iconEuler Reference

Statistical Functions with Extended Accuracy

These functions compute basic distributions and their inverses with higher accuracy.

function xnormaldis (x:number, mean:number=0, dev:positive number=1)

  Probability that a normal distibuted random variable is less equal x.
  
  This is a more accurate function than "normaldis". It uses the
  Romberg method to integrate the Gau� distribution.
  
  See: 
normaldis (Euler Core),
normaldis (Statistics with Euler)
function xinvnormaldis (y:nonnegative real, mean:number=0, dev:positive number=1)

  Inverse of xnormaldis
  
  See: 
xnormaldis (Statistical Functions with Extended Accuracy),
invnormaldis (Euler Core),
invnormaldis (Statistics with Euler)
function xtdis (x,n)

  Returns the t-distribution with n degrees at x
  
  More accurate than tdis, using a Romberg integration.
  
  See: 
tdis (Euler Core)
function xinvtdis (y,n)

  Inverse of xtdis
  
  See: 
xtdis (Statistical Functions with Extended Accuracy),
invtdis (Euler Core)
function xchidis (x:real, n:natural)

  Returns the chi^2 distribution with n degrees
  
  More accurate than chidis, using a Romberg integration.
  
  See: 
chidis (Euler Core)
function xinvchidis (y:nonnegative real, n:natural)

  Returns the inverse of xchidis
  
  See: 
xchidis (Statistical Functions with Extended Accuracy)
function xfdis (x:nonnegative real, n:natural, m:natural)

  Returns the F distribution with n and m degrees at x
  
  More accurate than fdis, using a Romberg integration. The
  integration is sometimes unstable.
  
  See: 
fdis (Euler Core)
function xinvfdis (y,n,m)

  Returns the inverse of xfdis
  
  See: 
xfdis (Statistical Functions with Extended Accuracy)
function xbetai (t:nonnegative real, a:real, b:real)

  Incomplete beta function
  
  A more accurate version of betai, using Romberg integration.
  
  See: 
betai (Euler Core),
betai (Mathematical Functions)

Documentation Homepage