
Mandelbulber

End User Manual

Version 2.11.0.9.5 (2017-April)

Download: (https://sourceforge.net/projects/mandelbulber/)
Development: (https://github.com/buddhi1980/mandelbulber2/)

Community: (http://www.fractalforums.com/mandelbulber/)

Editors

Krzysztof Marczak: (buddhi1980@gmail.com)
Graeme McLaren: (mclarekin@gmail.com)
Sebastian Jennen: (sebastian.jennen@gmx.de)
Robert Pancoast: (RobertPancoast77@gmail.com)

background image by Torsten Stier (2017)

https://sourceforge.net/projects/mandelbulber/
https://github.com/buddhi1980/mandelbulber2/
http://www.fractalforums.com/mandelbulber/
mailto:buddhi1980@gmail.com
mailto:mclarekin@gmail.com
mailto:sebastian.jennen@gmx.de
mailto:RobertPancoast77@gmail.com

Contents

1 About this Handbook 4

2 What are fractals? 5

2.1 Mandelbrot set . 5

2.2 3D fractals . 6

2.3 Mandelbulber Program . 7

3 Distance Estimation 8

4 Ray-marching - Maximum number of iterations vs. distance threshold con-

dition 10

5 Iteration loop 12

5.1 Single formula fractals . 12

5.1.1 Mandelbulb Power 2 . 13

5.1.2 Menger Sponge . 13

5.1.3 Box Fold Bulb Pow 2 . 13

5.1.4 Processing of single formula fractals . 15

5.2 Hybrid fractals . 15

5.2.1 Iteration loop of hybrid fractals . 15

5.2.2 One iteration for each slot . 17

5.2.3 More iterations for each slot . 19

5.2.4 Range of iterations for slot . 20

5.2.5 Changed order in sequence . 21

6 Navigation 23

6.1 Camera and Target movement step . 23

6.1.1 Relative step mode . 23

6.1.2 Absolute step mode . 23

6.2 Linear camera and target movement modes using the arrow buttons 23

6.2.1 Move camera and target mode . 24

6.2.2 Move camera mode . 24

6.2.3 Move target mode . 24

6.3 Linear camera and target movement modes using the mouse pointer 25

1

6.3.1 Move camera and target mode . 25

6.3.2 Move camera mode . 25

6.3.3 Move target mode . 25

6.4 Camera rotation modes using the arrow buttons 25

6.4.1 Rotate camera . 25

6.4.2 Rotate around target . 26

6.5 Reset View . 26

6.6 Calculation of rotation angles modes . 26

6.6.1 Fixed-roll angle . 26

6.6.2 Straight rotation . 26

6.7 Camera rotation in animations . 27

7 Interpolation 28

7.1 Interpolation types . 28

7.1.1 Interpolation - None . 29

7.1.2 Interpolation - Linear . 29

7.1.3 Interpolation - Linear angle . 30

7.1.4 Interpolation - Akima . 30

7.1.5 Interpolation - Akima angle . 30

7.1.6 Interpolation - Catmul-Rom . 30

7.1.7 Interpolation - Catmul-Rom angle . 31

7.2 Catmul-Rom / Akima interpolation - Advices 31

7.2.1 Collision . 31

7.2.2 Fly through the gap . 32

7.2.3 Proper conduct cameras between objects 32

7.3 Changing interpolation types . 32

8 Animation 34

8.1 Flight animation - workflow . 34

8.2 Flight animation - more options . 36

8.2.1 Adding more parameters to animation 36

8.2.2 Editing animation in the table . 36

8.3 Keyframe animation - workflow . 37

9 NetRender 38

9.1 Starting NetRender . 38

2

9.1.1 Server configuration . 38

9.1.2 Configuring the clients . 38

9.1.3 Rendering . 40

10 Case study 41

10.1 Examples . 41

10.1.1 Example of MandelboxMenger UI . 41

10.1.2 Example of using Transform Menger Fold to make Hybrid 43

10.2 Q&A . How do you get different materials on different shapes? 44

11 Using “Anim By Sound” with multiple tracks 45

11.1 Audio Files . 46

11.2 Adding a parameter. 47

11.3 Loading the Audio File . 48

11.4 Using Sound Pitch mode. 49

11.5 Testing the parameter . 49

11.6 Using Amplitude . 50

11.7 Rendering the animation. 51

11.8 Now render the trial animation. 52

12 Thanks 53

3

1 About this Handbook

This handbook has been crafted for both new users and experts to assure confidence and ease
of usability for Mandelbulber fractal design. We wish you a Happy Experience!

This handbook is still being written. The most recent version can be downloaded from here:
https://github.com/buddhi1980/mandelbulber_doc/releases

4

https://github.com/buddhi1980/mandelbulber_doc/releases

2 What are fractals?

Fractals are objects with self-similarity, where the smaller fragments are similar to those on a
larger scale. A characteristic feature about fractals are subtle details even at very high (up to
infinite) magnification.

2.1 Mandelbrot set

Figure 2.1: Mandelbrot Set

This is a typical example of a two-dimensional fractal generated mathematically. This image
is created with a very simple formula, which is calculated in many iterations:

zn+1 = z2
n
+ c

• z is a complex number (a + ib), where i is the imaginary number.

i =
√
−1

The number is made of two parts: a the real part and ib the imaginary part.

• c is the coordinates of the image point to be iterated.

In 2D, z is a vector containing two complex number coordinates, x and y, (these points
represent the pixel location where x represents the real part of the number [a] and y represents
the imaginary part of the number [b]). Because they are complex numbers, they can be positive
or negative, but also there will still be a mathematical solution if a function requires the square
root of a negative number.

Each original point (pixel position) is tested in the formula iteration loop, to determine if it
belongs to the formula specific mathematical fractal set.

The initial value of point z is assigned to equal c, (z0 = c), this parameter is then used repeatedly
in the iteration loop.

5

zn+1 = z2
n
+ c

zn+2 = z2
n+1 + c

zn+3 = z2
n+2 + c

etc.

The program has to determine if these series are convergent. To do this iterations should be
repeated an infinite number of times. But since a computer cannot infinitely repeat in practice
the convergence is determined with a simplification.

Termination conditions are applied to ensure the formula does not iterate to infinity. The most
common conditions used are called Bailout and Maxiter.

The Bailout condition stops the iteration loop if the formula transforms (moves) the point fur-
ther than a set distance away from an “origin”. This detects if series are convergent (calculated
point is outside the fractal body)

Maxiter is simply a condition to stop iterating when a maximum numbers of iterations is
reached (just to not do iterations infinite times)

In the Mandelbrot formula, after each iteration, the modulus of a complex number is calculated;
in other words, the length of the vector from the origin (x = 0, y = 0) to the current z point.
This vector length is often called r for it is the radius from the center (origin) to the current z
point.

In this example, when the length r > 2 (i.e Bailout = 2), the termination condition has been
met, then the iteration process is stopped and the resulting image point is marked with a light
color. When, after many repeated iterations, r is still less than 2, then it can be considered
for simplicity that such a result will continue indefinitely. Iterations are therefore interrupted
after a certain number of iterations (Maxiter). This point is marked on the image with black.
This results in a “set” of points that do not reach bailout termination (black) and the rest of
the points given lighter colors (dependent on a chosen coloring method).

2.2 3D fractals

The three dimensional fractal type, the “Mandelbulb” is calculated from a fairly similar pattern
to the Mandelbrot set. The difference is that the vector z contains three components (x, y, z)
or four dimensions (x, y, z, w). As they are part of the z vector, they are denoted as (z.x, z.y,
z.z). Examples being Hypercomplex numbers and quaternions.

They can also be created by modification of quaternions or by a specific representation of
trigonometric vectors.

Generally, common math operators are used (e.g.: addition, multiplication, squaring, and
power) and also conditional functions (e.g., if z.x > z.y, then z.x = something).

Some other types of 3D fractal objects are based on iterative algorithms (IFS - Iterated Function

6

Systems). An example would be the famous Menger Sponge.

Figure 2.2: Menger Sponge Figure 2.3: Sierpinski

2.3 Mandelbulber Program

Mandelbulber is an easy to use, handy application designed to help you render 3D Mandelbrot
fractals called Mandelbulb and some other kind of 3D fractals like Mandelbox, Bulbbox, Juli-
abulb, Menger Sponge, . . . The following sections cover the program interface and give useful
information about how to use it.

7

3 Distance Estimation

Distance Estimation (DE) is the calculation of an estimated distance from the given point to the
nearest surface of the fractal. As suggested by the word ’estimate’, it is an approximate value.
It is calculated using simplified algorithms based on analytical (Analytical DE) or numerical
(Delta DE) calculations of gradients.

DE is the most important algorithm required to render three-dimensional fractals within a
reasonable time. It achieves a great reduction in the number of steps needed to find the exact
area of the fractal while tracking a “photon” traveling toward the object along a ray (a simulated
beam of light from the camera eye). A ray is generated for each pixel (1000 x 1000 resolution
= 1,000,000 rays). They match FOV from the camera eye (i.e. they are not parallel).

Without the DE calculation, the proximity of the photon to the fractal surface would need to
be repeatedly calculated after each of many very small steps. For example, without an estimate
of where the fractal surface is, you may need up to 10,000 steps to trace a ray of light, for every
pixel of the image.

Using DE, the size of the steps along the ray of light can be increased, based on the calculated
estimate of where the fractal surface should approximately be located. The process of moving
along the ray and testing for the surface location is called ray-marching.

Ray marching looks like the illustration below. In each step, an estimation on the distance to
the nearest fractal surface is calculated. The photon is moved along the ray by this distance.
The next step is re-calculated based on the estimated distance. This distance is less so this
time the “photon” is moved a smaller distance. The ray-marching becomes more accurate closer
to the surface of the fractal. The ray marching ceases when the “photon” becomes within a
set “distance threshold” from the surface or after a maximum number of iteration if the option
“stop at maximum iteration” is enabled.

Figure 3.1: Distance Estimation with DE factor 1

Since the estimation contains some error (sometimes quite large), there is a risk that the step
of moving the “photon” will be too large, and incorrectly it will flow into the surface of the
fractal. This may result in visible noise in the rendered image.

To prevent this, the “photon” can be moved by the estimated distance multiplied by a number
between 0 and 1 (ray-marching step multiplier). Steps are then smaller, so there is less risk of
“overshooting” the surface (better image quality), but the rendering time increases due to more

8

steps being required.

Figure 3.2: Distance Estimation with DE factor 0.5

Each formula has assigned a DE mode and function (“preferred”). In most cases the preferred
mode is Analytical DE (fastest).

The preferred function is assigned based on whether the formula is transforming in a linear or
logarithmic manner. These setting can be varied on the Render Engine tab.

Analytical DE mode is faster than Delta DE mode to calculate. However with some formulas
only Delta DE mode will produce a good quality image. The DE modes can be used with either
linear or logarithmic DE functions.

Example linear out: distance = r

|DE|

Example logarithmic: distance = 0.5r log(r)
DE

The quality produced by the DE mode and function combinations is formula specific. The
setting of formula parameters can also greatly affect the quality produced by the DE. In some
cases the choice of fractal image is determined by what location and parameters can produce
good DE quality.

Figure 3.3: Statistics Tab with histogram data

In the Statistics (enable in View menu) you can see Percentage of Wrong Distance Estimations
(“Bad DE”). This number is the percentage of image pixels which potentially have big errors in
distance estimation calculation (estimated distance was much too high). It is visible as a noise
on the image. As a general rule less than 0.1 is good, but it is case specific and 3.0 sometimes
is OK and 0.0001 sometimes is not.

9

4 Ray-marching - Maximum number of iterations vs. dis-

tance threshold condition

The ray marching distance threshold is the condition where the photon marching along the ray
comes within a specified distance from the fractal surface and the ray-marching stops. This
controls the size of the detail in the image, and is normally set to vary such that greater detail is
obtained for the surface closest to the camera, (in the further regions of the fractal the distance
threshold will be larger such that only bigger details are visible). Enabling Constant Detail
Size on the Rendering Engine tab will make the distance threshold uniform.

There are two modes of stopping the ray-marching of each image pixel.

1st case: Stop ray-marching at distance threshold (Stop at maximum iteration is disabled).

2nd case: Stop ray-marching at point when a maximum number of iterations is reached (Stop
at maximum iteration is enabled).

First important note: Stop at maximum iteration doesn’t control the fractal iteration loop. It
controls only ray-marching. The iteration loop always runs to achieve Bailout, (then if bailout
is not reached the iteration stops at Maxiter). (see page 6)

On figure 4.1 ray-marching stops at distance threshold. In most cases the fractal iteration loop
stops on bailout condition, (because away from surface it is not possible to reach Maxiter). It
makes rendering of fractals much faster.

On figure 4.2 ray-marching stops at the photon step when the maximum number of iterations
is reached (ray-marching distance threshold is ignored). In many cases iteration loop stops on
bailout condition (away from fractal surface), but on the fractal surface the maximum number
of iterations is calculated (when bailout is not reached).

Figure 4.1: Example for 1st case - stop ray-

marching at distance threshold

Figure 4.2: Example for 2nd case: Stop ray-

marching at Maxiter

10

Figure 4.3: Example for 1st case: Stop ray-

marching at bailout with low Maxiter

Figure 4.4: Example for 2nd case: Stop ray-

marching at maxiter with low maxiter

Figure 4.3 shows what happens if maximum number of iterations is set to 4. Even if Maxiter
is reached the ray-marching is continued until the ray marching distance threshold is reached.

Figure 4.4 shows case when maximum number of iterations is reached. Ray-marching is stopped
even if distance threshold is not reached.

11

5 Iteration loop

In section 2.1 it was mentioned that fractals are calculated by repeating a formula (iterating)
in an iteration loop. The integer i is used to represent the iteration count number.

The iteration count starts with i = 0, then at the end of each iteration the count number is
increased by 1, and the next iteration of the formula commences (e.g. iteration count 0, 1, 2,
3, ...). The iterating continues until termination conditions are met, which is either when the
iteration count i = maxiter or when the bailout condition is achieved.

This section explains the calculations within the iteration loop.

A fractal formula is built from mathematical equations. These equations can be modifications
of the Mandelbrot Set equation (e.g Mandelbulb) and also other mathematical equations.

The equations are made from mathematical operators (+,−, ∗, /) and can include mathematical
functions (e.g. sin, cos, tan, exp, log, sqrt, pow, abs) and also mathematical conditions (e.g. if
x > y then “compute following equation(s)”, if i > 4 then “compute following equation(s)”).

The equations are applied to vector z or any parts of z (i.e the z.x, z.y and z.z components)

Examples:

z.x = fabs(z.x); is using the function fabs() (which is floating-point version of abs()), where
z.x is assigned the absolute value of z.x.

if (z.x - z.y < 0.0) swap(z.x, z.y); is using the conditional function if() to determine
if the values of z.x and z.y should be swapped.

z *= 3.0 is using the operator * to multiply the all components of vector z by 3.0.

A set of equations that have a specific function within the formula are called transforms, e.g
rotation, scale.

The generally a formula is constructed from one or more transforms, which are constructed
from equations.

With each iteration of the formula, the point being iterated is mapped (moved) to new coordi-
nates as a result of the mathematical equations.

5.1 Single formula fractals

The simplest 3D fractals are calculated by iterating a single fractal formula. More complex
fractals are made by iterating a mix of formulas, adding extra transforms, and/or including
additional conditions.

Below there are 3 examples of fractals formulas written in C language code

12

5.1.1 Mandelbulb Power 2

This formula is a modified Mandelbrot Set equation, expanded to 3rd dimension. A cross section
at zz = 0 looks exactly the same as Mandelbrot Set.

Listing 1: Formula > Mandelbulb Power 2

double x2 = z.x * z.x;

double y2 = z.y * z.y;

double z2 = z.z * z.z;

double temp = 1.0 - z2 / (x2 + y2);

double newx = (x2 - y2) * temp;

double newy = 2.0 * z.x * z.y * temp;

double newz = -2.0 * z.z * sqrt(x2 + y2);

z.x = newx;

z.y = newy;

z.z = newz;

5.1.2 Menger Sponge

This formula is an Iterated Function System (IFS). It contains several transforms, some of them
conditions.

Listing 2: Formula > Menger Sponge

z.x = fabs(z.x);

z.y = fabs(z.y);

z.z = fabs(z.z);

if (z.x - z.y < 0.0) swap(z.x, z.y);

if (z.x - z.z < 0.0) swap(z.x, z.z);

if (z.y - z.z < 0.0) swap(z.y, z.z);

z *= 3.0;

z.x -= 2.0;

z.y -= 2.0;

if (z.z > 1.0) z.z -= 2.0;

5.1.3 Box Fold Bulb Pow 2

This formula is made from a set of different transforms. It is a good example of how a fractal
formula can be more complicated than the Mandelbrot Set formula.

First part is a “box fold” transform which conditionally maps the point in x,y,z directions.
Second part is a “spherical fold” which does conditional scaling in a radial direction. The end
of formula is the same as Mandelbulb Power 2.

13

Listing 3: Formula > Box fold Power 2

//box fold

if (fabs(z.x) > fractal ->foldingIntPow.foldFactor)

z.x = sign(z.x) * fractal ->foldingIntPow.foldFactor

* 2.0 - z.x;

if (fabs(z.y) > fractal ->foldingIntPow.foldFactor)

z.y = sign(z.y) * fractal ->foldingIntPow.foldFactor

* 2.0 - z.y;

if (fabs(z.z) > fractal ->foldingIntPow.foldFactor)

z.z = sign(z.z) * fractal ->foldingIntPow.foldFactor

* 2.0 - z.z;

// spherical fold

double fR2_2 = 1.0;

double mR2_2 = 0.25;

double r2_2 = z.Dot(z);

double tglad_factor1_2 = fR2_2 / mR2_2;

if (r2_2 < mR2_2)

{

z = z * tglad_factor1_2;

}

else if (r2_2 < fR2_2)

{

double tglad_factor2_2 = fR2_2 / r2_2;

z = z * tglad_factor2_2;

}

// Mandelbulb power 2

z = z * 2.0;

double x2 = z.x * z.x;

double y2 = z.y * z.y;

double z2 = z.z * z.z;

double temp = 1.0 - z2 / (x2 + y2);

zTemp.x = (x2 - y2) * temp;

zTemp.y = 2.0 * z.x * z.y * temp;

zTemp.z = -2.0 * z.z * sqrt(x2 + y2);

z = zTemp;

z.z *= fractal ->foldingIntPow.zFactor;

14

5.1.4 Processing of single formula fractals

Single formula fractals are simply iterated several times until termination conditions are met,
as shown in figure 5.1.

Figure 5.1: Examples of simple Iteration loops with one formula

When the calculation of the iteration loop finishes the resulting final value of z is used to
estimate the distance to the fractal body and to calculate the color of the surface.

5.2 Hybrid fractals

Hybrid fractals are constructed by using more than one formula in the iteration loop. This way
new variations of fractal shapes can be achieved. There are many different fractal formulas
and transforms available in the Mandelbulber program, which allows the user to create a vast
variety of hybrid shapes.

5.2.1 Iteration loop of hybrid fractals

In general hybrid fractals are calculated in a similar way to single formula fractals. The calcu-
lation consists of the iteration loop, maxiter and bailout condition. The difference is that when
hybrid mode is enabled, a user can create a sequence of up to nine different fractal formulas (or
transforms) inside the iteration loop.

By default the program works in single fractal formula mode, where you can only configure the
parameters of the formula tab in the first slot, (#1).

15

Figure 5.2: Fractal Tab - Formula only in first slot

There are two ways to enable hybrid fractals:

• Click in any slot with a number higher than one. The program will ask if you want to
enable hybrid fractals or boolean mode. Select Enable hybrid fractals

• Go to Objects / Hybrid tab. Tick Enable hybrid fractals checkbox.

Once hybrid fractals has been enabled, a user can select additional formulas from the dropdown
menus in any of the nine formula slots, as shown in figure 5.3. In this figure Mandelbulb -
Power 2 is selected in slot #1, Menger Sponge in slot #2 and Box Fold Bulb Pow 2 in slot #3.
These formulas will be used in the next examples.

Figure 5.3: Fractal Tab - Multiple formula slots filled

Each formula’s parameters can be configured in the formula tab opened in an enabled slot.

The iteration count numbers determine when in the sequence each formula is calculated.

The sequence is in the order of the enabled formula slots from #1 to slot #9, (e.g. If the sequence
is calculating formulas in slots #1 and #5, then the iteration loop repeats the sequence of slot
#1 calculation followed by slot #5 calculation.)

How the sequence will work depends on the following selections:

• Which fractal formulas are selected in the formula slots

• How many iterations are assigned to each formula

• The range of iteration numbers when the formula will be used

• From which fractal slot the sequence will be repeated

16

Figure 5.4: Complex Iteration loop with hybrid fractal

5.2.2 One iteration for each slot

The simplest way to create a hybrid fractal is a sequence where formulas are calculated one
after another, then the sequence is repeated until termination conditions are met.

In figure 5.5, the sequence consists of one Mandelbulb - Power 2, one Menger Sponge and one
Box Fold Bulb Pow 2. The length of the sequence is three iterations, so after every third
iteration the sequence repeats from the first slot. The numbers shown are the Iteration Count,
starting at i = 0. The count increases by 1 after every iteration performed in the iteration loop.

Figure 5.5: Hybrid sequence - Simple sequence using three different formulas

This sequence gives a shape combining properties of all three formulas, see figure 5.6.

17

Figure 5.6: Hybrid sequence render - Simple sequence using three different formulas

Because the first iteration is (slot #1) Mandelbulb - Power 2, the general shape of the fractal
will be simlar in shape to the Mandelbulb - Power 2.

Note: Generally, the first few iterations of a fractal strongly influence the final hybrid fractal
shape.

In the next iteration Menger Sponge formula is used. A single iteration of this formula produces
the shape of figure 5.7.

Figure 5.7: Single iteration of the Menger Sponge

Some features of this shape are transferred to the generated shape of the hybrid fractal.

Figure 5.8: Hybrid with Menger Sponge features marked in red

The Menger Sponge shape is distorted, because Mandelbulb - Power 2 has already deformed

18

the space.

The third formula Box Fold Bulb Pow 2 adds leaf-like features to the shape.

Figure 5.9: Hybrid close up of leaf-like shapes produced by ’Box Fold Bulb Pow 2’ formula

5.2.3 More iterations for each slot

With each slot a user can define how many times each fractal formula will be used in the
sequence. On each of the formula tabs there is a parameter named Iterations which is set to 1
by default. This is the number of iterations (repeats) of the formula performed before the loop
moves on to the next formula slot in the sequence. If this value is increased to 2 on the first
and second formula slots in our example, then the sequence of the formulas will be as shown
in figure 5.10.

Figure 5.10: Hybrid sequence - The first and second slots set to 2 repeat iterations

The first and second formulas are repeated twice and the third formula only once. The resulting
fractal shape is shown in figure 5.11:

Figure 5.11: Hybrid sequence result - The first and second slots set to 2 repeat iterations

Because the Mandelbulb - Power 2 calculation is repeated for two iterations at the beginning,
the shape of this initial formula strongly influences the final shape of the hybrid fractal.

19

If the parameter Iterations on the second slot is set to 10, then the Menger Sponge formula is
used from iteration 2 to iteration 11.

Figure 5.12: Hybrid sequence - The second slot set to 10 repeat iterations

As above, the initial shape is mainly defined by the first two iterations of Mandelbulb - Power
2, but the high number of Menger Sponge iterations makes the Menger Sponge features become
more apparent.

Figure 5.13: Hybrid sequence result - The second slot set to 10 repeat iterations

5.2.4 Range of iterations for slot

The sequences can become more complicated by specifying the range of iterations when a
formula will be calculated in the loop.

On each formula tab the parameters Start at iteration and Stop at iteration are used to define
this range.

When computing the iteration loop, the program is moving through the enabled formula slots,
checking formula iteration range conditions. If the current Iteration Count number is within
the range then a calculation of that formula is performed, and the Iteration Count is increased
by 1. If the Iteration Count number is outside the iteration range condition, then the formula
is skipped (i.e. no calculation and therefore the iteration count remains unchanged). The
program then moves to the next enabled slot in the sequence.

The second formula slot (Menger Sponge) in the sequence shown in figure 5.14, has the iteration
range set to from 4 to 250.

Figure 5.14: Hybrid sequence - Range of iteration set to 4-250 on second slot

20

During the first pass of the sequence Menger Sponge formula could not be used at iterations 2
and 3, because Start at iteration was when i = 4 for this formula, and therefore the slot was
skipped. During the second pass of the sequence Menger Sponge formula was used at iterations
5 and 6, because those iterations were inside the defined range of iterations.

The shape of the resulting fractal is shown in figure 5.15

Figure 5.15: Hybrid sequence result - Range of iteration set to 4-250 on second formula slot

Because at iteration number 2 Menger Sponge formula was skipped, Box Fold Bulb Pow 2
formula has much more influence on the final shape.

5.2.5 Changed order in sequence

The order of fractal formulas can be easily changed between slots with the use of the arrow
buttons.

Figure 5.16: Fractal tabs with highlighted tab-arrows

These buttons swap the fractal tabs between the slots, and therefore the formula’s position
inside the sequence will change. All formula parameters setting are moved in the swap.

Example based on first case shown in section 5.2.3: Swapped Mandelbulb - Power 2 and Menger
Sponge creates the sequence shown in figure 5.17.

Figure 5.17: Hybrid sequence - Swapped tab one and two

As evident in figure 5.18, the shape of the fractal is completely different.

21

Figure 5.18: Hybrid sequence render - Swapped tab one and two

Now the first Menger Sponge formula creates the initial shape of the fractal, and Mandelbulb -
Power 2 only modifies the details.

Even if the same fractal formulas are used in each slot, and for the same number of iterations,
the final shape will strongly depend on the parameter settings of the first few formulas that are
iterated in the sequence.

There are also a few formulas and transforms which have a very strong influence on the final
shape, and these are often run for just 1 or 2 iterations during the iterating of the fractal.

22

6 Navigation

To set the current view there are two elements:

Camera represents a point where the camera is located

Target represents the point onto which the camera will focus (the camera is always looking
at the target.)

6.1 Camera and Target movement step

The relationship between the camera point and the target point can be altered manually by
changing the numbers in the edit fields, or by navigating with distance and rotation “steps”
defined by the user.

For rotations, the camera is moved by the parameter rotation step (default 15 degrees). For
movements of the camera and/or the target in a linear direction, the parameter step (default
0.5) is used. There are two modes for its use:

6.1.1 Relative step mode

The step for moving the camera and/or target in a linear direction is calculated relative to the
estimated distance from the surface of the fractal. The closer to the surface that the camera
is located, the smaller the step. This prevents the camera moving to a location beneath the
surface of the fractal.

The actual step is equal to the distance from the fractal multiplied by the parameter step.

Example: If the step is set at 0.5 and the nearest point of the fractal is 3.0, the camera will be
moved 1.5 (no matter in which direction).

Relative step mode makes navigation easier, because a user does not need to think about the
movement size required to avoid the camera moving into the fractal.

In animations this mode is recommended when camera is approaching the surface of the fractal.

6.1.2 Absolute step mode

Step movement of the camera and/or target is fixed. Therefore if the step is set at 0.5, the
movement will be 0.5 in the direction of the arrow key or mouse pointer.

This mode is recommended for flight animation with the camera flying at a fixed (or strictly
controlled) speed.

6.2 Linear camera and target movement modes using the arrow but-

tons

A user can navigate by operating the arrow buttons on the Navigation dock, with the user
defined steps.

23

There are three modes for changing the relationship between camera and target:

• move camera and target • move only camera • move only target

6.2.1 Move camera and target mode

Figure 6.1: Movement mode - camera and target

Arrows move both the camera and the target by the same distance in the same direction. The
angle of camera rotation does not change.

6.2.2 Move camera mode

Figure 6.2: Movement mode - camera

Moves only the camera and rotates it in respect to the motionless target.

6.2.3 Move target mode

Figure 6.3: Movement mode - target

Moves only the target while maintaining a fixed camera position. The camera rotates following
the target. Note: In Relative Step Mode, the target is moved by distance related to distance
of target to fractal surface. If target is inside the fractal (distance = 0), then this option will
not work with Relative Step Mode.

24

6.3 Linear camera and target movement modes using the mouse pointer

A user can move the camera by selecting a point on the image with the mouse pointer, and
then using either left mouse button (move forward) or right button (move backward).

6.3.1 Move camera and target mode

The target is moved to the point selected by the mouse. The camera is moved towards selected
point by a user defined step, and rotated.

In relative step mode, the camera is moved by distance equals to distance_to_indicated_point
multiplied by step parameter.

In absolute step mode, the camera is moved by distance equals to step parameter.

6.3.2 Move camera mode

The camera is moved by the step (absolute or relative) in the direction of the mouse pointer,
rotating the camera to look at the target. The target remains stationary.

6.3.3 Move target mode

The target is moved to the point selected by the mouse. The camera remains at the same point
but rotates following the target.

6.4 Camera rotation modes using the arrow buttons

6.4.1 Rotate camera

Figure 6.4: Rotation mode - around camera

The camera is rotated by the rotation step around its axis and the target is moved accordingly.
This is the standard mode for rotation of the camera.

25

6.4.2 Rotate around target

Figure 6.5: Rotation mode - around target

The camera is moved around the stationary target by the rotation step, maintaining a constant
distance to the target. The camera is rotated to look at the target.

6.5 Reset View

Camera Position is reset, by being zoomed out from the fractal but still maintaing the camera
angles.

If the rotations are changed to zero before using Reset View, the camera will then be zoomed
out from the target, and rotated to look down the y axis.

6.6 Calculation of rotation angles modes

6.6.1 Fixed-roll angle

In this mode, the angle gamma (roll) is constant. Pan the camera left or right always takes
place around the global vertical Z-axis (not the render window vertical axis).

This mode can be likened to an aircrafts controls, where all turns are relative to the aircraft’s
axis, not the ground below. Rotate up / down raises / lowers the nose of the aircraft. Rotate

left / right turns in the directions of the wings. Tilting the camera buttons tilts the
aircraft

When the camera is pointing straight up or down, or when it is upside down in this mode, it
is quite difficult to predict the result of the turn.

6.6.2 Straight rotation

The camera is rotated around its own local axis (local vertical axis is the render window vertical
axis.)

This mode is a more intuitive way to rotate the camera, e.g., turn the camera left always give
the visual effect of the camera rotating in that direction. The rotation angles are automatically
converted so they are appropriate for the selected direction. This mode changes the gamma
angle (roll).

26

6.7 Camera rotation in animations

With animation, the camera point and the target point can move independently following their
own trajectories, with the camera always looking towards the target point. It is important to
be aware that the rotation angle of the camera is the result of the camera coordinates and the
target coordinates.

There are various ways of animating, depending on the objective.

The following example is a flight animation, with the camera trajectory approaching a location,
with the camera rotating simultaneously so that the location is always observed, (as shown in
the figure 6.6). The camera positions represent three keyframes.

Figure 6.6: Keyframe Animation with differing distances camera to target

Between the first and second keyframes, the camera and target both move large distances. But
between the second and third keyframes, the camera moves a much greater distance than the
target. This can sometimes lead to unexpected camera rotations between keyframes.

To compensate for this, on the Keyframe navigation tab use the button Set the same distance
from the camera for all the frames This adjusts all keyframes by setting a constant distance
between camera and target. It is important to note that the use of this function does not
change the visual effect for the keyframes, and will help correct interpolation. See figure 6.7.

Figure 6.7: Keyframe Animation with equal distances camera to target

27

7 Interpolation

Interpolation functions, which calculate intermediate values, are used to make smooth param-
eter transitions between keyframes. There is no need for manual editing of every animation
camera position and fractal parameters. frame. A limited number of keyframes is enough to
define good looking animation.

7.1 Interpolation types

Parameters in Mandelbulber can be transitioned using several interpolation modes:

1. None

2. Linear

3. Linear angle

4. Akima

5. Akima angle

6. Catmul-Rom

7. Catmul-Rom angle

The chart in figure 7.1 shows a comparison between different interpolation modes.

The choice of mode, greatly effects the animation.

Figure 7.1: Interpolation types

28

7.1.1 Interpolation - None

The parameter remains constant between keyframes. The parameter will change abrubtly at
the any keyframe that has a change in value. This mode can be used with boolean values or
with variables which have to be kept at a constant value for a number of keyframes.

Figure 7.2: Interpolation - None

7.1.2 Interpolation - Linear

The value of the parameter is interpolated using linear functions.

y(x) = yi + (x− xi)
yi+1 − yi
xi+1 − xi

xi ≤ x ≤ xi+1

Changes of parameters are easy to predict. There are no overshoots. This interpolation mode
is good for fractal parameters and material properties. It is generally not recommended to be
used for camera or object movement paths, because of the abrubt changes of speed.

Figure 7.3: Interpolation - Linear

29

7.1.3 Interpolation - Linear angle

This interpolation mode works like Linear, but is prepared of angular parameters. If value
exceed 360 degrees, then will go back to zero.

7.1.4 Interpolation - Akima

The Akima interpolation is a continuously differentiable sub-spline interpolation. It is built
from piecewise third order polynomials.

y(x) = a0 + a1(x− xi) + a2(x− xi)
2 + a3(x− xi)

3

xi ≤ x ≤ xi+1

This interpolation function produces smooth transitioning through the keyframes. It is very
good for most animated parameters. It is used for camera and target animation and for many
other parameters which should be animated in a smooth way.

Figure 7.4: Interpolation - Akima

7.1.5 Interpolation - Akima angle

This interpolation mode works like Akima, but is written for angular parameters. If a value
exceeds 360 degrees, then it will reset back to zero.

7.1.6 Interpolation - Catmul-Rom

Catmull-Rom splines are cubic interpolating splines formulated such that the tangent at each
point yi(xi) is calculated using the previous and next point on the spline.

y(x) = 0.5
[

1 x− xi (x− xi)
2 (x− xi)

3
]









0 2 0 0
−1 0 1 0
2 −5 4 −1
−1 3 −3 1

















yi−1

yi
yi+1

yi+2









30

This interpolation gives very smooth results. Animated objects looks likethey are made of
springy materials. It can be used to animate fractal parameters and also the camera path.
This interpolation mode can produce oscillations, so it has to be used carefully. Figure 7.5,
shows where interpolated values went below zero, where all of the keyframe values were higher
than zero. The ocsillation problem is commonly seen near the begining and end of an animation

Figure 7.5: Interpolation - Catmul-Rom

7.1.7 Interpolation - Catmul-Rom angle

This interpolation mode works like Catmul-Rom, but is prepared of angular parameters. If
value exceed 360 degrees, then will go back to zero.

7.2 Catmul-Rom / Akima interpolation - Advices

7.2.1 Collision

Fast approaching the obstacle may cause inadvertent drag to the camera towards the center of
the object. It is recommended to maintain the principle that one keyframe does not reduce the
distance to the object more than five times.

Figure 7.6: Catmul-Rom with collision Figure 7.7: Catmul-Rom without collision

31

7.2.2 Fly through the gap

It is recommended to place a keyframe at the point where the camera flies through a hole /
gap in the fractal.

Figure 7.8: Interpolation - Catmul-Rom path through a hole

7.2.3 Proper conduct cameras between objects

Figure 7.9 shows how keyframes should be located between objects to avoid collisions caused
by interpolation functions.

Figure 7.9: Interpolation - Catmul-Rom path evading different obstacles

7.3 Changing interpolation types

To change the interpolation algorithm, right click on the parameter list and the options appear.
In this example the main_DE_factor have been changed from Akima to Linear. Interpolation
type is color coded e.g. Linear parameters are highlighted in grey.

32

Figure 7.10: Changing an interpolation type

33

8 Animation

8.1 Flight animation - workflow

This section explains the necessary steps required to create flight animation. Flight animation
in Mandelbulber is like a camera motion track recorded in some kind of flight simulator. The
camera can go through interiors of fractal objects. Recording is normally initially done by
navigating with the image set at a low resolution (e.g 320 x 240). After previewing and making
any changes, the final rendering is undertaken with the image resolution set to a suitable higher
size.

The parameters of every single animation frame recorded in Flight Animation mode, can be
edited in the animation table.

Workflow:

1. Define fractal object (or many objects).

Create a fractal with interesting features for the flight animation, (e.g. interesting shapes,
geometric structure, texture, coloring, possibly holes where the camera can navigate into).

It is advisable to select a fractal object that is relatively fast to render. Using a fast
rendering fractal at a low resolution, results in the navigation and flight path recording
being happening at almost real time (or slow motion). A fast rendering fractal will also
increase the speed of the final frame rendering process.

2. Place the camera at the point where the flight is to start from.

3. Set a low image resolution. At a low image resolution, the frames-per-second value can be
set higher for the flight path recording. It is reasonable to use a resolution like 320x240
or 160x120

4. Disable all effects which can slow down rendering, like ambient occlusion, reflections,
transparency, volumetric lights, etc. All these effects can be re-enabled before commencing
the final rendering of the animation.

5. Open Flight animation editor. It can be opened from top pull-down-menu by activating
View / Show animation dock. The dock will appear at the bottom of the application
window, with Flight animation (every frame) tab (showed on picture 8.1)

Figure 8.1: Flight animation dock

34

6. Set parameters of animation

speed defines how fast the camera will fly. This parameter can be changed during the
recording of the flight path.

inertia defines how heavy is the camera. A heavy camera will make a smoother motion,
but it will be more difficult to control.

rotation speed defines thereaction speed of mouse pointer movements. A higher value
will allow for the camera to be turned faster.

roll speed defines the speed of the reaction for the Z and X keys, which rotate the
camera.

speed control defines how the speed of the camera will be controlled.

• In Relative to distance mode, the camera speed will decrease relatively to the
nearness of the fractal surface. This mode will help you to not collide with the
fractal. In this mode you can control the relative speed by the speed parameter
and by the mouse buttons.

• In Constant mode, the camera speed is only controlled by the speed parameter
and the mouse buttons

second per frame defines the frame rate during flight path recording. Higher values
give slower rendering but images are more detailed. The value of this parameter is
used only during recording, and is ignored during the rendering of the final anima-
tion.

path for images defines where the rendered animation frames will be stored.

image type defines the image format for saving the rendered frames. Detailed settings
for image format are in File / Program preferences

show thumbnails enables previews of frames in animation table

add flight and rotation speed to parameters enables possibility to continue record-
ing of animation after recording is completely stopped.

7. Press Record flight path button. After 3 seconds recording will be started. During this 3
seconds waiting time the mouse cursor should be placed in the center of image.

8. Use mouse pointer movements to turn camera left / right and up / down. Camera behaves
like airplane in flight simulator

Use Z and X key to rotate the camera

Use arrow keys to move camera left / right / up / down. Without Shift key the camera
still goes forward (movement at 45 degree angle). With Shift key the camera is not
moving forward (movement at straight angle)

Use the left mouse button to increase flight speed or the right button to decrease speed.

9. Press space key to pause recording. When recording is paused, animation parameters can
be changed.

10. Press STOP button to stop recording. It is good to pause the recording using the (space
key) before stopping. This is because by moving the mouse pointer towards STOP button,
can turn the camera.

35

11. Recording of animation can be continued if add flight and rotation speed to parameters
is enabled. If Continue recording is pressed, the recording of flight will resume from the
point stored in the last frame. The camera linear and rotation speed will be maintained.

12. Increase image resolution and enable all required effects. There can be added light sources,
fog, materials, textures, etc.

13. Press Render flight animation to commence final rendering process for the animation.
This can take a very long time depending on the image resolution and the number of
frames.

Rendering of the animation can be stopped at any time and continued later. When Render
flight animation is pressed, there will be rendered only the frames which are missing from
the image frame folder. Any existing rendered frames will be skipped.

8.2 Flight animation - more options

8.2.1 Adding more parameters to animation

It is possible to animate almost any parameter in Mandelbulber. Each edit field has an assigned
parameter. If you place the mouse pointer on an edit field a tooltip will be displayed.

Figure 8.2: Example tooltip with parameter name

Below the parameter description there is the Parameter name (in this example it is glow_intensity)

The parameter can be added to Flight animation. Right click on an edit field, then use Add
to flight animation from context menu, and the parameter will appear in the animation table
(picture 8.3)

8.2.2 Editing animation in the table

It is possible to edit every single animation frame in the animation table. Every cell in the
table is editable. When a value is being edited, the preview is refreshed.

36

Figure 8.3: Animation table with all recorded frames and one additional parameter

This picture (picture 8.3) shows changes to main_glow_intensity. On frame 2 it is changed to
10 and on frame 5 it is changed to 50.

To get a smooth change of value within the selected range of frames, there is an option to do
linear interpolation of values.

Example: We would like to have smooth transition of glow intensity starting from frame 30
(glow = 0.2) and ending on frame 100 (glow = 10)

• Right click in the table on cell for glow intensity at frame 100

• Use option Interpolate next frames

• Last frame number set to 100

• Value for last frame set to 10

• When you press OK, you should see that in the table the glow intensity parameter is
increasing to 10 from frame 30 to frame 100

To cut the animation at the start or at the end, there is an option to delete a range of frames.
If you right click on the frame number, there are two options:

• Delete all frames to here - deletes all frames from first to selected frame

• Delete all frames from here - deletes all frames from selected frame to the end

8.3 Keyframe animation - workflow

This section will be written soon

37

9 NetRender

NetRender is a tool that allows you to render the same image or animation on multiple com-
puters simultaneously. If you have multiple computers connected to an Ethernet network, you
can greatly increase overall computing power.

One of the computers (server) manages the process of rendering. It sends a requests to the
connected computers (clients) and collects the results of rendering. Other computers (clients)
render different portions of the image and send it to the server. There can be only one server
(master) but clients (slaves) can be any number. The more clients, the faster the rendering will
be.

The Server is also the computer which renders the combined image .

The total number of CPUs (cores) used is the sum of server’s CPUs cores + all client’s CPUs
cores.

9.1 Starting NetRender

9.1.1 Server configuration

On the computer which will be used as the Server, Mode is set to Server.

Figure 9.1: NetRender in ’Server’ mode

Local server port should be set to one which is not used by other applications, and is passed
through routers (if any are used) and firewall. The default is 5555.

If settings are correct, press Launch server and watch for clients button to connect server to
existing clients.

At this point, the server is ready to work

Alternative way to launch the server is to use command line. Example:

$ mandelbulber2 --server --port 5555 pathToFileToRender.fract

9.1.2 Configuring the clients

On the computers which will be used as Clents, Mode is set to Client

38

Figure 9.2: NetRender in ’Client’ mode

The remote server address must be set to the same as the Server computer which is running
Mandelbulber in Server mode. The address can be given as an IP address or a computer name.

The remote server port number must be exactly the same as the setting on the Server.

Press Connect to server button to connect to the server

Once the connection is established correctly, the client application should show the status
READY

Figure 9.3: NetRender in ’Client’ mode connected to the server

Alternative way to establish NetRender client is to use command line:

$ mandelbulber2 --nogui --host 10.0.0.4 --port 5555

when connection is successfully established the program should return following message:

NetRender - Client Setup, link to server: 10.0.0.4, port: 5555

NetRender - version matches (2090), connection established

On the Server computer, in the table "List of connected clients" should be shown the name
and address of the connected clients and the number of available processors (cores).

i.e in figure 9.4 “magda” computer has 4 cores and is READY.

Figure 9.4: NetRender in ’Server’ mode with a connected client

39

9.1.3 Rendering

Only the Server can initiate rendering on the computers connected using NetRender. When the
RENDER button is pressed on the server, all the connected computers commence rendering.

In the table List of connected clients in the column Done lines will be shown the number of
lines the image rendered by each of the computers.

when rendering is finished, the Server computer, will display the complete image. On the Client
computers, only that portion of the image which was rendered by that client will be displayed.

40

10 Case study

10.1 Examples

10.1.1 Example of MandelboxMenger UI

Example settings

(copy to clipboard, then load in Mandelbulber using : File – Load settings from clipboard):

Mandelbulber settings file

version 2.08

only modified parameters

[main_parameters]

ambient_occlusion_enabled true;

camera 1.872135433718922 -2.023030528885091 1.871963531652841;

camera_distance_to_target 0.005814178381115117;

camera_rotation -28.76425655707408 26.3550335393397 3.450283685696816;

camera_top -0.1604796308669786 -0.4174088010201082 0.894436236356597;

DE_factor 0.6;

dont_add_c_constant_1 true;

flight_last_to_render 0;

formula_1 91;

formula_2 61;

formula_iterations_2 5;

formula_start_iteration_2 4;

formula_stop_iteration_2 5;

fractal_constant_factor 0.9 0.9 0.9;

fractal_enable_2 false;

fractal_rotation 0 -90 0;

keyframe_last_to_render 0;

main_light_beta 44.34;

main_light_intensity 2;

mat1_coloring_palette_offset 12.83;

mat1_coloring_palette_size 255;

mat1_surface_color_palette fd6029 698403 fff59c 000000 0b5e87 c68876 a51c64 3b9fee d4ffd4 aba53c;

SSAO_random_mode true;

target 1.874642452030676 -2.018463533070165 1.874544631933419;

view_distance_max 28.58330790625501;

volumetric_fog_colour_1_distance 3.55841069795292e-06;

volumetric_fog_colour_2_distance 7.116821395905841e-06;

volumetric_fog_distance_factor 7.116821395905841e-06;

[fractal_1]

fold_color_comp_fold 0.3;

mandelbox_color -0.27 0.05 0.07000000000000001;

mandelbox_rotation_main 9 1.74 3;

mandelbox_scale -1.5;

transf_addCpixel_enabled_false true;

transf_int_1 12;

transf_scaleB_1 0;

transf_scaleC_1 0;

transf_start_iterations_M 4;

transf_stop_iterations_M 5;

In the example the MengerSponge part is run only on iteration 4. A single iteration of another
fractal to make a hybrid is often the best practice.

In the Statistics (enable in View menu) in figure 10.1 you can see Percentage of Wrong Distance
Estimations ("Bad DE") is 0, which is good! As a general rule less than 0.01 is good, but it is
case specific and 3.0 sometimes is OK and .0001 sometimes is not.

41

Figure 10.1: Statistics tab of the MandelboxMenger formula

The Raymarching step multiplier (Rendering Engine tab) or fudge factor is set at 0.6, which
is good for a hybrid. If I change it to 0.7 the Percentage of Bad DE leaps up to 0.25 and you
can see the areas of quality loss on your image.

Now if we disable the addCpixel Axis swap Constant Multiplier, we find we can now increase
the Raymarching Step Multiplier to 0.9, and get a faster render and visually the same quality.
So monitoring Percentage of Wrong Distance Estimations is a guide to managing quality. (Note
when doing animations you may want to drop the Raymarching step down a bit to allow for
what might happen between keyframes.)

MandelboxMenger Hybrids can behave a bit differently to a lot of hybrids, in the fact that the
Percentage Bad DE often improves when you zoom in.

Optimizing of maximum view distance Located : Rendering Engine - Common Render-
ing settings

It is important to optimize this setting to minimize render time. You can reduce until the
furthest part of the 3D object(s) starts to disappear. However with animation an allowance
should be made for changes between keyframes.

Note! When navigating in Relative step mode, mouse click on spherical_inversion, camera
zooms out, tand maximum view distance becomes set on 280. If you don’t reset it your render
times will be increased.

Magic Angle Benesi Mag Transforms

In mathematics the Magic Angle = 54.7356◦ .

When rendering basic mag transforms the image does not render parallel to the standard x,y,z
global axis. On the fractal dock, in “Global parameters” set y-axis rotation to 35.2644◦ (= 90◦

- 54.7356◦). The fractal will then render parallel to the x-y plane.

42

10.1.2 Example of using Transform Menger Fold to make Hybrid

Mandelbulber settings file

version 2.08

only modified parameters

[main_parameters]

ambient_occlusion_enabled true;

camera -1.528388569045064 -1.23063017895654 -0.0251755516595821;

camera_distance_to_target 0.0004503351519815117;

camera_rotation -14.07789975269277 -44.28785609194563 3.773777260910995;

camera_top 0.2333184436621841 0.6598138513697914 0.7142885869084139;

DE_factor 0.7;

flight_last_to_render 0;

formula_1 1052;

formula_2 1010;

formula_3 1052;

formula_4 1009;

formula_iterations_1 5;

formula_start_iteration_4 45;

formula_stop_iteration_2 12;

formula_stop_iteration_4 5;

fractal_constant_factor 0.9 0.9 0.9;

fractal_enable_4 false;

hdr true;

hybrid_fractal_enable true;

keyframe_last_to_render 0;

main_light_alpha 2.6;

main_light_beta 1.59;

mat1_coloring_palette_offset 46.51;

mat1_coloring_palette_size 255;

mat1_coloring_random_seed 647723;

SSAO_random_mode true;

target -1.528310155903731 -1.230317492741513 -0.02549000429402527;

volumetric_fog_colour_1_distance 3.55841069795292e-06;

volumetric_fog_colour_2_distance 7.116821395905841e-06;

volumetric_fog_distance_factor 7.116821395905841e-06;

[fractal_1]

transf_addition_constantA_000 -0.071633 0 0;

transf_function_enabledy false;

transf_int_1 12;

transf_scale 0.5;

transf_scaleC_1 0;

transf_stop_iterations_1 2;

[fractal_2]

transf_scale3D_333 1.055556 1.027778 0.861111;

[fractal_3]

transf_function_enabledx false;

On this transform UI, the standard menger sponge formula is split into a start and end function.
The simplest way to use this transform is in Hybrid Mode, having the menger fold transform
in slots 1 and 3. In slot 2 place any linear type formula or transform. (ie more mengers, kifs,
mboxes, amazing surf, folds, rotation , Benesi T1 etc).

In slot 1 disable the stop function and in slot 3 disable the start function, resulting in a standard
menger sponge with something in the middle.

BTW in fact you can mix around with the start and stop functions have all enabled if you wish.
Generally linear functions all work well together in making hybrids.

In Statistics, maximum is approx. 80 iterations. Generally hybrids take longer to render than
standard formulas. As well as adjusting formula parameters, you can use the iteration controls
to tweak hybrids. In this example the first slot is set to repeat for 5 iterations before moving
to slot 2. Slot 2 is set to stop at iteration 12, whereas slots 1 and 3 can continue to termination
conditions are met (bailout or maximum number of iterations).

In the example above, slot2 of the hybrid sequenced ended at iteration 12. 12 was chosen

43

because how it fitted into the iteration sequence, as follows:

• Slot 1 x 5 – iterations: 0, 1, 2, 3, 4 (note first iteration is iteration number 0)

• Slot 2 – iteration 5

• Slot 3 – iteration 6

• Slot 1 – iterations 7, 8, 9, 10, 11

• Slot 2 – iteration 12 (last use of Slot 2)

Sequence continues Slot 1 x 5, Slot 3, . . . to bailout.

As you see Slot 2 is used only twice in the iteration process. If I had entered 11 instead of 12
for Slot 2’s stop iterations, then the slot would have been used only once, if I entered 19 then
it would run three times.

10.2 Q&A . How do you get different materials on different shapes?

This is how I have been doing it, see also figure 10.2:

Rectangle at the bottom marked A.

This is where you start a new material or load an existing. The active material is highlighted
in blue. Meaning it is active in the material editor where you create or modify the material.

Rectangle at top left marked B.

One way to use a material is to go to Global Parameters, click on the material preview image,
and the Material Manager UI will appear with the materials you have loaded or created.
Click on the one you want to use, then close that UI.
Similarly with primitives, click on the material preview image. And with Boolean Mode each
fractal/transform has it’s own material preview image when you scroll down.

Figure 10.2: Material selection

44

11 Using “Anim By Sound” with multiple tracks

Note. The following "walk through" tutorial is for using Anim By Sound with multiple tracks.
This tutorial is based on my initial experiments with Anim by Sound and may be revised as
I gain more experience. The tutorial demonstrates using sound to animate a fractal offset
parameter and the material color. The settings file also includes animation of some other
parameters, and produces an animation just over a minute long, at 300 x 300, 45 minutes to
render.

Animations can take many hours to render, so it is best when learning the controls, to keep
it simple. Choose fractals and/or primitives that render fast. Do not use slow effects like
Volumetric Light of Multi Ray Ambient Occlusion. I drop the resolution to 400 x 300 Detail
Level 0.5, or 200 x 150 Detail Level 0.25.

The animation value of an object (or an effect) at each frame, is the sum of the parameter
value, (generated from the keyframe animation table), and the sound value at that frame.
animVal = paraVal + soundVal.

This tutorial is about the basics of using soundVal to vary animVal. So I will keep paraVal
constant and use only sound data to direct the animation of parameters.

A cool thing about using only soundVal (no keyframe animation) is that we can set up a trial
with just two keyframes (beginning and end).

Note. You can create an audio file for the single purpose of directing animation, where the
audio file is not used at all in the final song mix. You can use Anim by Sound to create silent
videos.

Keyframe animation requires changes to be made at keyframes. It is possible with Sound ani-
mation to make changes at any frame, (i.e. a change at any 1 / 30 of a second time interval,
when at 30fps.)

Previously, choreographing parameters with spreadsheets was very time consuming and I was
limited to what I could achieve, so I stopped and have waited. Anim by Sound has made this
process much more simpler, and has infinite possibilities.

All files used in this example can be downloaded from mandelbulber.org

http://cdn.mandelbulber.org/doc/audio/9%20tut.zip

45

unzip and place “9 tut” folder in home/mandelbulber/animations/

11.1 Audio Files

The following formats are supported:

- *.wav (wave form audio format)

- *.ogg (Ogg Vorbis)

- *.flac (Free Lossless Audio Format)

- *.mp3 (MPEG II Audio Layer 3) - supported only under Linux

I used Hydrogen Drum Kit emulator to make all the individual drum track files. These are
.wav files but as I am using Linux I converted them to .mp3 to use in Mandelbulber. These are
mono working files, when I make the video in VirtualDub I then use the final song mix .wav
file.

The guitar tracks have also been recorded as .wav, and a .mp3 copy made to use with Mandel-
bulber.

The audio file data is sampled at every frame point, the data is then converted to a sound
number ranging between 0 (silent) and 1 (maximum) which can represent Amplitude or Pitch.
This value is shown in the Sound Animation chart on the Audio Selector UI. We can use either
the default Amplitude mode or choose Sound Pitch mode to animate.

For this example I used Pitch with lead guitar (melody line) creating the fractal movement,
and Amplitude for a drum to alternate the color. The fractal shape will respond to the free
flowing melody line and the color change as a repetitive rhythm event.

This is a screen-shot from Audacity showing some of the instrument tracks I had available. I
only used one drum (a kick drum), but normally I would be using more percussion instruments.

46

11.2 Adding a parameter.

Firstly, have the Animation Dock open. (i.e. from menu select View - show animation dock.)

Then go to the dock or tab for the parameter you wish to animate (e.g. fractal, material, effect
etc). Right mouse click on the parameter field, and select Add to Keyframe Animation.

The parameter will then be listed in the keyframe animation table, with Anim By Sound in
the next column.

Here I have chosen to animate parameter Menger_Mod1 offset y

47

fractal0_transf_addition_constant_y

i.e parameter name transf_addition_constant_y; from formula slot fractal0.

Parameters x & z are also added because this parameter is part of a vector3.

11.3 Loading the Audio File

Left mouse click on Anim By Sound and the Audio Selector UI will open. The name of the
parameter will be in the description along the top.

Select an Audio file and three charts will appear.
Enable Animation by Sound and the options will appear.

Animation of a parameter is created by applying an addition-factor and/or a multiplication-
factor.

animVal = paraVal + soundVal.

soundVal = (paraVal * multiplication-factor * sound) + (addition-factor * sound)

It is less complicated when learning, to use only the addition factor, so we change multiplication
factor to 0.0.

48

11.4 Using Sound Pitch mode.

I set frequency at 580Hz and bandwidth to 1000Hz, this covers the range of the fundamental
frequencies of my lead guitar notes (I am removing higher harmonic frequencies, although this
may not be necessary).

Make further adjustment if the Sound Animation charts shows that the pitch is contained only
in the top or bottom of the chart, (resulting from a melody line only using high notes or only
using low notes.) Push the Play Sound button and check that the chart line is following the
pitch of the audio track.
The main point is not to limit the Pitch by having a small band width that does not cover the
full spectrum of the fundamental notes used in the audio track.

In Pitch mode the Sound Animation chart rises from silent to high pitch.

In this image the sound varies from about 0.2 up to almost 1.0 (maximum sound). Therefore
the sound will have a wide effect on the parameter animation.

In this image the sound is fairly constant at around 0.2, so it will have a narrow effect on the
animation.

11.5 Testing the parameter

Close the Audio Selection UI and go the Menger_Mod1 fractal tab and test the parameter
through a range of values.

If a parameter belongs to a fractal formula, you may notice that the ray marching step multiplier
needs to be adjusted to produce a good image throughout the animation range.

As a guide for adjusting the ray marching step multiplier, open View - Show statistics, and
monitor Percentage of wrong distance estimations.

49

Now I decide on the appropriate size of the addition factor to use for animating the parameter.

I have paraVal “offset y” set at a constant value of 0.0, and I test an addition factor of 3.0. The
sound will increase the soundVal in the range of 0.0 to 3.0 maximum. However for the effect I
want, I am be using Negative influence mode, which will subtract the soundVal from paraVal
instead of adding it, therefore the possible range to be tested is 0.0 to -3.0.

The audio file I used only creates sound between 0.0 and about 0.2, so the offset values I will
be testing are the actual range between 0 and -0.6, i.e. 0.0 = 0.0 * -3.0 max, -0.6 = 0.2 * -3.0
max.

Note: There are two types of parameters in this program. The first type can have negative
values entered, the second type cannot. It is important when animating a parameter of the
second type, that the functions and settings used, do not result in a negative number.

View the Sound Animation chart to see the what values you are likely to get from sound at
different parts of the instruments music.

Remember to set the parameter back to the original value when you have finished testing.

11.6 Using Amplitude

Example: Animate the color of the fractal on every beat of the kick drum.

Add material 1 parameter “Palette_offset” to the Keyframe animation table.

Open Anim By Sound, load audio file and Enable Animation by sound.

Adjust Frequency of interest and bandwidth.

Enable “Binary filter” and adjust the threshold so that all the beats are shown in the Sound
Animation chart.

Here I am creating an event (at every kick drum beat), that lasts for a minimum duration of 7
extra frames (7/30 seconds). The event is using Addition factor * sound and is triggered every
time the sound amplitude increases above the threshold (0.400) and will last for 7/30 seconds.
Events that last less than “say” 7 frames are difficult to observe at 30 fps.

50

11.7 Rendering the animation.

First add two identical keyframes to the Keyframe Animation table,

and set “frames per keyframe” to a number that will cover the length of the trial, i.e. for 64
seconds at 30 fps it would be:

51

64sec * 30fps = 1920 frames per keyframe.

Make sure that the “path for images” is linked to the correct folder, and ensure that the folder
is empty, “Delete all images” button.

11.8 Now render the trial animation.

When rendering is finished (note the time it took) , press “Show animation” button for a preview
(you can also use “Show animation” while rendering is in progress.)

I also create a video with VirtualDub and the audio file, to ensure that the animation is working
correctly with the sound. If the animation is satisfactory, then set the resolution and detail
level to your final settings and wait.

52

12 Thanks

Thanks to the fractal community for your ongoing support!

Sincerely,

Mandelbulber Team

53

Listings

1 Formula > Mandelbulb Power 2 . 13

2 Formula > Menger Sponge . 13

3 Formula > Box fold Power 2 . 14

54

List of Figures

2.1 Mandelbrot Set . 5

2.2 Menger Sponge . 7

2.3 Sierpinski . 7

3.1 Distance Estimation with DE factor 1 . 8

3.2 Distance Estimation with DE factor 0.5 . 9

3.3 Statistics Tab with histogram data . 9

4.1 Example for 1st case - stop ray-marching at distance threshold 10

4.2 Example for 2nd case: Stop ray-marching at Maxiter 10

4.3 Example for 1st case: Stop ray-marching at bailout with low Maxiter 11

4.4 Example for 2nd case: Stop ray-marching at maxiter with low maxiter 11

5.1 Examples of simple Iteration loops with one formula 15

5.2 Fractal Tab - Formula only in first slot . 16

5.3 Fractal Tab - Multiple formula slots filled . 16

5.4 Complex Iteration loop with hybrid fractal . 17

5.5 Hybrid sequence - Simple sequence using three different formulas 17

5.6 Hybrid sequence render - Simple sequence using three different formulas 18

5.7 Single iteration of the Menger Sponge . 18

5.8 Hybrid with Menger Sponge features marked in red 18

5.9 Hybrid close up of leaf-like shapes produced by ’Box Fold Bulb Pow 2’ formula . 19

5.10 Hybrid sequence - The first and second slots set to 2 repeat iterations 19

5.11 Hybrid sequence result - The first and second slots set to 2 repeat iterations . . 19

5.12 Hybrid sequence - The second slot set to 10 repeat iterations 20

5.13 Hybrid sequence result - The second slot set to 10 repeat iterations 20

5.14 Hybrid sequence - Range of iteration set to 4-250 on second slot 20

5.15 Hybrid sequence result - Range of iteration set to 4-250 on second formula slot . 21

5.16 Fractal tabs with highlighted tab-arrows . 21

5.17 Hybrid sequence - Swapped tab one and two . 21

5.18 Hybrid sequence render - Swapped tab one and two 22

6.1 Movement mode - camera and target . 24

6.2 Movement mode - camera . 24

6.3 Movement mode - target . 24

6.4 Rotation mode - around camera . 25

55

6.5 Rotation mode - around target . 26

6.6 Keyframe Animation with differing distances camera to target 27

6.7 Keyframe Animation with equal distances camera to target 27

7.1 Interpolation types . 28

7.2 Interpolation - None . 29

7.3 Interpolation - Linear . 29

7.4 Interpolation - Akima . 30

7.5 Interpolation - Catmul-Rom . 31

7.6 Catmul-Rom with collision . 31

7.7 Catmul-Rom without collision . 31

7.8 Interpolation - Catmul-Rom path through a hole 32

7.9 Interpolation - Catmul-Rom path evading different obstacles 32

7.10 Changing an interpolation type . 33

8.1 Flight animation dock . 34

8.2 Example tooltip with parameter name . 36

8.3 Animation table with all recorded frames and one additional parameter 37

9.1 NetRender in ’Server’ mode . 38

9.2 NetRender in ’Client’ mode . 39

9.3 NetRender in ’Client’ mode connected to the server 39

9.4 NetRender in ’Server’ mode with a connected client 39

10.1 Statistics tab of the MandelboxMenger formula 42

10.2 Material selection . 44

56

Index

animation
rotation, 27

distance estimation, 8
analytical, 8, 9
delta DE, 8, 9

fractal, 5
hybrid, 15, 42, 43

IFS, 7
interpolation, 28

Akima, 30
Catmul-Rom, 30
linear, 29
none, 29

Mandelbrot Set, 5
Mandelbulb, 6, 13
Menger Sponge, 7, 13

navigation
absolute step, 23
camera, 23, 24
relative step, 23
reset view, 26
rotate, 25
target, 23, 24

NetRender, 38

ray marching, 8
constant detail size, 10
distance threshold, 8, 10
maximum view distance, 42
step multiplier, 8, 42

statistics
wrong distance estimations, 41

termination condition
bailout, 6, 10
maxiter, 6, 10, 11

transform
box fold, 13
spherical fold, 13

57

	About this Handbook
	What are fractals?
	Mandelbrot set
	3D fractals
	Mandelbulber Program

	Distance Estimation
	Ray-marching - Maximum number of iterations vs. distance threshold condition
	Iteration loop
	Single formula fractals
	Mandelbulb Power 2
	Menger Sponge
	Box Fold Bulb Pow 2
	Processing of single formula fractals

	Hybrid fractals
	Iteration loop of hybrid fractals
	One iteration for each slot
	More iterations for each slot
	Range of iterations for slot
	Changed order in sequence

	Navigation
	Camera and Target movement step
	Relative step mode
	Absolute step mode

	Linear camera and target movement modes using the arrow buttons
	Move camera and target mode
	Move camera mode
	Move target mode

	Linear camera and target movement modes using the mouse pointer
	Move camera and target mode
	Move camera mode
	Move target mode

	Camera rotation modes using the arrow buttons
	Rotate camera
	Rotate around target

	Reset View
	Calculation of rotation angles modes
	Fixed-roll angle
	Straight rotation

	Camera rotation in animations

	Interpolation
	Interpolation types
	Interpolation - None
	Interpolation - Linear
	Interpolation - Linear angle
	Interpolation - Akima
	Interpolation - Akima angle
	Interpolation - Catmul-Rom
	Interpolation - Catmul-Rom angle

	Catmul-Rom / Akima interpolation - Advices
	Collision
	Fly through the gap
	Proper conduct cameras between objects

	Changing interpolation types

	Animation
	Flight animation - workflow
	Flight animation - more options
	Adding more parameters to animation
	Editing animation in the table

	Keyframe animation - workflow

	NetRender
	Starting NetRender
	Server configuration
	Configuring the clients
	Rendering

	Case study
	Examples
	Example of MandelboxMenger UI
	Example of using Transform Menger Fold to make Hybrid

	Q&A . How do you get different materials on different shapes?

	Using ``Anim By Sound'' with multiple tracks
	Audio Files
	Adding a parameter.
	Loading the Audio File
	Using Sound Pitch mode.
	Testing the parameter
	Using Amplitude
	Rendering the animation.
	Now render the trial animation.

	Thanks

