

PDAcalc

User manual

Version 1.60

PDAcalc
Copyright © 2004 by ADACS LLC

All rights reserved. No part of this book shall be reproduced, stored in
a retrieval system, or transmitted by any means, electronic,
mechanical, photocopying, recording, or otherwise, without written
permission from ADACS LLC. Although every precaution has been
taken in the preparation of this book, the publisher and ADACS LLC
assume no responsibility for errors or omissions. Nor is any liability
assumed for damages resulting from the use of information
containing herein.

Warning and Disclaimers

ADACS LLC makes no warranty, either expressed or
implied, including but not limited to any implied warranties of
merchantability and fitness for a particular purpose, regarding any
programs or book materials and makes such materials available
solely on an "as-is" basis. In no event shall ADACS LLC, be liable to
anyone for special, collateral, incidental, or consequential damages
in connection with or arising out of the purchase or use of these
materials, and the sole and exclusive liability of ADACS LLC
regardless of the form of action, shall not exceed the purchase price
of this application. Moreover, ADACS LLC, shall not be liable for any
claim of any kind whatsoever against the use of these materials by
any other party.

Contact information

 ADACS LLC
Advanced Digital & Analog Consulting Services
12076 Marsh Hen Lane
Tega Cay, SC 29708
Phone: 803.833.8312
Fax: 803.547.4667
Email: support@adacs.com
Web site: www.adacs.com

http://www.adacs.com/

Table of contents

ABOUT ADACS LLC _____________________________________ 7
TELL US WHAT YOU THINK__________________________________ 7
ACKNOWLEDGMENT ______________________________________ 7

INTRODUCTION _______________________________________ 8

PDACALC AND ITS MODULES ______________________________ 10
A Gallery of Scripts and Graphics__________________________ 10
DIFFERENCES BETWEEN PLATFORMS ________________________ 11

THE CALCULATOR____________________________________ 12

MODIFYING KEY ASSIGNMENTS_____________________________ 13
Reserved keywords for PDAcalc key assignment _____________ 15
THE GRAPHICAL SCREEN _________________________________ 15
THE MENU ITEMS _______________________________________ 16
Options __ 16
Preferences___ 16
Variables___ 18
Default Keyboard ______________________________________ 18
Available memory ______________________________________ 18
Select module ___ 18
Beam program __ 18
Beam all scripts__ 19
Register__ 19
Edit ___ 20
Scripts___ 20
New script __ 20
Load script ___ 20
Edit script __ 21
Debug scripts ___ 22
Help___ 22
Functions __ 23
Site licenses __ 23
Legal agreement_______________________________________ 23
About__ 23
Synchronize scripts with a Palm device _____________________ 23
Register online __ 24
Visit our web site_______________________________________ 24
Functions online _______________________________________ 24
Browse scripts___ 24
User information _______________________________________ 24
Upload/Update script ___________________________________ 24
CREATING A DOCUMENT __________________________________ 24
SCRATCHPAD AND PROGRAM SPACE_________________________ 25

STARTUP SEQUENCE ____________________________________ 25

UNITS MODULE ______________________________________ 26

BASIC CALCULATIONS ___________________________________ 26
PREFERENCES ___ 27
Assigning units __ 27
HELP INFORMATION _____________________________________ 28
BASE UNITS ___ 28
USER SCRIPTS ___ 28
CONVERSION __ 28
KEYBOARD__ 29
FUNCTIONS ___ 29
EXAMPLES __ 30
Volumetric example ____________________________________ 30
Mole-volume example___________________________________ 31
Helical Coil Spring example ______________________________ 32
Predefined units _______________________________________ 33
Constants __ 33
Distance ___ 33
Area __ 33
Volume __ 33
Mass __ 34
Voltage __ 34
Current __ 34
Resistance ___ 34
Power ___ 34
Induction ___ 34
Capacity ___ 35
Frequency__ 35
Speed ___ 35
Force__ 35
Pressure ___ 35
Magnetic density_______________________________________ 36
Energy __ 36
Temperature __ 36

CLASSIC MODULE ____________________________________ 37

BASIC CALCULATIONS ___________________________________ 37
WORKSHEETS ___ 38
Plot function __ 38
Solve Equation __ 39
PUTTING IT ALL TOGETHER _______________________________ 40
BUILT-IN FUNCTIONS ON PDACALC CLASSIC___________________ 40
Complex ___ 41
Basic__ 41

Calculus ___ 42
Financial ___ 42
Logical___ 43
Base conversion _______________________________________ 43
PROBABILITY & STATISTICS _______________________________ 43
STATISTICAL AND PROBABILITY FUNCTIONS____________________ 45
USER-DEFINED FUNCTIONS________________________________ 47
GRAPHICS __ 48
Default Colors ___ 49
Graphics Examples_____________________________________ 49
3D functions __ 52
CLASSIC BUILT-IN FUNCTIONS ______________________________ 54
Basic functions __ 54
Color functions __ 59
Complex functions _____________________________________ 60
Conversion functions ___________________________________ 62
Date functions___ 63
Financial functions _____________________________________ 64
Flow control functions ___________________________________ 68
Graphical functions _____________________________________ 71
Interactive functions ____________________________________ 85
Logical functions _______________________________________ 87
Relational functions_____________________________________ 88
Special functions_______________________________________ 89
Statistics functions _____________________________________ 94
Trigonometric functions_________________________________ 101
EXAMPLE SCRIPTS _____________________________________ 103
Biorhytms ___ 103
Graph demo ___ 104
FFT example program _________________________________ 105
FFT built-in functions __________________________________ 106
Quadratic regression example ___________________________ 107
Chi-square test _______________________________________ 108
Opamp ___ 109
Root function___ 110

PROGRAMMING PDACALC CLASSIC ___________________ 111

A PROGRAMMING PRIMER _______________________________ 111
PDACALC CLASSIC’S COMMANDS__________________________ 113
PROGRAMMING EXAMPLES _______________________________ 114

MATRIX MODULE ____________________________________ 120

ADVANTAGE OF A MATRIX CALCULATOR _____________________ 120
BASIC CALCULATIONS __________________________________ 121
SCREEN SHOTS _______________________________________ 122

Matrix multiplication ___________________________________ 123
User functions__ 125
DIFFERENTIAL EQUATIONS _______________________________ 126
Lorentz contraction ____________________________________ 127
INTEGRATION ___ 128
MATRIX BUILT-IN FUNCTIONS _____________________________ 129
Arithmetic functions ___________________________________ 129
Bitwise functions______________________________________ 130
Complex functions ____________________________________ 132
Date functions__ 133
Exponential functions __________________________________ 133
Flow control functions__________________________________ 135
Graphical functions____________________________________ 137
Interactive functions ___________________________________ 146
Logical functions______________________________________ 147
Matrix functions_______________________________________ 147
PDAcalc functions_____________________________________ 158
Relational functions ___________________________________ 160
Special functions______________________________________ 161
Statistics functions ____________________________________ 166
Trigonometric functions ________________________________ 169
EXAMPLE SCRIPTS _____________________________________ 172
Net Present Value_____________________________________ 172
Wave Period ___ 173
Solve quadratic_______________________________________ 174
RC network __ 175
Closed contour _______________________________________ 176
Hanging pendulum problem _____________________________ 177

APPENDIX __ 178

TECHNICAL SPECIFICATIONS ______________________________ 178
DATA FORMATS _______________________________________ 179
DISPLAY FORMAT ______________________________________ 180
USING EXCEL ___ 181
CONSTANTS __ 182
CURVE SKETCHING_____________________________________ 183
USEFUL WEB LINKS ____________________________________ 184
AFTERWORD ___ 184

 About ADACS LLC

ADACS LLC is a leading provider of graphical
programmable calculators for the personal digital assistants PDA’s.
Our founder and president, Evert H. Rozendaal, designed the first
calculator, CplxCal, for the palm platform using complex numbers in
1998. CplxCalPro followed in 2000 and was the first graphical
programmable calculator for the palm platform. MtrxCal, a matrix
calculator especially designed for the palm, was released in 2001. In
2003 PDAcalc modules where released to bridge the gap between
different platforms. PDAcalc modules are currently available for palm
devices, windows and the PocketPC.

Tell us what you think

As the reader of this book and the user of PDAcalc, you
are our most important critic and commentator. We value your
opinion and want to know what we’re doing right, what we could do
better, and any other words of wisdom you’re willing to pass our way.

Acknowledgment
At various stages of the development of our products, a

number of people have given us invaluable comments. In this regard
we owe a debt of gratitude to James Derry for his invaluable help
writing this manual, Gilfred B. Swartz for his help with PDAcalc
matrix. We also like to thank John Molinder, Doug McCready, Haig
Terzian and Meric Ozcan for all their help and support.

8 Introduction
Introduction

8

If this is your first time reading this manual, chances are
you’ve just installed an unregistered copy of PDAcalc onto your PDA
to try it out, perhaps to compare it to other PDA calculators available
on the Web, and see if it meets your needs. Whether those needs
are of a professional who requires a calculator to process field results
or a student who’s trying to get a grasp on science, math, or
engineering concepts, we feel that the PDAcalc is up to the
challenge. PDAcalc is a power user’s non-RPN calculator. It uses a
64-bit double-precision floating-point format, providing an
approximate numerical range of –2.23E-308 <= n <= 1.80E308.*
PDAcalc was designed to be the most flexible calculator for PDA’s
today, allowing the user to do more complicated calculations than
ever before. It has a user-configurable keyboard, and has several
different modules. Versions of PDAcalc exist for the Palm, PocketPC,
and Windows platforms. A script written on one platform will run on
all of them. Write once, run everywhere.
PDAcalc provides a framework of sorts upon which any one of our
PDAcalc modules will run. Those modules, in the order in which they
were released, are: PDAcalc units, a module specially designed for
automatic unit conversions; PDAcalc classic, a module for general
purpose calculations; and PDAcalc matrix, a module for matrix
calculations.

* Refer to Appendix A, Technical Specifications, for the exact range.

Introduction 9

9

Below an image of each:

Figure 1

Figure 2 Figure 3

PDAcalc_units PDAcalc_classic PDAcalc_matrix

If you’re shaky on programming or graphics manipulation, don’t
panic. This manual goes over both, and includes a primer to walk you
through the fundamentals of programming. Furthermore, PDAcalc
comes with many ready-to-use scripts, and we maintain a library of
scripts for the PDAcalc modules for you to download at
http://www.pdacalc.com This means a solution to meet your needs
may already exist! PDAcalc allows you to store, retrieve, and manage
scripts. Scripts can be grouped by category. And the number of
scripts is limited only by the amount of free memory in your PDA.
Please take a few moments to sit down with this manual and
PDAcalc to familiarize yourself with this calculator. This manual was
designed to serve as an easy-to-follow guide to PDAcalc, as well as
a handy reference for those tackling real-world problems with our
calculator.
And most of all, enjoy!

http://www.pdacalc.com/

10 Introduction

PDACalc and its Modules

A Gallery of Scripts and Graphics
For those of you who want to know if looking into PDAcalc is worth
your time, we offer here a small gallery of graphics to illustrate its
power:

PDAcalc units

Figure 4

Figure 5

Notice how the result in Figure 5 is automatically converted to liters.

PDAcalc classic
General purpose, fully programmable, graphical calculator.

Figure 6

Figure 7

Figure 8

Figure 9

Draw multiple
graphs and
text on the
graphical
screen.

Do statistical
analyses on
large sets of
data. Here
PDAcalc
classic plots
the data
points, then
draws their
trend line.

PDAcalc
classic has a
suite of built-in
functions that
makes doing
sophisticated
analyses a
breeze.

Draw 3D
functions with
just a few
simple
functions.

10

Introduction 11

11

PDAcalc matrix

Most powerful, fully programmable, matrix calculator for your PDA.

Figure 10

Figure 11

Figure 12

Differences between platforms

Figure 13

Windows

Figure 14

PocketPC

Figure 15

Palm OS

As shown above, PDAcalc mostly has the same look and feel on all
platforms. The only differences are the locations of the menus,
memory available, the speed at which the scripts are executed, and
some additional functions on the windows platform. The Windows
version contains additional functions like uploading scripts directly to
our web site, browsing scripts on our website, etc. This is not
supported on the palm and PocketPC because a bigger screen is
required for these features. We use screen shots from different
platforms in this manual.

12 Introduction
The Calculator

As stated in the introduction, PDAcalc serves as a GUI
framework of sorts for its modules. The advantages of writing
PDAcalc this way include:

• Less memory required for multiple modules.
• Windows and PocketPC only need to install one DLL for a new

module.
• No learning curve for the GUI when adding a module.
• Quicker turnaround for adding features.
• Synchronization of scripts between different platforms.

A uniform GUI for modules means that the default main screen for
the modules, and their menus, differ only in support of their unique
features. Note the uniformity of the main screens of the modules:

Figure 16 Figure 17 Figure 18

A module can have several screens. Let’s focus on the main screen
as it is uniform across modules. The top 3 lines are called the
scratchpad. The fourth line displays the result of your calculation. It
also becomes the value of ans, a buffer to hold intermediate results
of your calculations. The fifth line is the status line. It shows the
display format of PDAcalc you’re using, the name of the script you’re
running, and the date. Below that is the keyboard. The default layout
of the keyboard depends on the module.
From this screen you can enter equations and perform immediate
computations, just as you can if you were using a dedicated algebraic
calculator.* The difference is you can carry the answer from one
calculation to another on the 4th line.

* Here we use “dedicated” to mean special-purpose hardware.
Examples include Casio, TI, and HP calculators.

12

Introduction 13

13

Modifying Key Assignments
Some keys on the main screen have a special meaning or perform a
special function. These keys are listed below.

Keys Function
Hexadecimal format key.
= / * - + Arithmetic operators.
0-9 Numeric input keys.
^ Exponentiation.
, Comma. Separates arguments.
; Semi-colon. Separates statements.

ans
The variable which holds the results of
intermediate calculations. Pressing this key enters
“ans” at the cursor location.

() Parentheses modify precedence of arithmetic
operators.

pi Math constant equal to
3.14159265358979284808.

e Math constant equal to 2.7182818284590458404.

arg Enters the function “arg(“ at the cursor location.
Arg(x) returns the angle of x.

Re / real The real of x.
Im / imag The imaginary of x.
j The imaginary portion of a complex number.
sqr
sqrt The square root of x.

sin, asin,
cos, acos,
tan, atan,
sqr

Enters basic trig functions or their inverses.

A B C D E
F

Pressing any of these keys enters the variables A-
F at the cursor location. These keys are also used
for hexadecimal entry.

CLS Clears the scratchpad area.
VAR Displays a list of all the assigned variables.

FUNC
Key that, when pressed, brings up list of
PDAcalc’s built-in functions. Choosing a function
from the list places it on the scratchpad.

EDIT Brings up the program currently loaded into
PDAcalc for editing.

RUN Evaluates the three lines in the scratchpad, then
runs the loaded program.

EXE Evaluates the three lines in the scratchpad only.

The user can assign all keys on the main screen. A simple text file,
the keyboard assignment file, determines key assignments. Each line
of text maps to a row of keys, and a comma separates the text for
each key. Frequently-used functions can have keys assigned to them
for quick and easy entry of your equations. Let’s look again at the
default keyboard:

14 Introduction

Figure 19

All the keys were
assigned by reading the
text file on the right.
Notice the substitution of
the tilde for the comma.
The comma is used as a
delimiter between key
assignments.

These key assignment
files are stored in the
keyboard category of the
PDAcalc database. Use
the program editor to
create or edit these files.

#,A,B,C,D,E,F
pi,=,~,;,(,),CLS
e,^,j,@angle,@real,@imag,BS
7,8,9,/,@sin,@asin,VAR
4,5,6,*,@cos,@acos,EDIT
1,2,3,-,@tan,@atan,RUN
0,.,E,+,@sqr,ans,EXE

Select [Scripts] from the menu and then select [load script]. This
shows the available scripts in the selected category. Next, select the
keyboard category and you should see at least two files, “MainKeys”
and “Programmer”. Select “Programmer” and then tap [Edit] to edit
the script or tap [load] to load the script. When loading a keyboard
script, the keyboard will change accordingly. After a key is pressed in
the main screen, PDAcalc determines if a “special” key was pressed.
When a “special” key is pressed, the PDAcalc executes a “special”
function accordingly. Reserved keywords determine if a key is
“special”. If the keyword EXE is assigned to a key, for instance,
PDAcalc executes the lines in the scratchpad (the top three lines of
the display) when that key is pressed.

14

Introduction 15

15

Reserved keywords for PDAcalc key assignment
EXE Evaluate the three lines in the scratchpad.

RUN Evaluate the three lines in the scratchpad, then run the
script.

EDIT Edit the program.

FUNC Show a list of all the functions. Tapping one on the list
puts it in the scratchpad.

VAR Show a list of all the assigned variables.
FLT Set display format to float.
HEX Set display format to hexadecimal.
BIN Set display format to binary.
OCT Set display format to octal.
@ Put an open-parenthesis in the scratchpad. This saves

time when using functions.
& Evaluate the three lines in the scratchpad, then run the

program. The iskey() function can be used to test for key.
= Put the equal sign at the cursor position.

$
Variable assignment of a key. Pressing a key assigned a
variable puts the variable, an equal sign, and the value of
the variable in the result line.

The graphical screen

Figure 20

The graphical screen of PDAcalc is
shown in Figure 21. When you tap
inside an active graph the cursor
position will be shown at the bottom of
the screen. Due to the limited screen
space a power of ten multiplication is
used for the y-axis in the screen shot.
In this example multiply the y-values
by 102. The blue dot indicates the
cursor position shown at the bottom of
the screen. When you plot multiple
graphs the last plotted graph is the
active graph.

The button at the bottom right shows the current state of the script.
When ‘waiting’ is shown the program waits till this button is pressed
before continuing the script. Pressing the cancel button will cancel
the program and return to the main screen.

16 Introduction
The Menu Items

The menu items are depending on the module and the
platform. However most of the menu items are the same for all
modules and platforms.

Options

Figure 22

Preferences

Figure 23

The preferences form allows you to set the
display format of numbers, angular
measurements in radians or degrees* and
whether to show trailing zeros in the result.

The following formats are supported: Float,
Scientific, Engineering, Symbol, Hexadecimal,
Binary, Octal, Polar, Date and Sexagesimal.

The display format determines the width and precision of the
displayed numbers. The sum of these two numbers can’t exceed 24.
In the example on the left, the sum is 8, which means a number like
1234.56789 will be rounded and displayed as 12345.68

Default preferences
format ………………………………………………… float
width ……………………………………………..…… 6
precision ……………………………….…..………… 4
angular measurement, if supported by module…… degrees
trailing zeros………………………………………….. no

The format function fmt(t,w,p,tr) can be used to set format options to
be used during the execution of a calculation or program.
t: 0-float, 1-Scientific, 2-eng, 3-sym, 4-hex, 5-bin, 6-oct, 7-pol, 8-date,
9-sexagesimal
w: width of number (0-15)
p: precision of number (0-15)

* Please note that because the matrix module was written to be
compatible with Matlab, trig functions in this module take or return
radians only. The matrix module does not support angular
measurements in degrees.

16

Introduction 17

17

tr: trailing zeros. (0 or 1)

Preferences for angular measurement, if supported by the module,
can be changed with the functions:

stdeg() Sets angular format to degrees.
Strad() Sets angular format to radians.

Display format example
Some examples of how numbers are displayed in different formats,
widths and precisions by changing the preferences:

Number Format Width Precision Display Comments

123456.789 float
7

2 123456.79 Default settings of PDAcalc.

123456.789 float 7 3 123456.789 ah-hah! PDAcalc retained
the last digit.

123456.789 float 1 5 1.23457E05 Only one digit in front of the
period.

123456.789 float 1 9 1.23456789E05 Nine digits maximum behind
the period.

0.000123456 float 1 7 0.00012346 Shows leading zeros.
0.000123456 scientific 1 7 1.23456E-04 No leading zeros

123456.789 engineering 1 9 123.456789E03 Engineering formats by
10^(3n), where n >= 0.

123456.789 engineering 1 9 123.456789E03 No difference.

123456.789 symbol 1 9 123.456789k
“symbol” means SI symbols,
and “k” means “kilo” or
“multiply by 1000”.

1234567 hexadecimal 4 9 #12D678:1,234,567

1234.567 hexadecimal 4 9 #4D2:1,235
PDAcalc rounds off the
decimal part of input, then
hexes the result.

1234.567 binary 4 9 10011010010 PDAcalc also bins rounded
input.

1234.567 octal 4 9 2322 Also octal.

Sqr(-1) polar 4 9 pol(1, 90)

Polar format displays
complex numbers in polar
format.
90 is the angle in degrees.

1+j1 polar 9 4 pol(1.4142, 45) As expected the magnitude
is sqr(2).

3090000000 date 0 4 Fri, Nov 30, 2001 When width is set to 0, date
is displayed in full format.

3090000000 date 1 4 11/30/01

When width is set to 1, date
is displayed in compressed
format.

1.5 sexagesimal 9 4 1°30’0”
Sexagesimal format
converts a decimal input into
DMS.

1.75 sexagesimal 9 4 1°45’0” 3/4’s of 60 minutes is 45

18 Introduction
Variables

Figure 24

The variables screen (under
the options menu) shows you
variables and their values.
Press [Clear all] to clear all
variables. The variables are
not cleared before loading a
script. Loading and running
scripts keeps on adding
variables to this list till the list
is full. When the list is full,
you will see a message on
the main screen to clear
variables.

Figure 25

When you see this on the main screen, just select [Options] =>
[Variables] and [Clear all] to continue. When a matrix is to big to be
displayed in the variables screen three periods will be shown after
the last shown element of the matrix. The closing bracket will not be
shown either.

Default Keyboard
Just as this menu item name says, selecting it clears the user-
defined keyboard and loads the default keyboard.

Available memory
This option shows memory information, not applicable on PDAcalc
for Windows and PocketPC.

Select module

Visit our web site to sign up for our newsletter and receive emails
when new modules are available.

Use the select module screen (under the
options menu) to select a different
module. The windows and PocketPC
version checks for available libraries,
DLL’s, in the PDAcalc directory and
shows them in the list.

Over time ADACS intends to release
more modules.

Beam program
This option will beam the program from a palm device to an other
palm device. At the time of writing the manual this feature was not
available on PDAcalc for Windows and the PocketPC.

18

Introduction 19

19

Beam all scripts
This option will beam the scripts from a palm device to an other palm
device. At the time of writing the manual this feature was not
available on PDAcalc for Windows and the PocketPC.

Register

Figure 26

You can use PDAcalc without registering for
about three weeks. This allows you to
evaluate the calculator to see if it meets your
needs.

Registration gives the user access to all
features of PDAcalc. It also disables the
window asking you to register.

We highly recommend that you use the windows version to register
the different versions even if you do not want to register the windows
version. During the installation, all PDA user name for the different
platforms, needed to generate the registration code, is stored on your
system.

After tapping on [Register online], this information is transferred to
our web site, avoiding errors; and you can register for multiple
platforms. After clicking the [Register online] button, you can watch
the URL of the web site to see the information transferred.

Select the product(s) you like to register and entering your personal
information, press [Next step]; and a printout of your order will be
shown. We recommend printing this page for your own records.
Press [Next step] again, and you will be transferred to a secure
server to enter your credit card information. Notice the https:// at the
beginning of the URL before entering your credit card information.
After completing the credit card information form, press [process] to
complete the order. After the order is processed, our local server
receives an email and generates your registration code(s)
automatically. Due to the importance of this process, we keep our
local server up and running 24/7. Your registration code(s) are
normally emailed to you within 30 minutes after the order is
processed successfully.

20 Introduction
Edit

Figure 27

This is the standard [Edit] menu. This
menu is a little different on the different
platforms depending on the standards of
the platform. PDAcalc allows you to copy-
and-paste values from the result line into
the scratchpad, or to share information
across applications (e.g., to copy values
from the result line into a memo).

Scripts

Figure 28

New script

Figure 29

Selecting [New script] from the [Scripts]
menu brings up the script editor. The
script editor is much like a simple text
editor, with each line numbered.
Numbering lines simplifies debugging
scripts.

Load script
Selecting [Load script] from the [Scripts] menu will display the
available scripts. Before showing this window, PDAcalc will check the
supported devices on your system and show them in the circled area.
This means that if your device is connected to web you can select
[ADACS web] to load scripts directly from our web site. At the time of
writing not all communications links where supported yet by PDAcalc.

20

Introduction 21

21

Figure 30

Just run PDAcalc and check the list
to see which ones are supported.
Possible communication links are:

local Local storage on your device.

ADACS web ADACS web site.
Serial RS232 serial communication.
Irda Infra red communication.
Wi-Fi Local wireless network.

After selecting a different communication link, a new list of available
scripts will be shown depending on the available scripts via the
selected link. Select one of the scripts and tap on one of the buttons
at the bottom of the screen to delete, edit or load the script. After
pressing the load button PDAcalc will check for a file with the same
name in the keyboard category. When such a file exists in the
keyboard category that file will also be loaded and the keyboard will
change accordingly.

Edit script
On the Windows version, the script editor screen is bigger than it is
on PDAs, and shows line numbers. The smaller screen size on the
Palm is why line numbers are not shown on the Palm version.

Figure 31

Edit on palm

system

After viewing or editing
your script, you can
debug your script, save
the script under a
different name or save
the script using its
current name.

Figure 32

Edit on windows

22 Introduction

Debug scripts

Figure 33

Debug script on palm

Figure 34

Debug script on windows

The debug screen will show the scripts color coded. It will also show
the first error if the script contains an error as shown on the right. The
screen shots above show a little PDAcalc classic scripts as an
example. Notice that there is an argument missing in the gmove()
function, and the red ‘err’ message replaces the line number where
the error occurs. As commonly used in programming languages,
parts of the script are indented to improve readability. This is known
as “pretty print” formatting and is done automatically by PDAcalc
classic and PDAcalc matrix.

Help

22

Introduction 23

23

Functions

Figure 35

This item shows a list of all the
available built-in functions. Select a
category and tap on a function for a
brief description of the function. The
categories and functions are different
for different modules.

The function descriptions, as shown
at the bottom of Figure 36, are stored
in the document category. You can
edit the descriptions by selecting
Scripts – Load script and select the
Document category.

Visit our web site for a more detailed
description of the functions.
http://www.pdacalc.com

Site licenses
We have special volume discounts. This screen will indicate if you
have a discount version or a standard version. Companies or schools
might have there own special copy indicated by this screen.

Legal agreement
This screen will show you what you probably expected already!

About
Also shows our web site address for the latest information.

The help items below are only available on the Windows
version.

Synchronize scripts with a Palm device
Select this menu item to toggle synchronization of scripts between a
palm device and your windows version. When the check mark is
shown all scripts are synchronized when the hotsync button is
pressed on the palm cradle.

http://www.pdacalc.com/

24 Introduction

24

Register online
Clicking this menu item will open your browser and transfer your PDA
user names to our web sites when connected to the Internet. Enter
your information and select the product(s) you like to register. If you
like to order more than one module or for more than one platforms
take a look at the bundles for discounts.

Visit our web site
Clicking this menu item will open your browser and show our main
web site. It should be no surprise that an Internet connection is
required.

Functions online
Clicking this menu item will open your browser and show a list of
built-in functions. These pages contain additional information about
the functions and user-contributed notes.

Browse scripts
Clicking this item will open the browser and show the latest scripts
that were uploaded to our web site. To load a script, see Load scripts

User information
Select this item to enter your user information. This information is
used when you upload a script to our web site. A password is used to
prevent other people from updating your scripts and taking the credit
for it.

Upload/Update script
Clicking this item will convert your script to color coded HTML and
upload your script to our web site. Enter a short description of the
script and enter a long description of your script and press upload
script to complete the upload. When you make changes to your script
and select Upload/Update script the descriptions stored on our web
server will be shown in a edit field. Use this field to update the
description of the script. When your script contains an error, the script
can not be uploaded. You will have to fix the error before uploading.

Creating a document

If you like to document your script you can use the
Upload/Update menu item to create the color coded script in HTML
format. Highlight the script and press [ctrl] + C to copy the script into
the clipboard. Open a word processor or HTML editor and paste the
script into it.

Introduction 25

25

Scratchpad and program space
When you load a script the first three lines will be shown in

the scratchpad of the main screen. When you press the EXE button
only the three lines in the scratchpad will be evaluated. When you
press the RUN button for the first time the three lines in the
scratchpad will be evaluated. Next the rest of the script will be
converted and optimized to run as fast as possible and stored in
program space. Then the code in program space will be executed.

The next time you press the RUN button the three lines in the
scratchpad will be evaluated again and then the code in program
space will be executed without the step of converting and optimizing.
Converting and optimizing can take a long time when using a palm
device with a slow processor. Of course it also depends on the size
of the script. The main thing to remember is to put variables you
change frequently in the scratchpad, first three lines. Otherwise if you
like to change a variable within the script you have to edit the script
and wait for PDAcalc to convert and optimize the script again.
When you change the variables in the scratchpad on the main screen
the changes will not be saved in the script. Hence the name
scratchpad.

Startup sequence

When you start PDAcalc for the first time the program will
search for available modules. The available modules will be shown in
the module selection window. After selecting a module PDAcalc will
search for the initialization script. When found it will execute this
script. Use this script to initialize frequently used variables. For the
classic and matrix module the initialization script should be saved as
‘Initialize’ in the General category. For the units module the script
should be save as ‘Initialize’ in the conversion category. Then
PDAcalc will search for an initialization script in the keyboard
category. When a script called ‘Initialize’ is found the keyboard
category the script will be loaded and the keyboard will change
accordingly.

The next time you start PDAcalc the last used module will

be loaded automatically. After loading the module PDAcalc will
search for the initialization files as described above.

Where to Go From Here

The full functionality of PDAcalc depends on its modules.
Now that you’ve gone over the main screens and menus, you should
refer to whichever section pertains to the module you’re interested in.

26 Units module
Units module

26

Now that we’re familiar with the main screen, let’s do some
basic calculations on PDAcalc units using the default preferences:

Basic calculations
Objective: You press: Unit system Displays: Remarks:

3 + 4 3 + 4 [EXE] N/A 3+4
7

Pretty straightforward.

(3+4) * 2 [CLS][ans]* 2 [EXE] N/A ans*2
14

ans key supplies the previous
result in the equation.

Convert 4
miles to
kilometers.

[CLS] 4[mi] [=>] km
[EXE]

English -> SI 6.44*km PDAcalc units has a => key
for making conversions.

How many
gallons will a
container of
1.2 yards wide,
2 feet deep and
11 inches high
hold?

[CLS]
1.2[yd]*2[ft]*11[in]
[=>] gal [EXE]

English 49.37*gal PDAcalc units takes care of
conversions to a consistent
unit (say, all units of length to
inches). Note that inches
cubed and gallons are volume
measurements.

How many
liters will a
container of
1.2 yards wide,
2 meters deep
and 11 feet
high hold?

[CLS]
1.2[yd]*2[m]*11[ft][
=>][lt] [EXE]

English, SI ->SI 7357.92*lt A strange problem statement,
as units of length from
different unit systems are
specified. However, PDAcalc
units is not as confused as I
am.

Given
c=299792458
m/s, what is
the distance in
miles that light
travels in 1
year?

[CLS]
(299792458m/s)*365
.25day[=>]mi

SI->English 5.88E12*mi A calculation that any self-
respecting Trekkie must
perform at least once per
calculating device.

What is the
speed of light
in
furlongs/fortni
ght?

[CLS]
furlong=201.168m
299792458m/s[=>]fu
rlong/(2wk)

SI->English 1.8E12*furl
ong/(2wk)

The furlong and fortnight are
the units of length of time
preferred by the Luddite
faction in Starfleet Academy.

110V * 16A [CLS]110V*16A
[EXE]

SI 1760*W PDAcalc units has many more
units than can be displayed on
the main screen. To use them,
just type them in on the PC
version, or write them in with
your stylus on the Palm and
PocketPC versions.
Note that we didn’t have to
enter [=>] W. When a unit to
convert into is not specified,
PDAcalc units returns the
value in its base unit. Base
units are SI. The watt is the
unit of power in SI.

110V + 16A [CLS] 110V+16A
[EXE]

SI 1: Error
V+A

Of course. Volts and amps are
units of different physical
dimensions (the volt is a unit
of electrical potential, while
the ampere is one of electric
current), and so cannot be
added. Please don’t expect the
impossible from our
calculators!

Units module 27

27

Preferences
The preferences screen allows you to change the format in which
numbers are displayed and the default currency. The PDAcalc units
preferences screen includes the option to select either British or
American measurements.

As shown on in figure 37 six different
formats are supported. This screen also
shows how the value 12345.6789 will be
displayed based on the settings. The
screenshot shows the engineering format.
When the number is greater than 10Width an
exponent is used to display the value. In
the screenshot the value 12345.6789 is
greater than 104 and the precision,
decimal places, is two.

Figure 38
Select between American or British units. Check the ‘auto load’ check
box if you like the last used script to be loaded automatically when
starting PDAcalc units.

Assigning units
You can create and assign values to units not defined on PDAcalc
units. Let’s assume you’d like to compare the price of .7 kg of apples
in the US with their price in Euros. The US dollar (USD) is defined on
PDAcalc, but no other currency. We create and assign values to
other currencies in terms of the USD. Consider the following:

EUR=1.03USD
apples =1.29USD/lb
0.70kg*apples=>EUR

Here we’ve created and assigned a value to the Euro (EUR) to terms
of the USD, then used it in our calculations. Enter those three lines
on PDAcalc units, then press [EXE].

28 Units module
Help information

To select a unit that is not shown on the
keyboard, from the Help menu, select Units.
Units are organized by category; most
categories describe the physical dimension of
the units that fall under them. Select a
category, and a list of units will be shown. You
can add units not already defined on PDAcalc
units. Added units must be defined in the base
unit of the category (as EUR is defined in
terms of the USD in the example above).
User-added units will be show in the

Figure 39

appropriate category. After adding a unit like EUR=1.03USD this unit
will only be shown in the currency category.

Base units

Description Abbreviation Unit
Distance m meter
Mass kg kilogram
Time sec seconds
Current A ampere
Temperature Cel Celsius
Luminous intensity cd candela
Substance mol mol
Currency CUR Default currency.

User scripts

Loading a script from this category will display the contents
of the script in the scratchpad. This is where you store little scripts
that you need to change frequently. A good example is the little script
below:

EUR=1.03USD
apples=1.29USD/lb
0.70kg*apples=>EUR

After loading this script it is easy to change in the scratchpad and
press [exe] to calculate the new result. Changes are not saved.

Conversion

Loading a script from this category will not display the
contents of the script in the scratchpad. This is where you store the
bigger scripts that don’t change. After a script in the category is
loaded PDAcalc units will check for a script in the keyboard
category with the exact same name. When such a file exists it will be
loaded and the keyboard layout will be changed accordingly.

28

Units module 29

29

Keyboard
Loading a script from this category will
change the layout of the keyboard. Below is
the little script used to create the keyboard
layout on the right.

mi,km,m,yd,ft,in,cm
pt,gal,lt,cup,tsp,Fah,Cel
mg,g,ct,oz,N,lb,kg,tn
7,8,9,(,),CLS
4,5,6,*,+,BS
1,2,3,/,-,=>
0,.,E,%,ans,EXE

Figure 40

Notice the commas between the text for each button. Deleting the top
line for instance will increase the height of each button to use the
same screen space for the keyboard. The width of the keys is also
automatically adjusted and depending on the number of buttons per
row.

Functions
Function Description Unit
Sqr(X) Square root none

Cel(T) Converts celsius to default
temperature unit Temperature

Fah(T) Converts Fahrenheit to
default temperature unit Temperature

30 Units module
Examples

PDAcalc units includes the following example script:

Volumetric example
From the conversion category select the Volumetric_oxygen script.

 001 // Volumetric flow and mass flow
 002
 003 // Oxygen
 004 // 1 atmosphere
 005 // 70 degrees F
 006 // 90% purity
 007 density=1.33kg/m^3
 008
 009 SLPM=lt/min
 010 SCFH=ft^3/hr
 011 lbPday=lb/(density*day)
 012 tnPday=tn/(density*day)
 013 kgPhr=kg/(density*hr)

Figure 41

Notice that // marks the start of a comment; all that follows will not be
processed.

After pressing load the Volumetric_oxygen script from the keyboard
category will be loaded and the screen shown on the right will
appear. The density in this script can be easily changed to any other
gas or fluid.

30

Units module 31

31

Mole-volume example

mbarP
CelsiusT

R

molen
Given

⋅=
=

⋅
⋅=

⋅=

1013
25

molK
J8.31441

1
:

o

Calculate the mol-volume V in liters, i.e. for the volume that 1 mol

of a gas occupies. Let’s take a moment to consider what we’ve got
here. The problem statement gives us values to physical dimensions
of the ideal gas law, PV = nRT. The dimensions of the universal gas
constant R are energy per degree per mole. The units that the
physical dimensions take, and therefore that their values take,
depend upon which unit system we use. In one unit system, R is
8.31441 joules per Kelvin per mole. In another, it is 8.314 × 107 ergs
per Kelvin per mole, in another 1.986 calories per Kelvin per mole;
and in yet another it is 0.08207 liter-atmosphere per Kelvin per mole.
(The inside cover of many chemistry books list at least three of these
values for R; the units of R tell us which unit system a given value of
R works in.) In chemistry classes, we’re taught to choose our value of
R based on the unit of the output we want, then if necessary convert
values of the other physical dimensions to units of that unit system;
finally, set up the ideal gas law equation algebraically to solve for the
unknown, then crank away on your Curta, slide away on your
slipstick, or bang away on your calculator to get the answer.

m

Fine, but look what we’re given as a value of R, and what we’re
asked for as output. Following the advice of our chemistry teachers,
we should choose R=0.08207 liter-atmosphere per Kelvin per mole,
since we’re being asked to give an answer in liters, then work the
problem.

32 Units module
But, hey: we’re solving this problem on PDAcalc_units. Look how we
set it up and solve for V:

mbar1013

K298.15
molK
J8.314411

⋅

⋅⋅
⋅

⋅⋅⋅
=

⋅⋅
=

mole
V

p
TRnV

m

m

Now set up and render the equation
as a script in which we specify in the
last line that the output is to be given
in liters (using =>lt), thus:

 001 n=mol;R=8.32*(J/(K*mol))
 002 T=Cel(25);p=1013*mbar
 003 (n*R*T)/p=>lt

Figure 42

And PDAcalc units prints the result in liters.

Without specifying a unit for the output, the result renders in m^3, the
default measure of volume in the unit system of R and the other
physical dimensions in the problem statement.
Of course you should save the constant R in a script if you use it
often and change the layout of the keys for easier entry of the values
and units.

Helical Coil Spring example
A tightly wound helical coil spring is made from a material whose
shear modulus is G. The bar from which the spring is made has a
diameter D. The spring has a coil radius r with Nc active coils. What
is the change in length of the spring from its unstretched length when
the spring hangs vertically with one end fixed and a block of mass mb
attached to its other end?
PDAcalc units includes the following example script:
From the conversion category select the HelicalCoil script.
 001 G=8E10*N/m^2
 002 D=0.02m
 003 Nc=80
 004 r=0.08m
 005 mb=200kg
 006
 007 // The stiffness
 008 k=(G*D^4)/(64*Nc*r^3)
 009
 010 // The change in length
 011 // of the spring due to
 012 // the attached mass
 013 x=(mb*g)/k

32

Units module 33

33

Figure 43

Predefined units

Abbreviati
on Multiplication Unit Unit system

 Constants

pi 3.141592654

g 9.80665 m/s2

 Distance

mi 1609.344 m

km 1000 m

yd 0.9144 m

ft 0.3048 m

in 0.0254 m

cm 0.01 m

 Area

acre 4046.86 m2

ha 10000 m2

 Volume

tsp 5.00E-06 m3

cup 0.000236587 m3

lt 0.001 m3

gal 0.0037854 m3 American

gal 0.00454609 m3 British

pt 0.0004732 m3

34 Units module

34

 Mass

ct 0.0002 kg

dyn 1.02E-06 kg

gr 0.001 kg

mg 1.00E-06 kg

N 0.101971621 kg

oz 0.0283495 kg

lb 0.453592 kg

tn 1000 kg

 Voltage

mV 0.001 V

kV 1000 V

 Current

mA 0.001 A

kA 1000 A

 Resistance

kohm 1000 ohm

Mohm 1.00E+06 ohm

 Power

mW 0.001 W

kW 1000 W

 Induction

mH 1.00E-03 H

uH 1.00E-06 H

Units module 35

35

 Capacity

uF 1.00E-06 F

nF 1.00E-09 F

pF 1.00E-12 F

 Frequency

kHz 1.00E+03 Hz

MHz 1.00E+06 Hz

 Speed

mph 5793638.4 m/s

kph 3.60E+06 m/s

 Force

mN 0.001 N

kN 1000 N

 Pressure

atm 101325 Pa

bar 1.00E+05 Pa

mbar 100 Pa

cmHg 1333 Pa

inHg 3386.28 Pa

inWC 249.061 Pa

mmHg 133.3223684 Pa

PSI 6894.757293 Pa

kPa 1000 Pa

36 Units module

36

 Magnetic density

Gs 1.00E-04 T

 Energy

Btu 1055.055853 J
Btu39F 1059.67 J British
Btu59F 1054.8 J British
Btu60F 1054.68 J British
kCal 4.19E+03 J

cal 4.1868 J

eV 1.60E-19 J

kWh 3600000 J

 Temperature

Fah C = (F - 32) * 5 / 9 Cel

Classic module 37
Classic module

37

Basic calculations
Now that we’re familiar with the main screen, let’s do some

basic calculations on PDAcalc classic using the default preferences:
The Problem
Statement: You press: PDAcalc classic

Displays: Remarks:

3 + 4 3 + 4 [EXE] 3+4
7

Pretty straightforward.

(3+4) * 2 [CLS]* 2 [EXE] ans*2
14

Use the previous result for the
current calculation.

2^((3+4)*2) [CLS] 2 ^ [ans] [EXE] 2^ans
16,384

ans key supplies the previous
result in the equation.

(2^((3+4)*2))^(1/14) [CLS] [ans] ^ (1 / 14)
[EXE]

ans^(1/14)
2

Fractional exponents.

Same as above [CLS] (2 ^ ((3 + 4)*2))
^ (1/ 14) [EXE]

(2^((3+4)*2))^(1/14)

2

PDAcalc classic follows algebraic
order of precedence when
evaluating expressions.

Same as above, but
with a deliberate error

delete a) from the
expression in the
scratchpad, then press
[EXE]

1:’)’ expected PDAcalc classic’s interpreter does
syntax error-catching.

(-1)^(1/2) [CLS] [sqr] – 1) [EXE] sqr(-1)

0 +1j

Imaginary numbers! Note that a
prepended ‘j’ designates the
imaginary part of a complex
number PDAcalc classic.*

(0 + 1j) + (2+3j) [CLS] +(2 + 3 j) ans+(2+3j)
2+j4

Adding imaginary numbers

(2+4j) – (3+1j) [CLS] –(3 + 1j) ans-(3+1j)
-1+j3

Subtracting imaginary numbers

-(1+5j) * (7+11j) [CLS] *(7 + 11j) ans*(7+11j)
-40+j10

Multiplying imaginary numbers

(-62+24j) / (-1+3j) [CLS] / (5 + 3j) Ans/(5+3j)
-5+5j

Dividing imaginary numbers

let A=4*5 [CLS] A = 4 * 5 [EXE] A=4*5
20

Variable assignments.

A/3 [CLS] / 3 [EXE] ans/3
6.67

20 / 3

A*3 [CLS] A * 3 [EXE] A*3
60

20*3

let A=3; B=4 [CLS] A = 3 ; B = 4
[EXE]

A=3; B=4

4

Separate multiple variable
assignments on the same line
with a semicolon

sqr(A^2+B^2) [CLS] [sqr] (A * A
+ B * B) [EXE]

sqr(A*A+B*B)

5

sqr(3^2+4^2)
Entering the problem using
the ^ key yields the same
result.
PDAcalc classic follows the
algebraic order of
precedence

Most math books use the postpended ‘i' to designate the imaginary
part of a complex number; e.g., sqr(-1) =1i. Engineering books use
the prepended ‘i' or ‘j’. Math books use the ‘j’ or ‘i' when a complex
number is raised to the power ‘e’; e.g., e^jb. In practice, electronic
engineers (like myself), commonly use the ‘j’ instead of the ‘i' since ‘i'
is used to designate current. It is a good practice to put parentheses
around a complex number. This is not needed when adding or
subtracting complex numbers but is needed when multiplying or
dividing them. 4+5j*4-2j yields a different result than (4+5j)*(4-2j).

38 Classic module

Worksheets

The items [Plot function] and [Solve equation] use
worksheets, and share information across worksheets. Worksheets
are little forms in which you enter parameters that will be used to
create a script.

Plot function

Figure 44

Select [Plot function] from
the [Scripts] menu. You
should see the screen on
the left. The textbox at the
top allows you to set initial
conditions for the plot. In
this example, ‘x’ is the
unknown variable; ‘a’ and
‘b’ are fixed. We set their
values here.

Figure 45

The next six values set the plot parameters. Xmin, Ymin, Xmax, and
Ymax, set the plot boundaries. Using [Plot function], PDAcalc classic
will plot 2 functions simultaneously (however, using a program,
PDAcalc classic plots as many functions as you want). You enter
each function on its own line at y1= and y2=.
Finally, N is the number of points used to plot a graph.

Press [OK] and a template script is created. Press [RUN] to execute
the script resulting in the plot on the right. Notice that the two lines
intersect twice within the plot’s boundaries.

Return to the main screen. Press the [EDIT]
key. The script that was created using the
parameters from [Plot function] comes up.
Using the [Save as] key, you can save this
script under a different name in a different
category.

We encourage you to modify scripts,
parameters, etc. on PDAcalc classic to get a
better understanding of how to use these
features.

Figure 46

38

Classic module 39

39

Solve Equation

Figure 47

Select [Solve equation] from [Scripts] menu.
PDAcalc classic uses a numerical root-
finding algorithm called the Newton-Raphson
method. This method uses the numeric
derivative of the function whose roots you’re
looking for, which is what the variable ‘h’ in
Init equation is for. This method is fast and
accurate, but it requires you to enter an initial
guess in the Guess: textfield.

Notice that the equations on the left-hand side (or LHS) and right-
hand side (RHS) of the equal sign on the Equation to solve: are
lines y1 and y2 in the [Plot function] worksheet above. Changing
equations y1 and y2 in that worksheet will change the LHS and
RHS of this equation. Pressing [OK] will create a template script to
solve for variable ‘x’. If you’d rather solve for ‘a’, just change ‘a=-3’
to ‘x=0’ in the Init equation: textfield and ‘x’ to ‘a’ in the Solve for
variable: textbox.
The program keeps trying to converge upon the root’s real value
until the error is within tolerance or the number of tries exceeds the
limit. The error in the equation of our example is abs(x) < TOL.
TOL is an internal value with a default of 1E-8.

Figure 48

When you press [OK], PDAcalc classic
creates a template, just as it did for [Plot
function], then solves the equation. Because
the RHS is one function, and the LHS is
another, [Solve equation] searches for where
the two are equal (or intersect when plotted).
Because the Newton-Raphson method
converges on one real value for a root near
the guess value, it can find just one root at a
time.

And just as with [Plot function], pressing the [EDIT] key on the main
screen exposes the template to you. Go back to [Solve equation].
Now change the guess value from 0 to 2, press [OK], and notice
PDAcalc classic comes up with a different value for x. This is
because the value of this guess was close to the second point of
intersection. This brings us to an important point on the use of
PDAcalc classic (and other graphing calculators) when analyzing
functions by plotting them and solving for their roots: are there other
values of x where the RHS and LHS functions intersect? How can we
know?

Return to [Plot function], and change the plot boundaries to
Xmin=-5, Xmax=20, Ymin=-40, and Ymax=200, then press [OK].

http://mathworld.wolfram.com/NewtonsMethod.html
http://mathworld.wolfram.com/NewtonsMethod.html
http://mathworld.wolfram.com/NewtonsMethod.html

40 Classic module

40

PDAcalc classic now reveals a third intersection that it didn’t earlier
because our plot boundaries were not sufficiently great to capture the
detail we needed (careful: there are also instances in which one
could say our plot boundaries were not sufficiently large to capture
the detail we needed). Using [Plot function] and [Solve equation]
together creates a powerful method for getting roots: a plot of the
function(s) gives you good values for those initial guesses you have
to put in. And the point? There is no substitute for having solid
knowledge of the general behavior of the functions you’re working
with. That includes knowing how to sketch curves of these functions,
given their parameters. Curve sketching is beyond the scope of this
manual, but we’ve included a reference of points to consider when
sketching curves (see Appendix H); and we wish to point out that
good, instructive websites exist to allow you to learn or review the
skill. Just type “curve sketching” into the textbox of your favorite
Internet search engine, and browse the results. There’s bound to be
at least one website that meets your tastes and needs.

Putting It All Together

Wow! We’ve covered quite a bit of ground in just one
chapter. As you can see, just with the main screen and default
keyboard, PDAcalc classic puts tremendous capabilities and
computing power at your fingertips, much of it just a few stylus taps
away. We’ve intentionally glossed over many of them when
introducing them to you because using them requires knowledge of
other capabilities that are introduced later. In this chapter, we’re
going to put it all together: we’re going to walk through examples of
how to change PDAcalc classic’s initialization file and keyboard; and
we’re going to walk through downloading a program from our online
library, installing it, and running it.

Built-In Functions on PDAcalc classic

PDAcalc classic comes with more than 190 functions with
applications in math, sciences, engineering, statistics and finance.
From version 3.0 on, this includes functions that return the first and
second derivatives of a function f at x. In this chapter, we look at
some of those functions, as well as some of their applications. We
will start with Complex number functions.

http://mathworld.wolfram.com/ComplexNumber.html

Classic module 41

41

Complex
FUNCTION REMARK ARG YIELDS EXAMPLE
 Input Output
arg(x) Returns the angle of x. cplx real arg(1-1j) -45

conj(x) Returns conjugate of x. cplx cplx conj(3-4j) conj(3+4j)

pol(r,a) Returns rectangular value of

radius r and angle a.
real cplx pol(3, 45) 2.12+2.12j

Im(x) Returns imaginary of x. cplx real Im(3-4j) -4

Re(x) Returns real of x. cplx real Re(3-4j) 3

Basic
EXAMPLE OPERATOR

or
FUNCTION

REMARK ARG YIELD
Input Output
50% .5 % If only percent is

evaluated, returns
decimal equivalent of
percent. If percent is
second part of arithmetic
expression, takes percent
of first part as second
part, then evaluates
expression.

Real real

10 + 7.5% 10. 75

Real abs(x) abs(-5) 5 abs(x) Returns absolute value if
x is real and returns
magnitude if x is
complex. cplx mag(x) abs(sqrt(-1)) 1

cbrt(x) Returns cube root. Real real cbrt(-5) -1.71

ceil(x) Returns x if x is int, else
returns next int > x

real real ceil(-2.5) -2

exp(x) Returns e^x. For complex z=x+yj, exp(z) = exp(x)*(cos(y)+1j*sin(y)).
Floor(x) Returns x if x is int, else

returns next int < x
real real floor(-3.2) -4

frac(x) Returns fractional part of
x

real real frac(-3.2) -0.2

round(x) Returns next int < x if
fractional part of x
between .0 and .49-bar,
else next int > x

real real round(-3.7) -4

Real real sqr(-9) 0+3j sqr(x)
Returns square root.

cplx cplx sqr(-5+12j) 2+3j
ln(x) Returns natural logarithm of x.

log(x) Returns common logarithm (base 10) of x.
max(a,b) if a > b returns a else b.

min(a,b) if a < b returns a else b.
mod(x,y) Returns x modulo of y.

42 Classic module

42

Calculus
FUNCTION REMARK ARG YIELDS

int(f,x1,x2) Solves a definite integral function f, x1, x2

der1(f,x,h) Returns the first derivative of function
f at x.

function f, x, h f’(x)

der2(f,x,h) Returns the second derivative of
function f at x.

function f, x, h f’’(x)

h is also known as dx, and the definition of a derivative comes from the
difference quotient of function f. h then is the difference between two values
of x, x0 and x1. The definition above yields the derivative of a function as h
tends to zero. For PDAcalc classic, a small difference for h should be
chosen, one that is close enough to zero to yield results accurate within the
format precision on your PDAcalc classic while calculating derivatives.

Financial
FUNCTION REMARK

fv(rate,nper,pmt,pv,type)
Returns the future value of an investment
based on periodic, constant payments and a
constant interest rate.

Inter(nper,pmt,pv,fv,t)
Returns the interest for an investment based
on number of periods, periodic constant
payments.

Nper(rate,pmt,pv,fv,type)
Returns the number of periods for an
investment based on periodic, constant
payments and a constant interest rate.
Calculates the payment for a loan based on
constant payments and a constant interest
rate.
For the monthly payment on a $10,000 loan
at an annual rate of 7 percent that you must
pay off in 10 months:
pmt(7%/12, 10, 10000, 0, 0)
returns -$1,032.36

Pmt(rate,nper,pv,fv,type)

For the same loan, if payments are due at
the beginning of the period, the payment is:
pmt(7%/12, 10, 10000, 0, 1)
returns -$1,026.38

pv(rate,nper,pmt,fv,type)

Returns the present value of an investment.
The present value is the total amount that a
series of future payments is worth now. For
example, when you borrow money, the loan
amount is the present value to the lender.

Classic module 43

43

Logical

EXAMPLE
FUNCTION REMARK

Input Output
and(h,h) Bitwise AND. and(4,6) 4
not(x) Returns 0 if x!=0 else 1 . not(1) 0
or(h,h) Bitwise OR or(4,6) 6
shl(h,b) Bitwise shift left shl(4,1) 8
shr(h,b) Bitwise shift right shr(4,1) 2
xor(h,h) Bitwise EXCLUSIVE OR xor(4,6) 10

Base conversion
OPERATOR REMARK ARG EXAMPLE

Signify input is
hexadecimal

hex
integer

#A9C3

& Signify input is binary binary
integer

&1010

Probability & Statistics

PDAcalc classic can do powerful statistical analyses on
multivariate data elements. The data elements can be entered into a
text file in PDAcalc classic’s database for processing. The values in
this text file can be converted using the sdata(‘file’) function and
stored in an array for processing. The array can also be filled using
the sput(r,c,x) or scput(r,c,x) functions. It can handle a maximum of
512 rows (data elements) and a maximum of 5 columns (variables).
Let’s look at some basic statistical functions by way of example. For
illustrative purposes, let’s say you have four data elements of 3
variables to analyze:

 Var 1 Var 2 Var 3
Element 1 2 3 4
Element 2 5 6 7
Element 3 8 9 10
Element 4 11 12 13

44 Classic module

Figure 49

Select [New script] from the
[Scripts] menu and enter the
numbers as shown on the
left. Then select [Save as]
and save the file in the data
category as Stat Data.

Figure 50

Select [New script] again and create the little script below to calculate
the standard deviation of column two, the sum of column three and
the quadratic regression.

 001 // Stat test
 002
 003
 004 // Load data in array
 005 N=sdata(‘Stat Data’)
 006
 007 // Calculate standard deviation
 008 // of column two.
 009 st2=stdev(2)
 010
 011 // Calculate sum of column three
 012 sum3=ssum(3)
 013
 014 // The Quadratic regression,
 015 // Column one holds x-values
 016 // Column two holds y-values
 017 a=sqrc(3)
 018 b=sqrc(2)
 019 c=sqrc(1)
 020
 021 // Set x-value
 022 x=6
 023
 024 y=sqrv(x)
 025 y1=a*x^2+b*x+c
 026 // Notice that y and y1 contain the
 027 // same values.

Figure 51

Remarks on a line are started with “//” and are not needed to run a
script. Save the script and press [RUN] in the main screen. Next,
select [VAR] from the main screen and verify the variables.

44

Classic module 45

45

Statistical and probability functions
FUNCTION REMARK
! Factorial
fac(n) Factorial
ftest(c1,n1,c2,c2) Returns the result of an F-test. An F-test returns the

one-tailed probability that the variances in column c1
and column c2 are not significantly different. Use this
function to determine whether two samples have
different variances. The arguments n1 and n2 indicate
the number of data points in column c1 and c2. See F-
test.pdb user program.

nCr(n,m) Combination
nPr(n,m) Permutation
rnd() Generates a random number in the range [0, 1] with a

uniform distribution and good statistical properties.
Rndn() Uses the Polar Method to return a random number with

a normal distribution and a mean of zero.
sdata(file) Clears statistical variables and fill the statistical array

with the data points of file. Make sure the file is a
string by using single quotes.
Example:
rows=sdata(‘Data02’)
The file Data02 will be read from the data category.
The return value contains the number of rows read.

ssave(file) This function will save all data points of the statistical
array in a file. The file will be stored in the data
category.
Example:
sdata(‘Data02’)
ssave(‘Data10’)
If the file Data02 contains remarks they will not be
stored in file Data10.

sput(r,c,v) Store value v at row r and column c. When v is a
complex use scadd(r,c,v) instead!!

scput(r,c,v) Store value v at row r and column c. When v is a
complex value the real part will be stored in column c ,
and the imaginary par

scget(r,c) Returns a complex value from the array. After a
scadd(3,2,v) the function v=scget(3,2) will return the
complex value. Column two is used for the real values
and column three is used for the imaginary values.

schi(c1,c2) Chi-squared function.
c1 - column of expected values.
c2 - column of observed values.

scnorm(x,mu,sig) Returns the cumulative standard normal distribution.
(m=mu, sig=stdev)

scorr(c) Returns the correlation between the values in column 1
and the valuesin column r.

46 Classic module

46

sdata('rec') Clear statistical variables and fill array with values of
record 'rec'.

serre(c) Returns the standard error of estimate.
serrr(c) Returns the standard error of regression.
sget(r,c) Get value at row r and column c.
smax(c) Maximum value in column c.
smean(c) Returns the mean. (Sum / N) of column c.
smin(c) Minimum value in column c.
snorm(x,mu,sig) Returns the standard normal distribution. (m=mu,

sig=stdev)
splot(c1,c2,T) Plot values in column c1 versus values in column c2

using T. T=0 line, T=1 diamonds, T=2 plus-signs.
sqrc(c) Returns the coefficients for the quadatic regression.

A=sqrc(3) B=sqrc(2) B=sqrc(1) See QuadReg.prc user
program for and example.

sqrv(x) Returns the value for the quadratic regression
Y=A*X^2 + B*X + CSee QuadReg.prc user program
for and example.

sregc(c) Returns the regression coefficient of column 1 and
column c.

sregl(c) Plots the regression line for column 1 and column c.
srplot(Col,r1,r2,T
ype)

Plot the range starting at row r1 to row r2 of column
Col. Type specifies the type of plot 0-line 1-diamond
points 2-cross points 3-plus points. This function will
clear the screen use the maximum size to draw the plot
and use autoaxis labeling.

ssum(c) Sum of values in column c.
stclr() Clear statistical variables.
stdev(c) Returns the population standard deviation sqr(var()) of

column c.
Stdev(c) Returns the sample standard deviation sqr(Var()) of

column c.
svar(c) Returns the population variance (1/N * (A(n)-mean)^2)

of column c.
sVar(c) Returns the sample variance (1/(N-1) * (A(n)-

mean)^2) of column c.
sxy(c) Returns A(1,n) * A(c,n) .
syint(c) Returns y-intersect.
ttest(c1,n1,c2,n2,
tail,type)

Returns the probability associated with a Student's t-
Test. Use ttest to determine whether two samples are
likely to have come from the same two underlying
populations that have the same mean. The arguments
n1 and n2 indicate the number of data points in column
c1 and c2. Tail specifies the number of distribution
tails. If tails = 1, ttest uses the one-tailed distribution.
If tails = 2, ttest uses the two-tailed distribution. Type
is the kind of t-Test to perform and should be set to
two. See Student_ttest.pdb user program.

Classic module 47

47

User-Defined Functions

The screenshot on the left shows how you can define your
own function. User functions cannot be defined in the scratchpad.
Line seven will calculate the derivative of the function f at point x.
Since the derivative is a commonly used function. PDAcalc classic
has a build-in function for calculating the derivative. Enter der1('f',x,h)
at line seven and the same result will be shown.

Figure 52

Figure 53

Due to speed considerations,
local variables in user-defined
functions are not stored on a
stack. This means that
recursion, calling the same
function within a function, is not
permitted.
User-defined functions can also
be used when plotting functions
using the plot function
worksheet.

Remember that user functions
cannot be defined in the
scratchpad. The first three lines
of the initial equations are
copied into the scratchpad
which is why there are a couple
of blank lines between the first
equation and the function f(x).

Figure 54

Figure 55

Notice that y2 uses der2(‘f’,x,h). Please don’t forget that the first
three lines in a program, the scratchpad, are processed differently
than the rest of the program. To review, when you press [EXE] only
the scratchpad is evaluated. When you press [RUN], first the
scratchpad is evaluated, then PDAcalc classic runs the loaded
program. So how does this relate to user-defined functions? You
have to change the function in the program, then reload the program.
Just press [EDIT], change the function, then load the program and
press [RUN].

48 Classic module
Graphics

Graphics on PDAcalc classic allows you to see how input
has been transformed to output. The visual display of quantitative
information1 makes large amounts of data or complex data
understandable. On PDAcalc classic it allows you, among other
things, to investigate the behavior of functions, to see patterns in
data, or to draw diagrams that illustrate concepts. Below is PDAcalc
classic’s graphics screen:

pixel (0, 0)

pixel (0,160) Figure 56

pixel (160, 0)

pixel (160,160)

PDAcalc classic graphics coordinate system superimposed in red is
PDAcalc classic’s angular coordinate system (see the
garc(x,y,r,a1,a2) example in Appendix D).

Graphics are created by turning pixels on the touch screen off or on;
those that are turned on are set to a gray tone or color. The touch
screen has an area of 160x160 pixels. PDAcalc classic uses the
entire touch screen as its graphics screen, and it follows the palm
platform convention for defining pixel coordinates. Pixel (0, 0) is the
uppermost left pixel, pixel (0,160) is the lowermost left pixel, pixel
(160,160) is the lowermost right pixel; and pixel (160, 0) is the
uppermost right pixel. PDAcalc classic has many graphics functions
to render objects on the graphics screen. These objects include lines,
arcs, circles, rectangles, axes, and text. PDAcalc classic uses a table
of 16 colors. Colors are set using gsetcol(idx,r,g,b). idx indicates the
index in the table.

1 Yes, this phrase is lifted from the title of the book, The Visual
Display of Quantitative Information, by Edward Tufte, whose 3-
volume treatment on rendering information into visuals is highly
recommended.

48

Classic module 49

49

Default Colors
idx color red green blue
0 white 255 255 255
1 red 255 0 0
2 green 0 210 0
3 blue 0 0 255
4 cyan 0 255 255
5 magenta 255 0 255
6 yellow 255 255 0
7 gray 180 180 180
8 light blue 210 210 255
9 light gray 210 210 210

10 unassigned
(black) 0 0 0

11 unassigned
(black) 0 0 0

12 unassigned
(black) 0 0 0

13 unassigned
(black) 0 0 0

14 unassigned
(black) 0 0 0

15 unassigned
(black) 0 0 0

On startup, PDAcalc classic sets
these colors for its color table.
you can change them using
gsetcol(idx,r,g,b)

By default, gline(x1,y1,x2,y2)
takes the color whose index = 1
and renders a line in the
graphics screen of that color,
gline2(x1,y1,x2,y2) takes the
color whose index = 2, and so
on. Five lines that can be made
and manipulated independently
of each other using gmove(),
glin() and gline(). You select
colors in the color table using
selcol(idx). See the fft example
program.

Graphics Examples
Let’s draw some graphics, if only to get the feel of PDAcalc classic’s
graphics capabilities. Bring up the Scripts. menu item, select Edit
script; and in the program database display, choose New.

Figure 57

A blank text file comes up. In the first line
write the name that you want to call this file
(I’ve called mine “GraphicsFun”, one word,
no spaces). Leave the next 3 lines blank.
On the fifth line, write greset (); and on the
next line, write gcir(80,80,60). Press [Load]
at the bottom of the screen. If everything
went ok, PDAcalc classic will print
“Program loaded successfully”. Press
[RUN] and watch as PDAcalc classic draws
as shown in figure 58

50 Classic module
Okay, so maybe I misnamed the file; but, hey: great things are built
from small parts. We’ll see these functions later in the next chapter.

greset() Resets the graphics mapping to the default of 160
by 160 pixels.

gcir(col,x,y,r) Draw circle at x,y with radius r using color index
col.

The graphics functions used in “GraphicsFun”

Let’s spruce it up a bit by adding lines and color (even if your palm
PDA doesn’t support color, you might want to walk through these
enhancements). Edit the “Graphics Fun” file. Press [EDIT] on the text
screen and enter these lines at the end of the file:
gline(80,80,0,0)
gline2(80,80,0,80)
gline3(80,80,0,160)
gline4(80,80,80,160)
gline5(80,80,160,160)

Press [Save]. Once PDAcalc classic returns you to the text screen,
press [RUN]. On a color Palm PDA, you should see:

Figure 59

Going counterclockwise from Palm
touchscreen coordinates (0,0), PDAcalc
classic draws lines from the center of the
circle out. Notice that lines are drawn
through the buttons [Cancel] and [Ready].
This is because we have not set the device
coordinates for the graph; making all pixels
on the touchscreen available.

How do we fix this? With the
gstdc(x1,y1,x2,y2) function. For
illustrative purposes, let’s give our graph
a title with the gtitl('StrV',v) function, as
well as draw an axis with
gaxis(x1,y1,x2,y2,gx,gy).

Between greset () and gcir(1,80,80,60), if
you enter:

gstdc(10,10,160,160)
gaxis(10,10,160,160,80,80)
gtitl('Graphics Fun',0)

Figure 60

In this example, we shifted the graph down and right by defining
device coordinates Xmin and Ymin as 10 pixels down and 10 right.
Ten down was necessary to write the title. But we didn’t get the
output we’d hoped for; the buttons [Cancel] and [Ready] are still

50

Classic module 51

51

exposed to our graphics objects, and it’s obvious with the axes drawn
that we have an offset that we didn’t expect.
Fixing this requires that we further change the device coordinates for
the graph. Let’s try:
gstdc(10,10,140,140)
Then, to center the axes, we use Xmax-Xmin and Ymax-Ymin:
gaxis(10,10,140,140,65,65)
Finally, we change the coordinates of our graphics objects:
gcir(1,75,75,60)
gline(75,75,0,0)
gline2(75,75,0,75)
gline3(75,75,0,150)
gline4(75,75,75,150)
gline5(75,75,150,150)

Figure 61

Other functions used in graphics on PDAcalc classic include:

garc(x,y,r,a1,a2)

Draws an arc angle, beginning at a start
angle a1, and ending at angle a2. The
angle can be in radians or degrees. Use
strad() or stdeg() to set for radians or
degrees.

gaxis(x1,y1,x2,y2,gx,gy)

Set axis with minimum values x1 and y1
and maximum value x2 and y2. When
gx equals zero no grid lines will be
shown for the x-value. When gx equals
one the grid lines will be shown. We will
leave it up to the user to experiment
with gy if wondering.

gclrs()
Clear graphics screen. The following
functions only appear in the dropdown
function list on the main screen.

gcont() Wait until continue button is pressed.

gcprt(x,y,'StrV',v) Draw text 'StrV' and value v at centered
at x,y position.

gfcir(x,y,r) Fills a circle at x,y with radius r.
ghlin(y) Draw horizontal line at y position.
grect(x1,y1,x2,y2) Draw rectangle.

grprt(x,y,'StrV',v) Draw text 'StrV' and value v at right x,y
position.

gvlin(x) Draw vertical line at x position.
gvprt(x,y, 'StrV',v) Print text on graphical screen vertical.
gselcol(idx) Select a color from the color table.

gsetcol(idx,r,g,b)
Sets a color in the color table. The line
colors used in the graphs use idx 1-5.
Index 0 is white and index 15 is black

52 Classic module
For a complete list of graphics functions, refer to Appendix D.

Because the power and usefulness of graphics on PDAcalc classic
become apparent either when graphing functions or programming,
we will put off doing other graphing examples until the next chapter,
which deals with programming on PDAcalc classic. However, as we
saw when plotting functions earlier, we think it is important to stress
once again that on a graphing calculator, seeing is not always
believing.

3D functions
 001 ampl=8// Amplitude
 002 // Change values to rotate graph
 003 rotLR=80;rotUD=-75
 004
 005
 006
 007 // Change user funtion below
 008 function f(x,y)
 009 {
 010 ampl*sin(sqrt(x*x+y*y))
 011 }
 012
 013 // Set to radians
 014 strad()
 015
 016 gcprt(90,10,'The power of PDAcalc classic')
 017
 018 // Indicate where to put graph on screen
 019 gstdc(15,25,159,80)
 020
 021 // Maximum x and y values for graph.
 022 // Make bigger that used in the function for
 023 // rotation.
 024 ginit3d(-12,-12,12,12)

Figure 62

rotUD=-120

Figure 63

rotUD=-75

The function ginit3d() initializes PDAcalc classic for 3D graphing and
sets the minimum and maximum values of an axis used to draw
functions. The function fplot3d() is used to plot the function.

 025
 026 gtitl('3D plot using fplot3d()')
 027
 028 // rotate around x,y,z axis
 029 grotate3d(rotLR,rotUD)
 030
 031 // Plot function using the max.
 032 // and min. values.
 033 fplot3d('f',-8,-8,8,8)
 034
 035 gstdc(15,95,159,130)
 036
 037 // The last argument is zero so
 038 // the values at the y-axis are not
 039 // shown. 040 gaxis(-8,-ampl,8,ampl,1,0)
 041 gtitl('Cross section at y=0')
 042 x=-8
 043 gmove2(x,f(x,0))
 044 while(x<=8)
 045 {
 046 glin2(x,f(x,0))
 047 x=x+0.2
 048 }

52

Classic module 53

53

 Notice the maximum and minimum
values of this function are smaller then
in ginit3d() since rotating the graph
requires more space. The function
fplot3d() first checks if 3D graphing
was initialized already. When it was
not initialized fplot3d() will initialize 3D
graphing using default values as
shown it the little script on the right.
Next fplot3d() will allocate memory to
store 20 X 20 values.

 001 ampl=150// Amplitude
 002
 003
 004 function f(x,y)
 005 {
 006 // Change user funtion belo
w
 007 ampl*cos(sqrt(x*x+y*y))
 008 }
 009 fplot3d('f',-360,-360,360,360)
 010 gtitl('3D function')

The range of x-values and the range of y-values will be divided into to
20 equally spaced points. A total of 400 points. The user function will
be called with the x and y-value for each point and the return value of
the function is stored in memory. After all 400 points are calculate the
draw the surface plot using highly optimized routines.

 001 // Set rotation parameters
 002 rotLR=30;rotUD=-25
 003 N=100// Number of steps
 004
 005
 006 gstdc(5,15,159,140)
 007 ginit3d(-1.2,-1.2,1.2,1.2)
 008 gtitl('Circles in 3D planes')
 009
 010 // Rotate around the axis.
 011 grotate3d(rotLR,rotUD)
 012
 013 // Notice the last argument is zero
 014 gaxis3d(15,1,1,1,0)
 015 gaxis3d(15,-1,-1,-1,0)
 016
 017 max=360
 018 step=max/N
 019 t=0
 020 s=sin(t)
 021 c=cos(t)
 022
 023 // Set initial points.
 024 gmove3d(1,c,0,s)// xz-plane
 025 gmove3d(2,c,s,0)// xy plane
 026 gmove3d(3,0,c,s)// yz plane
 027
 028 whilet<=max)
 029 {
 030 t=t+step
 031 s=sin(t)
 032 c=cos(t)
 033
 034 // Draw lines
 035 gline3d(1,c,0,s)
 036 gline3d(2,c,s,0)
 037 gline3d(3,0,c,s)
 038 }

To draw lines in 3D space use the
gmove3d(idx,x,y,z) and the
gline3d(idx,x,y,z) functions. Use
gmove3d(idx,x,y,z) to set the starting
point of each line. Different lines have a
different index, first argument, which
also determents the color of the line.
These colors can be changed using the
gsetcol() function if needed.

Figure 64

We encourage the user to remark parts
of the script when it is not clear how this
script works. For example you can put
the remark sign ‘//’ at the

beginnings of lines 25, 26,36 and 37 to only plot a circle in the xz-
plane. Lines starting with remark signs are ignored by the interpreter.
The sine and cosine functions are used to draw the circles in the
three different planes. We use three planes in 3D space instead of
only one plane, the xy plane, in 2D space.

54 Classic module

Classic built-in functions

Basic functions

 +

This operator can also be used to add strings and numbers,
result='Volume='+5.456+' liters'

After values are converted to strings adding them will concatenate
the string and not add the values as shown below.

Result = A + B
Result A B
string

'Vol=123'
string
'Vol='

string
'123'

string
'45 kHz'

value
45

string
' kHz'

string
'W=12.56'

string
'W='

value
12.56

value
47.12

value
34.67

value
12.45

Note:
If you want to use the minus sign to add a negative number put it
between parentheses as shown below.
val='Val='+(-x)

 abs(x)

Returns absolute value if x is real and returns magnitude if x is
complex.

a=abs(4.2) // a=4
b=abs(3+4j) // b=5

See also: floor , ceil , round

54

Classic module 55

55

 ans

This variable always contains the result of the last calculation.

Press [CLR] in the main screen to clear the scratchpad and press
+5 [EXE] to add 5 to the previous answer. Press [EXE] again and
see what happens.

 cbrt(x)

Returns cube root.

a=cbrt(27) // a=3 3*3*3=27

See also: sqr

 ceil(x)

Returns x if x is integer. If x=4.1 ceil(x) returns 5.

a=ceil(4.1) // a=5
b=ceil(-3.2) // b=3

See also: floor , round

 exp(x)

Returns e^x. For complex z=x+jy,
exp(z)=exp(x)*(cos(y)+j*sin(y)).

Calculates the exponent of e (the Neperian or Natural logarithm
base)

a=exp(3) // a=20.085537
b=ln(20.085537) // b=3

See also: log , ln

 floor(x)

56 Classic module

56

Returns x if x is integer. If x=4.9 floor(x) returns 4.

a=floor(4.9) // a=4
b=floor(-2.3) // b=-3

See also: ceil , round

 fmt(t,w,p,tr)

Set display format t: 0-float, 1-sci, 2-eng, 3-sym, 4-hex, 5-bin, 6-
oct, 7-pol, 8-date, 9-sexagesimal w: width of number (0-15) p:
precision of number (0-15) tr: trailing zeros. (0 or 1)

Float The native data format.

Scientific

When a number cannot be displayed using
width and precision settings, it is displayed
in scientific format. An exponent will be used
to show small numbers instead of leading
zeros. With a precision setting of 7 the
number 0.0001232456 will be shown as
1.23456E-04

Engineering

When a number cannot be displayed using
width and precision settings, it is displayed
in engineering format. Enter 5.11e8 for
example in the scratchpad and press [exe].
511E6 will displayed. The exponent, in this
case 6, will always be a multiple of three.
The symbol format will show an SI postfix
instead of E6.

Symbol

When a number cannot be displayed using the
width and precision settings, it is displayed in
symbol format. This is especially important when
numbers are rendered on the graph screen in
order to make sure all numbers are printed using
the same space.

Name SI Postfix Power of 10
femto f -15
pico p -12
nano n -9
micro u -6

Classic module 57

57

milli m -3
kilo K,k 3

mega M
giga G 9
tera T 12

Hexadecimal Positive integers rendered in base 16 format

Binary Positive integers rendered in base 2 format.

Octal Positive integers rendered in base 8 format.

Polar
Complex values converted to magnitude and
angle.

Date Positive values are converted to dates.

Sexagesimal
Mixed decimal fractions rendered in H.M.S
format.

 frac(n)

Calculates the factorial.

 / n*(n-1)...2*1 n=1,2,...
 frac(n)=|
 \ 1 n=0

So, for example, frac(4)=4*3*2*1=24

 ln(x)

Returns natural logarithm of x.

a=ln(20.085537) // a=3 2.718282^3=20.085537

See also: exp , log

6

58 Classic module

 log(x)

Returns common logarithm (base 10) of x.

a=log(1000) // a=3 10^3=1000

See also: ln , exp

 max(a,b)

if a > b returns a else b.

y=max(5,8) // y=8

See also: min , sat

 min(a,b)

if a < b returns a else b.

y=min(3,8) // y=3

See also: max , sat

 mod(x,y)

Returns the remainder of dividing the dividend (x) by the divisor
(y). The reminder (r) is defined as: x = i * y + r, for some integer
i. If y is non-zero, r has the same sign as x and a magnitude less
than the magnitude of y.

Return the remainder of x/y
a=mod(10,4) // a=2

See also: gcd

 round(x)

Returns closed integer. If x=4.4 round(x) return 4. If x=4.6
round(x) returns 5

58

Classic module 59

59

Returns the rounded value of x.

a=round(4.4) // a=4
b=round(4.6) // b=5

See also: floor , ceil

 sqr(x)

Returns square root.

a=sqr(16) // a=4

See also: cbrt

 sqrt(x)

Returns square root of x

Color functions

 gselcol(idx)

Select a color.

Default colors
idx color red green blue
0 white 255 255 255
1 red 255 0 0
2 green 0 210 0
3 blue 0 0 255
4 cyan 0 255 255
5 magenta 255 0 255
6 yellow 255 255 0

60

60

Classic module

6 yellow 255 255 0
7 gray 180 180 180
8 light blue 210 210 255
9 light gray 210 210 210

10 unassigned
(black) 0 0 0

11 unassigned
(black)

12 unassigned
(black)

13 unassigned
(black)

14 unassigned
(black)

15 unassigned
(black)

See also: gsetcol

 gsetcol(idx,r,g,b)

Change the color of index idx.

Use this function to change the amount of red,green and blue of
the color idx. See gselcol for a list of default colors.

See also: gselcol

Complex functions

 arg(cplx)

returns the angle of a complex number

a=arg(3+3j) // a=0 785398

Classic module 61

61

a=a*(360/(2*pi)) // convert to degrees. a=45

See also: pol

 conj(cplx)

return the complex conjugate.

a=conj(3+4j) // a=3-4j

 Im(cplx)

Return the imaginary part of a complex number.

a=3+4j
b=Im(a) // b=4

See also: Re

 pol(r,a)

returns the complex number of a vector with a length

c=3+4j
strad() // Set radians
r=abs(c) // r=sqr(3*3+4*4)
a=arg(c) // a=atan(3/4)
p=pol(r,a) // p=3+4j
See also: arg , abs

 Re(cplx)

return the real part of a complex number.

a=3+4j
b=Re(a) // b=3

See also: Im

62 Classic module

Conversion functions

 cel(T)

Converts temperature from Fahrenheit to Celcius.

a=cel(77) // a=25

See also: fah

 deg(a)

Converts radians to degrees

a=deg(pi) // a=180

See also: rad

 dms(hr,min,sec)

Converts sexagesimal value to decimal value.

 fah(T)

Converts temperature from Celcius to Fahrenheit.

a=fah(25) // a=77

See also: cel

 met(yr,ft,in,p)

Converts yards, feet, inches

Calculates yr * 0 9144 + ft * 0 3048 + (in / p) * 0 0254

62

Classic module 63

63

If p equals zero it will be set to 1.0 to avoid devision by zero.

To convert 1/16 inch to meters use met(0,0,1,16)

 rad(a)

Converts degrees to radians.

a=rad(180) // a=pi

See also: deg

Date functions

 date(mm,dd,yyyy,text)

Enter date and this function will return the time in seconds since
Jan. 01 1904. When text is not equal to zero a dialog box will
appear to select a date.

Use this function to ask for a date or convert a date to seconds
since Jan. 01 1904. When the arguments mm,dd and year are
zero the current date is used.

See also: days , time , weeks

 days(sec)

Returns the number of days since Jan. 01 1904.

See also: time , weeks

 time()

http://www.buginword.com

64 Classic module

64

Returns the current time in seconds since Jan. 01 1904.

See also: days , weeks

 weeks(sec)

Returns the number of weeks since Jan. 01 1904.

See also: days , time

Financial functions

 fv(rate,nper,pmt,pv,type)

Returns the future value of an investment based on periodic,
constant payments and a constant interest rate.

rate is the interest rate per period.

nper
is the total number of payment
periods in an annuity.

pmt

is the payment made each period; it
cannot change over the life of the
annuity. Typically, pmt contains
principal and interest but no other
fees or taxes.

pv

is the present value, or the lump-sum
amount that a series of future
payments is worth right now. If pv is
omitted, it is assumed to be 0 (zero),
and you must include the pmt
argument.

type
is the number 0 or 1 and indicates
when payments are due.

Classic module 65

65

Suppose you want to save money for a special project occurring a
year from now. You deposit $1,000 into a savings account that
earns 6 percent annual interest compounded monthly. You plan to
deposit $100 at the beginning of every month for the next 12
months. How much money will be in the account at the end of 12
months?
a=fv(6%/12, 12, -100, -1000, 1) // a=2301.40183

See also: inter , nper , pmt , pv

 inter(nper,pmt,pv,fv,t)

Returns the interest for an investment based on number of
periods, periodic constant payments.

nper
is the total number of payment
periods in an annuity.

pmt

is the payment made each period; it
cannot change over the life of the
annuity. Typically, pmt contains
principal and interest but no other
fees or taxes.

pv

is the present value, or the lump-sum
amount that a series of future
payments is worth right now. If pv is
omitted, it is assumed to be 0 (zero),
and you must include the pmt
argument.

fv
is the future value, or a cash balance
you want to attain after the last
payment is made.

type
is the number 0 or 1 and indicates
when payments are due.

See also: fv , nper , pmt , pv

 nper(rate,pmt,pv,fv,type)

Returns the number of periods for an investment based on

66 Classic module

66

periodic, constant payments and a constant interest rate.

rate is the interest rate per period.

pmt

is the payment made each period; it
cannot change over the life of the
annuity. Typically, pmt contains
principal and interest but no other
fees or taxes.

pv

is the present value, or the lump-sum
amount that a series of future
payments is worth right now. If pv is
omitted, it is assumed to be 0 (zero),
and you must include the pmt
argument.

fv
is the future value, or a cash balance
you want to attain after the last
payment is made.

type
is the number 0 or 1 and indicates
when payments are due.

See also: fv , inter , pmt , pv

 pmt(rate,nper,pv,fv,type)

Calculates the payment for a loan based on constant payments
and a constant interest rate.

rate is the interest rate per period.

nper is the total number of payment
periods in an annuity.

pv is the present value, or the lump-sum
amount that a series of future

fv
is the future value, or a cash balance
you want to attain after the last
payment is made.

Classic module 67

67

fv
is the future value, or a cash balance
you want to attain after the last
payment is made.

type
is the number 0 or 1 and indicates
when payments are due.

The following formula returns the monthly payment on a $10,000
loan at an annual rate of 7 percent that you must pay off in 10
months pmt(7%/12, 10, 10000, 0, 0) equals -$1,032.36. For the
same loan, if payments are due at the beginning of the period, the
payment is: pmt(7%/12, 10, 10000, 0, 1) equals -1026.38

See also: fv , inter , nper , pv

 pv(rate,nper,pmt,fv,type)

Returns the present value of an investment. The present value is
the total amount that a series of future payments is worth now.
For example, when you borrow money, the loan amount is the
present value to the lender.

rate is the interest rate per period.

nper
is the total number of payment
periods in an annuity.

pmt

is the payment made each period; it
cannot change over the life of the
annuity. Typically, pmt contains
principal and interest but no other
fees or taxes.

fv
is the future value, or a cash balance
you want to attain after the last
payment is made.

type
is the number 0 or 1 and indicates
when payments are due.

See also: fv , inter , nper , pmt

68 Classic module

Flow control functions

 else

Optional to the if command. executes the commands between
brackets when the condition for the if statement is false. Note that
the selection flow of an if-then-else statement lets the condition
decide which of two sets of program lines (those within the curly
brackets following the if(cond) or those within the curly brackets
following the else will be executed.

Eample:
This little script will change the key at Change key at row 2
column 3.

001 // if example
002 Dia=10
003
004 // Change key at row 2 column 3
005 key(23,'&Dia')
006
007 // Check if key was pressed
008 if(iskey('Dia'))
009 {
010 result('Diameter='+Dia*pi)
011 }
012 else
013 {
014 result('Dia not pressed')
015 }

After loading this script press [RUN] and the key will change. Next
press the Dia key and the result will be shown. When an other key
is pressed the script line between the else brackets will be
executed.

See also: if , while

 error(condition,text)

68

Classic module 69

69

The script will terminate when the condition is true. The text will
be shown on the result line of the main screen.

This function is the same as:
 001 // error example
 002
 003
 004 if(condition)
 005 {
 006 exit(text)
 007 }

See also: exit

 exit(exitVal)

Use this function to exit a script. The variable exitVal will be
shown on the result line of the main screen.

See also: error

 if(condition)

If (condition) is true, execute program lines within the curly
brackets. Note that when the if command is used by itself, the
condition decides only if additional program lines in your program
(those within the curly brackets) will be executed.

Eample:
This little script will change the key at
Change key at row 2 column 3.

 001 // if example
 002 Dia=10
 003
 004 // Change key at row 2 column 3
 005 key(23,'&Dia')
 006
 007 // Check if key was pressed
 008 if(iskey('Dia'))
 009 {
 010 result('Diameter='+Dia*pi)
 011 }
 012 else

70 Classic module

70

 013 {
 014 result('Dia not pressed')
 015 }

After loading this script press [RUN] and the key will change. Next
press the Dia key and the result will be shown. When an other key
is pressed the script line between the else brackets will be
executed.

See also: else , while

 init

Returns one only the first time the script is run.

Returns one only the first time the script is run. Use this function
to initialize variables.

 while(condition)

while (condition) is true, execute the program lines between the
curly brackets. program flow enters the while-loop, and continues
flowing through it in a loop until the exit condition is met (that is,
the while(condition) becomes false).

Example:
Little scripts to draw circles in the middle of the screen.

 001 // while example
 002
 003
 004
 005 deltaR=8
 006 r=deltaR
 007 col=0
 008 while(r<=64)
 009 {
 010 gcir(col,80,80,r)
 011 r=r+deltaR
 012 col=col+1
 013 }

See also: if , else

http://www.buginword.com

Classic module

Graphical functions

 fplot3d(f,x1,y1,x2,y2)

Plot a function in 3D space. The function name needs to be
between single quotes!
Example

 001 ampl=150// Amplitude
 002
 003
 004 function f(x,y)
 005 {
 006 // Change user funtion below
 007 ampl*cos(sqrt(x*x+y*y))
 008 }
 009
 010 // The fplot3d() checks if a graphical
 011 // area was initialized already.
 012 // If no graphical was initialized it
 013 // will initialize the default area plus
 014 // default rotation for you.
 015 fplot3d('f',-360,-360,360,360)
 016
 017 // Put the gtitl() after fplot3d() because
 018 // gtitl() should only be called after
 019 // gaxis() which is called in fplot3d()
 020 gtitl('3D function')

Note:
The function has to be declared in the program area and not in the
scratchpad.

 garc(x,y,r,a1,a2)

Draws an arc angle. Use strad() or stdeg() to set radians or
degrees.

Use this function to draw an arc at position x,y a radius of r and
starting at angle a1 to angle a2

 71

71

72 Classic module

72

See also: gcir , gfcir , strad , stdeg

 gaxis(x1,y1,x2,y2,gx,gy)

Set min. and max. values of an axis used to draw functions.

The arguments gx and gy can be set to zero or one.
When set to zero the values at the axis is not shown.

Example
Little script to plot a function.

001 a=-3;b=3
002 x1=-4;x2=4
003 y1=-0.5;y2=1
004
005 // The function
006 function f1(x){sinc(x)}
007
008 gstdc(0,15,158,125)
009 gaxis(x1,y1,x2,y2,1,1)
010 gtitl('sinc functions')
011 N=40
012
013 // Calculate number of steps.
014 Step=(x2-x1)/N
015
016 // Set initial points
017 x=x1
018 gmove(x,f1(x))
019
020 // Connect points
021 while(x<=x2)
022 {
023 glin(x,f1(x))
024 x=x+Step
025 }

Note
Use the plot function from the menu to generate a script to plot a
function. After the script is generated you can edit the script.

Classic module 73

73

See also: gstdc

 gaxis3d(col,x,y,z,t)

Draws the 3D axis. If t equals zero the end values are not shown.

See also: ginit3d , gmove3d , gline3d

 gcir(col,x,y,r)

Draw circle at x,y with radius r using the color index col.

gcir(2,80,80,20) will draw a circle at the centre of the graphics
screen with a radius of 20 using color 2. The default color for
index 2 is blue. This can be changed using the gsetcol function.

See also: garc , gfcir

 gclrs()

Clears the graphics screen.

See also: greset

 gcont()

Wait until continue button is pressed.

Calling this function will stop the execution of the script and wait
till the user taps on the continue button on the graphics screen.

 gcprt(x,y,strV)

Draws the values or text of strV at y-position centered around the
x-position.

74 Classic module

74

A little example script using different text functions:
 001 per=6%
 002 N=36// Number of payments
 003 loan=10000// loan amount
 004
 005 y=20
 006 // Calculate monthly payment
 007 mp=pmt(per/12,N,loan,0,0)
 008
 009 // Print text a y-position centered at x-position.
 010 gcprt(80,y,'Loan calculator')
 011 y=y+15
 012 fmt(0,6,2,0)
 013
 014 // Print text ending first argument at position 100
 015 grprt(100,y,'Number of payments=',N)
 016
 017 y=y+15
 018 fmt(0,6,2,1)
 019 grprt(100,y,'Loan amount=',loan)
 020
 021 y=y+15
 022 grprt(100,y,'Percent=',per)
 023
 024 y=y+15
 025 grprt(100,y,'Monthly payment=',mp)
 026
 027 // Calculate cost of loan
 028 cost=loan+mp*N
 029 y=y+15
 030 grprt(100,y,'Cost of loan=',cost)

Classic module 75

75

See also: gprt , gtadd , glprt

 gfcir(x,y,r)

Fills a circle at x,y with radius r.

gfcir(2,80,80,20) will fill a circle at the centre of the graphics
screen with a radius of 20 using color 2. The default color for
index 2 is blue. This can be changed using the gsetcol function.

See also: gsetcol , gcir

 ghlin(y)

Draw horizontal line at y position.

 ginit3d(x1,y1,x2,y2)

Sets the minimum and maximum values for the graphing area.

Example
This example script will draw three circles in 3D-space.

 001 // Set rotation parameters
 002 rotLR=30;rotUD=-25
 003 N=100// Number of steps
 004
 005
 006 gstdc(5,15,159,140)
 007 ginit3d(-1.2,-1.2,1.2,1.2)
 008 gtitl('Circles in 3D planes')
 009
 010 // Rotate around the axis.
 011 grotate3d(rotLR,rotUD)
 012
 013 // Notice the last argument is zero
 014 gaxis3d(15,1,1,1,0)
 015 gaxis3d(15,-1,-1,-1,0)
 016
 017 max=360
 018 step=max/N
 019 t=0

76 Classic module

76

 020 s=sin(t)
 021 c=cos(t)
 022
 023 // Set initial points.
 024 gmove3d(1,c,0,s)// xz-plane
 025 gmove3d(2,s,c,0)// xy plane
 026 gmove3d(3,0,s,c)// yz plane
 027
 028 while(t<=max)
 029 {
 030 t=t+step
 031 s=sin(t)
 032 c=cos(t)
 033
 034 // Draw lines
 035 gline3d(1,c,0,s)
 036 gline3d(2,s,c,0)
 037 gline3d(3,0,s,c)
 038 }

See also: gmove3d , gline3d , grotate3d

 glin(x,y)

Draw line from previous position to x,y (line 1).

 glin2(x,y)

Draw line from previous position to x,y (line 2).

 glin3(x,y)

Draw line from previous position to x,y (line 3).

 glin4(x,y)

Draw line from previous position to x,y (line 4).

 glin5(x,y)

Classic module 77

77

Draw line from previous position to x,y (line 5).

 gline(x1,y1,x2,y2)

Draw line from x1,y1 to x2,y2.

 gline2(x1,y1,x2,y2)

Draw line from x1,y1 to x2,y2.

 gline3(x1,y1,x2,y2)

Draw line from x1,y1 to x2,y2.

 gline3d(idx,x,y,z)

Draws a line from the current position to the x,y,z coordinates.
Use gmove3d to set the start point of the line.

The x,y,z coordinates are converted to 2D space and become the
current position for the line idx.

See also: gmove3d

 gline4(x1,y1,x2,y2)

Draw line from x1,y1 to x2,y2.

 gline5(x1,y1,x2,y2)

Draw line from x1,y1 to x2,y2.

 glprt(strV)

Put string or value, strV, at next line.
See also: gprt , gcprt

78 Classic module

78

 gmove(x,y)

Move to start position x,y (line 1).

 gmove2(x,y)

Move to start position x,y (line 2).

 gmove3(x,y)

Move to start position x,y (line 3).

 gmove3d(idx,x,y,z)

Sets the current point of line idx. Use gline3d draw a line from the
current position.

See also: gline3d , ginit3d , gaxis3d

 gmove4(x,y)

Move to start position x,y (line 4).

 gmove5(x,y)

Move to start position x,y (line 5).

 gpersp3d(dist)

Apply a perspective transformation.

Perspective transformations make objects in distance look smaller
than object closer to the screen.

 gpnt(x,y,t)

Classic module 79

79

Draw symbol t at x,y.

Symbol: 1 - diamond, 2 - star, 3 - plus

See also: gpnt3d

 gpnt3d(col_idx,x,y,z,t)

Draws symbol t at position x,y,z using the color index col_idx.

Draws symbol t at position x,y,z using the color index col_idx.

Symbol: 1 - diamond, 2 - star, 3 - plus

See also: gprt

 gprbar(x,Min,Max,Y)

Use this function to plot a process bar. First initialize the bar with
the minimum and maximum values and Y which determines the
position on the screen. For updating the process bar use zero as
the minimum, maximum and Y value.

 gprt(x,y,strV)

Draws the values or text of strV beginning at the x,y position.

See gcprt for an example script.

See also: glprt , gtadd , gcprt

 gprt3d(col,x,y,z,strV)

Draws the values or text of strV beginning at the x,y,z position.

See also: gprt

 grect(x1,y1,x2,y2)

80 Classic module

80

Draw rectangle.

 greset()

Resets the graphics mapping to the default of 160 by 160 pixels.

 grotate3d(rotLR,rotUD)

Sets rotation in 3D-space. rotLR set the left right rotation and
rotUD sets the up down rotation.

See ginit3d for an example script.

See also: ginit3d

 grprt(x,y,v1,v2)

Draws the values or text of v1 and v2 at y-position with the last
character of v1 at x-position.

Use this function to line up equal signs for example.
See gcprt for an example script.

See also: gprt , gcprt

 gstdc(x1,y1,x2,y2)

Set device coordinates for graph all values must be between 1 and
160.

Only supported for compatility reasons. Starting at version 1.60
use subplot() instead.

Example
gstdc(10,15,100,140) // Define the area to be used for a graph.
gaxis(-5,-2,4,3,1,0) // Set the minimum and maximum values for
the axis.
Since gx=1 the labels on the x-axis will be shown. The labels on
the y-axis will not be shown since gy=0.

Where possible use subplot() function instead of gstdc()

Classic module 81

81

See also: gaxis , subplot

 gtadd(strV)

Add the value or text of strV to the previously drawn text.

See also: gprt , gcprt , glprt

 gtapx

Returns the x-value of the cursor position.

Returns the x-value of the cursor position. Use the gwtap() to wait
till the user taps within the graph.

See also: gtapy , gwtap

 gtapy

Returns the y-value of the cursor position.

Returns the y-value of the cursor position. Use the gwtap() to wait
till the user taps within the graph.

See also: gwtap , gtapx

 gtitl(string)

Puts string above graph.

http://www.buginword.com
http://www.buginword.com

82

82

Classic module

Figure 1

Figure 2

In version 1.60 the functions subplot(), xlable() and ylabel()
where added. We try to use the limited graphical space on a PDA
as good as possible however the limited space does create some
problems also due to the different screen resolutions of the
different PDA's.

This script is just a little example of how the labels and title are
positioned automatically based on the size of the graph.

 001 // gtitl(), xlabel() and ylabel()
 002 x1=-500;x2=500;y1=-50;y2=100
 003

 004
 005 // Little example script to show how
 006 // the labels and title are automatically
 007 // positioned.
 008
 009 function graph()
 010 {
 011 gaxis(x1,y1,x2,y2,1,1)
 012 gselcol(1)
 013 gtitl('Graph title')
 014
 015 gselcol(2)
 016 xlabel('xlabel')
 017 ylabel('ylabel')
 018 }
 019

Classic module 83

83

 020 subplot(1,1,1)
 021 graph()
 022
 023 // Wait for user to press the continue
 024 // button at the bottom of the screen.
 025 gcont()
 026
 027 // Clear the screen
 028 gclrs()
 029
 030 subplot(2,1,1)
 031 graph()
 032
 033 subplot(2,1,2)
 034 graph()

See also: xlabel , ylabel

 gvlin(x)

Draw vertical line at x position.

 gwtap

Wait till the user taps on the graphical screen to obtain the x and
y value for the cursor position.

Wait till the user taps on the graphical screen to obtain the x and
y value for the cursor position. Use the gtapx() and gtapy()
functions to obtain the x and y values.

See also: gtapx , gtapx

 gxlog

Use logarithmic scale for the x-axis.

Use logarithmic scale for the x-axis. Call this function before
gaxis()

See also: gaxis , gylog

http://www.buginword.com

84 Classic module

84

 gylog

Use logarithmic scale for the y-axis.

Use logarithmic scale for the y-axis. Call this function before
gaxis()

See also: gaxis , gxlog

 subplot(r,c,pos)

Divides the graphical screen into r rows and c columns. The next
graph will be drawn in area pos.

For example subplot(2,2,p) will divide the graphical screen into
two rows and two columns. The next graph will be plotted at
position p.

subplot(2,2,1) plot at top left corner.
subplot(2,2,2) plot at top right corner.
subplot(2,2,3) plot at bottom left corner.
subplot(2,2,4) plot at bottom right corner.

 xlabel(string)

Puts string below the graph.

See gtitl() for more information.

See also: gtitl , ylabel

 ylabel(string)

Puts string at the left of the graph.

See gtitl() for more information.

See also: gtitl , xlabel

http://www.buginword.com

Classic module 85

85

Interactive functions

 inpv(mess,v)

Show a dialog box with the message indicated by mess. The
variable v will be shown that can be changed using the keypad in
the dialog box.

 iskey(str)

Checks if a key was pressed.

The function returns one if the key indicated by str was pressed.

Example:
 001 // key, iskey example
 002
 003
 004 // Text pmt in the button at the second row third column.
 005 key(23,'pmt')
 006
 007 // Check if the key pmt was pressed.
 008 if(iskey('pmt'))
 009 {
 010 // Execute when the pmt button was pressed.
 011 }

See also: key

 key(pos,str)

key(23,'pmt') will put the text pmt in the button at the second row
third column.

The function returns one if the key indicated by str was pressed.

Example:
 001 // key iskey example

86 Classic module

86

 002
 003
 004 // Text pmt in the button at the second row third column.
 005 key(23,'pmt')
 006
 007 // Check if the key pmt was pressed.
 008 if(iskey('pmt'))
 009 {
 010 // Execute when the pmt button was pressed.
 011 }

See also: iskey

 mode1(strV)

Puts the text or values of strV on the main screen where by
default the display format is shown.

See also: mode2 , result

 mode2(strV)

Puts the text or values of strV on the main screen where by
default the date is shown.

See also: mode1 , result

 result(strV)

Puts the text or values of strV on the main screen at the result
line.

After executing a script this function can be used to show
information about the result.
len=123
result('Length='+len) // Will show the the text
Length=123 at the result line.

See also: mode1 , mode2

http://www.buginword.com

Classic module 87

87

Logical functions

 and(h,h)

Bitwise and.

 not(x)

Returns 0 if x!=0 else 1 .

 or(h,h)

Bitwise or

 shl(h,b)

Bitwise shift left

 shr(h,b)

Bitwise shift right

 xor(h,h)

Bitwise exclusive or

88 Classic module

88

Relational functions

 !=

Not equal to

 &&

Logical and operation.

 <

Less than

 <=

Less than or equal to

 ==

Equal to

 >

Greater than

 >=

Greater than or equal to

 ||

Logical or operation.

Classic module 89

89

Special functions

 beta(n,m)

Beta function

The beta function is defined by
 1
 / (z - 1) (w - 1)
 beta(z, w) = | t (1 - t) dt
 /
 0

See also: betai

 betai(a,b,x)

Returns the incomplete beta function.

The betai function is defined by
 x
 1 / (a - 1) (b - 1)
betai(a,b,x)=---------- | t (1-t) dt
 beta(a, b) /
 0

See also: beta

 cnd1(x)

Cumulative normal distribution function.

See also: cnd2

90 Classic module

90

 cnd3(a,b,rho)

Cumulative distribution function for a bivariate normal distribution.

See also: cnd1

 der1(f,x,h)

Returns the first derivative of function f at x

 Example:
 001 // Derivaties
 002 tp=3
 003

 004 // Change function below
 005 function f(x){x^2}
 006
 007 // Notice the single quotes around
 008 // the function name below
 009 d1=der1('f',tp,10E-06)
 010
 011 // Calculate second derivative
 012 d2=der2('f',tp,10E-06)

See also: der2

 der2(f,x,h)

Returns the second derivative of function f at x.

See also: der1

 erf(x)

Error function of x.

The error function is defined by
 x 2
 2 / -t

erf(x) = -------- | e dt

Classic module 91

91

 sqrt(pi) /
 0

 fft(r1,r2)

Calculates the fourier transform of the rows starting at row r1 till
row r2. Column one should contain the real values and the second
column should contain the imaginary values. Make sure the
second column contains zeros when using only real numbers.

Returns a finite Fourier transform. If N is the number of rows
element of the return value is equal to
 N

> scget(i,1)*exp[-2*pi*j*(i-N/2-1)*(k-N/2-1)/N]

 i = 1

See also: ifft

 gamma(x)

Gamma function

The gamma function is defined by
 +inf
 / - t (x - 1)
 gamma(x) = | e t dt
 /
 0

See also: lngam

 gcd(x,y)

Greatest common divider.

gcd(45,63) returns 9

92 Classic module

92

See also: mod

 ifft(start,end)

Calculates the inverse fourier transform of the rows start till end.
Column one should contain the real values and the second column
should contain the imaginary values. Make sure the second
column contains zeros when using only real numbers.

Returns the inverse Fourier transform. If N is the number of rows
elements.
 N

> scget(i,1)*exp[+2*pi*j*(i-N/2-1)*(k-N/2-1)/N]

i = 1

See also: fft

 linint(x1,y1,x2,y2,x)

Linear interpolation. Calculates (y2-y1)/(x2-x1)*(x-x1)+y1

Linear Interpolation is a method that can be used for
predicting. Very often something changes over a period of time:
an object might change its position; a computer graphic image
might change its shape; a population might increase. Linear
interpolation allows you to predict an unknown value if you know
any two particular values and assume that the rate of change is
constant.

Linear interpolation assumes

1. that you know two particular values x1,y1 and x2,y2.
2. that the process is changing at a constant rate
3. that you desire to find an unknown data point. The y-

value at x.

 lngam(x)

Classic module 93

93

Returns the natural logorithm of the gamma function.

The gamma function is defined by
 +inf
 / - t (z - 1)
 gamma(z) = | e t dt
 /
 0

See also: gamma

 perc(a,b)

Percentage change. Calculates (b-a)/a*100

 pval(x,p1,p2,p3,p4,p5)

Returns poly values (p1*x+p2*x^2+p3*x^3+p4*x^4+p5*x^5).

 res(val,type)

Returns the closed resistor value of select type. Types
6,12,24,96,192

Returns the closed resistor value.
The EIA "E" series specify the preferred values for various
tolerances.

Valid types are:
6 - E6 20% tolerance (seldom used)
12 - E12 10% tolerance
24 - E24 5% tolerance (and usually 2% tolerance)
96 - E96 1% tolerance
192 - E192 .5%, .25%, .1% and higher tolerances

res(43,24) will return the closed resistor value of with a 5%
tolerance.

Click here for more resistor information

http://www.logwell.com/tech/components/resistor_values.html

94 Classic module

94

 root(f,x)

Return the value of x at which the expression of function f(x) is
equal to zero.

A little example script for the function f(x^3-10*x+2) that has
multiple roots.

function f(x){x^3-10*x+2}

// find the root using guess value
x1=-2;x1=root('f',x1)
x2=0 ;x2=root('f',x2)
x3=3 ;x3=root('f',x3)

 The root that will be found when there are multiple roots is
depending on the guess value x.

 sat(x,min,max)

Saturation function. Returns x when between limits otherwise
returns the limit.

sat(10,5,15) returns 10
sat(20,5,15) returns 15
sat(2,5,15) return 5
See also: min , max

 sinc(a)

sin(pi*x)/(pi*x) returns 1 if x=0

Statistics functions

 fac(n)

Classic module 95

95

Returns the factorial of n

fac(5) returns 1*2*3*4*5

 ftest(c1,n1,n2,c2)

Returns the result of an F-test. An F-test returns the one-tailed
probability that the variances in column c1 and column c2 are not
significantly different.

Use this function to determine whether two samples have different
variances. The arguments n1 and n2 indicate the number of data
points in column c1 and c2.

See also: ttest

 nCr(n,m)

Combination

For a lottery you have to pick 6 digits between 1 and 50. Your
changes of winning is 1 in nCr(50,6).

See also: nPr

 nPr(n,m)

Permutation

For a lottery you have to pick 5 digits between 1 and 35 but you
must pick them in the correct order. Your changes of winning are
nPr(35,5).

See also: nCr

 rnd()

Generates a random number in the range [0, 1] with a uniform
distribution and good statistical properties.

96 Classic module

96

 rndn()

Uses the Polar Method to return a random number with a normal
distribution and a mean of zero.

 scget(r,c)

Returns a complex value from the array. After a scadd(3,2,v) the
function v=scget(3,2) will return the complex value. Column two
is used for the real values and column three is used for the
imaginary values.

 schi(c1,c2)

Chi-squared function. c1 - column of expected values. c2 - column
of observed values.

 scnorm(x,mu,sig)

Returns the cumulative standard normal distribution. (m=mu,
sig=stdev)

 scorr(c)

Returns the correlation between the values in column 1 and the
values in column r.

 scput(r,c,v)

Store value v at row r and column c. When v is a complex value
the real part will be stored in column c , and the imaginary part.

 sdata(file)

Clear statistical variables and fill statistical array with data points
of file. Make sure file is string by using single quotes.

Example:
rows=sdata('Data02'):

Classic module 97

97

The file Data02 will be read from the data category. The return
value contains the number of rows read.

See example scripts in the statistical category.

See also: ssave

 serre(c)

Returns the standard error of estimate.

The standard error of estimate is measure that indicates how far
predicted data points are, on average, from the actual data points.

See also: serr

 serrr(c)

Returns the standard error of regression.

 sget(r,c)

Get value at row r and column c.

 smax(c)

Maximum value in column c.

See also: smin

 smean(c)

Returns the mean. (Sum / N) of column c.

 smin(c)

Minimum value in column c.

98 Classic module

98

See also: smax

 snorm(x,mu,sig)

Returns the standard normal distribution. (m=mu, sig=stdev)

 splot(c1,c2)

Plot values in column c1 versus values in column c2. See FFT
example.

 sput(r,c,v)

Store value v at row r and column c. When v is a complex use
scput(r,c,v) instead!!

See also: scput

 sqrc(c)

Returns the coefficients for the quadratic regression. A=sqrc(3)
B=sqrc(2) B=sqrc(1) See QuadReg.prc user program for an
example.

 sqrv(x)

Returns the value for the quadratic regression Y=A*X^2 + B*X +
CSee QuadReg.prc user program for an example.

 sregc(c)

Returns the regression coefficient of column 1 and column c.

 sregl(c)

Plots the regression line for column 1 and column c.

Classic module 99

99

 srplot(Col,r1,r2,Type)

Plot the range starting at row r1 to row r2 of column Col. Type
specifies the type of plot 0-line 1-diamond points 2-cross points 3-
plus points. This function will clear the screen use the maximum
size to draw the plot and use autoaxis labeling.

See also: splot

 ssave(file)

This function will save all data points of the statistical array in a
file. The file will be stored in the data category.

Example:
sdata('Data02')
ssave('Data10')

If the file Data02 contains remarks they will not be saved in file
Data10.

See also: sdata

 ssum(c)

Sum of values in column c.

 stclr()

Clear statistical variables.

 stdev(c)

Returns the population standard deviation sqr(var()) of column c.

 Stdev(c)

100 Classic module

100

Returns the sample standard deviation sqr(Var()) of column c.

 svar(c)

Returns the population variance (1/N*(A(n)-mean)^2) of column
c.

 sVar(c)

Returns the sample variance (1/(N-1) * (A(n)-mean)^2) of
column c.

 sxy(c)

Returns A(1,n) * A(c,n) .

 syint(c)

Returns y-intersect.

 ttest(c1,n1,c2,n2,tail,type)

Returns the probability associated with a Student's t-Test. Use
ttest to determine whether two samples are likely to have come
from the same two underlying populations that have the same
mean.

The arguments n1 and n2 indicate the number of data points in
column c1 and c2. Tail specifies the number of distribution tails. If
tails = 1, ttest uses the one-tailed distribution. If tails = 2, ttest
uses the two-tailed distribution. Type is the kind of t-Test to
perform and should be set to two. See Student_ttest.pdb user
program.

See also: ftest

Classic module 101

101

Trigonometric functions

 acos(a)

Arccosine

 acosh(a)

Inverse hyperbolic cosine.

 asin(a)

Arcsine

 asinh(a)

Inverse hyperbolic sine.

 atan(a)

Arctangent

 atan2(x,y)

Retuns the four quadrant arctangent of the real parts of the
elements of X and Y.

See also: atan

 atanh(a)

Inverse hyperbolic tangent.

102 Classic module

102

 cos(a)

Cosine

 cosh(a)

Hyperbolic cosine.

 sin(a)

Sine

 sinh(a)

Hyperbolic sine.

 stdeg()

Set angular format to degrees.

 strad()

Set angular format to radians.

 tan(a)

Tangent

 tanh(a)

Hyperbolic tangent.

Classic module 103

103

Example scripts

Biorhytms
Biorhythms script in keyboard
category
&Peter,&John,&Mark
7,8,9,/,VAR
4,5,6,*,EDIT
1,2,3,-,RUN
0,.,E,+,EXE

After loading this script the keyboard
layout will change and display names in
the keys at the first row. Press one of
these keys and the biorhythms for that
person will be shown. The main purpose
of this script is to show the use of the date
function and how to use scripts in the
keyboard category.

Notice that when you load a script
PDAcalc will check in the keyboard
category for a file with the same name as
the script.

 001 // Biorhythms
 002 xMin=-15;xMax=15
 003 selectDate=1
 004
 005 bSel=0
 006 if(iskey('Peter'))
 007 {
 008 // Peter's date of birth
 009 birthDate=date(1,3,1964,0)
 010 bSel=1
 011 }
 012 if(iskey('John'))
 013 {
 014 // John's date of birth
 015 birthDate=date(1,28,1974,0)
 016 bSel=1
 017 }
 018 if(iskey('Mark'))
 019 {
 020 // Mark's date of birth
 021 birthDate=date(9,21,1970,0)
 022 bSel=1
 023 }
 024
 025 error(bSel==0,'Please select name')
 026
 027 if(selectDate==1)
 028 {
 029 curDate=date(0,0,0,'Select date')
 030 }
 031 else
 032 {
 033 curDate=time()
 034 }
 035

 036 // date() returns seconds
 037 // Calculate number of days.
 038 nDays=(curDate-
birthDate)/(24*60*60)
 039
 040 gstdc(0,15,155,90)
 041 gaxis(xMin,-1,xMax,1,1,1)
 042
 043 x=xMin
 044 y1=sin(360*((x+nDays)/23))
 045 y2=sin(360*((x+nDays)/28))
 046 y3=sin(360*((x+nDays)/33))
 047 gmove(x,y1)
 048 gmove2(x,y2)
 049 gmove3(x,y3)
 050
 051 while (x<=xMax)
 052 {
 053 y1=sin(360*((x+nDays)/23))
 054 y2=sin(360*((x+nDays)/28))
 055 y3=sin(360*((x+nDays)/33))
 056 glin(x,y1)
 057 glin2(x,y2)
 058 glin3(x,y3)
 059 x=x+0.2
 060 }
 061
 062 greset ()
 063
 064 y=105
 065 gline(10,y,30,y)
 066 gselcol(1)
 067 gprt(35,y,'Physical')
 068
 069 y=115
 070 gline2(10,y,30,y)
 071 gselcol(2)
 072 gprt(35,y,'Emotional')
 073
 074 y=125
 075 gline3(10,y,30,y)
 076 gselcol(3)
 077 gprt(35,y,'Intellectual')
 078
 079 // Set for date format
 080 fmt(8,6,1,0)
 081 gselcol(15)
 082 gcprt(80,135,curDate)
 083
 084 // Set to default display format
 085 fmt(0,6,4,0)

Figure 65

Figure 66

Figure 67

104 Classic module

Graph demo
 001 // Example graph script
 002 min=0;max=4.2
 003
 004
 005 step=(max-min)/100
 006
 007 // Indicate where to put the graph
 008 // on the screen.
 009 gstdc(70,10,159,65)
 010
 011 // Minimum and maximum values
 012 // on the graph. The last two
 013 // arguments indicate if the values
 014 // should be shown.
 015 gaxis(min,-1,max,1,1,1)
 016
 017 // Title on top of graph
 018 // Put this function after gaxis()
 019 gtitl('Sine function')
 020
 021 x=min
 022
 023 // Set initial point to start
 024 // drawing from.
 025 gmove(0,0)
 026
 027 // Continue executing the statements
 028 // between brackets while condition
 029 // is true.
 030 while(x<=max)
 031 {
 032 y=sin(x/max*360)
 033 glin(x,y)
 034 x=x+step
 035 }
 036
 037 // Well just copy and paste from above
 038 // and change some values.
 039 gstdc(0,80,75,130)
 040 gaxis(-max,-max,max,max,1,1)
 041 gtitl('Spiral')
 042 x=min
 043 gmove(0,0)
 044 while (x<=max)
 045 {
 046 angle=x/max*720
 047 radius=x
 048 glin(pol(radius,angle),0)
 049 x=x+step
 050 }
 051

 052 gprt(3,15,'Most CplxCalPro')
 053 glprt('scripts can be')
 054 glprt('used with minor')
 055 glprt('changes if any!')
 056
 057 gprt(80,90,'This spiral was')
 058 glprt('generated with')
 059 glprt('the function:')
 060 glprt('pol(radius,angle)')

Figure 68

104

Classic module 105

105

FFT example program
Let’s take a look at the “FFT calculate” program. This program is
included in the database of scripts and is located in the electronics
category. Notice the function gselcol() to select the different text
colors.
 001 Phase=124
 002 Xmin=0;Xmax=360
 003 Ymin=-1;Ymax=1
 004
 005 stdeg()
 006 fmt(0,6,6,0)
 007
 008 gtitl('Fourier calculation')
 009 gstdc(0,15,159,100)
 010 gaxis(Xmin,Ymin,Xmax,Ymax,1,1)
 011 N=100
 012 Step=(Xmax-Xmin)/N
 013 x=Xmin
 014
 015 Real=0
 016 Imag=0
 017 while (x<=Xmax)
 018 {
 019 y3=sin(x+Phase)
 020 y1=sin(x)
 021 Imag=Imag+y1*y3
 022 y2=cos(x)
 023 Real=Real+y2*y3
 024 if(x==Xmin)
 025 {
 026 gmove(x,y1*y3)
 027 gmove2(x,y2*y3)
 028 gmove3(x,y3)
 029 }
 030 else
 031 {
 032 glin(x,y1*y3)
 033 glin2(x,y2*y3)
 034 glin3(x,y3)
 035 }
 036 x=x+Step
 037 }
 038 greset ()
 039 x=80
 040 y=135
 041 mul=20
 042 Real=Real/(N/2)
 043 Imag=Imag/(N/2)
 044 //gfcir(x,y,mul)
 045 yMul=y-Imag*mul
 046 xMul=x+Real*mul
 047 gline(x,y,x,yMul)
 048 gline2(x,y,xMul,y)
 049 gline3(x,y,xMul,yMul)
 050 fmt(0,3,2,0)
 051

 052 // Select color of line 2
 053 gselcol(2)
 054 grprt(30,125,'Real=',Real)
 055
 056 // select color of line 1
 057 gselcol(1)
 058 grprt(30,135,'Imag=',Imag)
 059
 060 v=Real+0+1j*Imag
 061
 062 // Select color of line 3
 063 gselcol(3)
 064 grprt(140,125,'Angle=',arg(v))
 065 grprt(140,135,'Mag=',abs(v))

Figure 69

For more information about fourier transforms please visit our
website.

106 Classic module

FFT built-in functions
 001 // Fourier transform
 002
 003
 004 // Read data points
 005 N=sdata('fft_data')
 006
 007 // plot data points
 008 srplot(1,1,N,0)
 009 gtitl('Raw data')
 010
 011 // Put message on screen
 012 // since it takes a while on
 013 // a palm device
 014 gprt(50,152,'Wait for waiting=>')
 015
 016 // Calculate the fourier transform.
 017 fft(1,N)
 018
 019 i=1
 020 while(i<=N)
 021 {
 022 // Calculate magnitude and
 023 // put in column three.
 024 sadd(i,3,abs(scget(i,1)))
 025 i=i+1
 026 }
 027
 028 // Wait to continue.
 029 gcont()
 030 // Clear graphics screen.
 031 gclrs()
 032
 033 // Plot magnitude
 034 srplot(3,1,N/2-1,0)
 035
 036 gtitl('Magnitude')
 037 gcprt(100,135,'Frequency')

Figure 70

Figure 71

The sdata(datafile) returns the number of rows read from the data
file. The function srplot(1,1,N,0) plots the raw data. Notice that there
is not need to setup anything for the labeling of the plot since that is
all done for you by the srplot() function.
After starting the program make sure you wait till the text in the stop
button changes to continue to indicate the fft calculation is ready.

106

Classic module 107

107

Quadratic regression example

Figure 72

Figure 73

 001 // Quadratic regression
 002 x1=0;x2=100;sx=25;xStep=10
 003 y1=-25;y2=100;sy=25
 004
 005 n=sdata('Data02')
 006
 007
 008 gtitl('Quadratic regression')
 009 gstdc(5,15,158,125)
 010 gaxis(x1,y1,x2,y2,1,1)
 011 x=sget(1,1)
 012 y=sget(1,2)
 013 gmove(x,y)
 014
 015 // Plot data points
 016 i=2
 017 whilei<=n)
 018 {
 019 x=sget(i,1)
 020 y=sget(i,2)
 021 gpnt(1,x,y,2)
 022 i=i+1
 023 }
 024
 025 // Wait for user to press
 026 // continue.
 027 gcont()
 028

 029 // Show the fitting
 030 first=1
 031 x=x1+xStep
 032 while (x<x2)
 033 {
 034 y=sqrv(x) // same as y=a*x^2+b*x+c
 035 if(first==1)
 036 {
 037 gmove2(x,y)
 038 first=0
 039 }
 040 else
 041 {
 042 glin2(x,y)
 043 }
 044 x=x+xStep
 045 }
 046
 047 gcont()
 048 gclrs()
 049
 050 gcprt(80,30,'Quadratic regression')
 051
 052 // Get the three values for the
 053 // quadratic equation.
 054 a=sqrc(3)
 055 b=sqrc(2)
 056 c=sqrc(1)
 057
 058 gprt(5,50,a+'*X^2 + '+b+'*X + '+c)

108 Classic module

Chi-square test
The test requires that the data first be grouped. The actual number of
observations in each group is compared to the expected number of
observations and the test statistic is calculated as a function of this
difference. The number of groups and how group membership is
defined will affect the power of the test (i.e., how sensitive it is to
detecting departures from the null hypothesis). Power will not only be
affected by the number of groups and how they are defined, but by
the sample size and shape of the null and underlying (true)
distributions. Despite the lack of a clear "best method", some useful
rules of thumb can be given.
When data are discrete, group membership is unambiguous.
Tabulation or cross tabulation can be used to categorize the data.
Continuous data present a more difficult challenge. One defines
groups by segmenting the range of possible values into non-
overlapping intervals. Group membership can then be defined by the
endpoints of the intervals. In general, power is maximized by
choosing endpoints such that group membership is equiprobable
(i.e., the probabilities associated with an observation falling into a
given group are divided as evenly as possible across the intervals).
One rule-of-thumb suggests using the value 2n2/5 as a good starting
point for choosing the number of groups. Another well known rule-of-
thumb requires every group to have at least 5 data points.
Example:
The results of an experiment are shown below in the row observed.
 Group 1 Group 2 Group 3 Group4 Sum
Probability
model:

9 3 3 1 sum=16

Expected
Ratio:

9/16 3/16 3/16 2/16

Observed: 125 40 42 12 sum=219
Expected: (9/16)* 219 (3/16)* 219 (3/16)* 219 (1/16)* 219

283612379.0
exp

)exp(2
2 =

−
∑=

ected
ectedobservedχ

// chi-data file
9,125
3,40
3,42
1,12

 001 // Chi-square example
 002
 003
 004 sdata('chi-data')
 005 schi(1,2)

Figure 74

108

Classic module 109

109

Opamp

Figure 75

Little program to calculate the
output of an electronic circuit with
an operational amplifier, opamp.

 001 R1=1000;R2=2700
 002 R3=499;R4=860
 003 U1=3.36;U2=1.2
 004 gline(20,20,120,20)
 005 fmt(3,3,1,0)
 006 gprt(8,20,'U1')
 007 gprt(25,20,'R1='+R1)

 008 gprt(75,20,'R2='+R2)
 009 gline(70,20,70,40)
 010 gline(70,40,80,40)
 011
 012 // minus sign
 013 gline(82,40,84,40)
 014 gline(80,35,80,65)
 015 gline(20,60,80,60)
 016
 017 // plus sign
 018 gline(82,60,84,60)
 019 gline(83,59,83,61)
 020 gprt(25,60,'R3='+R3)
 021 gprt(8,60,'U2')
 022 gline(80,35,110,50)
 023 gline(80,65,110,50)
 024 gline(110,50,135,50)
 025 gprt(140,50,'Out')
 026 gline(120,20,120,50)
 027 gline(70,60,70,90)
 028 gcprt(70,70,'R4='+R4)
 029 gline(65,90,75,90)
 030
 031 fmt(3,4,3,0)
 032 gprt(10,90,'U1='+U1)
 033 gprt(10,100,'U2='+U2)
 034
 035 // Start calculations
 036 b=(R4/(R4+R3))*((R2+R1)/R1)
 037 gprt(10,110,'Out=-U1*'+R2/R1)
 038 gtadd('+U2*'+b)
 039 gprt(10,120,'Out='+(-U1*R2/R1+U2*b))

110 Classic module

Root function

Figure 76

Notice the guess values, second argument
in root function. The root function will start
searching at this point for a solution.

 001 x=4;h=10E-13
 002 x1=-4;x2=4;y1=-20;y2=20
 003
 004
 005 function f(x){x^3-10*x+2}
 006
 007 // Number of steps to plot the graph.
 008 N=50
 009
 010 // Calculate step size
 011 s=(x2-x1)/N
 012
 013 // Set area to draw graph.
 014 gstdc(1,10,159,90)
 015 gaxis(x1,y1,x2,y2,2,5)
 016 gtitl('Root function.')
 017 x=x1
 018
 019 // Set start position
 020 gmove2(x,f(x))
 021 while (x<=x2)
 022 {
 023 glin2(x,f(x))
 024 x=x+s
 025 }
 026
 027 gprt(70,84,'f(x) {x^3-10*x+2}')
 028
 029 // find the root using guess value
 030 x=-2;x=root('f',x)
 031
 032 // Draw X at the position
 033 // Change the two for diffent symbol
 034 gpnt(1,x,f(x),2)
 035 gcprt(80,110,'x=-2 ;x=root(f,x) '+x)
 036
 037 x=0;x=root('f',x);gpnt(1,x,f(x),2)
 038 gcprt(80,120,'x=0 ;x=root(f,x) '+x)
 039
 040 x=3;x=root('f',x);gpnt(1,x,f(x),2)
 041 gcprt(80,130,'x=3 ;x=root(f,x) '+x)

Figure 77

 001 // log(x*x+y*y)
 002
 003
 004 function f(x,y)
 005 {
 006 // Change user funtion below
 007 log(x*x+y*y)
 008 }
 009
 010 // The fplot3d() function checks if a
 011 // graphical area was initialized already.
 012 // If no graphical was initialized it
 013 // will initialize the default area plus
 014 // default rotation for you.
 015 fplot3d('f',-1,-1,1,1)
 016
 017 // Put the gtitl() after fplot3d() because
 018 // gtitl() should only be called after
 019 // gaxis() which is called in fplot3d()
 020 gtitl('log(x*x+y*y)')

To plot a different function change line 007 and
the minimum and maximum values at line 15.

The green remarks are not needed to run the
script. The script below will perform the same
calculations and only shows the functions
needed

 001 // log(x*x+y*y)
 002
 003
 004 function f(x,y)
 005 {
 006 log(x*x+y*y)
 007 }
 008 fplot3d('f',-1,-1,1,1)
 009 gtitl('log(x*x+y*y)')

110

Programming PDAcalc classic
Programming PDAcalc classic

111

111

This is programming…You are able to push what the
computer can do. You control every single small detail…You’re
twelve, thirteen, fourteen, whatever. Other kids are playing soccer.
Your grandfather’s computer is more interesting. His machine is its
own world, where logic rules.

― Linus Torvalds, Just For Fun

Before you start writing your own scripts, you should look at:
http://www.adacs.com. We encourage this for two reasons: first, our
online library of scripts is teeming with examples of how other
programmers solved problems specific to the strengths and limits of
PDAcalc classic. Learning from others saves you time and effort.
Second, a program might already exist to meet your needs, or could
with some tweaking. Changing others’ scripts, then running them to
see what happens, is another way to learn programming (proper
attribution, however, must always be respected).
Let’s say a program exists in our library whose description suggests it
seems close to what you’re looking for. Download it. Inspect its
comments and algorithm. Once you understand what the program
does, and you believe you know how to modify it to meet your needs;
edit it, change the program name; save the result, and run it. After
everything works please do not forget about other users of PDAcalc
classic. If your edits result in a program that either solves another set
of problems than the original or significantly improves upon the
original, you might want to consider uploading it to our website.

A Programming Primer

What is a script? For the purposes of this manual, let's
define scripting as a set of instructions run on a PDAcalc module,
some or all of which are executed, one at a time, during a run. The
instructions that are executed transform input to output in a manner
that could be done with pencil and paper. The set of instructions must
stop running in a finite length of time.
So if we can carry out these instructions by hand, with pencil and
paper, what use is a program? Simply put: speed and accuracy in
repetition. Let’s say your program solves a certain kind of problem
that takes 20 steps on PDAcalc classic to perform. Once you’ve
ensured that your program gives correct output, you can use your
program as often as you need. Running it takes as few as one step to
do (let’s say putting in new values for the variables is another step);
and your 20-step problem is solved much faster than you could do it
by hand; and with every run you’re confident that the results are not
affected by missteps in the calculation.
PDAcalc classic’s programming language is simple yet powerful. It
lacks the GOTO statement and so requires scripts to be structured.
Structured programming simplifies the order in which instructions are
executed, which is called program flow. In structured programming
there are only three kinds of flow control: sequence, selection, and
repetition.

http://www.adacs.com/

112 Programming PDAcalc classic
A program that has only sequential flow starts at the top, executes all
of its instructions in the order they're written; and after it executes the
last instruction, it stops.
A program that has one selection point in its flow runs sequentially
until it reaches that point. The branch can have only one selection
(two paths); but it can also have many. At the selection point the
program evaluates a condition; which path of instructions the
program follows depends on the outcome of that evaluation.
A program that has one repetitive loop in its flow runs sequentially
until it reaches the loop's entry point. At the loop's exit point the
program evaluates a condition; it continues running in the loop until
the exit condition is satisfied.
These pictures are intended to show program flow only. the
program lines themselves are nonsense. Real PDAcalc classic
scripts that use the concepts illustrated here are in the
programming examples section below.

Figure 78

Figure 79

Figure 80

sequential flow: all
steps are
executed, one at a
time, and in the
order written.

selection flow: at the
selection point, a
condition is
evaluated; the
evaluation decides
which steps will be
evaluated, and which
not.

repetition flow:
program flow
enters a loop,
where it stays until
an exit condition is
satisfied.

note: sequential flow is the most basic. even in a selection path or
repetitive loop program lines are executed one at a time, in the
order they’re written, until program flow reaches the end of the
path or loop.

112

Programming PDAcalc classic 113

113

PDAcalc classic’s Commands

Let’s look briefly at PDAcalc classic’s programming commands and
operators before we tackle some sample scripts:
COMMAND REMARK

if(cond)\n{\n}\n

If (condition) is true, execute program lines
within the curly brackets. note that when the
if command is used by itself, the condition
decides only if additional program lines in
your program (those within the curly
brackets) will be executed.

else\n{\n}\n

optional to the if command. executes the
commands between brackets when the
condition for the if statement is false. note
that the selection flow of an if-then-else
statement lets the condition decide which of
two sets of program lines (those within the
curly brackets following the if(cond) or those
within the curly brackets following the else
will be executed.

while(cond)\n{\n}\
n

while(condition) is true, execute the program
lines between the curly brackets. program
flow enters the while-loop, and continues
flowing through it in a loop until the exit
condition is met (that is, the while(condition)
becomes false).

init()
returns one only the first time after executing
a program.used mainly for initializing
variables.

exit(n) terminates program. n = 0 normal
termination. n = 1 termination due to error.

Yea, yea, we know: use of the backslash-n (\n) to denote newline
is UNIX convention.

What are these conditions whose values decide program flow? On
PDAcalc classic, they can be relational (meaning that PDAcalc
classic tests one data value against another to decide action) or
interactive (meaning that PDAcalc classic waits for input from the
user).
Here are PDAcalc classic’s relational operators:

OPERATOR REMARK
!= Not equal to
&& Logical and operation.
|| Logical or operation.
< Less than
<= Less than or equal to
== Equal to
> Greater than
>= Greater than or equal to

114 Programming PDAcalc classic

And here are some of the interactive functions whose values can
decide program flow:

COMMAND REMARK

iskey('StrV') Returns 1 when button 'StrV'
is pressed.

gcont() Wait until continue button is
pressed.

OK, you’ve slogged through enough talk. Let’s look at some simple
scripts to see how we can put this knowledge to use.

Programming Examples
More Graphics Fun! This time we want to draw concentric circles,
evenly spaced, on the graphics screen, like in this screenshot:
I can think of several ways to do this. One is to go back to the
Graphics Fun file we wrote in the chapter on graphics, and write the
gcir(col,x,y,r) function 8 times, keeping x and y constant while
increasing the value of r by 8 in each consecutive gcir(col,x,y,r), like
this:
 001 // concentric circles
 002
 003
 004
 005 greset()
 006 gcir(1,80,80,8)
 007 gcir(1,80,80,16)
 008 gcir(1,80,80,24)
 009 gcir(1,80,80,32)
 010 gcir(1,80,80,40)
 011 gcir(1,80,80,48)
 012 gcir(1,80,80,56)
 013 gcir(1,80,80,64)

Figure 81

Remember, a PDAcalc classic scratchpad variables (that is, variables
whose values can be changed after the script has successfully
loaded and before a script run) on lines 1,2, and 3. The code,
therefore, starts on line 4. If you wish to enter this script and run it
start writing the code from line 4.
But I don’t know why you’d bother. This code is an example of
sequential flow, but it’s not a very good one. Why? Because seven
lines are essentially repeats of one line, gcir(1,80,80,8), varying only
in their radius values.
Such repetition of code begs casting the gcir(1,x,y,r) function in
repetition flow. Few (actually, none) would argue that it isn’t more
efficient to write a small script in which we write the gcir(1,x,y,r)

114

Programming PDAcalc classic 115

115

function once, but in such a way that it gets executed as many times
as we want concentric circles.
For repetition flow on PDAcalc classic, we use:
while (cond)
{
}
Between the curly brackets {} we’ll put the kernel of this script,
gcir(col,x,y,r), which we already know is going to draw those eight
concentric circles. Because x and y are constant, let’s put their value
in gcir(1,x,y,r), so that it becomes gcir(1,80,80,r). The condition to
keep script flow in the loop, executing gcir(1,x,y,r) over and over, will
be r <= 64. Now we have a while loop that looks like this:
 006 while (r<=64)
 007 {
 008 gcir(1,80,80,r)
 009 r=r+8
 010 }

And we’re missing two things. What is the value of r before we enter
the loop? Right now it’s not set. On the line above the while loop, we
write r=8. And what’s the other thing we’re missing? Reading the
script aloud might help us find out. Reading aloud, we might say
something like, “We set r equal to eight. Now while r is less than or
equal to 64, draw a circle with center at 80,80, and radius of…” Here
is the second thing we’re missing: a statement that changes the
value of r each time we go through the loop. As the code is written
now, script flow will never leave the while loop as PDAcalc classic
endlessly draws circles of radius zero. A common scripting mistake is
writing repetitive structures that either terminate abnormally or not at
all. How to fix this? We write the statement that changes the value of
r at the bottom of our while loop.
Here’s a script that will meet our specs:
 001 // concentric circles
 002
 003
 004 greset ()
 005 r=8
 006 while (r<=64)
 007 {
 008 gcir(1,80,80,r)
 009 r=r+8
 010 }

Let’s go ahead and clear the graphics screen each time we run it. Put
greset () above r=0.
Reading the script aloud, we might now say something like, “We
clear the graphics screen and set r equal to zero. Now while r is less
than or equal to 64, draw a circle with center at 80,80, and radius of r.
Increase r by 8 each time after a circle is drawn.”
Let’s look at each way we’ve decided to draw our concentric circles.

116 Programming PDAcalc classic

116

 001 // concentric circles
 002
 003
 004 greset()
 005 r=8
 006 whiler<=64)
 007 {
 008 gcir(1,80,80,r)
 009 r=r+8
 010 }

 001 // concentric circles
 002
 003
 004
 005 greset()
 006 gcir(1,80,80,8)
 007 gcir(1,80,80,16)
 008 gcir(1,80,80,24)
 009 gcir(1,80,80,32)
 010 gcir(1,80,80,40)
 011 gcir(1,80,80,48)
 012 gcir(1,80,80,56)
 013 gcir(1,80,80,64)

This brings us to yet another advantage of programming: flexibility.
Let’s say we want next to draw concentric circles with radii 4n*r, 0 <=
r <= 64, instead of what we have now, 8n*r, 0 <= r <= 64. Had we
drawn our concentric circles by the script on the right, not only would
we have to change our value of r on each line, we’d have to add
another 8 lines. But because we are using the script on the left, this
change to the script specs requires only that we change 8 to 4 in the
statement r=r+8.
And because you love Graphics Fun so much, I know you’ll let me
flog away at it a bit more. Could the script on the left be written yet
another way, and yield the same result? Sure! We could have an
index variable, x, such that its value is tested as the conditional and
its value is multiplied by a constant to yield r. It would look like the
code on the right.

greset ()
r=0
while (r<=64)
{
 gcir(80,80,r)
 r=r+8
}

greset ()
x=0
while(x<=8)
{
 r=x*8
 gcir(80,80,r)
 x=x+1
}

Now we have three scripts, all yielding the same result. Scripts or
parts of scripts that yield the same output given the same input are
called functionally equivalent. So which of these is preferred? Well, of
course the one that’s all sequential flow is least preferred. Index
values are used like x is in the code on the right, but when it is called
or used more than once in the repetitive loop; here it only adds one
more line of code, and that slows down code execution (by only a bit,
to be sure). In general, the simpler the code, the better. The code on
the left is preferred.
We know Graphics Fun runs and outputs what we want, but have we
finished with it? A minimalist would say yes; but we’re missing
documentation. We use documentation in code to explain, even to
ourselves, what the code is doing. It seems overmuch in such a small
script, I admit; but we’re using this script for learning purposes.

Programming PDAcalc classic 117

117

Documentation comes in two forms: self-documenting code and
comments.
Self-documenting code is code whose parts the programmer gives
names to, names that explain what those parts are or what they do.
In our example, the name “Graphics Fun” is less descriptive than
“DrawBullseye” so that’s what we’ll write on line one. Also, r as a
variable name here is fine, since r stands for “radius” in math; but to
be explicitly self-documenting, we’ll change the name. Comments
follow double-slash (//) and are used to explain what the code is
doing.

 001 //initialize
 002 radius=0
 003
 004 //draw concentric circles
 005 //making each circle's radius
 006 //8 pixels > than last
 007 while(radius<=64)
 008 {
 009 gcir(1,80,80,radius)
 010 radius=radius+8
 011 }

As written, our script requires editing if we want to change any of its
parameters; and once running, accepts no input from the user.
PDAcalc classic gives the user greater flexibility for changing script
variables, and allows user interaction during script run. The next two
changes to our script show how.
Let’s start with script interaction: once the user runs the script, we
want it to wait until the user taps the [Continue] button on the
graphics screen before drawing any circles. To do that, we simply put
the command gcont() after the initialization lines.
And finally, one last requirement: we want the user to be able to
change by how much the radius grows (or, delta-r) with each circle as
often as the user likes without having to edit the code. To meet the
requirement, we must create another variable; let’s call it deltar (for
delta-r, of course). Lets also change the color of circle so we add an
other variable col for this purpose.
 001 deltar=8
 002
 003
 004 //initialize
 005 greset ()
 006 radius=0
 007
 008 //draw concentric circles
 009 //making each circle's radius
 010 //8 pixels > than last
 011 col=0
 012 while (radius<=64)

118 Programming PDAcalc classic
 013 {
 014 gcir(col,80,80,radius)
 015 col=col+1
 016 radius=radius+deltar
 017 }

After this script successfully loads, the scratchpad on the textscreen
shows deltar = 8. Now the user can change the value by how much
the radius grows by changing the value of deltar in the scratchpad.
We wish to end this primer with an observation: all scripts have
parameters. Within their parameters, their writers try to ensure that
they work properly and do not give bad output. After you write a script
on PDAcalc classic, you should test it for soundness. This means
finding values for your script’s variables that will cause the script to
fail, or give bad output; and once you find them, either having your
script catch the errors, or document what causes errors as your
script’s parameters.
A valid example for a PDAcalc classic script would be to determine if
any variable causes a divisor to become zero while your script runs.
Because division by zero is undefined, if it happens in your script,
your script will terminate abnormally and PDAcalc classic will display:
 001 step=40
 002
 003
 004 while(step>-10)
 005 {
 006 test=100/step
 007 step=step-5
 008 }

After loading this script and
pressing [RUN] the screen
on the right appears. When
it is not clear what the error
was you can press [OK] and
look at the error message at
the result line of the main
screen.
This line should show:
6:Division by zero:

Figure 82

How to prevent this? If the value of the divisor variable is set by the
user, you can document your script with a comment like this:
// if varFoobar = 0, script will terminate abnormally!
If the value of the divisor variable changes during the script run, you
might be able to catch the error in such a way that the script still
gives good output. Look at the following example:
if (divisor != 0)

118

Programming PDAcalc classic 119

119

{
 test = 12/divisor
}
else
{
 test = 0
}

In this example we catch the error by testing for the value of the
variable (cleverly named divisor) before performing the division, test
= 12/divisor. The else clause says what to do instead of letting the
script terminate abnormally if divisor = 0. In this example, setting test
= 0 meets script specs.

 Matrix module
Matrix module

120

120

PDAcalc matrix is the most powerful programmable matrix
calculator especially designed for the PDA. Enter numerous values in
one matrix and perform calculations on all the values at the same
time. Plot all the values with a simple command using a linear or
logarithmic scale. Yes, even auto-scaling is supported. Let PDAcalc
matrix do the work for you! Now that we’re familiar with the main
screen, let’s do some basic calculations on PDAcalc matrix using the
default preferences:

Advantage of a matrix calculator

Figure 83

Lets just start with a simple example.
Image you are selling products with
prices of $19.95 $30.25 $17.95 and
$44.95. You want to increase the mark-
up from 1.6 to 1.8. What is the difference
if you sell one of each?

Enter the script, well the two lines, as
shown in Fig. 1 and press [exe] at the
bottom. Normal calculators work with
one value at a time. PDAcalc matrix
works with as many values as there are
in the matrix.
If the markup is not the same for each
product you can create an other

matrix like m=[1.6 1.7 1.6 1.8] and enter tot=p.*m. Notice the period
in front of the *. This is needed when you like to multiply each
element, value, individually. Without the period PDAcalc matrix will
use the matrix multiply instead.

Matrix module 121

121

Basic calculations
The Problem
Statement: You press:

PDAcalc
matrix
Displays:

Remarks:

3 + 4 3 + 4 [EXE] 3+4
7

Pretty straightforward.

(3+4) * 2 [CLS]* 2 [EXE] ans*2
14

Use the previous result for
the current calculation.

2^((3+4)*2) [CLS] 2 ^ [ans] [EXE] 2^ans
16,384

The ans key supplies the
previous result in the
equation.

(2^((3+4)*2))^(1/1
4)

[CLS] [ans] ^ (1 / 14)
[EXE]

ans^(1/14)
2

Fractional exponents.

Same as above [CLS] (2 ^ ((3 + 4)*2)) ^
(1/ 14) [EXE]

(2^((3+4)*2))
^(1/14)

2

PDAcalc matrix follows
algebraic order of
precedence when evaluating
expressions.

Same as above, but
with a deliberate
error

delete a) from the
expression in the scratchpad,
then press [EXE]

1:’)’ expected PDAcalc matrix’s interpreter
does syntax error-catching.

(-1)^(1/2) [CLS] [sqr] – 1) [EXE] sqr(-1)

0 +1j

Imaginary numbers! Note
that a prepended ‘j’
designates the imaginary
part of a complex number
PDAcalc matrix.*

Solve the linear
system:
2x+ y -2z=10
3x+2y+2z=1
5x+4y+3z=4

[CLS][MTRX]
[2 1 -2; 3 2 2; 5 4 3] \ [10; 1;
4]
[EXE]

ans=
[1;2;-3]

PDAcalc_matrix uses
MATLAB typography for
reading and writing
matrices. A matrix begins
and ends with brackets, and
semicolons separate rows.
The backslash (\) is used to
set up system-of-linear-
equations problems in the
form Ax=b. The answer to
this problem reads: x=1,
y=2, z=-3.

Solve the linear
system:
 4x- 2y =5
-6x+3y =1

[CLS]
[4 -2; -6 3] \ [5;1]
[EXE]

1:Singular
matrix:solve()

The system has no solution
(that is, these lines do not
intersect). A system with an
infinite number of solutions
(that is, the system of
equations describe one line
only) gives the same
message.

Multiply the scalar
(-2+1j) into the
vector [2 4 6]

[CLS] (-2+1j)*[2 4 6] [EXE] ans=
[-4+2j -8+4j -
12+6j]

Do arithmetic operations
with vectors and matrices.
Here we multiply a scalar
having an imaginary part
with a vector.

Multiply the
column vector [-
2+1j; 4; 5] and row
vector [2j 4 6j]

[CLS] [-2+1j; 4; 5]*[2j 4 6j]
[EXE]

ans=
[-2-4j -8+4j -
6-12j
0+8j 16 0+24j
0+10j 20
0+30j]

PDAcalc matrix lets us work
with imaginary numbers in
vectors and matrices.

122 Matrix module
let A=[2 3 5; 7 11
13; 17 19 23]

[CLS] A =[2 3 5; 7 11 13; 17
19 23] [EXE]

A=
[2 3 5
7 11 13
17 19 23]

Variable assignments.

Get the (2,3)
element of A

A(2,3) [EXE]

(do not clear the matrix
assignment for A. put the
instructions A(2,3) on the
second line.)

A=
[2 3 5
7 11 13
17 19 23]
ans=
13

Note: do not clear the matrix
assignment for A. put the
instructions A(2,3) on the
second line.

Put 29 in the (2,3)
position of A

A(2,3)=29
A [EXE]

(do not clear the matrix
assignment for A. modify
the instructions on the
second line to A(2,3)=29,
and A on the 3d line)

A=
[2 3 5
7 11 13
17 19 23]
ans=
[2 3 5
7 11 29
17 19 23]

Note: do not clear the matrix
assignment for A. modify
the instructions on the
second line to A(2,3)=29,
and A on the 3d line.

Find the
determinant of A.

det(A) [EXE]

(do not clear the matrix
assignment for A. put the
instructions det(A) on the
second line.)

A=
[2 3 5
7 11 13
17 19 23]
ans=
-78

Note: do not clear the matrix
assignment for A. put the
instructions det(A) on the
second line.

Find the
eigenvalues of A

eig(A) [EXE]

(do not clear the matrix
assignment for A. put the
instructions eig(A) on the
second line.)

A=
[2 3 5
7 11 13
17 19 23]
ans=
[36.811728 -
1.917028
1.1053]

Note: do not clear the matrix
assignment for A. put the
instructions eig(A) on the
second line.

eig(A) returns a vector of the
eigenvalues of A.
[V, D] = eig(A) returns
matrices of eigenvalues (D)
and eigenvectors (V) of
matrix A.

Screen shots

Figure 84

The main screen of
the matrix module is
shown on the left. Tap
on the [MTRX] to go
to the matrix screen
as shown on the right.
Notice how the results
of the equations in
scratchpad are shown
below the keypad.

Figure 85

When an equation is terminated with a semi-colon the result will not
be shown. This is why the contents of variable B is not shown.
Press the [RET] button to return to the main screen.

Lets start with a simple script. After reading The calculator section of
this manual you know already how to create a new script. If you are
more adventures, did not read the script, you can just select Scripts
for the main menu and select new script. Enter the script below and
select save as. Next select load from the Scripts menu to load the
script you just saved. This will convert, optimize and store the script

122

Matrix module 123

123

into memory so it can be executed as fast as possible. Next press
[RUN] and a screen as shown below will appear.

Figure 86

 001 x=0:20:360;
 002 r=x./180*pi;
 003

 004
 005 plot(x,sin(r),'r',x,cos(r),'b')
 006 title('Plot of TWO functions.')
 007 xlabel('Angle [degrees]')
 008 ylabel('Amplitude')

Note: The last three lines are only to print the labels and title. These
are not needed for drawing the plot. To save space on the limited
screen a multiplication factor is used for the x-axis. In this case 100.

Notice that the variables shown in the scratchpad, top three line on
the main screen, are easy to change. Pressing [RUN] will execute the
same script using the changed variables without loading the script
again. This is a big advantage since loading a big script using a palm
device can take a while.

Matrix multiplication
Let A and B denote two matrices that have this characteristic: The
number of columns in A equals the number of rows in B. These
matrices are conformable with respect to each other, and they can be
combined by an operation known as the multiplication of matrices.
Let C denote the matrix formed by multiplying A and B. Matrix C is
the product of A and B, and the operation is expressed symbolically
as C=AB.

(1)
Well are you impressed already? When I see this kind of formula for
the first time my first thought is yeh yeh just give me a practical
example of how useful it is and then I might be impressed.

Let take a look at an example with two cities A and B.
Every year 40% of the people in city A move to city B.
Every year 30% of the people in city B move to city A.
After one year we have in city A: 0.6A + 0.3B (2)
After one year we have in city B: 0.4A + 0.7B (3)
After two years we have in city A:
0.6 (0.6 A + 0.3 B) + 0.3 (0.4 A + 0.7 B) = 0.48A + 0.39B (4)
After two years we have in city B:
0.4 (0.6 A + 0.3 B) + 0.7 (0.4 A + 0.7 B) = 0.52A + 0.61B (5)

124 Matrix module
Ok let me stop here and leave it up to the reader to keep on going for
the next couple of years.

First year

(6)

Second year

(7)

Ok time to enter an equation into PDAcalc
matrix
First select the matrix screen and then type:
[0.6 0.3; 0.4 0.7] * [0.6 0.3; 0.4 0.7]
and press [exe].

The screen on the right should appear.
Look back at the equations (4) and (5)
Instead of [0.6 0.3; 0.4 0.7] * [0.6 0.3; 0.4
0.7] you could write the follow script:
n=2;
y=[0.6 0.3; 0.4 0.7];
p=y^n

Figure 87

If you calculated the populations after 5 years then you can verify the
result by changing
n =2 to n=5 and press [exe].
Apply equation (1) to the two matrices in equation (7) and that is what
MtrxCal did to multiply the two matrices.

(9)

124

Matrix module 125

125

User functions
When you like to execute the same set of commands, for which there
is not a build-in function, several times within the same script you can
create a user function.
 001 % user function example
 002 A=magic(4);
 003

 004 % Declare function after scratchpad!!!
 005 function [y1,y2]=example(x)
 006 y1=min(x);
 007 y2=max(x);
 008 return
 009
 010 text(20,10,'User functions in PDAcalc matrix')
 011
 012 y=50;
 013 ret=example(A);
 014 mtrx2scr(10,y,'example(',A,')=',ret)
 015
 016 [a b]=example([4 7 3]);
 017 y=y+40;
 018 text(10,y,'[a b]=example([4 7 3])')
 019 y=y+10;
 020 text(10,y,'a='+a)
 021
 022 y=y+10;
 023 text(10,y,'b='+b)

Figure 88

In the example script a user function is created at line 5. This function
returns two values, y1 and y2. The function is called at line 13 and
line 16.
The variables within a function are not stored on a stack that means
that recursion, calling the same function within the function, is not
allowed. This is mainly because of speed and memory considerations
on a palm device. Also notice that the function is declared within the
same script and needs to be declared before it is called.
User functions have to be declared after the scratchpad, first three
lines.

126 Matrix module
Differential equations
Lets use a practical example to show to use the ode45() function to
solve a differential equations.

Consider, for example a mass spring
damper system like a car suspension
and damping.

Figure 89

The formula to calculate the
displacement of the mass m is:

02 =++ kxcm dtdt

2 dxxd (1)

In which c is the damping and k is
the spring force. This needs to be
rewritten in two first order differential
equation for the ode45(‘f’,tspan,init)
function.

 (2)

(3)

Next write the function in PDAcalc
matrix:
 005 function yp=system(t,y)
 006 yp=[y(2);(-(a*y(2))-(b*y(1)))];
 007 end

The first row in the return variable
yp is the second derivate, formula
(2), and the second row returns the
first derivative, formula (3). The
complete script is shown on the left.
Notice the time span at line 12 and
the initial values of y0 at line 13.

 001 m=1; % mass [kg]
 002 k=100; % Spring force [N/m]
 003 c=2; % Damping [(Ns)/m]

 004
 005 function yp=system(t,y)
 006 yp=[y(2);(-(a*y(2))-(b*y(1)))];
 007 end
 008
 009 a=c/m;
 010 b=k/m;
 011
 012 tspan=[0 4];
 013 y0=[0.02;0];
 014 [t,y]=ode45('system',tspan,y0);
 015 plot(t,y(:,1));
 016 xlabel('time')
 017 ylabel('Displacement')
 018 title('Displacement Vs Time')

Figure 90

vdt
dx =

[]xv m
k

m
c

dt
dv +−=

126

Matrix module 127

127

The function called by ode45() should have two arguments, time
span and initial values, and one return value. The ode45() will return
a row vector for higher order differential equations.
The method used in ode45() is a fixed Runge-Kutta method. At the
time of writing this manual a fixed method of 60 equally spaced
intervals is used. The number of intervals, iterations, can be changed
using the iter() function. Using a high number of iterations can take a
very long time to calculate. Please be careful when using the iter()
function.

Lorentz contraction

 001 % Do not use on a palm device!
 002 to=0;
 003 tfinal=30;

This script shows how to use the iter() function, line 15, to increase
the accuracy of the ode45() function. Please be careful using this
script on a slow running palm OS device since executing this script
will take a very long time. Changing line 15 to iter(60) will have the
same result as not using the iter() function at all. It is the default.

 004
 005
 006 function F=lorentz(t,n)
 007 x=n(1);
 008 z=n(3);
 009 y=n(2);
 010 F=[5*(y-x);25*x-y-x*z;-3*z+x*y];
 011 return
 012
 013 tspan=[to tfinal];
 014 yo=[10;10;11];
 015 iter(1000)
 016 [T,Y]=ode45('lorentz',tspan,yo);
 017
 018 plot(Y(:,1),Y(:,2));
 019 title(' x and y ') Figure 91

128 Matrix module
Integration
 001 % Integration range
 002 a=-2;
 003 b=5;

 004 % Declare function after scratchpad!
 005 function y=test(x)
 006 y=sin(x).*x;
 007 return
 008
 009 % Integrate from a till b
 010 area=quad('test',a,b);
 011
 012 % Create range of 60 points for plot().
 013 x=a:(b-a)/60:b;
 014
 015 plot(x,test(x))
 016 title('Integration example')
 017 xlabel('Area='+area)

128

Calculates: dxxxarea
b

a
∫=)sin(*

Figure 92

First create a user function containing the function you like to
integrate. Then call the quad function as shown on line 10. The
returned value is the integrated area under the curve.

Matrix module 129

129

Matrix built-in Functions

Arithmetic functions

 .*

Array multiply

[2 3;4 5].*[6 7;8 9]=[12 21;32 45]
[2 3;4 5]*[6 7;8 9]=[36 41;64 73]

 ./

Array divide

[2 3;4 5]./[6 7;8 9]=[0.33 0.43;0.5 0.56]
[2 3;4 5]/[6 7;8 9]=[3 -2;2 -1]

See also: /

 .^

Array power.

[4 5].^[3 2]=[64 25]

 /

Matrix divide

Example: [2 3;4 5]./[6 7;8 9]=[0.33 0.43;0.5 0.56] [2 3;4
5]/[6 7;8 9]=[3 -2;2 -1]

 kron(A,B)

Returns the Kronecker tensor product of A and B

130 Matrix module

130

For example, if X is 2 by 2, then KRON(A,B) is
[A(1,1)*B A(1,2)*B
 A(2,1)*B A(2,2)*B]

 \

 ^

.^

 bitand(A,B)

bitor bitxor

Backslash or matrix left division. If A is a square matrix, A\B
is roughly the same as inv(A)*B

Example:
[2 3;1 -1]\[14;-3]=[1;4]
Solves for 2*x+3*y=14 and x-y=-3

Matrix power.

A^M
All elements of M have to be an integer and can not be
complex.

When raising A to the power of one value the value can
complex and real.

See also:

Bitwise functions

Returns the bit-wise AND operation of A and B.

bitand([3 4 5],[6 3 9]) returns [2 0 1]

See also: ,

Matrix module 131

131

Returns the bit-wise complement of A as an N-bit non-
negative integer.

bitcmp(3,4) returns 12.
Complement of 0011 as 2^4

 bitcmp(A,N)

 bitget(A,N)

Returns the value of bit N in A.

See also: bitset

 bitor(A,B)

Returns the bit-wise AND operation of A and B.

See also: bitand , bitxor

 bitset(A,N)

Set the bit a position N in A.

bitset(5,4) = 13

See also: bitget

 bitshift(A,N)

Shift the bits in A by N bits.

bitshift(8,-1) = 4

 bitxor(A,B)

Returns the bit-wise EXOR operation of A and B.

132 Matrix module

132

See also: bit , and , bitor

Complex functions

 abs(M)

Returns the absolute value of each element in the matrix.
When an element is complex the magnitude will be
returned.

 angle(M)

Returns the phase angles of each element, in radians, of a
matrix with complex elements.

See also: unwrap

 conj(M)

Return the complex conjugate of each element in the
matrix.

 imag(M)

Return the complex values of each element as a real value.

See also: real

 isreal

Returns true when all elements are real and false when at
least one element is complex.

See also: imag , real

Matrix module 133

133

imag angle conj

 unwrap(V)

Unwraps radian angles.

Tries to change angle jumps greater then pi.

See also:

Date functions

Exponential functions

 exp(M)

Return the exponential of the elements of M, e to the power
M

 real(M)

Return only the real value of each element.

See also: , , , isreal

angle

 now()

Returns the seconds past between the current time and Jan.
1 1904.

134 Matrix module

134

See also: log , log10 ,

Return natural logarithm of M

See also: exp , , pow2

 log10(m)

Return common, base 10, logarithm of M

See also: exp , log , log2

 log2(M)

Return base 2 logarithm of M.

log2(64)=6 because 2^6=64

See also: pow2

 pow2(M)

Base 2 power. Same as 2.^M

See also: log2

 sqrt(M)

Returns the square root of each element in M

pow2

 log(M)

log2

Matrix module 135

135

Flow control functions

 else

execute statements when if condition is false.

 001 % if test
 002 a=4
 003 b=8
 004
 005 if a>b
 006 text(40,50,a+' > '+b)
 007 else
 008 text(40,50,a+' <= '+b)
 009 end

See also: if

 end

Used by if,while and for statement to indicate the end of a
group of statements.

Used by if,while and for statement to indicate the end of a
group of statements to be executed when the condition is
true.

See also: if , while , for

 error('msg')

 exit(ret)

Exit script and return value

Terminate execution of current script and show message.

Use this function to show an error message when conditions
are not met to continue execution of current script.

136 Matrix module

136

See also: error

 for

Repeat statements

for i=StartValue:SetValue:LastValue
% Statements
end

Example:
 001 % loop example
 002
 003
 004 for y=10:20:110
 005 text(15,y,'Y-position '+y)
 006 end
 007
 008 y=10;
 009 while y<=110
 010 text(80,y,'Y-position '+y)
 011 y=y+20;
 012 end

The example will print the y values on the graphical screen
by increments of 20 using a while loop and a for loop.

To decrement use a negative step value: for y=110:-20:10

See also: if , while

 if condition

execute folowing statements when if condition is true

 001 % if test
 002 a=4
 003 b=8
 004
 005 if a>b
 006 text(40,50,a+' > '+b)
 007 else
 008 text(40,50,a+' <= '+b)
 009 end

Matrix module 137

137

See also: else

 while condition

Execute folowing statements while condition is true

Example:
 001 % loop example
 002
 003
 004 for y=10:20:110
 005 text(15,y,'Y-position '+y)
 006 end
 007
 008 y=10;
 009 while y<=110
 010 text(80,y,'Y-position '+y)
 011 y=y+20;
 012 end
The example will print the y values on the graphical screen
by increments of 20 using a while loop and a for loop.

See also: for , if

Graphical functions

 arc(col,x,y,r,a1,a2)

arc(color, x-position, y-postion, radius, angle1, angle 2)

For an example script using several draw functions take a
look at:
smithcart

See also: line , circle

http://www.buginword.com
http://www.adacs.com/menu/PDAcalc_script.php?module=PDAcalc_matrix&category=Electronics&catItem=smithcart

138 Matrix module

 axis(...)

Set the current axis.

axis off % Does not show the axis nor the labels.
axis([-10 10 -20 20]) % Sets x,y axis limits for 2D plot.
axis([-10 10 -20 20 -30 30]) % Sets x,y,z axis limits for 3D
plot.

See also: plot , bar , stem

 bar(x,n)

Draws a bar graph using the vectors x and n.

Figure 1

 001 % bar() hist() example
 002 N=500;% Random numbers
 003 bins=10;% Number of bins

 004
 005 % Generate random numbers
 006 y=randn(1,N);
 007 save('random',y);
 008
 009 % Sort elements of y into bins
 010 [n x]=hist(y,bins);
 011 bar(x n)

138

Matrix module 139

139

 012 title('Bar() - hist() example')
 013 xlabel('Bins')
 014 ylabel('Frequency')

See also: hist , plot , stem

 circle(col,x,y,r)

circle(color, x-postion, y-position, radius)

For an example script using several draw functions take a
look at:
smithcart

See also: arc , line

 clf

Clears the graphics screen.

 greset

Resets the coordinate mapping. Normally not needed.

 line(x,y)

Draws lines between the elements of the vectors in x and y.

Example: line([1 2],[3 4]) % Draws a line between the
points (1,3) and (2,4)

For an example script using several draw functions take a
look at:
smithcart

See also: cirle , arc

 loglog(...)

http://www.adacs.com/menu/PDAcalc_script.php?module=PDAcalc_matrix&category=Electronics&catItem=smithcart
http://www.adacs.com/menu/PDAcalc_script.php?module=PDAcalc_matrix&category=Electronics&catItem=smithcart

140 Matrix module

140

loglog(...) is the same as plot(...), except logarithmic scales
are used for both the X- and Y- axes.

See plot function

See also: plot , semilogx , semilogy

 mesh(M)

Creates a 3-D mesh plot.

See also: plot

 mtrx2scr(X,Y,S,A,...)

Show a matrix in graphical form. When there are to many
elements in the array [...] will be shown instead.

mtrx2scr(10,40,'A=',A) will
show the string 'A=' at
position (10,40) and show
the contents of matrix A
behind it.

001 A=[3 4;5 6];
002
003
004
005 mtrx2scr(5,20,'A=',A,'
inv(A)=',inv(A))
006
007 [q r]=qr(A);
008 text(5,40,'[q r]=qr(A)')
009 mtrx2scr(5,60,'q=',q,' r=',r)
010
011 [V D]=eig(A);
012 text(5,90,'[V D]=eig(A)')
013 mtrx2scr(5,110,'V=',V,' D=',D)

See also: poly2scr

 plot(...)

Matrix module 141

141

plot(X,Y) plots vector Y versus vector X.

plot(X) will plot the elements of X
versus the index. When X is
complex the imaginary part will be
plot versus the real part of the
complex elements.
plot(X,Y,S) plots Y versus X using
S.
The first character in S is the color.
The second is a point type and the
third is the line type.

First char. Second char. Third char.

r red + plus - line

g green x x-mark

b blue d diamond

c cyan

m magenta

001 % Plot graph
002 X=-5:0.5:5
003 Y=X.^2-8
004 % The graph functions
need
005 % to be in the program
space.
006 plot(X,Y,'bd',X,Y,'r')
007 title('Plot function')
008 xlabel('X values')
009 ylabel('Y values')

See also: semilogx , semilogy , loglog , title , xlabel , ylabel
, bar , stem

 polar(theta,rho)

Creates a polar plot using the angles theta, in radians,
versus the radius rho.

142

142

 Matrix module

Creates a polar plot using
the angles theta, in
radians, versus the radius
rho.

 001 % polar
 002 theta=0:0.1:2*pi+0.1;
 003 rho=theta;
 004
 005 polar(theta,rho)

See also: plot , loglog , semilogx , semilogy

 poly2scr(x,y,n,str,v,...)

poly2scr(10,50,2,'F(s)=','s',p1,p2,p3)
This function will draw the first n polynomials above the
division line and p3 below the division line. The arguments
str and v are optional.

You can use multiple arguments
with this function. The first and
second are always the x,y position.
The y-position will be centered and
the x-position is the position on the
left. If there are only three

t th thi d t b

http://www.buginword.com
http://www.buginword.com
http://www.buginword.com

Matrix module 143

143

008 y=y+15;
009 poly2scr(25,y,1,p1,p2,p3)
010 y=y+35;
011 poly2scr(25,y,2,p1,p2,p3)
012 y=y+35;
013
poly2scr(15,y,2,'H(s)=','s',p1,p2,p3)

See also: mtrx2scr

 semilogx(...)

Same as plot(...), except a logarithmic (base 10) scale is
used for the X-axis.

See the plot function.

See also: plot , , loglog , semilogy

 semilogy(...)

Same as plot(...), except a logarithmic (base 10) scale is
used for the Y-axis.

See plot function

See also: plot , , semilogx , loglog

 stem(...)

Plots a discrete sequence.

144

144

 Matrix module

Figure 1

 001 % Stem example
 002 N=45;Ampl=3;
 003

 004 y=randn(1,N)*Ampl;
 005 stem(y)

See also: plot , bar

 subplot(r,c,pos)

 text(X,Y,S)

Divides the graphical screen into r rows and c colums. The
next graph will be drawn in area pos.

For example subplot(2,2,p) will divide the graphical screen
into two rows and two columns. The next graph will be
plotted at position p.

subplot(2,2,1) plot at top left corner.
subplot(2,2,2) plot at top right corner.
subplot(2,2,3) plot at bottom left corner.
subplot(2,2,4) plot at bottom right corner.

See also: plot , bar , stem , axis

Matrix module 145

145

Puts the string S at position X and Y on the graphical screen.

When S is scalar value the value is converted to a string.
When S is a matrix the matrix will be shown on one line if
posible:
A=[3 4;5 6];

text(10,50,'A='+A)

 title(S)

Puts a title above the current graph.

See plot() for an example script

See also: plot , xlabel , ylabel

 xlabel(S)

Puts the string S below the current graph.

See plot() for an example script

See also: plot , title , ylabel

 ylabel(S)

Puts the string S at the left of the current graph.

See plot() for an example script

See also: plot , title , xlabel

will put A=[=[3 4;5 6] at position 10,50

See also: mtrx2scr , poly2scr

146 Matrix module

146

Interactive functions

 inpv(S,V)

Shows a popup windows with the text S in which the user
can enter a value. The default value is V.

It is normally quicker to assign the values in the scratchpad
and pressing run. However you can also use the statement
below to popup a window and wait till the user enters a
value which will be returned by the inpv() functions.
len=inpv('Enter length',12)

 iskey(S)

Will return 1 if key S was pressed on the screen. Returns
zero otherwize.

See also: key

 key(pos,str)

key(23,'pmt') will put the text pmt in the button at the
second row third column.

See also: iskey

 pause

Stop executing script and wait till user taps the screen.

See also: clf

Matrix module 147

147

Logical functions

 &

AND operator

Example: [0 0 4] & [0 5 6] = [0 0 1]

 |

OR operator

Example: [0 0 4] | [0 5 6] = [0 1 1]

 ~

NOT operator

Example: ~[0 5 6] = [1 0 0]

Matrix functions

 cart2pol(X,Y,Z)

Converts cartesian coordinates to polar coordinates.

[angle,radius,height] = cart2pol(x,y,z)
converts the cartesian coordinates x,y,z to to cylindrical
coordinates

See also: sph2cart , cart2sph , pol2cart

http://www.buginword.com
http://www.buginword.com

148 Matrix module

148

 cart2sph(x,y,z)

Converts cartesian coordinates to spherical coordinates.

[azimuth,elevation,radius] = cart2sph(x,y,z)
Converts x,y,z in cartesian coordinates to spherical
coordinates.

See also: sph2cart , cart2pol , pol2cart

 ceil(M)

Rounds the elements of M to the nearest higher integer.

See also: floor , round

 chol(A)

Cholesky factorization. L=chol(A) returns a lower triangular
matrix L such that A = L*L'.

This function computes the Cholesky factorization, i.e. it
computes a lower triangular matrix L such that A = L*L'.

See also: qr , lu

 cond(x)

Returns the ratio of the largest singular value of x to the
smallest.

Returns the condition of a matrix, the ratio of the largest
singular value of x to the smallest.

See also: norm

 conv(A,B)

Convolves, polynomial multiplication of, vector A and B.

conv([2 3 4],[5 6 7]) returns: [10 27 52 45 28]
(2x^2 + 3x + 4)(5x^2 + 6x + 7) = 10x^4 + 27x^3 +

http://www.buginword.com
http://www.buginword.com

Matrix module 149

149

52x^2 + 45x + 28

See also: deconv

 cross(A,B)

Returns the cross product of the vectors A and B.

See also: dot

 deconv(A,B)

Deconvolution, polynomial division of, vector A and B

See also: conv

 det(M)

Calculates the determinant of M

See also: inv

 diag(V)

Creates a diagonal matrix.

diag([1 2 3]) returns [1 0 0;0 2 0;0 0 3]

See also: ones , zeros

Returns the scalar product of the vectors A and B. A and B
must be vectors of the same length.

See also: cross

 eig(M)

 dot(A,B)

150 Matrix module

150

[V,D] = EIG(M) returns a diagonal matrix D of eigenvalues
and a full matrix V whose columns are the corresponding
eigenvectors.

001 % Create Pascal matrix of order 2
002 X=pascal(2)
003
004
005 % Calculate eigenvalues
006 text(50,10,'Eigenvalues')
007
008 mtrx2scr(20,30,'eig(X)=',eig(X))
009 [V D]=eig(X);
010 text(20,50,'[V D]=eig(X)')
011
012 mtrx2scr(10,70,'V=',V)
013 mtrx2scr(80,70,' D=',D)
014
015 mtrx2scr(10,100,'X*V=',X*V)
016 mtrx2scr(80,100,' V*D=',V*D)

See also: svd

 eye(m,n)

[V D] = eig(M) will return a
diagonal matrix D of
eigenvalues and a full matrix V
whose columns are the
corresponding eigenvectors.
M must have real elements but
the returned matrices can be
complex.

X*V = V*D.

eig(M) will only return the
eigenvalues in a row matrix.

eye(n) creates an identity matrix (n-by-n). eye(m,n) is an
m-by-n matrix with 1's on the diagonal and zeros elsewhere.

eye(3) returns [1 0 0;0 1 0;0 0 1]

See also: diag , zeros , ones , eye

Matrix module 151

151

 filter(B,A,X)

filters the data in vector X with the filter described by
vectors A and B using "Direct Form II Transposed"

See also: conv , deconv

 floor(M)

Rounds the elements of M to the nearest lower integer.

See also: ceil , round

 freqspace(N)

Returns the implied frequency range for equally spaced.
[0:1/N:1]

See also: logspace

 inv(M)

Returns the inverse of the matrix M

See also: det

 kron(A,B)

Returns the Kronecker tensor product of A and B.

For example, if X is 2 by 2, then KRON(X,Y) is
[A(1,1)*B A(1,2)*B
 A(2,1)*B A(2,2)*B]

 length(A)

Returns the length of vector A

152 Matrix module

152

See also: size

 linspace(first,last)

Returns a vector of 100 elements equally spaces.
linspace(first,last,n) returns n elements equally spaces.

See also: logspace , freqspace

 logspace(first,last,n)

Returns a row vector of n logarithmically equally spaced
points between decades 10^first and 10^last

logspace(first,last) returns 50 equally spaces points.

See also: linspace

 lu(M)

[L,U] = LU(X) stores an upper triangular matrix in U and a
lower triangular matrix in L, so that X = L*U. X must be
square.

See also: qr

 magic(M)

Return a matrix with equal row, column, and diagonal sums

See also: eye , diag , ones , zeros , pascal

 mod(X,Y)

Return the modulus. The input X and Y must be real arrays
of the same size

Matrix module 153

153

 norm(A)

Return the norm of a vector or matrix

If A is a vector returns sqrt(sum(abs(A).^2)).
If A is a matrix returns the largest singular value of A,
max(svd(A)).

See also: svd

 ode45('func',[x1 x2],init_vals)

Integrates a system of differential equations.

The function called by ode45() should have two arguments,
time span and initial values, and one return value. The
ode45() will return a row vector for higher order differential
equations.

The method used in ode45() is a fixed Runge-Kutta method.
Currently a fixed method of 60 equally spaced intervals is
used. The number of intervals, iterations, can be changed
using the iter() function. Using a high number of iterations
can take a very long time to calculate. Please be careful
when using the iter() function.

See also: quad

 ones(m,n)

Creates a ones matrix.

ones(2,2) returns [1 1;1 1]

See also: zeros , diag , pascal , magic

 pascal(M)

Returns a pascal matrix

See also: ones , zeros , diag , magic

154 Matrix module

154

 pol2cart(angle,radius,height)

Converts from cylindrical coordinates to cartesian
coordinates.

[x,y,z]=pol2cart(angle,radius,height)
Converts the cylindrical coordinates (angle, radius, height)
to cartesian coordinates x,y,z.

See also: sph2cart , cart2sph , cart2pol

 poly(A)

 polyder(A)

 polyval(P,A)

Evaluate the polynomial, P, at all values of A

Example:
polyval([p3 p2 p1],[x1 x2]) returns value of
[p3*x1^2+p2*x1+p1 p3*x2^2+p2*x2+p1]

See also: poly , roots , polyder

 qr(M)

QR decomposition. [Q R]=qr(M) returns an upper triangular
matrix R and a unitary matrix Q so that M = Q*R

Returns a polynomial with roots of A.

poly([2 3]) returns [1 -5 6]
(x-2)*(x-3)=x^2-5x+6

See also: roots , polyder , polyval

Returns the derivative of the polynomial whose coefficients
are the elements of vector A.

See also: poly , roots , polyval

http://www.buginword.com
http://www.buginword.com

Matrix module 155

155

Factors M into Q and R. Q is the upper triangular and R the
lower triangular.

See also: lu , chol

 quad('func',a,b)

 004
 005 function y=test(x)
 006 y=sin(x).*x;
 007 return
 008
 009 % Integrate from a till b
 010 area=quad('test',a,b);
 011
 012 % create range of 60 points
 013 % to plot function
 014 x=a:(b-a)/60:b;
 015 plot(x,test(x))
 016 title('Integration example')
 017 xlabel('Area='+area)

See also: ode45 , iter

Return the matrix rank.

 roots(A)

Returns the result of Simpson's rule to approximate the
integral of 'func' between a and b

Returns the result of Simpson's rule to approximate the
integral of 'func' between a and b. A default of 60 slices is
used which can be changed using the iter() function.

 001 % Integration

2;
5;

 002 a=-
 003 b=

 rank(A)

http://www.buginword.com

156 Matrix module

156

Returns polynomial roots.

Example:
p=conv([1 2],[1 3]); r=roots(p)

First the convolution function is used to multiply two
polynomials.

The returned matrix p=[1 5 6]; (x+2)*(x+3)=x^2+5*x+6
roots(p) returns [-3 -2]

See also: conv , deconv , eig

 round(M)

Rounds the elements of M to the nearest integer.

See also: floor , ceil

 rref(M)

Returns a reduced row echelon form of A.

See also: eig , svd

 size(M)

[r c]=size(M) returns the number of rows in r and the
number of colums in c.

See also: length

 sph2cart(azimuth,elevation,radius)

[x,y,z]= sph2cart(azimuth,elevation,radius)

Converts azimuth,elevation,radius in spherical coordinates
to cartesian coordinates.

See also: cart2sph , cart2pol , pol2cart

Matrix module 157

157

 svd(M)

 trace(A)

Returns the sum of the diagonal elements of matrix A.

 zeros(m,n)

creates a zero matrix.

zeros(3) returns [0 0 0;0 0 0;0 0 0]

See also: ones , diag , zeros , magic , pascal

[U S V] = svd(M) returns a diagonal matrix S, unitary
matrices U and V so that X = U*S*V'

See also: eig

158 Matrix module

PDAcalc functions

158

 fmt(t,w,p,tr)

Float

Scientific

When a number cannot be displayed
using width and precision settings, it is
displayed in scientific format. An
exponent will be used to show small
numbers instead of leading zeros. With
a precision setting of 7 the number
0.0001232456 will be shown as
1.23456E-04

Engineering

When a number cannot be displayed
using width and precision settings, it is
displayed in engineering format. Enter
5.11e8 for example in the scratchpad
and press [exe]. 511E6 will displayed.
The exponent, in this case 6, will always
be a multiple of three. The symbol
format will show an SI postfix instead of
E6.

Symbol

When a number cannot be displayed using the
width and precision settings, it is displayed in
symbol format. This is especially important
when numbers are rendered on the graph
screen in order to make sure all numbers are
printed using the same space.

Name SI Postfix Power of 10
femto f -15
pico p -12

Set display format
t: 0-float, 1-sci, 2-eng, 3-sym, 4-hex, 5-bin, 6-oct, 7-pol, 8-
date, 9-sexagesimal
w: width of number (0-15)
p: precision of number (0-15)
tr: trailing zeros. (0 or 1)

The native data format.

Matrix module 159

159

nano -9
micro -6
milli m

K,k
mega 6
giga G 9
tera T 12

Hexadecimal
Positive integers rendered in base 16
format

Binary
Positive integers rendered in base 2
format.

Octal
Positive integers rendered in base 8
format.

Polar
Complex values converted to magnitude
and angle.

Date Positive values are converted to dates.

Mixed decimal fractions rendered in
H.M.S format.

 iter(i)

Change the number of iterations for calculating a numerical
approximation.

For example the function ode45() uses a default of 60 equally
spaced values to calculate a system of differential equations.
The number of iterations can be increased using this function
when called before the ode45() function is called. Be careful
when using this function since a high number of iterations can
take a very long time to calculate.

See also: ode45

n
u

-3
kilo 3

M

Sexagesimal

160 Matrix module

160

 mode1(strV)

Puts the text or values of strV on the main screen where by
default the display format is shown

See also: mode2

 mode2(strV)

Puts the text or values of strV on the main screen where by
default the date is shown.

See also: mode1

Relational functions

 <

Less than

 <=

Less then or equal to

 ==

Equal to

 >

Greater then

Matrix module 161

161

 >=

Greater then or equal to

 ~=

Not equal to

Special functions

 bartlett(N)

Returns the N-point Bartlett window.

See also: boxcar , blackman , hamming , hanning , kaiser ,
triang

 besseli(order,n)

Returns modified bessel function of the 1st kind

See also: besselj

 besselj(order,A)

Bessel function of the 1st kind

Bessel functions are solutions to the differential equation:
x2y" + xy' + (x2 - v2) Y = 0

162

162

 Matrix module

 001 % Bessel of the 1st Kind
 002 x=0:0.05:10;
 003
 004 y0=besselj(0,x);
 005 y1=besselj(1,x);
 006 plot(x,y0,'r',x,y1,'g')
 007 y2=besselj(2,x);
 008 y3=besselj(3,x);
 009 plot(x,y2,'b',x,y3,'c')
 010 title('Bessel of the 1st Kind')

See also: besseli

 blackman(N)

Returns the N-point blackman window.

See also: bartlett , boxcar , hamming , hanning , kaiser ,
triang

 boxcar(N)

Returns the N-point boxcar window.

See also: bartlett , blackman , hamming , hanning , kaiser ,
triang

 erf(A)

Error function of each element in A

The error function is defined by
 x 2
 2 / -t
 erf(x) = -------- | e dt
 sqrt(pi) /
 0

http://www.buginword.com
http://www.buginword.com

Matrix module 163

163

 fft(V,N)

Returns the discrete Fourier transform.

When using two argments the vector V will be padded with
zeros if V has less than N points and truncated if it has more.

If N is the number of element the return value is equal to:
 N

> V(i)*exp[-2*pi*j*(i-N/2-1)*(k-N/2-1)/N]

i = 1

See also: ifft , bartlett , blackman , boxcar , hamming ,
hanning , kaiser , triang

Calculates the frequency response of an analog filter.

[h,w,]=freqs(b,a)
[h,w,]=freqs(b,a,n)

h - complex frequency response
w - frequency points
a - numerator coefficients
b - denominator coefficients
n - number of frequancies used to calculate the response

Without any return arguments this function will plot the
magnitude and phase response.

See also: impz , freqz

 freqz(...)

Calculates the frequency response of a digital filter.

[h,w]=freqz(b,a)
[h w]=freqz(b a n)

 freqs(...)

http://www.buginword.com

164 Matrix module

164

[h,f]=freqz(b,a,n,fs)

h - complex frequency response
w - frequency points
f - frequencies. a - numerator coefficients
b - denominator coefficients
n - number of samples
fs - sample frequency

Without any return arguments this function will plot
magnitude and phase response.

See also: impz , freqs

Gamma function of each element in A.

The gamma function is defined by
 +inf
 / - t (x - 1)
 gamma(x) = | e t dt
 /
 0

See also: gammaln

 gammaln(A)

Logarithm of gamma function.

See also: gamma

 hamming(N)

Returns the N-point hamming window.

See also: bartlett , blackman , boxcar , hanning , kaiser ,
triang

 gamma(A)

 hanning(N)

Matrix module 165

165

Returns the N-point hanning window.

See also: bartlett , blackman , boxcar , hamming , kaiser ,
triang

 ifft(V)

Returns the inverse discrete Fourier transform.

Returns the inverse Fourier transform. If N is the number of
elements.
 N

> V(i)*exp[+2*pi*j*i-N/2-1)*(k-N/2-1)/N]

i = 1

See also: fft , bartlett , blackman , boxcar , hamming ,
hanning , kaiser , triang

 impz(...)

Calculates the impulse response of a digital filter.

[h,t]=impz(b,a)
[h,t]=impz(b,a,ns)
[h,t]=impz(b,a,ns,fs)

Returns the impulse response in vector h and the sample
times in vector t.

a - numerator coefficients
b - denominator coefficients
n - number of samples
fs - sample frequency

Without any return arguments the function will plot the
impulse response.

See also: freqz , freqs

http://www.buginword.com
http://www.buginword.com

166 Matrix module

166

 kaiser(N)

Returns the N-point kaiser window.

See also: bartlett , blackman , boxcar , hamming , hanning ,
kaiser , triang

 triang(N)

Returns the N-point triangular window.

See also: bartlett , boxcar , blackman , hamming , hanning ,
kaiser

 cumsum(A)

 diff(A)

Returns the differences between elements

diff([2 5 9])=[3 4]

See also: prod , cumsum

 hist(y,bins)

[n x]=hist(y) Bins the elements of y in 10 equally spaced bins

Statistics functions

Cumulative sum of elements.

cumsum([2 3 4])=[2 5 9]

See also: diff , prod

http://www.buginword.com
http://www.buginword.com

Matrix module 167

167

[n x]=hist(y,bins) Bins the elements of y in equally spaced
bins. The second argument determents the number of bins.

See also: bar

 load(file)

M=load('file') Loads the datapoints of a file into matrix M.

M=load('file') Loads the datapoints of a file into matrix M.

See also: save

 max(A)

Returns the maximum of each column

max([3 5;6 8])=[6 8]

See also: min

 min(A)

 polyfit(x,y,N)

 mean(A)

Returns the mean of each column

mean([3 5;6 8])=[4.5 6.5]

See also: min , max , mean

Returns the minimum of each column

max([3 5;6 8])=[3 5]

See also: max , mean

168 Matrix module

168

Returns a vector of coeff. in decreasing order of degree N to
fit data points x,y

Uses the least-square fit to find the coefficients of degree N to
fit data points x,y

 001 % polyfit example
 002 x=[3 5 8 12];
 003 y=[4 7 2 6];
 004
 005 p=polyfit(x,y,3);
 006 xi=min(x):0.1:max(x);
 007 yi=polyval(p,xi);
 008 plot(x,y,'b+',xi,yi,'r')

See also: polyval , roots , poly

 prod(A)

 randn(n,m)

Returns the product of all elements

prod([3 4 5]) = 3*4*5 = 60

prod(1:5) returns factorial 5

See also: diff , cumsum

 rand(m,n)

Returns an n-by-m matrix of random numbers between 0 and
1

See also: randn

Returns an n-by-m matrix of normally distributed random
numbers.

See also: rand

Matrix module 169

169

 save(file,M)

Saves the elements of matrix M into a file.

Saves the elements of matrix M into a file. The file will be
stored in the data category.

 sum(A)

Returns the sum of each column of matrix A

See also: min , max , cumsum

Trigonometric functions

 acos(A)

Inverse cosine function of each element in A

Inverse hyperbolic cosine function of each element in A

 asin(A)

Inverse sine function of each element in A

 asinh(A)

Inverse hyperbolic sine function of each element in A

 acosh(A)

170 Matrix module

 atan(A)

Inverse tangent function of each element in A

 atanh(A)

Inverse hyperbolic tangent function of each element in A

 cos(A)

Cosine function of each element in A

Hyperbolic cosine function of each element in A

 sin(A)

Sine function of each element in A

 sinh(A)

Hyperbolic sine function of each element in A

 tan(A)

 atan2(y,x)

Retuns the four quadrant arctangent of the real parts of the
elements of X and Y.

See also: atan

 cosh(A)

Tangent function of each element in A

170

Matrix module 171

171

 tanh(A)

Inverse tangent function of each element in A

172 Matrix module

172

Example scripts

The net present value of a cash flow Cf is returned by the formula:

Net Present Value

Suppose we are given the opportunity to make an investment of
$4000 which will provide a return of $1000 next year and $2000 for
each following two years. What is the internal rate of return on the
investment if the discount rate (the cost of borrowing $4000) is 7%.
How do we calculate this using PDAcalc matrix?
001 Cf=[-4000 1000 2000 2000]; Create an array of cash flow.

002 i=0.07; Assign 7% to a variable
003 t=0:length(Cf)-1; Create a range from 0 to 3, length(Cf)

will return four so we subtract one.
004 Denom=(1+i).^t; Create an array with values for the

denominator.
005 sum(Cf./Denom) Here we just divide each element in

array Cf by each element in the array
Denom and sum the result.

Figure 93

Notice the period before the ^ and
the /. Without the period before the /
MtrxCal will perform a matrix divide
and that is not what we want in this
case.

Now you can change the values in
the Cf array and the percent to
calculate the net present value for
different investments. The text of
this script can be copied, without
making any changes, to matlab and
will give the same answer.

Matrix module 173

173

Wave Period
Some of you might be familiar with fourier transforms but if you are
not familiar with it don’t worry. This example shows how a square
wave can be represented by sinusoidal waveforms.

This can be implemented in several different ways but the main
purpose of the script is to show how easy and powerful MtrxCal is.
Notice how the arrays are multiplied and added in the example. The
same can be done with an even smaller script in MtrxCal but would
be more difficult to understand. Also notice how long it takes to
calculate and plot the graph.

Figure 94

 004
 005 y1=cos(w.*t);
 006 y3=-cos(3.*w.*t)/3;
 007 y5=cos(5.*w.*t)/5;
 008 y=4*(y1+y3+y5)/pi;
 009 plot(t,y)
 010 title('Wave period')
 011 ylabel('Amplitude')
 012 xlabel('Time')

Notice how the arrays are multiplied
and added in the example above.
When an array only has one element
you don’t have to use the .* operator to
multiply.

 001 t=-
 002 w=
 003

2:0.05:2;
2*pi;

174 Matrix module

174

Solve quadratic
Enter the x,y coordinates of three
points and this script will calculate
the a,b and c for the quadratic
equation:

The script will solve three linear
equations for three unknowns.
You can also try to fit the data
point with different equations by
changing the matrix A.

 001 x1=-5;y1=45;
 002 x2=1;y2=10;
 003 x3=4;

 004 y3=60;
 005 A=[x1^2 x1 1;x2^2 x2 1;x3^2 x3 1;];
 006 B=[y1 y2 y3]';
 007 C=A\B;
 008 a=C(1)
 009 b=C(2)
 010 c=C(3)
 011 x=x1:(x3-x1)/30:x3;
 012 y=a*x.*x+b*x+c;
 013 plot(x,y)
 014 plot(x1,y1,'r+')
 015 plot(x2,y2,'r+')
 016 plot(x3,y3,'r+')
 017 title('Solve quadratic')
 018 ylabel('Y values')
 019 xlabel('X-values')

Figure 95

Figure 96

Matrix module 175

175

RC network
The frequency response is calculated
using the Laplace transform

Replacing s by jw and taking the absolute
value of H(s) give the frequency
response.

 001 R=1000;
 002 C=10E-07;
 003 Fc=1/(2*pi*R*C)

 004
 005 f=[
 006 w= f;
 007 H= w.*R*C);
 008 semilogx(f,abs(H))
 009 title('
 010 xlabel('
 011 ylabel('
 012 pause
 013 clf
 014 semilogx(f,angle(H))
 015 title('
 016 xlabel('
 017 ylabel('

10:10:1000];
0+1j*2*pi*
1./(1+

Frequency response')
Frequency')
Gain')

Phase response')
Frequency')
Angle')

Figure 97

Figure 98

Replacing abs(H) with angle(H) gives the
phase angle in radians. Replace abs(H)
with 180*angle(H)/pi to get the angle in
degrees. The cutoff frequency is also
printed in line two and is 159.15 Hertz.
The angle at the cutoff is –45 as shown
in the Phase response.

176 Matrix module

Closed contour
Let’s take the
function

and create a closed contour with a
radius of 1.1

 001 R=1.1;
 002 Theta=0:0.03:2*pi;
 003

The radius Figure 9 is 1.1 and the radius in Figure 100 is 0.6

Now lets see if all the poles are within the contour.

 004
 005 z=R*exp(Theta);
 006 H=(z- z+ z.^ z+ ;
 007
 008 plot(H)
 009 title('
 010 xlabel('
 011 ylabel('

0+1j*
1)./((1).*(2+ 1)) Figure 99

W-plane')
Real')
Imaginary')

Figure 100

9

Even if the script is not totally clear to you it does show how easy it is
to impress people with just a little script. We like to encourage people
to write these scripts on any other calculator for the palm platform.

176

Matrix module 177

177

Hanging pendulum problem

Figure 1

By introducing the angular velocity we can write this as a

system of two first order ordinary differential equations,

These are used in the user function which is called by the ode45()
functions as shown in the script.

Figure 1 03

02

03

After loading the script the screen as shown in Figure 1 will appear.
Pressing run will show Figure 1 . Press the [waiting] button and the
angular velocity vs. time will be shown.

)sin(θθ mgmL −=&&

The equation for a hanging pendulum, using
F=ma, is:
 where theta is the angle of
the pendulum from the vertical, m is its mass, L its
length, and g the acceleration due to gravity.

01

dt
dθω =

ωθ =&)sin(θω gL −=& and

 001 m=
 002 g=
003 l=

1;% mass of the bar
9.81;% gravity

1;% length of the bar

 004
 005 function der=pendulum(t,x)
 006 der1=x(2);
 007 der2=-(3*g)/(2*l)*sin(x(1));
 008 der=[der1; der2];
 009 end
 010
 011 % initial & final times
 012 tspan=[0 5];
 013
 014 % initial conditions
 015 theta=10E-04;% angle
 016 vel=0;% angular_velocity
 017 [t,x]=ode45('pendulum',tspan,[theta;vel]);
 018
 019 Theta=x(:,1);
 020 vel=x(:,2);
 021 plot(t,Theta,'b');
 022 title('Angular Displacement vs. Time');
 023 ylabel('rad');
 024 xlabel('time (s)');
 025 pause
 026 clf
 027 plot(t,vel,'r');
 028 title('Angular Velocity vs. Time');
 029 ylabel('rad/s');
 030 xlabel('time (s)');

Figure 102

178 Appendix
Appendix

178

These NON-RPN calculator modules have the following technical
specifications:

Units Classic Matrix

Technical specifications

Fully configurable keyboard X X X

Color coded debug screen X X X

Syntax checking on scripts X X X

Browse our web site for free user scripts X X X

Load and run user scripts directly from
our web site

X X X

IEEE-754 64-bit Double Precision, a
floating point format ranging from
-2.23E-308 to 1.79E+308.

X X X

Display formats: Float, Scientific,
Engineering, Symbol, Hexadecimal,
Binary, Octal.

X X X

Display formats: Polar, Date and
Sexagesimal.

 X X

Angular units: Radians and Degrees X

Complex numbers and functions X X

Linear regression X

Financial functions X

Statistical functions X X

Root finding functions X X

FFT (fourier transforms) X

3D graphics X X

Auto-scaling of the graphs X X

3D functions, draw lines in 3D space,
rotate objects in 3D space etc

 X X

Calculus functions, integral, derivatives,
etc.

 X X

Appendix 179

179

Engineering

When a number cannot be displayed using the width
and precision settings, it is displayed in symbol
format. This is especially important when numbers are
rendered on the graph screen in order to make sure
all numbers are printed using the same space.

Data Formats
Float The native data format.

Scientific

When a number cannot be displayed using width and
precision settings, it is displayed in scientific format.
An exponent will be used to show small numbers
instead of leading zeros. With a precision setting of 7
the number 0.0001232456 will be shown as
1.23456E-04

When a number cannot be displayed using width and
precision settings, it is displayed in engineering
format. Enter 5.11e8 for example in the scratchpad
and press [exe]. 511E6 will displayed. The exponent,
in this case 6, will always be a multiple of three. The
symbol format will show an SI postfix instead of E6.

Symbol

Name SI Postfix Power of 10
femto f -15
pico p -12
nano n -9
micro u -6
milli m -3
kilo K,k 3

mega M 6
giga G 9
tera T 12

Hexadecimal Positive integers rendered in base 16 format

Binary Positive integers rendered in base 2 format.

Complex values converted to magnitude and angle.

Octal Positive integers rendered in base 8 format.

Polar

Date Positive values are converted to dates.

Sexagesimal Mixed decimal fractions rendered in H.M.S format.

180 Appendix

180

Display format
Considerations on Width, Precision, Accuracy, and Round-Off.
PDAcalc classic uses the IEEE-754 specification for 64-bit Double
Precision floating-point numbers. As you know or should appreciate,
floating-point numbers are not ideal numbers; rather, they are
representations of ideal numbers. Somewhere to the right of the
decimal point, floating-point numbers become inexact. The 64-bit
Double Precision specification was chosen for PDAcalc classic to
ensure that that inexactitude would not show up in the results of most
calculations that require the precision of engineering applications
(say, no more than 12 significant digits). However, PDAcalc classic
was designed to be a power user’s calculator. It puts the power of
explicitly specifying the width and precision of numbers in the user’s
hands; this power can expose the inexactitude of these numbers to
those users, as well as affect the accuracy of results. Furthermore,
not understanding width and precision when changing their values
can lead to answers that are simply wrong and don’t make sense.
Most users should have no practical need to push PDAcalc classic to
the limits of its accuracy simply because the accuracy of numerical
results are determined by how many significant digits there are in the
input. In general, the number of significant digits in the output that is
meaningful is equal to the least number of significant digits in the
input.

Appendix 181

181

Using Excel
To make sure that calculations are performed correctly in Excel ☺,
you can easily transfer data files between Excel and PDAcalc. The
default directory in which the data files are stored is depending on the
module.

C:\Program Files\ADACS\PDAcalc\PDAcalc_classic\Data

For PDAcalc matrix in:

PDAcalc classic data files are stored in the directory:

C:\Program Files\ADACS\PDAcalc\PDAcalc_matrix\Data

You can download a data file from this directory using the comma
delimiter format into excel. To plot the data file use the XY (scatter
plot) type.

Figure 104

For compatibility reasons with the palm platform, the first line in a
data file must be the name of the file. You can also write your data
files from excel to the data directory when you use the same data
format. To transfer your data file to the palm, just press the hotsync
button.

182 Appendix

182

Constants
Constant Name Value Dimensions
pi 3.1415926535897932 none
e 2.7182818284590452 none
c speed of light in

vacuum
2.99792458E8 m s-1

G Newtonian constant of
gravitation

6.67259E-11 m3 kg-1 s-2

g standard gravitational
acceleration

9.80665 m s-2

me electron mass 9.1093897E-31 kg
mp proton mass 1.6726231E-27 kg
mn neutron mass 1.6749286E-27 kg
u atomic mass unit

(unified)
1.6605402E-27 kg

q electron charge 1.60217733E-19 10-19 C
h Planck constant 6.6260755E-34 J s
k boltzmann constant 1.380658E-23 J K-1
u0 magnetic permeability 1.2566370614E-6 H m-1
e0 dielectric permittivity 8.854187817E-12 F m-1
re classical electron

radius
2.81794092E-15 m

al fine structure constant 7.29735308E-3 none
a0 Bohr radius 5.29177249E-11 m
R Rydberg constant 1.097373153E7 m-1
Fq Fluxoid quantum 2.06783461E-15 Wb
ub Bohr magneton 9.2740154E-24 J T-1

ue Electron magnetic
moment 9.2847701E-24 J T-1

uN J T-1 Nuclear magneton 5.0507866E-27

uP Proton magnetic
moment 1.41060761E-26 J T-1

un Neutron magnetic
moment 9.6623707E-27 J T-1

Lc Compton wavelength
(electron) 2.42631058E-12 m

Lcp Compton wavelength
(proton) 1.32141002E-15 m

sig Stefan-Boltzmann
constant 5.67051E-8 W m-2 K-4

Na Avogadro's constant 6.0221367E23 mol-1

Vm Ideal gas volume at
STP 2.24141E-2 m-3 mol-1

R Universal gas constant 8.31451 J mol-1 K-1

F Faraday constant 9.6485309E4 C mol-1

RH Quantum Hall
resistance 2.58128056E4 Ohm

Appendix 183

183

Define the range: this means solving for x

Curve Sketching
This appendix is intended only as a reference in curve sketching. The
points to consider are not fully illustrated, as doing so falls outside the
scope of a calculator user manual. However, just as we did in the
main body of this manual, we wish to point out that good, instructive
websites exist to allow you to learn or review the skill. Just type
“curve sketching” into the textbox of your favorite Internet search
engine, and browse the results. There’s bound to be at least one
website that meets your tastes and needs.
Know an equation by its curve. The curves of functions have general
characteristics. Knowing those characteristics for the functions you’re
working with saves time when sketching them.
Define the domain: values of x that let the denominator in your
equation = 0 are excluded.

Find all x-intercepts: set y = 0 in your equation and solve

Find all y-intercept(s): set x = 0 in your equation and solve

Find vertical asymptote: these are the values of x that let the
denominator in your equation = 0

Find horizontal asymptote: let /x/ tend to infinity. if y approaches zero,
horizontal asymptote @ y=0. if y approaches a nonzero number b,
horizontal asymptote @ y=b.

Find concavity: take f’(x) of f(x). for any given x, the larger the value
of /f’(x)/, the steeper the slope of f(x). positive f’(x) means upward
slope. negative f’(x) means downward slope.

Find minmax: take f’(x) of f(x). set y=0 for f’(x) and solve.

184 Appendix

184

URL
Useful Web Links

what you’ll find there
www.adacs.com us!
physics.nist.gov/cuu The NIST Reference on

Constants, Units, and Uncertainty,
including in-depth information on
the metric system

mathworld.wolfram.com Eric Weisstein's World of
Mathematics. Possibly the best
mathematics reference work on
the World Wide Web

www.ieee.org/ The IEEE, for electrical engineers
and those of you curious about the
standards that hardware, software
(including PDAcalc classic!), and
firmware adheres to.

www.acm.org/ ACM Association for Computing
Machinery, the world's first
educational and scientific
computing society.

Afterword

This manual is intended to serve as a tutorial and
reference to PDAcalc modules. Effort has been made to make the
manual readable while ensuring conciseness, accuracy, and a
thoroughness over the basics of calculator use to allow a user to start
quickly applying PDAcalc modules to problem-solving. In other
words, this manual is intended to serve you. If you find errors in the
manual, or a passage difficult to understand, or what you consider to
be a glaring omission, please let us know. We will consider all
constructive criticism.

	About ADACS LLC
	Tell us what you think
	Acknowledgment
	Introduction
	PDACalc and its Modules
	A Gallery of Scripts and Graphics

	Differences between platforms

	The Calculator
	Modifying Key Assignments
	Reserved keywords for PDAcalc key assignment

	The graphical screen
	The Menu Items
	Options
	Preferences
	Variables
	Default Keyboard
	Available memory
	Select module
	Beam program
	Beam all scripts
	Register

	Edit
	Scripts
	New script
	Load script
	Edit script
	Debug scripts

	Help
	Functions
	Site licenses
	Legal agreement
	About
	Synchronize scripts with a Palm device
	Register online
	Visit our web site
	Functions online
	Browse scripts
	User information
	Upload/Update script

	Creating a document
	Scratchpad and program space
	Startup sequence

	Units module
	Basic calculations
	Preferences
	Assigning units

	Help information
	Base units
	User scripts
	Conversion
	Keyboard
	Functions
	Examples
	Volumetric example
	Mole-volume example
	Helical Coil Spring example
	Predefined units
	Constants
	Distance
	Area
	Volume
	Mass
	Voltage
	Current
	Resistance
	Power
	Induction
	Capacity
	Frequency
	Speed
	Force
	Pressure
	Magnetic density
	Energy
	Temperature

	Classic module
	Basic calculations
	Worksheets
	Plot function
	Solve Equation

	Putting It All Together
	Built-In Functions on PDAcalc classic
	Complex
	Basic
	Calculus
	Financial
	Logical
	Base conversion

	Probability & Statistics
	Statistical and probability functions
	User-Defined Functions
	Graphics
	Default Colors
	Graphics Examples
	3D functions

	Classic built-in functions
	Basic functions
	Color functions
	Complex functions
	Conversion functions
	Date functions
	Financial functions
	Flow control functions
	Graphical functions
	Interactive functions
	Logical functions
	Relational functions
	Special functions
	Statistics functions
	Trigonometric functions

	Example scripts
	Biorhytms
	Graph demo
	FFT example program
	FFT built-in functions
	Quadratic regression example
	Chi-square test
	Opamp
	Root function

	Programming PDAcalc classic
	A Programming Primer
	PDAcalc classic’s Commands
	Programming Examples

	Matrix module
	Advantage of a matrix calculator
	Basic calculations
	Screen shots
	Matrix multiplication
	User functions

	Differential equations
	Lorentz contraction

	Integration
	Matrix built-in Functions
	Arithmetic functions
	Bitwise functions
	Complex functions
	Date functions
	Exponential functions
	Flow control functions
	Graphical functions
	Interactive functions
	Logical functions
	Matrix functions
	PDAcalc functions
	Relational functions
	Special functions
	Statistics functions
	Trigonometric functions

	Example scripts
	Net Present Value
	Wave Period
	Solve quadratic
	RC network
	Closed contour
	Hanging pendulum problem

	Appendix
	Technical specifications
	Data Formats
	Display format
	Using Excel
	Constants
	Curve Sketching
	Useful Web Links
	Afterword

