These functions compute basic distributions and their inverses with higher accuracy.
function xnormaldis (x:number, mean:number=0, dev:positive number=1) Probability that a normal distibuted random variable is less equal x. This is a more accurate function than "normaldis". It uses the Romberg method to integrate the Gau� distribution. See:
normaldis (Euler Core),
normaldis (Statistics with Euler)
function xinvnormaldis (y:nonnegative real, mean:number=0, dev:positive number=1) Inverse of xnormaldis See:
xnormaldis (Statistical Functions with Extended Accuracy),
invnormaldis (Euler Core),
invnormaldis (Statistics with Euler)
function xtdis (x,n) Returns the t-distribution with n degrees at x More accurate than tdis, using a Romberg integration. See:
tdis (Euler Core)
function xinvtdis (y,n) Inverse of xtdis See:
xtdis (Statistical Functions with Extended Accuracy),
invtdis (Euler Core)
function xchidis (x:real, n:natural) Returns the chi^2 distribution with n degrees More accurate than chidis, using a Romberg integration. See:
chidis (Euler Core)
function xinvchidis (y:nonnegative real, n:natural) Returns the inverse of xchidis See:
xchidis (Statistical Functions with Extended Accuracy)
function xfdis (x:nonnegative real, n:natural, m:natural) Returns the F distribution with n and m degrees at x More accurate than fdis, using a Romberg integration. The integration is sometimes unstable. See:
fdis (Euler Core)
function xinvfdis (y,n,m) Returns the inverse of xfdis See:
xfdis (Statistical Functions with Extended Accuracy)
function xbetai (t:nonnegative real, a:real, b:real) Incomplete beta function A more accurate version of betai, using Romberg integration. See:
betai (Euler Core),
betai (Mathematical Functions)