
Pepper
Software Development Kit

User Guide
3.2
Cover

© 2007 Pepper Computer, Inc. All Rights Reserved. Pepper® is a registered
trademark in the U.S. Patent and Trademark Office. Other brand names or product
names are trademarks or registered trademarks of their respective owners. This
document is for informational purposes only. Pepper Computer makes no warranties,
express or implied, in this document.

Revision: 002.001.001

Author: Kyle Nitzsche

Table of Contents
Preface
Description of this document ...xvii
Intended audience ...xvii
How this document is organized ..xvii
Documentation conventions ...xviii

Introduction
What is Pepper? ...1
What is the Pepper SDK? ...2
What can you do with the SDK? ...2
What Pepper versions are supported? ...2

Backwards compatibility ..3
Where does Pepper 3.2.0 run? ...3
What Java versions are supported on Pepper Pads? ..3
What does the SDK distribution include? ...4
What development platforms are supported? ...4

Java integrated development environment ...4

Getting Started with the SDK
SDK directories ...5

SDK root directories ..5
SDK files ..6
pepper-sdk/applications directory ..6
Application-specific directories ..6

Pepper Application Framework installation directories ...8
Pepper Application Framework run-time directories8
Application run-time directories ...9

Application run-time directory name ..9
Application directory contents ..9
Keeper application ...10

Debug Mode ...10
 iii

Entering Debug Mode ... 11
Toggling Debug Mode during framework execution 11
Launching the framework in Debug Mode ... 11

Debug menu ... 11
Adding an application ... 12
Automatically refreshing applications under development 12
Viewing Page’s underlying HTML, XML and DOM 12
Refreshing the current Page ... 12
Updating framework zip files ... 13

Design Mode .. 13
Where are the design files? .. 13
When does extraction occur? ... 14
Design Mode overwrite ... 14
Design Mode caution: don’t lose your changes .. 15

Starting and stopping the framework ... 15
Setting framework system properties ... 15

Configuring system properties .. 15
Configuring system properties .. 17

Setting system properties on Windows ... 17
Setting system properties on a Pepper device .. 18

Keeper event log .. 19
Overview ... 19
Viewing the log ... 19

Key combinations ... 19
Javadoc .. 20

Javadoc of the SDK API ... 20
Extracting SDK API javadoc .. 20

Javadoc of your application .. 20

User Interface
Anatomy of the user interface .. 23
Terminology: programmatic and user interface .. 25

Framework and Application Architecture
Framework overview .. 27
Application files and the distribution package .. 28

Java code ... 29
AbstractPepperProgram life cycle ... 29

Application data .. 30
Design ... 30

Application definition: package.ppld .. 31
Page definition: PageTemplates.xml ... 31
Initial Section instances: FactoryBuild.xml .. 31
iv

Message definition: PackageStrings.properties31
Application distribution package ..31

Sections and Pages ..32
Pages ..32

Creating Pages ..35
Sections ...35
Application structure — a run-time sample ...36
Application structure from an XML perspective ...37

Page XML definition and instance ...38
SectionPage XML definition and instance ...40
Application XML file ...42

Useful Java methods for Sections and Pages ...44
The Section user interface ..44

Defining the Section (and therefore the user interface) type45
Default-style Section user interface ...45

HTML rendering with CSS stylesheets ..46
Generating Page toolbars ...47

Defining a toolbar ...47
A toolbar example ..48
Toolbar visual styling ...48

Java Sections ..49
Java Section overview ...49
Including SectionJava.xml in PageTemplates.xml49
Declaring the Java Section instance ..49
Creating the pre-built Page and specifying the Java class50
The Java Section class ..50
Java ToolBars ..52

Caching ...53
Defining caching rules ...54
Caching rule syntax ...55

Selection rules ...55
Application rules ...56
Caching a single child element ..56
Caching multiple elements and attributes ..56
Nested caching rules ...56
Caching attributes ..57

When does caching occur? ...58
Connecting displayed data to Page data ..58

Connecting HTML data to Page data ..58
Connecting Java data to Page data ..59

JDOM classes ..59
Loading a Page XML file ..60

JavaScript/Java approach ...62
 v

JavaScript and Mozilla LiveConnect .. 62
Including external JavaScript .. 62
LiveConnect .. 62

LiveConnect initialization ... 63
Page Initialization with LiveConnect .. 63
Accessing Java from JavaScript ... 64
Accessing JavaScript from Java ... 65

Java Actions ... 66
Action classes ... 66

Retrieving passed parameters .. 66
Registering a Java action in the application base class 67

Calling Java Actions from Java .. 67
XSL .. 67

Framework parameters passed to XSL .. 68
Using framework parameters in XSL ... 68

Required XSL namespaces and Xalan configuration 69
Pre-built Pages ... 69

Why use pre-built Pages? ... 70
Pre-populating by copying-pasting-editing .. 70
Pre-populating without copying-pasting-editing 70
Why not pre-populate the data into the XSL transform? 70
Pre-built Pages are often easier than XSL .. 71

Can pre-built Pages be modified during application use? 71
Pre-built Pages ... 71

Defining the Section’s pre-built Page directory 72
Element structure of pre-built Pages .. 73

Defining a pre-built Page ... 73
Creating pre-built Pages .. 74
Delete the id attributes — the build provides them 75
One final point: XSL transform required .. 76

Pre-Built SectionPages ... 76
Creating a pre-built SectionPage .. 76
Pre-Built SectionPage and Pages ... 77

Event notification .. 77
com.pepper.platform.program.PageChangeListener 78
com.pepper.platform.program.SectionChangeListener 79
com.pepper.platform.program.ProgramChangeListener 79
Other listener interfaces .. 79

Writing to the framework log .. 79
GUI services ... 80

Writing messages to the framework status bar ... 80
Using the System Tray ... 81
Tab control .. 81
vi

Mime type handling ...82
Ensuring no other application has registered for the mime type82
Registering mime type in package.ppld ..82
Handling the new Page in createPage() ..83

Hello World: Getting Started
Overview ...85
Prerequisites ...85
Helpful information ..85
Tutorial structure ...85
What’s next ...86

Hello World 1: Application Creation
Creating project directory tree ..89
Creating the required base Java class ...90
Modifying build.xml ...92
Modifying package.ppld ..93
Customizing FactoryBuild.xml ..95
Customizing PackageStrings.properties ...97
Defining the SectionPage in PageTemplates.xml ...98
Creating the main XSL file from sample.xsl ..99
Building Hello World ...101
Adding the application to the framework ...101
Adding ready-made Sections ..102
Customizing the display with CSS ..105
What’s next ...107

Hello World 2: Pages and ToolBars
Overview ...109
Description of the revised Hello World application ...109
Hello World’s programmatic structure ...111

Section declarations, Page definitions and caching rules111
A run-time instantiation ..112
Toolbar buttons link to JavaScript and framework Actions113
Creating the toolbars: a closer look ...114

Creating toolbars and buttons in worlds.xsl ... 114
Creating toolbars and buttons in world.xsl ... 115

Drilling into world.xsl .. 115
Drilling into worlds.xsl .. 118
Drilling into helloWorld.js ...120

Getting the selected radio button value ...120
Framework Actions from JavaScript ..120
Calling the ShowPage framework Action ...121
 vii

Calling the DeletePage framework Action ... 121
Setting up the new source files .. 121
Build, launch and use the revised application .. 122
What’s next .. 122

Hello World 3: Getting Started with Java
Overview .. 123

Prerequisites ... 123
Hello World’s new functionality ... 123
Source files ... 124

Understanding the code ... 125
Declaration and definition files .. 125

FactoryBuild.xml .. 125
PackageStrings.properties .. 126
PageTemplates.xml ... 126
The pre-built directory and pre-built Page ... 126

Java Section’s Java .. 127
One new Java source file is required .. 127
LogStatusbarJavaSection.java location .. 127
Extending java.awt.Component and implementing JavaSectionComponent

127
Implementing initComponent() .. 128
ToolBar and ToolBarButtons ... 129
Writing to the log ... 130
Writing to the Status Bar ... 131

Creating the revised Hello World ... 132
Using the revised Hello World .. 132
What’s next .. 133

Hello World 4: Advanced Java
Overview .. 135

Prerequisites ... 135
Hello World’s new functionality ... 135
Source files ... 137

Understanding the code ... 137
Using the world’s Page ID .. 137
Application declaration and definition files and pre-built directory 138

FactoryBuild.xml .. 139
PackageStrings.properties .. 139
PageTemplates.xml ... 139
The pre-built directory and pre-built Page ... 139

Adding “Edit with Java” HTML button to worlds SectionPage 140
New Java code ... 141
viii

HelloWorld.java ...141
New Actions ...141
WorldJavaSection registers with HelloWorld ...142

WorldJavaSection.java ..143
Registering with HelloWorld ...143
Using localizable label text ...144
Adding the ToolBar and ToolBarButton ...145
Page ID helper methods ..145

EditJavaAction.java ...146
Switching focus to the WorldJavaSection ..146
Retrieving the passed world Page ID ...147
Setting the target world Page in WorldJavaSection147
Making a document for the target World Page148
Reading data into WorldJavaSection ...148

DoneJavaAction.java ...148
Creating the revised Hello World ..149
Using the revised Hello World ..150
What’s next ...150

Customization
Getting started with customization ..151

What can be customized ...151
The Keeper is an application ...152

Customizing in Design Mode or in the SDK ..152
Design Mode customization ..152
SDK-based customization ...153
How customizations are affected by automatic updates154

Customization with CSS ...154
Other CSS stylesheets ...155

Getting started with CSS customization ..155
Styles.css-based customizations ..155

Customizing the Keeper Applications tab background image155
How it works ...156
How to customize it ..156

Customizing the selection block ..156
How it works ...157
How to customize it ..158

Customizing application icons ...158
How to customize application icons ...159

Keeper.css-based customizations ..159
Customizing the Status Bar ...160

Customizing Status Bar background colors ...160
Customizing Status Bar bottom border color ...161
 ix

Customizing Status Bar font and text color ... 161
Customizing Status Bar’s Progress Bar .. 162

Customizing Flag Panel colors ... 162
Customizing Pepper ToolBar colors and fonts ... 163

Customizing ToolBar colors .. 164
Customizing ToolBar bottom border color ... 165
Customizing ToolBarButton font and font color 165
Customizing ToolBarButton mouse pressed colors 166

Custom themes .. 167
Themes overview .. 167

What’s in a theme archive? ... 168
A custom theme only needs customized files 168
Themes are transparent to applications .. 168
Accessing theme files in custom applications 168

Creating a theme area in the SDK .. 169
Adding files to the theme area .. 169

Customizing files derived from the default theme archive 170
Adding custom files ... 170

Building a theme ... 171
Adding a custom theme to a framework ... 171
Launching the framework to use a custom theme 172

How to customize web bookmarks ... 172
Bookmark architecture overview ... 172
An example ... 173

Customizing bookmarks ... 174
Customizing default bookmarks .. 174

How to customize an application’s help ... 175
Help Section overview .. 175
Customizing help .. 177

How to localize for different languages .. 177
Customizing user interface widget display text ... 178

Creating localized properties files ... 179
Localizing CommonStrings.properties ... 179
Localizing TimezoneCatalog.properties .. 180
Localizing PackageStrings.properties ... 180

Launching the framework with a specified locale 180
Customizing help for different languages ... 181

How to port an application into the SDK .. 181
Which applications can be ported to the SDK? .. 181
Is the rebuilt application complete? .. 181
After rebuilding, how is the application deployed? 181
Porting an application to the SDK ... 182

Customizing an application’s Sections ... 186
x

Building Applications
What is Building a Pepper Application? ..189
Ant is the Build System ...190
Setting up Application’s Build System ..190
Setting the Build Environment Variables ..190
Build commands ...191

ant ...191
ant clean ..191
ant rebuild ..191

Building an Application ...191
How Java is Compiled and Jarred During the Build ...193
Unsigned Jar Permissions ..193
Adding Existing Jar Files to the Build ...194

Adding and Distributing Applications
Overview ...195
Distributing an application on the web ..195

Web distribution mechanism overview ..196
Posting your applications on a web server for distribution196
Adding an application from a web site ...197

Adding a local application in Debug Mode ..197
Making an application’s files accessible to the framework197

Making files available with a USB thumb drive198
Copying files to the Pepper device with ssh and scp199

Adding a local application to the framework ..201
Refreshing an application in the framework ..202

Sample Page Files
Worlds SectionPage sample ...203
World Page sample ..204

XML Reference
XML documentation conventions ..207
package.ppld ..208

<jnlp> ...208
Parent ..208
Children ..208
Text ..208
Attribute: spec ..208

<information> ..208
Parent ..208
Children ..208
Text ..209
 xi

Attribute ... 209
<title> .. 209

Parent .. 209
Children ... 209
Text ... 209
Attribute ... 209

<packageType> .. 209
Parent .. 209
Children ... 209
Text ... 209
Attribute ... 210

<singleton> ... 210
Parent .. 210
Children ... 210
Text ... 210
Attribute ... 210

<packageGUID> ... 210
Parent .. 210
Children ... 211
Text ... 211
Attribute ... 211

<mimetype> .. 211
Parent .. 211
Children ... 211
Text ... 211
None .. 211
Attribute: Name ... 211

<vendor> ... 211
Parent .. 211
Children ... 211
Text ... 212
Attribute ... 212

<homepage> ... 212
Parent .. 212
Children ... 212
Text ... 212
Attribute: href ... 212

<description> .. 212
Parent .. 212
Children ... 212
Text ... 212
Attribute ... 213

<icon> ... 213
xii

Parent ..213
Children ..213
Text ..213
Attribute ..213

<thumbnail> ...213
Parent ..213
Children ..213
Text ..213
Attribute ..214

<deletable> ..214
Parent ..214
Children ..214
Text ..214
Attribute ..214

<security> ..214
Parent ..214
Children ..214
Text ..214
Attribute ..214

<resources> ..215
Parent ..215
Children ..215
Text ..215
Attribute ..215

<jar> ..215
Parent ..215
Children ..215
Text ..215
Attribute: href ...215

<application-desc> ..216
Parent ..216
Children ..216
Text ..216
Attribute: main-class ..216

<packageVersion> ..216
Parent ..216
Children ..216
Text ..217
Attribute ..217

<requiredKeeperVersion> ...217
Parent ..217
Children ..217
Text ..217
 xiii

Attribute ... 217
FactoryBuild.xml ... 218

<factoryBuild> ... 218
Text ... 218
Attributes ... 218
Parent .. 218
Children ... 218

<packageList> .. 218
Parent .. 218
Children ... 218
Text ... 218
Attribute ... 218

<section> .. 219
Parent .. 219
Children ... 219
Text ... 219
Attribute: name .. 219
Attribute: type .. 220
Attribute: id .. 220
Attribute: builtin .. 220
Attribute: src .. 220
Attribute: deletable .. 221

<prebuiltPagesDir> ... 221
Parent .. 221
Children ... 221
Text ... 221
Attribute ... 221

PageTemplates.xml ... 222
<pageTemplates> ... 222

Parent .. 222
Children ... 222
Text ... 222
Attribute ... 222

<packageName> .. 222
Parent .. 222
Children ... 222
Text ... 223
Attribute ... 223

<packageVersion> .. 223
Parent .. 223
Children ... 223
Text ... 223
Attribute ... 223
xiv

<sectionPage> ...223
Parent ..223
Children ..223
Text ..223
Attribute: type ...223

<basePage> ...225
Parent ..225
Children ..225
Attribute: type ...225

<template> ..225
Parent ..225
Children ..226
Text ..226
Attribute ..226

<defaultPageType> ...226
Parent ..226
Children ..226
Text ..226
Attribute ..226

<cacheRules> ...226
Parent ..226
Children ..227
Text ..227
Attribute: match ..227

<apply> ..227
Parent ..227
Attribute ..227

<template> ..227
Parent ..227
Children ..227
Attribute: match ..227

<basePage> ..228
Parent ..228
Children ..228
Text ..228
Attribute: type ...228

<section> ...228
Parent ..228
Children ..228
Text ..228
Attribute ..228

<page> ..228
Parent ..229
 xv

Children ... 229
Text ... 229
Attribute ... 229

PackageStrings.properties ... 230
Properties example ... 230

Glossary

Index
xvi

Preface
Description of this document
This document provides information about the Pepper® Software Development Kit (SDK).

Intended audience
The SDK and this book are intended for software developers who want to develop and customize
Pepper applications.

The level of experience required varies depending on the task. In general, some experience with
the following is appropriate:

Java

JavaScript

HTML

CSS

XML

XSL

Ant

Linux

How this document is organized
This document provides introductory, explanatory, tutorial, building and deployment, reference and
supporting material, including:

Introductory chapters

Preface, Introduction and Getting Started with the SDK
 xvii

Preface
Documentation conventions

Explanatory chapter

Framework and Application Architecture

Tutorial chapters

Hello World: Getting Started, Hello World 1: Application Creation, Hello World 2: Pages and
ToolBars, Hello World 3: Getting Started with Java, Hello World 4: Advanced Java and Sample
Page Files

Source files for the tutorial are provided in the SDK.

Build and deployment chapters

Building Applications and Adding and Distributing Applications

Reference appendix

XML Reference

Supporting appendix

Glossary

Documentation conventions
This guide uses fonts and text styles for different purposes, as explained in the following table.

Table –1 Font usage and stylistic conventions

Font style Used for Examples

Monospace Code samples public void MyClass() {

...

}

Command line output BUILD SUCCESSFUL
Total time: 16 seconds

Monospace bold Commands Use the ant rebuild command.

Bold User interface literal
names

Click the Done button.

Italic Directory and file names pepper-sdk/applications
package.ppld

Emphasis and new terms This section takes a closer look at an application
as a dynamic structure of Sections and a Section
as a dynamic structure of Pages.
xviii

Preface
Documentation conventions

Italic enclosed in
parentheses

Implementation specific
names

(yourApp) is implementation specific in the
following:
pepper-sdk/applications/(yourApp)/dist

(dns) is implementation specific in the following:
http://(dns)/index.html

Table –1 Font usage and stylistic conventions (continued)

Font style Used for Examples
 xix

Preface
Documentation conventions

xx

1

Introduction
What is Pepper?
The Pepper environment is software for the Internet era that's been designed specifically for mobile
devices and low-cost computers. It's designed to be very easy to use by mainstream consumers,
easy to build and develop applications for, highly customizable by device makers and distributors,
and automatically upgradable for maintenance-free use by anyone.

The Pepper environment supports Web-connected applications that start with Mozilla and go much
further than browser-only applications can go. The Pepper environment's unique application
framework seamlessly integrates Mozilla, Java, Flash and media players with a persistent XML
storage model to enable a whole new class of extremely sophisticated Web and media applications.

Applications can take advantage of persistent XML page storage, integrated Web services and Web
pages, a secure execution environment, and access to leading-edge media players and all of the
most widely used media formats. An application's user interface can be written using Java
Swing/2D/3D, JavaScript/HTML/XHTML/CSS (“Ajax”), JavaScript/XUL, Flash Actionscript or basic
HTML. New Web-connected applications can be quickly developed and deployed. In short, the
Pepper environment has everything you need to create applications that go beyond the browser.

The Pepper environment’s unique and flexible graphical user interface eliminates clutter and gets
out of the user’s way. Instead of lots of hard to organize, overlapping windows, the Pepper UI has
tabs to organize active applications. It's also designed to minimize screen real estate usage -- a real
plus on small-screen devices. The entire look and feel can be customized in many dimensions, from
which applications are present, to colors, fonts, background images, language (locale), help text,
layout, and more.

Automatic software updates of applications and of the Pepper framework itself guarantee users
have what they need as their needs change.

The Pepper environment is the key part of Pepper Linux, a light-weight Linux distribution for mobile
Internet devices and low-cost computers. The Pepper environment also runs as an application on
other operating systems, such as Windows XP and most standard Linux distributions, including
Fedora, Ubuntu, Suse, and others.
 1

Introduction
What is the Pepper SDK?

 1
What is the Pepper SDK?
The SDK is a set of files, tools and instructions for developing Pepper applications that run in the
Pepper Desktop Environment.

What can you do with the SDK?
You can use the SDK to:

Develop fully integrated Pepper applications.

Such applications run on the Pepper Application Framework. They make use of the framework
and conform to framework user interface conventions. They can use the Default Section/Page
framework, be Java based, or be a mixture of the two.

Customize the Pepper Application Framework, including:

Defining the applications that can be launched.

Customizing the Tabs (Sections) available within the Keeper application, including adding
and removing Tabs.

Note: The Keeper is the root application in the Pepper Application Framework that, among
other things, provides the Applications Tab containing icons for all other applications. For
information, see “Keeper application” on page 2-10.

Customizing toolbars associated with a particular Page by adding and removing buttons.

Customizing the visual styling, including colors, fonts, images and overall layouts in the
Pepper application framework.

See “Customization” on page 10-151.

What Pepper versions are supported?
Applications developed with the 3.2 SDK are compatible with the following Pepper software
versions:

Pepper 3.2

Pepper 3.1, except that applications cannot use methods or classes marked since 3.2 in the
Javadoc.

Applications developed with 3.0 SDK are compatible with the following Pepper software versions:

Pepper 3.1

Pepper 3.2, except that the classes com.pepper.platform.program.NetworkListener
and com.pepper.platform.program.NetworkEvent have been removed from Pepper
3.2.
2

Introduction
Where does Pepper 3.2.0 run?

1

Applications that use either of these classes need to be modified to use the corresponding
classes com.pepper.platform.net.NetworkListener or
com.pepper.platform.net.NetworkEvent, which were introduced in Pepper 3.2.

Backwards compatibility
The javadoc for the Pepper Java Application Programming Interface (API) indicates the following:

Any method or class introduced in version 3.2 or later is noted with since <versionNumber> in
the relevant javadoc.

Note: Be sure to set the minimum Pepper version required by your applications in each
package.ppld file with the <requiredKeeperVersion> element to be as high as the
highest Pepper version whose methods or classes you use. For example, if you use a
method introduced in 3.2.0, you must set the <requiredKeeperVersion> to 3.2.0.

Some methods or classes are marked in javadoc as deprecated.

Deprecated methods or classes should be avoided. There is no guarantee that deprecated
methods or classes will be available in future Pepper version.

Where does Pepper 3.2.0 run?
Pepper version 3.2.0 runs on:

Pepper devices above Pepper Linux

Windows as Pepper Desktop

Note: The Pepper version is displayed in the Keeper’s Help Section.

What Java versions are supported on Pepper Pads?
Java support varies by Pepper Pad, as follows:

Pepper Pad 3

Uses Java 5.0 (formerly known as Java 1.5). Applications developed using language features
and APIs introduced in Java 5.0 work on Pepper Pad 3 and Pepper Desktop. They do not work
on Pepper Pad 2. The default behavior of the build scripts included with the SDK is to target
Java 1.4, so developers writing applications that use features or APIs introduced in Java 5.0
must change their build scripts to target 5.0.

Pepper Pad 2

A hybrid Java environment. The core classes are Java 1.3. The java.awt.* classes and
javax.swing.* classes are Java 1.4.
 3

Introduction
What does the SDK distribution include?

 1
What does the SDK distribution include?
The SDK distribution includes the following:

This document

The application build system

See “Building Applications” on page 11-189.

SDK libraries and executables including jar files for the Pepper framework classes, the XML
parser (Xerces), the XSL processor (Xalan) and JDOM (for accessing XML elements)

The Hello World Tutorial

This takes you through four phases of application development that demonstrate many critical
aspects of developing Default type and Java type applications.

See “Hello World: Getting Started” on page 5-85.

A template for new applications

Use of the application template is described in Phase One of the Hello World Tutorial.

See “Hello World 1: Application Creation” on page 6-89.

Javadoc documentation of framework Java classes and methods you can use during
application development.

See “Javadoc” on page 2-20.

What development platforms are supported?
Pepper applications can be developed and built on a Windows, Linux or Mac system that supports
Java and has the SDK installed.

Note: Since the Pepper Application Framework is not officially supported on Mac or Linux,
applications developed on these platforms are generally tested on the Pepper Pad.

Java integrated development environment
You can develop the Java aspects of your applications using any industry-standard Java integrated
development environment (IDE), for example Eclipse. Setting up such an environments may require
additional steps that are not covered in detail in this document.

Note: The SDK directory structure is determined by integral Ant build scripts. If you modify
the directory structure you will need to handle building the Java and creating the application
distribution package.
4

2

Getting Started with
the SDK
SDK directories
The SDK has a specific directory structure. To develop an application, you have to work within this
structure and follow its rules. When you build an application, the build system expects files and
directories to be in certain places and creates new directories with new and copied files in specific
locations.

So, it is essential to be familiar with the SDK directory structure and to understand how it changes
during a build.

The SDK’s base directory is pepper-sdk.

SDK root directories
The pepper-sdk directory contains the following subdirectories:

applications

Contains subdirectories for each application under development or included with the SDK, an
application template directory and Hello World Tutorial source files.

bootstrap

Has files and subdirectories required by the build system. None of these files or directories
should be edited.

doc

The SDK javadoc.zip file resides here. This is complete documentation of the Pepper Java
API., including classes, methods, interfaces, and etc.

The SDK User Guide PDF file also resides here.

lib

Contains required libraries (jar files, zip files, etc.) included with the SDK.

themes

Use this to develop custom themes that control the Pepper Application Framework’s visual
styling. See “Custom themes” on page 10-167.
 5

Getting Started with the SDK
SDK directories

 2
SDK files
The pepper-sdk directory contains the following files:

setup.bat

Upon execution in a command line window on a Windows system, setup.bat sets environment
variables required by the SDK build system (for the current command line session).

Note: You must ensure setup.bat sets the environment correctly with respect to your SDK
installation directories. See “Setting the Build Environment Variables” on page 11-190.

setup.sh

Upon execution in a command line window on a Linux system, sets environment variables
required by the SDK build system (for the current command line session).

Note: You must ensure setup.sh sets the environment correctly with respect to your SDK
installation directories. See “Setting the Build Environment Variables” on page 11-190.

README.txt

States the SDK version, provides a pointer to this PDF file, and includes some important legal
statements.

pepper-sdk/applications directory
pepper-sdk/applications is the root directory for application development work. Each application
under development or being customized in the SDK is contained in a directory you create inside
pepper-sdk/applications.

In addition to application-specific subdirectories you create, the SDK contains a template directory,
a tutorial resources directory, and a directory containing a sample application, as follows:

applicationTemplate

Contains a set of files and folders you can use as a template for creating new applications. This
is a template directory and, as such, it should not be built directly. Instead, copy and paste this
directory. Only build the new directory.

See Chapter 6, “Hello World 1: Application Creation”.

HelloWorldResources

Contains source files for the various phases of the Hello World Tutorial included with the SDK.

See Chapter 6, “Hello World 1: Application Creation”.

Application-specific directories
As noted, each application requires a dedicated root directory inside pepper-sdk/applications. Each
application root directory requires a number of specific subdirectories for certain types of files. The
build system depends on finding these specific subdirectories and files. The build system also
creates certain application-specific directories, specifically, env and dist.

Each application has the following SDK directories:

build
6

Getting Started with the SDK
SDK directories

2

Contains the build.xml file for this package. This file controls how the ant build system builds
the application. This file must be modified for new applications.

See “Setting up Application’s Build System” on page 11-190

Not created by the build

design

Contains many files that define the structure of your application and its visual styling. You
customize these files as you develop an application, as discussed throughout this book. During
application building, all files in design are zipped into design.zip and placed in the dist directory.
When the application is installed in the Keeper, the design.zip file is copied to the application’s
Pepper Application Framework installation directory.

If the Pepper Application Framework is placed in Design mode, design.zip is extracted. See
“Design Mode” on page 2-13.

Not created by the build

prebuilt

Contains pre-built Pages, typically segregated into subdirectories.

See “Pre-built Pages” on page 4-69.

Not created by the build

src

All Java source files must be in the application’s src directory, as follows:

pepper-sdk/applications/(application)/src.

Within src, you may optionally have subfolders. However, if subfolders are present they must
be consistent with the Java package statements at the start of each Java source file.

For example, if a file’s Java package statement is:

package com.pepper.HW;

Then the files must reside here:

pepper-sdk/HelloWorldTutorial/src/com/pepper/HW

Not created by the build

data

Created by the build as a temporary container. Contains the application’s XML instance files.
After this directory is created by the build, it is zipped up and placed in the
pepper-sdk/applications/(application)/dist directory. It is zipped into data.zip and, during
application installation, is copied into the application’s Pepper Application Framework
installation directory. During application execution, these files are accessed. If they are
modified, or if new XML instance files are created, a data directory is created in the application’s
installation directory and the modified or new files are placed there. None of these files should
be edited.

Created by the build

dist
 7

Getting Started with the SDK
Pepper Application Framework installation directories

 2
Contains the built files that are specific to this application. When adding a built application to a
Pepper, you copy only this directory to the Pepper.

Created by the build

env

Created by the build as a temporary container during building. Contains the jar file for the
compiled Java source class(es) for this application.

Created by the build

javadoc

Contains javadoc HTML files that document the Java source files in this application if you have
entered javadoc comments.

Created by the build

Pepper Application Framework installation directories
The root directory of an installed Pepper Application Framework on a Pepper device is:

/opt/pepper

The root directory of an installed Pepper Application Framework on Pepper Desktop on Windows is:

C:\Documents and Settings\(user)\My Documents\Pepper

Note: Throughout this book the Pepper Application Framework root run-time directory is
generally referred to as Pepper.

Subdirectories are of two types:

The Pepper Application Framework has a set of subdirectories required for framework
operations.

Each application has a subdirectory.

Pepper Application Framework run-time directories
The framework has several subdirectories that are not associated with specific applications. Most
are used by the framework and their files should never be modified.

The following are framework directories that contain files that you may want to access or modify:

Note: On the Pepper devices, the root directory uses a lower case “p” in pepper. On Pepper
Desktop on Windows, the root directory has an upper case “P,” as in Pepper.

Pepper/Logs

Contains Pepper Application Framework log files. For information, see “Keeper event log” on
page 2-19.

Note: Pepper devices also have Pepper Linux log files stored in other directories.

Pepper/resources
8

Getting Started with the SDK
Pepper Application Framework installation directories

2

When the Pepper Application Framework is in Design Mode and no custom theme has been
developed and installed, this directory contains images, XSL files, CSS files, JavaScript files
and other files that control the framework’s visual styling. You can customize the visual look and
feel of the Pepper Application Framework by modifying these files.

For information about Design mode, see “Design Mode” on page 2-13.

For information about customization, see “Customization” on page 10-151.

Pepper/sounds

Contains mp3 sound files used by the Pepper Application Framework and applications. You
can add your own sound files and configure the framework to associate them with specified
events.

Application run-time directories
Each application has its own run-time directory that is created when the application is installed. For
example:

Pepper/AnApplication-0

Application run-time directory name
The application directory name has two parts:

The first part of an application’s directory name is derived from the application’s <title>
element in the application’s package.ppld file, as follows:

<?xml version="1.0" encoding="UTF-8"?>
<jnlp spec="1.0+">
 <information>
 <title>AnApplication</title>
...

This <title> results in an run-time directory named AnApplication-0

For reference information about the package.ppld file and the meaning and use of its XML
elements, see “XML Reference” on page B-207.

The second part of an application’s run-time directory name is either “-0” or “-(GUID)”.

Note: The GUID is an alpha-numeric string that uniquely identifies the application.

Application directory contents
Every application has at least the following files:

Note: These files are either specified with the <resources> element in the application’s
package.ppld file or created as an inherent part of application building and installation.

The application’s jar file

At a minimum, this contains the application’s base class. For information, see
“AbstractPepperProgram life cycle” on page 4-29.

It also includes Java classes you developed for the application.
 9

Getting Started with the SDK
Debug Mode

 2
Additional jar files the application needs

You can include jar files and use them as resources in your application. For information, see
“Adding Existing Jar Files to the Build” on page 11-194.

data.zip

Contains the initial version of the application’s built data directory. The built data directory
contains the XML instance files for the application’s Sections and Pages before run-time events
add new XML instance files. If new XML instance files are created, the (application)/data
directory is created and they are placed there.

For information, see “Application structure — a run-time sample” on page 4-36.

design.zip

Contains the complete contents of the application’s design directory in the SDK.

When you place the Pepper Application Framework in Design mode, design.zip is expanded
and extracted, and the application uses the extracted files instead of those in design.zip. This
enables you to modify these files on the fly and observe their effects in the running application,
instead of having to rebuild an application every time non-Java files are modified. For
information, see “Design Mode” on page 2-13.

Keeper application
The Keeper application is the Pepper Application Framework‘s root application that is launched
upon framework startup. The Keeper application manages all other applications.

The Keeper application’s directory has, for the most part, the same subdirectories and key files as
other applications.

Debug Mode
Debug Mode is a mode of framework execution that is useful when developing applications.

When you enter debug Mode, two new menu items appear above the usual GUI: Debug and
Support. The functions available from these two menus may vary from release to release, but
important functions include:

Accessing Support menu items, including such functions as displaying the Pepper log file,
resetting the Pepper, an application, Sync History, and more.

Adding an application.

In normal operational mode, applications are added when the framework is updated as a part
of the normal update process. Debug Mode enables you to manually add a custom application.

See “Adding an application” on page 2-12.

Updating the framework’s design.zip and/or data.zip files.

See “Updating framework zip files” on page 2-13.

Automatically detecting rebuilt applications and refreshing them in the framework.

See “Automatically refreshing applications under development” on page 2-12.
10

Getting Started with the SDK
Debug Mode

2

Viewing the XML, HTML, and DOM of the current Page.

As explained in “Framework and Application Architecture” on page 4-27, Pages are
transformed into HTML and rendered for display. Debug Mode enables you to view the current
Page’s underlying XML file and its generated HTML.

See “Viewing Page’s underlying HTML, XML and DOM” on page 2-12.

Viewing the framework log.

See “Keeper event log” on page 2-19.

Refreshing the current Page.

See “Refreshing the current Page” on page 2-12.

Entering Debug Mode
A Key combination is available that toggles between normal execution mode and Debug Mode. You
can also launch the framework in Debug Mode by editing a framework launch configuration file.

Toggling Debug Mode during framework execution
Toggle between Debug Mode and normal mode with the follow key combination:

ctrl + shift + 0

Launching the framework in Debug Mode
See “Setting framework system properties” on page 2-15.

Debug menu
When the framework is in Debug Mode, a Debug menu is available that provides access to various
debug functions.

Figure 2–1 Debug Mode
Debug menu is displayed when the
framework is in Debug Mode
 11

Getting Started with the SDK
Debug Mode

 2
Adding an application
When the framework is in Debug Mode you can manually add an application, if the application’s
built files are accessible to the framework (see “Making an application’s files accessible to the
framework” on page 12-197).

For the procedure to add an application manually in Debug Mode, see “Adding a local application
to the framework” on page 12-201.

Automatically refreshing applications under development
When you launch an application in Debug Mode, the Pepper refreshes the application, when
possible, from the application’s distribution package before launching it. This makes it easy to
iteratively test sequential development changes because you can simply refresh the distribution
package on the Pepper platform with the newly built files, then relaunch the application (in Debug
Mode) to evaluate the changes.

The automatic refresh occurs:

When the application has been manually added in Debug Mode (by Debug > Add Application
or by clicking on an application distribution URL)

When the framework is running in Debug Mode

Note: When you make development changes to the application that do not involve Java
files (that is, when you modify CSS, JavaScript and XSL files), you can use Design Mode
to auto-detect and update the application. See “Design Mode” on page 2-13.

Viewing Page’s underlying HTML, XML and DOM
When the framework is in Debug Mode, you can view the current Page’s XML, HTML, or DOM
structure.

Viewing the current Page’s underlying XML

Select Debug > View Page XML

The XML is displayed in the framework log.

For information, see “Keeper event log” on page 2-19.

Viewing the current Page’s underlying HTML

Select Debug > View Page Source HTML

The Page’s HTML is displayed in a pop-up window.

Viewing the current Page’s underlying DOM

Select Debug > View Rendered Page DOM

The Page’s DOM is displayed in the framework log.

Refreshing the current Page
When the framework is in Debug Mode, you can refresh the current Page. There are two levels of
Refresh.
12

Getting Started with the SDK
Design Mode

2

Debug > Refresh
Uses the Page’s cached XSL transform object to regenerate the current HTML page. This is
useful when developing and modifying non-XSL aspects of the Page, such as CSS, JavaScript
and images.

Debug > Deep Refresh
Reloads the Page’s XSL transform from disk and uses it to regenerate the current HTML page
completely from scratch using no cached objects. This is useful when developing and modifying
XSL transform files.

Updating framework zip files
When the framework is in Debug Mode, you can use the Debug menu to update the executing
framework from a version you have customized in the SDK.

See “Customization” on page 10-151

Debug > Update Zip Files
After selecting this menu item, browse to and select the customized Keeper data.zip and/or
design.zip files in the SDK. The zip file(s) for the currently executing Keeper are then replaced
with the file(s) from the SDK. Restart the framework to use the new files.

Design Mode
Design Mode is a time-saving mode useful when developing or modifying an application’s or the
framework’s design files. When in Design mode, you can modify design files for a running
application and for the framework itself and see the changes without having to relaunch the
application or the framework.

Note: A Refresh or Deep Refresh of the Page is typically required to see changes
reflected. See “Refreshing the current Page” on page 2-12.

Design files include:

XSL files

HTML files

JavaScript files

CSS files

Message catalog files

Image files

Note: When modifying Java aspects of an application, Debug Mode can be a time-saver.
See “Debug Mode” on page 2-10.

Where are the design files?
In normal operational mode (not Design Mode):
 13

Getting Started with the SDK
Design Mode

 2
An application’s design files are in its pepper/(application)/design.zip archive file.

Note: This is also true for the Keeper application. See “Keeper application” on page 2-10.

Framework design files are in pepper/common-resources.zip.

Note: If you are using a custom theme, framework design files are in that theme’s
equivalent to common-resources.zip. For example, you may have a theme whose design
file is myTheme-resources.zip. For more information about custom themes, see
“Customization” on page 10-151.

In Design mode, design archives are extracted in the running framework. The framework and its
applications use the extracted design files instead of the files in the archive. Modifications to the
extracted design files are reflected in the running application and framework, although a Debug
Mode’s Refresh or Deep Refresh may be required.

Note: design.zip contains some files that are not design files, such as FactoryBuild.xml and
PageTemplates.xml, which are considered definition files. Modifications to these definition
files are not reflected in the running application or framework.

When does extraction occur?
For Pepper Application Framework design archives, the extraction occurs when the Pepper
Application Framework launches.

Pepper Application Framework design archives include:

common-resources.zip (or its equivalent if you are using a custom theme).

The Keeper application’s design.zip.

Each application’s design archive (its design.zip) is extracted when the application launches.

Design Mode overwrite
Design Mode can be launched in overwrite mode and in non-overwrite mode.

The two modes are used at different stages of design and development.

Non-overwrite mode

In non-overwrite mode, design files in previously extracted design archives are not overwritten
when design archives are extracted. This enables you to continue to accumulate changes to
design files through framework and application relaunches in Design mode. Use this mode
when doing ongoing development of design files. This is the default mode.

Overwrite mode

In overwrite mode, design files in previously extracted design archives are overwritten by
design files that are extracted. This enables you to start designing from built files pulled from
the design archives. Take care with overwrite mode, because you are not prompted before files
are overwritten, and any changes you have made to extracted design files are lost. Use this
mode when first starting a design session.

Overwrite mode is set when configuring Design Mode launch options. See “Setting framework
system properties” on page 2-15.
14

Getting Started with the SDK
Starting and stopping the framework

2

Design Mode caution: don’t lose your changes
After completing your designing, it’s important to remember to copy the design files you’ve modified
back into the application’s SDK directory so that your changes are incorporated into future
application builds.

Starting and stopping the framework
You can start, stop and restart the Pepper Application Framework on a Pepper device from the
command line in an Xterm window, as follows.

Procedure:

1. Open an Xterm window by pressing ctrl + shift + 1.

2. To start the framework, enter the following command:
service pepper start

3. To stop the framework, enter the following command:
service pepper stop

4. To restart the framework, enter the following command:
service pepper restart

Or type the following at any time (not in an Xterm window):

ctrl + (shft) + k

Procedure complete

Setting framework system properties
The Pepper Application Framework launches in various modes. For example, you can launch the
framework in Design Mode, in Debug Mode, and with a custom theme.

These are controlled by Java system properties (“-D” arguments) that are passed to the framework
at launch time. The system properties are contained in a script file that is read during the launch
process.

The system properties file and the syntax for entering the -D arguments differs by platform.

For information about configuring system properties, see “Configuring system properties” on
page 2-17.

Configuring system properties
The following table shows the applicable system properties and explains their values, options, and
meanings.
 15

Getting Started with the SDK
Setting framework system properties

 2
Table 2–1 Pepper Application Framework Java system properties

System property Value Description/Sample Default
value

-Ddebug=(boolean)
See “Debug Mode” on
page 2-10.

true Description
Enables Debug Mode.
Sample
-Ddebug=true

false

false Description
Disables Debug Mode.
Sample
-Ddebug=false

-Ddesign.mode=(boolean)
See “Design Mode” on
page 2-13.

true Description
Enables Design Mode.
Sample
-Design.mode=true

false

false Description
Disables Design Mode.
Sample
-Design.mode=false

-Ddesign.mode.overwrite=(bo
olean)
See “Design Mode” on
page 2-13.

true Description
Causes overwrite of theme files from current
theme archive when launching in Design Mode.
(This system property has no effect when
launching with -Ddesign.mode=false.) Useful
when starting theme development from an
archive, not from previously extracted files.
Sample
-Ddesign.mode.overwrite=true

false

false Description
Causes previously extracted theme files not to
be overwritten when launching in Design Mode.
This is the usual mode. It is useful when a
Design Mode session extends through
framework launch cycles.
Sample
-Ddesign.mode.overwrite=false

-Dtheme=(themeName)
See “Custom themes” on
page 10-167.

(themeName) Description
Sets the theme by theme name.
Sample
-Dtheme=common

common
16

Getting Started with the SDK
Setting framework system properties

2

Configuring system properties
The system properties file differs by platform, as explained in the following sections.

Setting system properties on Windows
This procedure explains how to configure Pepper Application Framework system properties on
Windows.

On Windows, the launch resource file is:

...\My Documents\Pepper\Pepper.lax

Procedure:

1. Make a back up copy of Pepper.lax.

2. Open My Documents\Pepper\Pepper.lax for editing.

3. Find the following line of text:
lax.nl.java.option.additional=-Xbootclasspath/p:xalan.jar;xercesImpl.jar;xml-api
s.jar -Dtheme=common -Dpepper.debug=false -Ddesign.mode=false
-Ddesign.mode.overwrite=false

4. Modify the appropriate arguments as necessary.

For detailed descriptions of system properties, see “Configuring system properties” on
page 2-15.

5. Save and close the file.

The modified launch settings become active on the next Pepper Application Framework launch.

Procedure complete.

-Duser.language=(language)
See “How to localize for
different languages” on
page 10-177.
*

Two-letter
Java
language
code

Description
Sets the language through Java localization.
Used when supporting multiple languages.
Sample
-Duser.language=en

en

-Duser.region=(region)
See “How to localize for
different languages” on
page 10-177.

Two-letter
Java region
code

Description
Sets the region through Java localization. Used
when supporting multiple regions.
Sample
-Duser.region=US

US

* On some Pepper devices you set the language by editing /etc/pup/pepperlang.conf.

Table 2–1 Pepper Application Framework Java system properties (continued)

System property Value Description/Sample Default
value
 17

Getting Started with the SDK
Setting framework system properties

 2
Setting system properties on a Pepper device
This procedure explains how to configure Keeper system properties on a Pepper device.

On a Pepper device, the launch script is:

/etc/init.d/pepper

Procedure:

1. Make a back up copy of the launch script.

2. Open the launch script for editing.

One way to do this is opening an Xterm window (ctrl + shift + 1) then using vi or an editor of
your choice.

3. Find the PEPPEROPTIONS section.
The precise text may vary between Pepper devices.
PEPPEROPTIONS="-Xms50m -Xmx150m \

-Dsun.java2d.pmoffscreen=true \
-DJREX_DEBUG=false \
-Duser.path=$PATH \
-Duser.display=$DISPLAY \
-Dswing.aatext=true \
-Djava.class.path=$PEPPER_HOME:$PEPPER_HOME/pepper.jar \
-Djava.library.path=/lib:/usr/lib:$PEPPER_HOME/jrex_gre:$PEPPER_HOM$
-Dpepper.home=$PEPPER_HOME \
-Dpepper.security \
-Djava.security.policy==$PEPPER_HOME/pepper.policy \
-Djava.security.debug=failure \
-Dtheme=common \
-Dpepper.debug=false \
-Ddesign.mode=false \
-Ddesign.mode.overwrite=false \
-Djava.util.prefs.syncInterval=2000000"

4. Modify the appropriate arguments as necessary.

For detailed descriptions of system properties, see “Configuring system properties” on
page 2-15.

5. Ensure every line for every argument except for the last argument line ends in:

” \” (a space plus the backslash character).

” \” indicates the command is continuing on the next line.

Note: Failure to do this causes incorrect command line arguments and unexpected results.

6. Save and close the file.

The modified launch settings become active on the next Keeper launch.

Procedure complete.
18

Getting Started with the SDK
Keeper event log

2

Keeper event log
This section explains the Keeper event log.

Overview
The Keeper automatically writes important events and information to a log file. A new log file is
created each time the Keeper launches. Log files are text files you can read with a text editor. Log
files reside in /opt/pepper/Logs on the Pepper devices and My Documents/Pepper/Logs on
Windows. The directory contains the current log file (the log associated with the currently executing
Keeper) and all closed log files associated with previous Keeper sessions.

The current log file is named:

LATEST-0.log on Windows and most Pepper devices.

LATEST.log on Pepper Pad 2.

Previous log file names indicate the date and time at which they were closed. The log file is closed
when the Keeper shuts down.

Your Java code can write events and information to the log file. For information on using Java to
write to the Keeper log file, see “Event notification” on page 4-77.

Tip: Checking the log file is a good first place to start when debugging your application
during development. Many Keeper and application errors are written to the log.

Viewing the log
You can view the Keeper log file in two ways:

Open the log file with any text editor.

For information about log file location and file name, see “Overview” on page 2-19.

When the Keeper is in Debug Mode, you can display the current log file directly as follows:

Debug > Show Log File

Key combinations
Table 2–2 shows useful key combinations.
 19

Getting Started with the SDK
Javadoc

 2
Javadoc
Javadoc is used for two purposes:

To document the SDK API — see “Javadoc of the SDK API” on page 2-20

To document your own Java code

Javadoc of the SDK API
Javadoc documentation of the SDK’s Java API is provided with the SDK.

Extracting SDK API javadoc
Before you can use the SDK API javadoc, you have to extract it, as follows:.

Procedure:

View the SDK javadoc documentation, as follows:

1. Browse to:

pepper-sdk/doc

2. Extract javadoc.zip

Procedure complete

Javadoc of your application
Javadoc HTML documentation of your application’s Java is automatically created from source file
javadoc comments when the application is built with the ant command.

Table 2–2 Useful key combinations

Key combination Description Platforms

ctrl + (shift) + 1 Launches an Xterm window. Pepper devices

ctrl + (shift) + 0 Toggles the Keeper between Debug Mode and normal
mode. Debug Mode provides a number of functions
that are required for application development,
including adding an application to the Keeper, viewing
the current page’s HTML source, XML, or DOM tree,
displaying log files, and more.

Pepper devices,
Pepper Desktop

ctrl + (shift) + k Restarts the Keeper. Pepper devices

ctrl + (tab key) Invokes the window manager's built-in application
switcher. It can be used to toggle between any number
of windows, and works best when using an external
USB or bluetooth keyboard.

Pepper devices
20

Getting Started with the SDK
Javadoc

2

Note: For information about Ant and building applications, see “Building Applications” on
page 11-189.

View the javadoc documentation of an application, as follows:

Procedure:

1. Browse to:

 pepper-sdk/applications/(yourApplication)/javadoc

2. Launch the javadoc by clicking an HTML file, for example: index.html

Procedure complete
 21

Getting Started with the SDK
Javadoc

 2
22

3

User Interface
Anatomy of the user interface
While there is considerable flexibility in the design of an application’s user interface, its basic
components are:

Tabs, called Sections in the code

SectionPages and Pages

ToolBars

From the user interface perspective, an application consists of one or more Tabs, where:

Each Tab has one or more Pages.

Each Page typically has a toolbar with buttons for user-initiated actions.

Figure 3–1 on page 3-24 shows these and other user interface items for the Journal application.

Table 3–1 on page 3-24 describes each identified item.
 23

User Interface
Anatomy of the user interface

 3
Figure 3–1 Application user interface components

Application-Specific Main Tab/Section

User-Created Section

Web Tab/Section (Ready-Made Type)

Application-Specific Tab/Section

Help and Settings Tab/Sections (Ready-Made Types)

ToolBar with Buttons

Page Area

 Tab Controls

Status/Progress Bar

Flag Panel’s Application Flags System Tray Icons and Time

Keeper Flag

Table 3–1 Description of application user interface components

Component Description

Tab Controls Applications can enable or disable Tab controls. When Tab
controls are enabled, the user can create new instances of
Sections that allow it, rename them, move them, and delete them.

Application-Specific Main
Tab/Section

Each application has a main Section that is instantiated as the
left-most Tab. This Tab has the focus by default at application
launch.
24

User Interface
Terminology: programmatic and user interface

3

Terminology: programmatic and user interface
As noted previously, there are sometimes two terms for the same thing. One term describes a
programmatic object, the other an instance of the object in the user interface. Table 3–2 on
page 3-26 shows some of these.

User-Created Section Applications can allow creation of new Sections. The type of new
Section can be determined programatically. Without explicit
steps, the default Section type is created.

Web Tab/Section
(Ready-Made Type)

You can easily include three types of ready made Tabs into your
application: Web, Help and Settings.

Application-Specific
Tab/Section

Applications can have as many types of Section/Tab types as
required.

Help and Settings
Tab/Sections (Ready-Made
Types)

You can easily include three types of ready made Tabs into your
application: Web, Help and Settings.

Application Page Area The user’s working area of the application. Each Section has a
default Page (the SectionPage). The application can be
developed to permit the Tab to subsequently display additional
Pages.

Application ToolBar Applications can optionally provide a toolbar. The toolbar
provides access to ready-made and developer-created actions
implemented in Java or JavaScript.

Status/Progress Bar Displays messages from the framework and from the current
application. For information about writing to the Status Bar, see
“Event notification” on page 4-77.
Also displays a progress bar as dictated by application logic.

Flag Panel Displays icons (“Flags”) for active applications.

Keeper Flag The Flag for the Keeper, which is always visible.

System Tray Displays system oriented icons such as battery and WiFi. Note
that the icons displayed vary depending on the Pepper platform.

Application Flags On framework start-up, each application that was executing at the
time of framework shutdown has an application Flag in the
System Tray. Click the Flag to launch the application.
During execution, a Flag displays for each executing applications.
Click a Flag to switch applications.

Table 3–1 Description of application user interface components (continued)

Component Description
 25

User Interface
Terminology: programmatic and user interface

 3
Table 3–2 Terminology

User interface term Programmatic term

Application Package

Tab Section

Page SectionPage or Page
26

4

Framework and
Application

Architecture
Framework overview
The Pepper Application Framework is the primary user interface on Pepper devices (when you turn
on a Pepper device, you see only the framework). The Pepper Application Framework also
executes as a separate application on Windows.

The framework is an integrated application execution environment based on Java, XML, XSL,
HTML, CSS and JavaScript.

Let’s start with two high level definitions:

The Pepper Application Framework

The framework provides an environment in which applications execute.

As a container for applications, the framework manages each application through its life cycle,
providing, for example, user control over application starting and stopping. The framework also
provides a set of services that are accessed by applications through Java classes and methods,
such as writing to the Status Bar and the framework log, creating, reading and writing Sections
and Pages, and accessing the browser, the browser search field, and URLs.

Pepper application

An entity that runs within the Keeper environment.

From a programming perspective, it is a Java Object that extends
com.pepper.platform.program.AbstractPepperProgram.

It is by extending AbstractPepperProgram that applications exist as framework applications and
progress through their framework life cycle. As extensions of AbstractPepperProgram, each
application gains access to a wide range of classes and methods that enable programmatic
interaction with framework services as discussed previously.

The following figure provides a diagram of the framework with applications and services.

Table 4–1 on page 4-28 provides information about items in the figure.
 27

Framework and Application Architecture
Application files and the distribution package

 4
Figure 4–1 The framework

Application files and the distribution package
An application consists of Java code, data and design files. Many of these are created during
development. The build creates additional files and the application’s distribution package. The

Run-Time Container

AbstractPepperProgram

Process Management

Data Services

GUI Services

Event Notification

Firefox

Framework
Framework Services

Others

Table 4–1

Item Description

Process Management The application life cycle, focus switching between applications

Data services Includes auto-saving form data to XML, Pages and Sections, Logging

GUI services Includes the Status Bar, System Tray, Flag Panel, progress bars, and the
browser

Event notification Includes interfaces whose methods you can implement to react
programatically to various events such as a Page being modified
(PageChangeListener) and a Section gaining focus (SectionChangeListener)

Firefox Integrated full-featured Firefox browser for displaying content. Supports
JavaScript, LiveConnect and plugins for application enhancement.

Others Other framework services include the LiveConnect JavaScript-to-Java bridge
to access Java Actions from HTML pages, mime-type handling, and message
catalogues for language localization
28

Framework and Application Architecture
Application files and the distribution package

4

distribution package consists of archive files (containing the application’s Java code, data and
design files) and the package.ppld file. When you install an application, its distribution package is
copied over. As the application is used and its files are modified, they are copied from the archive
onto disk and modified.

Java code
Java plays a fundamental role in Pepper applications. For example, every application requires a
base Java class that extends com.pepper.platform.program.AbstractPepperProgram.

You can create Action classes that are executed from HTML pages, typically from a JavaScript
method. You can also interact with the framework programmatically to directly access and create
Sections and Pages, respond to events, display messages on the Status bar. You can also create
a Java user interface instead of using HTML.

AbstractPepperProgram life cycle
The application base class is specified in the package.ppld file. This class is the entry point for
application execution. Once executing, applications have a life cycle that is reflected in the base
class’s instances of key AbstractPepperProgram methods.

Specifying the base class
To launch an application, the framework needs to know how to find the base class, that is, the class
that extends AbstractPepperProgram.

You configure this in the application’s package.ppld file. The <application-desc> element’s
main-class attribute specifies the base class, including its package path.

For example, if the base class is named HelloWorld, and it exists in the following package path:
com.pepper.HW, then the package.ppld must have the following:

<application-desc main-class="com.pepper.HW.HelloWorld">
...

</application-desc>

Application initialization
Initialization is embodied in the class constructor and its init() method.

The initialization begins with a call to the class constructor. The framework passes the constructor
an process ID. The constructor must pass the process ID to the super class, as follows:

public HelloWorld(Integer pid) {
super(pid);

}

Then, the application init() method is called and passed a PepperProgramConfig object.

In general, this method is where Actions are registered, the user interface is initialized, and any
other initialization tasks are performed.

See “Java Actions” on page 4-66.

However the first thing your init() method must do is call supt.init(conig) to pass the
program’s configuration to the parent class, which ensures proper framework initialization occurs,
as follows:
 29

Framework and Application Architecture
Application files and the distribution package

 4
public void init(PepperProgramConfig config)
throws PepperProgramException {
super.init(config);
//Action registration
//User interface and other initization

}

Application destruction
When the application terminates, its destroy() method is called. Use this method to perform any
application clean-up tasks.

Application data
As noted, an application’s data is stored in XML Page files.

Pages provided with an application reside in its data.zip file. These are either created during the
build, created during program execution, or provided by the developer as pre-built Pages.

See “Pre-built Pages” on page 4-69.

If any Pages included with the application distribution are modified at run time, the framework
copies the Page to the data directory and modifies the copy appropriately. Once a Page exists in
data, the equivalent page in data.zip, if any, is ignored.

The framework provides ways to connect HTML form fields to the underlying Page’s XML elements.
This enables you to automatically populate the fields with Page data and to automatically save the
field data into the Page.

See “The Section user interface” on page 4-44.

You can also save data from Java Sections into Page XML files.

See “Hello World 4: Advanced Java” on page 9-135.

The framework is a Page factory that builds new instances of Pages as they are needed by an
application based on its Page definition files. For example, the Journal application enables you to
create new Journal entries, each of which is a new Page. To create a Page, the framework creates
a new XML file based on its definition.

As noted, you can also provide Pages that come with an application and are available at application
first launch. Default web bookmarks are an example. These are called pre-built Pages. Such Pages
already have an XML instance file that was created by the developer and included by the application
build in its distribution.

Design
Files used to control the application’s design and styling are contained in the application’s design
directory in the SDK. This category includes a number of items that may not be considered design,
strictly speaking. However, the key point is that the design directory contains all application specific
files except for Java source files and pre-built Pages, including:

Application declaration and definition files such as FactoryBuild.xml, PageTemplates.xml,
package.ppld and PackageStrings.properties

XSL transforms
30

Framework and Application Architecture
Application files and the distribution package

4

JavaScript files to include in your HTML

Application-specific CSS files

Image files (typically stored in a subdirectory: design/images)

When the application is built, all of these files are bundled into the design.zip file, which is included
in the application’s distribution package, as discussed below.

The following sections introduce the key application definition and declaration files.

Application definition: package.ppld
Each application’s highest level characteristics are defined in its package.ppld file. This file resides
in the application’s design directory.

package.ppld specifies such things as: the application’s unique type, its displayed title, icons used
to represent it in the framework, required resources (such as jar files and archives), the application’s
base class name and location, mime type registration, and so on.

Page definition: PageTemplates.xml
Every Page type is defined in the application’s PageTemplates.xml file. This file resides in the
application’s design directory. When you define the Page, you specify a set of key information, such
as how it is to be displayed, its XML structure for holding Page data, and whether the framework
should apply caching rules (explained below) to the Page.

Initial Section instances: FactoryBuild.xml
During an application build, one Section instance is created for each <section> element in
FactoryBuild.xml. Section instances can be created at build time based on a definition in
PageTemplates.xml, or they can be pre-built by the developer.

Message definition: PackageStrings.properties
PackageStrings.properties is Java properties file (also called a message catalog). It contains
key-value pairs used to load text displayed in the application, for example on Tabs, buttons, and
other user interface widgets. This mechanism supports Java localization by region and language.

See “How to localize for different languages” on page 10-177.

This file resides in the application’s design directory.

Application distribution package
The build creates the application’s distribution package.

See “Building Applications” on page 11-189.

The distribution package consists of the following:

data.zip

Contains all Page files created by the build or provided as pre-built Pages
 31

Framework and Application Architecture
Sections and Pages

 4
See “Pre-built Pages” on page 4-69.

design.zip

Contains all files in the application’s SDK design directory (and subdirectories, if any)

The application jar file

See “How Java is Compiled and Jarred During the Build” on page 11-193.

Any other jar files or resources you application needs

See “Adding Existing Jar Files to the Build” on page 11-194.

package.ppld file

While this is a design file and does exist in design.zip, it is broken out as an individual file in the
distribution package. This is the key file through which you add the application to a framework
and update an application from an update server.

See “Adding and Distributing Applications” on page 12-195.

Sections and Pages
Let’s take a closer look at an application as a dynamic structure of Sections and a Section as a
dynamic structure of Pages.

We first describe Sections and Pages conceptually with respect to their Java and XML aspects.
Then, we examine how the dynamic state of the hierarchical structure is maintained by the
framework in XML files. Then, we provide a list of helpful Java methods for accessing and
manipulating Sections and Pages.

Pages
A Page has two general aspects:

A Page is the basic unit for containing related pieces of application data.

Page data is stored together in an XML file on disk.

Page data is generally displayed together.

A Page is a Java interface (and implementing subclasses) through which you programmatically
load, edit, and store data.

So, the root concept of a Page is that it is the wrapper for data storage and the means to use it
programatically.

The framework itself stores data on disk in Pages. For example, the dynamic structure of
applications (its Sections and Pages) are stored by the framework in the package.xml Page file.
There’s also a framework Page file used to store the current list of applications.

Applications use Pages too. Pages enable you to organize the Section’s user interface and data
into effective chunks. By containing and organizing Pages, Sections provide a high level of
organization within an application.

Every Section has:
32

Framework and Application Architecture
Sections and Pages

4

One instance of a special kind of Page that anchors every Section: a
com.pepper.platform.page.SectionPage.

Any number of additional Pages (objects that implement com.pepper.platform.pagePage
interface).

Note: The SectionPage class extends a class that implements the Page interface, so the
SectionPage is a type of Page. This can lead to some difficulties with terminology. In this
guide, the term SectionPage generally refers to the special Page that anchors every
Section. The term Page generally refers to non-SectionPages (the other Pages of which a
Section may be composed). When the Page interface is the topic, explicit steps are taken
to make that clear.

The Page interface provides methods you can use for all Page objects to get, modify and save the
Page’s data. For example, every Page has a Page ID and exists in a Section with a Section ID. You
often use these arguments to identify and access particular Pages using Page interface methods.

The Page interface (and therefore its implementing classes) also provides methods that give you
access to the underlying Page data. This data is represented programmatically as a JDOM
Document (org.jdom.Document). You use the Page’s JDOM Document object to load, edit, and
save Page data. The framework automatically saves the JDOM Document to disk in a page XML
file (more on this below).

Note: JDOM is a Java API for manipulating XML provided with the SDK.

What does a Page consist of?

A Page has a definition.

Pages are defined in the application’s PageTemplates.xml file with either the <sectionPage>
or the <basePage> element. This definition is used by the framework when creating new
Pages, either during the application build or dynamically at run-time.

For reference information about elements in PageTemplates.xml and the other application
definition and declaration files, see “XML Reference” on page B-207.

The Page definition contains static information about the Page. For example, it includes a
<template> element that specifies the XSL transform used to generate the HTML for the
Page (or the XUL file). Or, the <template> element can specify a local HTML or a URL to an
HTML file to display for the Page.

Note: The framework supports XUL for displaying Pages, but this document covers only
HTML.

The Page definition also defines the caching rules. Caching rules exist only in <sectionPage>
definitions. Caching rules determine the information the framework is to automatically cache
from Pages into the SectionPage, if any. For example, in the Hello World Tutorial application,
the “worlds” SectionPage contains the current list of worlds the user has created. Data about
each “world” are contained in world Pages.

The Page definition also defines the optional additional XML element structure of the Page. The
XML elements and their attributes are used to store the Page’s data on disk (described below).

A Page has an object.

As noted, Pages are instances of any class that implements the framework
com.pepper.platform.page.Page interface.
 33

Framework and Application Architecture
Sections and Pages

 4
Note: For non-SectionPages (generally, just called Pages), you usually use methods that
return a Page, but you don’t actually know the object type. But you do know that it
implements the Page interface and therefore can use its methods. This approach keeps the
framework generic and easily extensible.

A Page has an XML file.

Every Page has an XML instance file that contains the Page’s data (both meta data necessary
for the framework and data inserted as a result of application logic and user action). You access
the Page data through its JDOM document object, as described next.

A Page’s data is represented by a JDOM Document object.

The Page’s data has two aspects. It is stored persistently in the Page’s XML file. However, the
data is accessed and managed programmatically through a JDOM Document object. The
Document object represents everything inside the Page’s <body> element, not the complete
XML file. This part of the file is considered the Page data.

The element structure (including the root element) inside the JDOM Document object varies
depending on whether it is for a SectionPage or non-SectionPage.

The JDOM document object for a SectionPage always has a root <section> element. The
JDOM document object for a non-SectionPage always has a root <page> element.

Tip: Understanding the root element of the JDOM document for each of the Page types is
essential when accessing or manipulating data programatically from Java and XSL.

The following figure illustrates key aspects of the generic Page concept.

Figure 4–3 shows the differences in the data portion of a SectionPage and a non-SectionPage.

Figure 4–2 Page concept and structure

Concept
Page
Page Data

Java
Object implementing Page interface
JDOM Document

Page XML on Disk
<pagefile>

<header>
...

</header>
<body>

...
<body>

</pagefile>
34

Framework and Application Architecture
Sections and Pages

4

Figure 4–3 SectionPage and non-SectionPage concept

Creating Pages
Page XML files come into existence in two ways:

Created by the framework during the application build or at run time based on the Section’s
definition in PageTemplates.xml

Each Page definition has a type. When the new Page’s type is specified, the appropriate
definition is used. Otherwise the definition whose type is “default” is used. Such a “default” type
Page definition in PageTemplates.xml is required by the build.

See “Useful Java methods for Sections and Pages” on page 4-44.

Provided as a pre-built Page by the developer and included in the application distribution by the
build

See “Pre-built Pages” on page 4-69.

Sections
As noted, an application is divided into one or more Sections. The main purpose of Sections is to
separate and present the different logical parts of an application and to organize the application’s
data storage (in Pages) at a high level.

Sections display as application Tabs. For example, the Keeper application has three Sections:
Applications, Help and Settings, each of which displays as a Tab.

SectionPage XML on Disk
<pagefile>

<header>
...

</header>
<body>

<section>
...

</section>
<body>

</pagefile>

SectionPage Data
<section> is the root element
in the JDOM Document

Non-SectionPage XML on Disk
<pagefile>

<header>
...

</header>
<body>

<page>
...

</page>
<body>

</pagefile>

Non-SectionPage Data
<page> is the root element
in the JDOM Document
 35

Framework and Application Architecture
Sections and Pages

 4
Each Section presents a user interface and organizes and provides access to the SectionPage and
optionally to additional Pages. That is, a Section can present a single Page (the SectionPage), and
the SectionPage can provide access to any number of additional Pages.

There are two types of Sections: Default and Java. The two types share certain characteristics but
also differ in key ways. The main difference is that Default Sections typically display as HTML (or
XUL) and store their data into Page XML files. Java Sections present a Java user interface and can
store data however they wish, including using XML Page files.

See “The Section user interface” on page 4-44.

What does a Section consist of?

Every Section has a definition.

An application’s Sections are defined by the developer in the application’s PageTemplates.xml
file with <sectionPage> elements.

Every Section has a com.pepper.platform.program.Section Object.

Every Section instance exists as a Section object. Sections can be created and modified
programmatically from Java using this object. The Section object provides access to the JDOM
Document that represents a Section’s data, and you can use it to access, modify and save the
data persistently (to the SectionPage XML file).

Every Section has a com.pepper.platform.page.SectionPage object that corresponds to the
SectionPage XML file.

Note: Typically one uses the Section object to access the Section data rather than the
SectionPage object.

Every Section has a SectionPage XML file.

Every Section has an XML instance file that contains all of the Section’s data on disk (both meta
data necessary for the framework and data inserted as a result of application logic and user
action).

Application structure — a run-time sample
Previously, we introduced the concept that Sections, SectionPages, and Pages are defined during
development in PageTemplates.xml.

We noted that during program execution, Sections and Pages can be created and destroyed,
depending on the application design, at run-time. We also noted that that Sections and Pages can
be created during the application build and pre-built and provided with an application.

See “Pre-built Pages” on page 4-69.

What all of this amounts to is that the actual structure of Section and Page instances at run-time is
dynamic, yet derived from the application’s Section and Page definitions.

Note: Every Section requires a Section ID and every Page a Page ID. These indicate the
SectionPage and Page XML file names and are used programatically to access them. You
set these IDs for Sections created during the build with FactoryBuild.xml’s <section>
element id attribute. The framework creates them automatically for run-time created
SectionPage and Page instances based on the system time.

To illustrate this point, Figure 4–4 shows how an application’s definitions (on the left) could result in
a run-time structure, on the right.
36

Framework and Application Architecture
Sections and Pages

4

Figure 4–4

Application structure from an XML perspective
In this section, we discuss the XML aspects of Sections and Pages.

For clarity, we start with the lowest level (Pages) and work upwards (to Sections):

Page XML files

Pages contain useful application and user entered data, as we have seen.

SectionPage XML files

SectionPages contain a dynamically maintained list of child Pages, and, as we have seen,
optionally data cached upwards from child Pages.

The application XML file (called package.xml)

package.xml contains a dynamically maintained list of Sections, as we have seen. This material
is discussed to better understand the framework, even though it is usually inappropriate to
programatically control package.xml.

Run-Time Instantiation StructureDefinition Structure

Page

Main Tab

Help Tab

SectionPage

Settings Tab

SectionPage

Main Section

SectionPage

Help Section

SectionPage

Settings Section

Main Tab

SectionPage

SectionPage

Page
Page

Page

Page

Page

SectionPage

Page
Page

Page
 37

Framework and Application Architecture
Sections and Pages

 4
Page XML definition and instance
As noted, Pages have a definition in PageTemplates.xml and have XML file instances derived from
that definition.

The following example shows several Page definitions taken from the Hello World Tutorial’s
PageTemplates.xml file. Discussion follows the example.

Example 4–1

<!-- Define world basePage -->
<basePage type="world">

<template>design/world.xsl</template>
<page>

<worldName />
<worldRadius />
<yearLength />
<dayLength />
<distanceFromSun />
<hasWater />
<hasLife />
<planVisit />

</page>
</basePage>

Key points:

Since this is an XML file, comments are XML style, starting with <!-- and ending with -->.

A non-SectionPage Page definition such as this is defined with a <basePage> element.

The <basePage> element’s type attribute indicates that this definition should be used when
creating Pages of the type world.

The <template> element specifies that the world.xsl XSL transform is used to generate the
HTML for the Page.

Such XSL files must reside in the application’s design directory, and the <template> must
specify the design directory and the particular XSL transform as shown. As noted previously,
you could also specify an HTML file, a URL to an HTML file, or a XUL file.

The <page> element wraps the Page data.

Its child elements specify the XML structure of the data elements needed by the Page for data
storage.

In this case, there are eight child elements, each of which is populated by data entered by the
user into an HTML form at run-time.

The following example shows an XML Page file created during application execution that is derived
from the previous definition. That is, the following is an XML instance file for a dynamically created
Page. Discussion follows the example.

Example 4–2

<?xml version="1.0" encoding="UTF-8"?>
<pageFile>
 <header>
38

Framework and Application Architecture
Sections and Pages

4

 <pkgName>helloworld</pkgName>
 <pkgVersion>3.0.3</pkgVersion>
 <template>design/world.xsl</template>
 <noCache>0</noCache>
 <defaultPageType>default</defaultPageType>
 <createDate utc="1158074394101" />
 </header>
 <body>
 <page id="data/1158074394081" name="" type="world">
 <worldName>earth</worldName>
 <worldRadius>not sure</worldRadius>
 <yearLength>365</yearLength>
 <dayLength>24 and a little</dayLength>
 <distanceFromSun>90,000,000 miles or so</distanceFromSun>
 <hasWater>true</hasWater>
 <hasLife>true</hasLife>
 <planVisit>3</planVisit>
 </page>
 </body>
</pageFile>

Key points:

The file is an XML file and therefore starts with this:

<?xml version="1.0" encoding="UTF-8"?>

The root <pageFile> element has two child elements, <header> and <body>.

See “Page concept and structure” on page 4-34.

<header> is generated by the framework and contains, among other things, the <template>
element that indicates how to display the Page.

<body> contains the <page> element and all its children as defined in Example 4–1.

<page> has three attributes inserted by the framework when the page was created.

id="data/1157662197503" specifies this Page filename and location.
(data/1157662197503 is the Page ID.) All Page XML files reside in the applications data
directory (possibly in a subdirectory). The number 1157662197503 is this file’s file name
without its xml extension. Thus, this Page XML file resides in the following run-time location:

(application)\data\1157662197503.xml

As we will see, this Page ID attribute is critical in many respects. You can use it
programmatically to access the Page from Java. It is also cached up to the SectionPage so that
the SectionPage knows the file name of this child Page, as explained below.

Note: A SectionPage’s id attribute is called the Section ID.

The name attribute is not used here, but you can use it to store a unique name for the Page.

The type=”world” attribute shows that this is a Page derived from the PageTemplates.xml
definition whose type is world.

The <page> element’s child elements (<worldName> through <planvisit>) contain data
entered by the user when using the Page.

The first five such elements contain text.
 39

Framework and Application Architecture
Sections and Pages

 4
Two contain true. These elements are represented as checkboxes in HTML and are true
when checked and false otherwise.

The last, <planVisit>, is represented as three radio buttons in HTML. The number 3 in the
XML file shows that the third radio button was checked.

The ability to store HTML data into the XML Page file is discussed in “The Section user
interface” on page 4-44.

SectionPage XML definition and instance
This section shows a SectionPage definition and the resulting XML Page file.

Example 4–1 shows a SectionPage definition taken from the Hello World Tutorial. Discussion
follows the example.

Example 4–3

<!-- Define Worlds sectionPage -->
<sectionPage type="worlds">

<template>design/worlds.xsl</template>
<defaultPageType>world</defaultPageType>
<cacheRules match="page">

<apply>worldName</apply>
</cacheRules>
<section />

</sectionPage>

Key points:

A SectionPage definition is wrapped in a <sectionPage> element.

The <sectionPage> element’s type attribute indicates that this definition should be used
when creating Pages of the type worlds.

Again, the <template> element specifies either the XSL transform used to generate HTML for
display or an HTML file (local or URL) to display directly for the Page.

The <defaulPageType> element specifies the type of Page the framework should create
when it is triggered to create a Page for the Section.

In this case, the type is world, namely, the Page type we discussed above.

The <cacheRules> element specifies the information the framework should dynamically
retrieve from child Pages and cache into this SectionPage.

In this case, the caching rules indicate the framework caches up <worldName> elements from
each child Page. The XSL used to generate this SectionPage uses the cached elements to
create a table displaying all worlds and showing the name of each.

The <section> element wraps the SectionPage data.

It is empty in this case. But it could contain an arbitrary structure of XML element to hold
user-entered or other data, just as a Page definition uses a <page> element to contain such
data.
40

Framework and Application Architecture
Sections and Pages

4

Now, let’s take a look at a sample SectionPage XML file created during program execution from this
definition. Comments follow.

Example 4–4

<?xml version="1.0" encoding="UTF-8"?>
<pageFile>

<header>
<pkgName>helloworld</pkgName>
<pkgVersion>3.0.3</pkgVersion>
<template>design/worlds.xsl</template>
<noCache>0</noCache>
<defaultPageType>world</defaultPageType>
<createDate utc="1157999625450" />

</header>
<body>

<section name="NameKey.Worlds" type="worlds"
id="data/Worlds" builtin="false">

<page id="data/1158074394081" name="" type="world">
<worldName>earth</worldName>

/page>
<page id="data/1158075623539" name="" type="world">

<worldName>jupiter</worldName>
/page>

/section>
</body>

</pageFile>

Key points:

The overall structure is the same as that of the Page XML file.

There’s a root <pageFile> element with a child <header> that contains key static information
derived from the definition file and a child <body> that contains dynamic information.

See “SectionPage and non-SectionPage concept” on page 4-35.

<body> has a <section> child, because this is the XML file for a SectionPage.

<section> has the name="NameKey.Worlds" attribute.

This is used by the framework look up a key (NameKey.Worlds) in a message catalog file
(PackageStrings.properties) to obtain the text used to display as the Tab text, as explained
below.

The <section> element’s type and id attributes serve the same purpose as for generic
Page XML files, as explained previously.

<section> wraps the SectionPage data.

In this case <section> wraps two <page> elements, each with three attributes and each with
a <worldname> child element.

The <page> elements are cached here automatically by the framework as a result of the
SectionPage’s caching rules in its definition. In this case, the cached elements indicate there
are currently two world Pages. The First world’s <worldName> is jupiter, the second,
earth. Each includes cached id, name and type attributes.
 41

Framework and Application Architecture
Sections and Pages

 4
Application XML file
Now, that we see how a Section keeps track of dynamically changing Pages. In this section, we can
take a look at how the application itself keeps track of dynamically changing Sections.

As noted above, Sections are defined in the application’s PageTemplates.xml file with
<sectionPage> elements. During the build, Section instances are created for each <section>
element in FactoryBuild.xml. The dynamic list of current run-time Sections is maintained by the
framework in package.xml. This file resides in the application’s data/data.zip file if the current
Sections have not changed since the time the application was first launched. If the current Sections
have changed, the working package.xml file resides in the data directory.

Note: This is the same approach used for all data XML files. If they have not been modified
since first launch, they reside in the data.zip file. Otherwise, the working copy is in the data
directory.

The following example shows the FactoryBuild.xml file of Phase Four of the Hello World Tutorial.
Discussion and a sample instance of the corresponding package.xml file follows.

Note: Comments and white space have been removed to save space.

Example 4–5

<?xml version="1.0" encoding="UTF-8"?>
<factoryBuild>

<packageList>
<section name="NameKey.HelloWorld" type="default"

id="data/helloWorldMain" deletable="true" builtin="false" />
<section name="NameKey.Worlds" type="worlds"

id="data/Worlds" deletable="true" builtin="false" />
<section name="NameKey.LogStatusbarJava" type="java"

id="data/LogStatusbarJava" deletable="true"
src="../prebuilt/LogStatusbarJava" />

<section name="NameKey.WorldJavaSection" type="java"
id="data/WorldJavaSection" deletable="true"
src="../prebuilt/WorldJavaSection" />

<section name="NameKey.WebSection" type="web"
id="data/web" builtin="true" >

<prebuiltPagesDir>../prebuilt/websection</prebuiltPagesDir>
</section>
<section name="NameKey.Help" type="help" builtin="true"

id="data/help/locale(Help)"
src="../prebuilt/helpsection" />

<section name="NameKey.Settings" type="settings"
id="data/settings" builtin="true" />

</packageList>
</factoryBuild>

Key points:

This is an XML file whose root element is <factoryBuild>.

The <factoryBuild> element has a child element, <packageList>, that in turn has child
<section> elements.

Seven Sections are declared with seven <section> elements.
42

Framework and Application Architecture
Sections and Pages

4

Each <section> element has attributes.

Key attributes are as follows:

name specifies the key to look up in PackageStrings.properties to retrieve localizable text
for display in the Section’s Tab.

type specifies the Page definition in PageTemplates.xml to use when creating the
Section’s SectionPage.

The type can be one of the pre-set values (default, java, web, help, settings) or a
developer-defined type. In either case, there must be a Page with every used type in or
included in the PageTemplates.xml file. See “<section>” on page B-219.

id specifies the SectionPage XML file name that is created for the Section at build time
without the XML extension.

builtin, deletable and src are explained in “<section>” on page B-219.

One <section> has a child <prebuiltPagesDir> element.

This specifies a directory containing pre-built Pages. See “Pre-built Pages” on page 4-69.

The following example shows a run-time sample of the package.xml Page file created by the
framework. Discussion follows.

Example 4–6

<?xml version="1.0" encoding="UTF-8"?>
<pageFile deletable="false" backup="true">

header>
<pkgName>helloworld</pkgName>
<pkgVersion>1.0</pkgVersion>
<template />
<noCache>0</noCache>
<defaultPageType>default</defaultPageType>
<createDate utc="1157736443874" />

</header>
<body>

<packageList>
<section name="NameKey.HelloWorld" type="default"

id="data/helloworldMain" builtin="false" />
section name="NameKey.Worlds" type="worlds"

id="data/Worlds" builtin="false" />
<section name="NameKey.LogStatusbarJava" type="java"

id="data/LogStatusbarJava" deletable="true"
src="../prebuilt/LogStatusbarJava" />

<section name="NameKey.WorldJavaSection" type="java"
id="data/WorldJavaSection" deletable="true"
src="../prebuilt/WorldJavaSection" />

<section web="true" name="NameKey.WebSection" type="web"
id="data/web" builtin="true" />

<section name="NameKey.Help" type="help" builtin="true"
id="data/help/locale(Help)" src="../prebuilt/helpsection" />

<section name="NameKey.Settings" type="settings"
id="data/settings" builtin="true" />

/packageList>
/body>
 43

Framework and Application Architecture
The Section user interface

 4
</pageFile>

Key points:

Note the same high level XML structure as the other types of Page files, namely a <pageFile>
root element containing a child <header> whose contents are static and a child <body> whose
contents are dynamic.

The <body> element contains a <section> element for every current Section instance.

Each <section> contains attributes necessary to track and display the Section.

Useful Java methods for Sections and Pages
This section lists a few helpful Java methods you can use to access and manipulated Sections,
Pages and Page data.

Note: For detailed information, see the framework javadoc.

To get a Section:

Section theSection = AbstractPepperProgram.getSection(String sectionId);

To get all Sections:

SectionList theSections = AbstractPepperProgram.getSections();

To get the SectionPage from the Section:

SectionPage sectionPage = theSection.getSectionPage();

To get all the Pages in a Section:

PageList list = theSection.getPages();

Three ways to get an individual Page from a Section:

Page page = theSection.getPage(int index)

Page page = theSection.getPages().getPage(String pageId);

AbstractPepperProgram.getPage(String pageId, String sectionId);

To create a Page:

Page page= AbstractPepperProgram.createNewPage();

The Section user interface
There are two choices when designing a Section’s user interface:

Default style
44

Framework and Application Architecture
The Section user interface

4

The default style uses XSL+HTML/CSS or just HTML/CSS. (XUL is also supported but is
beyond the scope of this guide.) Pages are at the root of the default style. Each Page’s
<template> specifies the display mechanism, either an XSL transform that generates HTML,
or a local HTML file or URL.

Java style

This is a Java Section. Java Sections enable you to create a Section with a Java user interface
that optionally saves its data as Pages.

Defining the Section (and therefore the user interface) type
As we have seen, every Section type in an application that is created during the build or during
application execution must be defined in PageTemplates.xml by wrapping the definition in a
<sectionPage> element. (The definition may be included from an external XML file with an
<xi:include> element.)

The Section type is determined by the value of the <sectionPage>’s type attribute.

A Default style Section is created by defining your own type in the <sectionPage>
definition.

A Java style Section is created by specifying the Java type (with type=”java”) in the
<sectionPage> definition.

Other Section types (such as Web, Help, and Settings) are also supported.

See “Attribute: type” on page B-220.

Default-style Section user interface
In a Default-style Section, each Page is the starting point for the user interface. There are two paths
through which a Page XML file is displayed in the framework. The path taken depends on the type
of file pointed to by the Page’s <template> element.

If the Page’s <template> element specifies an XSL file, the Page’s <body> element (and all
it contains) are passed to the XSL transformation engine, which uses these to generate an
HTML page that is rendered in the Section.

If the Page’s <template> element specifies another type of file, for example a local HTML file
or a URL, the HTML is retrieved and rendered in the Section.

The following figure diagrams this process.
 45

Framework and Application Architecture
The Section user interface

 4
Figure 4–5 How Pages are displayed in the framework

HTML rendering with CSS stylesheets
You can use CSS stylesheets to control the visual styling of HTML, whether it is generated by XSL
or not.

You can create your own CSS stylesheets or use the framework’s stylesheet: styles.css.

For information about the framework stylesheet, see “Getting started with CSS customization”
on page 10-155.

Note: If you use your own stylesheet instead of the framework stylesheet, it may be more
difficult to implement visual styling customizations that apply to all applications.

As required by HTML, the CSS stylesheet has to be linked inside the HTML page using the HTML
<link> tag. You can generate this during XSL transformation. Linking the stylesheet is required
whether you use your own stylesheet or the framework stylesheet.

If you are using you own stylesheet, it must reside in the application’s design directory in the SDK.

The framework stylesheet resides in current theme archive (which is common-resource.zip, unless
you are using a custom archive, in which case you provide the name). Linking to the framework

XSL Transformation Engine

Page’s <body> element
and children only

Page’s XSL file

Generated HTML

Embedded Firefox Rendering Engine

Page Displayed

Page XML file

XSL <template>

HTML file or URL

HTML <template>

Page’s <template> type
46

Framework and Application Architecture
The Section user interface

4

stylesheet is always done the same way, regardless of whether you are using the standard theme
archive or a custom theme archive.

For information about theme archives and customization, see “Customization” on page 10-151

The following example shows the XSL needed to generated HTML that links to an
application-specific stylesheet named myStyles.css and that links to the framework stylesheet:
styles.css.

Note: Linking the framework stylesheet involves using the $platform framework
parameter that is passed to XSL transforms. For more information, see “Framework
parameters passed to XSL” on page 4-68.

Example 4–7

<!-- add link to the framework main CSS stylesheet -->
<link href="{$platform}/resources/styles/styles.css"

rel="stylesheet" type="text/css" />
<!-- add link to a user-defined CSS stylesheet -->
<link href="{$design}/design/myStyles.css"

rel="stylesheet" type="text/css" />

Note: This example was taken from the Hello World Tutorial included with the SDK.

Generating Page toolbars
Each Page in a Section of the Default type typically includes a toolbar with one or more buttons.

See “Anatomy of the user interface” on page 3-23.

You can trigger framework and application-specific Java Actions from toolbar button clicks through
LiveConnect.

See “Java Actions” on page 4-66.

See “JavaScript and Mozilla LiveConnect” on page 4-62.

Defining a toolbar
The following example shows how a toolbar is defined in Hello World’s worlds.xsl, a SectionPage.

Example 4–8 Defining a toolbar and buttons in Hello World’s worlds.xsl

<!--create the page toolbar -->
<pepper:pagebar class="PageBar" id="pb-{$packageId}" package="{$packageId}">

<!-- create toolbar buttons -->
<pepper:pagebarentry key="PageBar.New" action="NewPage" param="world" />
<pepper:pagebarentry key="PageBar.Edit" script="showSelectedPage()" />
<pepper:pagebarentry key="Label.EditJavaAction" script="editJava()" />
<pepper:pagebarentry key="PageBar.Delete" script="deleteSelectedWorld()" />

</pepper:pagebar>

Key points:

The $packageId framework parameter is used to initialize the toolbar.

Four buttons are created with four <pepper:pagebarentry> elements.
 47

Framework and Application Architecture
The Section user interface

 4
Each button has a label defined by the key attribute, which specifies a key-value pair that must
exist in the application’s PackageStrings.properties file.

The first button directly calls the NewPage Action using the action=NewPage attribute and
passes the Action a parameter using the param=world attribute.

Actions are referred to using a String (“NewPage” in this case) that uniquely identifies the
Action. This is called the Action name. This name is set programmatically in Java when you
register the Action in the application base class. For information on Action names, see “Java
Actions” on page 4-66.

The last three buttons call JavaScript functions using the script="function()" attribute.

Such JavaScript functions must reside in a file that is included by the HTML or in the
pepper-sdk/lib/common-resources.zip file.

See “JavaScript and Mozilla LiveConnect” on page 4-62.

Phase Two of the Hello World Tutorial shows how to use XSL to include into a generated HTML
file an external JavaScript file that contains functions accessed from toolbar buttons. See
“Toolbar buttons link to JavaScript and framework Actions” on page 7-113.

A toolbar example
Now that we have seen how to create a toolbar with buttons in XSL, let’s see how that toolbar looks
in HTML after XSL transformation through the framework.

Example 4–9 An HTML toolbar generated by XSL

<body>
<div class="PageBar" id="pagebar-HelloWorldTutorial-0">

<div class="PageBarEntry" onmouseup="bridge.action('NewPage', 'world');">New</div>
<div class="PageBarEntry" onmouseup="showSelectedPage()">Edit</div>
<div class="PageBarEntry" onmouseup="editJava()">Edit Java</div>
<div class="PageBarEntry" onmouseup="deleteSelectedWorld()">Delete</div>

</div>
...

Key points:

The toolbar and the buttons are all <div> elements (HTML tags).

Each <div> element is visually styled according to its CSS class.

All button clicks are detected with the onmouseup attribute.

onmouseup either directly calls an Action (and passes the specified parameter) or the specified
JavaScript function.

Toolbar visual styling
After XSL transformation into HTML, the toolbar’s visual styling is determined by the classes
assigned to its constituent HTML elements in combination with the classes’ definitions in the
relevant CSS stylesheet.
48

Framework and Application Architecture
The Section user interface

4

Example 4–8 shows XSL that creates a toolbar and buttons. The toolbar is defined with a
class=”PageBar” attribute, which refers to a CSS Pagebar class for visual styling. As with most
CSS framework classes, PageBar is defined in styles.css, which is in:

pepper-sdk/lib/common-resources.zip/resources/styles

The buttons are automatically generated by the framework with an HTML class of
PageBarEntry, which is also defined in the stated CSS stylesheet.

For information about visual styling and styles.css, see “Customization with CSS” on
page 10-154.

Java Sections
A Java Section enables you to present a Java user interface in a Section instead of an HTML
interface.

This section explains how to create Java Sections. It also covers how to add a toolbar with buttons
to the Java Section in a manner that enables its visual styling to be controlled from a single
framework CSS stylesheet (keeper.css) that also controls other Java Section toolbars, thus
facilitating sweeping visual styling customizations.

Note: Two examples of Java Sections are provided in the Hello World Tutorial.

See “Hello World 3: Getting Started with Java” on page 8-123 and “Hello World 4:
Advanced Java” on page 9-135.

Java Section overview
Making a Java Section requires the following:

“Including SectionJava.xml in PageTemplates.xml” on page 4-49

“Declaring the Java Section instance” on page 4-49

“Creating the pre-built Page and specifying the Java class” on page 4-50

“The Java Section class” on page 4-50

Including SectionJava.xml in PageTemplates.xml
If your application has any Java Sections, you must include SectionJava.xml in your
PageTemplates.xml file, as follows:

<xi:include href="../resources/pages/SectionJava.xml" />

Note: SectionJava.xml (and all other items in resources) are in
pepper-sdk/lib/common-resources.zip, or the current them archive. You do not need to
extract the archive. You only have to refer to the item you want to include as demonstrated
here.

Declaring the Java Section instance
If the Java Section instance is to be present at first launch (as opposed to being created
programatically at run time), it must be declared in FactoryBuild.xml:
 49

Framework and Application Architecture
The Section user interface

 4
As type=”java”

With a src attribute that specifies the pre-built Page’s directory

For example, Phase Three of the Hello World Tutorial application has a Java Section that has
buttons that enable the user to write to the framework log and to the framework status bar. This Java
Section is declared in FactoryBuild.xml as follows:

<!--Definition of LogStatusbarJavaSection Section -->

<section name="NameKey.LogStatusbarJava" type="java"
id="data/LogStatusbarJava" deletable="true"
src="../prebuilt/LogStatusbarJava" />

Creating the pre-built Page and specifying the Java class
Every a Java Section requires pre-built SectionPage.

Note: See “Pre-built Pages” on page 4-69.

The Java Section’s pre-built SectionPage must have:

A <section> element whose type and id attributes are the same as the Section’s attribute
values declared in FactoryBuild.xml.

A <java> element whose classname attribute identifies the Java class to execute.

For example, here is the pre-built LogStatusbarJava.xml SectionPage from the Hello world tutorial
(note the material in bold):

<?xml version="1.0" encoding="UTF-8"?>
<pageFile deletable="false">

<header>
<packageName>helloworld</packageName>
<packageVersion>1.0</packageVersion>
<template></template>
<noCache>0</noCache>
<defaultPageType>default</defaultPageType>
<createDate utc="1121110270523" />

</header>
<body>

<section name="LogStatusbarJava" type="java" id="data/LogStatusbarJava">
<java classname="com.pepper.www.HW.LogStatusbarJavaSection" />

</section>
</body>

</pageFile>

The Java Section class
Every Java Section requires a Java class that follows the guidelines explained in this section.

Extending java.awt.Component
The Java Section’s class must extend the java.awt.Component class, or one of its subclasses.
50

Framework and Application Architecture
The Section user interface

4

The Java Section’s root class must provide a public constructor with no arguments in order to be
instantiated by the framework.

In Phase Four of the Hello World Tutorial, a Java Section named WorldJavaSection is added to the
application, as follows:

public class WorldJavaSection extends JPanel implements JavaSectionComponent {
...

public WorldJavaSection() {
}
...

}

Implementing the JavaSectionComponent interface
However, one additional step enables your Java Section to interact with the framework and make
use of its rich suite of classes and methods.

This step is implementing the framework com.pepper.platform.program.JavaSectionComponent
interface and implementing its initComponent() method, as follows:

public class WorldJavaSection extends JPanel implements JavaSectionComponent{
...

public void initComponent(AbstractPepperProgram theProg, Properties params) {

//cast the local reference to the application’s base class
//in order to write to the status bar
baseClass = (BaseClass) theProg;

//initialize the section components here, after getting reference
//to program main class (theProg).
initMe();

}

public void initMe() {
...

}
}

In this example, we have created a local handle (baseClass) to the application’s base class by
assigning the AbstractPepperProgram that is passed through the initComponent() method to
a local variable (defined previously as the type of the actual base class, in this case BaseClass).
Through baseClass, we have access to all methods and fields associated with the
AbstractPepperProgram application itself, which enables full integration into the Pepper Application
Framework.

This example also shows the initMe() method as the last line in the initComponent()method.
While its contents are not shown here, this initMe() method contains all initialization work for the
Java Section, for example, creating a toolbar and other user interface work. Most initialization code
for Java Sections should be placed either at the end of initComponent() or in a method that it
is called from initComponent(), rather than in the class constructor. This approach ensures
initialization occurs after the Java Section is fully integrated into the framework. If you place such
initialization code in the constructor, the class may compile, but it may result in run-time null pointer
exceptions.
 51

Framework and Application Architecture
The Section user interface

 4
Java ToolBars
The framework provides two Java classes that allow you to add a Java toolbar with buttons to a
Java Section:

com.pepper.guiutils.ToolBar

com.pepper.guiutils.ToolBarButton

These classes extend the standard javax.swing.JToolBar and javax.swing.JButton to provide the
following additional features:

Their visual styling is consistent with other Java toolbars and buttons in other applications.

Their colors and fonts are controlled by keeper.css styles, thereby enabling comprehensive
visual styling changes among all Java Sections by customizing the single keeper.css file.

ToolBar coding guidelines
As with all initialization code, the ToolBar should be created and added in the Java Section’s
initComponent() method rather than in its constructor.

The root panel to which the ToolBar is added should have its LayoutManager set to BorderLayout.
The ToolBar should be added to the BorderLayout.NORTH region.

The ToolBar and ToolBarButton classes have essentially the same API (methods and members)
as their Swing equivalents. You can add ToolBarButtons that take: an Action class that extend a
ProgramAbstractAction that you have registered in the base class, an icon and text.

The following example shows how to add a ToolBar with ToolBarButtons.

Tip: Ensure you have imported the package containing the classes: com.pepper.guiutils.*;

Example 4–10 Adding a ToolBar with ToolBarButtons to a Java Section

//Create the toolbar object
ToolBar toolbar = new ToolBar();

//Create a button associated with GotoMainTabAction class
ToolBarButton b1 = new ToolBarButton(new GotoMainTabAction(), "Go to Main Tab");

//Create a button associated with writeLog class
ToolBarButton b2 = new ToolBarButton(writeLog, "Write To Log");

//Add buttons to toolbar:
toolbar.addButton(b1);
toolbar.addButton(b2);

//Set root JPanel layout manager and add toolbar
this.setLayout(new BorderLayout());
this.add(toolbar, BorderLayout.NORTH);

//Note: Content JPanel is typically added to BorderLayout.WEST
52

Framework and Application Architecture
Caching

4

Caching
We have seen that the framework automatically tracks the dynamic run-time hierarchy of the
application, including: Section instances, SectionPage instances and Page instances.

The framework also maintains a dynamic hierarchy of information inside those files according to
caching rules you define. These rules control the automatic propagation of elements from Pages
into their parent SectionPage. This is useful because there are often cases when you want the
SectionPage to display a list of Pages and some, but perhaps not all, of their content.

For example, in the second phase of the Hello World Tutorial, the main SectionPage shows a table
containing the names of user-created worlds (but no other information about each world). Yet, each
world’s data, including its name, is defined and stored in a world Page, not in the SectionPage.

The following figure shows the rendered SectionPage with its table of worlds.

Figure 4–7 on page 4-54 shows a particular world’s rendered Page.

Figure 4–6 SectionPage has world names cached to it from Page instances
 53

Framework and Application Architecture
Caching

 4
Figure 4–7 Rendered Page instance for a particular world

How does the SectionPage know the names of each world, when these are defined and stored in
Pages? Caching, of course.

The caching rule in this case says:

Let all world names defined in all world Pages automatically propagate into their parent
SectionPage.

This is a simple case because the world names are direct child elements in each world’s data
section and because no attributes are cached. But, you can write caching rules that apply to any
element or attribute.

Defining caching rules
Caching rules are defined in the SectionPage’s segment of the PageTemplates.xml file. The
following example is the SectionPage definition for Hello World example shown above with the
caching rule in bold:

Example 4–11 Simple case of caching rules

<!-- Define Worlds sectionPage -->
<sectionPage type="worlds">

<template>design/worlds.xsl</template>
<defaultPageType>world</defaultPageType>
<cacheRules match="page">

<apply>worldName</apply>
</cacheRules>
54

Framework and Application Architecture
Caching

4

<section />
</sectionPage>

Key points:

<cacheRules match="page"> instructs the cache rule to start the caching by finding the
<page> element in the world Page XML instance file.

Each world Page XML instance file has a <page> element that has a child element
(<worldName>) that contains world’s name.

See the actual world Page XML instance file for this example here: “World Page sample” on
page A-204.

Recall that only the contents of the <body> element of the XML file (the data part of the file)
are represented in the Page’s JDOM Document. See Figure 4–2 on page 4-34.

The <apply>worldName</apply> element is what defines the caching rule that gets each
world’s name and puts it into the SectionPage XML instance file.

See the actual SectionPage XML instance file for this example here: “World Page sample” on
page A-204.

In this file, notice that for each world Page there is a <page> element that has a <worldName>
child element whose test is the world’s name that is cached upwards.

Caching rule syntax
Caching rules have two types:

Selection rules

Specify movement through the source Page data (this is the Page from which the information
is being retrieved)

Application rules

Specify which data is to be retrieved from the source Page and cached into the target
SectionPage

Selection rules
There are two selection rules:

<cacheRules match=”page”>

This is always the wrapper for the caching rule.

This selects the source Page’s <page> element, which is always the root of the Page data.

<template match=(xpath)>

Matches to nested source nodes are made with the <template match=(xpath)> element.
The (xpath) value specifies the XML node (an element or attribute) that is to be the source
of caching in the Page data.
 55

Framework and Application Architecture
Caching

 4
Application rules
After a source element is matched, its child nodes to cache are specified with the <apply>
element.

An matched element’s attributes and its child elements are all considered child nodes, although
they are specified for caching differently, as explained in following sections. To illustrate this point,
in the following example, the <foo> element has four child nodes: the name and type attributes
and the <bar> and <bat> elements. After matching <foo>, you could specify any of these nodes
for caching. However, to cache one of <bar>’s attributes, you would have to match <bar> first,
then use an <apply> statement to specify a child attribute.

Example 4–12

<page>
<foo name=”myFooName” type=”myFooType”>A Foo

<bar name=”myBarName” type=”myBarType”>A Bar</ bar>
<bat>A Bat</ bat>

/foo>
<goo>A Goo</ goo>

</page>

Caching a single child element
The following rules cache the <foo> element and its text:

Example 4–13

<cacheRules match="page">
<apply>foo</apply>

</cacheRules>

Caching multiple elements and attributes
Cache rules can specify multiple elements and attributes to cache by separating them with the pipe
symbol: “|”.

Assume the Page in Example 4–12 on page 4-56.

The following caches the <foo> and <goo> elements:

Example 4–14

<cacheRules match="page">
<apply>foo|goo</apply>

</cacheRules>

Nested caching rules
You can cache data from multiple nested levels from the Page to the SectionPage.

Assume the Page in Example 4–12 on page 4-56.
56

Framework and Application Architecture
Caching

4

Now, suppose you want to cache only <foo>’s text contents and <bar>’s text contents. You would
do this with nested match rules and <apply> elements, as follows:

Example 4–15

<cachRules match=”page”>
<apply>foo</ apply>
<template match=”foo”>

<apply>bar</ apply>
</ template>

</cacheRules>

This results in the following data cached into the SectionPage:

Example 4–16

<page>
<foo>A Foo

<bar>A Bar</ bar>
</ foo>

</ page>

Caching attributes
Specific attributes of the matched element are specified for caching with @(attribute), where
(attribute) is the attribute name.

You can specify all attributes of the matched element with the attribute character (“@”) plus the
asterix (“*”). For example, <apply>@*</ apply> means cache all attributes of the matched node.

Assume the Page in Example 4–12 on page 4-56.

Suppose you want to cache <foo>’s text contents and all of its attributes. You also want to cache
<bar>’s text but only its name attribute. And you don’t want to cache any part of <bat>. The
following rules accomplish this:

Example 4–17

<cachRules match=”page”>
<apply>*@|foo</ apply>
<template match=”foo”>

<apply>bar</ apply>
<template match=”bar”>

<apply>@name</ apply>
</template>

</ template>
</cacheRules>

The cached data is as follows:

Example 4–18

<page>
<foo name=”myFooName” type=”myFooType”>A Foo

<bar name=”myBarName”>A Bar</ bar>
</ foo>
 57

Framework and Application Architecture
Connecting displayed data to Page data

 4
</ page>

When does caching occur?
Caching rules are applied whenever the framework saves the Page’s XML instance file. Page
saving is automatic. The framework saves a Page into its XML instance file whenever the Page
loses focus, for example when a user clicks on another Tab or application.

This means that for strictly non-Java applications, you do not need to take any steps to ensure
defined caching rules are carried out. If a Page modifies its data, those modifications are stored to
file when the Page loses focus, and, if caching rules apply, they are implemented.

However, if you use a Java Section to modify data in a Page XML instance file, and if that data is
subject to a caching rule, you must use a Java framework method
(AbstractPepperProgram.savePage()) to trigger the Page’s save to the XML instance file,
which in turn triggers implementation of caching rules.

Note: The first Java phase of the Hello World Tutorial does this. See “Hello World 3: Getting
Started with Java” on page 8-123.

Connecting displayed data to Page data
This section covers how data displayed to the user in an HTML page or through a Java user
interface is connected to the Page’s JDOM Document, and through this, to the Page XML file.

Connecting HTML data to Page data
You can connect HTML <form> fields to specific XML elements and attributes in the Page’s
underlying XML file. The result is that when the HTML is displayed, the form’s fields are
pre-populated from the XML. And, if the user edits any data, the data is saved into the XML.

Before covering the details of how this is done, it’s important to understand the framework’s
auto-save mechanism. The mechanism is simply that all HTML data that is connected to a Page is
automatically saved by the framework into the XML when:

The user navigates to a different application or Section.

A different Page is loaded in the current Section.

This automatic mechanism ensures HTML data is always saved.

Connecting HTML data to an underlying Page requires the following:

The connected HTML fields must be inclosed inside an HTML <form> element.

You can use HTML <input> elements for text fields.

The framework provides additional elements that make checkboxes and radio buttons easier to
work with, as explained below.

To display XML data into a connected HTML field, include a value attribute in the field whose
value is an absolute XPath expression to the XML field in the Page data.
58

Framework and Application Architecture
Connecting displayed data to Page data

4

Tip: Absolute XPath expressions start with a leading forward slash (“/”) to indicate the root
node, for example: /page/wordName

The XPath expression must be enclosed in curly braces.

Recall that the root of the Page data is the <page> element for Pages and <section> for
SectionPages.

To save connected field data into the underlying XML, include an xpath attribute whose value
is an absolute XPath expression to the XML field in the Page data.

The XPath expression must not be enclosed in curly braces.

The following example shows a fragment of an XSL file (world.xsl) used in the Hello World Tutorial.
This XSL generates an HTML form whose elements are connected to the underlying Page XML
through the Page’s framework JDOM Document. An HTML <input>, a <pepper:checkbox>,
and a radio button group consisting of three <pepper:radiobutton>s are connected to the
underlying Page XML elements that are specified with the value and xpath attributes.

Example 4–19

<form>
<input type="text" id="worldName" class="Field" style="width:400px"

value="{/page/worldName}" xpath="/page/worldName" />
<pepper:checkbox type="checkbox" id="hasWater"

value="{/page/hasWater}" xpath="/page/hasWater" />
Now:

<pepper:radiobutton id="planVisit" xpath="/page/planVisit"
storedvalue="{/page/planVisit}" value="1" class="Text"/>

Soon:
<pepper:radiobutton id="planVisit" xpath="/page/planVisit"

storedvalue="{/page/planVisit}" value="2" class="Text"/>
Never:
<pepper:radiobutton id="planVisit" xpath="page/planVisit"

storedvalue="{/page/planVisit}" value="3" class="Text"/>
...
</form>

Connecting Java data to Page data
You can use Java that accesses and modifies Page data. This involves using the JDOM Document
that represents the Page data to access the XML and framework classes to access the Page.

Note: Phase Four of the Hello World Tutorial provides instructions and complete code to
open a Page XML file from Java, modify its contents in a Java Section, and save the
modified data into a Page XML file. See “Hello World 4: Advanced Java” on page 9-135.

JDOM classes
The following JDOM classes are a few of the useful classes for manipulating Page XML files and
data:

org.jdom.Document

org.jdom.Element
 59

Framework and Application Architecture
Connecting displayed data to Page data

 4
org.jdom.Attribute

Note: The JDOM jar that includes these classes is provided in the SDK pepper-sdk/lib
directory.

For javadoc of the JDOM API, see http://jdom.org/docs/apidocs/index.html.

Loading a Page XML file
To load a Page XML file in Java, you need the Page’s Page ID and its Section ID.

Page ID

This important framework parameter is a String that consists simply of the id attribute of the
Page. It specifies the path to the file. It consists of the data directory, a forward slash, and the
filename (without extension) of the Page XML file. For example, if the Page’s filename is
apagefile.xml, its Page ID is “data/apagefile”.

See “Page XML definition and instance” on page 4-38.

Section ID

The Section ID is simply the Page ID of the SectionPage XML file.

See “SectionPage XML definition and instance” on page 4-40.

Now, let’s work through an example that shows how to load Page XML data into Java, modify it,
and save it back into the Page XML file.

Let’s assume the following:

A Page ID of “data/apage”

A Section ID of “data/asection”

To return a particular Page object, use the AbstractPepperProgram.getPage() method. (See
“Useful Java methods for Sections and Pages” on page 4-44.) To use this method, you need a local
handle to the actual AbstractPepperProgram instance. If your code is inside your
AbstractPepperProgram class, you can simply used the method. If you are in an Action class that
extends com.pepper.platform.program.actions.ProgramAbstractAction, you can use its
getProgram() method to return the instance.

In this example, we assume we are in an Action class that extends ProgramAbstractAction.
Therefore we can use getProgram(), as follows:

Page page = getProgram().getPage(“data/apage”, “data/asection”);

Now that you have a handle to the Page object, load it into memory inside an if statement and a
try statement, as follows:

if (!page.isLoaded()) {
try {

page.load();
}catch (Exception e) {

log.error("Page file failed to load into memory");
}

}

60

Framework and Application Architecture
Connecting displayed data to Page data

4

Retrieve the framework JDOM Document object from the loaded Page using the
com.pepper.platform.page.Page.getPageData() method, as follows:

Document document = page.getpageData();

You must wrap code that accesses or modifies the document’s XML in a Java synchronized
block in order to prevent data corruption and other problems that can result if the XML data is
simultaneously accessed from multiple threads.

Then, you can use JDOM Document, Element, Attribute and other classes to read XML data into
local Java fields. The following example encloses the data access in a synchronized block, gets
the root element (which is the <body> element, as discussed previously), and gets the root
element’s child worldName element.

synchronized (document) {
//Load XML element data into java widgets.
//Note that the root element that is loaded is not the actual XML file's
//root but is rather the <page> element.
Element root = document.getRootElement();
if (root != null) {

Element worldName = root.getChild("worldName");
...

}
}

So far, we have seen how to load the Page’s XML data into Java. To save data into the XML, use
the following approach.

Load the Page into Java as described previously.

Set the value of the XML elements or attributes using appropriate JDOM methods (inside a
synchronized block, as described previously). For example, set the worldName as follows:

synchronized (document) {
//Note that the root element that is loaded is not the actual XML file's
//root but is rather the <page> element.
Element root = worldData.getRootElement();
if (root != null) {

Element worldName = root.getChild("worldName");
worldName.setText(“new name”);

...
}

}

Finally, save the Page with the AbstractPepperProgram.savePage(Document, boolean) method,
where the boolean controls whether to switch the focus to the Page. Put this code inside a try
statement in order to effectively handle and report error conditions, as follows:

try {
getProgram().savePage(page, false);

}catch (Exception e) {
log.error("Cannot save Page XMl file to disk");

}

 61

Framework and Application Architecture
JavaScript and Mozilla LiveConnect

 4
JavaScript/Java approach
The first method discussed directly connects HTML form data to Page data. However, you may
want to use JavaScript to validate or otherwise process data before allowing it to be stored into the
Page. In such cases, you could use JavaScript and Java, as follows:

Fire a JavaScript method (perhaps from an HTML button) to retrieve the form data and validate
it.

If the data is valid, pass the data to an Action class (through the LiveConnect
JavaScript-to-Java bridge) that saves the data to the Page.

JavaScript and Mozilla LiveConnect
Your HTML (and XUL) pages can include JavaScript. The JavaScript can be integrated with key
framework Java classes through the framework’s support for Mozilla LiveConnect. This integration
enables such things as triggering Java Actions from JavaScript and accessing JavaScript objects
and functions from Java.

Tip: The Firefox browser integrated in the framework provides a JavaScript console that
may be useful to debug JavaScript errors. Launch the JavaScript console by entering
“javascript:” into any Web Tab address field in the framework.

Including external JavaScript
The best approach for using JavaScript in your HTML is to place the JavaScript in an external file
in the application’s design directory and use XSL to generated HTML that includes the external file
with the HTML <script> tag’s src attribute.

The reason to place the JavaScript in an external file is that if you placed it directly in the XSL you
would have to wrap it in a CDATA block. That’s because JavaScript is not valid XML and an XSL
file must contain only valid XML or text wrapped in a CDATA block.

A few rules apply when including JavaScript from an external file:

The external file containing the JavaScript must be placed in the application’s design directory.

The <script> tag’s src attribute refers to the design directory using the $design framework
parameter enclosed in curly braces and followed by /design/javascriptFile, as follows:

<script language="JavaScript" type="text/javascript"
src="{$design}/design/javascript.js"/>

Note: To use the $design framework parameter in an XSL transform file, you must first
define it as an XSL parameter, as in: <xsl:param name=”design” />. For information
about framework parameters, see “Framework parameters passed to XSL” on page 4-68.

LiveConnect
The framework uses LiveConnect Mozilla technology to connect JavaScript to Java.

For information about LiveConnect, see:

http://developer.mozilla.org/en/docs/Core_JavaScript_1.5_Reference:LiveConnect
62

Framework and Application Architecture
JavaScript and Mozilla LiveConnect

4

LiveConnect enables the following:

JavaScript code can use LiveConnect to access Java variables, methods, classes and
packages.

Java code can use LiveConnect to access JavaScript methods and properties.

LiveConnect initialization
LiveConnect must be initialized in each HTML (or XUL) page. Initialize LiveConnect with the
following in XSL extension element in the <head> of the HTML:

<pepper:initscriptbridge package="{$packageId}" />

There are two points to note about this script initialization code:

It uses the pepper namespace prefix.

Every XSL file requires that this be defined correctly.

See “Required XSL namespaces and Xalan configuration” on page 4-69.

The $packageId parameter is used.

Note: To use any framework parameter in an XSL transform file, you must first define it as
an XSL parameter, as in: <xsl:param name=”packageId” />. For information about
framework parameters, see “Framework parameters passed to XSL” on page 4-68.

Including this initialization in the XSL inserts the following JavaScript into the HTML/XUL:

<script language="JavaScript" type="text/javascript">
var bridge;
var packageId='Your-PackageId';
function initBridge() {
 bridge = Packages.com.pepper.script.Bridge.getPackage(packageId);
}
</script>

When the HTML (or XUL) page is loaded, the framework calls the initBridge() function as a
final step. The JavaScript bridge variable is set to the Java com.pepper.script.Bridge class (see
javadoc for more information). This initializes LiveConnect. You can use the JavaScript bridge
variable to access Java com.pepper.script.Bridge methods.

For example, you can execute a registered Java Action associated with the name “myAction” from
JavaScript as follows:

bridge.action(‘myAction’);

Page Initialization with LiveConnect
You can use LiveConnect to access certain framework Java during HTML (and XUL) page
initialization.

For example, you might want to access a message in a message catalog during HTML initialization.
Do this by passing one or more JavaScript functions to the <pepper:initscriptbridge>
 63

Framework and Application Architecture
JavaScript and Mozilla LiveConnect

 4
element with its oninit attribute. These functions are automatically loaded into and called from
the initBridge() method directly after the bridge variable is initialized.

For example, assume:

There are two JavaScript functions: myInit1() and myInit2().

These functions are defined in myJavascript.js.

The following XSL code:

<script language="JavaScript" src="{$design}/design/myJavascript.js"/>
<pepper:initscriptbridge package="{$packageId}" oninit="myInit1(); myInit2();"/>

Generates the following JavaScript:

<script language="JavaScript" type="text/javascript">
var bridge;
var packageId='Your-PackageId';
function initBridge() {
 bridge = Packages.com.pepper.script.Bridge.getPackage(packageId);
 myInit1();
 myInit2();
}
</script>

As noted, the framework calls the initBridge() function as a final step when the HTML (or XUL)
page is loaded. This initializes LiveConnect and then executes myInit1() and myInit2(). You
can use the bridge variable in these functions to access framework Java, as explained in the next
section.

Note: HTML’s <body onload=””> handler executes before LiveConnect initialization.
Therefore it is necessary to use the approach described above when perform initialization
that accesses the framework, for example calling a registered Action or retrieving a
property from the program.

Accessing Java from JavaScript
As mentioned previously, the com.pepper.script.Bridge class is the gateway through which
JavaScript can access certain Java functionality in your application. For example, this class
provides:

The ability to get properties defined in your application.

See javadoc for Bridge.getProperty()

The ability to execute registered application Java Actions.

See javadoc for Bridge.action()

The ability to get messages defined in your applications Message Catalog.

See javadoc for Bridge.getMessage()

See javadoc for com.pepper.script.Bridge for a complete listing of methods.

To access these functions from JavaScript, simply use the global bridge variable that is initialized
through the <pepper:initscriptbridge> element.
64

Framework and Application Architecture
JavaScript and Mozilla LiveConnect

4

For example, the following displays an application property named “foo” when you press an HTML
button:

<input type="button" onclick="alert(bridge.getProperty('foo'));"/>

The following execute an action associated with the name “myAction” when the user clicks an
HTML button:

<input type="button" onclick="bridge.action('myAction');"/>

Note: One important concept when using LiveConnect is that Java objects passed to
JavaScript are not automatically converted to JavaScript objects. Therefore, you often
need to convert them before using them. For example, Java Strings are passed, not
JavaScript Strings. Convert passed Java Strings into JavaScript Strings by appending an
empty character before using them, as follows:

var javascriptString = javaString + "";

Accessing JavaScript from Java
LiveConnect provides the ability to access JavaScript objects and functions from Java. This is done
through the netscape.javascript.JSObject class.

In the Keeper Framework, your application can access JSObject through the WebBrowserView
interface.

See javadoc of com.pepper.guiutils.WebBrowserView.

The following example shows how to derive a local handle (jsObj) to JSObject using the
WebBrowserView interface:

WebBrowserView view = AbstractPepperProgram.getBrowserContainer().getActiveView();
JSObject jsObj = view.getJSObject();

You can then use the JSObject.call() method to execute your JavaScript functions, as follows:

jsObj.call('somejavascriptfunction', new String[] {'arg1'});

However, the page must be fully loaded before you can access the JSObject to call into JavaScript.
An application can override the AbstractPepperProgram.pageDisplayed() method to be notified
when a page completes loaded.

This method is part of the com.pepper.platform.program.PageChangeListener interface that
AbstractPepperProgram implements.

For example, the following code in your AbstractPepperProgram base class enables you to call the
somejavascriptfunction() JavaScript function when a Page with this page ID “data/myPage”
is loaded:

public MyProgram extends AbstractPepperProgram {
...

public void pageDisplayed(PageChangeEvent event) {
super.pageDisplayed(event);
tring pageId = event.getPageId();
if (pageId.equals("myPage")) {

// page load is complete for page "myPage"
try {
 65

Framework and Application Architecture
Java Actions

 4
JSObject jsObj = getBrowserContainer().getActiveView().getJSObject();
jsObj.call('somejavascriptfunction', new String[] {});

 } catch (Exception e) {
}

}
}

}

Java Actions
This section explains how to develop your own Java Actions.

For an example, see Phase Four of the Hello World Tutorial: “Hello World 4: Advanced Java”
on page 9-135.

Such Actions can be triggered from JavaScript through LiveConnect.

See “JavaScript and Mozilla LiveConnect” on page 4-62.

Action classes
An Action class must implement javax.swing.AbstractAction or extend
com.pepper.platform.program.actions.ProgramAbstractAction.

An Action class must also implement the actionPerformed(ActionEvent ev) method. This
is where you put the code to carry out your Action.

This is also the location where you may obtain a local handle to the base class, which is passed as
an argument. This can be helpful if you want to use a method associated with the base class, for
example the getGSP.writeStatus(String) method, which writes a transient message to the
framework status bar.

Note: This step is not required if your Action class is an inner class of the base class.

The following example shows how the EditJavaAction Action class, in actionPerformed(),
obtains a local handle to the base class (HelloWorld) in Phase Four of the Hello World Tutorial.

this.helloWorld = (HelloWorld) getProgram();

Retrieving passed parameters
If one or more parameters are passed to the Action, retrieve them using the ActionEvent passed
into the actionPerformed() method.

Inside actionPerformed(), cast the ActionEvent as an
com.pepper.platform.program.ActionEventWithParams.ActionEventwithParams
object.

Then use ActionEventwithParams object’s getParam() method to return the parameters and
assign them to local variables.

The following example shows how the EditJavaAction Action, developed in Phase Four of the Hello
World Tutorial, retrieves a passed parameter.
66

Framework and Application Architecture
XSL

4

String pageId;
pageId = ((ActionEventWithParams) event).getParam();

Registering a Java action in the application base class
Actions that are triggered from JavaScript in an HTML page or through
AbstractPepperProgram.getAction() have to be instantiated and registered in the application’s base
class.

Register and instantiate the Action with the registerAction(String, new Action())
method inside the base class’s required init() method, where:

String is the Action name.

Action is the Action class name.

The following example shows the Action name String constants for the EditJavaAction Action and
the DoneJavaAction Action being declared and defined in the Hello World application’s base class.

public static final String EDIT_JAVA = "EditJavaAction";
public static final String DONE_JAVA = "DoneJavaAction";

The following example shows the EditJavaAction Action and the DoneJavaAction Action developed
in Phase Four of the Hello World Tutorial, being instantiated and registered in the init() method
of the application’s base class.

public void init(PepperProgramConfig config) throws PepperProgramException {
super.init(config);
//Register application's Actions with framework
registerAction(EDIT_JAVA, new EditJavaAction());
registerAction(DONE_JAVA, new DoneJavaAction());

}

Calling Java Actions from Java
When an Action has been properly instantiated and registered, it can be fired from anywhere in
Java. You can use AbstractPepperProgram.getAction(String ActionName) to retrieve an action
registered by your application, or simply use the Action directly if it is stored as a member in your
application.

To fire an Action from a com.pepper.guiutils.ToolBarButton, instantiate the button using the
constructor that takes an new instance of an Action class as a parameter, and label text, as follows.

ToolBarButton b1 = new ToolBarButton(new DoneJavaAction(), “Done”);

XSL
XSL can be used to display Pages.

Figure 4–5 on page 4-46 is a diagram that illustrates the process through which Pages are
displayed.
 67

Framework and Application Architecture
XSL

 4
The particular XSL file used to display a Page is specified with the <template> element in the
Page’s definition in PageTemplates.xml.

The XSL file can generate HTML or XUL.

Note: XUL is not explained in this guide.

Framework parameters passed to XSL
The framework passes a set of parameters to each XSL transform when the transform executes.
The parameters define useful aspects of the application’s run-time environment that are not known
until the application is installed in the framework. There are parameters for the application’s unique
ID, its data.zip and design.zip files, and the framework’s root installation directory.

For example, use the application’s ID to initialize its LiveConnect JavaScript-to-Java bridge. Use
the parameter that defines the application’s design.zip file to link your own CSS stylesheet or
external JavaScript file (residing in the design.zip/design directory) into the generated HTML.

Each parameter passed into the XSL transform has a name and a value, as described next.

Table 4–2 shows the framework parameters and for each provides its name and a description.

Using framework parameters in XSL
To use a passed parameter, define it in the XSL transform as an XSL parameter with its exact name.
The new XSL parameter is assigned the value of the parameter with the same name that is passed
to the XSL transform by the framework. After defining the parameter, refer to it in XSL by preceding
it with a dollar sign (“$”).

Example 4–20 shows how to define framework parameters in XSL.

Example 4–20 Defining framework parameters in XSL

<!-- define parameters passed by the framework into this XSL stylesheet -->
<xsl:param name="packageId" />
<xsl:param name="platform" />
<xsl:param name="design" />
<xsl:param name="data" />

You use design parameter in XSL to include an external JavaScript file.

See “Including external JavaScript” on page 4-62.

You use packageId parameter in XSL to create a Page toolbar.

Table 4–2 Framework parameters passed to XSL

Parameter name Description

packageId Uniquely identifies this application (package) in the framework.

platform The path to the root directory of the framework installation.

data The path to the application’s installed data.zip file

design The path to the application’s installed design.zip file.
68

Framework and Application Architecture
Pre-built Pages

4

See Example 4–8 on page 4-47.

Required XSL namespaces and Xalan configuration
XSL files used to generate Page HTML must conform to a few rules in order to integrate into the
framework.

What this amounts to is simply that every XSL file should contain certain code shown in “Required
namespace and Xalan configurations in XSL transforms” on page 4-69.

Every XSL transform requires the following:

A series of namespace definitions including xsl, xalan and pepper

Configuration of the Xalan XSL processor to enable it to access Java methods associated with
the framework com.pepper.script.Elements class for elements using the pepper prefix

This is accomplished by declaring the pepper prefix as an extension element prefix and then
using the <xalan:component> and <xalan:script> elements to point Xalan to the
framework com.pepper.script.Elements class.

Example 4–21 shows the required namespace and xalan configurations that must be in every XSL
transform, typically at the top.

Example 4–21 Required namespace and Xalan configurations in XSL transforms

<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:xalan="http://xml.apache.org/xalan"
xmlns:pepper="http://www.pepper.com/elements"
extension-element-prefixes="pepper">
<xalan:component prefix="pepper">

<xalan:script lang="javaclass" src="com.pepper.script.Elements"/>
</xalan:component>

...
</xsl:stylesheet>

Pre-built Pages
As we have seen, there are two kinds of Sections: Java and Default. We have also seen that Default
Sections require a SectionPage and may optionally have one or more Pages.

To be displayed, every Page needs an XML instance file.

(That is because the XSL processor receives the contents of the <body> element of the Page
XML instance file and transforms it into HTML according to the Page’s XSL transform file.)

Page XML instance files come into being in one of the following ways:

The Page is created from its definition in PageTemplates.xml during the build process.

The Page is created from its definition in PageTemplates.xml when needed by the framework
during application execution.

The developer makes a pre-built Page that is included in the application’s distribution by the
build process.
 69

Framework and Application Architecture
Pre-built Pages

 4
This section explains why and how to create and use pre-built Pages.

Why use pre-built Pages?
Sometimes, pre-built Pages are required. Sometimes they are useful and convenient.

A Java Section requires a pre-built SectionPage.

See “Java Sections” on page 4-49.

Pre-built non-Java Sections are useful and convenient when you want to pre-populate data in a
SectionPage or a Page. For example:

Web bookmarks are pre-built Pages.

Help Sections use pre-built SectionPages and Pages.

Games use pre-built Pages to contain their Flash programming.

You can think of pre-built Pages as enabling the developer to pre-populate information into a
Section’s SectionPage and/or its Pages so that it is present at application first launch.

Pre-populating by copying-pasting-editing
You can pre-populate an application in the SDK with Pages you’ve generated in a different running
application. For example, you can use a web Section to generate a set of bookmarks and then give
them to an application in the SDK. You simply copy and paste the Page XML files and make minor
edits (as explained below).

Such Pages are considered pre-built because they are not created by the build process or by the
application at run time but instead are provided to the application in the SDK.

Pre-populating without copying-pasting-editing
Pre-built Pages are also useful to pre-populate an application with Pages of a type that the user
cannot create by using the application. For example, you might use pre-built Pages for games,
where each Page provides information about a game, such as the file containing the Flash
programming for the game. Yet, the application doesn’t support creating new game Pages.

Why not pre-populate the data into the XSL transform?
Since XSL can include into its generated HTML whatever you want it to, it is possible to put your
data (like web bookmarks, help information and Flash programming commands) in an XSL
transform rather than in a pre-built Page.

So you might wonder, are pre-built Pages really necessary for these cases? Strictly speaking, no,
they are not. However, there are reasons for using pre-built Pages instead of XSL.

From the point of good programming practice, it is a good idea to separate data from presentation.
Placing the data in XML instance files (the pre-built Pages) rather than in XSL transform files (which
is used to generate presentation HTML) is therefore the better approach.

But, pre-built Pages are often easier to use for this purpose.
70

Framework and Application Architecture
Pre-built Pages

4

Pre-built Pages are often easier than XSL
In some cases it is easier to use a pre-built Page than XSL.

Consider the example of pre-populating a Web Section with a set of pre-built bookmark Pages.

You can use any existing Web Section to browse the internet and create and save bookmarks.

Each bookmark is saved by the framework as a Page XML instance file.

You can copy these bookmark Page XML instance files and include them as pre-built Pages in
your own Web Section.

You need to put the bookmark files in the right directory, modify the id attribute of each
bookmark, and modify the Section definition to point to the bookmark directory (discussed
further below).

Then, after the application is built, the bookmarks are present.

This approach is far easier than using XSL to generate bookmark Pages.

While this example deals with bookmarks, it applies generally. If an application creates Page XML
instance files, you can copy the instance files and use them as pre-built Pages, as long as you follow
the required steps.

Can pre-built Pages be modified during application use?
Yes.

Pre-built Pages are the starting point for the Page when the application first executes. As the
application is used, the Pages can be modified, if the application is designed to support this. For
example, cache rules execute as specified and modify the XML instance files, whether pre-built or
not. As with all Pages packaged with an application, when a pre-built Page is modified, its new
version is saved in the data directory, and that is used from then on instead of the Page XML
instance file provided with the application build (in data.zip).

Pre-built Pages
Pre-built Pages (non-SectionPages) are the most typical type (although pre-built SectionPages are
also supported — and required for Java Sections and Help Sections).

Let’s take another look at the Web Section bookmarks example:

Some Page bookmark files are pre-built

The SectionPage is not pre-built

To work, a number of requirements must be met. The following sections demonstrate these
requirements with respect to pre-built bookmark Pages for the ready-made Web Section that is
added to the Hello World application in the first phase of the Hello World Tutorial. (See “Hello World
1: Application Creation” on page 6-89.)

However, the requirements explained here apply generally.
 71

Framework and Application Architecture
Pre-built Pages

 4
Defining the Section’s pre-built Page directory
For a Section to use pre-built Pages (when there is no pre-built SectionPage), the SDK build system
has to know where the pre-built Page XML instance files reside. You provide this information in the
Section’s definition in FactoryBuild.xml with the <prebuiltPagesDir> element.

Example 4–22 shows how the Hello World’s ready-made Web Section is defined in
FactoryBuild.xml.

Example 4–22 Defining a Web Section’s pre-built Page location

<section name="NameKey.WebSection" type="web" id="data/web" builtin="true" >
<prebuiltPagesDir>../prebuilt/websection</prebuiltPagesDir>

</section>

The directory path specified by <prebuiltPagesDir> is relative to the application’s design
directory. It therefore implies the following directory structure in the application’s SDK directory:

Note: Only the applicable directories are shown.

Phase2

design

prebuilt

websection

If you look in the Hello World Tutorial source files, you will see that websection contains the
following subdirectory:

bookmarks

The bookmarks directory contains the pre-built Page XML instance files.

Why didn’t the FactoryBuild.xml Section definition include this final bookmarks directory? Because
<prebuildPagesDir> specifies what to copy, during the build, into the data directory for
distribution with the application. What is found in this instance, and therefore copied, is the
bookmarks subdirectory, including its pre-built bookmarks. Your application may have other types
of pre-built Pages. This mechanism enables them to be sorted into different run-time directories.

How then are they found at run-time if their complete directory location is not specified? The
all-important id attribute. Recall that a Page id attribute occurs twice:

Each SectionPage contains a <page> element for each child Page, and that <page> element
has an id attribute that specifies the path to and filename of the Page XML instance file.

For information, see Figure 4–3 on page 4-35.

Every Page XML instance file’s <page> element contains its own id attribute, which is, by
definition, identical to the one in its parent SectionPage that points to the Page.

When a SectionPage is not pre-built but has pre-built Pages, the SectionPage XML instance file is
created from scratch by the build system and contains the required <page> elements with their id
attributes.
72

Framework and Application Architecture
Pre-built Pages

4

Note: If there are no pre-built Pages, and if the SectionPage is not pre-built, the
SectionPage XML instance file is not actually created until it is needed, which is when the
Section is first viewed.

So:

Because the contents of the directory pointed to by the <prebuiltPagesDir> element are
copied to the data directory during the build,

And because those contents included the bookmarks directory, which in turn included pre-built
bookmark files,

The SectionPage’s id attribute for each Page takes the following form:
data/bookmarks/(bookmarkFilename).

This shows that the Web SectionPage is built to “know” where to find the pre-built bookmark Page
XML instance files.

There is one more requirement for creating pre-built Pages: the pre-built Pages must have an
element structure that adheres to the Page’s definition in PageTemplates.xml.

Tip: Every Page, whether pre-built or not, must be defined in PageTemplates.xml.

The next section covers how to create pre-built Page XML instance files.

Element structure of pre-built Pages
A pre-built Page XML instance file is identical to non-pre-built Page XML instance files. Their
content and structure do not depend on whether they are pre-built or created by the framework at
run-time.

If it is a pre-built SectionPage, it must have the required element structure of a SectionPage.

If it is a pre-built Page, it must have the required element structure of a Page.

For information about Page XML instance file structure and content, see Figure 4–2 on
page 4-34.

In addition, the Page must have the element structure specifically defined for it in
PageTemplates.xml.

Defining a pre-built Page
For example, in the first phase of the Hello World Tutorial, a Web Section is added. The Web
Section is pre-populated with pre-built Page bookmark XML instance files.

Example 4–23 shows the XML element structure of the bookmark Page as defined in
PageTemplates.xml.

Note: The definition for Bookmark Pages is included in PageTemplates.xml by including
the framework Bookmark.xml file.

Example 4–23 Bookmark element definition included in PageTemplates.xml

<?xml version="1.0" encoding="UTF-8"?>
<!-- definition for Web bookmarks -->
<basePage type="web-bookmark">
 73

Framework and Application Architecture
Pre-built Pages

 4
<template>design/bookmark.xsl</template>
<page>

<title/>
<url/>
<host/>
<description />
<thumbImage />
<date/>
<visited/>
<clipping/>
<history/>

</page>
</basePage>

So, the pre-built bookmark file’s <page> element must contain a <tile>, a <url> and the rest of
the defined elements.

Creating pre-built Pages
Continuing with the ongoing example, Example 4–24 shows a run-time bookmark Page XML
instance file.

Note: The SDK version of the file is slightly different, which makes the whole process easier
for the developer, as discussed in the next section.

Example 4–24 A pre-built bookmark XML instance file

<?xml version="1.0" encoding="UTF-8"?>
<pageFile>

<header>
<pkgName>MusicPlayer</pkgName>
<pkgVersion>1.0</pkgVersion>
<template>design/bookmark.xsl</template>
<createDate utc="1080057939081" />

</header>
<body>

<page id="data/bookmarks/cnetmusic" name="Music Center - CNET.com"
type="web-bookmark">

<title>Music Center - CNET.com</title>
<url>http://reviews.cnet.com/

Music/4520-7899_7-5105287-1.html?tag=mc</url>
<host>reviews.cnet.com</host>
<description>reviews.cnet.com</description>
<thumbImage>design/images/webpage.png</thumbImage>
<created>Mar 23, 2004 11:05:39 AM</created>
<visited>Mar 23, 2004 11:05:39 AM</visited>
<clipping />
<history />

</page>
</body>

</pageFile>

Take note of the following:
74

Framework and Application Architecture
Pre-built Pages

4

The <page> element’s id attribute is the run-time path to and name of this file (without the xml
file extension).

In other words, the distribution (built) application has a data/bookmarks directory that contains
a cnetmusic.xml file.

The element structure of <page> and its child elements is consistent with the definition in the
FactoryBuild.xml.

Delete the id attributes — the build provides them
The build process provides correct id attributes. All you have to do is delete them from the pre-built
Page XML files in the SDK.

For example, you might copy a Page XML file named afile.xml from the following run-time directory:
data/collection. Such a file would have an id attribute as follows:

id=”data/collection/afile”

Let’s suppose your application’s Section stores its files in data/holder. So, in your case, the id
attribute would have to be:

id=”data/holder/afile”

And, let’s suppose your section is declared as follows:

Example 4–25 A Section’s instance declaration in FactoryBuild.xml

<section name="NameKey.MySection" type="files" id="data/sec1" builtin="false" >
<prebuiltPagesDir>../prebuilt/sec1</prebuiltPagesDir>

</section>

The Section instance declaration implies the following SDK directory for the application:

(application)/prebuilt/sec1

Since you have decided to store the pre-built Page XML instance files in a directory named holder,
the following SDK directory is implied:

(application)/prebuilt/sec1/holder

This is inconsistent with the id attribute in the file you copied from the other application and want
to use as a pre-built file because as we have seen its id attribute is:

id=”data/collection/afile”

but needs to be:

id=”data/holder/afile”

Fixing this is straightforward:

Simply put the copied XML files with the incorrect id attributes into the correct SDK directory.

Delete the id attributes from the files.
 75

Framework and Application Architecture
Pre-built Pages

 4
The build process adds correct id attributes to each built XML file that is packaged with the
application based on the <prebuiltPagesDir> contents in Section definition, the file directory
location in the SDK and the file name.

One final point: XSL transform required
Before wrapping up the pre-built Page discussion, let’s hit one final point: pre-built Pages require
an XSL transform.

The specific XSL transform to use for each Page is indicated in its <template> element in
PageTemplates.xml. (Unless the <template> element refers to an HTML page, local or network.)
The developer must ensures the <template> element points to the appropriate XSL transform.

So far, we’ve covered pre-built Pages in detail. How about pre-built SectionPages? That’s covered
next.

Pre-Built SectionPages
Pre-built SectionPages are supported, although not used as often as pre-built Pages.

Note: As mentioned, all Java Sections require a pre-built SectionPage. Help Sections also
use pre-built SectionPages.

Here’s an example of when pre-built SectionPages might be appropriate: a Games application.

Suppose you have a bunch of Flash games, each of which requires a handful of parameters (screen
size, quality, etc.) to be set at launch time. You could create a Section for each game. Each
Section’s SectionPage is pre-built, and the XML instance file contains the parameter settings
appropriate for each game. In this application, no Pages are used at all.

Creating a pre-built SectionPage
As with pre-built Pages, a pre-built SectionPage’s element structure must be consistent with its
element structure as defined in PageTemplates.xml.

Also as with pre-built Pages, when using a pre-built SectionPage, you identify a directory that
contains one or more files. In this case, naturally, the pre-built SectionPage XML file must be
present. All files present are copied by the build into the data directory and included with the
application for distribution.

However, the method for identifying the pre-built directory differs between pre-built Pages (without
a pre-built SectionPage) and a pre-built SectionPage (with or without pre-built Pages), although in
both cases, the directory is specified for the Section in FactoryBuild.xml.

Identifying the directory for pre-built Pages without a pre-built SectionPage

Use the <prebuiltPagesDir> element, as discussed previously.

Identifying the directory for a pre-built SectionPage, with or without pre-built Pages

Use the <section>’s src attribute to specify the directory. The path is relative to the SDK
(application)/design directory. The src attribute triggers a subset of the
<prebuiltPagesDir>’s functionality. All files contained are copied to data (which is also
<prebuiltPagesDir>’s functionality), but the build does not construct a SectionPage.
Instead, the build looks for (and requires) a pre-built SectionPage.
76

Framework and Application Architecture
Event notification

4

Use the <section>’s id attribute (in FactoryBuild.xml) to specify the pre-built SectionPage
XML instance filename. As we have seen, the id attribute specifies the run-time path to an XML
instance file and its filename (without its “xml” extension). That path is always in the data
directory, therefore the id attribute starts with data. The final token in the id attribute specifies
the XML filename of the pre-built SectionPage (without its “xml” extension).

Putting these two rules together, the build system discovers the pre-built SectionPage’s location
and filename. So, the developer must:

Put the pre-built SectionPage XML file in the directory specified by the src attribute.

Ensure it has the filename specified by the id attribute, excluding the path.

Example 4–26 shows how a Section is defined in FactoryBuild.xml with a pre-built SectionPage that
resides in prebuilt/DirName that is named Test.xml.

Example 4–26 Specifying the directory and filename of a pre-built SectionPage

<section name="Test" type="test" id="data/Test" deletable="true" builtin="false"
src="../prebuilt/DirName" />

Pre-Built SectionPage and Pages
We’ve seen that many applications use pre-built Pages. And how to create a pre-built SectionPage.
Which leaves an obvious question: is it possible to have a pre-built SectionPage that in turn has
pre-built Pages? Yes, although it is not as common.

Bear in mind that if you just have a bunch of pre-built Pages, the SectionPage is created at build
time with the Pages cached into it. The hierarchy of inter-pointing XML instance files is intact; the
SectionPage has a <page> element and id attribute for each pre-built Page. And, if the
SectionPage had cache rules to bring specific data from each Page into it, this occurs as well at
build time. And, of course, XSL generates the HTML. This meets the needs of most applications.

If an application needs a pre-built SectionPage and pre-built Pages, this is also supported. Simply
create the pre-built Pages and the SectionPage exactly as described in the previous sections. The
SectionPage and the directory containing the pre-built Pages is identified with the src attribute.
When the src attribute is used, the <prebuiltPagesDir> attribute is not required. All pre-built
Pages are copied into data for distribution.

In this case you need to take special care to ensure the SectionPage contains a <page> element
for each pre-built Page, which in turn has the appropriate id attribute to identify the Page XML
instance file. If the SectionPage lacks these, they are not displayed.

Also, if the SectionPage has cache rules defined for it in PageTemplates.xml, you need to manually
cache the appropriate information into the pre-built SectionPage XML file.

Event notification
The framework includes a mechanism to notify interested listeners of certain events that occur
during runtime. The framework uses the standard Java event listener paradigm in which interested
parties register themselves as listeners and are notified at the appropriate time.
 77

Framework and Application Architecture
Event notification

 4
As a convenience, the AbstractPepperProgram base class registers itself as a listener for many
typical events. This allows subclasses to simply override appropriate listener methods and prevents
the need to fully implement the listener interface.

The class definition for AbstractPepperProgram shows the interfaces that it implements, as follows:

public abstract class AbstractPepperProgram
implements SectionChangeListener,
ActionListener,
PageChangeListener,
ProgramChangeListener,
PackageInstance {

}

Note: The javadoc for AbstractPepperProgram also lists EventListener as an implemented
interface. This is because ActionListener extends EventListener.

com.pepper.platform.program.PageChangeListener
The PageChangeListener interface enables reception of event notifications that are fired when an
application Page is created, displayed, modified or deleted. You can use this to respond
programmatically to such events.

See javadoc of com.pepper.platform.program.PageChangeListener for methods and details.

As noted, the first step is to override the appropriate method.

For example, suppose you want to respond to changed Page data. In this case you would override
pageModified(PageChangeEvent).

You can determine which Page was modified because PageChangeListener methods pass a
com.pepper.platform.program.PageChangeEvent. You can use the
PageChangeEvent.getPageId() method to return the ID of the Page whose data changed. If the
modified Page is the right one, you can execute your own code. For example, you might execute a
local method that includes the appropriate code, optionally defining it to pass the
PageModifiedEvent, as follows:

public class MyProgram extends AbstractPepperProgram {
...
public void pageModified(PageChangeEvent event) {

// always call super class first as AbstractPepperProgram
// performs default implementation
super.pageModified(event);

//determine whether this is the right Page
if (event.getPageId().equals("idOfInterest")) {

// app specific processing here
handlePageModified(event.getPageId());

}
}
...

}

78

Framework and Application Architecture
Writing to the framework log

4

com.pepper.platform.program.SectionChangeListener
This interface is used to listen for events that occur when a Section (a tab in your application's user
interface) is changed. That is, the listener is notified when the user interface changes its current tab.
It may be appropriate to listen for these events if your application wishes to perform additional logic
when a specific tab is hidden or shown.

As with the PageChangeListener, simply override the specific listener method of interest in your
AbstractPepperProgram subclass to listen for these events.

com.pepper.platform.program.ProgramChangeListener
Similar to SectionChangeListener, this interface is used to listen for events that occur when a
Keeper Application is hidden or shown.

Other listener interfaces
See the javadoc for com.pepper.platform.program for information about other listener interfaces.

Writing to the framework log
The framework uses the Apache open source LogFactory logging mechanism. This mechanism
enables logging events or information in the framework log file as directed by Java code.

Tip: You can create any number of logging engines, but nothing is gained with more than
one. Instead, it is recommended to create one logging engine and use it for all Java
associated with a particular application.

To log:

Include the following import statements in the classes writing log events:
import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;

Create a logging engine instance, as follows:
static Log log = LogFactory.getLog("com.pepper.yourProgram");

To ensure your application creates only a single logging engine, always place your application’s
package path inside the double quotes.

Write events to the framework log using the following Log methods:

log.info(String)

log.warning(String)

log.error(String)

log.fatal(String)

log.debug(String)
 79

Framework and Application Architecture
GUI services

 4
GUI services
The com.pepper.guiutils.GuiServicesProvider interface provides methods that enable you to
programatically access many aspects of the framework’s user interface.

The object that implements this interface is typically retrieved using
AbstractPepperProgram.getGSP().

Once you have retrieved a handle, you can access its methods. A few useful methods are listed
here.

Note: See the javadoc for complete API documentation.

To write to the Status Bar:

AbstractPepperProgram.getGSP().writeStatus();

For more information, see “Writing messages to the framework status bar” on page 4-80.

To retrieve the System Tray:

AbstractPepperProgram.getGSP().getSystemTray();

For more information, see “Using the System Tray” on page 4-81.

To play a sound:

AbstractPepperProgram.getGSP().playSound();

To show the Progress Bar and launch an object that implements runnable:

AbstractPepperProgram.getGSP().showProgressBar();

This section also contains information about Tab control.

See “Tab control” on page 4-81.

Writing messages to the framework status bar
You can write messages to the framework Status Bar that either disappear after five seconds or that
last until the next message replaces them.

Note: Status bar message queueing is not implemented in the current release. This means
that it is possible for a displayed message to be immediately replaced by another message.

Writing to the Status Bar requires access to the methods provided by the GuiServicesProvider
interface. Any class that implements this interface or that is derived from another class that
implements this interface can write to the Status Bar.

Note: See the API documentation of the GuiServicesProvider interface in the SDK
javadoc in pepper-sdk/docs.

Two examples of writing to the Status Bar.

Write a Status Bar message that disappears after five seconds:
AbstractPepperProgram.getGSP.writeStatus(“Here is my message”);

Write a Status Bar message that persists until replaced by another message:
80

Framework and Application Architecture
GUI services

4

AbstractPepperProgram.getGSP.writeStatus(“Here is my message, true, false);

The first boolean parameter is not used and can be either true or false. The second controls
whether the message is transient. When true, the message disappears in five seconds. When
false, the message persists.

Using the System Tray
The System Tray (represented by the class com.pepper.guiutils.SystemTray) is the area in the
bottom right-hand corner of the Keeper. The System Tray contains objects
(com.pepper.guiutils.SystemTrayObject) that represent System-level resources, such as Wi-Fi
status, the battery gauge, and the system clock.

Applications can access the System Tray and add application-specific objects to it.

To access the System Tray:

SystemTray systemTray = AbstractPepperProgram.getGSP().getSystemTray();

To add an object to the System Tray:

SystemTrayObject stObject = new SystemTrayObject(String uniqueId,
 String displayName,
 ImageIcon image);
systemTray.add(stObject);

To retrieve a System Tray object by id:

SystemTrayObject myObj = systemTray.getSystemTrayObject(String objectId);

Tab control
An application can allow (or prevent) the user from creating new Tab (Section) instances, deleting
Tab instances, moving Tabs and renaming tabs. This is called Tab control.

Note: Tab is the user interface term that is equivalent to a Section.

By default, user Tab control is enabled.

Unless specified programatically, new Tabs are of the Section type declared as type=”default”
in FactoryBuild.xml and use the SectionPage type defined as type=”default” in
PageTemplates.xml.

Tab control is set at the application level. The Tab control setting applies to all Tabs in the
application.

Tab control is configured in the application’s base class (the class that extends
AbstractPepperProgram).

To disable Tab control, insert the following method in the base class:

public boolean enableTabControls(){
return false;

}

 81

Framework and Application Architecture
Mime type handling

 4
Mime type handling
Your application can register to handle files downloaded from Web Sections that are of a particular
mime type.

This involves the following:

“Ensuring no other application has registered for the mime type” on page 4-82

“Registering mime type in package.ppld” on page 4-82

“Handling the new Page in createPage()” on page 4-83

Ensuring no other application has registered for the mime type
You need to review all registered mime types and ensure the one(s) you want to register is not
already claimed by another application.

All currently registered mime types from all applications are listed in the Keeper’s own package.xml
file. This file resides in the Keeper’s run-time data directory.

Data for each application is wrapped in a <program> element. The application’s registered mime
types are each indicated with a <mimeType> element.

The following example shows that PhotoLibrary has registered for three mime types.

Example 4–27

<program id="file://C:/Documents and Settings/kyle.nitzsche/My Documents/
Pepper/suite/photolibrary-0/package.ppld"
packageId="PhotoLibrary-0"
name="Photo Library" type="photolibrary" updateStatus="new">

<description />
<thumbImage>data/thumbnails/PhotoLibrary-0/photo-64.png</thumbImage>
<mimeType name="image/jpeg" />
<mimeType name="image/gif" />
<mimeType name="image/png" />

</program>

Registering mime type in package.ppld
To register the mime type for your application, include the <mimeType name="(mime type)"/>
element inside the <information> element in the application’s package.ppld file, where the
(mime type) is the a mime type, as follows:

<information>
<title>Hello World Phase 4</title>
<packageType>PepperHelloWorldPhase4</packageType>
<packageGUID>0</packageGUID>
<mimeType name="image/jpeg"/>
<pages>100000</pages>
<vendor>Pepper</vendor>
<homepage href="http://www.pepper.com"/>
<description>description</description>
<icon>design/images/saturn.24w.png</icon>
82

Framework and Application Architecture
Mime type handling

4

<thumbnail>design/images/saturn.64w.png</thumbnail>
<deletable>true</deletable>

</information>

Handling the new Page in createPage()
When a file is downloaded in a Web Section (for example by a user right-clicking on an image or
URL and selecting Keep Image), the file is downloaded and the
AbstractPepperProgram.createPage(Object, List, PageChangeListener) method of application that
has registered for the mime type is called.

You therefore override createPage() in your base class and inside it handle Page creation and
display.

See javadoc for AbstractPepperProgram.createPage(Object, List, PageChangeListener).
 83

Framework and Application Architecture
Mime type handling

 4
84

5

Hello World:
Getting Started
Overview
This chapter is an introduction to the Hello World Tutorial. The Hello World Tutorial takes you
through four phases of developing a Pepper application. The application is designed to cover many
important aspects of the framework.

Prerequisites
Familiarity with the following is required:

HTML and CSS

JavaScript

Java

XML and XSL

Helpful information
Information required to program Pepper applications is included throughout this guide. For an
overview of many important parts of developing Pepper applications, see “Framework and
Application Architecture” on page 4-27.

During the course of the tutorial, you build the application and add it to the framework numerous
times. This sort of information is covered in the following chapter: “Building Applications” on
page 11-189.

Tutorial structure
The Hello World Tutorial has four phases.
 85

Hello World: Getting Started
What’s next

 5
In Phase One, you copy source files from the SDK’s applicationTemplate directory and then
follow detailed steps to edit critical files.

Every application requires editing certain critical application definition files.

In Phases Two, Three and Four, the completed source files are provided.

You don’t actually have to edit the files, although you do have to copy the applications’ source
files from a resource directory into the working area of the SDK.

The text explains the important aspects of each phase with examples and references to the
provided source files.

The final result of each phase is an application you add to the framework. Although the applications
are cumulative, with each phase only adding to the functionality of the previous phase, each phase
is also a completely independent application that you add to the framework. At the end of the
tutorial, you have added four applications, one for each phase.

Tip: Experienced programmers can start by adding the Phase Four application and then
reading the textual material for all phases.

What’s next
Now, let’s move on to Phase One of the Hello World Tutorial. See “Hello World 1: Application
Creation” on page 6-89.
86

Hello World: Getting Started
What’s next

5

 87

Hello World: Getting Started
What’s next

 5
88

6

Hello World 1:
Application Creation
This chapter is the first in a series that explains how to develop the Hello World Pepper application.
These chapters demonstrate how to make use of many critical aspects of the Pepper Application
Framework architecture.

Note: Directory paths use the Linux convention of forward slashes (‘/’) to separate
directories and files.

Creating project directory tree
Every project requires a dedicated application directory with a specific structure of subfolders. In
this case, our application directory is named “Phase1”.

The SDK includes a template directory for new applications. In this procedure, you copy the
template directory to the correct location and rename it to your project name: Phase1.

For information about SDK directories, see “SDK directories” on page 2-5.

Procedure:

1. Copy the template directory named:

pepper-sdk/applications/applicationTemplate.

2. Paste the copied directory into:

pepper-sdk/applications/
3. Rename the new directory Phase1.

After completing these steps, you should have a directory named:

 pepper-sdk/applications/Phase1

Procedure complete
 89

Hello World 1: Application Creation
Creating the required base Java class

 6
Creating the required base Java class
Every Pepper application requires a base Java class that extends the AbstractPepperProgram
class. The base class must have a specific constructor and init() method.

For information, see “AbstractPepperProgram life cycle” on page 4-29.

The SDK includes a BaseClass.java template file that extends AbstractPepperProgram and has the
required constructor and init() method.

However, the Java source file for this class must be in a subdirectory of the application’s src
directory that is consistent with its Java package path. The package path in the application template
is incorrect and must be fixed.

In this procedure, you create the required src directory and subdirectories and modify
BaseClass.java’s package path accordingly. You also change the class name to HelloWorld and
change the file name accordingly.

Procedure:

1. Create the base class’s package path directories, as follows:

a. Take note of the subfolders of the following directory:

pepper-sdk/applications/Phase1/src

The subfolders are:

com/placeholder/appName
b. Change the pepper-sdk/applications/Phase1/src/com/placeholder directory to

pepper-sdk/applications/Phase1/src/com/pepper
c. Change the final subfolder name to HW.

Note: The final subfolder (appName) is generally used to differentiate applications that
share the rest of the package path.

At this point your src directory structure appears as follows:

src/com/pepper/HW
In accordance with Java conventions, this determines the package path required by all
Java files in src/com/pepper/HW.

Note: For a non-tutorial application, you would probably change the names of all subfolders
to create a package path appropriate to your requirements. Many such package paths
encode (in reverse order) a unique DNS name in order to ensure a globally unique class
identifier. For example, a company with the DNS name yourcompany.com would typically
name the first two folders: com/yourcompany.

2. Modify the package path in the BaseClass.java file to reflect the directory structure you just
created, as follows:

a. Open src/com/pepper/HW/BaseClass.java for editing.

The file is as follows:

/*
 * Copyright (c) 2006 Pepper Computer, Inc. All Rights Reserved.
90

Hello World 1: Application Creation
Creating the required base Java class

6

 * PEPPER PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
 */

package com.placeholder.appName;

import com.pepper.platform.program.AbstractPepperProgram;
import com.pepper.platform.program.ActionEventWithParams;
import com.pepper.platform.program.PepperProgramConfig;
import com.pepper.platform.program.PepperProgramException;
import com.pepper.platform.program.actions.ProgramAbstractAction;

/**
 * Base class template for Pepper SDK
 */
public class BaseClass extends AbstractPepperProgram {

/**
 * Constructor
 */
public BaseClass(Integer pid) {

super(pid);
}

/**
 * First pass config to the superclass with super.init(config)
 * and then perform any required initializations, such
 * as registering Actions.
 */
public void init(PepperProgramConfig config)

throws PepperProgramException {
super.init(config);

}
}

b. Modify the package path statement to be the path you created previously.

For example, since your src directory structure is:

com/pepper/HW
Then, your package path statement must be:

package com.pepper.HW;

3. Change the class name to HelloWorld.

After making the edit, the class declaration is as follows:

public class HelloWorld extends AbstractPepperProgram {

4. Change the class constructor to HelloWorld.

The class constructor should appear as follows:

public HelloWorld(Integer pid) {
 super(pid);
 }
 91

Hello World 1: Application Creation
Modifying build.xml

 6
5. Save and close the file.

6. Rename BaseClass.java to HelloWorld.java.

Procedure complete.

Modifying build.xml
Each application has a build.xml file that must be modified to configure the build system to build
your application.

The build.xml file has a <project> element whose name attribute has to be set to equal the
application’s root directory name, in this case Phase1.

The file is:

pepper-sdk/applications/Phase1/build/build.xml

Procedure:

1. Modify pepper-sdk/applications/Phase1/build/build.xml, as follows:

a. Open pepper-sdk/applications/Phase1/build/build.xml.

The file is as follows:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE project [
<!ENTITY common SYSTEM "file:../../../bootstrap/build/commonbuild.xml">
<!ENTITY package SYSTEM "file:../../../bootstrap/build/packagebuild.xml">

]>

<project name="TODO:applicationDirectoryName" default="all" basedir=".">

&common;
&package;

</project>

2. Modify the project element’s name attribute to be Phase1, as follows:
<project name="Phase1" default="app" basedir=".">

3. Save and close the file.

Procedure complete.
92

Hello World 1: Application Creation
Modifying package.ppld

6

Modifying package.ppld
The (application)/design/package.ppld file provides critical information used to install the
application in the framework and is used by the framework at run time. Some customizations are
required, others are optional.

For reference information about this file, see “package.ppld” on page B-208.

In this procedure, you customize this file for Phase One of the Hello World application.

Procedure:

1. Open pepper-sdk/applications/Phase1/design/package.ppld in an appropriate text editor.

The file is as follows:

<jnlp spec="1.0+">

<information>
<title>TODO:displayedApplicationTitle</title>
<packageType>TODO:com.yourCompany.uniqueApplicationType</packageType>
<packageGUID>0</packageGUID>
<vendor>TODO-optional:yourName</vendor>
<homepage href="TODO-optional:yourHomePage"/>
<description>TODO-optional:applicationDescription</description>
<icon>TODO:design/images/filename</icon>
<thumbnail>TODO:design/images/filename</thumbnail>
<deletable>true</deletable>

</information>

<security>
<all-permissions/>

</security>

<resources>
<jar href="TODO:add application jar file"/>
<jar href="data.zip"/>
<jar href="design.zip"/>

</resources>

<application-desc main-class="TODO:add package path to required base class">
<packageVersion>TODO:set to equal application version</packageVersion>
<requiredKeeperVersion>TODO:set to the minimum required

Keeper version (3.0.3 or higher)</requiredKeeperVersion>
</application-desc>

</jnlp>

2. Set the application’s title, as follows:
<title>Hello World Phase 1</title>

The <title> element is used to derive the application’s run-time directory name. It also
provides the text displayed beneath the application’s icon in the framework’s Applications Tab.

3. Set the application’s type as follows:
 93

Hello World 1: Application Creation
Modifying package.ppld

 6
<packageType>com.pepper.HelloWorldPhase1</packageType>

The <packagetype> uniquely and globally identifies the application type. This is used, among
other things, when the application identifies itself to an update server. If an application of that
type exists on the server, it is used to update the local application from the server. Therefore,
in order to ensure that an application is not accidentally updated from a different application on
the update server that happens to have the same <packageType>, it is necessary to ensure
every application has a globally unique type.

The following type naming convention achieves globally unique application typing for every
application:

Start with the company DNS name in reverse order, delimited with periods, following the Java
convention for package names.

For example, Pepper Computer, Inc. has the following DNS name: pepper.com.

Reversing this yields: com.pepper.

Finish with a description of the application type that is unique in your company (without any
spaces).

For example, the application we are developing now is Hello World Phase One.

Removing the spaces yields a type of: HelloWorldPhase1

Putting the two together yields: com.pepper.HelloWorldPhase1.

Note: Even though the <packageType> and the package.ppld’s <main-class> both
use a reverse encoded DNS name, they are unrelated.

4. Optionally identify the application developer, as follows:
<vendor>YourName</vendor>

Note: This is not displayed in the application unless you take programmatic steps to do so.

5. Optionally identify a URL to a web page (starting with http://), as follows:
<homepage href="http://www.yourHomePage.com"/>

Note: You must provide a complete URL, including “http://”.

Note: The homepage is not displayed in the application unless you take programmatic
steps to do so.

6. Provide a path to a 24 x 24 pixel icon image file used to represent the application on the
framework Flag Panel, as follows:

<icon>design/images/saturn.24w.png</icon>

Icons and other resource files must be stored in the design directory or one of its subdirectories.
Typically, images are stored in design/images. This particular file, saturn.24w.png, is included
with the SDK in the applicationTemplate/design/images folder and was copied to the
Phase1/design/images chapter previously.

7. Provide a path to a 64 x 64 pixel thumbnail image file used to represent the application on the
framework Application tab, as follows:

<thumbnail>design/images/saturn.64w.png</thumbnail>
94

Hello World 1: Application Creation
Customizing FactoryBuild.xml

6

8. Set whether the application is deletable by the user.
<deletable>true</deletable>

Note: Most applications should be deletable by the user.

9. Set the application’s jar file name, as follows: (bold):
<jar href="Phase1.jar" />

Note: The jar file must be named the same as the application’s root directory, also know
as the project name.

10. Indicate the class that is the entry point into the application.

Use the package path plus the Java class that extends AbstractPepperProgram, delimited with
periods (“.”), as follows (bold):

<application-desc main-class=”com.pepper.HW.HelloWorld”>

11. Set the application’s version, as follows.
<packageVersion>1.0</packageVersion>

The format supports two to four numbers delimited by periods. This format is consistent with
the following application revision numbering scheme:

major.minor.patch.build

For applications distributed from an update server, the version is used to determine whether the
installed application needs an update.

12. Set the minimum version of the framework required for this application, as follows.
<requiredKeeperVersion>3.0.3</requiredKeeperVersion>

Note: Applications developed in the SDK require a framework of at least revision 3.0.3.

13. Save and close the file.

Procedure complete.

Customizing FactoryBuild.xml
An application’s initial Sections are declared in:

(application)/design/FactoryBuild.xml.

For information about Sections, see “Framework and Application Architecture” on page 4-27.

In this procedure, you customize FactoryBuild.xml to create the simplest possible application: one
with a single Section. This Section has a SectionPage that displays “Hello World!”

Procedure:

1. Open pepper-sdk/applications/Phase1/design/FactoryBuild.xml in an appropriate text editor.

The file is as follows:
 95

Hello World 1: Application Creation
Customizing FactoryBuild.xml

 6
<?xml version="1.0" encoding="UTF-8"?>
<factoryBuild>

<!-- Definition of Sections -->

<packageList>

<!--Template for a new Section -->
<!--
<section name="NameKey.TODO:YourKey" type="default" id="data/TODO:yourSectionName"

deletable="false" />
 -->

<!-- Definition of Web Browsing Section with bookmarks -->
<!--
<section name="NameKey.WebSection" type="web" id="data/web" builtin="false">

<prebuiltPagesDir>../prebuilt/websection</prebuiltPagesDir>
</section>
-->

<!-- Help section -->
<!--
<section name="NameKey.Help" type="help" builtin="true" id="data/help/locale(Help)"

src="../prebuilt/helpsection" />
-->

<!-- Settings Section -->
<!--
<section name="NameKey.Settings" type="settings" id="data/settings"

builtin="true" />
-->

</packageList>
</factoryBuild>

Notice that:

All <section> elements are commented out, which means this default template does not
produce any Sections (Tabs, from the user interface perspective).

The first <section> element is a template for a new Section.

The remaining <section> elements, although commented out, define three ready-made
Section types easily includable in any application: a web browser Section, a help Section, and
a Settings Section. These sections are added to Hello World later.

2. Modify the template to declare a new Section, as follows.

Note: The modifications are displayed in bold text.

<!-- Definition of the Hello World Section -->

<!--
<section name="NameKey.HelloWorld" type="default"

id="data/helloWorldMain" deletable="false" />
 -->
96

Hello World 1: Application Creation
Customizing PackageStrings.properties

6

3. Remove the comment markers around the modified <section> element, so it appears as
follows:

<!--Defintion of the Hello World Section -->

<section name="NameKey.HelloWorld" type="default"
id="data/helloworldMain" deletable="false" />

The <section> element’s name attribute specifies a key for a key-value pair stored in the
pepper-sdk/applications/Phase1/design/PackageStrings.properties file. The framework references
the specified key (NameKey.HelloWorld) in that file and uses its value as the display text for the
Section’s Tab in the framework. Editing this file to add the key-value pair is covered in the next
procedure.

4. Save and close the file.

Procedure complete.

Customizing PackageStrings.properties
As noted in the previous procedure, PackageStrings.properties enables you to set the text
displayed on a Tab.

Note: Also use this file for setting other displayed text and for creating different versions of
an application for different language. For information, see “How to localize for different
languages” on page 10-177.

In this procedure, you edit the file to add a key-value pair for the Section definition created in the
previous procedure.

Procedure:

1. Open design/PackageStrings.properties for editing.

The file is as follows:

#Labels on new Section Tab
#TODO: Create labels for any new Section Tabs

#TODO: Uncomment these when adding ready-made Web, Help and Settings Tabs
#NameKey.WebSection=Web
#NameKey.Help=Help
#NameKey.Settings=Settings

2. Replace the first commented out TODO line with a new key-value pair that corresponds to the
entry you just made in the FactoryBuild.xml file, as shown in the following bold text:

#Labels on new Section Tab
NameKey.HelloWorld=Hello World Main Tab

3. Save and close the file.

Procedure complete.
 97

Hello World 1: Application Creation
Defining the SectionPage in PageTemplates.xml

 6
Defining the SectionPage in PageTemplates.xml
Each Section must have one SectionPage. The SectionPage displays in the Section’s Tab. The
SectionPage is defined with the <sectionPage> element in: design/PageTemplates.xml

Note: For reference information about elements in PageTemplates.xml, see
“PageTemplates.xml” on page B-222.

Note: For information about Sections and Pages, see “Framework and Application
Architecture” on page 4-27.

In this procedure, you set two required general values and then define a SectionPage that displays
by default in the Hello World Application’s Hello World Tab.

Note: Even after editing this file is complete, the application is not ready to build and run
because it is still necessary to create an XSL file that transforms the SectionPage XML into
renderable HTML at run time. (See “The Section user interface” on page 4-44.) You do
need to name this XSL file here.

Procedure:

1. Open pepper-sdk/applications/Phase1/design/PageTemplates.xml for editing.

The file is as follows:

<?xml version="1.0" encoding="UTF-8"?>
<pageTemplates xmlns:xi="http://www.w3.org/2003/XInclude">

<packageName>TODO:set to equal package.ppld's packageType
element</packageName>

<packageVersion>TODO:set to equal package.ppld's requiredKeeperVersion
element</packageVersion>

<!-- Define default page for new application -->
<sectionPage type="default">

<template>design/TODO:xslFileName</template>
</sectionPage>

<!-- Include ready-made page definitions -->
<!-- Required for Web Sections -->
<xi:include href="../resources/pages/SectionWeb.xml" />
<xi:include href="../resources/pages/Bookmark.xml" />
<xi:include href="../resources/pages/Clipping.xml" />

<!-- Required for Settings Section -->
<xi:include href="../resources/pages/SectionSettings.xml" />

<!-- Required for Help Sections -->
<xi:include href="../resources/pages/SectionHelp.xml" />

<!-- Required for Java Sections -->
<xi:include href="../resources/pages/SectionJava.xml" />

</pageTemplates>

Note: The file includes XML files with <xi:include> elements, each of which defines
ready-made SectionPage types that are provided with the SDK.
98

Hello World 1: Application Creation
Creating the main XSL file from sample.xsl

6

2. Enter com.pepper.HelloWorldPhase1 as the application name into the <packageName>
element, as shown in bold text:

<packageName>com.pepper.HelloWorldPhase1</packageName>

The package name must be set to equal the <packageType> in package.ppld.

3. Enter the package version into the packageVersion element, as shown in bold text:
<packageVersion>1.0</packageVersion>

4. Enter design/helloWorldMain.xsl into the template element.

This is the name of the XSL file that transforms this SectionPage into renderable HTML.

<template>design/helloWorldMain.xsl</template>

Note: All application-specific XSL files must reside in the design directory. This XSL file is
created in the next procedure.

5. Save and close the file.

Procedure complete.

Creating the main XSL file from sample.xsl
Most Pages require an XSL file that is used by the framework to transform the XML into HTML for
rendering and display in the framework.

For information about the role of XSL files, see “The Section user interface” on page 4-44.

Note: Some Pages, such as those in help Sections, name an HTML file in their
<template> element. In such cases, the specified HTML is rendered directly and no XSL
is used. For information, see “The Section user interface” on page 4-44.

In this procedure, you rename the sample.xsl file to helloWorldMain.xsl, as you specified for the
SectionPage in the previous procedure. You also open and examine the new XSL file.

Procedure:

1. In the design directory, rename sample.xsl helloWorldMain.xsl.

2. Open helloWorldMain.xsl in an appropriate text editor for viewing.

The file is as follows:

<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:xalan="http://xml.apache.org/xalan"
xmlns:pepper="http://www.pepper.com/elements"
extension-element-prefixes="pepper">

<xalan:component prefix="pepper">
<xalan:script lang="javaclass" src="com.pepper.script.Elements"/>

</xalan:component>

<xsl:output method="html" />
 99

Hello World 1: Application Creation
Creating the main XSL file from sample.xsl

 6
<!-- Catch passed framework parameters in XSL -->
<xsl:param name="packageId" />
<xsl:param name="platform" />
<xsl:param name="design" />

<!--Create XSL variable for use as HTML <title> -->
<xsl:variable name="sectionName" select="pepper:nameString($packageId,section/@name)"/>

<!-- The following template matches the root element of the Page data
to begin the transformation -->

<xsl:template match="/">
<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<!-- use XSL sectionName variable to set HTML <title> -->
<title><xsl:value-of select="$sectionName"/></title>

<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />

<!-- The following can be used to link the Pepper CSS stylesheet into
the generated HTML:

<link href="{$platform}/resources/styles/styles.css" rel="stylesheet"
type="text/css" />

-->

<!-- The following initializes the JavaScript bridge and is required: -->
<pepper:initscriptbridge package="{$packageId}" />

<!-- The following can be used to include ready-made javascript code
<script type="text/javascript" src="{$platform}/resources/commonsection.js"/>
-->

</head>
<body>

<h1>Hello World!</h1>
</body>

</html>
</xsl:template>

</xsl:stylesheet>

Note: Some knowledge of XSL is a prerequisite for programming Pepper applications.

3. Examine the file, observing the following:

The output is set to HTML with the <xsl:output method="html"/> element.

Three framework parameters are passed to the transform and are available for
programmatic use during the transform:

<xsl:param name="packageId" />
<xsl:param name="platform" />
<xsl:param name="design" />

Only platform is used at this early stage of Hello World. It is used to initialize the
LiveConnect JavaScript-to-Java bridge with the <pepper:initscriptbridge>
element.
100

Hello World 1: Application Creation
Building Hello World

6

There’s a single XSL template that matches the root element of the XML file.

Upon matching the root element, the transform outputs a simple HTML page whose
meaningful content is simply “Hello World!” enclosed in an HTML <h1> tag.

Note: The HTML character encoding is set to the utf-8 in a <meta> tag. All generated
HTML should use UTF-8 character encoding.

4. Close helloWorldMain.xsl.

Procedure complete.

Building Hello World
Now that you have created all files necessary for this initial version of the Hello World application,
it’s time to build the application. Building the application creates (or if it has already been created,
updates) the dist directory, which contains all files needed to add the application to a framework.

For information about the dist directory and the application distribution package, see
“Application distribution package” on page 4-31.

Three steps are required to build an application.

1. Customizing the application’s build.xml file.

You have already completed this step.

2. Opening a command line window to use for building, and setting its environment variables.

You need to complete this step.

See “Setting the Build Environment Variables” on page 11-190.

3. Building the application.

You need to complete this step.

See “Building an Application” on page 11-191.

Adding the application to the framework
Now that the application is built, you can add it to a framework.

Because the framework and its applications can run on a Windows system and on Pepper devices,
and because you can develop your applications on Windows or on Linux, different procedures are
followed to add your application to the framework.

If you are developing your application on a Windows system, it is probably most convenient to
try out applications on the Pepper Desktop before adding them to a Pepper device.

For the procedure to add the application to the Pepper Desktop, see “Adding a local application
to the framework” on page 12-201.

If you want to add the application to a Pepper device, you need to:

1. Make the built files available to the Pepper device.
 101

Hello World 1: Application Creation
Adding ready-made Sections

 6
See “Making an application’s files accessible to the framework” on page 12-197

2. Add the application to the Pepper device.

See “Adding a local application to the framework” on page 12-201.

If you are developing your application on a Linux system, you probably need to try out the
application on the Pepper device itself, which requires making the application’s built files
accessible to the Pepper device.

For the options and procedures for making the built files available to the Pepper device, see
“Making an application’s files accessible to the framework” on page 12-197.

Then, follow the procedure to add the application to the Pepper device: “Adding a local
application to the framework” on page 12-201.

Adding ready-made Sections
So far, you have created an application that offers a bare minimum of functionality: a single Section
named “Hello World Main Tab” with a SectionPage that displays the text “Hello World!”

This procedure shows how to add additional tabs of ready-made types, including:

A Web Tab

Provides a fully functional browser with four pre-built bookmarks.

Note: The set of bookmarks that are provided by default with a Web section can be
customized. See “How to customize web bookmarks” on page 10-172.

A Help Tab

Provides default help information that you can customize for your application.

Note: Help can be customized. See “How to customize an application’s help” on
page 10-175.

A Settings Tab

Provides a framework for user modification of the application’s settings.

Adding these three Sections is simple because they are ready-made and included with the SDK.
However, a few actions are required:

FactoryBuild.xml needs to be modified to add the new Section definitions.

PageTemplates.xml needs to include the new Page definitions.

These are included by default. The procedure below instructs you to open the file and take note
of which includes correspond to which Section types.

PackageStrings.properties needs to be modified to add key-value pairs that provide display text
for the Section Tabs.

Note: You do not need to provide XSL files to transform the ready-made Pages’ XML
because they are provided with the SDK.
102

Hello World 1: Application Creation
Adding ready-made Sections

6

These Sections are defined in FactoryBuild.xml as builtin by setting their builtin attribute to
true. This affects the position of their Tabs, particularly with respect to their position relative to any
new Tabs that are created. See Figure 3–1 on page 3-24 and “Attribute: builtin” on page B-220.

Procedure:

1. Modify FactoryBuild.xml to add (by uncommenting) the three new Sections, as follows:

a. Open pepper-sdk/applications/Phase1/design/FactoryBuild.xml for editing.

b. Find the three commented out <section> elements that define the Web, Help and
Settings Sections.

c. Uncomment these three <section> elements.

At this point, the <section> elements should be as follows:

<!-- Definition of the Hello World Section -->

<section name="NameKey.HelloWorld" type="default"
id="data/helloworldMain" deletable="false" builtin="false" />

<!-- Definition of Web Browsing Section with bookmarks -->

<section name="NameKey.WebSection" type="web" id="data/web" builtin="false">
<prebuiltPagesDir>../prebuilt/websection</prebuiltPagesDir>

</section>

<!-- Definition of Help section -->

<section name="NameKey.Help" type="help" builtin="true"
id="data/help/locale(Help)" src="../prebuilt/helpsection" />

<!-- Definition of Settings Section -->

<section name="NameKey.Settings" type="settings"
id="data/settings" builtin="true" />

Note: Web and Help Sections use pre-built Pages for bookmarks and help material. For
information, see “Pre-built Pages” on page 4-69.

d. Save and close FactoryBuild.xml.

2. Modify PageTemplates.xml to include ready-made Page definitions for the new Sections, as
follows:

a. Open pepper-sdk/applications/Phase1/design/PageTemplates.xml in an appropriate text
editor.

b. Observe the <xi:include> elements near the bottom of the file, which are as follows:
<!-- Include ready-made page definitions -->

<!-- Required for Web Sections -->
<xi:include href="../resources/pages/SectionWeb.xml" />
<xi:include href="../resources/pages/Bookmark.xml" />
<xi:include href="../resources/pages/Clipping.xml" />

<!-- Required for Settings Section -->
<xi:include href="../resources/pages/SectionSettings.xml" />
 103

Hello World 1: Application Creation
Adding ready-made Sections

 6
<!-- Required for Help Sections -->
<xi:include href="../resources/pages/SectionHelp.xml" />

<!-- Required for Java Sections -->
<xi:include href="../resources/pages/SectionJava.xml" />

These <xi:include> elements include the contents of the files specified with the href
attributes into this PageTemplates.xml file.

The comments indicate the includes that are required for each ready-made Section type.

The paths in the SDK to the referenced files are not as they appear here because the
framework assumes the paths start in the run-time common-resources.zip file. To view the
Page definitions, open the appropriate files here:

pepper-sdk/lib/common-resources-zip/resources/pages/

These included files contain Page definitions that are needed by the ready-made Sections.
For example, you have added a <section> to FactoryBuild.xml with the following
attribute: type=”web”. This means there must be a Page definition in PageTemplates.xml
whose type is web. SectionWeb.xml, the first of the included files, provides the web Page
definition.

Note: <xi:include> elements are only used for ready-made objects that are used
across multiple applications and that are included with the SDK. <xi:include> elements
are not recommended for your applications.

c. Save and close PageTemplates.xml.

3. Modify PackageStrings.properties to add key-value pairs that provide display text for the Tabs,
as follows:

a. Open PackageStrings.properties in an appropriate editor.

The file is as follows:

#Labels on new Section Tab
Namekey.HelloWorld=Hello World Main Tab

#TODO: Uncomment these when adding ready-made Web, Help and Settings Tabs
#NameKey.WebSection=Web
#NameKey.Help=Help
#NameKey.Settings=Settings

b. Uncomment the three lines with the key-value pairs for the Web, Help, and Settings tabs.

c. Save and close PageTemplates.xml.

4. Rebuild Hello World.

The build procedure was previously discussed.

See “Building an Application” on page 11-191.

5. Depending on your development model, you may have to take steps to provide the framework
with the new build files, as previously discussed.

See “Refreshing an application in the framework” on page 12-202.

6. Relaunch the Hello World application, and check out the new Web, Help, and Settings Tabs.
104

Hello World 1: Application Creation
Customizing the display with CSS

6

Procedure complete.

Customizing the display with CSS
Now that you have generated an HTML page and displayed it, you may want to customize its
appearance. CSS stylesheets are used for this. You can link the HTML page to a ready-made
stylesheet that is included with the SDK, or link to your own. In either case, the link in the generated
HTML is made by using the XSL transform to generate a <link> element in the HTML that uses
the standard CSS href, rel and type attributes.

Link to the ready-made CSS stylesheet as follows:

<link href="{$platform}/resources/styles/styles.css"
rel="stylesheet" type="text/css" />

Note: $platform is a framework parameter that provides the path to the
common-resources.zip file in the framework installation, which includes the ready-made
CSS stylesheet. The curly braces are standard XSL syntax for referencing attribue value
templates. See “Framework parameters passed to XSL” on page 4-68.

Tip: You can familiarize yourself with ready-made CSS styles by opening styles.css,
which resides here:

 pepper-sdk/lib/common-resources.zip/resources/styles/styles.css

You can link to your own CSS stylesheet by putting the stylesheet in the Phase1/design directory
and then linking to it as follows:

<link href="{$design}/design/(yourStylesheet).css" rel="stylesheet"
type="text/css" />

Note: $design is a framework parameter that provides the path to the run-time design.zip
file for the application. This file is created by the build and replicates the application’s design
directory in the SDK. See “Framework parameters passed to XSL” on page 4-68.

This procedure modifies Hello World’s generated HTML to link to a ready-made style sheet and to
link to a stylesheet you create.

Procedure.

1. Open helloWorldMain.xsl for editing, and add the <link> to the ready-made CSS stylesheet
as follows:

a. Uncomment the following element:
<link href="{$platform}/resources/styles/styles.css"

rel="stylesheet" type="text/css" />

Note: This makes use of the $platform parameter discussed previously.

b. Modify <h1>Hello World!</h1> to be <h1 class=”Heading”>Hello
World!</h1>.

Note: Heading is a class in styles.css

c. Save the file.
 105

Hello World 1: Application Creation
Customizing the display with CSS

 6
d. Observe the different display style of “Hello World!” by rebuilding the application, if
necessary, making the new build accessible to the framework, and relaunching Hello
World.

Note: From now on it is assumed you can build applications and update the framework with
them. These topics are covered in: “Building Applications” on page 11-189.

2. Create your own CSS stylesheet and add a link to it and an HTML element to use it, as follows:

a. Create and open for editing a file named myStyles.css in the application’s design directory.

b. Add the following text:
/* My styles */

Div.myPage {
/* Contain all page HTML and position it below the ToolBar */

position:fixed;
top: 32px;

}

.myFirstStyle {
font-family:arial, helvetica, sans-serif;
font-size: 24px;
line-height: 32px;
color: 00aaff;

}

c. Save the file.

a. In helloWorldMain.xsl, insert the following <link> element right after the <link> element
you uncommented previously:

<link href="{$design}/design/myStyles.css" rel="stylesheet" type="text/css" />

b. Also in helloWorldMain.xsl, modify the <body> element to be as follows:
<body>

<!--create a div with class myPage to contain and position all page contents -->
<div class="myPage">

<!-- Display Hello World messages -->
<h1 class="Heading">Hello World!</h1>
<div class="myFirstStyle">Hello World!</div>

</div>
</body>

The <div class=”myPage”> element encloses all the page’s HTML and positions it using
the myPage class in myStyles.css.

The <h1 class="myFirstStyle"> element display’s “Hello World!” using the
myFirstStyle class in myStyles.css.

c. Save the file.

d. Rebuild the application and relaunch Hello World.

Procedure complete.
106

Hello World 1: Application Creation
What’s next

6

What’s next
This completes the first phase of the Hello World application.

The next phase adds Pages and toolbars.

See “Hello World 2: Pages and ToolBars” on page 7-109.
 107

Hello World 1: Application Creation
What’s next

 6
108

7

Hello World 2:
Pages and ToolBars
This chapter is Phase Two of the Hello World application development tutorial.

Overview
By the end of the last chapter, you created a Hello World application that had a Section with a single
Page (its SectionPage) that, when transformed by XSL, resulted in HTML whose display styling you
controlled with CSS stylesheets. In this chapter, you develop the application further.

However, first note that this chapter is organized differently from the first Hello World chapter. In the
first Hello World chapter, the procedures provided detailed steps for making each and every edit to
each and every file.

This chapter takes a different approach:

This chapter starts with a description of the revised Hello World application, including a look at
its user interface.

Then, key topics necessary for developing the revised Hello World are discussed and
explained.

The revised source files are provided with the SDK in the following directory:
pepper-sdk/applications/HelloWorldResources/Phase2/design/.

Note: The discussions assume you examine the relevant source files.

Finally, we provide a few simple procedures for creating the necessary revised source files in
your SDK directory and building and launching the revised application.

Description of the revised Hello World application
There’s a new Section that displays a table of “worlds”. (The first time the program runs, there are
no worlds, but users can add them.)

All worlds are listed in the table by their names. But, there is more to a world than just its name.
Each world has a number of other characteristics, such as days in a year, hours in the day, whether
 109

Hello World 2: Pages and ToolBars
Description of the revised Hello World application

 7
it has life, and so on. All world characteristics are defined on another Page, of which there is one
instance for each world.

Figure 7–1 on page 7-110 shows the “worlds” SectionPage that lists all worlds.

Figure 7–2 on page 7-111 shows the “world” Page for a single world instance.

The user can select a world from the table in the main Page (the SectionPage), then:

Click a toolbar Edit button to replace the worlds SectionPage with a world Page that displays
the selected world’s characteristics and allows the user to edit them.

Click a toolbar Delete button to delete the selected world’s Page.

The user selects a world on the worlds SectionPage with a radio button. So, for each world in the
table there is a dedicated radio button.

The user can create a world with a toolbar New button, which displays an empty world Page they
use to define the world.

When the user is done editing (or creating) a world, they click a toolbar Done button to bring them
back to the worlds SectionPage, which displays an updated table of all worlds.

Figure 7–1 Worlds SectionPage
110

Hello World 2: Pages and ToolBars
Hello World’s programmatic structure

7

Figure 7–2 World Page

Now let’s drill into the programmatic details to scope out the work that needs to be done to develop
this application.

Hello World’s programmatic structure
Let’s start with the Section declaration and Page definitions, then show how these result in a
run-time instantiation of Pages.

Note: For information about Sections, Pages, their XML files and their dynamic run-time
structure, see “Sections and Pages” on page 4-32.

Section declarations, Page definitions and caching rules
There’s a new Section.

A new Section declaration is added to FactoryBuild.xml. Its displayed Tab text derives from a
new key-value pair (the key is NameKey.Worlds) added to PackageStrings.properites.

See FactoryBuild.xml and PackageStrings.properties.xml in:

pepper-sdk/applications/HelloWorldResources/Phase2/design/

There’s a new worlds SectionPage for the new Section.
 111

Hello World 2: Pages and ToolBars
Hello World’s programmatic structure

 7
See PageTemplates.xml in:

pepper-sdk/applications/HelloWorldResources/Phase2/design/

The SectionPage definition is enclosed in a <sectionPage type=”worlds”> element.

The SectionPage’s new XSL stylesheet is indicated with the
<template>design/worlds.xsl</template> element.

The SectionPage definition specifies its default Page type with the
<defaultPageType>world</defaultPageType> element. Notice that world is the exact
type defined in the Page explained below. This determines the type of new Pages added to
the Section at run-time when the type is not specified.

The SectionPage has to implement cache rules to acquire each Page’s <worldName> element
in order to display world names in the table. This is specified with the <cacheRules> element.

For information about caching, see “Caching” on page 4-53.

The SectionPage has a table created from the cached <worldName> elements. This is
implemented through the SectionPage’s XSL stylesheet, not the Page definition. This is
discussed later.

Observe also that the main SectionPage has no elements defined for itself, other than the
required, empty <section /> element.

The Page definition for the world Page specifies a set of elements, each of which holds a
specific piece of user-editable data about the world, such as its name, the number of days in its
year, and so on.

See PageTemplates.xml in:

pepper-sdk/applications/HelloWorldResources/Phase2/design/

As covered previously, the Page’s <worldName> element is the source of the caching into the
parent SectionPage for use in the displayed table of worlds.

As with all Pages, the new Page needs an XSL stylesheet whose name is specified as
world.xsl in its <template>design/world.xsl</template> element.

A run-time instantiation
Now, let’s take a look at a possible run-time instantiation of these declarations and definitions.

Suppose a user has created two worlds. The result would be a run-time structure with a single
SectionPage XML instance file (for the table of worlds) and two Page XML instance files (one for
each created world).

The SectionPage XML instance file has a <page> element for each Page instance. Each <page>
element’s id attribute specifies the Page’s XML instance file. And, each of these <page> elements
includes the cached <worldname> element.

This is shown in Figure 7–3 on page 7-113.

See the complete XML instance files here:

“Worlds SectionPage sample” on page A-203

“World Page sample” on page A-204
112

Hello World 2: Pages and ToolBars
Hello World’s programmatic structure

7

Figure 7–3 A sample run-time structure with caching

Toolbar buttons link to JavaScript and framework Actions
Before discussing the XSL stylesheets that actually create Pages (including each Page’s toolbar
and buttons), let’s consider the two new toolbars.

Note: For additional information, see “Generating Page toolbars” on page 4-47.

The worlds SectionPage toolbar has the following three buttons:

New
This directly calls the NewPage framework Action and passes it the type of Page to create. In
this case, we pass world, which results in replacing the current SectionPage with a new
instance of a Page of type world.

For information about Actions, see “Java Actions” on page 4-66.

Edit
This first calls a JavaScript function whose purpose is to determine which radio button is
selected, then to pass its value to the framework ShowPage Action.

Run-Time Instantiation StructureDefinition Structure

SectionPage

Page
<worldName>
<(others)>

Section
 Tab

SectionPage

<page id=”data/111”>
<worldName>

</page>
</worldName>

earth

<page id=”data/222”>
<worldName>

</page>
</worldName>

mars

Page <worldName> elements are cached to the SectionPage

<page id=”data/111”>
<worldName>

<(others)>
</worldName>

earth

<page id=”data/222”>
<worldName>

<(others)>
</worldName>

mars

id attributes specify the Page directory and filename

Pages
 113

Hello World 2: Pages and ToolBars
Hello World’s programmatic structure

 7
As noted, there’s a radio button for each world Page. The radio buttons are in a group named
worldPicker. Each radio button has a value that is set to the id of the Page for the
particular world.

After the JavaScript determines the id of the Page for the selected world, it calls the ShowPage
framework Action and passes it the id, which it has first bundled into a framework URL as
required by the ShowPage Action.

For information about using JavaScript to trigger Java Actions, see “JavaScript and Mozilla
LiveConnect” on page 4-62.

Delete
Like Edit, this first calls a JavaScript function to determine the id of the selected world. The
function then calls the DeletePage framework Action and passes it the id, which it has first
converted it into array (with one element), as required by the Show Page Action.

The world Page toolbar has one button:

Done
This directly calls the ShowTabContents framework Action, which replaces the current Page
with the Section’s SectionPage.

The world Page toolbar requires no JavaScript.

Now that we have an understanding of the way the toolbar buttons work, let’s consider
implementation details.

Creating the toolbars: a closer look
Toolbars in the SectionPage and Page HTML are generated by each Page’s XSL stylesheet. We’ll
look at each separately next.

Creating toolbars and buttons in worlds.xsl
The following snippet from the SectionPage’s worlds.xsl file creates the world SectionPage’s
toolbar and buttons.

Example 7–1 Creating toolbars and buttons in worlds.xsl

<pepper:pagebar class="PageBar" id="pb-{$packageId}" package="{$packageId}">
<!-- create three toolbar buttons -->

<pepper:pagebarentry key="PageBar.New" action="NewPage" param="world" />
<pepper:pagebarentry key="PageBar.Edit" script="showSelectedPage()" />
<pepper:pagebarentry key="PageBar.Delete" script="deleteSelectedWorld()" />

</pepper:pagebar>

The toolbar itself is the <pepper:pagebar> element, with required attributes as shown.

The $packageId XSL parameter, which equals the packageId parameter that is passed to all
XSL transforms by the framework, is required to set up the toolbar.

For information about framework parameters, see “Framework parameters passed to XSL” on
page 4-68.

Each button is a child <pepper:pagebarentry> element.
114

Hello World 2: Pages and ToolBars
Hello World’s programmatic structure

7

The displayed button text is determined by the key attribute value, which is a key-value pair.

The particular keys used here (Pagebar.New, Pagebar.Edit, and Pagebar.Delete) are
defined in the framework’s CommonStrings.properties file, which resides in the
pepper-sdk/lib/common-resources.zip file, in its resources/catalogue subdirectory.

To define application-specific key-value pairs, use the
pepper-sdk/applications/(application)/design/PackageStrings.properties file.

Each button calls a JavaScript function through with the script attribute or a framework Action
with the action attribute.

Now, let’s take a look at how the buttons call framework Actions and JavaScript functions.

New button

With action=”NewPage”, the button directly calls the NewPage framework Action. The
NewPage Action requires a param attribute whose value specifies the type of Page to create.
That Page type must be (and is) defined in PageTemplates.xml.

Note: Many framework Actions require parameter(s) of a specific type. Check the SDK API
javadoc class documentation for the com.pepper.platform.program.actions package. See
“Javadoc” on page 2-20.

Edit button

With script=”showSelectedPage()”, the button calls the JavaScript function
showSelectedPage(), which resides in the helloWorld.js file that is included in the generated
HTML with a <script> element. The showSelectedPage() JavaScript function calls the
framework ShowPage Action. See “Drilling into helloWorld.js” on page 7-120.

Delete button

With script=”deleteSelectedWorld()”, the Delete button calls the JavaScript function
deleteSelectedWorld(), which also resides in the helloWorld.js file. The
deleteSelectedWorld() JavaScript function calls the framework DeletePage Action. See
“Drilling into helloWorld.js” on page 7-120.

Creating toolbars and buttons in world.xsl
The following snippet from the Page’s world.xsl file creates the world Page’s toolbar and button.

Example 7–2 Creating toolbars and buttons in world.xsl

<pepper:pagebar class="PageBar" id="pb-{$packageId}" package="{$packageId}">
<!-- create one toolbar button -->
<pepper:pagebarentry key="PageBar.Done" action="ShowTabContents" />

</pepper:pagebar>

The Done button directly triggers the ShowTabContents framework Action, which does not require
any parameters.

Drilling into world.xsl
We’ve seen how the toolbars are created by the XSL stylesheet source files.
 115

Hello World 2: Pages and ToolBars
Hello World’s programmatic structure

 7
Now let’s review the world.xsl file.

Note: We start with world.xsl, even though it is the Page, and not with worlds.xsl, the parent
SectionPage, to build up the picture from the bottom up so that we can then more easily
see how the SectionPage’s worlds.xsl is able to create a table of worlds from world XML
instance files that were previously created by the user.

Tip: It is recommended that you open the world.xsl source file included with the SDK in the
following location:

pepper-sdk/applications/HelloWorldResources/Phase2/design/

First comes the required <xsl:stylesheet> element with required namespace declarations
and Xalan XSL processor configuration.

For information, see “Required XSL namespaces and Xalan configuration” on page 4-69.

<xsl:output method="html" /> sets the output file type to HTML.

Three framework parameters are accepted into the stylesheet with the <xsl:param>
elements.

For information, see “Framework parameters passed to XSL” on page 4-68.

The first (and only) <xsl:template> matches the root element (match=”/”) in the XML
instance file.

The root element is <page>. For information, see “SectionPage and non-SectionPage concept”
on page 4-35.

The <title> is set from the Page’s <worldName> element using the framework Elements
class nameString() method.

See javadoc for com.pepper.script.Elements.

Elements class methods (such as Elements.nameString()) are available because pepper is
defined as an extension-element-prefix and the Xalan XSL processor is configured to
access the Elements class for pepper prefixed elements.

See “Required XSL namespaces and Xalan configuration” on page 4-69.

The nameString() method takes the $packageId framework parameter and an xpath that
identifies the element from which to retrieve the text. These parameters must be passed using
the syntax shown in this example.

This xpath is an absolute xpath that starts from the root element of the JDOM document object
that represent the Page data. The current position in the Page XML with respect to the current
XSL transform is irrelevant. That is, that we have already matched the root element in our XSL
transform (with the <xsl:template match="/"> statement) is meaningless to the
nameString() method, which requires an absolute path to the target element.

Since our goal here is to obtain the <page> element’s child <worldName> element and use its
text to set the HTML <title>, the absolute path is /page/worldName.

Note: The <title> is not actually displayed in the framework. However, this
demonstrates key points required to develop full-featured applications.

A <meta> tag is generated that indicates the mime type (“text/html”) and that the character set
is (UTF-8).
116

Hello World 2: Pages and ToolBars
Hello World’s programmatic structure

7

Note: In the current release of these tutorial files, the XSL processor is not explicitly told to
generate HTML files using the UTF-8 character set.

Two CSS stylesheets are linked in: one is the framework stylesheet, the other is the
user-defined stylesheet you created in the last chapter.

The LiveConnect bridge is initialized with the <pepper:initscriptbridge
package="{$packageId}" /> element.

See “JavaScript and Mozilla LiveConnect” on page 4-62.

The Page’s toolbar and buttons are created.

We have already discussed this in detail. See “Creating toolbars and buttons in world.xsl” on
page 7-115.

A <div class=”myPage”> element is added to hold all subsequent HTML and position it
below the toolbar.

A <div> element holding a header message is provided, followed by a <p> tag that provides
vertical white space through the application-specific verticalSpacer20 CSS style.

A <form> element is provided to enclose a table that includes input elements.

The <form> element must wrap input elements whose data is to be stored in the XML instance
file. See “Connecting displayed data to Page data” on page 4-58.

The <table> is created.

The table has two columns, the first for a text label derived from the PackageStrings.properties
file and the second for a text input field or checkbox.

The first cell of each row is created with a <pepper:textString> element.

As we saw previously, the pepper prefix connects this element to the Elements.textString()
Java method. (See javadoc.) This method takes two parameters that must be passed as
attributes, as in this example.

The <pepper:textString> element is used to set the HTML display text from the
PackageStrings.properties file in order to support localization, instead of simply entering the
text directly into the XSL transform.

For information about localization, see “How to localize for different languages” on
page 10-177.

Each key (for example key="Label.Name") is (and must be) unique in
PackageStrings.properties. The key corresponds to a value, in this case to World name. Here
is the relevant line in PackageStrings.properties:

Label.Name=World name

When generating the HTML for display, the framework looks up the key and retrieves the
corresponding value.

See the PackageStrings.properties source file at:

 pepper-sdk/applications/HelloWorldResources/Phase2/design/

The second cell of each row is populated either with an HTML <input type=”text”...>
element, a <pepper:checkbox ...> element, or a series of <pepper:radiobutton
...> elements.
 117

Hello World 2: Pages and ToolBars
Hello World’s programmatic structure

 7
Let’s take a closer look at these input fields to understand how user-entered data is saved into
the XML instance file.

<input type=”text”...> and <pepper:checkbox ...> elements have a value
attribute and an xpath attribute. For example:

<input type="text" id="distanceFromSun" value="{/page/distanceFromSun}"
xpath="/page/distanceFromSun" />

The value attribute’s value must be in curly braces and is an absolute XPath expression that
locates the item in the Page data XML to display.

For example, value="{/page/distanceFromSun}" selects the root node’s (<page>)
distanceFromSun child and displays its contents in the generated HTML. In this case, the
content is text and is displayed in a text input element. In the case of a <pepper:checkbox>
element, the value is true or false in the XML data and is displayed as a checked or
non-checked box accordingly (true displays as checked, false as unchecked).

The xpath attribute enables a framework capability to store the user-entered value into the
Page XML data. The xpath attribute’s value is also an absolute XPath location expression, but
it is not enclosed in curly braces.

For example, xpath="/page/hasLife" selects (in the Page XML data) the hasLife child
of the root page node and saves into it the user entered value, in this case a checkbox’s
true|false setting.

In the case of the <pepper:radiobutton...> element, the storedvalue attribute is used
instead of the value attribute to specify the source of the information to display. This is
because the value attribute is already used for a different purpose. It is the value attribute
that differentiates radio buttons with the same id. What is stored in the Page XML data is the
value attribute of the currently selected radio button. It is stored in the element specified with
the xpath attribute.

Note: For information about the <pepper:checkbox> element, see the SDK API javadoc
and look at the checkbox() method of the Elements class. For information about the
<pepper:radiobutton> element, look at the Elements class’s radiobutton()
method.

The rest of the XSL file simply completes the table, the HTML and the stylesheet.

Drilling into worlds.xsl
worlds.xsl has the task of generating an HTML page with a table. The number of rows in the table
varies depending on the number of worlds the user has created. As we have seen, for each world,
there is both:

An XML instance file for the world Page, and

A cached <page> element (with a child <worldName> element) in the Worlds.xml instance file.

Note: Each <page> element has an id attribute whose value specifies the XML instance
file for the world Page, which is created automatically through cache rules. For information,
see “Caching” on page 4-53.

Let’s take a look at the distinctive events in worlds.xsl.
118

Hello World 2: Pages and ToolBars
Hello World’s programmatic structure

7

worlds.xsl creates an HTML header, links CSS stylesheets, initializes the LiveConnect bridge,
and includes an external JavaScript file.

The HTML body is created, and the toolbar is added.

The toolbar was previously discussed in “Creating toolbars and buttons in worlds.xsl” on
page 7-114.

An HTML table is created.

The first row displays text derived from PackageStrings.properties by referencing the
Label.Name key using the <pepper:textstring> element, as previously described.

For the remaining table rows, worlds.xsl uses an XSL for-each loop to find each <page> of
type=”world”.

For each <page> of type=”world” found, an XSL template is executed that matches
<page>’s child <wordName> element. This template creates a radio button in a group named
worldPicker whose value is the id attribute of the parent <page> element, which, as we
have seen, specifies the world XML instance Page. Because of how HTML radio button groups
work, when the user selects a particular radio button, the value of the group becomes the value
of the selected button, which specifies the world XML instance file.

Note: We are not using the <pepper:radiobutton> element here because its purpose
is to store the user-selected buttons value in the XML instance file. In this case, we are
merely using the radio button to select the row of the table with the desired world, so the
standard HTML radio button suffices.

Note: XUL is supported by Firefox and therefore by the Framework. XUL has facilities for
determining a table’s selected row. This approach could be followed instead of the radio
button approach used here. For an example, see the Remote Desktop application bundled
with the SDK.

Let’s take a closer look at the XSL for-each loop that creates a new table row for each cached
world.

The <xsl:for-each select="section/page[@type='world']"> ...
</xsl:for-each> statement uses the section/page[@type='world'] XPath
expression to find every world Page. The square brackets are used in XSL to filter what is being
selected.

Recall that the worlds.xsl stylesheet is operating on the data portion (everything inside the
<body> element) of the SectionPage XML Page file. See an example of this XML instance file
here: “Worlds SectionPage sample” on page A-203.

The XPath expression section/page[@type='world'] says: find every <section>
element that has a <page> child element that has a type attribute whose value is world.
Looking at the XML instance file indicated above, you can see there are four matching cases.

The <xsl:for-each> statement iterates with each of these matching cases. With each it
applies all matching XSL templates, of which there is one: <xsl:template
match="worldName">

The <xsl:template match="worldName"> template applies sequentially to each the
previously selected node and continues building the table.

First, it creates a radio button whose value attribute is set to the parent <page> element’s id
attribute. Refer again to the XML instance file, and bear in mind that our current XSL node is
the <worldName> element. It’s parent <page> element’s id attribute specifies the actual XML
 119

Hello World 2: Pages and ToolBars
Hello World’s programmatic structure

 7
instance file of the world Page for example: data/1148582938729. This specifies a file
named 1148582938729.xml that resides in the Hello World installation subdirectory named
data.

Note: The framework adds the xml extension to the id attribute.

The radio button’s value attribute (which identifies the Page) is not displayed in the HTML, but
is passed by a JavaScript function to a framework Action to edit or delete the selected Page.

After setting up the radio button, worlds.xsl creates the second cell in each table row, simply
getting the text saved in the <worldName> element and displaying it.

After this, the table and HTML are completed.

Drilling into helloWorld.js
This tutorial assumes knowledge of JavaScript. Our main focus here is here is how the JavaScript
functions call framework Actions. However, each function must first derive the value of the selected
radio button, which is described next.

Getting the selected radio button value
As noted above, the JavaScript functions showSelectedPage()and
deleteSelectedWorld() both extract the radio button group’s value before calling their
respective framework Actions. Both JavaScript functions must handle two cases:

When there is a single radio button, in which case the radio button group is treated syntactically
as a scalar data type (not an array), and

When there are two or more radio buttons, in which case they are treated as an array.

Both functions do this by testing for the length of the radio button group object. If it is undefined,
then the current radio button value is accessed as a scalar data type. Otherwise, it is accessed as
an array, in which case a for loop is used to iterate through the array to find the particular radio
button that is selected, get its array index, and then use that to get the selected button’s value.

In all cases, the value of the selected radio button is then loaded into a variable named xmlId.

See the helloWorld.js source code in the following directory:

pepper-sdk/applications/HelloWorldResources/Phase2/design/

Once the xmlId variable has the selected radio button value, it is passed to the appropriate
framework Action, as discussed next.

Framework Actions from JavaScript
Framework Actions are called from JavaScript as follows:

bridge.action('(ActionName)', (comma-separated parameter list));

The LiveConnect bridge is initialized by the framework as a result of the
<pepper:initscriptbridge> element earlier in the XSL transform. This initialization occurs
after the HTML page has been entirely loaded.
120

Hello World 2: Pages and ToolBars
Setting up the new source files

7

Calling the ShowPage framework Action
The ShowPage Action takes a parameter that identifies a single XML instance Page to display. The
parameter must first be packaged into a string that provides a framework URL to the desired XML
instance file in a specific form:

pepper://HelloWorldPhase2-0/data/1149?isPage=true

Where:

pepper://HelloWorldPhase2-0 is defined with the $packageID framework parameter,

data/1149 is the XML instance file specification derived from the selected radio button, and

?isPage=true is required to complete the URL.

The showSelectedPage() function creates the required parameter and calls the ShowPage
framework Action, as follows:

var url = "pepper://" + packageId + "/" + xmlId + "?isPage=true";
bridge.action('ShowPage', url);

As explained above, the xmlId variable already specifies the directory and name of the XML
instance file (without its xml extension, which is added by the framework).

Calling the DeletePage framework Action
The DeletePage framework Action takes a parameter that identifies a single XML Page to delete.
The parameter must first be packaged into an array, even if there is only a single Page to delete,
as is the case here.

The deleteSelectedWorld() function first creates an array with a single element (the Page to
delete) and then passes it to the DeletePage framework Action as follows:

idArray[0]=xmlId
bridge.action('DeletePage', idArray);

As explained above, the xmlId variable specifies the directory and name of the XML instance file
(without its xml extension, which is added by the framework).

Setting up the new source files
This procedure covers creating the working version of the current phase of the Hello World
application from source files provided with the SDK.

Procedure:

1. Copy the following directory:

pepper-sdk/applications/HelloWorldResources/Phase2

2. Paste the copied directory into:

pepper-sdk/applications/

You should now have the following directory:
 121

Hello World 2: Pages and ToolBars
Build, launch and use the revised application

 7
pepper-sdk/applications/Phase2

Procedure complete.

Build, launch and use the revised application
This procedure covers launching the Phase Two of Hello World and observing the changes in XML
instance files as worlds are created and deleted.

Procedure:

1. Build and launch the application.

Note: It is now on it is assumed you can build applications and update the framework with
them. For information, see “Building Applications” on page 11-189.

2. Make new worlds and observe how the contents of the XML instance files change by opening
the files residing here:

(KeeperInstallDirectory)/Phase2-0/data

Procedure complete

What’s next
This completes the second phase of the Hello World Tutorial.

The next phase adds Java.

See “Hello World 3: Getting Started with Java” on page 8-123.
122

8

Hello World 3:
Getting Started

with Java
This chapter is Phase Three of the Hello World application development tutorial.

This chapter explains how to add a Java Section that contains a Java ToolBar with ToolBarButtons
that write user-entered messages to the framework log and to the framework Status Bar.

Overview
This section provides introductory information regarding Phase Three of the Hello World Tutorial.

Prerequisites
Completion of or familiarity with the previous Hello World application development stages

A working knowledge of Java

Framework concepts and requirements explained in “Framework and Application Architecture”
on page 4-27

Java Section concepts and requirements explained in “Java Sections” on page 4-49

Hello World’s new functionality
Phase Three of the Hello World Tutorial adds a Java Section with the following user interface
widgets:

A ToolBar with two ToolBarButtons

These are instances of framework classes, not Swing classes.

See javadoc for com.pepper.guiutils.ToolBar and com.pepper.guiutils.ToolBarButton.

Although you can use Swing JToolbar and JButton classes, using the framework classes
enables you to control the ToolBar's colors and fonts (along with those in other Sections and
applications) from a single CSS stylesheet.

See “Customization with CSS” on page 10-154.

One button retrieves text from a text field and writes it to the framework log.
 123

Hello World 3: Getting Started with Java
Overview

 8
The other button retrieves text from a text field and writes it to the framework Status bar.

For information about writing to the framework log, see “Event notification” on page 4-77.

For information about viewing the framework log file, see “Keeper event log” on page 2-19.

For information about writing to the framework Status Bar, see “Event notification” on
page 4-77.

A JTextField

The text entered into this field is either written to the log or Status Bar.

A JTextField that displays messages indicating success of ToolBarButton actions

A JButton

Clears the text fields

The following figure shows the revised Hello World application’s new Java Section.

Figure 8–1 Hello World’s new Java Section

Source files
The revised source files for this phase of the Hello World project are here:

pepper-sdk/applications/HelloWorldResources/Phase3/
After the new functionality’s conceptual basis is explained through code examples and discussion,
there’s a procedure in which you copy this directory’s source files to a working directory to enable
building and running the revised application.
124

Hello World 3: Getting Started with Java
Understanding the code

8

Understanding the code
This section explains the new functionality through code snippets and discussion.

Note: It may be helpful to examine the source files. See “Source files” on page 8-124.

Declaration and definition files
This section explains the modifications required to Hello World’s declaration and definition files:

FactoryBuild.xml

PackageStrings.properties

PageTemplates.xml

This section also discusses the prebuilt directory. Every Java Section requires a pre-built
SectionPage.

After this section, the modifications required to Hello World’s Java files are discussed.

FactoryBuild.xml
As explained previously, all Sections must be declared in FactoryBuild.xml.

The new Java Section is declared as follows:

Example 8–1 Defining the new Java Section in FactoryBuild.xml

<!--Definition of LogStatusbarJavaSection Section -->
<section name="NameKey.LogStatusbarJava" type="java"

id="data/LogStatusbarJava" deletable="true"
src="../prebuilt/LogStatusbarJava" />

Key points:

The name attribute obtains its value from a new key in PackageStrings.properties.

The type attribute value is and must be java when declaring a Java Section.

This informs the framework that this is a Java Section.

For information on Section types, see “<section>” on page B-219.

The id attribute value specifies the filename (without any file extension) of the Java Section’s
pre-built SectionPage XML file.

Since Java Sections are pre-built by definition, the pre-built file named by the id attribute must
be in the application’s SDK directory specified by the src attribute, as explained next.

The src attribute refers to a directory in which the Java Section’s pre-built SectionPage XML
file resides.

For information, see “Pre-built Pages” on page 4-69.
 125

Hello World 3: Getting Started with Java
Understanding the code

 8
PackageStrings.properties
A new key-value pair is added to PackageStrings.properties to contain the text displayed on the
Java Section’s Tab, as follows (bold):

Example 8–2 Defining a new key-value property to provide the Section Tab text

#Section text labels
NameKey.HelloWorld=Hello World Main Tab
NameKey.Worlds=Worlds
NameKey.LogStatusbarJava=Log & Status Bar
NameKey.WebSection=Web

PageTemplates.xml
An application with a Java Section must have a PageTemplates.xml file that includes the
ready-made SectionJava.xml file. This file includes contains a SectionPage definition for Java
Section SectionPages. The line to include SectionJava.xml is as follows (in bold):

Example 8–3 Including SectionJava.xml into PageTemplates.xml

<!-- include shared page and section definitions in platform -->
<xi:include href="../resources/pages/SectionWeb.xml" />
<xi:include href="../resources/pages/Bookmark.xml" />
<xi:include href="../resources/pages/Clipping.xml" />
<xi:include href="../resources/pages/SectionSettings.xml" />
<xi:include href="../resources/pages/SectionHelp.xml" />
<xi:include href="../resources/pages/SectionJava.xml" />

The pre-built directory and pre-built Page
Each Java Section requires an (application)/prebuilt/(sectionDirectory) directory and Page,
where:

(sectionDirectory) is the directory defined in the src attribute of the <section> element in
FactoryBuild.xml, and

The pre-built Page (residing in that directory) has the proper format.

See “Creating the pre-built Page and specifying the Java class” on page 4-50.

Note: Usually one just copies an existing pre-built Page for a working Java Section and
modifies its filename and its various contained attributes appropriately.

Note: The filename of the pre-built Java Section XML page can be anything.

The pre-built Page must have a <section> element whose type is java and whose id
attribute is that same as the Section’s <section> id attribute value defined in
FactoryBuild.xml.

The pre-built Page must have a <java> element whose classname attribute identifies the
Java class to execute in the Java Section.
126

Hello World 3: Getting Started with Java
Understanding the code

8

The following example shows the pre-built Page.

Example 8–4 Java Section’s pre-built Page

<?xml version="1.0" encoding="UTF-8"?>
<pageFile deletable="false">

<header>
<packageName>Hello World Phase 3</packageName>
<packageVersion>1.0</packageVersion>
<template></template>
<noCache>0</noCache>
<defaultPageType>default</defaultPageType>
<createDate utc="1121110270523" />

</header>
<body>

<section name="LogStatusbarJava" type="java" id="data/LogStatusbarJava">
<java classname="com.pepper.HW.LogStatusbarJavaSection" />

</section>
</body>

</pageFile>

Java Section’s Java
This section discusses the Java aspects of the new Java Section.

One new Java source file is required
There is a single Java source file that must be created:

LogStatusbarJavaSection.java

LogStatusbarJavaSection.java provides the Java code that executes in the new Java Section. As
such, it implements the rules explained in “Java Sections” on page 4-49, as covered in the following
sections.

LogStatusbarJavaSection.java location
LogStatusbarJavaSection.java resides in the application’s SDK src/ directory in a subdirectory
consistent with its package path. In this case the package path is:

com.pepper.HW

Therefore, LogStatusbarJavaSection.java resides here:

pepper-sdk/applications/Phase3/src/com/pepper/HW/

LogStatusbarJavaSection.java therefore must use the following package statement:

package com.pepper.HW;

Extending java.awt.Component and implementing
JavaSectionComponent

Java Section classes:
 127

Hello World 3: Getting Started with Java
Understanding the code

 8
Must extend java.awt.Component or a class that extends java.awt.Component, such as JPanel.

Should implement the com.pepper.platform.program.JavaSectionComponent interface.

For information, see “The Java Section class” on page 4-50.

Note: Implementing the JavaSectionComponent interface is only necessary if the class is
to interact with the framework. If the Section merely runs Java and does not need to interact
with the framework in any way, it does not need to implement this interface. However, such
code cannot write to the framework log or to the Status Bar.

The following example shows how the LogStatusbarJavaSection class is declared.

Example 8–5 Declaring the Java Section LogStatusBarJavaSection class

public class LogStatusbarJavaSection extends JPanel implements JavaSectionComponent{
...

}

Implementing initComponent()
Classes that implement the JavaSectionComponent interface must implement initComponent()
method. It is not required that the method contain any working code. However, all Java Section
initialization should be placed in this method instead of in the constructor to ensure it occurs after
the framework has completed its initialization work.

For information, see “Java Sections” on page 4-49.

initComponent() passes:

A reference to the class (AbstractPepperProgram) from which the base class (HelloWorld, in
this case) is subclassed.

A handle to a Properties object.

You can use the reference to the AbstractPepperProgram application base class to gain access to
base class methods, such as:

AbstractPepperProgram.getGSP()

See “GUI services” on page 4-80.

getGSP() provides access to the writeStatus() method, which is used to write to the Status Bar, as
demonstrated below.

To use the writeStatus() method, use the passed AbstractPepperProgram as follows:

Declare a local variable of the same type as the base class (HelloWorld, in this case).

In this code, the helloWorld variable is declared.

Cast the passed AbstractPepperProgram to the base class type (HelloWorld).

Assign the passed reference to your local variable.
128

Hello World 3: Getting Started with Java
Understanding the code

8

The following snippet declares the helloWorld variable.

Example 8–6 Declaring a local variable for the base class

/** Handle for acessing <code>HelloWorld</code>, the application's base class. */
public HelloWorld helloWorld;

The following snippet shows how to implement initComponent(), cast the passed reference to
AbstractPepperProgram (theProg) to the base class (HelloWorld), and assign it to the local
helloWorld variable.

Example 8–7 Getting a reference to the base class

public void initComponent(AbstractPepperProgram theProg, Properties params) {
//get local reference to HelloWorld in order to write to the status bar
helloWorld = (HelloWorld) theProg;

}

The helloWorld object can now access methods used to write to the Status Bar:

AbstractPepperProgram.getGSP().writeStatus(String)

This is covered further below.

ToolBar and ToolBarButtons
This section covers use of the framework ToolBar and ToolBarButton classes.

For more information on these classes, see “Java ToolBars” on page 4-52.

Using these classes instead of Swing classes ensures that:

Their look and feel is consistent with other Java toolbars and toolbar buttons.

Their visual styles (colors and fonts) are derived from the customizable keeper.css file.

For more information on customizing Java visual styling with the keeper.css file, see
“Keeper.css-based customizations” on page 10-159.

First, let’s discuss creating the ToolBarButtons and their associated actions, then show how to
create the ToolBar and add the buttons to it.

Buttons and actions
Each of the two ToolBarButtons and the JButton used to clear the text fields has an action
associated with it. Each action is an inner class that extends AbstractAction and overrides
actionPerformed(ActionEvent).

The following snippet shows one of the inner Action classes.

Example 8–8

protected class WriteToLog extends AbstractAction{
public void actionPerformed(ActionEvent ev) {

try{
log.info(txt_getThis.getText());
txt_result.setText("Text written to log");
 129

Hello World 3: Getting Started with Java
Understanding the code

 8
}catch (Exception e){
txt_result.setText("Write to log failed");

}
}

}

The following snippet shows creation of the three Action objects.

Example 8–9

WriteToLog writeLog = new WriteToLog();
WriteToStatusBar writeStatus = new WriteToStatusBar();
ClearButtonAction clearFields = new ClearButtonAction();

The following snippet shows how the two ToolBarButtons are created using constructors that
receive an Action object and that set the button display text.

Example 8–10

ToolBarButton b1 = new ToolBarButton(writeLog, "Write To Log");
ToolBarButton b2 = new ToolBarButton(writeStatus, "Write To Status Bar");

Creating the ToolBar and adding ToolBarButtons to it
The ToolBar is created as a class level member, as shown in the following:

Example 8–11

/** ToolBar for Section*/
protected ToolBar toolbar = new ToolBar();

ToolBarButtons are added to the ToolBar using the ToolBar.addButton(ToolBarButton)
method, as shown in the following:

Example 8–12

toolbar.addButton(b1);
toolbar.addButton(b2);

Then, the ToolBar is added to the JPanel. The JPanel is set to use BorderLayout and the ToolBar
is added to the BorderLayout.NORTH region, as shown in the following:

Example 8–13

this.setLayout(new BorderLayout());
this.add(toolbar, BorderLayout.NORTH);

Note: The JButton used to clear the text fields is created with its action and added to the
JPanel in a standard Java manner and is not discussed here.

Writing to the log
Writing to the framework log is important for most applications. Let’s take a closer look at how this
is done.
130

Hello World 3: Getting Started with Java
Understanding the code

8

For more information about writing to the framework log, see “Event notification” on page 4-77.

Writing to the log involves three coding steps:

Two import statements in the class file

See Example 8–14.

Creation of a log instance

See Example 8–15.

Actually writing to the log with the log.info(String) or log.error(String) methods

See Example 8–16.

Example 8–14 Log imports

//imports required for writing to the Keeper log
import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;

Example 8–15 Creating a log instance

/** Log instance for writing to Keeper log */
static Log log = LogFactory.getLog("com.pepper.HW");

Note: The package path in double quotes should be the same for all log instances in your
application, regardless of class. See “Event notification” on page 4-77.

Example 8–16 Writing to the log, see bold text

public void actionPerformed (ActionEvent ev){
//the ActionCommand indicates which button was clicked and therefore
//whether to write to the Log or the status bar.
if ("toLog".equals(ev.getActionCommand())){

log.info(txt_writeToLog.getText());
}
if ("toStatusBar".equals(ev.getActionCommand())){

helloWorld.getGSP().writeStatus(txt_writeToStatusBar.getText());
}

}

Writing to the Status Bar
Writing to the framework Status Bar is also important for most applications. Let’s take a closer look
at how that is done.

For more information about writing to the framework Status Bar, see “Event notification” on
page 4-77.

Writing to the Status Bar requires access to the
AbstractPepperProgram.getGSP().writeStatus(String) method, as discussed previously. This
method is accessible from the application’s base class (helloWorld in this example).

Note: It was explained above how the this Java Section class obtains a reference named
helloWorld to the base class.
 131

Hello World 3: Getting Started with Java
Creating the revised Hello World

 8
The following snippet shows how to write to the Status Bar. In this case, the String message that is
written is the text entered into the txt_writeToStatusBar JTextField, therefore the
txt_writeToStatusBar.getText() method is used instead of a simple String message.

Example 8–17 Writing to the status bar

public void actionPerformed (ActionEvent ev){

//the ActionCommand indicates which button was clicked and therefore
//whether to write to the Log or the status bar.
if ("toLog".equals(ev.getActionCommand())){

log.info(txt_writeToLog.getText());
}
if ("toStatusBar".equals(ev.getActionCommand())){

helloWorld.getGSP().writeStatus(txt_writeToStatusBar.getText());
}

}

Creating the revised Hello World
This procedure covers creating the Phase Three of the Hello World application from files source
provided with the SDK.

Procedure:

1. Copy the following directory:

pepper-sdk/applications/HelloWorldResources/Phase3/

2. Past the copied directory into:

pepper-sdk/applications/

You should now have the following directory:

pepper-sdk/applications/Phase3

Procedure complete.

Using the revised Hello World
Build Hello World and make the source files available to the framework, as explained in “Building
Applications” on page 11-189.

Use the new Java Section to write messages to the Status Bar and the framework log.

For information about viewing the framework log, see “Keeper event log” on page 2-19.
132

Hello World 3: Getting Started with Java
What’s next

8

What’s next
This completes the Phase Three of the Hello World Tutorial.

In the next phase, a new Java Section is added that provides a Java user interface for creating and
editing a world.

See “Hello World 4: Advanced Java” on page 135.
 133

Hello World 3: Getting Started with Java
What’s next

 8
134

9

Hello World 4:
Advanced Java
This chapter is Phase four, the final phase, of the Hello World application development tutorial.

This chapter explains how to develop and register Java framework Actions that are triggered from
HTML buttons and Java ToolBarButtons and how to read from and write to Page XML files from
Java. It also shows how to derive text displayed in Java from a properties file in order to support
region and language localization.

Overview
This section provides introductory information regarding Phase Four of the Hello World Tutorial.

Prerequisites
Completion of or familiarity with the previous Hello World application development stages

A working knowledge of Java

Familiarity with Java Actions

See “Java Actions” on page 4-66.

Hello World’s new functionality
In this phase, the following are added to Hello World:

A new Java Section called WorldJavaSection that displays a world Page and allows the user to
edit the world’s data items

WorldJavaSection’s functionality is equivalent to that of the world Page developed previously
in this tutorial. This Section demonstrates how to access Page XML files from Java.

Figure 9–1 on page 9-136 shows the new WorldJavaSection.

The WorldJavaSection Section has a framework ToolBar and ToolBarButton

The WorldJavaSection populates labels in the user interface from a properties file using the
framework MessageCatalog class to demonstrate localization of displayed text in Java
 135

Hello World 4: Advanced Java
Overview

 9
For information about localization, see “How to localize for different languages” on
page 10-177.

A new Java Action named EditJavaAction

EditJavaAction is linked to an HTML button (Edit with Java) on the worlds SectionPage. When
triggered by the button, EditJavaAction receives the Page ID of the user-selected world,
switches focus to the new WorldJavaSection, and populates its widgets from the world’s data
items from its Page data.

Figure 9–2 on page 9-137 shows the revised worlds SectionPage with the new Edit with Java
button.

A new Java Action named DoneJavaAction

DoneJavaAction is linked to a Done ToolBarButton in the new WorldJavaSection. When
clicked, it saves the current world values from the WorldJavaSection’s user interface to the
world’s Page XML file and then returns the focus to the worlds SectionPage.

Note: The user can click directly on the new WorldJavaSection Tab at any time. However,
when focus switches to the WorldJavaSection Section in this way, the WorldJavaSection
is not loaded with the data for a particular world but is empty. The application could be
developed further to hide the WorldJavaSection and its Tab unless the user clicks the new
Edit with Java button on the worlds SectionPage, and then to hide the WorldJavaSection
when the user clicks the WorldJavaSection’s “Done” button.

Figure 9–1 WorldJavaSection
136

Hello World 4: Advanced Java
Understanding the code

9

Figure 9–2 New Edit with Java button on worlds SectionPage

Source files
The revised source files for this phase of the Hello World project are here:

pepper-sdk/applications/HelloWorldResources/Phase4/

After the new functionality’s conceptual basis is explained through code examples and discussion
in the following sections, there’s a procedure in which you copy this directory’s source files to a
working SDK directory to enable building and running the revised application.

Understanding the code
This section explains the new functionality through code snippets and discussion.

Note: It may be helpful to examine the complete source files as you read this discussion.
See “Source files” on page 9-137.

Using the world’s Page ID
In this phase, we use the Page ID of the selected world XML Page file for various purposes. It’s a
bit confusing so here’s a summary followed by a graphic that should help to clarify things:

The Page ID of a world XML Page file is retrieved from the currently selected radio button on
the worlds SectionPage and handed to the EditJavaAction.

The EditJavaAction uses the Page ID to open access world’s Page XML data and load it into
the WorldJavaSection for display and user-editing.

The DoneJavaAction uses the Page ID to save data (that the user may have edited) from the
WorldJavaSection into the correct world Page XML data.

This is shown graphically in the following figure.
 137

Hello World 4: Advanced Java
Understanding the code

 9
Figure 9–3 Using the Page ID

Application declaration and definition files and pre-built directory
This section explains the modifications required to Hello World’s application declaration and
definition files and the new pre-built directory:

FactoryBuild.xml

PackageStrings.properties

PageTemplates.xml

prebuilt/WorldJavaSection

Page ID of currently selected
world specifies world’s Page
XML

Earth’s Page ID:
data/1156349041185.xml

EditJavaAction uses Page ID
to load earth’s Page data into
the WorldJavaSection

DoneJavaAction uses Page ID
to save WorldJavaSection’s
data into earth’s Page data

Earth’s Page data
138

Hello World 4: Advanced Java
Understanding the code

9

FactoryBuild.xml
The new WorldJavaSection is declared in FactoryBuild.xml as follows:

Example 9–1 Declaring the new WorldJavaSection in FactoryBuild.xml

<!--Definition of WorldJavaSection Section -->
<section name="NameKey.WorldJavaSection" type="java"

id="data/WorldJavaSection" deletable="true"
src="../prebuilt/WorldJavaSection" />

As discussed previously:

The type of all Java Sections is type="java".

The id attribute value (id=”data/WorldJavaSection”) identifies the run-time location and
name of the Section’s SectionPage file (without a file extension).

As with all Java Sections, it is pre-built and resides in the SDK in the location specified by the
src attribute.

Note: The WorldJavaSection Section ID is used programmatically for the first time in this
phase of the tutorial. It is used in EditJavaAction to get a handle to the WorldJavaSection
Page file (data/WorldJavaSection.xml) in order to switch focus to it.

PackageStrings.properties
Two key-value pairs are added to PackageStrings.properties:

One provides the text for the new Edit with Java HTML button on the worlds SectionPage.

The other provides the text displayed on the WorldJavaSection Tab.

The following snippet shows the new key-value pairs.

Example 9–2 Defining two new key-value pairs

NameKey.WorldJavaSection=World in Java
Label.EditJava= Edit with Java

PageTemplates.xml
As covered in Phase Three of the Hello World Tutorial, an application with one or more Java
Sections must have a PageTemplates.xml file that includes the ready-made SectionJava.xml file.
This is done by including the ready-made SectionJava.xml file, as shown in the following snippet.

Example 9–3 Including SectionJava.xml in PageTemplates.xml

<xi:include href="../resources/pages/SectionJava.xml" />

The pre-built directory and pre-built Page
As explained in Phase Three of the Hello World Tutorial, each Java Section requires its own
directory inside the (application)/prebuilt directory. This directory is specified to in the
 139

Hello World 4: Advanced Java
Understanding the code

 9
FactoryBuild.xml <section> declaration. Therefore, there’s a new directory:
Phase4/prebuilt/WorldJavaSection.

This new directory contains the pre-built SectionPage XML file for the new WorldJavaSection, as
shown in the following example. Note that the <section> and <java> elements have their
attributes completed as appropriate for this new Java Section.

See “The pre-built directory and pre-built Page” on page 8-126 for information about setting
these attributes.

Example 9–4 The WorldJavaSection.xml pre-built SectionPage XML instance file

<?xml version="1.0" encoding="UTF-8"?>
<pageFile deletable="false">

<header>
<packageName>HelloWorldTutorial4</packageName>
<packageVersion>1.0</packageVersion>
<template></template>
<noCache>0</noCache>
<defaultPageType>default</defaultPageType>
<createDate utc="1121110270523" />

</header>
<body>

<section name="WorldJavaSection" type="java" id="data/WorldJavaSection">
<java classname="com.pepper.HW.WorldJavaSection" />

</section>
</body>

</pageFile>

Adding “Edit with Java” HTML button to worlds SectionPage
The worlds SectionPage developed previously has a toolbar that is given a new button (Edit with
Java) to triggers the new EditJavaAction. As with the Edit button developed in Phase Two of this
tutorial, the Edit with Java button passes the Page ID of the world Page that is associated with the
currently selected radio button, as described above. A new JavaScript function (editJava()) is
used to extract the Page ID from the selected radio button, call the new EditJavaAction, and pass
it the Page ID as a parameter. The editJava() function is added to the helloWorld.js file, which
is included in the worlds SectionPage generated HTML (as it was in previous phases).

The following snippet shows the modified portion of worlds.xsl that generates the toolbar with the
new button. The button text is set with a new key-value pair (Label.EditJava). And, the button
is connected to the editJava() function.

Example 9–5 Adding the “Edit with Java” button to the worlds SectionPage toolbar

<!--create the page toolbar -->
<pepper:pagebar class="PageBar" id="pb-{$packageId}" package="{$packageId}">

<!-- create three toolbar buttons -->
<pepper:pagebarentry key="PageBar.New" action="NewPage" param="world" />
<pepper:pagebarentry key="PageBar.Edit" script="showSelectedPage()" />
<pepper:pagebarentry key="Label.EditJava" script="editJava()" />
<pepper:pagebarentry key="PageBar.Delete" script="deleteSelectedWorld()" />

</pepper:pagebar>
140

Hello World 4: Advanced Java
Understanding the code

9

The following snippet shows the new JavaScript editJava() function that is added to
helloWorld.js. This function retrieves the selected world’s Page ID and calls the EditJavaAction with
its registered name EditJavaAction (as discussed below).

Example 9–6 New editJava() JavaScript function that calls EditJavaAction

function editJava(){
var numWorlds = document.worlds.worldPicker.length;
var xmlId;
if (!numWorlds){

xmlId=document.worlds.worldPicker.value;
}else{

for (i=0; i < numWorlds; i++) {
if (document.worlds.worldPicker[i].checked==true){

theOne=i;
break;

}
}
xmlId=document.worlds.worldPicker[i].value;

}
bridge.action('EditJavaAction', xmlId);

}

New Java code
The base class, HelloWorld, is modified.

In addition, three new classes are added, each with its own source file.

WorldJavaSection — for the new Java Section

EditJavaAction — for the new EditJavaAction

DoneJavaAction — for the new DoneJavaAction

Discussions of the important points for each are provided next.

HelloWorld.java
Note: The source file is included in the SDK in
pepper-sdk/applications/HelloWorldResources/Phase4

Two important modifications are made to HelloWorld.java, as explained next.

New Actions
The two new Actions (EditJavaAction and DoneJavaAction) are instantiated and registered using
Action names defined for them as String constants in the HelloWorld base class.

For information about registering Java Actions, see “Registering a Java action in the application
base class” on page 4-67.

Action registration in the application’s base class must occur in the init() method using the
AbstractPepperProgram.registerAction(String, AbstractAction) method.
 141

Hello World 4: Advanced Java
Understanding the code

 9
The String is registered with the framework and provides the name of the Action that is used when
calling the Action from HTML buttons or from JavaScript. The AbstractAction passed during
registration is a new instance of the Action class.

In accordance with good programming practice, the Strings for each Action are defined first as static
final class members, as shown in the following.

Example 9–7

/**
* <p>Constant used to register EditJavaAction.</p>
*/
public static final String EDIT_JAVA = "EditJavaAction";

/**
* <p>Constant used to register DoneJavaAction.</p>
*/

public static final String DONE_JAVA = "DoneJavaAction";

Then, in the init() method, the two Actions are registered, as shown in the following.

Example 9–8

public void init(PepperProgramConfig config) throws PepperProgramException {
super.init(config);
//Register application's Actions with framework
registerAction(EDIT_JAVA, new EditJavaAction());
log.info("completed EditJavaAction action registration");
registerAction(DONE_JAVA, new DoneJavaAction());
log.info("completed DoneJavaAction action registration");

}

WorldJavaSection registers with HelloWorld
The DoneJavaAction class needs to access WorldJavaSection’s user interface widgets in order to
save user-entered data from them into the particular world’s Page XML data.

To accomplish this, the following steps are taken:

A WorldJavaSection member variable (worldJavaSection) is added to the HelloWorld base
class.

A method is created in HelloWorld
(HelloWorld.setJavaSection(WorldJavaSection)) that allows the WorldJavaSection
class, during its initialization, to pass itself to HelloWorld.

In the HelloWorld.setJavaSection(WorldJavaSection) method, HelloWorld sets the
passed WorldJavaSection to equal its local variable (worldJavaSection). This gives
HelloWorld, and all classes that have access to HelloWorld, a handle to the WorldJavaSection.

Since DoneJavaAction is a registered Action class, it has access to the HelloWorld base class.

DoneJavaAction therefore can access WorldJavaSection’s data input widgets through the base
class’s reference (worldJavaSection) to WorldJavaSection.
142

Hello World 4: Advanced Java
Understanding the code

9

First, in HelloWorld, the worldJavaSection member is declared, as follows:

Example 9–9

public WorldJavaSection worldJavaSection;

Then, the HelloWorld method is added that receives the passed WorldJavaSection and sets it to
equal the HelloWorld.worldJavaSection member, as follows:

Example 9–10

protected void setJavaSection(WorldJavaSection s) {
this.worldJavaSection = s;

}

With these steps in place, HelloWorld is complete. Let’s now take a look at the new
WorldJavaSection class.

WorldJavaSection.java
Note: The source file is included in the SDK in
pepper-sdk/applications/HelloWorldResources/Phase4

Most of the code in this file is associated with creating the layout and user interface widgets through
which the particular world’s data items are displayed and edited. We do not discuss this typical Java
code here.

Other points of interest are described in the following sections.

Registering with HelloWorld
In its initComponent() method, which is required because the class implements
JavaSectionComponent to hook into the framework, WorldJavaSection registers itself with the
HelloWorld base class using HelloWorld’s new setJavaSection(WorldJavaSection) method, as
described previously. Then, the initWorldJavaSection() method is called to perform Section user
interface initialization, as shown in Example 9–11.

Note: It is good programming practice to initialize the Section from the initComponent()
method, not from the class’s constructor. This ensures such initialization occurs after the
Section class is integrated with the framework.

Example 9–11

public void initComponent(AbstractPepperProgram theProg, Properties params) {
//give HelloWorld (and therefore my Action classes) a handle to this class
helloWorld = (HelloWorld) theProg;
helloWorld.setJavaSection(this);
initWorldJavaSection();

}

 143

Hello World 4: Advanced Java
Understanding the code

 9
Using localizable label text
User interface label text in is derived from the application’s PackageStrings.properties file. This
approach enables Java support for multiple different languages (localization) in the same
application build.

For additional information about localization, see “How to localize for different languages” on
page 10-177.

As discussed in previous phases of this tutorial, the application’s PackageStrings.properties file
consists of any number of key-value pairs. You can add key-value pairs and then programmatically
obtain a value by referencing the key.

In the case of Java, this is done with the following framework class:

com.pepper.platform.i18n.MessageCatalog

Check the javadoc for detailed information.

Each application has a MessageCatalog object that contains all key-value pairs contained in the
application’s PackageStrings.properties file and in the framework CommonStrings.properties file.

You can return a handle to the application’s MessageCatalog object using the
AbstractPepperProgram.getMessageCatalog() method. Since WorldJavaSection has a handle
(helloWorld) to the base AbstractPepperProgram object, this can be used to create a handle
(named catalog in this case) to the application’s MessageCatalog object.

Then, the MessageCatalog.getString(String key) method is used to return the value associated with
the specific key. This value is used to set label text in the user interface.

The first step is creating the key-value pairs in PackageStrings.properties. The following key-value
pairs are added.

Example 9–12

JavaLabel.Name=World name (Java):
JavaLabel.Radius=World radius (Java):
JavaLabel.YearLength=Days in world's year (Java):
JavaLabel.DayLength=Hours in world's day (Java):
JavaLabel.DistanceFromSun=Distance from sun (miles) (Java):
JavaLabel.HasWater=This world has water (Java):
JavaLabel.HasLife=This world has life (Java):
JavaLabel.PlanVisit=Schedule visit to world (Java):

The key is the text on a line to the left of the equals sign (“=”). the corresponding value is the text to
the right of the equals sign. For example:

JavaLabel.Name is a key.

World name (Java): is the corrsponding value.

Then, in the WorldPanel constructor inside WorldJavaSection, the user interface is set up, including
setting labels. Only the first label object (worldName) is shown in the following example. The
144

Hello World 4: Advanced Java
Understanding the code

9

example shows how the label is set from the MessageCatalog (and therefore ultimately from the
properties file) using the approach described above.

Example 9–13

public WorldPanel() {
//world name. This label derived from PackageStrings.properties
//through the MessageCatalog, an approach that supports localization
MessageCatalog catalog = helloWorld.getMessageCatalog();
worldName = new JLabel(catalog.getString("JavaLabel.Name")+": ",

JLabel.RIGHT);
worldNameTextField = new JTextField();

...

Adding the ToolBar and ToolBarButton
The ToolBar object is declared and created as a class member, as follows:

Example 9–14

/** ToolBar for the Section*/
protected ToolBar toolbar = new ToolBar();

Then, in the initWorldJavaSection() method, the ToolBar is added to the BorderLayout.NORTH
region of WorldJavaSection (which is a JPanel set to use BorderLayout), the ToolBarButton is
created with DoneJavaAction and with “Done” display text, and the ToolBarButton is added to the
ToolBar, as shown in the following.

Example 9–15

public void initWorldJavaSection() {
this.setLayout(new BorderLayout());
this.add(toolbar, BorderLayout.NORTH);
this.add(panel_content, BorderLayout.CENTER);
ToolBarButton b1 = new ToolBarButton(new DoneJavaAction(), "Done");
toolbar.addButton(b1);

...

Page ID helper methods
As we have seen, DoneJavaAction needs to know the world Page the WorldJavaSection is
displaying so that it can save WorldJavaSection’s data into the correct Page XML.

A high-level view of the process through which the Page ID is retrieved from the worlds
SectionPage, passed through EditJavaAction to the WorldJavaSection, and then passed to
DoneJavaAction was explained previously.

See “Using the world’s Page ID” on page 9-137.

WorldJavaSection contains two methods that enable passage of the Page ID.

WorldJavaSection.setPageId(String)is used by the EditJavaAction class to inform
WorldJavaSection of the Page ID of the world Page it is displaying.
 145

Hello World 4: Advanced Java
Understanding the code

 9
This is necessary because EditJavaAction, which is associated with an HTML button on the
worlds SectionPage, is passed the Page ID of the particular world the user has selected and
wants to edit (the target world). EditJavaAction uses the Page ID to load the correct world’s data
from its XML instance file into the WorldJavaSection.

WorldJavaSection.getPageId() is used by DoneJavaAction to retrieve the Page ID from
WorldJavaSection so that it can save the data to the correct XML instance file.

The following shows both methods:

Example 9–16 Interface methods to get and set the Page ID

protected void setPageId(String pageId) {
this.s_pageId = pageId;

}
protected String getPageId() {

return s_pageId;
}

EditJavaAction.java
Note: The source file is included in the SDK in
pepper-sdk/applications/HelloWorldResources/Phase4

Note: The EditJavaAction class follows the rules for Action classes explained in “Retrieving
passed parameters” on page 4-66.

EditJavaAction performs several key operations:

Switches focus to the WorldJavaSection

Retrieves the Page ID of the target world Page from the parameter passed to it from the worlds
SectionPage Edit with Java button

Informs the WorldJavaSection object of the Page ID of the target world to be displayed using
the WorldJavaSection.setPageId(PageId) method

Makes a handle to a particular world Page named worldPage using the Page ID of the target
world and the ID of the worlds SectionPage (the parent SectionPage of the target world Page)

Loads the target worldPage Page

Creates a JDOM Document object (worldData) from the worldPage

This provides access to the target world Page data elements.

Loads worldData’s data elements into WorldJavaSection’s widgets

These operations are executed each time a user clicks the Edit with Java button. To accomplish
this, the code for these operations is placed in the public void
actionPerformed(ActionEvent event) method.

These operations are explained in the following sections.

Switching focus to the WorldJavaSection
EditJavaAction switches the focus to the WorldJavaSection.
146

Hello World 4: Advanced Java
Understanding the code

9

This is done using the handle to the base class (helloworld), which is an instance of an
AbstractPepperProgram. It uses the handle to access two AbstractPepperProgram methods:

AbstractPepperProgram.getSection(sectionID)

This returns the section with the specified ID.

AbstractPepperProgram.showSection(Section)

This displays the passed Section.

Example 9–17 Displaying the WorldJavaSection Section from the EditJavaAction

//try to display the WorldJavaSection:
try{

//get a handle to the WorldJavaSection
worldJavaSection = helloWorld.getSection(WORLD_JAVA_SECTION);

//switch focus to the WorldJavaSection
helloWorld.showSection(worldJavaSection);

}catch (Exception e) {
log.error("Could not display Java Section from EditJavaAction Action");

}

Retrieving the passed world Page ID
As explained previously, EditJavaAction is passed the Page ID of the currently selected world from
the editJava() JavaScript function that is associated with the Edit with Java button on the worlds
SectionPage, as shown in Example 9–18.

For more information, see “Retrieving passed parameters” on page 4-66.

Example 9–18 Retrieving the world Page ID

//get the pageId of the world page to display from the parameter passed to this Action
this.pageId = ((ActionEventWithParams) event).getParam();

Setting the target world Page in WorldJavaSection
EditJavaAction informs the WorldJavaSection of the Page ID of the target world Page using the
WorldJavaSection.setPageId(PageId) method, as follows:

Example 9–19 Setting the target world Page ID in WorldJavaSection

//set JavaSection's pageId so it knows the id of the page it is to display
helloWorld.worldJavaSection.setPageId(pageId);
 147

Hello World 4: Advanced Java
Understanding the code

 9
Making a document for the target World Page
EditJavaAction makes a handle (named woldPage) to the target world, loads the world XML file
into the Page object, and then makes a JDOM Document object (worldData) from the Page data
to enable easy access to the XML elements, as follows:

Example 9–20 Setting the target world Page ID in WorldJavaSection

//Make a Page object for the world Page to be edited
//method's first param is the Page ID to get, handed here from worlds SectionPage
//method's second param is the id of the section (the worlds SectionPage) the page is in
Page worldPage = getProgram().getPage(pageId, "data/Worlds");
// load the page from disk into memory if it is not yet loaded
if (!worldPage.isLoaded()) {

try{
worldPage.load();

}catch (Exception e){
log.error("World's XML instance file failed to load into memory");

}
}
//create a Document object for the target world base page
Document worldData = worldPage.getPageData();

Reading data into WorldJavaSection
All that remains for EditJavaAction is to:

Find the world <page> element in the JDOM Document (worldData) that represents the
Page Data,

This is returned by the framework worldPage.getRoot() method.

Read each world data element value into a JDOM Element object, and

Write the value from each Element object into the appropriate WorldJavaSection user interface
widget.

Tip: The XML data is accessed in a synchronized block to prevent collisions from
potential simultaneous operations on the same file.

Example 9–21 Reading data from the target world Page data and writing to Java

synchronized (worldData) {
Element root = worldData.getRootElement();
if (root != null) {

Element worldNameElement = root.getChild("worldName");
helloWorld.worldJavaSection.worldPanel.worldNameTextField.

setText(worldNameElement.getText());
...
}

}

DoneJavaAction.java
Note: The source file is included in the SDK in
pepper-sdk/applications/HelloWorldResources/Phase4
148

Hello World 4: Advanced Java
Creating the revised Hello World

9

DoneJavaAction is very similar to EditJavaAction, with the following exceptions:

Instead of setting the focus to WorldJavaSection as EditJavaAction does, DoneJavaAction
switches focus to the worlds SectionPage using the WORLDS_XML constant, which is defined as
equal to “data/Worlds”, the worlds SectionPage Section ID.

To identify the particular world Page that had just been edited by WorldJavaSection,
DoneJavaAction retrieves its Page ID using WorldJavaSection’s getPageId() method,
described previously.

Instead of reading data from the world Page data and writing it to the WorldJavaSection as
EditJavaAction does, DoneJavaAction reads data from WorldJavaSection widgets and writes it
to the target world Page using HelloWorld’s registered reference to WorldJavaSection, as
described previously and shown in the following example.

Example 9–22 Writing WorldJavaSection’s data to the world Page

//load worldPage XML data into JDOM Document
Document worldData = worldPage.getPageData();

synchronized (worldData) {
//Load XML element data into Java widgets.
//Note that the root element that is loaded is not the actual XML file's
//root but is rather the <page> element.
Element root = worldData.getRootElement();

//get the current value of each UI widget and save it in an appropriate
//format into the corresponding element in the JDOM Document
if (root != null) {

Element worldNameElement = root.getChild("worldName");
worldNameElement.setText(helloWorld.worldJavaSection.

worldPanel.worldNameTextField.getText());
...

Creating the revised Hello World
This procedure covers creating the Phase Four of the Hello World Tutorial from files provided with
the SDK.

Procedure:

1. Copy the following directory:

pepper-sdk/applications/HelloWorldResources/Phase4/

2. Past the copied directory into:

pepper-sdk/applications/

You should now have the following directory:

pepper-sdk/applications/Phase4

Procedure complete.
 149

Hello World 4: Advanced Java
Using the revised Hello World

 9
Using the revised Hello World
Rebuild Hello World as explained in Building Applications and launch it.

What’s next
This completes the Hello World Tutorial application.
150

10

Customization
Customization is a broad topic that refers in general to steps you can take to modify the visual
design of applications and even of the framework itself. It includes modifying CSS stylesheets to
affect the appearance of generated HTML pages, key framework user interface components such
as the Status Bar and of Java Sections and components. It includes replacing images used as
backgrounds in important Sections (such as the Applications Tab) and used in user interface
components like toolbars on Pages. It includes building custom themes to package and distribute
a bundled set of customizations. It even includes redesigning the structure and contents of Sections
and Pages.

Getting started with customization
This section provides information about the scope of customization options and different
approaches to customization.

What can be customized
You can customize almost everything except for the compiled logic of applications you did not
develop (such as the Keeper).

Note: Similar functionality can be implemented in different ways among different
applications. Functionality that is customizable in one application may not be in others. For
example, if an application implements a toolbar using XSL, it is customizable, whereas if
another application implements a Java ToolBar that appears identical, it may not be.

Examples of customization options include:

You can customize visual styling, fonts, colors, and layout of XML/XSL/HTML Pages by
modifying styles.css CSS stylesheets and various image files.

You can customize colors and fonts of Java aspects of the framework (such as the Status Bar,
the System Tray, the Flag Panel, and Pepper Java ToolBars) and in Java Sections by modifying
keeper.css.

You can customize the content of XML/XSL/HTML Pages by modifying XSL files used to
generate HTML pages.
 151

Customization
Customizing in Design Mode or in the SDK

 10
You can customize XML/XSL/HTML Page toolbars (for example adding new buttons or deleting
buttons) by customizing the XSL files used to generate Pages.

You can create a custom set of default bookmarks for any Web Section and rebuild the
application for distribution.

You can rewrite the Help section of any application, and create multiple versions to support
different languages (called localization), and rebuild the application for distribution.

You can customize an application’s Section and Page structure by customizing its definition
files: FactoryBuild.xml and PageTemplates.xml.

You can customize text displayed in the user interface (for example to switch languages or
simply to modify displayed terms) by modifying properties files.

You can bundle a set of customizations together into a custom theme and launch the framework
to use the theme, transparently to the user.

The Keeper is an application
Before drilling into details about what can be customized and how to go about customizing, it’s
important to bear in mind that the Keeper is an application.

The Keeper is an application (almost) like any other. It just happens to have a Section that displays
icons for all other applications, is run by default at start-up and has a privileged position in the
framework. However, its Sections and Pages, and how they are displayed, are controlled by
application declaration and definition files that are instantiated as XML files, just like other
applications. The XML instance files are transformed by XSL into HTML, and the HTML is rendered
for display according to CSS stylesheets, just like other applications.

The Keeper has its own design.zip file containing a FactoryBuild.xml file and a PageTemplates.xml
file (and the other key files), just like every other application.

So, you can customize the Keeper in almost exactly the same way you customize any other
application. You port it to the SDK and customize it.

Note: Updating a customized Keeper from the SDK is different than for other applications.
See “Updating framework zip files” on page 2-13.

Customizing in Design Mode or in the SDK
Customization can be implemented for running applications using Design Mode. Or, an application
can be ported into the SDK, customized, and rebuilt for distribution.

For information about Design Mode, see “Design Mode” on page 2-13.

A combination of the two approaches is often useful: Customize a run-time application using Design
Mode, and, when satisfied, port the application to the SDK with its customizations, then rebuild it
for distribution.

Design Mode customization
Customizations in Design Mode apply to the current installed instance of the application (including
the Keeper application) only. This is because in Design Mode, you make changes to the installed
152

Customization
Customizing in Design Mode or in the SDK

10
application, not to the application in the SDK. Any changes are therefore not reflected automatically
in future application builds.

Also, you can’t modify program logic or some user interface characteristics derived from Java in
Design Mode, because modifying Java source code requires access to the source code and
rebuilding the application in the SDK.

Note: You can customize colors and fonts throughout many parts of the framework user
interface that derive from Java code and within applications that use a Java user interface
by modifying a single CSS stylesheet: keeper.css.

In addition, Design Mode customizations only apply when the framework is in Design Mode, even
if you created the customizations in Design Mode. This is because when the framework is in Design
Mode, it extracts normally archived design files and uses them instead of the archived files.
Modifications to design files affect only the extracted files, not the archives. When the framework is
relaunched not in Design Mode, it uses the archived design files, even if the extracted files exist.

Customization in Design Mode is helpful nonetheless. The effects of modifications are generally
visible immediately. One convenient approach is to customize the application in Design Mode and
later to copy the files into the application’s directory in the SDK or into a custom theme in the SDK
in order to later integrate the changes into the build process.

Customizations made in Design Mode only affect future events in the application. For example, if
you modify a Page definition, future Page instances will be based on the modified structure, but
existing Page instances reflect the previous structure.

Note: You can port most applications (even those you did not develop) to the SDK and
create fresh builds there, thus creating a version of the application that is based entirely on
modified files. See “How to port an application into the SDK” on page 10-181.

Design Mode is a convenient way to develop and test non-Java aspects of an application because
changes take effect immediately in the running application without any need to rebuild the
application.

SDK-based customization
If you want to create a new build of an application (or theme) that includes all customizations, use
the SDK to rebuild the application (or theme) using customized files.

For your applications, this is straightforward because the application already exists in the SDK
directory hierarchy.

Note: If you customized your applications using Design Mode, you must copy the modified
files back into the SDK or the modifications are not carried into future builds. See “How to
port an application into the SDK” on page 10-181.

For applications you did not develop, you can still port the application into the SDK. Then you can
rebuild it to create a version that is ready for installation that includes your customizations.

For themes, you can simply copy the modified files into your SDK theme.

For information about themes, see “Custom themes” on page 10-167
 153

Customization
Customization with CSS

 10
How customizations are affected by automatic updates
The Pepper Application Framework and its bundled applications are automatically updated from
web-based update servers when appropriate, although a user does have the option to decline the
update.

Such updates may replace important application files including, design.zip, data.zip, jar files and
the default theme archive (common-resources.zip). Therefore, customizations involving the
framework, bundled applications, and the default theme can be lost as a result of updates.

Note: Automatic updates do not affect applications that are not a part of an update server
scheme.

Customers interested in deploying an update server to control this process more closely should
contact Pepper Computer, Inc.

Customization with CSS
Perhaps the easiest way to make sweeping changes in the visual styling of the framework and
applications is by modifying two key CSS stylesheets, both of which are found in the theme archive.

For information about theme archives, see “Custom themes” on page 10-167.

The two CSS stylesheets are:

(theme-resources.zip)/resources/styles/styles.css

This is the default stylesheet used for HTML pages in the framework and most other
applications.

Using the classes contained in this stylesheet in your XSL-generated HTML pages helps to
create a uniform visual style throughout all applications. This approach also creates a single
point of control of the visual styling of all HTML pages and thus simplifies the process of making
style modifications.

For information and procedures for common styles.css-based customizations, see
“Styles.css-based customizations” on page 10-155.

(theme-resources.zip)/resources/styles/keeper.css

This stylesheet contains CSS classes that determine the colors and fonts used in Java user
interface widgets and components throughout the framework and in applications. For example,
ToolBars and ToolBarButtons, the Status Bar (and its Progress Bar), the Flag Panel, Java
combo boxes, Java check boxes, Java text labels and more derive their colors and fonts from
these CSS classes.

You can create your own Java widgets and assign them the colors and fonts defined by
keeper.css classes.

Note: You cannot create new classes in keeper.css. You must use classes that already
exist.

For information and procedures for common keeper.css-based customizations, see
“Keeper.css-based customizations” on page 10-159.
154

Customization
Styles.css-based customizations

10
Tip: Both Default Sections and Java Sections have similar presentation widgets, such as
toolbars, check boxes, and so on. To ensure the visual styling for the two Section types is
consistent, in the current release it is important to remember to customize both styles.css
and keeper.css.

Other CSS stylesheets
While it is recommended to develop your applications to use the two key framework stylesheets,
you can create your own styles sheets and use them instead or in addition to these.

Tip: The downside to this approach is that the visual styling of your applications are not
controlled by the two framework stylesheets, making sweeping design changes more
difficult.

Therefore, it is important to remember that applications may refer to stylesheets in their own
design.zip archives. Comprehensive customization may require finding any such exceptional
applications and taking the appropriate steps.

Getting started with CSS customization
A good way to get started with CSS-based customization is as follows:

Launch the framework in Design Mode.

This extracts the current theme archive and design files for all applications when they launch
and causes the framework and applications to use the extracted files instead of the archive files.

For information about Design Mode, see “Design Mode” on page 2-13.

Modify the CSS stylesheets and observe the results as you develop your unique visual styling
while using the framework or the relevant application.

Note: Modifying keeper.css requires restarting the framework.

When you are done modifying the CSS stylesheets, create a custom theme that includes the
modified stylesheets in the SDK, distribute the custom theme, and configure the framework to
launch using the custom theme.

See “Custom themes” on page 10-167.

Styles.css-based customizations
This section provides information about common customizations you can do by modifying the
styles.css theme file.

Note: The customizations presented here are just a few of the customizations that are
possible and are provided as examples. Developers are encouraged to experiment with
customizing styles.css.

Customizing the Keeper Applications tab background image
The background image of the Keeper’s Applications tab is:

common-resources.zip/resources/styles/background.jpg
 155

Customization
Styles.css-based customizations

 10
How it works
The default background image is applied by assigning the CSS class Content to an HTML
element. The Content class is defined in:

common-resources.zip/resources/styles/styles.css

Note: This is a theme archive file. Customizing such files typically involves creating a
custom theme. See “Custom themes” on page 10-167.

In the default styles.css stylesheet, Content is defined to allow it to be assigned only to <div>,
<form> and <table> elements.

The Content class sets the background-image attribute to a URL that specifies this file, by
default to url(background.jpg), which resides in the same directory.

Note: This is a theme archive file. Customizing such files typically involves creating a
custom theme. See “Custom themes” on page 10-167.

By default, the Applications Tab is generated by the Keeper application’s Main.xsl transform. An
HTML <div> element is generated by Main.xsl with its class set to Content, as follows:

<div class="Content" id="packagegrid">

The background image is set as a result of the HTML element, its CSS class, and the class’s
background image.

How to customize it
You can modify the Applications Tab’s background image in several ways.

Replace background.jpg with the desired image file.

See “Custom themes” on page 10-167.

Modify styles.css’s Content class to use a different background image and place that
background image in the same directory.

See “Custom themes” on page 10-167.

Modify the XSL transform (Main.xsl) that generates the Page to assign the <div> element that
uses the Content class to use a new class you create that is defined with a
background-image attribute that points to a URL that specifies the background image of your
choice, which should reside in the same directory.

This approach requires porting the Keeper application to the SDK. See “How to port an
application into the SDK” on page 10-181.

Customizing the selection block
The selection block is the image that displays when an icon is selected on the Applications Tab or
the Setting Tab. You can customize the selection block.

The selection block has two parts:

The selection block’s border

The thin line forming the square with rounded corners that forms the outer edge of the selection
block. The selection block’s default border (and its background image) are applied by assigning
156

Customization
Styles.css-based customizations

10
the CSS class FloatingBlock to an HTML element. The FloatingBlock class is defined
in:

common-resources.zip/resources/styles/styles.css

Note: This is a theme archive file. Customizing such files typically involves creating a
custom theme. See “Custom themes” on page 10-167.

The selection block’s background image

This is a portable network graphics (png) image file whose dimensions are 1 pixel wide (x axis)
by 90 pixels tall (y axis). It is a transparency gradient that is most transparent at the top to least
transparent at the bottom.

The image is:

common-resources.zip/resources/styles/floatingselection.png

Note: This is a theme archive file. Customizing such files typically involves creating a
custom theme. See “Custom themes” on page 10-167.

The selection block’s background image (and its border) are applied by assigning the CSS
class FloatingBlock to an HTML element. The FloatingBlock class is defined in:

common-resources.zip/resources/styles/styles.css

Note: These are theme archive files. Customizing such files typically involves creating a
custom theme. See “Custom themes” on page 10-167.

Details of how the FloatingBlock class determined the border and background image, and how
it varies the visual styling depending on whether the item is selected, are covered below.

Figure 10–1 shows the selection block for the Hello World Tutorial.

Figure 10–1 The default selection block

How it works
The FloatingBlock class has different styles applied depending on the values of the selected
attribute.

When the HTML element is not selected, the FloatingBlock class is applied.

Border

Background image with
transparency gradient
 157

Customization
Styles.css-based customizations

 10
When the HTML element is selected, the
div[class=FloatingBlock][selected=true] version of the class is applied.

When the element is selected, the background image and the border’s visual styling is set with the
attributes in Example 10–1. The attributes in bold are the ones you are most likely to modify.

Example 10–1 Section block’s CSS class

div[class=FloatingBlock][selected=true] {
background-image: url(floatingselection.png);
background-repeat: repeat-x;
background-position: bottom left;
border: solid 1px #1f5ccf;
-moz-border-radius: 4px;
color: white;

}

How to customize it
This section covers how to customize the border and the background image of the selection block.

Such customization typically requires developing a custom theme. See “Custom themes” on
page 10-167.

Customizing the border
You can customize the selection block’s border by modifying the
div[class=FloatingBlock][selected=true] class in styles.css, as follows:

Set the border’s line type, its thickness, and its color with the border attribute.

Set the border’s corner radius with the -moz-border-radius attribute.

Customizing the background image
You can customize the selection block’s background image in the following ways:

Replace common-resources.zip/resources/styles/floatingimage.png with an image file
appropriate for your customization design.

If you are using a custom theme, replace the file in your theme’s directory in the SDK:

pepper-sdk/themes/(yourtheme)/resources/styles/floatingimage.png

Modify the styles.css stylesheet to refer to a different image file, and place that file in
common-resources.zip/resources/styles/.

Again, if you are using a custom theme, place the file in your theme’s directory in the SDK:

pepper-sdk/themes/(yourtheme)/resources/styles/floatingimage.png

Modify the XSL transform that generates the HTML page of interest to assign different CSS
classes to the HTML element for both its selected and unselected states.

Customizing application icons
Each application has two icons:
158

Customization
Keeper.css-based customizations

10
A 64 pixel by 64 pixel icon that displays in the framework’s Applications tab, and

A 24 pixel by 24 pixel icon that displays in the framework’s System Tray.

The icons are included in the application’s design/images folder in the SDK. The names and
location of the two images are specified in the application’s package.ppld file.

For information, see “Modifying package.ppld” on page 6-93.

How to customize application icons
There are several options for modifying Application icons.

If you developed the application, you can simply change the icon files, modify the application’s
package.ppld file if you changed the file names, then rebuild the application.

If the application is bundled with the framework, you can port the application to the SDK, change
the icons, modify the application’s package.pplfd file as appropriate, then rebuild the
application.

For information on porting an application to the SDK, see “How to port an application into the
SDK” on page 10-181.

Keeper.css-based customizations
keeper.css contains CSS classes that define colors and fonts that are used by Java-based user
interface entities in the framework and in applications.

keeper.css is loaded when the framework launches and its CSS classes are read into memory.

Note: Because keeper.css is only read at framework launch time, you must relaunch the
framework after making changes to keeper.css in order to see the changes reflected in the
user interface.

Many Java aspects of the user interface use the colors and fonts defined by these classes. For
example:

The colors and fonts used to render the Status Bar and its Progress Bar are derived from
keeper.css classes.

See “Customizing the Status Bar” on page 10-160.

The colors used to render System Tray are derived from keeper.css classes.

See “Customizing Flag Panel colors” on page 10-162.

The colors and fonts used to render Java ToolBars and ToolBarButtons are derived from
keeper.css classes.

See “Customizing Pepper ToolBar colors and fonts” on page 10-163.

If you create Java user interface items, you can also access the colors and fonts defined in
keeper.css classes and apply them.
 159

Customization
Keeper.css-based customizations

 10
Note: Many other classes exist in keeper.css. The specifics provided here are meant to
help you get started with keeper.css customization and are not meant as complete
reference documentation.

Customizing the Status Bar
The framework Status Bar can be customized with various keeper.css classes as follows:

The background colors

See “Customizing Status Bar background colors” on page 10-160

The border color

See “Customizing Status Bar bottom border color” on page 10-161

The Progress Bar color and text color

The Progress Bar displays inside the Status Bar.

See “Customizing Status Bar’s Progress Bar” on page 10-162

Note: For help identifying the parts of the framework user interface, see “Anatomy of the
user interface” on page 3-23.

Customizing Status Bar background colors
The background coloration of the Status Bar uses two colors that are defined by the following
keeper.css classes:

PepperStatusBar.background1

Defines the color that is opaque at the top of the Status Bar and becomes increasingly
transparent until it is completely transparent at the bottom of the Status Bar.

PepperStatusBar.background2

Defines the color that is opaque at the bottom of the Status Bar and becomes increasingly
transparent until it is completely transparent at the top of the Status Bar.

Example 10–2 shows a sample definition of the two colors in keeper.css.

Note: Colors are defined using CSS syntax.

Figure 10–2 shows the Status Bar as it appears with the keeper.css class definitions in
Example 10–2.

Example 10–2 Setting the Status Bar’s background colors

PepperStatusBar.background1 {
color: #eeaabb;

}
PepperStatusBar.background2 {

color: #bbaaee;
}

160

Customization
Keeper.css-based customizations

10
Figure 10–2 Status Bar background color

Customizing Status Bar bottom border color
The color of the Status Bar’s bottom border is determined by the keeper.css
PepperStatusBar.borderColor class, as shown in Example 10–4.

Note: The top border’s color is not customizable in the current release.

Example 10–3 Setting the Status Bar’s bottom border color

PepperStatusBar.borderColor {
color: red;

}

Figure 10–3 shows Status Bar’s bottom border with the keeper.css class defined as shown in
Example 10–3.

Figure 10–3 Status Bar border color

Customizing Status Bar font and text color
The color of Status Bar text (when the progress bar is not displayed) is determined by the
keeper.css ProgressBar.selectionBackground class, as shown in Example 10–4.

Example 10–4 Setting the Status Bar text color

ProgressBar.selectionBackground {
color: #33000;

}

The font of Status Bar text (at all times, whether the Progress bar is displayed or not) is determined
by the keeper.css PepperStatusBar.font class, as shown in Example 10–5.

Example 10–5 Setting the Status Bar font

PepperStatusBar.font {
font-family: Lucida Sans Italic;

PepperStatusBar.background1 color

PepperStatusBar.background2 color

Status Bar

PepperStatusBar.borderColor
 161

Customization
Keeper.css-based customizations

 10
font-style: plain;
font-size: 10px;

}

Figure 10–4 shows Status Bar text with the keeper.css classes as defined in Example 10–4 and
Example 10–5.

Figure 10–4 Status Bar font and text color

Customizing Status Bar’s Progress Bar
The color of the Status Bar’s Progress Bar is determined by the keeper.css
ProgressBar.foreground class, as shown in Example 10–6.

Example 10–6 Setting the Status Bar’s Progress Bar color

ProgressBar.foreground {
color: #bbbbee;

}

The color of Status Bar text messages displayed when the Progress Bar is visible behind them is
determined by the keeper.css ProgressBar.foreground class, as shown in Example 10–7.

Example 10–7 Setting the Status Bar text color when the Progress Bar is visible

ProgressBar.selectionForeground {
color: #aa0099;

}

Figure 10–5 shows the Progress Bar color and the color of Status Bar text in front of the progress
bar using keeper.css classes defined in Example 10–6 and Example 10–7.

Figure 10–5 Status Bar’s Progress Bar colors

Customizing Flag Panel colors
Note: For help identifying the parts of the framework user interface, see “Anatomy of the
user interface” on page 3-23.

Progress Bar.selectionForeground
sets Progress Bar color

ProgressBar.foreground sets
text color in front of Progress Bar
162

Customization
Keeper.css-based customizations

10
The background coloration of the Flag Panel uses two colors that are defined by the following
keeper.css classes:

PepperFlagPanel.background

Note: There is no trailing “1” on “background”.

Defines the color that is opaque at the top of the Flag Panel and becomes increasingly
transparent until it is completely transparent at the bottom of the System Tray.

PepperFlagPanel.background2

Defines the color that is opaque at the bottom of the Flag Panel and becomes increasingly
transparent until it is completely transparent at the top of the System Tray.

Example 10–8 shows a sample definition of the two colors in keeper.css.

Figure 10–6 shows the Flag Panel as it appears with the keeper.css class definitions in
Example 10–8.

Example 10–8 Setting the Flag Panel background colors

PepperFlagPanel.background {
color: #95788e;

}
PepperFlagPanel.background2 {

color: #aaaaff;
}

Figure 10–6 Flag Panel background colors

Customizing Pepper ToolBar colors and fonts
This section explains how to customize the visual styling of Pepper Java ToolBars. Pepper Java
ToolBars are objects that instantiate the framework ToolBar class and whose buttons instantiate
the framework ToolBarButton class.

Tip: It is recommended to use the framework ToolBar and ToolBarButton classes instead
of JToolBar and JButton in order to enable your Java toolbars to be controlled by the same
keeper.css classes as all other Java toolbars.

For information about using the framework ToolBar class and ToolBarButton class, see “Java
ToolBars” on page 4-52.

Note: This material does not apply to toolbars added to non-Java Sections. Their visual
styling is controlled by styles.css.

PepperFlagPanel.background color

PepperFlagPanel.background2 color
System Tray
 163

Customization
Keeper.css-based customizations

 10
When you add a ToolBar to a Java Section, the framework automatically applies a set of CSS
classes in keeper.css to it. The result is that all Java ToolBars in all applications have a uniform
style that can be modified as a set by modifying these keeper.css classes. The classes control the
following:

ToolBar background colors

See “Customizing ToolBar colors” on page 10-164

ToolBar bottom border color

See “Customizing ToolBar bottom border color” on page 10-165

ToolBarButton colors

See “Customizing ToolBarButton mouse pressed colors” on page 10-166

ToolBar font and font color

See “Customizing ToolBarButton font and font color” on page 10-165

Note: For help identifying the parts of the framework user interface, see “Anatomy of the
user interface” on page 3-23.

Customizing ToolBar colors
The background coloration of Java ToolBars (framework ToolBar objects) depends on two colors
that are defined by the following keeper.css classes:

ToolBar.background1

Defines the color that is opaque at the top of ToolBars and becomes increasingly transparent
until it is completely transparent at the bottom of ToolBars.

ToolBar.background2

Defines the color that is opaque at the bottom of ToolBars and becomes increasingly
transparent until it is completely transparent at the top of the ToolBars.

Example 10–9 shows a sample definition of the two colors in keeper.css.

Note: Colors are defined using CSS syntax.

Figure 10–7 shows the Photo Library’s ToolBar as it appears with the keeper.css class definitions
in Example 10–9.

Example 10–9 Setting ToolBar background colors

ToolBar.background1 {
 color: #aaaaff;
}
ToolBar.background2 {
 color: #eeeeee;
}

164

Customization
Keeper.css-based customizations

10
Figure 10–7 ToolBar background colors

Customizing ToolBar bottom border color
The color of the bottom border of Java ToolBars is determined by the keeper.css
ToolBar.borderColor class, as shown in Example 10–10.

Example 10–10 Setting the ToolBar bottom border color

ToolBar.borderColor {
color: red;

}

Figure 10–8 shows a ToolBar’s bottom border with the keeper.css class definition as shown in
Example 10–10.

Figure 10–8 A ToolBar’s customized bottom border color

Customizing ToolBarButton font and font color
The font and font colors of ToolBarButtons are defined by the following keeper.css classes:

ToolBar.font

Defines the font of the ToolBarButton.

ToolBar.foreground

ToolBar.background1 color

ToolBar.background2 color

Photo Library’s ToolBar

PepperToolBar.borderColor
 165

Customization
Keeper.css-based customizations

 10
Defines the color of the ToolBarButton text.

Example 10–11 shows a sample definition of the two colors in keeper.css.

Note: Colors are defined using CSS syntax.

Figure 10–9 shows the Photo Library’s ToolBar as it appears with the keeper.css class definitions
in Example 10–11.

Example 10–11 Setting ToolBarButton font and font color

ToolBar.font {
font-family: Lucida Sans DemiBold Roman;
font-style: plain;
font-size: 12px;

}
ToolBar.foreground {

color: purple;
/*color: #330000;*/

}

Figure 10–9 ToolBarButton font and font colors

Customizing ToolBarButton mouse pressed colors
Two additional ToolBarButton colors are customizable:

The background color when a ToolBarButton is pressed is determined by the keeper.css
ToolBar.selectionBackground class.

The foreground color of the text when a ToolBarButton is pressed is determined by the
keeper.css ToolBar.selectionForeground class.

The following example shows a sample definition of the two colors in keeper.css.

Example 10–12 Setting the ToolBarButton mouse pressed background and text color

ToolBar.selectionBackground {
color: green;

}
ToolBar.selectionForeground {

color: red;

Button Font: ToolBar.font

Button Text color: ToolBar.foreground
166

Customization
Custom themes

10
}

Figure 10–10 shows a ToolBar’s bottom border with the keeper.css class definition as shown in
Example 10–12.

Figure 10–10 A ToolBarButton mouse pressed background color and mouse pressed text color

Custom themes
This section explains how to create custom themes that control the visual styling of the framework
and its applications.

Themes overview
When the framework runs, its overall visual styling is controlled by its theme. The theme is defined
by an archive in the framework’s root directory. The default theme archive is named
common-resources.zip.

You can make a custom theme archive. For example, suppose you develop a custom theme named
premium. You can turn it into a custom theme archive (by building it in the SDK) named
premium-resources.zip. You can then use it to display the framework and applications with custom
visual styling.

The basic steps for creating a custom theme are:

Creating a directory for the theme directory in the SDK

See “Creating a theme area in the SDK” on page 10-169.

Adding files to it that you want to customize

They have to be added in the same subdirectory locations as they appear in the default theme.

See “Adding files to the theme area” on page 10-169.

Building the theme

See “Building a theme” on page 10-171.

Placing the theme archive in the framework’s root run-time directory

See “Adding a custom theme to a framework” on page 10-171.

Launching the framework to use the custom theme

Green: ToolBar.selectionBackground

Red: ToolBar.selectionForeground
 167

Customization
Custom themes

 10
See “Launching the framework to use a custom theme” on page 10-172.

What’s in a theme archive?
The theme archive provides a wide range of files that control the framework’s visual styling, such as:

CSS files,

Image files for Section backgrounds, icons and other things,

Properties files that determine displayed text, keyboard shortcuts, enable Java-based language
localization, and more,

XSL files used during framework’s first-launch configuration for such things as the default list of
email providers displayed to a user as they set up their Mail application, and

Common files used by all applications, such an Page definitions for Web and Help Sections.

Theme archive files are arranged in particular directories.

For example, a theme archive requires a root resources directory.

resources has a number of subdirectories. Probably the most import is resources/styles. In here you
can find two CSS stylesheets (styles.css and keeper.css) that are your first stop for most theme
customization. resources/styles also contains important image files such as background.jpg and
floatingselection.jpg, referred to by CSS classes and important in setting the overall framework look
and feel.

A custom theme only needs customized files
Your custom theme only needs to contain the theme files that you modify. That is, a custom theme
does not require all files in the default theme archive.

When you build your theme in the SDK, a complete theme archive is created using the default
theme archive (common-resources.zip) that is included in the SDK’s lib directory as a base. Any
files in your custom theme are added to the new theme archive, replacing any files in the default
theme archive that are named the same and that are in an equivalent directory location. The result
is a complete theme archive that includes your customizations.

Themes are transparent to applications
From the point of view of an application (including the Keeper application), there is only one theme:
the current theme. Its files are always accessed by the framework and by applications in the same
manner, regardless of whether the current theme is the default theme or a custom theme.

Accessing theme files in custom applications
Naturally, applications often access theme files. For example, you can design a Page that, when
converted into HTML by the Page’s XSL transform, links to the main theme CSS stylesheet:
styles.css.

styles.css resides in the following location:

(themeName)-resources.zip/resources/styles/styles.css
168

Customization
Custom themes

10
Theme files are accessed within XSL using the $platform framework parameter followed by the
specific theme directory path and then by the name of the desired file.

Note: Do not state the theme archive name, only its subdirectories, starting with the
required resources subdirectory.

For example, to use XSL to link to styles.css in a generated HTML page, use the following line of
code in the XSL transform:

<link href="{$platform}/resources/styles/styles.css" rel="stylesheet"
type="text/css" />

The Hello World Tutorial provides an example of this. See “Customizing the display with CSS” on
page 6-105.

Creating a theme area in the SDK
This procedure explains how to create an area in the SDK for developing a custom theme.

Be default, the SDK contains the following directory:

pepper-sdk/themes

For information about SDK directories, see “SDK directories” on page 2-5.

This is the root directory for all theme development work.

Note: pepper-sdk/themes contains a subdirectory named build. This directory is used when
building custom themes. It contains the build.xml file, which should not be modified. See
“Building a theme” on page 10-171.

Procedure:

1. Determine your theme name.

Your theme name is an important constant. It is used to name the theme’s SDK directory, is the
first part of the theme’s archive filename, and is used to configure the framework’s -Dtheme
system property.

2. Create a subdirectory of pepper-sdk/themes that is named the same as your theme.

For example, to make a theme named “premium,” create the following subdirectory:

pepper-sdk/themes/premium

3. Every theme has to have a root resources directory as well, so create that:

pepper-sdk/themes/premium/resources

Procedure complete.

Adding files to the theme area
The default theme archive (common-resources.zip) contains a specific set of directories and files.
You can customize any of these files and place them in your theme. Any applications, including the
Keeper, that access any of the files you customize has its visual styling modified as a result.

See “Customizing files derived from the default theme archive” on page 10-170.
 169

Customization
Custom themes

 10
You can also add your own files. These are files that do not exists in the default theme archive. Any
files you add can only affect applications you develop or customize. Adding files not found in the
default theme does not affect the visual styling of the framework or non-custom applications
because they never access them. However, adding new theme files may be efficient when
developing multiple applications that use the same file because the alternative would be to place
the file separately in each of these application’s design directories. This is not only an unnecessary
duplication. It also prevents modifying sets of applications by modifying a single file.

See “Adding custom files” on page 10-170.

Customizing files derived from the default theme archive
This procedure explains how to customize files that exist in the default theme archive.

Procedure:

1. The first step when customizing a default theme file is to extract the custom-resources.zip file
from pepper-sdk/lib to a convenient location.

Note: Do not extract custom-resources.zip into your theme directory.

2. Find the default theme file you want to modify in the extracted archive and take note of its
directory location.

3. Create the same directory (or series of nested directories) in your theme directory.

For example, suppose you want to change the background image of the framework
Applications Tab. This file is named background.jpg and resides in resources/styles.

Create the resources/styles directory in your theme archive. For example, if your theme is
named premium, create the following:

pepper-sdk/themes/premium/resources/styles

4. If you are replacing a file in its entirety, simply place the new file in the correct directory in your
theme directory tree and ensure it is named exactly the same as the file in the default theme
archive.

Continuing with the example of changing the Applications Tab background image: place the
new background.jpg file in the following location:

pepper-sdk/themes/premium/resources/styles/background.jpg

When the theme is built, your file is used and replaces the default background.jpg file.

5. If you are modifying a part of a default theme file, for example, if you are adding a class to a
default CSS stylesheet, copy the file from the extracted common-resources.zip and place it in
the equivalent directory in your custom theme directory tree.

When the theme is built, your modified version is used instead of the default version.

Procedure complete.

Adding custom files
You can place new theme files (ones that do not exist in the default theme archive) into any location
in your theme SDK area.
170

Customization
Custom themes

10
Note: It is recommended to place all files in a new subdirectory of resources in order to
keep custom theme files separate from default theme files.

For example, let’s say you want to create a new CSS stylesheet that contains classes you want to
use in several new applications. You decide to name the CSS stylesheet premium.css. You might
decide to put it in a new directory named premiumStyles, as follows:

pepper-sdk/themes/premium/resources/premiumStyles/premium.css
As we have seen previously, applications’ XSL transforms use the $platform framework
parameter followed by the appropriate directories to access the new stylesheet.

For example, to use XSL to link to premium.css in a generated HTML page, use the following line
of code in the XSL transform:

<link href="{$platform}/resources/premiumStyles/premium.css"
rel="stylesheet" type="text/css" />

Building a theme
This procedure explains how to build a custom theme.

Procedure:

1. Open a command-line session and set the session’s required SDK environment variables as
usual.

For information on setting a session’s required SDK environment variables, see “Setting the
Build Environment Variables” on page 11-190.

2. Change to the pepper-sdk/themes/build directory.

3. Enter the ant command.

This builds all themes.

When the build process is complete, the session output reports build success or failure.

Successfully built themes are placed in the themes/build directory and are named based on
the theme name.

For example, if you build a theme named premium, the following theme archive file is
generated:

pepper-sdk/themes/build/premium-resources.zip

Procedure complete.

Adding a custom theme to a framework
After creating a custom theme archive, add it to a framework by copying the custom theme archive
into the root directory of the framework installation.

On the Pepper device, the root framework installation directory is:

/opt/pepper

On Windows, the root framework installation directory is:
 171

Customization
How to customize web bookmarks

 10
My Documents/Pepper

Note: Simply adding the custom archive to the run-time framework directory does not
enable it. You also have to launch the framework using an system property that specifies
the theme name, as explained next.

Launching the framework to use a custom theme
After placing a custom theme archive in the framework’s root run-time directory, you can launch the
framework to use it instead of the default theme archive.

This is done by configuring the -Dtheme framework system property to specify your theme name.
The theme name is the name of the theme’s SDK directory.

Note: The theme name is not the file name of the custom theme archive file.

For information about the custom theme name, see “Creating a theme area in the SDK” on
page 10-169.

System properties are configured differently depending on the framework’s platform.

For information about configuring framework system properties, see “Setting framework system
properties” on page 2-15.

How to customize web bookmarks
Users can add, delete and edit Web Section bookmarks. This functionality is built into Sections
declared as type web (type=”web”) in FactoryBuild.xml.

For information on Section types, see “Attribute: type” on page B-220.

At first launch, a Web Section typically provides a set of default bookmarks. This makes it easy to
create Web Sections focused on a particular subject. For example, a web Section in a recipe
application might provide bookmarks for recipe web sites.

The next section explains how bookmarks work.

For the procedure to customize the set of bookmarks provided with any web Section at first
launch, see “How to customize web bookmarks” on page 10-172.

Bookmark architecture overview
A Web Section’s SectionPage displays the default list of bookmarks at the application’s first launch.
(The SectionPage also provides a list of clippings and browsing history. These are typically empty
at first launch.) A Web Section’s SectionPage XML instance file is typically named web.xml and
resides in the application’s data directory.

Each bookmark is a Page. Default bookmark Page XML files are usually given a meaningful name,
such as pepper.xml. Bookmark files created at run-time have framework-generated names such as
1152649919327.xml. Bookmark XML instance files typically reside in the application’s data/Web
run-time directory.

For information about XML instance files, see “Application structure — a run-time sample” on
page 4-36.
172

Customization
How to customize web bookmarks

10
As the user adds, edits and deletes bookmarks, framework caching rules update the SectionPage
to ensure it provides a current list of Page bookmarks.

For information about caching rules, see “Caching” on page 4-53.

Each bookmark provided at first launch with a Web Section is a pre-built Page.

For information about pre-built Pages, see “Pre-built Pages” on page 4-69.

A Web Section does not use a pre-built SectionPage. Instead, the SectionPage XML instance file
is created by the build system and automatically includes cached bookmark information for each
pre-built bookmark Page.

An example
The Hello World Tutorial application has the following SDK subdirectory.

prebuilt/websection
The following example shows the FactoryBuild.xml Section declaration that specifies this directory
as the root pre-built directory for the web Section.

<section name="NameKey.WebSection" type="web" id="data/web" builtin="true">
<prebuiltPagesDir>../prebuilt/websection</prebuiltPagesDir>

</section>

In the SDK, this directory contains the following subdirectory:

prebuilt/websection/bookmarks
According to the rules for pre-built sections, during the build, the bookmarks directory is copied to
the application’s data directory, resulting in the following run-time directory:

data/bookmarks
Also according to the rules for pre-built sections, each XML instance file, in this case bookmark
Page XML instance files, must contain an id attribute that states its run-time location and filename
(without the “.xml” file extension). For a bookmark XML instance file named pepper.xml, the id
attribute in the pre-built pepper.xml file must be:

id=”data/bookmarks/pepper”

This id value is required because in the executing application, the bookmark file:

Is named pepper.xml, and

Resides in the data/bookmarks directory.

You can force the build system to automatically create the correct id attributes by simply deleting
the id attribute from each pre-built bookmark file’s <page> attribute.

For example, assume you created the pepper bookmark file in a different application and when you
pasted it into your application’s correct SDK directory (prebuilt/web/bookmarks), its <page>
attribute is as follows:

<page name="Pepper" type="web-bookmark" id="data/folder/pepper">
 173

Customization
How to customize web bookmarks

 10
Note: In most cases, the id attribute is correct, since web Sections generally use the same
bookmark folder structure. However, the developer can use a different structure. In this
example, the developer changed the bookmark run-time folder from the usual
data/bookmarks to data/folder.

To fix the bookmarks you have pasted into the SDK pre-built folder, simply delete entire id attribute
from the <page> element in each bookmark XML file, as follows:

<page name="Peppe" type="web-bookmark">

The result is that the build system detects the missing id attributes and inserts correct ones based
on the Section’s definition in FactoryBuild.xml, the directory in which the file resides, and the file
name.

For more information about using pre-built Pages, see “Pre-built Pages” on page 4-69.

Customizing bookmarks
This section explains how to customize bookmarks, which means creating a default set of
bookmarks that are packaged with a web Section and are present at first launch. You can customize
the bookmarks for any web Section, including ones in applications you developed from scratch in
the SDK and ones in existing applications that you did not develop. (In this latter case, you have to
port the application into the SDK, as explained in this section.)

Customizing bookmarks is fairly straightforward, but it does involve a few steps. As noted, the
application whose bookmarks you want to customize must reside into the SDK. Then, you use any
web Section to generate the set of bookmarks you want, each of which is created as an xml file.
You copy these files into the correct SDK directory, delete the id attribute from each, and then you
are ready to rebuild the application.

Customizing default bookmarks
This procedure covers:

Porting an application whose default bookmarks you want to customize into the SDK.

Generating a set of bookmarks using any application’s Web Section that you can then use as
your set of default bookmarks.

Porting the new bookmark XML instance files to the application in the SDK.

Rebuilding the application for distribution.

Procedure:

1. If the application whose bookmarks you want to customize is not already in the SDK, port it to
the SDK.

For information, see “How to port an application into the SDK” on page 10-181.

2. Use any application with a Web Section to generate the bookmarks you want to use as your
default bookmarks.

Tip: Use the application to delete any bookmarks you do not want to include as default
bookmarks.
174

Customization
How to customize an application’s help

10
The bookmark XML instance files reside in a subdirectory of the application’s run-time data
directory, typically data/bookmarks. However, depending on how the web Section was
designed, they may reside in a different subdirectory of data, so you may have to look around.

3. Copy the desired bookmark XML instance files you have created into the SDK, as follows:

a. Determine the required pre-built directory for the SDK Web Section whose default
bookmarks you are customizing by examining the Section’s <prebuiltPagesDir>
element in FactoryBuild.xml.

Note: Examine FactoryBuild.xml for the application whose bookmarks you are customizing
in SDK.

If the directory does not exist for the application in the SDK, create it.

b. Create a further subdirectory to contain the bookmarks, typically
prebuilt/websection/bookmarks

c. Copy the bookmarks you created previously into this subdirectory.

Tip: Delete any bookmarks you do not want to include as default bookmarks for the Web
Section.

4. Delete every bookmark’s id attribute from its <page> element.

5. Build the application to create its distribution package.

For information, see “Building Applications” on page 11-189.

Procedure complete.

How to customize an application’s help
Each application, including the Keeper, has a help Section. Help Sections are a unique Section type
recognized by the framework.

For information on Section types, see “Attribute: type” on page B-220.

This section explains how help Sections work so that you can create your own, create multiple
versions to support localization, and customize existing help Sections.

Help Section overview
All Help Pages (including the SectionPage) are pre-built.

See “Pre-built Pages” on page 4-69.

Because of Help Section support for localization, pre-built Page XML files should be placed in a
localized directory.

See “How to localize for different languages” on page 10-177.

For example, US_en is a localized directory in the following:

prebuilt\helpsection\help\US_en
 175

Customization
How to customize an application’s help

 10
Help Sections are composed of a set of topics. Each topic is a Page that is associated with an HTML
file. (XSL is not used to display Help Pages). You specify the HTML file to use for each Help Page
in the pre-built Page XML file with the <template> element.

For example, the following specifies that the overview.html file (in the localized directory) should be
displayed for the following Page:

<?xml version="1.0" encoding="UTF-8"?>
<pageFile deletable="true" readOnly="true">
 <header>
 <template>data/help/locale(overview.html)</template>
 <createDate utc="1039019942806" />
 </header>
 <body>
 <page name="Overview" />
 </body>
</pageFile>

A help Section’s user interface provides a table of contents of topics. The table of contents displays
in a panel on the left side of the help Section. Each topic is clickable and hyperlinked to the topic’s
Page, which displays the designated HTML file in a panel on the right side of the help Section, as
shown in the following.

Figure 10–11 Sample help system

The list of topics is derived from the pre-built SectionPage. As with all SectionPages, a Help
SectionPage contains a <section> element that contains <page> elements for each Page. You
have to manually create this in your pre-built SectionPage.

The displayed hyperlink text for each topic is derived from each <page> element’s name attribute.
Each <page> element’s id attribute specifies the localized path to the Page file (without a file
extension).

The following example shows a pre-built SectionPage.

Hyperlinks to
topics

HTML of currently selected topic
176

Customization
How to localize for different languages

10
<?xml version="1.0" encoding="UTF-8"?>
<pageFile deletable="false" readOnly="true">
 <header>
 <pkgName>Remote desktop</pkgName>
 <pkgVersion>2.1.0</pkgVersion>
 <template>design/help.xsl</template>
 <defaultPageType>default</defaultPageType>
 <createDate utc="1089919577296" />
 </header>
 <body>
 <section name="NameKey.Help" type="help" builtin="true"
id="data/help/locale(Help)">
 <page name="Section 1" id="data/help/locale(section1)" />
 <page name="Section 2" id="data/help/locale(section2)" />
 </section>
 </body>
</pageFile>

Customizing help
This procedure explains how to customize a help Section.

Procedure:

1. Port the application into the SDK.

See “How to port an application into the SDK” on page 10-181.

2. Edit any help HTML files you want to.

3. To add new help topics:

Create a pre-built Page for each new topic.

Create an HTML file for each Page.

In the Page, specify the localized HTML file with the <template> element.

Manually add the Page’s <page> element (including the name and id attributes) to the
pre-built SectionPage XML file.

4. Rebuild the application.

See “Building Applications” on page 11-189.

5. Distribute the application.

See “Adding and Distributing Applications” on page 12-195.

Procedure complete.

How to localize for different languages
The framework leverages Java’s localization capabilities.
 177

Customization
How to localize for different languages

 10
Localization allows you to create different versions of applications that are appropriate for different
locales. A locale is defined by its region and language.

The material that is localized may simply be written in different human languages, for example
French or Korean. It may have different content. For example, your French Help files may have
different content than your English ones.

The localized versions are kept in different Java properties files, or, for localized help systems, in
different sibling directories that are named based on the locale.

When the framework launches, it detects the locale and uses the appropriate properties and help
files. Locale detection automatically occurs based on the system’s locale. Or, you can explicitly set
the locale at framework launch time using two -D system properties (one for region and one for
language) passed to the framework at launch time.

For information on setting the locale at framework launch time, see “Setting framework system
properties” on page 2-15.

In general, you can localize the following:

Text displayed in the user interface throughout the framework and applications, for example
Tab text and button text

For information, see “Customizing user interface widget display text” on page 10-178.

Text displayed in Java Sections

This is covered in Phase Four of the Hello World Tutorial. See “Using localizable label text” on
page 9-144.

Help files, which can display in the language appropriate for the locale

For information, see “Customizing help for different languages” on page 10-181.

Customizing user interface widget display text
Text displayed in user interface widgets can be localized to support multiple languages.

Such text includes:

Tab text

Button text

Pull-down list text

Tooltip text

Key properties files for user interface widget text localization include:

General user interface widget display text

For information, see “Localizing CommonStrings.properties” on page 10-179.

Time zone text

For information, see “Localizing TimezoneCatalog.properties” on page 10-180.

Application-specific user interface widget display text

For information, see “Localizing PackageStrings.properties” on page 10-180.
178

Customization
How to localize for different languages

10
Creating localized properties files
You can create a localized version of a properties file by:

Making a copy of the file in the same directory as the default properties file.

Naming it according to Java’s localization rules by adding characters that specify its locale.

The locale is specified by adding: underscore + (two letter language code) + underscore + (two
letter region code), just before the file extension. For example, if the default properties file is
named PackageStrings.properties, an English, United States version file has the following
filename: PackageStrings_en_US.properties.

You could create a version for French speaking users in Canada as follows:
PackageStrings_fr_CA.properties file. If the framework is launched on a French Canadian
system, or if it is launched with French Canadian -D arguments, it uses the
PackageStrings_fr_CA.properties file instead of the default PackageStrings.properties file
when looking up text for display in the user interface.

Note: Java localization file naming rules are beyond the scope of this document but are
explained on many sites on the internet.

Editing the contents to provide the localized text.

As noted, the contents of the properties file also have to be customized for the correct language.
As explained in the Hello World Tutorial, properties files contain key-value pairs, with one key-value
pair on each line.

For example, the following shows a single key-value pair that is used to derive the display text for
a Tab:

NameKey.Worlds=Worlds

Where:

Everything to the left of the equals sign (“=”) is the key.

The key must not be modified. This is what the framework code looks up when accessing the
file.

Everything to the right of the equals sign (“=”) is the value.

The value is modified as appropriate for the localization.

To localize this for French speakers, it might be changed to the following:

NameKey.Worlds=Les Mondes

Localizing CommonStrings.properties
Text displayed in user interface widgets that is not application-specific, that is, widget text that is
common among all applications, is derived from CommonStrings.properties.

Note: As with all properties files, you must only modify the value part of each key-value
pair. See “Creating localized properties files” on page 10-179
 179

Customization
How to localize for different languages

 10
CommonStrings.properties is a theme archive file. You can create a localized version this file (with
a localized filename) by creating a custom theme and including it in your custom theme.

For information on creating custom themes, see “Custom themes” on page 10-167.

Localizing TimezoneCatalog.properties
On a Pepper device, users can set the time. (On the Pepper Desktop, the time is controlled by the
operating system.)

A list of time zones is displayed to the user. This list can be localized to provide place names in the
appropriate language. The list of time zones is derived from TimezoneCatalog.properties.

TimezoneCatalog.properties is a theme archive file. You can create a localized version this file (with
a localized filename) by creating a custom theme and including it in your custom theme.

Note: As with all properties files, you must only modify the value part of each key-value
pair. See “Creating localized properties files” on page 10-179

For information on creating custom themes, see “Custom themes” on page 10-167.

Localizing PackageStrings.properties
Text displayed in application’s specific user interface is derived from each application’s
PackageStrings.properties file.

To localize this, port the application into the SDK, create a localized version this file (with a localized
filename) and rebuild the application to create a new distribution.

For information about porting an application into the SDK, see “How to port an application into
the SDK” on page 10-181.

Launching the framework with a specified locale
By default, the framework automatically detects and uses the operating system’s locale.

You can launch the framework with two arguments that explicitly set the locale the framework uses:

-Duser.language=fr

The two characters on the right side of the equals sign (“=”) set the language using Java’s
standard language code.

-Duser.region=CA

The two characters on the right side of the equals sign (“=”) set the region using Java’s standard
language code

Taken together, these two sample localization properties set the locale to the French language in
Canada.

These arguments can be included in a launch resource files so that this occurs automatically, and
transparently to the user, at launch time.

For information about setting -D system property, see “Setting framework system properties”
on page 2-15.
180

Customization
How to port an application into the SDK

10
Customizing help for different languages
You can create different versions of a help system to support different languages.

For information, see “How to customize an application’s help” on page 10-175.

How to port an application into the SDK
Porting an application into the SDK is useful when customizing an application you did not develop.

Note: You cannot customize the Java aspects of an application you did not develop without
its source files.

Because you can rebuild the application in the SDK, the customizations are bundled by the build
process into the application’s distribution package.

This is useful in the following cases:

Customizing the application and rebuilding it for redeployment

You can customize Sections and Page definitions, icons, images, and other application-specific
presentation aspects of an application, rebuild it and distribute it.

Rebuilding the application from modified pre-built Pages

For example, you may want to change the default bookmarks for a Web Section. You can do
this by porting the application containing the Web Section into the SDK, modifying its pre-built
bookmark Pages and rebuilding it. You could also modify an application’s pre-built help Pages,
then rebuild and distribute it.

Which applications can be ported to the SDK?
You can port any application from a run-time directory into the SDK, including the Keeper
application itself.

Is the rebuilt application complete?
After rebuilding an application in the SDK, its non-Java contents reside in the application’s dist
directory in the SDK, enabling easy distribution.

However, for applications you have ported to the SDK, the dist directory does not contain the
application’s jar file (or jar files), nor does it contain other files that may be listed as required
resources in the application’s package.ppld file (binder.ppld in the case of the Keeper application).

So, before distributing the rebuilt application from the SDK, you need to copy any jar files (or other
special resources) that are not created by the SDK build from the application’s run-time root
directory into the SDK dist directory.

After rebuilding, how is the application deployed?
You can manually add a rebuilt application to a single framework using Debug Mode’s Add
Application menu item.

For information, see “Adding an application” on page 2-12.
 181

Customization
How to port an application into the SDK

 10
You can distribute a rebuilt application from a web site.

For information, see Distributing an application on the web.

You can deploy a rebuilt application using an update server.

For information, contact Pepper.

Porting an application to the SDK
This procedure explains how to port an application from a run-time framework directory into the
SDK.

Note: This procedure uses the Keeper application as an example.

Procedure:

1. Create a directory for the application in the SDK pepper-sdk/applications/ directory.

It is recommended to use the same directory name that the application has in the run-time
framework, excluding everything from the dash to the right: “-”.

For example, the bundled framework application has a run-time directory named something like
this:

Keeper-750289dc176f2c65b5ef

(Everything to the right of the dash is the package GUID and varies from installation to
installation.)

Note: Some applications have a package GUID of “0”.

In keeping with this recommendation, you would name the Keeper’s SDK directory as follows:

Keeper

Note: The application’s SDK directory name is an important constant that must be entered
into the application’s build.xml file, as discussed below.

2. Create the following subdirectory for the application in the SDK:

pepper-sdk/applications/Keeper/env

3. Create a build subdirectory, as follows:

a. Copy applicationTemplate/build directory into pepper-sdk/applications/Keeper/

4. Open build/build.xml for editing and change the <project> element’s name attribute to the
application’s SDK directory name, for example:

<project name"Keeper" default="all" basedir=".">

5. Create the SDK Keeper/design directory from the run-time application.

There are two options.

You can use the original built design files contained in design.zip.

You can use design files that were previously extracted in the run-time Keeper in Design
Mode contained the application’s run-time design directory.
182

Customization
How to port an application into the SDK

10
To create the SDK design directory from the unextracted files that represent the application’s
original built state, do the following:

a. Copy design.zip from the application’s run-time directory into
pepper-sdk/applications/Keeper.

b. Extract design.zip into pepper-sdk/applications/Keeper/design

design.zip contains a design directory, which in turn contains many files and subdirectories.
The results of the extraction must be that this contained design subdirectory is a child
subdirectory of pepper-sdk/applications/Keeper/, as follows:

pepper-sdk/applications/Keeper/design

c. Delete design.zip from the SDK.

To create the SDK design directory from the design files previously extracted in Design Mode
(and probably customized), do the following:

a. Copy design from the application’s run-time directory into pepper-sdk/applications/Keeper,
resulting in the following:

pepper-sdk/applications/Keeper/design

If the application has any Sections that use pre-built Pages, you must retrieve the Page XML
instance files from the run-time data directory and place them in correctly named directories in the
SDK.

The following steps explain how to check whether there are any Sections using pre-built Pages, and
if so, how to retrieve the files and place them in the correct SDK directories.

6. Determine the prebuilt subdirectories that are required, if any, as follows:

a. Open pepper-sdk/applications/Keeper/design/FactoryBuild.xml.

b. For each pre-built section find the pre-built directory that must be created for the application
in the SDK.

Tip: Read through this material first to be sure you understand it. The outcome of this step
should be a list of all Sections defined in FactoryBuild.xml that use pre-built Pages and, for
each, the specific pre-built directory that is expected and that must therefore be created in
the SDK.

Every Section is declared as a <section> element. There are two ways Sections are
declared as using pre-built Pages. They have either a src attribute or a child
<prebuiltPagesDir> element.

You need to find every Section that uses either of these two ways to identify the Section as
using pre-built Pages.

Example 10–13 shows the use of the src attribute in the Keeper application’s Help
Section’s definition. The value of the src attribute, ../prebuilt/HelpSection,
indicates that the application’s SDK directory must have a prebuilt/HelpSection
subdirectory tree. This subdirectory tree must contain all pre-built Pages for the Section,
 183

Customization
How to port an application into the SDK

 10
including the SectionPage. These pre-built Pages must be in a subdirectory of
prebuilt/HelpSection that is consistent with their id attributes, as explained below.

Example 10–13 Pre-built Section identified with the src attribute

<section name="NameKey.Help" type="help" builtin="true"
id="data/Help/locale(Help)" src="../prebuilt/HelpSection" />

Example 10–14 shows the use of the <prebuiltPagesDir> element in the Settings
Section definition. The text contents of <prebuiltPagesDir> element,
../prebuilt/SettingsSection, indicates that the application’s SDK directory must
have a prebuilt/SettingsSection subdirectory. This subdirectory must contain all pre-built
Pages for the Section. (Because the src attribute is not used, the SectionPage is not
pre-built.) As with the previous example, these pre-built Pages must be in a subdirectory of
prebuilt/HelpSection that is consistent with their id attributes, as explained below.

Example 10–14 Pre-built Section identified with the <prebuiltPagesDir> element

<section name="NameKey.Settings" id ="data/Settings" type="settings" builtin="true">
<prebuiltPagesDir>../prebuilt/SettingsSection</prebuiltPagesDir>

</section>

For the Keeper application, based on the two examples shown here, two pre-built
directories are required:

pepper-sdk/applications/Keeper/prebuilt/HelpSection

pepper-sdk/applications/Keeper/prebuilt/SettingsSection

If you have found no Sections using pre-built directories, this procedure is complete and
you can modify and build the application as you would any other SDK application.

7. Create the pre-built subdirectories identified as required in the previous step.

As noted, for the Keeper application in this running example, based on the two results of the
previous step, the following two pre-built directories must be created:

pepper-sdk/applications/Keeper/prebuilt/HelpSection

pepper-sdk/applications/Keeper/prebuilt/SettingsSection

8. Port the application’s data.zip file to the SDK and extract it as dataFromRuntime.

Pre-built files are contained in the run-time data.zip file. data.zip contains a data directory,
which in turn contains files and subdirectories. There is a subdirectory (or subdirectory tree) for
each Section’s pre-built files. These subdirectories have to be copied into the SDK pre-built
directories that were created in the previous step.

The following sub-steps cover porting and extracting data.zip. The following step covers
copying the pre-built files into the new pre-built directories.

a. Copy data.zip from the application’s run-time directory into
pepper-sdk/applications/Keeper.

b. Extract data.zip into pepper-sdk/applications/Keeper/

The results of the extraction must be that this contained data subdirectory is a child
subdirectory of pepper-sdk/applications/Keeper/, as follows:
184

Customization
How to port an application into the SDK

10
pepper-sdk/applications/Keeper/data

c. Rename the data directory to:

pepper-sdk/applications/Keeper/fromDataRuntime

The data directory is created by the build process. When the build occurs, it is populated
with pre-built Page files and with new files created during the build that are based on
Section definitions in FactoryBuild.xml in combination with Page definitions in
PageTemplates.xml. Renaming data to dataFromRuntime enables you to use it as a
resource containing pre-built files while preventing the build from overwriting it.

9. Copy pre-built directories and Pages into the new pre-built directories.

To understand this step, consider that during a build, everything (directories and files)
contained inside in a pre-built directory specified with a src attribute or
<prebuiltPagesDir> child element is copied into the data directory (which is compressed
into data.zip).

For example, before a normal build, the Keeper’s pre-built Help directory looks like this:

prebuilt/HelpSection/Help/(locale directories)/(pre-built files)

As we have seen, for this section the src attribute specifies finding pre-built subdirectories and
files for this Section here:

../prebuilt/HelpSection

Therefore during a normal build, the following subdirectories and files (that is, those inside
prebuilt/HelSection) are copied into the data directory:

Help/(locale directories)/(pre-built files)

Resulting in this:

data/Help/(locale directories)/(pre-built files)

To port the application into the SDK, you have to do the reverse:

Copy:

Help/(locale directories)/(pre-built files), which resides in dataFromRuntime

Into:

prebuilt/HelpSection

Resulting in this:

prebuilt/HelpSection/Help/(locale directories)/(pre-built files)

Note: (locale directories) are used to provide sets of pre-built files that are sorted by
locale-specific directories with names that follow the Java localization standards. Each
locale-specific directory contains all required files, but they are written in a human language
appropriate for the locale.

For the other Section using pre-built Pages in this running example, the Settings Section, you
would have to:

Copy:

Settings/(pre-built files), which resides in dataFromRuntime/
 185

Customization
Customizing an application’s Sections

 10
Into:

prebuilt/SettingsSection

Resulting in this:

prebuilt/SettingsSection/Settings/(pre-built files)

10. If you want to use any of the files in the run-time data directory as pre-built files in the revised
application, copy the files from the dataFromRuntime the appropriate prebuilt subdirectory.

For example, if you have generated bookmarks for a web Section, and you would like them to
appear at first launch of the rebuilt application, copy the bookmark XML instance files into the
appropriate SDK directory.

Note: If you copy any files from dataFromRuntime into the SDK and if you modify any of
them in the SDK, you must delete the corresponding file in the run-time data directory. This
because at run-time, an application always checks for a file in the run-time data directory
first. If it finds it, it uses it and never checks for the file in data.zip. The outcome of the SDK
build of the application is a new data.zip file. If you don’t delete the file from data its new
version in data.zip is never used.

11. Copy all files except for the application’s ppld file from the application’s root run-time directory
into the application’s SDK dist directory.

This ensures the dist directory contains all required resources, such as the application’s jar file,
any other application-specific jar files the application may require, and any other required files.

Note: The application’s required resources are listed in its ppld file inside the
<resources> element. Although the Java run-time environment is listed there, you do not
need to copy it because it is included with every Keeper.

Procedure complete.

Customizing an application’s Sections
As we have seen, the Section instances (Tabs) of an application at first launch are each declared
in its FactoryBuild.xml file. You can modify this file to remove Section instances that are created by
the build. You can also add Section instances.

Remove a Section instance by commenting out or deleting its <section> element from the
FactoryBuild.xml file. Then, rebuild the application in the SDK. However, If the application was
previously installed in a framework, its previous Section instances may exist as XML files in its data
directory. Therefore, before refreshing the run-time application from the newly built version, delete
the run-time data directory.

A new Section can be created by the build with a new <section> element in the FactoryBuild.xml
file.

Note: In the current release, you cannot use new framework Actions (classes that extend
ProgramAbstractAction) in Sections you add to applications that you did not develop
because new framework Actions must be registered in the application’s base class, and
you do not have the application’s source code for modification.
186

Customization
Customizing an application’s Sections

10
Adding a new Section is development work that requires the same knowledge as adding Sections
to your original applications, which is the topic of much of this book and therefore cannot be
explained in full here.

In both cases, deleting and adding Sections, the application has to be ported into the SDK to rebuild
it.
 187

Customization
Customizing an application’s Sections

 10
188

11

Building Applications
What is Building a Pepper Application?
Applications are developed by creating and editing a wide range of files, including:

XML files

XSL files

Java source files

JavaScript files

CSS files

Other files

These files reside in directory locations that are precisely specified.

When you build an application, a number of operations occur, including:

Java source files (.java files) residing in pepper-sdk/applications/(application)/src/*.*
are compiled into Java class files (*.class files) and bundled into a jar file, which is placed in the
pepper-sdk/applications/(application)/dist directory.

Pre-built Pages are copied from specified directories into the data directory.

Non-pre-built Page XML instance files are created from XML definition files that you have
created or modified.

A pepper-sdk/applications/(application)/data directory is created and loaded with required files.

A pepper-sdk/applications/(application)/dist directory is created and loaded with
required files.

This is not a complete list. The point is that the build system absolutely requires that various
directories and files exist in specific locations.
 189

Building Applications
Ant is the Build System

 11
Ant is the Build System
Pepper applications are built with Ant. Ant is an open source freely available build system that is a
part of the Apache project. Ant scripts are included in the SDK and are pre-configured to build SDK
applications. You do need to download and install Ant itself.

Ant version 1.6 or higher is required. (Ant 1.7 has not been tested.)

For information about Ant, see its web site: http://ant.apache.org

Setting up Application’s Build System
Before an application can be built, its build.xml file must be edited. It is necessary to enter the
application’s project name. The project name is used by the build system as the file name of the
application’s jar file.

For additional information on Java aspects of the build, see “How Java is Compiled and Jarred
During the Build” on page 11-193.

For the procedure to modify the build.xml file, see “Modifying build.xml” on page 6-92.

Setting the Build Environment Variables
Building is done from the command line. A number of environment variables have to be set in the
command line session before building can occur. These can be set manually in the command line
window one at a time, or they can be set by customizing a setup file, then executing it in the
command line window.

Note: Customizing the setup file is the recommended approach because it is more
convenient: once you customize the file once, you can execute it in new command line
windows to easily set the build environment.

There are two versions of the setup file. One, setup.bat, is for Windows. The other, setup.sh, is for
Linux. Both files are provided with the SDK in its root directory: pepper-sdk/.

This procedure explains how to edit the setup file to customize the environment variables.

Procedure:

1. Open the setup file appropriate to your operating system:

pepper-sdk/setup.bat for Windows

pepper-sdk/setup.sh for Linux

Here are the contents of setup.bat:

set PEPPER_HOME=c:/pepper-sdk
set ANT_HOME=%ANT_HOME%
set JAVA_HOME=%JAVA_HOME%
set CLASSPATH=%CLASSPATH%;%PEPPER_HOME%/bootstrap/env/anttasks.jar;
set PATH=%PATH%;%ANT_HOME%/bin;%JAVA_HOME%/bin
190

Building Applications
Build commands

11
Here are the contents of setup.sh:

#!/bin/sh
export PEPPER_HOME=$HOME/pepper-sdk
export ANT_HOME=$ANT_HOME
export JAVA_HOME=$JAVA_HOME
export CLASSPATH=$CLASSPATH:$PEPPER_HOME/bootstrap/env/anttasks.jar
export PATH=$PATH:$ANT_HOME/bin:$JAVA_HOME/bin

2. Ensure the PEPPER_HOME variable is set to the full path to the pepper SDK installation
directory.

3. Ensure the ANT_HOME variable is set to the full path to the Ant installation directory.

4. Ensure the JAVA_HOME variable is set to the full path to the Java SDK directory.

5. Save and close the file.

Procedure complete.

Build commands
This section explains useful Ant commands for building applications.

Note: Ant build commands must be run from the application’s build directory. For example,
if you are going to build the sample Remote Desktop application, you must be in
pepper-sdk/applications/remotedesktop/build

ant
Builds the current application. It also builds the application’s javadoc when the Java source files
have been modified.

ant clean
Removes all files for the current application that were generated by a previous build.

Note: This fails if the files cannot be removed for any reason.

ant rebuild
Performs an ant clean and then an ant.

Building an Application
After Setting up Application’s Build System, you can build it.

Building is done from the command line.
 191

Building Applications
Building an Application

 11
Note: A number of environment variables have to be set before building. These can be set
manually in the command line window or they can be set by customizing then executing a
setup file in the command line window. See “Setting the Build Environment Variables” on
page 11-190.

Procedure:

1. Open a command line window.

2. Change to the pepper-sdk directory.

3. Set environment variables by running the setup file, as follows:

Note: You only need to run the setup program once during a command line session, before
the first build in the session, not each and every time before you build.

Windows, enter setup

Linux, enter . ./setup.sh

Note: On Linux, the correct command is a period (“.”) followed by a space (“ ”) followed by
“./setup.sh”.

4. Move to the application’s build directory.

For example, if you are building the sample Remote Desktop application, whose application
directory is named remotedesktop, move to:

pepper-sdk/applications/remotedesktop/build

5. If you have built this application previously, remove all built files that were generated by the
build system with the ant clean command, as follows:

>ant clean

Note: It is not always necessary to run ant clean before building. However, it is a good
idea in order to eliminate the possibility that your new build may seem to work but actually
does not. This can occur if the application depends on files that are no longer created by
the build but that still exist because they were created during a previous build. ant
rebuild executes an ant clean and then an ant all.

6. Confirm success of the build clean by analyzing the output.

The next to last line reports success or failure.

7. Build the application with ant all command, as follows:

Note: Instead of separately executing ant clean and then ant all, you can execute the
single ant rebuild command, which does both.

>ant

8. Confirm build success by analyzing the output

During the build, information is displayed, including the results of compilation and framework
activities. The second to last output line reports build success or build failure.

Note: If the build fails, a good place to start troubleshooting is by analyzing the details of
the information output into the command line session during the build.

Procedure complete.
192

Building Applications
How Java is Compiled and Jarred During the Build

11
How Java is Compiled and Jarred During the Build
The build system compiles Java source files into Java class files and creates a jar archive file that
is included in the application’s distribution (/dist) directory. This process occurs automatically
according to the settings in two files, which must be edited: build/build.xml and
design/package.ppld.

The Java build system has the following parts:

Java source files are compiled into Java class files.

All Java source files existing in the application’s src directory are automatically compiled into
Java class files during the build.

Java class files are bundled into a jar file and placed in the env directory.

The class files are automatically bundled into a jar file that is placed in the application’s env
directory. You specify the jar filename in the application’s build.xml file in the <project>
element’s name attribute. (This is the “project name”). For example, assume the project name
is “helloworldtutorial”, then the <project> element should be:

<project name="helloworldtutorial" default="all" basedir=".">

This results in a jar file named helloworldtutorial.jar in the env directory.

Note: The build system automatically adds the “.jar” extension to the filename.

The jar is unsigned, and its classes are assigned appropriately limited permissions by the
framework when they are loaded.

See “Unsigned Jar Permissions” on page 11-193.

Note: For information about developing signed applications, please contact Pepper
Computer, Inc.

The specified jar file(s) is included in the application’s distribution directory.

The final step is placing the jar file (or files) into the dist directory. You specify the jar file (or jar
files) to include in the dist directory in the package.ppld file. For each jar file you want to include,
you must add a <jar> element with an href attribute that names the jar file. The <jar>
element occurs inside the <resources> element.

For example, to include helloworldtutorial.jar, add the following (bold):

<resources>
<jar href="helloworldtutorial.jar" />
<jar href="data.zip"/>
<jar href="design.zip"/>

</resources>

Unsigned Jar Permissions
When the application’s classes are loaded by the Keeper from the unsigned jar archive, they are
assigned appropriately limited permissions roughly equivalent to those of an applet, but with some
modifications, as follows:
 193

Building Applications
Adding Existing Jar Files to the Build

 11
The classes can read, write and delete files in the application’s root install directory and the
Keeper’s tmp directory.

The classes can also read certain Keeper files, such as those stored in the theme archive
(common-resources.zip or the custom theme archive, if any).

The classes can read the following Java system properties:

java.version, java.vendor, java.vendor.url, java.class.version, os.name, os.version, os.arch,
file.separator, path.separator, line.separator, java.specification.version,
java.specification.vendor, java.specification.name, java.vm.specification.version,
java.vm.specification.vendor, java.vm.specification.name, java.vm.version, java.vm.vendor,
and java.vm.name.

Adding Existing Jar Files to the Build
Your application may require classes in existing jar files. Adding such existing jar files to your
application is a two step process:

Place the existing jar file in the application’s env directory.

Note: The env directory may not exist before you have built the project the first time. In this
case, simply create the directory.

Specify that the jar file is a required resource in the package.ppld file.

Specify the existing jar file with the <jar href=”jarfilename”> element, inside the
<resources> element. For example, to include myJar.jar, assuming the project’s main jar file
is helloworldtutorial.jar, as follows (bold):

<resources>
<jar href="helloworldtutorial.jar" />
<jar href="myJar.jar" />
<jar href="data.zip"/>
<jar href="design.zip"/>

</resources>
194

12

Adding and
Distributing

Applications
Overview
This chapter explains how to add an application to a Keeper and how to distribute applications over
the web.

There are two ways to add an application to a Pepper Application Framework:

Adding an application from a web site

This is the typical method for small-scale distribution of completed applications.

Note: Customers interested in larger-scale distribution and update services should contact
Pepper Computer, Inc.

The application is added as a new instance and does not replace an existing instance of the
application, if any.

Framework 3.0.3 or higher is required.

Adding an application from a local file system

This is the typical method for adding applications during development.

The framework must be in Debug Mode.

Distributing an application on the web
This section covers distributing your applications from a web site.

Note: Support for this feature starts with Pepper Application Framework 3.0.3 and is not
available on the Pepper Pad 2.

There are two aspects of this distribution method:

Posting your applications on the web server

Adding an application from the web site
 195

Adding and Distributing Applications
Distributing an application on the web

 12
Note: In the current release, applications are installed but are not updated using this
mechanism.

Web distribution mechanism overview
Post an application to a web server as follows:

Place the application’s distribution package in a dedicated web server directory.

Create a file with a pkglist extension (for example: app1.pkglist) in the application distribution
package directory.

Edit the pkglist file to contain a URL to the application’s package.ppld.

Add a hyperlink to the pkglist file to a web page.

This approach is shown in Figure 12–1.

Figure 12–1

Posting your applications on a web server for distribution
This procedure explains how to post your applications on a web server for distribution.

Procedure:

1. Create a file on the web server with the following file extension: pkglist

For example: applications.pkglist

Note: This is called the pkglist file.

2. Create a directory on the web server for each application you are distributing.

For this example, assume there are two applications that we’ll call application1 and
application2.

Therefore, create the following directories on the web server:

(serverRoot)/application1

(serverRoot)/application2

3. Place each application’s distribution files into its directory.

index.html
<html>
<head />
<body>
App 1
App 2
</body>
</html>

Web Server Directory Web Server Subdirectories

app1/app1.pkglist
http://(dns)/app1/package.ppld

app2/app2.pkglist
http://(dns)/app2/package.ppld
196

Adding and Distributing Applications
Adding a local application in Debug Mode

12
The set of distribution files includes all files in the application’s dist directory in the SDK.

For example, application1’s dist directory is:

pepper-sdk/applications/application1/dist/

4. Add a URL for each application you want to distribute to the pkglist file.

Each URL must specify the application’s package.ppld file.

In this example, the applications.pkglist file should have the following contents:

http://(dns)/application1/package.ppld
http://(dns)/application2/package.ppld

Procedure complete

Adding an application from a web site
This procedure explains how to add an application from a web site.

Note: Pepper Application Framework 3.0.3 or higher is required; this is not supported on
the Pepper Pad 2.

Procedure:

1. In any web Section, browse to the pkglist file.

The web Section displays links for each application distributed through this pkglist file.

2. Click on the appropriate link.

3. Verify your intention to install the application as prompted.

Procedure complete

Adding a local application in Debug Mode
This section covers adding a local application to a Pepper Application Framework. This approach:

Requires that the framework has physical access to the application’s distribution package.

Works only when the framework is in Debug Mode.

Enables automatic refreshing of the application on application launch when any application
distribution files have changed.

Is the typical method for adding an application during development.

Making an application’s files accessible to the framework
To add an application using Debug > Add Application, the framework must have physical access
to the built files.

The built files a framework needs access to are those in the application’s dist directory. (See
“Application-specific directories” on page 2-6.) For example, if you want to add “myApplication” to
a framework, you have to make the files in the following directory available to the framework:
 197

Adding and Distributing Applications
Adding a local application in Debug Mode

 12
pepper-sdk/applications/myApplication/dist

If the framework is on a different system than the development environment, you need to take steps
to make the built files (the application distribution package) available. There are two methods for
this:

You can copy the dist directory to a USB thumb drive and insert the thumb drive into the
Pepper device.

See “Making files available with a USB thumb drive” on page 12-198.

You can enable ssh on the Pepper device and use scp to copy the files in the dist directory
to the Pepper device.

See “Copying files to the Pepper device with ssh and scp” on page 12-199.

Note: ssh, scp and related command line programs are not available on a Windows system
by default. You can obtain them in various ways. For example you can download shareware
versions from the internet. Or, you can install cygwin, which provides a Unix/Linux-like
command line environment on Windows including these commands.

Making files available with a USB thumb drive
This procedure explains how to access files on a USB thumb drive from the Pepper device.

Note: This procedure is useful when adding an application you developed to the Pepper
device. You could also use ssh and scp; see “Copying files to the Pepper device with ssh
and scp” on page 12-199.

Procedure:

1. Insert the USB thumb drive into a USB connector on the development system.

2. Copy the application’s dist directory to the thumb drive.

For example, if you are adding “myApplication” to the Pepper device, copy the following
directory (and contents) to the thumb drive:

pepper-sdk/applications/myApplication/dist

3. Remove the thumb drive from the development system.

4. Insert the thumb drive into the Pepper device USB connector.

The dist directory (and any other files) on the USB thumb drive is now accessible to the
framework.

5. Open and Xterm window on the Pepper device by pressing ctrl + shift + 1.

6. In the Xterm window, change to the contents of the thumb drive.

The thumb drive is mounted here:

/media/usbhd

7. Copy the files from the thumb drive to the Pepper device with the cp (source) (target)
command, for example:

cp /media/usbhd/myfile.txt /opt/pepper/myCopiedFile.txt

Procedure complete.
198

Adding and Distributing Applications
Adding a local application in Debug Mode

12
Copying files to the Pepper device with ssh and scp
ssh is a secure shell utility that is bundled with most version of Linux and with Pepper devices. ssh
enables creating a remote connection from another system (Windows or Linux) to the Pepper
device. You can then use scp to copy files to the Pepper device.

Note: This procedure is useful when adding an application you developed to the Pepper
device. You could also use a USB thumb drive; see “Making files available with a USB
thumb drive” on page 12-198.

If you want to connect with scp from a Windows system, you must install the scp software onto
Windows. PuTTY is a Windows application that supports ssh and scp that is freely downloadable
on the internet.

Note: Selecting, installing and configuring the ssh application on the development platform
is beyond the scope of this document.

Before you can use ssh, it must be enabled on the Pepper device. See “Enabling ssh on the Pepper
device” on page 12-199.

After enabling ssh on the Pepper device, you can use scp to copy files to the Pepper device. See
“Using scp to copy files to the Pepper device” on page 12-200

Enabling ssh on the Pepper device
This procedure explains how to enable the Pepper device for ssh, including:

Procedure:

1. Set a password for the root user account on the Pepper device as follows:

a. Open an Xterm window on the Pepper device by pressing the ctrl + shift + 1 keys.

b. In the Xterm window, set the root user account password with the passwd command, and
then follow displayed instructions.

Note: By default, the root user account on the Pepper device does not have a password
set. However, ssh requires that the root user account have a password.

Note: Creating a root user password and enabling ssh creates a security risk because it is
possible that other entities could gain access to the Pepper device through ssh.

Note: If you forget the password, you can reset it at any time by simply launching an Xterm
window and using the passwd command.

2. Turn ssh on with the following command:

Pepper Pad 2:

/etc/init.d/ssh start

All other Pepper devices:

/etc/init.d/sshd start

Note: It normally takes a minute or two for ssh to run the first time you launch it on the
Pepper device.

3. Optionally configure ssh to always be on and available with the following command:

Pepper Pad 2:
 199

Adding and Distributing Applications
Adding a local application in Debug Mode

 12
chkconfig ssh on

All other Pepper devices:

chkconfig sshd on

Procedure complete.

Using scp to copy files to the Pepper device
This procedure explains how to use scp to copy files from the external development system to the
Pepper device.

Note: The development system must have scp. Installing and configuring scp is beyond the
scope of this document.

Note: Before you can use scp to connect to the Pepper device, ssh must be enabled on
the Pepper device. See “Enabling ssh on the Pepper device” on page 12-199.

Note: To use ssh, the Pepper device must be connected to Wi-Fi and have a valid IP
configuration. Verify these by launching the Pepper device Web application and opening a
web page.

This procedure covers the following:

Connecting from the external system to the Pepper device with scp over ssh

Transferring the files (typically the application’s dist directory) to the Pepper device

Procedure:

1. Determine the Pepper device’s IP address, as follows:

a. Open an Xterm window on the Pepper device by pressing the ctrl + shift + 1 keys.

b. Display network configuration information with the ifconfig command.

c. Find the wlan0 section of the display. It should appear as follows:
wlan0 Link encap:Ethernet HWaddr 00:90:4B:23:3F:54
 inet addr:10.0.1.5 Bcast:10.0.1.255 Mask:255.255.255.0
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:21745 errors:0 dropped:15 overruns:0 frame:0
 TX packets:2289 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:0
 RX bytes:4483118 (4.2 Mb) TX bytes:257332 (251.3 Kb)
 Interrupt:36

d. Find the wlan0 IP address, shown in bold here:
inet addr:10.0.1.5 Bcast:10.0.1.255 Mask:255.255.255.0

2. From the Xterm window on the Pepper device, make a directory to receive the files you are
about to copy, as follows:

a. Change to the /opt directory with the cd /opt command.

b. Make a directory with the mkdir directoryname command, where directoryname is the
name of your new directory.

c. Move into the new directory with the cd directoryname command.
200

Adding and Distributing Applications
Adding a local application in Debug Mode

12
3. On the external system from which the files are to be copied, open a command line window that
supports the scp command.

4. In the scp command line window, move to the directory that contains the files you are to copy
(typically the dist directory of the application you are adding to the framework).

5. Copy the files in the current directory to the directory you created on the Pepper device with the
following command:

scp *.* root@(Pepper device IP address):/opt/directoryname

Where:

scp is the scp program command.

The actual program command may vary depending on the scp installation. for example, the
command for Putty is pscp.

. means copy all files in the current directory.

root specifies logging into the remote system (the Pepper device) using the root user
account.

(Pepper device IP address) is the Pepper device’s IP address determined previously with
the ifconfig command and looking at the wlan0 interface.

/opt/directoryname specifies the directory on the Pepper device into which the files are to
be copied.

For example, if the command is scp, the Pepper device’s IP address is 10.0.0.1, and the
directory into which the files are to be copied is: /opt/remotedesktop, then the command is:

scp *.* root@10.0.0.1:/opt/remotedesktop

Note: After executing the command you are prompted to enter the root user account
password, which you set previously in “Enabling ssh on the Pepper device” on
page 12-199.

6. You can confirm the files are present on the Pepper device from the Xterm window by moving
to the directory and executing the ls command, which displays the files in the directory.

Procedure complete.

Adding a local application to the framework
Once the Pepper Application Framework has physical access to the files in the application’s dist
directory, you can add the application to the framework.

Procedure:

1. Put the framework in Debug Mode by pressing ctrl + shift + 0
When the framework is in Debug Mode it displays a Debug menu above the Tabs.

Note: You can also launch the framework in Debug Mode. See “Debug Mode” on
page 2-10.

2. Add the application as follows:

d. Select the Debug > Add Application menu item.

A file browser dialog displays.
 201

Adding and Distributing Applications
Adding a local application in Debug Mode

 12
e. Browse to the location where the files reside.

If the files are on a thumb drive, browse to the following directory:

/media/usbhd

f. Select the package.ppld file and click the Open button.

If you are adding the Keeper application after having customized it in the SDK, select the
binder.ppld file.

For information using the SDK to customize the Keeper, see “Getting started with
customization” on page 10-151.

At this point, the application is added to the framework and its icon displays in the Applications
Section.

Procedure complete.

Refreshing an application in the framework
When developing an application through various stages, it is generally necessary to test each stage
in the Pepper Application Framework. So, the framework needs a refreshed version of the newly
built application.

The framework automatically updates applications:

If it is in Debug Mode, and

If it has access to the dist directory files from which the application was installed, and

If any of those files have been modified.

Note: If the framework does not have access to the dist directory from which the application
was installed, it does not detect any new files and does not automatically update to the
newer version of the application. See “Making an application’s files accessible to the
framework” on page 12-197.

For example, let’s suppose you are developing your application on a Windows system and testing
it in a framework executing on the same system. You add the application to the framework by
browsing to the application’s dist directory in the SDK. Installing the application copies all files in the
dist directory into the installation directory. These files are used (but not modified) as required
resources during execution. Each time you launch the application, the framework compares the last
modified dates of its copies of the dist files to the last modified dates of the files in the directory from
which it installed the application. If it finds that any files have been modified since installation, it
copies the newer files into its installation directory.

Such update events are recorded in the framework log.
202

A

Sample Page Files
This appendix provides sample Page files relating to Phase Two of the Hello World Tutorial.

Worlds SectionPage sample
This is an example of the worlds SectionPage XML file.

It is generated by the build. As with all SectionPage instances generated by the build, its file name
(and Section ID) is set in the <section> declaration in FactoryBuild.xml. It is updated by the
framework at run time according to caching rules. Note the cached <page> elements (and their
<worldName> children), each of which corresponds to a world Page. (World Pages are generated
at run time). See an actual instance in your Keeper in the application’s data directory.

<?xml version="1.0" encoding="UTF-8"?>
<pageFile>
 <header>
 <pkgName>helloworld</pkgName>
 <pkgVersion>1.0</pkgVersion>
 <template>design/worlds.xsl</template>
 <noCache>0</noCache>
 <defaultPageType>world</defaultPageType>
 <createDate utc="1149701242450" />
 </header>
 <body>
 <section name="NameKey.Worlds" type="worlds" id="data/Worlds" builtin="false">
 <page id="data/1149701242380" name="" type="world">
 <worldName>mercury</worldName>
 </page>
 <page id="data/1149709198941" name="" type="world">
 <worldName>saturn</worldName>
 </page>
 <pageRemoved id="data/1149873491901" date="1149873508996" />
 <page id="data/1149873500574" name="" type="world">
 <worldName>venus</worldName>
 </page>
 <page id="data/1149873510648" name="" type="world">
 <worldName>mars</worldName>
 </page>
 203

Sample Page Files
World Page sample

 A
 </section>
 </body>
</pageFile>

World Page sample
This is an example of a world Page XML file.

It is generated by the framework at run time when the user creates a new world. As a result, its file
name (and Page ID) is a numeric string reflecting the system time when it was created. See actual
instances in your Keeper in the application’s data directory.

<?xml version="1.0" encoding="UTF-8"?>
<pageFile>
 <header>
 <pkgName>helloworld</pkgName>
 <pkgVersion>1.0</pkgVersion>
 <template>design/world.xsl</template>
 <noCache>0</noCache>
 <defaultPageType>default</defaultPageType>
 <createDate utc="1149701242380" />
 </header>
 <body>
 <page id="data/1149701242380" name="" type="world">
 <worldName>mercury</worldName>
 <worldRadius>1</worldRadius>
 <yearLength>2</yearLength>
 <dayLength>3</dayLength>
 <distanceFromSun>50000</distanceFromSun>
 <hasWater>true</hasWater>
 <hasLife>true</hasLife>
 <planVisit>2</planVisit>
 </page>
 </body>
</pageFile>
204

Sample Page Files
World Page sample

A

 205

Sample Page Files
World Page sample

 A
206

B

XML Reference
This chapter provides reference documentation for key framework XML files and the XML elements
and attributes they contain.

XML documentation conventions
The XML reference material in this chapter uses the terms in italics shown in Figure B–1.

Figure B–1 Terms describing XML for documentation purposes

<section name="NameKey.Web" type="web" id="data/Flickr" builtin="true"
deletable="false" template="design/web.xsl">

<prebuiltPagesDir>../prebuilt/Web</prebuiltPagesDir>
</section>

Parent of <prebuiltPagesDir> attribute attribute value

Child of <section> Text of <prebuiltPagesDir>
 207

XML Reference
package.ppld

 B
package.ppld
The root file through which applications (also known as “packages”) are added to a Keeper. You
configure this file with application-specific information that enables the Keeper to add and execute
the application. Such information includes:

The application’s title

Zip and jar resources that are needed to execute the application

The name of the application’s required Java base class

This file must reside in the application’s design directory.

<jnlp>

Parent
None: root element of file.

Children
<information>, <security>, <resources>, <application-desc>

Text
None

Attribute: spec
Required. Yes

Description: Must be set to 1.0+.

Example: <jnlp spec=”1.0+”>

<information>

Parent
<jnlp>

Children
<title>, <packageType>, <packageGUID>, <mimetype>, <vendor>, <homepage>, <description>,
<icon>, <thumbnail>, <deletable>
208

XML Reference
package.ppld

B

Text
None

Attribute
None

<title>

Parent
<information>

Children
None

Text
Required: Yes.

Description: Defines the name of the application as displayed in the Keeper.

Used by the framework (after spaces are removed, if any) with the packageGUID to determine the
name of the application’s installation directory.

Used by the framework (after spaces are removed, if any) with the packageGUID to create the
packageID parameter that is passed to XSL files for programmatic use.

Attribute
None

<packageType>

Parent
<information>

Children
None

Text
Required: Yes
 209

XML Reference
package.ppld

 B
Description: Identifies to the Keeper each application type for purposes of installing and updating
applications. Has particular importance when adding an application if a pre-existing application of
the same type exists. Also used to communicate to an update server the currently installed
applications. Also relevant when Sharing and Syncing.

When no application of the specified type is pre-installed and the application is added, it is simply
installed.

The packageType can be set to equal the directory name of the application in the SDK in order
to ensure packageType uniqueness, at least locally. For example, if the application’s SDK
directory is:

pepper-sdk/applications/HelloWorldTutorial

Then the packageType should be set to HellowWorldTutorial, as follows:

<packageType>HellowWorldTutorial</packageType>

Note: To ensure package type uniqueness you can encode your own DNS name into the
application’s directory name and the packageType.

Attribute
None

<singleton>

Parent
<information>

Children

Text
Required: No

Description: If present and set to true, this application can be developed to support Sharing and
Synchronization with other applications of the same type on other Keepers.

Attribute
None

<packageGUID>

Parent
<information>
210

XML Reference
package.ppld

B

Children
None

Text
Required: Yes

Description: Must be set to 0.

Attribute
None

<mimetype>
Specifies a mime type and registers this application to handle new files (for example downloaded
from a Section) the specified mime type.

Parent
<information>

Children
None

Text

None

Attribute: Name
Required: Yes

Description: Specifies the mime type.

Example: <mimeType name="image/jpeg" />

<vendor>

Parent
<information>

Children
None
 211

XML Reference
package.ppld

 B
Text
Required: No

Description: Indicates the developer of the application. This is for information purposes only. The
value is not accessed programmatically.

Attribute
None

<homepage>

Parent
<information>

Children
None

Text
None

Attribute: href
Required: No

Description: Optionally indicates the homepage of the application developer. This is for information
purposes only. The value is not accessed programmatically.

Value: URL

Example: www.pepper.com

<description>

Parent
<information>

Children
None

Text
Required: No
212

XML Reference
package.ppld

B

Description: Provides the tooltip text displayed when the mouse is held over the application’s icon
in the Keeper’s system tray.

Attribute
None

<icon>

Parent
<information>

Children
None

Text
Required: Yes

Description: The path (including filename) to a small (32 pixel by 32 pixel) image file representing
this application. This icon is used to represent the application in the Keeper Flag Panel when the
application is running. The image file must be stored in the design/images directory.

Example: <icon>design/images/remotedesktop-32.png</icon>

Attribute
None

<thumbnail>

Parent
<information>

Children
None

Text
Required: Yes

Description: The path (including filename) to an image (64 pixel by 64 pixel) representing this
application. This icon is used to represent the application in the Keeper’s Application Tab at all
times, whether it is currently running or not. The image file must be stored in the design/images
directory.
 213

XML Reference
package.ppld

 B
Example: <thumbnail>design/images/remotedesktop-64.png</thumbnail>

Attribute
None

<deletable>

Parent
<information>

Children
None

Text
Required: Yes

Description: Sets whether the application can be deleted by the user from the Keeper without
entering Debug Mode. Since most users never enter Debug Mode, it is recommended to make the
application deletable.

Values: true or false

Example: <deletable>true</deletable>

Attribute
None

<security>

Parent
<jnlp>

Children
<resources>

Text
None

Attribute
None
214

XML Reference
package.ppld

B

<resources>

Parent
<jnlp>

Children
<jar>

Text
None

Attribute
None

<jar>

Parent
<resources>

Children
None

Text
None

Attribute: href
Required: Yes

Description: Indicates to the Keeper the name of a zip file or a jar file required to execute this
application. Most applications require this element for at least the following three files:

data.zip

design.zip

The jar file that contains the required base class that extends AbstractPepperProgram

Note: The actual jar file name created by the build is set in build.xml.

If your application uses classes in pre-existing jar files that must be included in the project, this
element must be repeated to name the jar file and the jar file must be placed in the env directory.
See “Adding Existing Jar Files to the Build” on page 11-194.
 215

XML Reference
package.ppld

 B
Example:

<jar href="helloworld.jar"/>
<jar href="data.zip"/>
<jar href="design.zip"/>

<application-desc>

Parent
<jnlp>

Children
<packageVersion>, <requiredKeeperVersion>

Text
None

Attribute: main-class
Required: Yes

Description: Identifies (by package path and class name) the application’s required base class (the
class that extends AbstractPepperProgram). This is the entry point for application execution.

See “AbstractPepperProgram life cycle” on page 4-29.

Example:

<application-desc main-class="com.pepper.HW.HelloWorld">

Where:

com.pepper.HW

Is the package path

HelloWorld

Is the application base class that extends AbstractPepperProgram

<packageVersion>

Parent
<application-desc>

Children
None
216

XML Reference
package.ppld

B

Text
The version of this application.

The format supports two to four numbers delimited by periods. This format is consistent with the
following application revision numbering scheme:

major.minor.patch.build

For applications distributed from an update server, the version is used to determine whether the
installed application needs an update.

Attribute
None

<requiredKeeperVersion>

Parent
<application-desc>

Children
None

Text
The minimum version of the Keeper required to run this package. When the application launches,
its requiredKeeperVersion is compared to the actual Keeper version. If the actual Keeper version
is lower than the requiredKeeperVersion, the application launch is aborted and a pop-up message
displays indicating the Keeper needs to be updated.

Example:

<requiredKeeperVersion>3.0.3</requiredKeeperVersion>

Attribute
None
 217

XML Reference
FactoryBuild.xml

 B
FactoryBuild.xml
This file declares the Section instances created during the build. Each Section instance is created
based on a specified Page type as defined by a <sectionPage> in PageTemplates.xml.

This file must reside in the application’s design directory.

<factoryBuild>
Root element of the file.

Text
None

Attributes
None

Parent
None

Children
<packageList>

<packageList>
Contains a <section> element for each of the application’s Section instances.

Parent
<factoryBuild>

Children
<section>

Text
None

Attribute
None
218

XML Reference
FactoryBuild.xml

B

<section>
Each <section> defines a Section instance to be created by the build.

The default order of the Sections in the application is the order in which they occur in
FactoryBuild.xml, with the exception that built-in Sections are to the right.

See “Attribute: builtin” on page B-220.

Parent
<packageList>

Children
None

Text
Empty

Attribute: name
Required.

Sets text displayed on the Section’s Tab.

There are two options for using this field to set the Tab text:

Using a key to reference a key-value pair in PackageStrings.properties

Using a literal

The recommended option is use a key to reference a key-value pair in PackageStrings.properties
to derive the displayed text from the application’s design/PackageStrings.properties file. This
approach enables changing the displayed text, for example for language localization or for
application customization, through multiple versions of the PackageStrings.properties file with
localized file names without having to rebuild the application. To do this, use an attribute value that
starts with “NameKey.” or “Label.” and that completes with a key that is unique in
PackageStrings.properties.

For example, the following name value:

<section name=”NameKey.UniqueKey”...

Combined with the following key-value pair in the application’s PackageStrings.properties file:

NameKey.UniqueKey=Localizable Text

Results in Tab text: “Localizable Text”

You can also enter literal text to be displayed. For example:

<section name=”Literal Text”...

Results in: “Literal Text”.
 219

XML Reference
FactoryBuild.xml

 B
Attribute: type
Required.

See “Attribute: type” on page B-223.

Attribute: id
Required.

Sets the Sections Section ID and the corresponding name of the Section’s SectionPage XML
instance file (without the period followed by the “xml” extension). The value must start with “data/”.
What follows “/data” is the XML file name (without the “.xml” extension).

For example, the following Section definition:

<section name="NameKey.Worlds" type="worlds" id="data/Worlds"
deletable="true" builtin="false" />

Results in the following SectionPage XML file in data.zip:

data/Worlds.xml

Whose Section ID is:

data/Worlds

Attribute: builtin
Required. Yes

Description: Sets the position of Tabs with respect to other tabs, as follows. All Sections that you
develop must have this attribute set to false. All ready-made Sections that are provided with the
SDK (Web, Help, and Settings) have this attribute set to true. At program launch, Tabs are
positioned from left to right in the order in which they are defined by their section elements in
FactoryBuild.xml. The ready-made Sections must be defined last in FactoryBuild.xml. When a new
Tab is created during application execution, it is created to the right of all the developer-designed
Tabs (those with builtin=”false”) and to the left of ready-made Tabs (those with
builtin=”true”).

Values: true or false

Example: builtin=”false”

Attribute: src
Required. Required for pre-built SectionPages

Description: Specifies an SDK directory that contains a pre-built SectionPage and optionally
pre-built Pages.

Example:

<section name="NameKey.LogStatusbarJava" type="java" id="data/LogStatusbarJava"
deletable="true" src="../prebuilt/LogStatusbarJava" />
220

XML Reference
FactoryBuild.xml

B

Attribute: deletable
Required. yes

Description: Sets whether the Section instance is deletable by the user through tab controls.

Values: true or false

Example:

<section name="NameKey.LogStatusbarJava" type="java" id="data/LogStatusbarJava"
deletable="true" src="../prebuilt/LogStatusbarJava" />

<prebuiltPagesDir>

Parent
<section>

Children
None

Text
Required: Required when pre-built Pages are used.

Description:

Optional, but required for Sections with a pre-built SectionPage or pre-built Pages.

Identifies a directory that contains the Section’s pre-built Pages.

Directory identification is relative to the application’s design directory.

Example:

<section name="NameKey.Web" type="web" id="data/Flickr" builtin="true"
deletable="false" template="design/web.xsl">

<prebuiltPagesDir>../prebuilt/Web</prebuiltPagesDir>
</section>

Attribute
None.
 221

XML Reference
PageTemplates.xml

 B
PageTemplates.xml
Defines the Pages (SectionPage and Pages) in the Application.

This file must reside in the application’s design directory.

For the full set of ready-made framework Pages, include the following into PageTemplates.xml:

<xi:include href="../resources/pages/SectionWeb.xml" />

<xi:include href="../resources/pages/Bookmark.xml" />

<xi:include href="../resources/pages/Clipping.xml" />

<xi:include href="../resources/pages/SectionSettings.xml" />

<xi:include href="../resources/pages/SectionHelp.xml" />

<xi:include href="../resources/pages/SectionJava.xml" />

<pageTemplates>

Parent
None: root element of file.

Children
<packageName>, <packageVersion>, <sectionPage>, <basePage>

Text
None

Attribute
None

<packageName>

Parent
<pageTemplates>

Children
None
222

XML Reference
PageTemplates.xml

B

Text
The name of the package. This should exactly equal the name of the package’s root directory.

Attribute
None

<packageVersion>

Parent
<pageTemplates>

Children
None

Text
The version of this package.

Attribute
None

<sectionPage>
Each Section requires a <sectionPage> element. The <sectionPage> element defines each
Section’s SectionPage and is used by the build and at run time to create new SectionPage
instances.

Parent
<pageTemplates>

Children
<template>, <defaultPageType>, <cacheRules>, <cacheRules>

Text
None

Attribute: type
Required: Yes
 223

XML Reference
PageTemplates.xml

 B
There are two categories of type values: framework-defined and developer-defined.
Framework-defined types are discussed first.

Framework-defined type of default
PageTemplates.xml must have a SectionPage defined with a type of default, or its build fails.

The definition with a type of default is used as the SectionPage template when the a new Section
is created during the build or during application execution with an unspecified type.

For additional information, see “Tab control” on page 4-81.

Note: If you disable creation of new Tabs, the build process still requires a SectionPage
definition with type=”default” in PageTemplates.xml. The easy way to accomplish this
is to include a ready-made SectionPage definition in PageTemplates.xml with the following
line:

<xi:include href="../resources/pages/SectionDefault.xml" />

Framework-defined type of web
This type is required for Web Sections and is provided by including SectionWeb.xml into
PageTemplates.xml, as follows.

<xi:include href="../resources/pages/SectionWeb.xml" />

When you create a web type Section, you must also ensure the ready-made Bookmark.xml and
Clippings.xml files (which contain Page definitions) are included in the application’s
PageTemplates.xml file, as follows:

<xi:include href="../resources/pages/Bookmark.xml" />
<xi:include href="../resources/pages/Clipping.xml" />

Framework-defined type of java
This type is required for Java SectionPages and is provided by including.SectionJava.xml into
PageTemplates.xml, as follows.

<xi:include href="../resources/pages/SectionJava.xml" />

Framework-defined type of help
This type is required for Help Pages and is provided by including SectionHelp.xml into
PageTemplates.xml file, as follows:

<xi:include href="../resources/pages/SectionHelp.xml" />

Framework-defined type of settings
This type is required for Settings Sections and is provided by including the SectionSettings.xml file
into the application’s PageTemplates.xml file, as follows:

<xi:include href="../resources/pages/SectionSettings.xml" />

Developer-defined types
You can create SectionPages with any type value you choose. The only requirement is that the
PageTemplate.xml file must include a SectionPage of the same type.
224

XML Reference
PageTemplates.xml

B

For example, the second Section of the Hello World Tutorial application has is defined in
FactoryBuild.xml as follows:

<section name="NameKey.Worlds" type="worlds" id="data/Worlds" deletable="true"
builtin="false" />

As required, its PageTemplates.xml file has a <sectionPage> whose type is “worlds”, as
follows:

<!-- Define Worlds SectionPage -->
<sectionPage type="worlds">

...
</sectionPage>

Example: <sectionPage type="default">

<basePage>
Each type Page (non-SectionPage) requires a <basePage> element to define the Page.

Parent
<pageTemplates>

Children
<template>, <cacheRules>

Attribute: type
Required: Yes

Defines the type of Page created. See type attribute description for “Attribute: type” on page B-220.

<template>
Identifies the file used to display the Page. The file can be any of the following:

A XSL transform in the design directory

The specified XSL transform uses the Page as a source and generates HTML for display.

A local HTML page or a URL to an HTML page

The specified HTML is displayed.

A XUL file

Parent
<sectionPage>
 225

XML Reference
PageTemplates.xml

 B
Children

Text
Required: Yes

Description: The path and filename from the package’s root directory (but not including the root
directory) to the XSL file that processes this Page. Page XSL files are always stored in the
(application)/design directory. The text for an XSL file named “connection.xsl” would therefore be:
design/connections.xsl.

Example: <template>design/connections.xsl</template>

Attribute
None

<defaultPageType>

Parent
<sectionPage>

Children
None

Text
Required: Yes

Description: Identifies the default <basePage> Page definition that is used to generate a new Page
at run-time when the Page type is not specified.

Example: <defaultPageType>connection</defaultPageType>

Attribute
None

<cacheRules>
Used in <sectionPage>s to define the rules through which child Page data is automatically
cached into the SectionPage.

See Caching rule syntax.

Parent
<sectionPage>
226

XML Reference
PageTemplates.xml

B

Children
<apply>, <template>

Text
None

Attribute: match
Required: yes

Description: Must be page

Example: match=”page”

<apply>
Specifies the child data (elements and attributes) that are to be cached from the Page to the
SectionPage.

See Caching rule syntax.

Parent
<cacheRules>

Attribute
None

<template>
See Caching rule syntax.

Parent
<apply>, <template>

Children
None

Attribute: match
An xpath statement that selects a child element or attribute.
 227

XML Reference
PageTemplates.xml

 B
<basePage>

Parent
<pageTemplates>

Children
<template>, <page>

Text
None

Attribute: type
Required: Yes

Description: See Attribute: type.

Example: <basePage type=”connections”>

<section>
Contains the Section-specific structure of element’s that together define the SectionPage data.

See Application structure from an XML perspective.

Parent
<sectionPage>

Children
Developed-defined.

Text
None.

Attribute
None

<page>
Contains the Page-specific structure of element’s that together define the Page data.

See Application structure from an XML perspective.
228

XML Reference
PageTemplates.xml

B

Parent
<basePage>

Children
Developed-defined.

Text
None.

Attribute
None
 229

XML Reference
PackageStrings.properties

 B
PackageStrings.properties
Contains information used to generate localizable user interface text displayed in the application.
For example, Tab labels, text fields, and messages displayed on the application’s status bar are
derived from this file.

The labeling information in the file is stored as key-value pairs.

Each line contains a single key-value pair.

The key is the text to the left of the equal sign.

Its value is the text to the right of the equal sign.

Keys are accessed programmatically and during the build process to retrieve the associated value.

Properties example
The following example shows four lines that are in the Remote Desktop application’s
PackageStrings.ppld file.

NameKey.PackageName=Remote Desktop
NameKey.Connections=Connections
NameKey.LogViewer=Log Viewer
NameKey.WebSection=Web

The FactoryBuild.xml file declares the Section instances. Each <section> element has a name
attribute that must have one of these name-value pairs as its value.

The following example shows two sections (of several) that are declared in the FactoryBuild.xml file
of the Remote Desktop application.

In the first <section> in the following example, the name attribute has a value of
NameKey.Connections, which becomes the key by which the final displayed value is looked
up in the PackageStrings.ppld file. If the PackageStrings.ppld file has the contents shown
above, the retrieved and displayed value is “Connections”.

In the second <section> in the following example, the name attribute has a value of
NameKey.WebSection. This final displayed value is “Web”.

<section name="NameKey.Connections" type="default"
id="data/connections" deletable="false" />

<section name="NameKey.WebSection" type="web"
id="data/web" builtin="false">

<prebuiltPagesDir>../prebuilt/websection</prebuiltPagesDir>
</section>

This approach also makes it easy to build different versions of the PackageStrings.ppld file for each
langue (localization). To do this, create language specific versions of the file and place only the
correct one in the design directory before building the application.
230

C

Glossary
Table C–1 Terms

Term Description

Action A Java class that follows framework rules and therefore can be
triggered across the LiveConnect JavaScript-to-Java Bridge.
See “Java Actions” on page 4-66.

base class Java class required for every application that extends
AbstractPepperProgram.
See “AbstractPepperProgram life cycle” on page 4-29.

Bridge The LiveConnect bridge that enables JavaScript in Page HTML to
interact with framework Java and the application Java, often through
Actions.
See “JavaScript and Mozilla LiveConnect” on page 4-62.

Debug Mode A Keeper operational mode useful for application developers. Debug
Mode allows you to add an application, display the current page’s
HTML, XML or DOM tree, display network information, reset the
Keeper, and more.
See “Debug Mode” on page 2-10.

Design Mode A Keeper operational mode useful when developing and customizing
applications and when customizing the Keeper.
See “Design Mode” on page 2-13.

distribution package The set of files that constitute a built application from which the
application can be installed.

Keeper The root Pepper Application Framework application that provides the
Applications Tab.

message catalog Generic term for a set of properties files in which key-value pairs are
used to contain text strings used in applications. Message catalogs
enable write-once-use-many message definition. The
application-specific message catalog is the
PackageStrings.properties file.
See “How to localize for different languages” on page 10-177.
 231

Glossary C
package Informal term for the distribution unit for Pepper applications.
See “Application distribution package” on page 4-31.

Page The unit of data organization and storage. A default type Section
consists of one or more Pages (the first one is always a SectionPage).
See “Sections and Pages” on page 4-32.

Pepper application An application that runs in the Pepper Application Framework.

Pepper device A device that runs the Pepper Application Framework. Examples
include Pepper Pads, mini boxes, the Desktop, and all-in-ones.

Pepper Application
Framework

The Pepper framework that provides an execution environment for
Pepper applications and a graphical environment for them.

Pepper Desktop The product name for the bundled Pepper Application Framework and
on Windows.

Pepper Linux A lightweight Linux distribution designed to support the Pepper
Application Framework.

Pepper Pad The product name of the hand-held hardware/software device that
runs Pepper Linux, the Pepper Application Framework and Pepper
applications.

Section An application is divided into Sections. Sections display as tabs.
There are two types: default Sections and Java Sections.
See “Sections and Pages” on page 4-32.

Tab A Section as represented in the GUI.
See “Sections and Pages” on page 4-32.

theme A bundle of files that together determine a wide range of design
features, from colors and fonts to images and XSL pages.
See “Custom themes” on page 10-167.

Table C–1 Terms (continued)

Term Description
232

Glossary

C

 233

Glossary C
234

Index
A
AbstractPepperProgram 29
Action 47

calling from Java 67
developing 66
in glossary 231
instantiating 67
name 48
overriding actionPerformed() 66
registering 67
retrieving parameters 66
ShowPage 121
source file location 66

ant
ant clean command 191
ant command 191
ant rebuild command 191
build application 191
build commands 191

application
building 191
configure build 190
directory 6

application-desc
element 216

applications directory 5, 6
applicationTemplate directory 6
apply

element 227
attribute

builtin 220
deletable 221
href 212
id 220
match 227
name 219
packageGUID 216
spec 208
src 220
type 220, 223, 225, 228

B
base class

constructor 29
in glossary 231
init() 30
specifying 29
super.init() 30

basePage
element 225, 228

bootstrap directory 5
build

building application 191
commands 191
customizing 190
directory 6

build.xml file 92, 190
builtin 103

attribute 220
 235

Index
C

buttons 47

creating 114

C
cacheRules

element 226
caching rules

overview 53
character encoding

UTF-8 101
comments in XML 38
common-resources.zip 167
CommonStrings.properties 179
conventions xviii
create

tab 81

D
data

XSL parameter 68
data directory 7
-Ddebug 16
-Ddesign.mode 16
-Ddesign.mode.overwrite 16
Debug

view XML, HTML and DOM 12
Debug Mode 10, 20

entering 11
in glossary 231
system properties 15
toggling 11

Default Sections 36
defaultPageType

element 226
deletable

attribute 221
element 214

delete
tab 81

DeletePage 121
description

element 212
design

XSL parameter 68
design directory 7, 8
Design Mode 13

caution 15
design files 13
in glossary 231
system properties 15

directory
application specific 6
applications 5, 6
applicationTemplate 6
bootstrap 5
build 6
data 7
design 7, 8
dist 7
doc 5
env 8
HelloWorldResources 6
lib 5
prebuilt 7
src 7
themes 5

dist directory 7
distribution

from web 196
package 28

distribution package 231
doc directory 5
documentation conventions xviii
DOM

view Page’s 12
-Dtheme 16
-Duser.language 17
-Duser.region 17

E
element

application-desc 216
apply 227
236

Index
F

basePage 225, 228
cacheRules 226
defaultPageType 226
deletable 214
description 212
factoryBuild 218
homePage 212
icon 213
information 208
jar 215
jnlp 208
mimetype 211
packageGUID 210
packageList 208
packageName 222
packageType 209
packageVersion 216, 223
page 228
pageTemplates 222
pepper

checkbox 118
requiredKeeperVersion 217
resources 215
section 219, 228
sectionPage 223
security 214
singleton 210
template 225
thumbnail 213
title 209
vendor 211

Elements.nameString() 116
enableTabControls 81
env directory 8
event log

using 19
writing to 79

extension-element-prefix 116

F
factoryBuild

element 218

FactoryBuild.xml 31
reference 218
tutorial 95

files
build.xml 92, 190
FactoryBuild.xml 95
package.ppld 93
PackageStrings.properties 97
PageTemplates.xml 98
sample.xsl 99

Flag Panel
position in UI 25

Flags
position in UI 25

framework 232
framework parameters

names and descriptions 68
using in XSL 68

G
getGSP 81
getGSP() 80
GuiServicesProvider 80

H
HelloWorldResources directory 6
homePage element 212
href attribute 212
HTML

UTF-8 101
view Page’s 12

I
icon element 213
id

attribute 39, 220
information element 208
 237

Index
J

J
jar

adding additional 194
application’s 9
element 215
permissions 193
specifying 193
unsigned 193

Java
AbstractPepperProgram 29
package 7
Section 49
system properties 15
ToolBar 47, 52

Java Section 36
javadoc 20

SDK AP 20
JavaScript 62

console 62
including external 62
toolbar 47

JDOM Document 33
jnlp element 208

K
Keeper

in glossary 231
root installation directory 8
writing to log 79

keeper.css 154

L
language 180
lib directory 5
LiveConnect

in glossary 231
overview 62

localization 230
Java text 144

log
writing to 79

M
match

attribute 227
message catalog

in glossary 231
MessageCatalog 144
messages on Status Bar 80
mimetype element 211

N
name

attribute 219

P
package 7

in glossary 232
package.ppld 29, 208

modifying 93
packageGUID

attribute 216
packageGUID element 210
packageId

XSL parameter 68
packageList element 208
packageName

element 222
PackageStrings.properties 31, 180

reference 230
PackageStrings.properties file 97
packageType element 209
packageVersion

element 216, 223
Page

creation 35
data 33, 34
in glossary 232
interface 33
introduction 32
object 33
page ID 39
view DOM 12
238

Index
R

view HTML 12
view XML 12
XML file 34

page
element 228

Page display 44
Page ID 39

defined 60
PageChangeListener 78
pageTemplates

element 222
PageTemplates.xml 31

reference 222
PageTemplates.xml file 98
Pepper

application 232
in glossary 232

pepper
checkbox element 118

Pepper application framework 232
Pepper Desktop

in glossary 232
Pepper Pad

in glossary 232
permissions

jar 193
pkglist 196
platform

XSL parameter 68
platform parameter 169
prebuilt directory 7
ProgramChangeListener 79
Progress Bar

position in UI 25

R
README.TXT 6
region 180
requiredKeeperVersion

element 217
resources

element 215

restart Keeper 20

S
sample.xsl file 99
scr directory 7
Section

Default 36
definition 36
in glossary 232
introduction 32
Java 36, 49
object 36
overview 35
SectionPage object 36
SectionPage XML file 36

section
element 219, 228

Section ID 39
defined 60

SectionChangeListener 79
SectionPage

introduction 33
sectionPage

element 223
security

element 214
jar permissions 193

setup.bat 6
setup.sh 6
ShowPage Action 121
singleton element 210
spec attribute 208
src

attribute 220
Status Bar

colors 160
position in UI 25

Status Bar messages 80
storedvalue 118
styles.css 49, 154
system properties 15
System Tray 81
 239

Index
T

position in UI 25

T
Tab

in glossary 232
position 103
user control 81

template
element 225

element
template 227

theme
default theme 167
in glossary 232
name 169

themes 167
adding to Keeper 171
archive 168
directory 5
files 169
launching Keeper with 172
SDK 169

thumbnail element 213
TimezoneCatalog.properties 180
title element 209
ToolBar

Java 52
toolbar 47

creating 114
position in UI 25

type
attribute 220, 223, 225, 228

U
UTF-8 101

V
value attribute 118
vendor element 211

W
web distribution 196

X
XLS parameter

platform 68
XML

view Page’s 12
xpath 116
xpath attribute 118
XSL 44

Page display 44
required namespaces and xalan 69

XSL parameter
data 68
design 68
packageId 68

XSL parameters. See framework parame-
ters
Xterm 20
XUL 119
240

	Cover
	Table of Contents
	Preface
	Description of this document
	Intended audience
	How this document is organized
	Documentation conventions

	Introduction
	What is Pepper?
	What is the Pepper SDK?
	What can you do with the SDK?
	What Pepper versions are supported?
	Backwards compatibility

	Where does Pepper 3.2.0 run?
	What Java versions are supported on Pepper Pads?
	What does the SDK distribution include?
	What development platforms are supported?
	Java integrated development environment

	Getting Started with the SDK
	SDK directories
	SDK root directories
	SDK files
	pepper-sdk/applications directory
	Application-specific directories

	Pepper Application Framework installation directories
	Pepper Application Framework run-time directories
	Application run-time directories
	Application run-time directory name
	Application directory contents
	Keeper application

	Debug Mode
	Entering Debug Mode
	Toggling Debug Mode during framework execution
	Launching the framework in Debug Mode

	Debug menu
	Adding an application
	Automatically refreshing applications under development
	Viewing Page’s underlying HTML, XML and DOM
	Refreshing the current Page
	Updating framework zip files

	Design Mode
	Where are the design files?
	When does extraction occur?
	Design Mode overwrite
	Design Mode caution: don’t lose your changes

	Starting and stopping the framework
	Setting framework system properties
	Configuring system properties
	Configuring system properties
	Setting system properties on Windows
	Setting system properties on a Pepper device

	Keeper event log
	Overview
	Viewing the log

	Key combinations
	Javadoc
	Javadoc of the SDK API
	Extracting SDK API javadoc

	Javadoc of your application

	User Interface
	Anatomy of the user interface
	Terminology: programmatic and user interface

	Framework and Application Architecture
	Framework overview
	Application files and the distribution package
	Java code
	AbstractPepperProgram life cycle

	Application data
	Design
	Application definition: package.ppld
	Page definition: PageTemplates.xml
	Initial Section instances: FactoryBuild.xml
	Message definition: PackageStrings.properties

	Application distribution package

	Sections and Pages
	Pages
	Creating Pages

	Sections
	Application structure - a run-time sample
	Application structure from an XML perspective
	Page XML definition and instance
	SectionPage XML definition and instance
	Application XML file

	Useful Java methods for Sections and Pages

	The Section user interface
	Defining the Section (and therefore the user interface) type
	Default-style Section user interface
	HTML rendering with CSS stylesheets

	Generating Page toolbars
	Defining a toolbar
	A toolbar example
	Toolbar visual styling

	Java Sections
	Java Section overview
	Including SectionJava.xml in PageTemplates.xml
	Declaring the Java Section instance
	Creating the pre-built Page and specifying the Java class
	The Java Section class
	Java ToolBars

	Caching
	Defining caching rules
	Caching rule syntax
	Selection rules
	Application rules
	Caching a single child element
	Caching multiple elements and attributes
	Nested caching rules
	Caching attributes

	When does caching occur?

	Connecting displayed data to Page data
	Connecting HTML data to Page data
	Connecting Java data to Page data
	JDOM classes
	Loading a Page XML file

	JavaScript/Java approach

	JavaScript and Mozilla LiveConnect
	Including external JavaScript
	LiveConnect
	LiveConnect initialization
	Page Initialization with LiveConnect
	Accessing Java from JavaScript
	Accessing JavaScript from Java

	Java Actions
	Action classes
	Retrieving passed parameters
	Registering a Java action in the application base class

	Calling Java Actions from Java

	XSL
	Framework parameters passed to XSL
	Using framework parameters in XSL

	Required XSL namespaces and Xalan configuration

	Pre-built Pages
	Why use pre-built Pages?
	Pre-populating by copying-pasting-editing
	Pre-populating without copying-pasting-editing
	Why not pre-populate the data into the XSL transform?
	Pre-built Pages are often easier than XSL

	Can pre-built Pages be modified during application use?
	Pre-built Pages
	Defining the Section’s pre-built Page directory

	Element structure of pre-built Pages
	Defining a pre-built Page
	Creating pre-built Pages
	Delete the id attributes - the build provides them
	One final point: XSL transform required

	Pre-Built SectionPages
	Creating a pre-built SectionPage
	Pre-Built SectionPage and Pages

	Event notification
	com.pepper.platform.program.PageChangeListener
	com.pepper.platform.program.SectionChangeListener
	com.pepper.platform.program.ProgramChangeListener
	Other listener interfaces

	Writing to the framework log
	GUI services
	Writing messages to the framework status bar
	Using the System Tray
	Tab control

	Mime type handling
	Ensuring no other application has registered for the mime type
	Registering mime type in package.ppld
	Handling the new Page in createPage()

	Hello World: Getting Started
	Overview
	Prerequisites
	Helpful information
	Tutorial structure
	What’s next

	Hello World 1: Application Creation
	Creating project directory tree
	Creating the required base Java class
	Modifying build.xml
	Modifying package.ppld
	Customizing FactoryBuild.xml
	Customizing PackageStrings.properties
	Defining the SectionPage in PageTemplates.xml
	Creating the main XSL file from sample.xsl
	Building Hello World
	Adding the application to the framework
	Adding ready-made Sections
	Customizing the display with CSS
	What’s next

	Hello World 2: Pages and ToolBars
	Overview
	Description of the revised Hello World application
	Hello World’s programmatic structure
	Section declarations, Page definitions and caching rules
	A run-time instantiation
	Toolbar buttons link to JavaScript and framework Actions
	Creating the toolbars: a closer look
	Creating toolbars and buttons in worlds.xsl
	Creating toolbars and buttons in world.xsl

	Drilling into world.xsl
	Drilling into worlds.xsl
	Drilling into helloWorld.js
	Getting the selected radio button value
	Framework Actions from JavaScript
	Calling the ShowPage framework Action
	Calling the DeletePage framework Action

	Setting up the new source files
	Build, launch and use the revised application
	What’s next

	Hello World 3: Getting Started with Java
	Overview
	Prerequisites
	Hello World’s new functionality
	Source files

	Understanding the code
	Declaration and definition files
	FactoryBuild.xml
	PackageStrings.properties
	PageTemplates.xml
	The pre-built directory and pre-built Page

	Java Section’s Java
	One new Java source file is required
	LogStatusbarJavaSection.java location
	Extending java.awt.Component and implementing JavaSectionComponent
	Implementing initComponent()
	ToolBar and ToolBarButtons
	Writing to the log
	Writing to the Status Bar

	Creating the revised Hello World
	Using the revised Hello World
	What’s next

	Hello World 4: Advanced Java
	Overview
	Prerequisites
	Hello World’s new functionality
	Source files

	Understanding the code
	Using the world’s Page ID
	Application declaration and definition files and pre-built directory
	FactoryBuild.xml
	PackageStrings.properties
	PageTemplates.xml
	The pre-built directory and pre-built Page

	Adding “Edit with Java” HTML button to worlds SectionPage
	New Java code
	HelloWorld.java
	New Actions
	WorldJavaSection registers with HelloWorld

	WorldJavaSection.java
	Registering with HelloWorld
	Using localizable label text
	Adding the ToolBar and ToolBarButton
	Page ID helper methods

	EditJavaAction.java
	Switching focus to the WorldJavaSection
	Retrieving the passed world Page ID
	Setting the target world Page in WorldJavaSection
	Making a document for the target World Page
	Reading data into WorldJavaSection

	DoneJavaAction.java

	Creating the revised Hello World
	Using the revised Hello World
	What’s next

	Customization
	Getting started with customization
	What can be customized
	The Keeper is an application

	Customizing in Design Mode or in the SDK
	Design Mode customization
	SDK-based customization
	How customizations are affected by automatic updates

	Customization with CSS
	Other CSS stylesheets
	Getting started with CSS customization

	Styles.css-based customizations
	Customizing the Keeper Applications tab background image
	How it works
	How to customize it

	Customizing the selection block
	How it works
	How to customize it

	Customizing application icons
	How to customize application icons

	Keeper.css-based customizations
	Customizing the Status Bar
	Customizing Status Bar background colors
	Customizing Status Bar bottom border color
	Customizing Status Bar font and text color
	Customizing Status Bar’s Progress Bar

	Customizing Flag Panel colors
	Customizing Pepper ToolBar colors and fonts
	Customizing ToolBar colors
	Customizing ToolBar bottom border color
	Customizing ToolBarButton font and font color
	Customizing ToolBarButton mouse pressed colors

	Custom themes
	Themes overview
	What’s in a theme archive?
	A custom theme only needs customized files
	Themes are transparent to applications
	Accessing theme files in custom applications

	Creating a theme area in the SDK
	Adding files to the theme area
	Customizing files derived from the default theme archive
	Adding custom files

	Building a theme
	Adding a custom theme to a framework
	Launching the framework to use a custom theme

	How to customize web bookmarks
	Bookmark architecture overview
	An example
	Customizing bookmarks
	Customizing default bookmarks

	How to customize an application’s help
	Help Section overview
	Customizing help

	How to localize for different languages
	Customizing user interface widget display text
	Creating localized properties files
	Localizing CommonStrings.properties
	Localizing TimezoneCatalog.properties
	Localizing PackageStrings.properties

	Launching the framework with a specified locale
	Customizing help for different languages

	How to port an application into the SDK
	Which applications can be ported to the SDK?
	Is the rebuilt application complete?
	After rebuilding, how is the application deployed?
	Porting an application to the SDK

	Customizing an application’s Sections

	Building Applications
	What is Building a Pepper Application?
	Ant is the Build System
	Setting up Application’s Build System
	Setting the Build Environment Variables
	Build commands
	ant
	ant clean
	ant rebuild

	Building an Application
	How Java is Compiled and Jarred During the Build
	Unsigned Jar Permissions
	Adding Existing Jar Files to the Build

	Adding and Distributing Applications
	Overview
	Distributing an application on the web
	Web distribution mechanism overview
	Posting your applications on a web server for distribution
	Adding an application from a web site

	Adding a local application in Debug Mode
	Making an application’s files accessible to the framework
	Making files available with a USB thumb drive
	Copying files to the Pepper device with ssh and scp

	Adding a local application to the framework
	Refreshing an application in the framework

	Sample Page Files
	Worlds SectionPage sample
	World Page sample

	XML Reference
	XML documentation conventions
	package.ppld
	<jnlp>
	Parent
	Children
	Text
	Attribute: spec

	<information>
	Parent
	Children
	Text
	Attribute

	<title>
	Parent
	Children
	Text
	Attribute

	<packageType>
	Parent
	Children
	Text
	Attribute

	<singleton>
	Parent
	Children
	Text
	Attribute

	<packageGUID>
	Parent
	Children
	Text
	Attribute

	<mimetype>
	Parent
	Children
	Text
	None
	Attribute: Name

	<vendor>
	Parent
	Children
	Text
	Attribute

	<homepage>
	Parent
	Children
	Text
	Attribute: href

	<description>
	Parent
	Children
	Text
	Attribute

	<icon>
	Parent
	Children
	Text
	Attribute

	<thumbnail>
	Parent
	Children
	Text
	Attribute

	<deletable>
	Parent
	Children
	Text
	Attribute

	<security>
	Parent
	Children
	Text
	Attribute

	<resources>
	Parent
	Children
	Text
	Attribute

	<jar>
	Parent
	Children
	Text
	Attribute: href

	<application-desc>
	Parent
	Children
	Text
	Attribute: main-class

	<packageVersion>
	Parent
	Children
	Text
	Attribute

	<requiredKeeperVersion>
	Parent
	Children
	Text
	Attribute

	FactoryBuild.xml
	<factoryBuild>
	Text
	Attributes
	Parent
	Children

	<packageList>
	Parent
	Children
	Text
	Attribute

	<section>
	Parent
	Children
	Text
	Attribute: name
	Attribute: type
	Attribute: id
	Attribute: builtin
	Attribute: src
	Attribute: deletable

	<prebuiltPagesDir>
	Parent
	Children
	Text
	Attribute

	PageTemplates.xml
	<pageTemplates>
	Parent
	Children
	Text
	Attribute

	<packageName>
	Parent
	Children
	Text
	Attribute

	<packageVersion>
	Parent
	Children
	Text
	Attribute

	<sectionPage>
	Parent
	Children
	Text
	Attribute: type

	<basePage>
	Parent
	Children
	Attribute: type

	<template>
	Parent
	Children
	Text
	Attribute

	<defaultPageType>
	Parent
	Children
	Text
	Attribute

	<cacheRules>
	Parent
	Children
	Text
	Attribute: match

	<apply>
	Parent
	Attribute

	<template>
	Parent
	Children
	Attribute: match

	<basePage>
	Parent
	Children
	Text
	Attribute: type

	<section>
	Parent
	Children
	Text
	Attribute

	<page>
	Parent
	Children
	Text
	Attribute

	PackageStrings.properties
	Properties example

	Glossary
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	P
	R
	S
	T
	U
	V
	W
	X

