
 1

OmegaChart

Ver. 6.0

Digest Source Codes Painlessly

 2

Table of Contents

1. Software Installation

2. Software Activation

3. Uninstalling the OmegaChart

4. Running Analysis

5. Input Source Files

5.1 FORTRAN

5.1.1 Flattening of program Module

5.1.2 The language features not supported by OmegaChart

5.2 Visual Basic Family of Languages

5.3 Matlab Scripting Language

5.4 NCL Macro Language

5.5 TCL/Tk Scripting Language

5.6 C/C++ Language

6. Viewing and Printing of Generated Flow Charts

6.1 Output to Microsoft Excel

6.2 Output to SVG file (viewable via Microsoft Internet Explorer)

6.3 Output to DAT file (viewable via Microsoft Visio READER and

Microsoft Excel READER)

7. OmegaMath Features

8. Configuration Management

9. Information in the “run.log” file

10. Information on Configuration Files

11. Why does OmegaChart Fail?

12. Technical Support & Contact Information

 3

1. Software Installation

1 System Requirements

This software package runs on Microsoft XP platform with .NET framework. The generated flowchart can

be exported to Microsoft Excel, Microsoft Internet Explorer or Microsoft Visio. Microsoft Excel,

Microsoft Internet Explorer and Microsoft Visio packages must be installed prior to the installation of

OmegaChart. Also, Microsoft .NET framework redistribution package should be downloaded before

installation.

2 Installation Steps

a) Create a temporary directory, e.g. c:\temp\

b) (Window Vista User please skip this step) Download

 "Microsoft .NET Framework 3.5 Service Pack 1" from Microsoft download center.

http://www.microsoft.com/downloads/details.aspx?FamilyID=ab99342f-5d1a-413d-8319-

81da479ab0d7&displaylang=en

 Save the executable file "dotnetfx.exe" in the temporary directory created in step a)

Due to its huge size, OmegaChart installation package does not include this file.

c) Download from the site http://www.omegachart.com/index.htm the OC60 installation package and

save it in the previously created temporary directory. Uncompress the zip file into temporary

directory.

Now this temporary directory should contain the following file and directory:

 Directory:

 Examples

 Files:

 setup.exe - setup utility

 pp.dat

 default.cfg

 default_small.cfg

 print.cfg

 print_small.cfg

 run.log

 OC_wall.jpg

 Title.js

 AltName.htm

 dotnetfx.exe

 SVGView.exe

 MathPlayerSetup.exe

 Oc60.pdf - User manual

 Interop.AcroPDFLib.dll

- configuration files

-files essential for the execution of OmegaChart

-Other Software Environments

- Dynamic Link Library

 4

 AxInterop.AcroPDFLib.dll

 Oc60.vsd - MS-Visio viewer

 Oc60.xls - MS-Excel viewer

d) Run the setup.exe program to define in the setup menu the launch directory (for example

"C:\OC60_launch\"). Check all the checkbox if this is the first time installation. Uncheck some of the

checkbox to skip installation of the corresponding component which has been in the system already.

Setup program will notify you when the installation is completed. You must restart the computer

before the installation takes effect.

e) Copy the “Example” directory to launch directory and delete the temporary directory created in step a)

Fig. 1 OmegaChart setup menu

 5

2. Software Activation

When you first started OmegaChart, you will see the “Mona Lisa” screen (Fig. 2) asking about what to do

next. You may run OmegaChart in demo mode to taste its capability or generate UserData.dat file for

registration. Click on “Get UserData” button. Upon filled all the necessary information in the next menu,

click “Generate UserData.dat”. Userdata.dat is saved in the launch directory. Email this file to

services@omegachart.com for registration. The activation license file (RegKey.dat) will be e-mail back to

your address. Save the RegKey.dat file in the launch directory. If you re-install or reload OmegaChart

program you will need new license file.

3. Uninstalling the OmegaChart

To uninstall the demo version of OmegaChart program, simply delete the launch directory. OmegaChart

does not place any “mark” into Windows XP registers and therefore it is sufficient to delete ONLY the

OmegaChart launch directory (Green Installation)

To remove Microsoft .NET framework redistributable package, select from Start Menu Control Panel and

there Add and Remove Programs.

Fig. 2 Get UserData (UserData.dat) menu

 6

4. Running Analysis

 After software activation, the OmegaChart master dialogue form (Fig. 3) will appear by launching the

program.

To generate flowchart for source code, please follow the steps described below (working from top to bottom

in the master dialogue form)

1. From the dropdown menu , specifies the language/form of the source code

- Fixed form (Fortran77 and Fortarn90)

- Free form (Fortran90)

- Visual Basic Family

- Matlab Scripting Language

2. Specifies the file to be analyzed.

3. Choose “output device” among the three: MS-Excel, MS-Internet Explorer or MS Visio

4. Specifies path/filename where the generated flowchart file should be saved. Depending on the current

“Output Device” selection, either “Specify Output Excel File”, “Specify Output Directory” or “”Specify

Output DAT file (for Visio)” will be displayed.

Fig. 3 Master Dialogue Form

 7

Fig. 4 An example of

displaced object in

5. Click the “Perform Analysis” button, the package then provides an estimated executing time and start the

analysis. The generated flowchart will be automatically stored in the “output device” you specified. The

message “Analysis Completed” will appear if flowcharts are successfully created.

Notes:

a) In some platforms, the generated Excel file may not be readily viewable by simply clicking on the file name

from window explorer. You might need to start Excel first and then open the generated .xls file.

b) OmegaChart analysis is time extensive. When the analysis is finished, Excel will dismiss automatically or

will ask if an existing file should be replaced.

c) The generated .DAT file requires further post-processing by “reader”. OmegaChart Ver 4.0 package provide

two “reader”: one for Microsoft Visio (oc60.vsd) and the other for Microsoft Excel (oc60.xls). After

launching the reader (with macro enabled), click on the OmegaChart logo and specifying the .DAT file

name, the flowchart will then be displayed in the reader.

d) The “Reader” for Microsoft Visio may require an additional input: “Do you want to glue lines to shape? “. If

the answer is “yes”, then the resulting flowchart “glue” the connecting lines to the shape objects. In this

“Glue Mode”, if, for any reason, one of the objects in the flowchart is displaced, the neighboring objects

connecting to this object are also affected. (Fig 4)

 8

On he other hand, in the “glueless mode”, all objects are independently positioned. Moving any object

around will not influence any other objects (Fig. 5)

This “gluing” property requires some extra post-processing time. For complex flowcharts generated from

large source module, this additional effort may be very time consuming and should be use only if it is

absolutely necessary.

The “Reader” for Excel (oc60.xls) does not support the “gluing” property.

e) The Excel and Visio handle macro in slightly different ways. In Excel, if the macro generates a new

‘worksheet’, then this new worksheet is displayed immediately. Therefore, user may be able to see the

generated worksheets while the macro is running. In contrary, Visio display newly generated ‘pages’ only

when the macro is completed. Therefore, when generating large flowcharts using Visio, all pages are display

at once only after the analysis was completed. The user should be aware of this difference when selecting

the output device.

Fig. 5 Flowchart in “glueless mode”

 9

5. Input Source Files

5.1 FORTRAN

The source files (both Fortran77 and Fortran90) must be the subset of the Fortan Language Standard [add

Reference]. Any machine specific language features, which are not part of the Fortran Language Standard, are

not permitted, and OmegaChart will stop processing when such command line is found in the analyzed source

file.

5.1.1 Flattening of program Module

Processing of the Input source files by OmegaChart program:

1. Simple Case – One Level Input File

One Level Input File consists of one main program unit and several independent subroutines or functions

(Fig. 6) . OmegaChart will process and analyze each routine, including the main program as an independent

unit.

2. Advanced Case – Two Level Input File

Multiple level Input File is composed of several independent program units where at least one of them

have internal program units as shown in Fig. 7. In Fig. 7a, internal subroutine “A1” is renamed to be

“A~A1”, internal subroutine “B1” is renamed to be “B~B1”, and internal subroutine “B2” is renamed to be

“B~B2”. All five routines (A, A~A1, B, B~B1, B~B2 and C) are analyzed as if they were all external

routines.

Fig. 6 One Level Input File

PROGRAM A

.

.
END PROGRAM A

SUBROUTINE B

.

.
END SUBROUTINE B

SUBROUTINE C

.

.
END SUBROUTINE C

 10

Internal routines (A1, B1 and B2) would result in flowchart “title line” as

SUBROUTINE A~A1 (……)

while the “ending line” will remain the same

END SUBROUTINE A1

That is to say, only the “title line” has been renamed, although they still referring to the same subroutine.

External routines (such as subroutine A, B and C) are not renamed, therefore the flowchart will indicate:

SUBROUTINE A (……)

…………………

END SUBROUTINE A

Fig. 7. Two Level Input File

PROGRAM A

.

.

CONTAINS

 SUBROUTINE A1

 END SUBROUTINE A1
END PROGRAM A

SUBROUTINE B

.

.

CONTAINS

 SUBROUTINE B1

 END SUBROUTINE B1

 FUNCTION B2

 END FUNCTION B2

END SUBROUTINE B

SUBROUTINE C

.

.

END SUBROUTINE C

MODULE A

.

.

CONTAINS

 SUBROUTINE A1

 END SUBROUTINE A1

 FUNCTION A2

 END FUNCTION A2
END MODULE A

MODULE B

.

.

END MODULE B

(a)

(b)

 11

Similarly, for Fig. 7b, internal subroutine A1 and A2 will be renamed to A~A1 and A~A2 respectively,

while module A and external subroutine B are not renamed. The resulting flowchart will have a form:

MODULE A (……)

…………………………………

END MODULE A

MODULE A~A1 (……)

…………………………………

END MODULE A1

MODULE A~A2 (……)

…………………………………

END MODULE A2

MODULE B (……)

…………………………………

END MODULE B

Note: The name of the subroutine is used not only in the presentation of the flowcharts, but also as the tab

name in the Excel sheet.

Due to the fact that the new name of the internal subroutine is actually a combination of the name of its

parent subroutine and the name of the internal routine itself, chances are they may be quite lengthy. For

example, if the name of the “parent” subroutine is

InterpolatePsychrometricChart

while the internal function has a name

RelativeHumidity

Then the new name becomes

InterpolatePsychrometricChart~RelativeHumidity

Microsoft Excel places a limitation on the length of tab name characters (31 maximum). To avoid error

due to an over lengthy tab name, only the rightmost 31 characters are use in the tab name. Therefore the tab

name will be

hrometricChart~RelativeHumidity

The name in the “title line” in the flowchart remains in its full length. However, there is another limitation

discussed in the Section 5 of this manual (PRINTFORM and LENLIMIT).

3. Advanced Case – Three Level Input File (with internal program units)

 In this case, the input file consists of several independent "modules" in which at least one has internal

"program unit", which in turn contains yet another level of internal program units, as illustrated in Fig. 8.

 12

In this example, internal subroutine “A1” is renamed to “A~A1”, and the nested internal subroutine

“A1X” is renamed to “A~A1~A1X”. Other nested internal subroutine “A1Y” is renamed to “A~A1~A1Y”,

and internal subroutine “A2” is renamed to “A~A2”. The nested internal subroutine “A2X” is renamed to

“A~A2~A2X”, and all eight program units (external or internal; A, A~A1, A~A1~A1X, A~A1~A1Y,

A~A2, A~A2~A2X and B) are analyzed as if they were all external routines. The display convention is the

same as those described earlier.

Fig. 8 Three Level Input File (with internal program units)

MODULE A

.

.

CONTAINS

 SUBROUTINE A1

 CONTAINS

 SUBROUTINE A1X

 END SUBROUTINE A1X

 FUNCTION A1Y

 END FUNCTION A1Y

 END SUBROUTINE A1

 SUBROUTINE A2

 CONTAINS

 SUBROUTINE A2X

 END SUBROUTINE A2X

 END SUBROUTINE A2

END MODULE A

MODULE B

.

.

END MODULE B

 13

5.1.2 The language features not supported by OmegaChart

OmegaChart Version 4.0 and higher does not support the following features:

1. For Fortran77 and Fortran90 fixed form, the space between characters is not important. The statement

D O 10 I=1,LOOPEND

is the same as:

DO 10 I=1,L O O P E N D

Neither statement is supported by OmegaChart. The proper statement should have a form:

DO 10 I=1, LOOPEND or

DO 10 I = 1,LOOPEND

OmegaChart does not accept spaces in Fortran keywords (as in ” D O”) as well as spaces in variables (as

in “L O O P E N D”). However, spaces between keywords, variables, operators etc. are accepted.

2. OmegaChart cannot analyze source code, which is a mix of fixed form and free form. The only one type

of the form is accepted.

3. The older Fortran programs may contain the “conditional GOTO” inside of I/O statements. For example:

READ (1,ERR=99, END=999) X

........

999 CONTINUE

........

99 CONTINUE

........

Although OmegaChart supports this feature, it will not place a linking line between the I/O statement and

the target (labeled) statement.

4. The CYCLE or EXIT a LOOP in Fortran90 are processed as following:

If a label is given to the CYCLE or EXIT statement, then a linking line between this CYCLE (or EXIT)

statement and the labeled DO (or END DO) statement is drawn.

If no label is given to the CYCLE or EXIT statement (this defaults to the present inner loop, i.e. the loop

where the CYCLE or EXIT statement being executed), no linking line will be drawn.

5. Hollerith constants are not supported by OmegaChart.

6. Exclamation mark “!” inside of a string is replaced by a space character. Also, to avoid a confusion in the

Fortran90 Free Form, a semicolon “;” in a comment line (that starts with a “!” characters) is replaced by a

space character.

 14

7. (For Fortran 77 Fix form) Since TAB character (ASCII code Number 9) is non-standard in the

FORTRAN 77 or FORTRAN 90 specification, they are replaced by 5 or 6 consecutive characters,

depending on whether the line in question is a continuation lines or not.

a. a sample snips of code

 {TAB}x = a1 + a2 + a3 + a4 + a5 + a6 +

 {TAB}& b1 + b2 + b3 + b4 + b5 + b6

will become

 bbbbbbx = a1 + a2 + a3 + a4 + a5 + a6 +

 bbbbb& b1 + b2 + b3 + b4 + b5 + b6

(where 'b' represent a 'blank space')

The first line is not a continuation line, and so the TAB character is replaced by 6 spaces.

The second line is a continuation line, and so the TAB character is replaced by 5 spaces.

This line is OK for OmegaChart.

b. However, a very similar snips of code

{TAB}x = a1 + a2 + a3 + a4 + a5 + a6 +

{TAB}&b1 + b2 + b3 + b4 + b5 + b6

 (note that there is no space between the character '&' and the first 'b' in second line)

will become

bbbbbbx = a1 + a2 + a3 + a4 + a5 + a6 +

bbbbbb&b1 + b2 + b3 + b4 + b5 + b6

and therefore fails the OmegaChart.

The reason is that OmegaChart recognize the first single character in the second line ("&") as a

continuation symbol (case a). However, in case b, the character '&' is not recognized as continuation

symbol, rather, it is interpreted as part of the variable '&b1' and thus cause failure.

As rule of thumb, ALWAYS LEAVE SPACE IN FRONT AND BACK OF CONTINUATION

SYMBOL IN COLUMN 6.

Note: To see the TAB characters, one way is to load the text file into MS-Word and turn on the

 symbol

 15

8. TAB characters may cause another issue if the source is download from UNIX system. Since TAB

characters are replaced by six consecutive space characters (for non-continuation line), the source code

 {TAB}READ (*,*) X

will be interpreted as

 bbbbbbREAD (*,*) X

This line is fine because the character “R” in READ is on the seventh characters position.

However, a source line:

{TAB}10 READ (*,*) X

(the “10” is a label and should be positioned in column 1-5, the space between “0” and “R” should be on

column 6.)

will become

bbbbbb10 READ (*,*) X

Such line will cause problems because then the “1” is in the 7th place position.

To avoid these problems, tab character should be removed manually and replaced with appropriate space

characters PRIOR sending to OmegaChart..

9. In some cases, an awkward programming style may cause OmegaChart to fail. Two examples are listed

below:

a) if-statment

If (condition) If (counter) 10,20,30

Should be replace by:

If (condition) Then

If (counter) 10,20,30

Endif

b) empty if-construct

If (condition1) then

.........

elseif(condition2) then

else

end if

 16

Should be replace by:

If (condition1) then

.........

elseif (condition2) then

! do nothing

else

end if

Notes:

It is acceptable to have nothing between "else" and "endif" (but it is not acceptable to have nothing

between “elseif" and "else". At least one comment line must be presented between "elseif" and "else".

10. The OmegaChart package should be used as a documentation tool rather than a debugging tool.

OmegaChart is not a syntax checker. If your code cannot pass the syntax compilation than almost

certainly, OmegaChart will not be able to perform code analysis.

11. The source file has to be in MS-DOS ASCII file format. If you are downloading files from UNIX, make

sure it is converted in to MS-DOS ASCII file, (not UNIX text file). A simple way to do this is read the

downloaded file by the DOS utility "EDIT", and then re-save (and rename) the file. This will save the

file into MS-DOS file. Also, be aware of certain trailing characters (non-ASCII) at the end of file.

12. The current analysis package is not performing analysis of “pre-process” FORTRAN programs.

Therefore, meta-command such as “INCLUDE” is not supported. When the input file contains such

command, the OmegaChart analysis will stop.

13. For both, Fortran77 and Fortran90 Fixed Form, a control parameter ITRUNCATE in OmegaChart

defines the column after which the source code is ignored. For example, in standard Fortran 77, some

users use the space between column 73 and column 80 for comments. These comments will be

IGNORED by OmegaChart, and it is necessary to set ITRUNCATE=73, which tells OmegaChart to

truncate all the character after column 73 before going to the pre-process steps of OmegaChart. Some

compilers support “extended-source”, i.e., source line longer than 72 characters (80 or 132 characters

maximum). In these cases, simply adjust ITRUNCATE to appropriate value.

For Fortran90 free form, value of ITRUNCATE is not used and all the characters in a line are significant.

14. For Fortran90 Free Form, the comments after the “&” sign in a source line is ignored. For example:

x=a1 + & ! comment1

a2 + & ! comment2

a3 + & ! comment3

a4 ! comment4

in this case, “comment1”, “comment2” and “comment3” are ignored, only “comment 4” will be shown in

the generated flowchart.

For both, Fortran77 and Fortran90 fixed form, the comment after "!" sign in a continuation line is

ignored. For example:

x=a1 + ! comment1

 17

& a2 + ! comment2

& a3 + ! comment3

& a4 + ! comment4

In this case, "comment1", "comment2", "comment3" are ignored. The only "comment4" will be shown in

the generated flow chart.

15. The comment within a complete statement, even though is was spread out in several lines, will cause

OmegaChart 4.0 to fail. For example, the following lines are not permitted.

 X = a1 + a2 + a3 + a4 + a5 + a6 + ! a-sequence

 & b1 + b2 + b3 + b4 + b5 + b6 + ! b-sequence

 & c1 + c2 + c3 + c4 + c5 + c6 ! c-sequence

Another example may be

 call SubProcedure (a1, a2, a3, a4, a5, a6, ! input a's

 & b1, b2, b3, b4, b5, b6) ! output b's

5.2 Visual Basic Family of Languages

1. Since ONLY the program execution flows are of interest to OmegaChart, all other non-executable

declarations, particularly those appeared in the "public area", i.e. in between program modules, is treated

as "comment".

 18

5.3 Matlab Scripting Language

1. Matlab uses single quote (') to denotes matrix transpose, while also uses two single quote as delimiter for

string. The utilization of one symbol in two irrelevant contexts confuses OmegaChart. For example, a

statement such as

 x=A'+B' (assign the sum of the transpose of matrix A and the transpose of matrix A to variable x)

will be treated as

x=A'+b'

and therefore cause error. Generally speaking, if there are two single quotes appeared in the same line of

statement, it will be treated as a string.

OmegaChart provide several methods to warn the user on this potential faulty situation:

a.) If there is only one single quote, then this is a matrix transpose notation.

b.) If there are other odd number of single quote, OmegaChart will send you a warning message and

quite processing any further because there are high possibility to crash the execution.

c.) If there are even numbers of single quote, they are treated as pairs of string delimiter, regardless of

the situation. Sometime this may still crash the execution, sometime it may not.

To provide details for this scenario, OmegaChart will generate a .log file (in the directory where

source code resides) recording those lines with more than two single quotes. User may then be able

to manually edit these lines to make it comply with OmegaChart.

d.) The easiest way to handle this situation is simply remove these single quote and, upon finishing

generate the flow chart and OmegaMath expression, manually put it back on the flow chart.

5.4 NCL Macro Language

5.5 TCL/Tk Scripting Language

1. OmegaChart support those TCL/TK command used in Hypermesh package.

variable

variable

string

 19

5.6 C/C++ Language

1. OmegaChart is used for the analysis of ACTUAL command line and not Meta-command. Therefore,

LOGICS behind lines such as

#INCLUDE

and

#IF

#ELSE

#ENDIF

#ifdef

are ignored and these lines are considered as comments

2. Since C/C++ language support OVERLOADED module, functions with same name are renamed

sequentially. For example, the first occurrence of a function “fun” is not renamed. The second

occurrence of the function “fun” is renamed as “fun_OVERLOAD_2”. The third occurrence of the

function “fun” is renamed as “fun_OVERLOAD_3” etc.

 20

6. Viewing and Printing of Generated Flow Charts

6.1 Output to Microsoft Excel

This option creates a single Excel file, which contains many pages, each corresponds to a program

module in the input source code (see Fig. 9). The Excel file is generated WHILE OmegaChart is running.

In other words, OmegaChart uses Excel as one of its sub-procedure, which perfroms the output generation.

User may actually see the generating process. When OmegaChart completed generation of flowcharts,

Excel will dismiss automatically or prompting you whether to replace an existing file.

Fig. 9 Example of the Excel output

Generated

Each program module

Is analyzed into different

pages

 21

Printing of the flowchart can be accomplished by using windows’ printer drivers just like printing of any

other Excel documents. The size of the generated flowcharts varies, depending on the complexity of the

routine being analyzed. Quite often, the user may encounter extraordinary large flowchart and chances are

it will not fit into a standard A4 or letter size paper. If a large size plotter is accessible, make every effort to

use it. If only letter size printer is available, the following is suggested:

(1) Print the flowchart on a continuous paper (8.5” x 11”) with zero margin setting (top, bottom, left and

right, this depends on the printer you are using). This may produces several long paper strips. Then

you tape them together side by side to make the final flowchart.

(2) Print the generated flowchart on standard A4 paper and also generate an outline view of the overall

flowchart as “index” of these pages [from Visio� print preview � screen dump] (Fig. 10)

(3) Print the generated flowchart on standard A4 paper and then paste them on a large A0 sized paper

(Fig. 11)

Fig. 10 Index of pages

Fig. 11 Several pages pasted on a

large sheet of paper

 22

6.2 Output to SVG file (viewable via Microsoft Internet Explorer)

This option creates many files and directories for a single source code. The flowcharts are viewable only

when OmegaChart is completely done with the process. When finished, there will be several files and sub-

directories in the specified output directory:

File “index.htm”: This is the most important output file. By opening this file, user may see a

browser shown in Fig 12. This is where you may start digging into the source code. (Explained

below)

File “menu.htm”: A supplementary file that provides the drop-down menu for selection of the

module.

File “AltName.htm”: A supplementary file for use with OmegaMath, see Section 7.

Sub-directory “code”: This directory contains many .html file, each contains html tagged-source-

code for the corresponding module in the source file.

Sub-directory “oc60”: This directory contains many .svg files (Scalable Vector Graphics), each

contains SVG definition for the corresponding module in the source file. The SVG definition

described how the flowchart is drawn. Also in this directory are yet another set of .html files. These

html files are for printing purpose (explained later).

Sub-directory “math”: This directory contains many .html files; each contains MATHML definition

for the corresponding module in the source file. The MATHML definition is used in OmegaMath

display.

The Internet Explorer Browser is divided into four panels:

-Module Selection Panel

-Source Code Viewing Panel

-FlowChart Viewing Panel

-OmegaMath Viewing Panel

 23

Each panel has its own sub-components.

• The drop down menu (1) allows the selection of module in the file, which should be display. The

displayed information includes original source code (displayed in Source Code Viewing Panel),

corresponding flowchart (displayed in Flowchart Viewing Panel) and corresponding 2-D math

expressions for all assignment statements and "method calls".

• The line numbers for the original source code are indicated in the column (2). These line numbers are

referenced in the generated flowchart.

- The black text (3) corresponds to the non-assignment statements.

- The blue text corresponds to the assignment statements and "method calls". These texts acts as

hyperlink to the corresponding mathematical expressions. User may click on the texts to see the

mathematical expression in the OmegaMath Viewing Panel (5).

• The generated Flowchart is displayed in the right part of the Microsoft Internet Explorer panel.

Fig. 12 An example of OmegaChart output

generated using Microsoft Internet Explorer

1

2

3

4

5

 24

Navigation in SVG viewer

Right-click in the SVG image area (FlowChart Viewing Panel) will open the contextual pop-up menu.

This will reveal the commands and options for interacting with the SVG image.

Panning: Hold the alt key and click-and-drag with the mouse to pan an SVG image. When the scroll lock

is enabled and Adobe SVG Viewer has the focus, the arrow keys may be use to pan the image.

Zooming: Hold the control key and click to zoom in at the mouse pointer location. Hold the control key

and click-and-drag to select a region to zoom in. Hold the control and shift keys and click to zoom out. You

can also use the zoom commands in the context menu.

Printing of SVG Image

User may not be able to print the SVG image (flowchart) directly from the web browser windows. In

order to generate hard copy, it is recommended to copy and past the SVG image (via contextual pop-up

menu, “copy SVG” option) onto Microsoft Paint program (on MS-Windows system, Start �

All Program�Accessories .�Paint). However, if you perform this operation from index.htm (Fig 12), you

may end up with copying only a portion of the SVG image. To resolve this problem, OmegaChart save a set

of the html files (located in the OC60 directory, one for each module.) After launching the Microsoft

Internet Explorer and loading appropriate html file from OC60 directory, this file may be “Copy and Paste”

to Microsoft Paint and printed from there.

Printing large flowcharts from Microsoft Paint may be a challenge. To produce a hard copy of the large

flowcharts, it is recommended to generate the flowchart in Excel, rather than SVG file. On the other hand,

for on-screen viewing, SVG mode is more interactive.

6.3 Output to DAT file (viewable via Microsoft Visio READER and Microsoft Excel READER)

This option creates a single .DAT file, which will be processed later by “VIEWER” (included with the

package” Two viewer is provided: OC60.vsd (Microsoft Visio, Fig 13) and OC60.xls (Microsoft Excel).

The operation is relatively easy:

a.) start the viewer & enable macro [note]

b.) click on the OmegaChart ver. 4.0 icon, a standard “open file dialogue box” appears, asking about the

.DAT file

c.) User specifies the filename and click “open”, and then the flowchart will be generated.

d.) For Microsoft Visio, an addition question will be asked: “Do you want to glue lines to shape? “.

Please refer Section 4, Note d) in this manual for details on this option.

Printing of the generated flowchart from MS-Excel or MS-Visio follow the same rule as described in

secion 6.1. MS-Visio user may have more flexibility on formatting output.

Note: user need to set the security level to “medium” in order to run the macro in MS-Excel or MS-Visio.

 Please go to Tools� Macro� Security to set the security level for MS-Excel or MS-Visio.

 25

7. OmegaMath Features

OmegaMath (ver. 4.0) is a specialized module of OmegaChart which is capable of performing statement-

level analysis of source code. In most cases, the mathematical calculation is performed when an assignment

statement or a "method calls" is been executed. Therefore, it is the right hand side of the assignment

statement that is to be analyzed. For example, the quadratic formula, when coded into Fortran language,

may look like

X1= (-BETA +sqrt(BETA* BETA -4* ALPHA *GAMMA))/(2*ALPHA)

X2= (-BETA –sqrt(BETA* BETA -4* ALPHA *GAMMA))/(2*ALPHA)

These “one-dimensional” expressions can be converted, via OmegaMath, to their original “two

dimensional” mathematical expression

Fig. 13 An example of OmegaChart output generated using Microsoft Visio

 26

Expressions with the radical symbol, super/subscript and/or fractions provide a more vivid view of the

mathematical contents behind the program code.

Variable Replacement Feature

Mathematicians have typically more freedom than programmers do because they may use symbols and

notations that are NOT supported by ASCII specifications. Programmers are limited to “translate” Greek

letters into their respective ASCII counterparts. Therefore, to represent the symbol α that mathematician

uses, programmer has to spell it out ALPHA. Nevertheless, the letter α still provides more insight into the

meaning due to user familiarity. The above example (quadratic formula) could have been converted into

However, this form is less familiar.

For this reason, OmegaMath provides a table to guide the conversion process. This table can be view by

loading the file “AltName.htm” (from the user specified Output directory) into Microsoft Internet Explorer.

The format how variables are displayed is shown in Fig. 14. ”alpha” is to be displayed as α, variable

”beta” is to be displayed as β, etc.

In the case when the variable “AFA” and not “ALPHA” should be displayed as α, user must edit the html

file using any ASCII editor. An example of such change is shown in Fig. 15.

Fig. 14 Relation between variable names in the

source code and in OmegaMath.

 27

Since OmegaChart (and OmegaMath) performs the analysis of several modules in one single run, a

variable called “AFA” in subroutine “SUB1” may actually representing the same parameter as the variable

“ALPHA” in main program “MAIN” and both variables should be displayed as α. In these cases, the

AltName.htm file needs to be edited as shown in Fig. 16 (the highlighted areas).

Fig. 15 An example of edited html file

<html>

<H2>Module: All </H2>

<table border="1" cellpadding="5">

<tr> <td> AFA </td> <td> <i> α </i></td> </tr>

<tr> <td> beta </td> <td> <i> β </i></td> </tr>

<tr> <td> gamma </td> <td> <i> γ </i></td> </tr>

...

<table>

</html>

Fig. 16 An example of edited html file

<html>

<H2>Module: All </H2>

<table border="1" cellpadding="5">

<tr> <td> ALPHA </td> <td> <i> α </i></td> </tr>

<tr> <td> beta </td> <td> <i> β </i></td> </tr>

<tr> <td> gamma </td> <td> <i> γ </i></td> </tr>

...

<table>

<H2>Module: MAIN </H2>

<table border="1" cellpadding="5">

<tr> <td> ALPHA </td> <td> <i> α </i></td> </tr>

<table>

<H2>Module: SUB1 </H2>

<table border="1" cellpadding="5">

<tr> <td> AFA </td> <td> <i> α </i></td> </tr>

<table>

</html>

 28

Notes:

1. The module named “ALL” is the “default”, and may be customized by editing and/or appending

additional module name and specification lines after it.

2. If a file named “AltName.htm” is found in the specified output directory, it will be used by OmegaChart.

If file does not exist a “default” AltName.htm will be place in the output directory.

8. Configuration Management

Omega Chart provides several options for the flowchart generating process. The default configuration file

is setup during the program installation (default.cnf). However, the user may “Load” a configuration file

(*.cfg), “Edit”, and “Save” his own modified file. Omega Chart provided three additional configuration

files:

• default_small.cnf: same as default.cnf, but use a smaller font size.

• print.cnf: generates flowchart with no background color.

• pring_small.cnf: same as print.cnf, but use a smaller font size.

The Configuration file options:

1. OmegaMath

User may disable OmegaMath if it is not use (Fig. 17).

Fig. 17 OmegaMath options

(a) (b)

 29

2. If-Statement Form

User may specify two forms of the IF statement. If the FORM 1 is selected, the “conditional task” part

of the statement is considered as a “side track” of the main program flow (Fig. 18a). If the FORM 2 is

selected, this “conditional task” part is located inside the main program flow as shown in Fig.18b.

3. Print Form

There are two ways how to present the program flowchart. If the parameter PRINT FORM=1, is

selected, the program line numbers are displayed in the generated flowchart (Fig. 19a). If the parameter

PRINT FORM=2 is specified, the generated flowchart use only the source program statement (Fig. 19b).

Because the actual program statements may be lengthy, only the left portion of the statement is shown.

The parameter LENLIMIT is used to specify the maximum length (number of characters) of the

statement before truncation.

Fig. 18 Specification in the IF-Statement Form
(a) (b)

Fig. 19 Specification in the Print Form (a) (b)

 30

4. Inline comment

This option controls the way an inline comment is presented, either before the attached command

(Fig 20a) or after it (Fig 20b)

5. GoTo Lines

This Boolean value determines whether to draw the GoTo Lines. In some cases, drawing such lines may

be very confusing.

Fig. 20 Specification for Inline comment

(a) (b)

Fig. 21 GoTo line specification

(a) (b)

 31

6. Shade

The Boolean SHADE value determines the outlook of the generated chart. If the SHADE is enabled the

Excel files may be approximately 15% - 20% larger in comparison with files without

shadowing.

7. Chart Parameters

When the mouse is hovered over a label or text box, a graphical illustration is displayed and shows the

meaning of particular variable (in red, see Fig. 23). The variables are:

• Horizontal Size

• Vertical Size

• Horizontal Spacing

• Vertical Spacing

• LenLimit

• Font size

• ITruncate

• DividerRatio

Fig. 23 Chart Parameters

Fig. 22 SHADE specification

(a) (b)

 32

• Horizontal and Vertical Size are the space taken up by a SINGLE character. The larger value of

the “Font Size” variable, the larger value of Horizontal and Vertical size should be.

• Horizontal and Vertical Spacing are spacing between blocks of flowchart unit.

• The parameter “Font Size” is self-explanatory.

• Please refer to the parameter PRINTFORM for explanation of the variable LENLIMIT.

• Please refer to Section 5.1.1, item 14 of this manual for explanation of the variable ITRUNCATE.

• The variable DividerRatio is the threshold of the following quantity :










line ain Characters ofNumber Total

line ain Character Frequent MOST theof Occurance ofNumber The

For example, consider the line

C--------------------- Sample ---------------------------

In this line, the total number of character is 58 (including the space character), of which 49 is the

“most frequent character”, “-“. So the ratio in question is 49/58 = 0.845. Since it is greater than

the prescribed (default) value of 0.7, THIS LINE IS REGARDED AS A DIVIDER AND WILL

BE IGNORED FROM THE FLOWCHART.

On the other hand, consider the line

C------ Sample ------

The total number of character is 22 (including the space character), of which 12 is the “most

frequent character”, “-“. So the ratio in question is 12/22 = 0.545 < 0.7. This line WILL NOT be

regarded as a divider and therefore WILL BE included in the flowchart AS A COMMENT LINE.

This mechanism is used to skip some unwanted comment line in the flowchart and therefore save

some paper when hardcopy is produced.

 33

8. Color Definitions

This page documents the color definition of various “components” of the flowchart. The user may click

on the icon (text, colored box or frame) to change the corresponding color (See Fig. 24).

9. Information in the “run.log” file

There is a file named “run.log” in the launch directory. This file is a chronological log of the application of

OmegaChart. It is also used to estimate the “current program execution time”. The file is simply an excel .csv

file and consisted of three fields:

Program file name, Number of line in that file, Execution time.

When this file is too big, user may edit it and delete some of the lines.

10. Information on Configuration Files

The .cfg file is an ASCII file that consists of the following system parameters. Depending on user preference,

any one of these parameters may be customized.

Fig. 24 Color Definition

 34

FG1 = -1

BG1 = -16777216

BDR1 = -16777216

FG2 = -8388608

BG2 = -8323328

BDR2 = -8323328

FG3 = -16777216

BG3 = -256

BDR3 = -65536

FG4 = -16777216

BG4 = -8323073

BDR4 = -16711681

FG5 = -16777056

BG5 = -1

BDR5 = -16777056

FG6 = -32768

BG6 = -16777056

BDR6 = -16777056

FG7 = -16777216

BG7 = -32513

BDR7 = -32513

FG8 = -16777216

BG8 = -32513

BDR8 = -32513

FG9 = -1

BG9 = -65536

BDR9 = -65536

FG10 = -128

BG10 = -8388480

BDR10 = -8388480

FG11 = -128

BG11 = -8388608

BDR11 = -8388608

FG12 = -1

BG12 = -16744448

BDR12 = -16744448

Color Definition. Those numbers are

used internally in OmegaChart. You

may use the configuration

management panel to change colors.

 35

ILANG = 3

IBrowser = 2

OmegaMath = True

PrintFormIndex = 2

IForm = 2

GOTO_Line = True

Shade = True

CommentAfter= True

WFACTOR = 6.3

HFACTOR = 15

vsps = 20

hsps = 20

FntSz = 10

LenLimit = 40

ITruncate = 121

DividerRatio = .9

11. Why does OmegaChart Fail?

In the following list are several reasons why the OmegaChart program may not be able to complete the

requested analysis:

• The source code cannot pass the syntax compilation of the Fortran code.

• The source code contains the Hollerith constants

• The parameter ITRUNCATE is not setup correctly.

• The source code contains the {TAB} characters.

• The source code is a mix of fixed form and free form. OmegaChart can only perform the analysis

of one form at a time.

12. Technical Support & Contact Information

For technical support, question and suggestions, please send email to

services@omegachart.com

Please report any Bug to Technical Support at services@omegachart.com

If-Statement FORM

Chart Parameters

Default language

Default browser

