Hyperbolic Functions
SinH( ) CosH( ) TanH( )
CscH( ) SecH( ) CotH( )

Y = SinH(X)
Hyperbolic Sine.
Definition: SinH(X) = (e^X - e^-X) / 2
Domain: -Infinity < X < +Infinity
Range: -Infinity < Y < +Infinity

Y = CosH(X)
Hyperbolic Cosine.
Definition: CosH(X) = (e^X + e^-X) / 2
Domain: -Infinity < X < +Infinity
Range: +1 <= Y < +Infinity

Y = TanH(X)
Hyperbolic Tangent.
Definition: TanH(X) = (e^X - e^-X) / (e^X + e^-X)
Domain: -Infinity < X < +Infinity
Range: -1 < Y < +1

Y = CscH(X)
Hyperbolic Cosecant.
Definition: CscH(X) = 2 / (e^X - e^-X)
Domain: X not equal to 0
Range: Y not equal to 0

Y = SecH(X)
Hyperbolic Secant.
Definition: SecH(X) = 2 / (e^X + e^-X)
Domain: -Infinity < X < +Infinity
Range: 0 < Y <= +1

Y = CotH(X)
Hyperbolic Cotangent.
Definition: CotH(X) = (e^X + e^-X) / (e^X - e^-X)
Domain: X not equal to 0
Range: Y < -1 or Y > +1