the Business edition, which does not include a state transition

diagram editor. To enable the image export, you need to install the Graphviz software,

available here: http://www.graphviz.org. Once Graphviz is installed, go to Window →

Preferences in WebSphere Business Modeler. Open the BPIA-Plugins → Object Life

Cycle Explorer preference page. Click on Browse and navigate to the location of the

dot.exe in the Graphviz install directory. Click on OK.

© Copyright IBM Corporation, 2008. All Rights Reserved.
10

3. Getting Started

This user guide assumes that you are already familiar with the most common features of

WebSphere Business Modeler. This short exercise explains how in just a few simple

steps you can start exploring the life cycles of your business items.

In this exercise you will learn how to:

• add states to business items (see also WebSphere Business Modeler Help),

• specify business item states in a process model (see also WebSphere Business

Modeler Help),

• and extract object life cycles from a process model.

Import the Job Application Processing project (Job Application Processing.mar file in

the samples directory) and open the Job Application Processing process model. In the

Basic mode, this process model looks as follows:

This process model demonstrates simple handling of job applications. An incoming

Application is first evaluated against the Job Opening requirements. Selected applicants

are interviewed and those that perform well in the interview sign a contract and become

an Employee of the company. In case an Application is rejected before or after the

interview, the applicant is notified.

Processing one application may last several weeks or even months and thus it is

important to keep track of the status of each application. To do this, you need to specify

how the activities in the process model change the state of the Application business item.

Possible states of the Application business item need to be defined first.

© Copyright IBM Corporation, 2008. All Rights Reserved.
11

Adding states to a business item

1. Open the business item editor for the Application business item.

2. Select the States tab.

3. Repeatedly add states by clicking on the Add button and renaming the newly

added states to obtain states Registered, Selected For Interview, Rejected,

Accepted and Confirmed.

4. Save the Application business item.

Now you can use these states in the process model. Go back to the Job Application

Processing process model editor.

Specifying business item states in a process model

A business item is generally either created by an activity inside a given process model or

passed to the process model via an input parameter. You should begin by specifying the

states of business items at these points in the process model. In the Job Application

Processing example, the Application business item is received via an input parameter. By

the time the Application is received by this process, it has already been registered in the

system and therefore should be assigned the state Registered.

1. Right-click on the label of the object flow (an object flow is a connection

associated with a business item) connecting the process boundary and the

Evaluate Application task.

2. Select Associate State → Registered.

© Copyright IBM Corporation, 2008. All Rights Reserved.
12

Once you have specified the states in which business items are created and received,

proceed to identify all the activities in the process that change the state of business items.

In this example, after the Evaluate Application task completes, the Application state is

changed to either Selected For Interview or Rejected. Currently in WebSphere Business

Modeler, you cannot directly assign several alternative states to a single object output of

an activity. Instead, the activity must be followed by a decision that splits the process

flow according to the state of the business item.

In this example, the decision Should Be Interviewed? passes the Applications in state

Selected For Interview to the Interview Applicant task and those in state Rejected to

the Notify Applicant task. Specify the states of the edge going out of the decision to

reflect this, to obtain the following result:

© Copyright IBM Corporation, 2008. All Rights Reserved.
13

Similarly, specify the states for the object flows going out of the Employ? decision to

reflect that the Interview Applicant task updates the state of the Application to either

Accepted or Rejected. Finally, specify that the Sign Contract task changes the

Application state to Confirmed. Save the process model.

Extracting an object life cycle from a process model

You can now generate an object life cycle model for the Application business item.

1. Right-click on the Job Application Processing process in the Project Tree and

select Object Life Cycle → Transform → Processes -> Object Life Cycles.

© Copyright IBM Corporation, 2008. All Rights Reserved.
14

2. Keep the default options in the Object Life Cycle Extraction wizard and click on

Finish button.

3. The generated object life cycle for the Application business item is shown in the

opened Object Life Cycles view.

© Copyright IBM Corporation, 2008. All Rights Reserved.
15

Double-click the only entry in this view to open the extracted object life cycle in the

Object Life Cycle editor. You may need to move around some of the states and

transitions in the state transition diagram to get a good layout. Each transition in this

object life cycle is labeled with an activity name from the Job Application Processing

process model, except for some transitions from the initial and to the final states.

Double-click on the only entry in the Object Life Cycles view to open the extracted

object life cycle in the State Transition Table view.

Each row in the State Transition Table view corresponds to an activity in the Job

Application Processing process model that changes the state of the Application business

item. Each such activity represents a state transition in this object life cycle. The source

and target states of the state transitions are shown in the first and third columns,

respectively. Green circles mark those states in which the business item is either created

or passed to the process model via an input parameter. Blue circles with a dark blue dot in

the middle mark the last states that the business item reaches in the process model. The

fourth column gives the name of the process model from which the transition was

I

B

© Copyright IBM Corporation, 2008. All Rights Reserved.
16

extracted. The rows can be sorted by the contents of each column by clicking on the

corresponding column label.

Provided that you have dot from Graphviz installed (see installation instructions in

Section 2), you can additionally generate an image containing a state transition diagram

to help you understand an extracted object life cycle. Right-click on the entry for the

Application object life cycle in the Object Life Cycles view and select Save as image.

In the file dialog box, navigate to the location where you want to save the image file and

click on Save (if you do not have Graphviz installed or it is not configured correctly, an

error message is displayed). You can then open the generated image from the file system.

This state transition diagram comprises the same states and transitions as the ones shown

in the Object Life Cycle editor in the Integration edition of Object Life Cycle Explorer

(see previous page). Note that all spaces in state and activity names are replaced with

underscores for compatibility with Graphviz. Initial and Final are used as default names

for the transitions that are not associated with any activity. Running Save as image

several times on the same object life cycle may produce images with different layout.

© Copyright IBM Corporation, 2008. All Rights Reserved.
17

After examining this state transition diagram, you should see that each state marked with

a green circle in the State Transition Table view corresponds to a state that has a

transition from the initial state in the state transition diagram. Each state marked with a

blue circle with a dot corresponds to a state that has a transition to the final state.

The extracted object life cycle shows the complete state evolution of the Application

business item. As opposed to the original process model, which emphasizes the activities

and deals with several business items, the object life cycle view is concerned with one

business item only and places the main focus on its states and state transitions.

In this particular example, it was not difficult to understand the complete state evolution

of the Application business item by following the flows in the process model. However,

this becomes more challenging when you deal with a complex process model or when

one business item is manipulated across several process models. Proceed to Tutorial 1 to

learn more about this.

© Copyright IBM Corporation, 2008. All Rights Reserved.
18

4. Tutorial 1: Eliciting End-to-end Object Life Cycles

This tutorial assumes that you have completed the Getting Started exercise and know

how to specify states of business items in a process model and how to extract object life

cycles from a process model.

This tutorial will show you how to:

• use object life cycle extraction to ensure a correct specification of business item

states in a process model,

• extract object life cycles of different granularity,

• extract object life cycles from several process models and explore them as state

transition tables,

• export object life cycles in different formats.

Import the Customer Order Processing project (Customer Order Processing.mar in the

samples directory) and open the Customer Order Handling process model. In the

modeled process, an incoming customer call about an order is handled. If the customer

has not ordered with the company before, a new record is created and then a new order is

initiated. Otherwise, either an existing order is updated or a new order for an existing

customer is created. The customer details for the order are put through a credit check and

if successful, the order is sent to shipping. Otherwise, the order is rejected.

States of the Customer Record and Order are already specified in the process model to

reflect the progress of the process. In the following, you will examine the generated

object life cycles for these two business items to ensure that their states are correctly

specified.

Ensuring a correct state specification using object life cycles

Run the object life cycle extraction from the Customer Order Handling process model

using the default options. Two object life cycles are generated: one for the Customer

Record business item and one for the Order business item, shown as the two entries in

the Object Life Cycles view:

Double-click on the Order entry to open the object life cycle for the Order business item.

© Copyright IBM Corporation, 2008. All Rights Reserved.
19

You can see that states Sent To Shipping and Registered are marked with a hybrid icon,

which indicates that for each of these states there is a transition from the initial state and a

transition to the final state. If you prefer a graphical visualization of object life cycles,

generate an image containing a state transition diagram using the Save as image feature.

Does the extracted object life cycle meet your expectations with respect to the state

evolution of the Order business item? To answer this question, you can follow the

following 5-step Object Life Cycle Validation method:

1. Examine each initial transition for validity. In a state transition diagram (Object

Life Cycle editor or generated image), each transition from the initial state is an

initial transition. In a state transition table, green circles mark those states that

have incoming initial transitions. An initial transition is valid if the business item

should be either created in the target state of this transition inside the process

model or it should be passed to the process model in this state via an input

parameter.

• Is the initial transition to state Registered valid? Yes, since an Order

should indeed be created in state Registered in this process model.

I

B

© Copyright IBM Corporation, 2008. All Rights Reserved.
20

• Is the initial transition to state Credit Check Negative valid? No, an Order

should be neither created nor passed to this process in this state.

• Is the initial transition to state Sent To Shipping valid? No, an Order

should be neither created nor passed to this process in this state.

2. Examine each final transition for validity. In a state transition diagram, each

transition to the final state is a final transition. In a state transition table, blue

circles with a dot mark those states that have outgoing final transitions. A final

transition is valid if the source state of this transition should indeed be the last

state that the business item reaches in this process model.

• Is the final transition from state Registered valid? No, since an Order

should be processed further than the state Registered in this process.

• Is the final transition from state Rejected valid? Yes.

• Is the final transition from state Updated valid? No, since an Order

should once again go through a credit check once it has been Updated.

3. Examine each intermediate transition for validity. A transition that is not

connected to an initial or a final state in a state transition diagram is an

intermediate transition. In a state transition table, intermediate transitions

correspond to rows that contain both source and target states. Check that the

activity associated with each intermediate transition should indeed change the

source state of the business item to the target state.

• Should the Notify Customer Of Rejection activity induce a transition

from state Credit Check Negative to state Rejected? Yes.

• Should the Update Order activity induce a transition from state Sent To

Shipping to state Updated? Yes.

4. Check transition splits for validity. In a state transition diagram, a transition split

corresponds to a state with several outgoing transitions, where each transition is

labeled with an activity name. In a state transition table, a transition split occurs

when several rows have the same source state, but different activities. A transition

split thus means that more than one activity can change the state of the business

item from the same source state. Ensure that each such choice is indeed intended.

• There are no transition splits in this example.

5. Find missing transitions. Should the activities in the process model induce other

transitions on the business item? Are there activities missing in the process model

that should induce transitions on the business item? These questions may be

difficult to answer if several invalidities have been identified in steps 1-3. You

may need to address those invalidities first and then come back to this step in a

later iteration.

© Copyright IBM Corporation, 2008. All Rights Reserved.
21

At the end of the 5-step Object Life Cycle Validation, each transition is identified as

either valid or invalid. For this example, the following results were obtained:

You now need to examine the process model and determine why invalid transitions were

generated. Given an invalid initial transition, locate its target state in the process model

and follow the object flow of this business item upstream searching for an activity that

creates the business item or an input parameter to the process model. An activity that

does not have any inputs of a particular business item, but has outputs of this business

item is interpreted as a creation activity. Switching to Intermediate or Advanced mode

makes it easier to distinguish the different types of process flows (control flow / object

flow). Ensure that the creation activity and input parameter are assigned correct states for

this business item. Similarly, given an invalid final transition, locate its source state in the

process model and follow the object flow downstream searching for an activity that does

not pass on this business item or an output parameter of the process model. Ensure that

these are assigned correct states.

Locate Credit Check Negative and Sent To Shipping states in the process model and

follow the object flows of business item Order upstream. As shown below, this should

lead you to the Credit Verification Service activity, which has no inputs of business item

Order. For this reason, Credit Check Negative and Sent To Shipping are identified as

targets of initial transitions in the extracted object life cycle for Order. Does the Credit

Verification Service really create a new Order? No, it should rather receive an existing

Order as an input.

© Copyright IBM Corporation, 2008. All Rights Reserved.
22

Before making any changes to the process model, examine also the reasons for invalid

final transitions. Locate the states Registered and Updated in the process model and

follow the object flows of business item Order downstream. As shown below, this leads

to the Apply Pricing activity, which takes an Order as an input, but does not pass it on

further in the process. Does this activity make any changes to an Order? Does it change

the state of an Order? Yes, in fact determining the price of an Order marks a significant

point in the life cycle of this business item, hence Apply Pricing should have Order as an

output with an updated state.

In this example, incorrectly modeled object flow was the cause for invalid initial and

final transitions in the extracted object life cycle. If the same business item is used by

several activities in a process model, the business item needs to be routed between these

activities using object flows.

Adjust the process model as follows to address the identified problem:

• Remove the control flow between Apply Pricing and Credit Verification Service

together with the corresponding control input and output

• Add an output of business item Order to the Apply Pricing activity

• Add an input of business item Order to the Credit Verification Service activity

(right-click on this activity and select Launch Global Service Editor to make

and save the changes and then right-click on this activity in the Customer Order

Handling process model and select Update Global Element)

• Connect the newly created output and input with an object flow

• Create a new Price Determined state for the Order business item

• Assign the Price Determined state to the output of the Apply Pricing activity

(right-click on the output to assign the state and not on the object flow)

• Save the process model

© Copyright IBM Corporation, 2008. All Rights Reserved.
23

Extract the object life cycles from the adapted Customer Order Handling process model

to study the effect of the changes. Open the extracted Order object life cycle. Repeat the

5-step Object Life Cycle Validation method to check the extracted life cycle.

It is evident that the invalid initial and final transitions encountered previously have been

resolved. Throughout steps 1-3, you should not encounter any problems. In step 4

however, you should find an invalid transition split from state Price Determined.

According to this object life cycle, once an Order is in state Price Determined, either the

Credit Verification Service activity is performed to always change the state of Order to

Credit Check Negative, or the Send Order To Shipping activity is carried out. However,

the requirement is that before any Order is sent to shipping, an approval should be

received from the Credit Verification Service.

Examine the process model to track down the source of this problem. Locate the source

and target states of the transition split, here these are Price Determined, Credit Check

Negative and Sent To Shipping, and trace the object flows between these states. Check

whether intermediate states should be specified on these object flows or the object flows

themselves should be adapted.

© Copyright IBM Corporation, 2008. All Rights Reserved.
24

In this example, there is an intermediate state missing on one of the object flows. The

upper branch of the Is Credit Ok? decision should be associated with a state that indicates

an approval of the credit verification.

Correct the process model as follows:

• Add a new Approved state to the Order business item

• Associate the object flow connecting the Yes branch of the Is Credit Ok? decision

and the Sent Order To Shipping activity with the Approved state

Extract object life cycles once again to obtain an Order life cycle, which should finally

meet your expectations.

I

© Copyright IBM Corporation, 2008. All Rights Reserved.
25

Generating object life cycles with subprocess traversal

Apart from the Order business item, which has been your focus up till now, the state of

the Customer Record business item is also changed in the Customer Order Handling

process model. Open the object life cycle extracted for Customer Record:

B

I

B

© Copyright IBM Corporation, 2008. All Rights Reserved.
26

This object life cycle evidently does not show much detail. In order to collect the state

information also from all the local and global subprocesses of a process model, you need

to ensure that the object life cycle extraction is invoked with the correct subprocess

traversal option. Invoke the object life cycle extraction again with the Subprocess

Traversal Option set to Traverse local and global processes, to make sure that all the

state evolution information is extracted.

This time the extraction traverses the Create New Customer Account local process and

the Update Customer Record global process to generate a more complete object life

cycle for Customer Record:

© Copyright IBM Corporation, 2008. All Rights Reserved.
27

Note that Created is marked with a hybrid initial/final icon, meaning that it has an

incoming transition from the initial state and an outgoing transition to the final state.

If you now examine this object life cycle using the 5-step Object Life Cycle Validation

method, you may identify an invalid final transition from state Created. In the Create

New Customer Account subprocess, a new Customer Record in state Created is

produced by the Create Customer Record task. The Customer Record is then placed into

the Customer Records repository and also routed to the Ask Customer Security

Questions task. The object life cycle extraction identifies the repository as a possible end

point of the Customer Record life cycle and hence generates a transition from Created to

the final state.

I

B

© Copyright IBM Corporation, 2008. All Rights Reserved.
28

Note that in WebSphere Business Modeler, passing a business item through a fork can be

interpreted either as a copy of a reference to the business item instance or an actual copy

of the business item instance. In the latter case, there may exist several instances of the

same business item during the process execution. The extracted object life cycle captures

the amalgamation of state evolution for all such instances.

You may remove the transition from state Created to the final state in the Object Life

Cycle editor and save the object life cycle.

Once you are satisfied with an object life cycle that has been extracted from a process

model, it makes sense to rename it, to avoid it being overwritten by later runs of the

object life cycle extraction. Right-click on the Customer Record entry in the Object Life

Cycles view and select Edit object life cycle name.

Type the new name in the New Name dialog box and click on OK.

I

© Copyright IBM Corporation, 2008. All Rights Reserved.
29

The name of the object life cycle changes, as shown in the Object Life Cycles view.

You can also try to run the object life cycle extraction using the Traverse local

processes only option and examine the difference to the life cycle previously extracted

with full traversal.

By default, the object life cycle extraction does not produce self-transitions (transitions

that have the same source and target states) in the object life cycles. Activities that do not

change the state of a business item give rise to self-transitions. To see the self-transitions,

run the object life cycle extraction from the Customer Order Handling process model

with the Create self-transitions option checked:

Open the extracted Customer Record life cycle. In this life cycle, the state Order In

Progress has several self-transitions.

You may need to drag the transitions out by their bend-points to see all of them:

I

B

© Copyright IBM Corporation, 2008. All Rights Reserved.
30

For each activity that corresponds to a self-transition, you should ensure that the activity

requires the business item as an input and an output. Generally, only those activities that

create or update a business item should have an output of that business item. In high-level

process models, business items are often routed through all activities. However, since

activity inputs and outputs influence service interfaces during the design and

implementation phases, you should avoid unnecessary outputs and route business items

through control nodes or repositories where possible.

Examine each activity associated with a self-transition as follows:

• Should this activity have the business item as an output?

o If yes, should it leave the business item in the same state?

� If yes, do nothing.

� If no, add another state to the activity output.

o If no, remove the object output and adjust object flows.

In this example there are four self-transitions. The Review Order With Customer task

requires the Customer Record to retrieve the correct Order, but this task does not update

the Customer Record and therefore should not have it as an output. The Update Order

task does not actually require to access the Customer Record at all. The process model

should be adapted as follows:

The Notify Customer Of Rejection task does make some updates to the Customer

Record business item to add the negative credit check to the customer history. This task

however does not change the state of the Customer Record and therefore the process

model can be left as is. The Check Other Orders For Customer task in the Update

© Copyright IBM Corporation, 2008. All Rights Reserved.
31

Customer Record global process either updates the state of a Customer Record to No

Orders In Progress, or leaves it in the Order In Progress state. No changes are required

to this task either.

Generating object life cycles from several process models

In order to elicit end-to-end life cycles of business items, you need to ensure that the

object life cycle extraction traverses all the processes that manipulate the business item at

hand. Apart from the Customer Order Handling process model, the Order and Customer

Record business items are also manipulated in the Customer Order Shipping process

model. Run the object life cycle extraction again with both of these process models

selected and ensure that the Traverse local and global processes option is used.

Open the generated object life cycle for the Order business item:

I

© Copyright IBM Corporation, 2008. All Rights Reserved.
32

This object life cycle can also be examined using the State Transition Table view,

especially suited for a compact visualization of complex life cycles. Right-click on the

entry for the Order object life cycle in the Object Life Cycles view and select Open state

transition table (in the Business edition, you can also double-click on the entry).

If you are using the business edition of Object Life Cycle Explorer, you should already be

familiar with the State Transition Table view. Each row in the State Transition Table

view represents a transition in the object life cycle, which is associated with some

activity. The source and target states are shown in the first and third columns,

respectively. Green circles are used to mark the targets of initial transitions and blue

circles with a dark blue dot in the middle are used to mark the source states of final

transitions. The icon next to the activity name in the second column shows what type of

activity it is, i.e. local task, global task, global service, etc. The fourth column gives the

name of the process model from which the transition was extracted. The rows can be

sorted by the contents of each column by clicking on the corresponding column label.

Following the 5-step Object Life Cycle Validation method to examining the life cycle,

you may identify the initial transition to state Sent To Shipping and the final transition

from state Sent To Shipping as invalid. Since Sent To Shipping is a last state for the

Customer Order Handling process model and it is a first state for the Customer Order

Shipping process model, the object life cycle extraction introduces the transitions from

the initial state and to the final state in the generated life cycle.

© Copyright IBM Corporation, 2008. All Rights Reserved.
33

You can remove these transitions and make other changes to an extracted life cycle using

the Object Life Cycle editor and save it under a different name. The changes you make to

an object life cycle are not reflected in the original process models.

Exporting object life cycles

Object life cycles can be exported in several formats: table format, as an image, or as an

archive for project interchange.

Table format export

The contents of a state transition table can be saved in a tab delimited text file, which can

be opened in Excel as a table. In the State Transition Table view for the Order life cycle,

click on the Save icon in the upper-right corner. In the file dialog box, navigate to the

location where you want to save the file. The file is saved as .xls by default.

You can open the exported file in Excel and use it for reports.

Image format export

Provided that you have dot from Graphviz installed (see installation instructions in

Section 2), you can generate an image file for a selected object life cycle. Right-click on

the entry for the Order object life cycle in the Object Life Cycles view and select Save as

image.

B

© Copyright IBM Corporation, 2008. All Rights Reserved.
34

In the file dialog box, navigate to the location where you want to save the image file. You

can then open the generated image from the file system.

The image export feature using dot is provided predominantly for the Business edition of

Object Life Cycle Explorer, which does not include the Object Life Cycle editor.

© Copyright IBM Corporation, 2008. All Rights Reserved.
35

Archive export for project interchange

You can export all object life cycles in the current project as an archive, which can be

subsequently imported into a different WebSphere Business Modeler project.

Examine what life cycles you have in your project first. In the Object Life Cycles view,

click on the Show all object life cycles for project button .

This opens up all the object life cycles in your current project. Running the archive export

will export all of these object life cycles.

If you want to delete some object life cycles before exporting, select the corresponding

entries in the Object Life Cycles view and click on the Delete object life cycle button .

Once you are ready to export, right-click on one of the elements contained in your project

in the Project Tree. Select Object Life Cycle → Import/Export → Export…

Navigate to the location where you want the archive to be saved and click on Save. A .zip

archive is created. You can import this archive in another project by selecting Object

Life Cycle → Import/Export → Import…

Elicitation of end-to-end object life cycles demonstrated in this tutorial can be used for

harvesting object life cycles as reusable modeling assets. An object life cycle harvested in

one project can be used as a reference object life cycle in another project. Continue to

Tutorial 2 to learn more about reference-driven process modeling.

© Copyright IBM Corporation, 2008. All Rights Reserved.
36

5. Tutorial 2: Reference-driven Process Modeling

This tutorial predominantly demonstrates the use of features available in the

Integration edition of Object Life Cycle Explorer only.

This tutorial will show you how to:

• import an object life cycle archive into a project,

• create a new object life cycle,

• generate a process model from one or more object life cycles,

• check consistency of a process model against given object life cycles.

In certain scenarios, you may want to obtain a process model that is based on some

already existing object life cycles, referred to as reference object life cycles. A reference

object life cycle may embody an industry standard or a best practice; it may be harvested

from previous projects or developed to capture the requirements of the current project. In

this tutorial, you will use reference object life cycles to create a process model for

handling insurance claims.

Create a new Business Modeling Project called Claim Handling. At this stage you are not

aware of all the detailed steps that a claim handling process comprises, but you have

already elicited the requirements for the state evolution of a single claim by speaking to

the domain experts. You can capture these requirements in an object life cycle, which

will serve as a reference for further process modeling.

Creating a new object life cycle

Create a new business item called Claim and add states to this business item to obtain the

following result:

Save the Claim business item.

I

© Copyright IBM Corporation, 2008. All Rights Reserved.
37

Right-click on the Claim business item in the Project Tree and select Object Life Cycle

→ New…

In the New Object Life Cycle wizard, enter End-to-end as the name for the new object

life cycle and click on Finish.

The Object Life Cycle editor is opened with an initial and a final state being the only

elements in the new life cycle. The newly created object life cycle is also shown in the

Object Life Cycles view.

© Copyright IBM Corporation, 2008. All Rights Reserved.
38

To simplify the modeling of an object life cycle, you can automatically add the states

defined for this business item to the Object Life Cycle editor. Right-click on the Claim

life cycle entry in the Object Life Cycles view and select Business item states -> Object

life cycle states.

The states that you defined for the Claim business item now appear in the Object Life

Cycle editor.

Connect the states with transitions and then associate an activity with each transition:

Save the modeled object life cycle.

© Copyright IBM Corporation, 2008. All Rights Reserved.
39

Generating a process model from one object life cycle

You can now automatically generate a process model from the Claim life cycle. Right-

click on some element of the Claim Handling project in the Project Tree and select

Object Life Cycle → Transform → Object Life Cycles -> Process.

In the Process Model Generation wizard, select the End-to-end life cycle of the Claim

business item and provide Claim Handling as the name for the process model to be

generated. Click on Finish.

A new process called Claim Handling is added to the Project Tree.

© Copyright IBM Corporation, 2008. All Rights Reserved.
40

Open the newly generated Claim Handling process model:

You can see that a task is generated for each activity associated with a transition in the

object life cycle. The tasks in the process model are connected with control flows. The

tasks have inputs and output of business item Claim, but these are not connected.

Although these inputs and outputs are not associated with state information, the input and

output states of business items are stored in the pre/postconditions of the tasks. For

example, go to the Attributes of the Register task and open the Output Logic tab. Click

on Claim in the Postconditions. The Description field of this postcondition indicates that

the state of Claim is Registered after this task executes. See the section on Advanced

Topics for more details about specifying business item states using pre/postconditions.

A process model generated from a life cycle only serves as a skeleton and needs to be

further customized to your needs. For example, object flows and state specifications need

to be added. Edit the generated process model as shown below and save it as Claim

Handling With Object Flow. Alternatively, you can import this process model by

importing the Claim Handling With Object Flow.mar file from the samples directory into

the Claim Handling project (do not overwrite the Claim business item during the import).

The Claim Handling With Object Flow process model currently only deals with the Claim

business item. However, since a payment needs to be made to the claimant when the

claim is granted, this process model should also manipulate a Payment business item.

© Copyright IBM Corporation, 2008. All Rights Reserved.
41

Copy the Claim Handling With Object Flow process model and rename it to Claim and

Payment Handling. Create a new Payment business item, add the states Created,

Authorized, On Hold and Paid In Full to it, and then adapt the part of the process model

between the tasks Grant and Close as shown below. Alternatively, you can import this

process model by importing the Claim And Payment Handling.mar file from the samples

directory into the Claim Handling project (do not overwrite the Claim business item

during the import).

You will now check whether this process model is consistent with a reference life cycle

for Payment, which has been defined as the industry best practice.

Importing object life cycles

In the Project Tree, right-click on some element in the Claim Handling project and select

Object Life Cycle → Import/Export → Import… In the file dialog box, navigate to the

Payment Reference OLC.zip archive in the samples directory and click on Open. An

entry for the imported Reference life cycle for business item Payment is shown in the

Object Life Cycles view. Open this life cycle in the Object Life Cycle editor:

© Copyright IBM Corporation, 2008. All Rights Reserved.
42

Checking consistency of a process model against object life
cycles

Check whether the Claim And Payment Handling process model that you created is

consistent with this reference life cycle. Right-click on some element of the Claim

Handling project in the Project Tree and select Object Life Cycle → Check →

Process/Object Life Cycle Consistency.

In the Process/Object Life Cycle Consistency Check wizard, select the Reference

object life cycle for the Payment business item and the Claim And Payment Handling

process model and click on Finish.

© Copyright IBM Corporation, 2008. All Rights Reserved.
43

An Inconsistencies view opens with a list of detected inconsistencies. Inconsistencies fall

into two categories: non-conformance and non-coverage. A non-conformance

inconsistency indicates that some manipulation of the business item does not conform to

the given object life cycle. A non-coverage inconsistency is detected when some parts of

the given object life cycle are not covered by the process model.

In this example, two Non-conformant transition inconsistencies are discovered. As

stated in the Description field of the first such inconsistency (the order in which

inconsistencies are displayed may vary), there is a transition from state Authorized to

state On Hold induced in the process model that is not defined in the object life cycle.

Such an inconsistency can be resolved in several ways. For example, by removing the

associated activity, Pay Settlement in this case, from the process model. Alternatively

the input and/or output states of the activity can be adjusted, so that it does not induce this

particular transition anymore. Object flow can also be routed differently to ensure that

this transition is not induced.

In this example, the majority of the discovered inconsistencies are Non-covered

transitions. Transitions contained in the Reference object life cycle, e.g. from

Authorized to Partially Paid or from Authorized to Stopped, are not induced and

therefore not covered in the Claim And Payment Handling process model. Adding

activities to the process model can resolve such inconsistencies. Alternatively, inputs

and/or outputs of the existing activities can be adjusted, so that they induce the non-

covered transitions.

A complete alignment with the Reference life cycle for Payment would require you to

manually resolve all these inconsistencies. When you are at the beginning stages of

designing a process model, you can achieve consistency with several object life cycles by

automatically generating a process model from them.

Generating a process model from several object life cycles

Whenever the process model generation is performed with more than one object life

cycle as input, synchronizing activities in the object life cycles first need to be identified.

Associating a synchronizing activity with transitions in different life cycles indicates that

these transitions must occur at the same time. During process model generation, one

activity that changes the state of several business items is generated from such transitions.

© Copyright IBM Corporation, 2008. All Rights Reserved.
44

Create copies of the End-to-end life cycle for Claim and the Reference life cycle for

Payment. Right-click on an object life cycle entry in the Object Life Cycles view and

select Copy object life cycle.

Name the newly created copies End-to-end (sync) and Reference (sync). Note that the

formatting of the object life cycles in the Object Life Cycle editor is currently lost during

the copying process.

Since the Payment should only be Created if the Claim is Granted, the Grant and Create

activities in the two life cycles need to be synchronized. This is done by renaming the

activities to the same name in both object life cycles. Rename activity Grant in the Claim

life cycle and activity Create in the Payment life cycle to Grant And Create Payment.

Additionally, a Claim can be Settled only once the full Payment has been made and thus

you need to synchronize the Settle and Pay All activities. Indicate this by renaming these

two activities to Settle In Full.

© Copyright IBM Corporation, 2008. All Rights Reserved.
45

Invoke the process model generation. In the Process Model Generation wizard, select

the End-to-end (sync) life cycle for Claim and the Reference (sync) life cycle for

Payment. Provide Claim And Payment Handling (Ref) as the process name.

The generated process model now covers both object life cycles:

You have now obtained a process model for the handling of claims, which is based on

two reference object life cycles. This generated process model can now be further

customized, as necessary.

© Copyright IBM Corporation, 2008. All Rights Reserved.
46

6. Resolving Inconsistencies between Process Models
and Object Life Cycles

This section explains the use of the inconsistency resolution support available in

the Integration edition of Object Life Cycle Explorer only. The section assumes that

you have already completed Tutorials 1 and 2 and are familiar with most of the features.

This section will explain to you how to:

• semi-automatically resolve inconsistencies between process models and object

life cycles,

• choose among alternative resolution options using side-effect information.

In Tutorial 2, you used the consistency checking feature to automatically detect

inconsistencies between given process models and object life cycles. Manual resolution

of inconsistencies can be very time-consuming. Most importantly, you need to identify

how to change the models to resolve a particular inconsistency, but at the same time you

also need to ensure that these changes do not introduce new inconsistencies as a side-

effect. Object Life Cycle Explorer (version 1.1.0 and higher) simplifies the process of

inconsistency resolution by offering you a range of options for resolving a particular

inconsistency, called resolutions. By selecting one of the offered resolutions, changes are

automatically applied to the models to resolve the inconsistency. The most beneficial

resolutions that resolve many inconsistencies and introduce few new ones are identified

to assist you in choosing among the alternatives.

In the following, we first explain in some detail the types of inconsistencies that can arise

between process models and object life cycles. We then introduce the set of supported

resolutions that can be applied to resolve inconsistencies of these types.

Inconsistency types and resolutions

As already explained in Tutorial 2, inconsistencies are grouped into two main categories,

namely non-conformance and non-coverage. Each category contains 3 inconsistency

types, as described below.

Non-conformance inconsistency types:

• non-conformant transition: a task/subprocess t in the given process model induces

a transition from state src to state tgt on a business item o, but this transition is not

defined in the object life cycle for o;

• non-conformant initial transition: a business item o is created in state first or

received in state first via an input parameter, but there is no transition from the

initial state to state first in the object life cycle for o;

I
new in V1.1.0

© Copyright IBM Corporation, 2008. All Rights Reserved.
47

• non-conformant final transition: state last is reached as the last state of a business

item o during the execution of the given process model, but there is no transition

from state last to a final state in the object life cycle for o.

Non-coverage inconsistency types:

• non-covered transition: a transition from state src to state tgt is defined in the

object life cycle for business item o, but it is not induced by any task/subprocess

in the given process model;

• non-covered initial transition: a state init has an incoming transition from the

initial state in the object life cycle for business item o, but o is neither created nor

received by the process model in state init;

• non-covered final transition: a state fin has an outgoing transition to a final state

in the object life cycle for business item o, but fin is not a last state of o in the

given business process model.

There are 8 resolutions currently supported in Object Life Cycle Explorer (version 1.1.0).

Each resolution defines a change or a transformation of the process model associated

with a particular inconsistency. For example, a non-conformant transition inconsistency

caused by a task t that induces a transition for a business item o can be resolved by

removing data from the incoming connections of t that are associated with o.

This resolution is labeled R1 in the table below, which gives an overview of all the 8

resolutions that are currently supported. Each resolution is associated with a context

comprising a process node, a business item, and sometimes also a state. This context

defines where in the process model the transformation will be applied if you choose this

resolution.

 Resolution description and example:

R1

Description: Process Node: Business Item: State:

Remove data from incoming

connections of this process node.

Task:2 o1 -

Data is removed from all incoming connections of Task:2 that are associated with

business item o1.

© Copyright IBM Corporation, 2008. All Rights Reserved.
48

R2

Description: Process Node: Business Item: State:

Remove data from outgoing

connections of this process node.

Task:2 o1 -

Data is removed from all outgoing connections of Task:2 that are associated with

business item o1.

R3

Description: Process Node: Business Item: State:

Remove state from incoming

connections.

Task:2 o1 s1

State s1 is removed from an incoming connection of Task:2 associated with business

item o1.

R4

Description: Process Node: Business Item: State:

Remove state from outgoing

connections.

Task:2 o1 s1

State s1 is removed from an outgoing connection of Task:2 associated with business item

o1.

© Copyright IBM Corporation, 2008. All Rights Reserved.
49

R5

Description: Process Node: Business Item: State:

Associate data and state with

incoming connections of this process

node.

Task:2 o1 s1

Business item o1 and state s1 are associated with incoming connections of Task:2.

R6

Description: Process Node: Business Item: State:

Associate data and state with outgoing

connections of this process node.

Task:2 o1 s1

Business item o1 and state s1 are associated with outgoing connections of Task:2.

© Copyright IBM Corporation, 2008. All Rights Reserved.
50

R7

Description: Process Node: Business Item: State:

Insert a new task between this process

node and its predecessor nodes.

Task:2 o1 s1

A new task NewTask0 is inserted between Task:2 and its predecessor nodes, Task:3 and

Task. The connection introduced between NewTask0 and Task:2 is associated with

business item o1 and state s1.

R8

Description: Process Node: Business Item: State:

Insert a new task between this process

node and its successor nodes.

Task:2 o1 s1

A new task NewTask0 is inserted between Task:2 and its successor nodes, Task:3 and

Task. The connection introduced between NewTask0 and Task:2 is associated with

business item o1 and state s1.

© Copyright IBM Corporation, 2008. All Rights Reserved.
51

Some resolutions can be applied to resolve inconsistencies of different types. For

example, R1 can also be used to resolve a non-conformant final transition to state s1

induced by Task:2 for business item o1.

The table below shows the resolutions that can be applied to resolve inconsistencies of

different types.

Inconsistency type / Resolution R1 R2 R3 R4 R5 R6 R7 R8

non-conformant transition + + + + + +

non-conformant initial transition + + + + +

non-conformant final transition + + + + +

non-covered transition + + + +

non-covered initial transition + + + +

non-covered final transition + + + +

Given an inconsistency of a particular type, it does not however always mean that all the

resolutions associated with this inconsistency type (as shown in the above table) are

applicable. The given process model determines which resolutions are applicable in each

case. Let us consider a simple example to see this.

In Example 1, there are several inconsistencies between the process model and the object

life cycle for business item o1, including a non-conformant final transition from state s1

induced by the Stop Node. This inconsistency can be resolved by R1 (removing data

from the incoming connection of the Stop Node) or R3 (removing the state s1 from the

incoming connection of the Stop Node). However, the outgoing connections of the Stop

Node cannot be associated with data and state, since the Stop Node has no outgoing

connections. Therefore, R6 is not applicable.

In some cases, one resolution can be applied to different contexts within a process model

to resolve the same inconsistency. In Example 2, one of the detected inconsistencies is a

non-covered final transition from state s2 for business item o1. R5 can be applied in two

contexts to resolve this inconsistency: either to associate o1 and s2 to the incoming

connection of Task:2 or to the incoming connection of the Stop Node.

consistency

check

Example 1

© Copyright IBM Corporation, 2008. All Rights Reserved.
52

As demonstrated in the above examples, one inconsistency can often be resolved by

applying different resolutions or by applying the same resolution to different contexts. In

the following, we explain how Object Life Cycle Explorer ranks such alternatives to

assist you in choosing the best resolution in each case.

Resolution side-effects

Applying a resolution to resolve a particular inconsistency can often have side-effects,

meaning that other inconsistencies can also be resolved as a by-product or new

inconsistencies can be introduced. It is important to be aware of such side-effects before

applying a resolution. In general, the resolution that removes the most inconsistencies

should be chosen. Certainly, the changes made to the process model resulting by applying

a resolution also need to be in agreement with the business requirements.

Running the consistency check on the process model and object life cycle in Example 3

produces the 3 inconsistencies shown in the Inconsistencies view below. Along with the

Inconsistencies view, the Resolutions view also opens on the completion of the

consistency check
1
. When you select an inconsistency in the Inconsistencies view, the

Resolutions view is populated with the applicable resolutions. Example 3 shows that the

non-covered final transition to state s2 for business item o1 can be resolved in two ways:

by inserting a new task between the Stop Node and its predecessor nodes or between

Task and its predecessor nodes.

1
 In the current version (V1.1.0), the Resolution view will only be opened if the consistency check is

performed for one process model and one object life cycle.

consistency
check

R5 applied to Task:2 to resolve
non-covered final transition from s2

R5 applied to Stop Node to resolve
non-covered final transition from s2

Example 2

© Copyright IBM Corporation, 2008. All Rights Reserved.
53

The Effect column shows the overall effect of applying the resolution on the number of

inconsistencies between the models. Therefore, the first resolution in the example above

removes 3 inconsistencies (effect is -3) and the second resolution has no effect on the

total number of inconsistencies (effect is 0). The resolutions are sorted according to their

Effect values, and only those resolutions that decrease the number of inconsistencies are

marked with a profit icon .

The details of the resolution side-effects are given in Effect Description column (see

Resolutions view (continued) above). Here it can be seen how the overall effect is

computed. For example, the second resolution resolves 1 inconsistency and introduces 1

new one, which is why its overall effect is 0.

A resolution can be applied by right-clicking it in the Resolutions view and selecting

Apply from the context menu. The process model and the Inconsistencies view are

automatically updated as a result.

The applications of the two resolutions to in Example 3 are shown in the following

diagram. The first resolution allows us to remove all 3 inconsistencies in one click, while

the second resolution only replaces the non-covered final transition inconsistency with a

non-conformant initial transition inconsistency. Naturally, the first resolution is the better

choice here.

consistency
check

Inconsistencies view:

Resolutions view:

Resolutions view (continued):

Example 3

© Copyright IBM Corporation, 2008. All Rights Reserved.
54

Exercise

We now demonstrate the inconsistency resolution support using our customer order

processing example from Tutorial 1. In Tutorial 1, you used the object life cycle

extraction and the 5-step Object Life Cycle Validation method to ensure that the state

evolution of the Order business item was correctly implemented in the Customer Order

Handling process model. Several iterations were required until the desired object life

cycle for Order was extracted from the process model. On each of the iterations, you

changed the process model manually and then repeated the object life cycle extraction.

Here, we demonstrate an alternative approach to correcting the process model. Instead of

changing the process model manually, you can edit the extracted object life cycle directly

to represent the desired state evolution. Then, you can run the consistency check on the

original process model and the edited object life cycle to detect the introduced

inconsistencies and use the inconsistency resolution support to resolve them, thus

automatically updating the process model.

Import the Customer Order Handling process (Customer Order Handling.mar in the

samples directory) and the Order Valid object life cycle (Order Valid OLC.zip in the

(1) Insert a new task between Stop Node and its predecessor nodes:

(2) Insert a new task between Stop Node and its predecessor nodes:

Updated inconsistency view:

All inconsistencies resolved

Example 3 (continued)

© Copyright IBM Corporation, 2008. All Rights Reserved.
55

samples directory) into a new project. Open the Customer Order Handling process

model and the Order Valid object life cycle. The Customer Order Handling process

model is the same as the original one used in Tutorial 1, except that the Credit

Verification Service has been converted from a global service to a task
2
. The Order life

cycle represents the desired state evolution of the Order business item (it is the same as

the life cycle obtained after manual corrections in Tutorial 1, shown on page 24).

Run the consistency check for the Customer Order Handling and the Order Valid object

life cycle (right-click on a project element and select Object Life Cycle → Check →

Process/Object Life Cycle Consistency). The Inconsistencies view is opened, showing 9

detected inconsistencies. For resolving these inconsistencies, it is convenient to use the

layout in Screenshot 1 shown on the following page: the process model and object life

cycle side-by-side, the Inconsistencies and Resolutions views full-length at the bottom.

Select the non-conformant initial transition to state Credit Check Negative, as shown in

Screenshot 1. In the Resolutions view, you can see that by associating the Order business

item and the Price Determined state to the incoming connection of Credit Verification

Service, 6 inconsistencies can be resolved at once. Before applying this resolution,

navigate to the Credit Verification Service task in the process model editor and make

sure that you are in the Advanced modeling mode. Right-click on this resolution and

select Apply. The process model is changed as shown below, which is precisely how it

was corrected manually in Tutorial 1.

Note that the resolution that you just applied was marked with a star (*) in the

Description column. This indicates that the consistency check may need to be repeated

after the application of the resolution. Such resolutions are unable to always update the

Inconsistencies view precisely, due to some complex structures in the process model
3
.

Run the consistency check again to obtain the following results:

If you select the non-conformant transition from Price Determined to Sent To Shipping,

you will see that no resolutions are applicable. This does not mean that it is impossible to

resolve this inconsistency, as you can always resort to correcting the process model

2
 Inconsistency resolutions currently do not fully support global tasks, processes and services.

3
 In this example, there is a decision following the Credit Verification Service with an incomplete state

specification (only one outgoing decision branch has state specified for the Order business item).

© Copyright IBM Corporation, 2008. All Rights Reserved.
56

Screenshot 1

© Copyright IBM Corporation, 2008. All Rights Reserved.
57

manually. Of course, if you make manual changes, you will need to repeat the

consistency check to ensure that the inconsistency was indeed resolved. However, we

recommend that you first examine the other inconsistencies and attempt to resolve them

automatically.

Select the non-covered transition from Approved to Sent To Shipping (as shown in the

Inconsistencies view shown on page 55). This inconsistency can be resolved

automatically and furthermore, the first resolution shown in the Resolutions view

resolves not just 1 inconsistency, but all 3 inconsistencies. Apply this resolution. To

ensure comprehensible formatting, apply the auto layout (right-click in the process model

editor and select Auto-Layout Left to Right).

The newly inserted task can be subsequently renamed to Approve Order, for example.

In this way, the Customer Order Handling process model was aligned with the Order

object life cycle that represented the valid state evolution for this business item. You

should note that the resultant process model is not exactly the same as the one we

obtained in Tutorial 1:

Process model obtained through automatic inconsistency resolution:

Process model obtained through manual changes in Tutorial 1:

© Copyright IBM Corporation, 2008. All Rights Reserved.
58

While both process models implement valid state evolution of the Order business item,

one or the other may be more suited to the business or domain requirements. For

example, if there is a need to perform some additional processing after the credit has been

checked and before the order is sent to shipping, then the upper model that contains an

Approve Order task represents the process more accurately than the lower one.

© Copyright IBM Corporation, 2008. All Rights Reserved.
59

6. Advanced Topics

Specifying states using activity pre/postconditions

As you may have noticed, WebSphere Business Modeler currently does not allow you to

directly specify multiple alternative input or output business item states for an activity.

To model an activity with alternative input (output) states, you need to connect a merge

(decision) to the activity and specify the alternative states on the input (output) branches

of this merge (decision). Here is an example from Tutorial 1:

While following this modeling guideline may be adequate for most of your modeling,

certain behaviors can only be modeled in a cumbersome way using this guideline.

Another example from Tutorial 1 demonstrates this:

This is the Update Customer Record process, where the Check Other Orders For

Customer task updates the state of the Customer Record business item either to Order In

Progress or No Orders In Progress. Hence, the Update Customer Record process

outputs the Customer Record in one of these two alternative states. It was necessary to

model a decision followed by a merge to model this behavior, which clutters the process

model.

Object Life Cycle Explorer supports state pre/postconditions as another method of

specifying business item states in process models to avoid such clutter in process models.

Using this method, the state specification is not displayed in the process model editor, but

is saved as part of the process model attributes.

Make sure that you are either in Intermediate or Advanced mode. Click on the empty

space inside the Update Customer Record process model editor to open its attributes in

the Attributes view. Select the Output Logic tab, open the Postconditions. Click on

© Copyright IBM Corporation, 2008. All Rights Reserved.
60

Add to create a new postcondition. Rename it to Customer Record and fill out the

Description field as shown below:

Similarly, you can add a precondition for this process to indicate that the Customer

Record business item is in state Order In Progress when it is received via the input

parameter.

Object Life Cycle Explorer features, such as the object life cycle extraction and the

consistency check, are also available for the state pre/postconditions. You need to change

a preference setting to enable this.

Go to Window → Preferences. Open the BPIA-Plugins → Object Life Cycle Explorer

preference page. Under Options for specifying business item state, select

Pre/Postconditions and click on OK.

© Copyright IBM Corporation, 2008. All Rights Reserved.
61

Opening object life cycles in WebSphere Integration Developer
as Business State Machines

Similar to the way you can export process models from WebSphere Business Modeler to

Business Process Execution Language in WebSphere Integration Developer, one can

obtain Business State Machines in WebSphere Integration Developer from the object life

cycle models developed or extracted using Object Life Cycle Explorer.

The transfer to WebSphere Integration Developer is currently not supported

automatically and requires the following steps to be performed manually:

1. Export the object life cycles from your project to an archive, e.g. olcs.zip.

2. Extract the exported archive into some temporary directory. Once extracted, you

will find an ObjectLifeCycle.registry file and several .sacl and .saclex files.

3. Determine which files are used to store the particular object life cycle that you

want to be transferred to a Business State Machine:

• Open the ObjectLifeCycle.registry file in a text editor. Each line in this

file corresponds to an object life cycle.

• Locate the number corresponding to the object life cycle of interest by

identifying the line that contains the business item name and the object life

cycle name corresponding to your object life cycle. For example, this

number is 0 if you are looking for the Reference life cycle for the

Payment business item and there is a line “0:Payment:Reference:0:” in

the ObjectLifeCycle.registry file.

• Locate the .sacl file that corresponds to this number, e.g. 0.sacl.

4. Open the WebSphere Integration Developer and create a new Module.

5. In the file system, copy the previously identified .sacl file storing the information

about your object life cycle into the directory corresponding to your new module.

6. Open the .sacl file in a text editor and add the module information:

a. Locate the second line in the .sacl file, e.g.:

<sacl:stateMachineDefinition

xmlns:sacl="http://www.ibm.com/xmlns/prod/websphere/wbi/sacl/6.0.0"

displayName="Payment_Reference" name="Payment_Reference">

b. And change it as follows, where module-name is the name of the module

created in WebSphere Integration Developer:

<sacl:stateMachineDefinition

xmlns:sacl="http://www.ibm.com/xmlns/prod/websphere/wbi/sacl/6.0.0"

displayName="Payment_Reference" name="Payment_Reference"

targetNamespace="http://module-name">

7. Refresh the module in WebSphere Integration Developer. A Business State

Machine corresponding to the object life cycle should appear under Business

Logic → State Machines.

© Copyright IBM Corporation, 2008. All Rights Reserved.
62

8. Using this Business State Machine as a skeleton, refine it to a deployable

component. One necessary refinement step involves resolving the operations

associated with transitions to service interface operations.

How this technology works

Object Life Cycle Explorer for WebSphere Business Modeler implements several

techniques for the integration of process and object life cycle modeling developed at the

IBM Zurich Research Laboratory [3].

For the extraction of object life cycles from process models and the consistency check,

automatic completion of the business item state specification is first performed in the

given process models. States are propagated along object flows in the process models

until a set of business item states is determined for every object input and output.

The object life cycle extraction is then performed by applying transformation rules,

which map activities in process models to state transitions in object life cycles and

identify initial and final states for each life cycle (see [4] for further reading).

The consistency check evaluates several consistency conditions on the given process

models and object life cycles to detect non-conformant state changes of business items

induced in the process models and parts of the given life cycles that are not covered by

the process models (see [1, 2, 4] for further reading).

For the generation of a process model from a set of object life cycles, a composition of

the life cycles is computed first and then transformation rules are applied to map the

composite life cycle to a process model (see [1] for further reading).

© Copyright IBM Corporation, 2008. All Rights Reserved.
63

7. Current Limitations

• Notification broadcasters / receivers, observers, timers and maps are not

supported. Business item states specified for these elements is ignored during the

object life cycle extraction and the consistency check.

• During the object life cycle extraction, information about the unique location of

activities may be lost. For example, if there are two activities with the same name

in different subprocesses of the same process model, these cannot be

distinguished in the extracted object life cycles.

• Inconsistency resolution support currently has the following limitations:

o Resolution is only supported between one process model and one object

life cycle. When multiple process models or life cycles are selected during

the consistency check, inconsistency resolution is disabled.

o During the application of a resolution that adds a new state to an existing

business item, the process editor is closed for synchronization with the

new business item definition and then reopened again. The layout of your

editors may change as a result.

o Transformations associated with resolutions offer limited support for

global tasks, processes and services. Certain resolutions are not applicable

to resolve inconsistencies associated with such process nodes.

o Resolution side-effects are not always computed precisely in the presence

of complex process structures with an incomplete state specification. Such

resolutions are marked with a star (*). After application of such

resolutions, the consistency check should be repeated.

© Copyright IBM Corporation, 2008. All Rights Reserved.
64

8. References

[1] J. M. Küster, K. Ryndina, H. Gall. Generation of Business Process Models for Object

Life Cycle Compliance. In proceedings of the 5th International Conference on Business

Process Management (BPM), volume 4714 of LNCS, pages 165 -181. Springer, 2007.

[2] J. M. Küster, K. Ryndina. Improving Inconsistency Resolution with Side-Effect

Evaluation and Costs. In proceedings of the 10th International Conference on Model

Driven Engineering Languages and Systems (MoDELS), volume 4735 of LNCS, pages

136-150. Springer, 2007.

[3] K. Ryndina, J. M. Küster, H.Gall. A Tool for Integrating Object Life Cycle and

Business Process Modeling. In proceedings of the BPM Demonstration Program at the

5th International Conference on Business Process Management (BPM). CEUR-WS,

2007.

[4] K. Ryndina, J. M. Küster, H.Gall. Consistency of Business Process Models and

Object Life Cycles. In Workshops and Symposia at MoDELS 2006, volume 4364 of

LNCS, pages 80-90, Springer, 2006.

© Copyright IBM Corporation, 2008. All Rights Reserved.
65

Authors

Object Life Cycle Explorer was developed in the Business Integration Technologies

group at the IBM Zurich Research Laboratory.

Ksenia (Ryndina) Wahler is a doctoral student at the IBM Zurich Research

Laboratory; she is pursuing a Ph.D. in computer science at the University of

Zurich. Ms. Wahler is the lead architect and developer of Object Life Cycle

Explorer. This technology implements several novel techniques for

integrating business process and object life cycle modeling, which were

developed as part of Ms. Wahler's Ph.D. research.

Email: ryn@zurich.ibm.com

Jochen Kuester is a research staff member at the IBM Zurich Research

Laboratory. He holds a Ph.D. in computer science from the University of

Paderborn, Germany. Dr Kuester's research interests include business

process modeling, model transformations, and model-driven development of

service-oriented applications. He plays a major role in the conceptual

development and design of the Object Life Cycle Explorer.

Email: jku@zurich.ibm.com

Aurelien Monot is an intern at the IBM Zurich Research Laboratory and a

graduate student at the computer science department of the Ecole Nationale

Superieure des Mines de Nancy. Mr. Monot contributes to the design,

implementation and testing of Object Life Cycle Explorer as part of his final-

year internship. His current research interests include model-driven

development, model analysis, and real-time systems.

Email: mon@zurich.ibm.com

This release would not have been possible without the cooperation of other members of

the Business Integration Technologies group and Grace Wong from the WebSphere

Integration Developer team in IBM Software Group.

