

Pretty Good Terminal
v7.0

9 / 1 3 / 2 0 1 6

Laszo Frank

Developer’s reference

Pretty Good Terminal v7.0

September 13, 2016

1 CONTENTS

1 Contents .. 1

2 WARNING ... 3

3 PREAMBLE... 4

4 Changes from previous versions .. 5

4.1 Changes from v6.2 .. 5

4.2 Changes from v6.0 .. 5

4.3 Changes from V5.0 .. 5

4.4 Changes FROM v4.5 .. 5

4.5 Changes From v4.4 ... 5

4.6 Changes from v4.3 .. 6

5 COM object based scripting .. 7

6 .NET development support .. 10

6.1 Prerequisites .. 10

6.2 Custom action handlers ... 10

6.3 Custom Action ID .. 11

6.4 Writing a Custom Action Handler ... 12

6.4.1 DoCustomAction method .. 14

6.4.2 About Initialize / Terminate .. 16

6.5 Provide a user interface for a handler ... 17

6.5.1 An example interface .. 17

6.6 Automate script creation .. 19

6.6.1 Opening a Script Executor... 19

6.6.2 Creating and executing a script .. 20

6.6.3 Getting the results .. 22

6.7 Using PGT as an SSH/Telnet library ... 24

6.8 Accessing PGT’s settings ... 28

7 Python development support ... 29

8 Visual Script Development ... 30

8.1 The Concept .. 30

8.2 Creating a simple script ... 30

8.3 The vScript object model .. 33

8.4 A step further ... 42

Pretty Good Terminal v7.0

September 13, 2016

9 CustomActionHandler architecture ... 45

10 LICENSE ... 46

11 LIMITATION OF LIABILITY .. 46

Pretty Good Terminal v7.0

September 13, 2016

2 WARNING

This software – Pretty Good Terminal – is a very powerful application designed to change the
configuration of lots of networking devices. Be aware, that the software is not able to determine
the validity and the effect of commands it is executing. It is always the sole responsibility of the
user using the application. Issuing the wrong commands may result in serious damage to the
network and business.

Always use the software on your own risk !

Pretty Good Terminal v7.0

September 13, 2016

3 PREAMBLE

This documentation focuses on the development support provided by the Professional Edition
of Pretty Good Terminal.

PGT was written to provide an extensible framework for developers to write simple VBS scripts
or create and run custom code for complex tasks

 VBS scripting support provides a means of automation. One can call various
function of PGT from a vbs script, for instance using Excel. Using Excel, the script
can easily be debugged.

 A more sophisticated approach of extensibility is creating a class library and
implementing some basic interfaces. In this context, the base framework handles
the script to connect to hosts as described and then transfers execution to the
CustomActionHandler class in the class library. This CustomActionHandler object
can then call all the built-in functions of the internal ScriptableTTYTerminal or
NetconfTerminal classes to interact with the connected device. The custom action
handler can perform any addition tasks as required, such as building an inventory
database.

Pretty Good Terminal v7.0

September 13, 2016

4 CHANGES FROM PREVIOUS VERSIONS

4.1 CHANGES FROM V6.2

PGT v7.0 introduced Netconf protocol support. To integrate this protocol into existing code a
common base interface IScriptableSession was introduced and the former ScriptableTerminal
class became ScriptableTTYTerminal. Implementing IScriptableSession the NetconfTerminal
class was also introduced. Both of these classes are the implementation of the base
IScriptableSession interface and therefore the formal Executor.STerminal or Terminal variables
were renamed to Executor.Session and Session variables while the same services are offered by
them as earlier.

4.2 CHANGES FROM V6.0

There are two important changes to the development interface in v6.2 release.

1. PGT v6.2 introduced the concept of user extensible keywords in terminal logon process.
Keywords can be assigned a LogonResult value and a display message. This change
required that the internal data structure returned by STerminal.LogonToHost() be also
changed. The new structure, LogonResultEx, is detailed below.

2. To make scripting easier, ExecCommand() and GetFullPrompt() members of
ScriptableTerminal class does not return a Boolean value whether a timeout occurred,
but a CommandTimoutException is thrown instead. Also, ExecCommand can be called
without passing prompt parameter. In this case prompt is determined automatically
based on the last used connection parameters.

4.3 CHANGES FROM V5.0

ICustomActionHandler interface was modified and the Finalize() member renamed to
Terminate(), as finalize could possibly conflict with object dispose. Existing libraries needs to be
modified only by renaming implementation methods from Finalize() to Terminate().

4.4 CHANGES FROM V4.5

Visual Script execution engine demanded that more parameters are supplied to
ICustomactionHandler.DoCustomAction method. This is achieved in v5.0 by the extension of
DeviceConnectionInfo class with two fields:

public bool inPrivilegedMode;
 public string VendorName;

You can find more information about this class in chapter 6.4.1 DoCustomAction method.
vScript advanced scripting is discussed in chapter Contents

4.5 CHANGES FROM V4.4

Pretty Good Terminal v7.0

September 13, 2016

With the introduction of public key authentication for SSH connections the
ConnectionParameters class has been extended to include AuthType and IdentityFile fields. For
details refer to chapter 6.7

4.6 CHANGES FROM V4.3

The development interface has been changed mainly to resolve versioning issues. As PGT evolved
and new versions were released, all of the previously written plugins had to be recompiled with
the updated references. This is because when a referenced library version changes, the dependent
dll can’t be loaded.

To resolve this issue, the PGT interface definitions were moved to a separate dll – namely
pgtinterfaces.dll – and the version of this library does not change among releases unless there
really is a change in the interface definition.

This solution works as long as a plugin - a Custom Action Handler – only references the
pgtinterfaces.dll. Of course, if the developed plugin has references to other PGT libraries (such as
common.dll) this won’t help.

So for existing plugins, there really is no big change with this release, only former references
pointing to ScriptingEngine.dll should be updated to PGTINterfaces.dll.

And one more thing : the required runtime version has changed to .NET 4.0 !

Pretty Good Terminal v7.0

September 13, 2016

5 COM OBJECT BASED SCRIPTING

The easiest way of development is through using VBS/VBA scripting. PGT supports this
functionality by registering the ScriptingEngine.dll with COM. To do that, one must register this
DLL by using the Windows built-in RegAsm.Exe utility :

 To register scripting COM objects use the following command :

C:\Windows\Microsoft.NET\Framework\v4.0.30319\RegAsm/tlb /codebase "
c:\program files\PGT\STerminal.dll"

The location of ScriptingEngine.dll file must be specified by using full path.

 To unregister scripting COM objects :

C:\Windows\Microsoft.NET\Framework\v4.0.30319\RegAsm/unregister /codebase "
c:\program files\PGT\STerminal.dll"

You will find two batch files in the PGT installation directory with the commands.

After registering STerminal.dll with COM, one can use it like the following example :

Sub ParseList()
 Dim PGT
 Set PGT = CreateObject("PGT.STerminal")
 Jump = Cells(1, 2)
 j = PGT.ConnectToJumpServer("telnet", Jump, "cisco", "cisco", "#", "Password", "", “Cisco”)
 If j Then
 For Each c In Range("devices")
 DeviceIP = c.Value
 Dim LogonResult
 Set LogonResult = PGT.LogonToHost("telnet", DeviceIP, "cisco", "cisco", "cisco", "")
 If LogonResult.lResult = 0 Then
 Dim Command As String
 Command = ActiveSheet.Cells(c.Row, 2).Value
 Dim CommandResult As String
 CommandResult = PGT.ExecCommand(Command)
 ActiveSheet.Cells(c.Row, 3).Value = CommandResult
 Else: MsgBox "Unable to connect to host"
 End If
 Next
 MsgBox "Script finished"
 Else: MsgBox "Unable to connect to jump server"
 End If
End Sub

PGT.STerminal object supports the following functions:

 bool ConnectToJumpServer(string Protocol, string DeviceIP, string Username, string Password,
string ServerPrompt, string AuthType, string KeyFileName, string Vendor)

o Connects to the specified jump server with the credentials supplied over the given
protocol. Protocol can be Telnet,SSH2 or SSH2. Valid AuthTypes are Password or PublicKey
In case of Public Key authentication KeyFileName should point to the key file

 object LogonToHost(string Protocol, string DeviceIP, string Username, string Password, string
EnablePassword, string CurrentPrompt, string Vendor = "Cisco")

o Log on to the specified device with the credentials supplied. It can be called after
ConnectToJumpServer, or directly if the host is reachable directly from the computer
where script is running.For Vendor, the default value is Cisco.

 bool LogOff(string Vendor, string DeviceIP, string WaitPrompt, bool WaitForResponse)
o Logs off from the currently connected host by sending the appropriate command depending

on Vendor. Only waits for answer when WaitPrompt if specified and WaitForResponse is
set

 string ExecCommand(string Command, string waitPrompts)
o Execute the command and waits for the prompts specified. Multiple possible prompts must

be separated by semicolon. Throws an exception in case the command execution times out.

 string ExecCommand(string Command)

Pretty Good Terminal v7.0

September 13, 2016

o The same as the previous except with waitPrompts omitted. In this case, PGT use the

wait prompts as defined in Vendor settings. The Vendor information is taken from the
last call to Connect() or LogonToHost()

 int WaitForPrompt(int timeoutSeconds, string Prompts, string ExitKeywords = null, int
SearchFrom = 0)

o Waits for the specified Prompts and returns the index of prompt found. Multiple possible
prompts must be separated by semicolon. The returned value is the zero based index of
the matched prompt in the list of prompts. In case of timeout -1 is returned.
ExitKeywords is a list of strings which possibly indicate an error and are searched
among the terminal lines. Multiple items must be separated by semicolon. If any of the
listed string is found, the return value is calculated as 1000 plus the zero based index
of the item in the list. The SearchFrom parameter specifies the sequence number of the
terminal line from where to start the search for any of the Prompts or ExitKeywords.
Prompts are always – and only – checked in the last terminal line, while ExitKeywords
are searched for the entire text. The SearchFrom variable can be set to the value
returned by a previous call to SendText()

 int WaitForText(int timeoutSeconds, string Text, int SearchFrom)
o Waits the specified amount of seconds or until the specified Text can be found in

Terminal output. The Searchfrom parameter specifies the sequence number of the terminal
line from where to start search for the Text. The SearchFrom variable can be set to the
one returned by a previous call to SendText()

 int SendText(string Text, bool AutoLineFeed = True)
o Sends the specified text to the connected device but does not wait for answer. Should

be combined with WaitForPrompt to wait and detect answer from remote device. The return
value is the sequence number of the terminal line in which the command was sent
in.AutoLineFeed controls whether a NewLine character is added automatically to the end
of the command.

 string GetHostName(string PromptDelimiter)
o Returns the hostname of the device. PromptDelimiter should be the character ending the

prompt, like # or >

LogonToHost returns a LogonResultEx object :

public class LogonResultEx
{
 public LogonResult lResult;
 public string Message;
 public object Tag;
}

The value of the lResult variable of the returned object corresponds to the following :

Value Acronym Description / Message (Message variable can be customized by user)

-1 Timeout No response from host

0 Success

1 Fail Primary control channel (Telnet/SSH) could not be established to host or jump server

2 TelnetTimeout Telnet/SSH timeout from the jump server to the host

3 Method Not Supported Enable password was supplied but vendor is not "cisco"

4 AAA Rejected TACACS authentication error

5 Connection Refused Connection refused by remote host

6 Opened But Timed out Connection was opened, but no response

7 Closed By Remote Host Connection method not accepted

8 Enable Access Denied Enable access was rejected or timed out after issuing "enable" command, but before sending password

9 Enable Access Failed Enable password was not accepted for some reason

10 Login Invalid Logon Username/Password was not accepted

11 Connection Timeout Telnet/SSH connection attempt returned timeout message

12 ResendUsername The user name was re-requested after sending password. Could be wrong credentials.

13 Password Rejected When only password is required but the given password is not accepted

14 DeviceUnreachable Device is unreachable

Pretty Good Terminal v7.0

September 13, 2016

Please note that the COM interface object – PGT.STerminal – needs to be licensed in order to
function. The same license is used for this method as for PGT application.

It is also worth noting, that the COM interface does not support different PGT profiles, and hence
settings within PGT. All calls will use the last loaded – or actual if you like – profile settings. As
profile settings define a lot of connection parameters it can be vital to select the correct profile
from PGT.

If it is inevitable to change or designate the profile from a VBA script at runtime, PGT’s
user.config file can be tweaked in the
%appdata%\Local\Laszlo_Frank\PrettyGoodTerminal.exe_StrongName_xyz\7.0.a.b folder. It
contains the ConfigProfileName setting that defines the profile name to be used.

Pretty Good Terminal v7.0

September 13, 2016

6 .NET DEVELOPMENT SUPPORT

For complex scripting tasks, such as changing device configuration based on either its current
configuration or external parameters one must write custom code. This custom code can then
be interfaced with PGT to provide robust, quick and intuitive scripting solution.

6.1 PREREQUISITES

As PGT is using signed assemblies, it can only load signed assemblies. Please make sure the class
library you create as a custom action handler is signed.

It is also a requirement, that the custom action handler assembly must be using .Net framework
3.5 or earlier, or otherwise PGT will not be able to load it.

6.2 CUSTOM ACTION HANDLERS

The concept of PGT remains the same : connect to devices and execute commands line-by-line.
But what is actually executed on a device after a connection was successfully made can be
complex, decision driven instructions. Sometimes building some custom database from the
devices capability and/or configuration is also required.

To help with this situation, PGT introduces the idea of CustomActionHandlers. A
CustomActionHandler is a piece of code usually implemented by a class and compiled into a class
library. This class can then be instantiated at runtime and called whenever a connection was
made to a device. To identify which class to instantiate and transfer execution to, a script line can
include a custom tag named CustomActionID. This ID can be any string identifying the class – or
more precisely the functionality inside a class – to be called.

Actually, a CustomActionHandler class is queried against the CustomActionID-s it supports, and
this way the CustomActionID is eventually mapped to a class. Later chapters and code samples
will lighten this more.

Custom action handler libraries can be added by browsing for the class library. Custom action
IDs handled by that library will be extracted and shown :

Pretty Good Terminal v7.0

September 13, 2016

6.3 CUSTOM ACTION ID

This field is used for two purposes:

1. To specify a directive on how to process a command. More than one directive may be listed,
separated by the pipe “|” character. Directives are always evaluated before command
execution. Valid directives are :

 NOWAIT : after issuing the specified command, the program will NOT wait for the
device prompt to return before proceeding to the next script item

 NORTIM : normally commands are trimmed, that is, leading and trailing spaces are
stripped off. There might be occasions (such as configuring banner text) when these
spaces must remain untouched. Then use this directive.

 WAITFOR number : execution will be paused for this much time expressed in
milliseconds after the command was executed.

 WAITFOR text : after executing the command, execution will be paused until the given
text is found in the terminal output text, or until command timeout expires.

 IGNOREERROR : directs the scripting engine to ignore any error condition detected by
searching for a command failure pattern expression in the command response. See
script settings for the details of command failure detection.

WAITFOR number and WAITFOR text must not be present at the same time in a certain script
line.

2. To specify a custom action identifier. This ID is mapped to a class library containing the

external code to handle this line in the script. This is used when a complicated logic must be
implemented. In these cases PGT establish the connection to the end device and then calls the
specified custom action handler. These IDs are actually provided by the custom action handler
class and are extracted from the class library.

Pretty Good Terminal v7.0

September 13, 2016

6.4 WRITING A CUSTOM ACTION HANDLER

The concept is that PGT is going to connect to each host device as specified by the input script,
and afterwards transfers execution to the registered custom action handler class by invoking the
ICustomActionHandler interface implemented by that class.

Using Visual Studio one can create a new class library project and add a reference to
PGTInterfaces.dll. The .NET target framework of the project must not be newer than 4.0,
otherwise PGT will not load the assembly.
Through the reference set to PGTInterfaces.dll, the PGT.ExtensionInterfaces namespace can be
accessed and used. This namespace contains the ICustomActionHandler interface, which must be
implemented by a class.

Now, by clicking the blue underscore and the Implement interface menu item on
ICustomActionHandler, a skeleton code will be generated with all the interface methods which
need to be implemented :

Pretty Good Terminal v7.0

September 13, 2016

By implementing the ICustomActionHandler interface these methods are created
automatically.

 Initialize is called only once, when the class is first instantiated

 DoCustomAction is called for each line in the script

 HostUnreachable is called when a host cannot be reached

 LoggingRequired is called by PGT to determine whether a log file is required by this
class. This log file can be set through Tools/Options.

 Terminate is called once the script was finished

 HandledCustomActions must return the list of custom action ids handled by this class.
The list must be separated by semicolons. These values must not match any reserved
words as described in the CustomActionID filed (such as WAITFOR, NOWAIT...)

One library should contain only one class implementing the ICustomActionHandler interface. If
the library contains more classes of ICustomActionHandler, only the first one – as returned by
reflection – will be queried. But a single class can handle several Custom Action IDs, and
implement the appropriate action inside DoCustomAction based on the actual value of the ID
passed as a parameter.

So, a very basic handler looks like this :

using System;
using System.Collections.Generic;
using System.Text;
using PGT.ExtensionInterfaces;

namespace PGT_DemoHandler
{
 public class MyHandler : ICustomActionHandler
 {
 public bool DoCustomAction(IScriptExecutorBase Executor, DeviceConnectionInfo ConnectionInfo,
 out string ActionResult, out bool ConnectionDropped, out bool BreakExecution)
 {
 ActionResult = "I was called";
 ConnectionDropped = false;
 BreakExecution = false;
 return true;
 }
 public void Terminate()
 {
 }
 public string[] HandledCustomActions()
 {
 return new string[]{"MyID"};
 }
 public void HostUnreachable(IScriptExecutorBase Executor, DeviceConnectionInfo ConnectionInfo)
 {
 }
 public void Initialize(IScriptExecutorBase Executor)
 {
 }
 public bool LoggingRequired()
 {
 return false;
 }
 }
}

As this class return “MyID” as the CustomActionID, it would be called for any line in a script where
the line contains “MyID” in the CustomActionID column. For each of these lines the
DoCustomAction method would be called, if a connection was successfully made to the host.

Pretty Good Terminal v7.0

September 13, 2016

6.4.1 DOCUSTOMACTION METHOD

This method should contain the script logic and it will be executed for each line of the script where
the CustomActionID references this class.

The connection information passed to the call contains vital information about the current
connection and is contained by the DeviceConenctionInfo parameter, which class is defined
as :

public class DeviceConnectionInfo
{
 public string JumpList;
 public string DeviceIP;
 public string HostName;
 public string Command;
 public string CustomActionID;

public bool inPrivilegedMode; <- new in v5.0
 public string VendorName; <- new in v5.0
 public ConnectionProtocol Protocol;
}

Where the ConnectionProtocol is :

public enum ConnectionProtocol { Unknown, Telnet, SSH1, SSH2, Netconf, None };

Once gets called, DoCustomAction can communicate with the connected device through the
passed Executor interface. This is an implementation of the IScriptExecutorBase interface

and has the following members :

public interface IScriptExecutorBase
{
 IscriptableSession Session { get; }
 void ShowActivity(string Text);
 bool WriteLogEntryEx(string logStr, bool TimeStamp = false);
 void TerminateScript();
}

Here, the most important member is Session which can be a class of ScriptableTTYTerminal
for Telnet and SSH connections and NetconfTerminal for netconf session. It has many methods
to be called to interact with the connected device. ScriptableTTYTerminal encapsulates a

virtual VT100 terminal connected to the end host through the list of jump servers. In other words,
this is the terminal of the end host. (Refer to chapter 6.7 for details)

Interacting with a device through a character based terminal line is usually consists of sending a
command and waiting for the answer. The terminal can identify a received answer by waiting for
the terminal prompt. This can be a complex string, or just a single character. For instance, a
connected Cisco router or switch in privileged mode has the # prompt terminator character. This
is usually adequate to identify the prompt. Internally, the PGT scripting engine handles the full
prompt of the device, or rather a stack of prompts as it goes through the jump servers, but here,
connected to the end host it is enough to identify a prompt by awaiting the # character.

Said that, Session can be used to send a command and get back the result or wait for a prompt .
Here is a simple code excerpt identifying the VPN ID the device is routing for :

#region VPN ID check
string command = "sh run | in router bgp";
Executor.ShowActivity(command);
string commandResult = Executor.Session.ExecCommand(command, "#");
Executor.ShowActivity(commandResult);
int h_VPNID = commandResult.IndexOf("65200") >= 0 ? 11 : commandResult.IndexOf("65100") >= 0 ? 10 : -1;

Pretty Good Terminal v7.0

September 13, 2016

#endregion

The Executor.ShowActivity() will display the given string in the action pain of the Script Executor
form. The call commandResult = Executor.Session.ExecCommand(command, "#");
will execute the given command on the device, wait for the prompt of “#” and then return the
command result as a string.

Any given handler has the possibility to configure a device directly, or, alternatively, may want to
create a configuration script file which can later be loaded into PGT and executed.

For instance, the following code will write to the specified log file to create a configuration script
:

Executor.WriteLogEntryEx(string.Format("{0},{1},{2},{3},{4},{5},{6},{7},{8},{9},{10}", "1", JumpList, "cisco",

DeviceIP, HostName, "telnet", "", "yes", "conf t", "", ""), false);

The above example illustrates how to generate a single line of a script file, which can later be
loaded by PGT. The WriteLogEntryEx() method can write text into a log file. This is the log file
specified in Tools/Options in PGT, and this setting is different for each opened Script Executor. It
is important to remember, that WriteLogEntryEx() will always succeed, even if there was no log
file specified. This is the reason why the CustomActionHandler has the LoggingRequired member,
which must return a Boolean value indicating if a log file should be specified for this handler. If
LoggingRequired returns true, but the user did not select a log file, PGT will warn the user and
asks if the script execution should be continued or not

When using WriteLogEntryEx() it is not necessary to open or close the log file, it is handled
automatically by the scripting engine. If the log file already exists, PGT will prompt the user
whether to append or overwrite the file.

6.4.1.1 RETURNED VALUES OF DOCUSTOMACTION

The Boolean return value of DoCustomAction will be used to mark a script line as success or error.
The text returned in ActionResult will be copied to the script line CommandResult column.

Sometimes the action performed inside DoCustomAction disconnects the terminal line of the
devices (such as reload/reset command). To notify the scripting engine that the connection was
dropped on purpose, set the value of ConnectionDropped to true, otherwise return false.

When a serious error happens during the execution of DoCustomAction, it is possible to signal
PGT that script execution should be terminated and so the execution engine should not pick the
next line of the script. This is possible by setting the BreakExecution return value to true.

Pretty Good Terminal v7.0

September 13, 2016

6.4.2 ABOUT INITIALIZE / TERMINATE

A CustomActionHandler class is instantiated only once for a given running script. If more Script
Executor windows are opened, the class will be instantiated separately by each Script executor
engine. Engines have a distinctive GUID identifiers to which the object is bounded while alive.

The instantiation occurs the first time a call is needed to the handler class. On this occasion the
handler class should initialize any local variables it will use during the script execution. In this
way, the Initialize is very similar to a constructor. Of course, the class’s constructor can also be
used for this purpose. The only difference is, that Executor parameter will be passed as a
parameter to Initialize, and as a result WriteLogEntryEx() may be called from here to write a
header to a log file for instance.

When the script is finished or terminated, the Terminate member will be called. At this time, any
resources initialized in the call to Initialize should be handled appropriately (like closing files,
writing to database, and so on).

Pretty Good Terminal v7.0

September 13, 2016

6.5 PROVIDE A USER INTERFACE FOR A HANDLER

Sometimes CustomActionHandlers are quite complex, maybe handling databases, too. Whatever
the reason is, it might be necessary to provide a custom user interface for managing a particular
handler class. For this purpose, PGT introduces the ICustomMenuHandler interface. The purpose

of this interface is to insert a menu item into the Action main menu. The interface is very simple,
and has only two members :

public interface ICustomMenuHandler
{
 /// <summary>
 /// This is the main menu item of the plugin
 /// </summary>
 /// <returns></returns>
 ToolStripMenuItem GetMenu();
 /// <summary>
 /// PGT will pass over the reference to application main form.
 /// </summary>
 /// <param name="mainForm"></param>
 void SetMainForm(Form mainForm);
}

The menu is what it is : the main menu structure to be displayed on the Action menu. All menu
items should have its associated event handlers set.

PGT will call SetMainForm() to pass a reference for the application’s main form. It can be used to
create a child MDI form for instance.

Once built, Custom Menu Handlers must be registered with PGT in Tools/Options.

6.5.1 AN EXAMPLE INTERFACE

The following example shows a complete implementation of ICustomMenuHandler for a plugin.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Windows.Forms;

namespace PGT.SQLInterface
{
 class PGTInterface : ICustomMenuHandler
 {
 #region Fields
 private Form AppMainForm;
 System.ComponentModel.BackgroundWorker _workInProgress;
 #endregion

 #region ICustomMenuHandler Members

 public System.Windows.Forms.ToolStripMenuItem GetMenu()
 {
 ToolStripMenuItem tsmMainMenu = new ToolStripMenuItem();
 ToolStripMenuItem tsmSaveToDatabase = new ToolStripMenuItem();
 ToolStripMenuItem tsmDataManager = new ToolStripMenuItem();
 ToolStripMenuItem tsmConfigure = new ToolStripMenuItem();
 ToolStripSeparator tss1 = new ToolStripSeparator();

 tsmMainMenu.DropDownItems.AddRange(new System.Windows.Forms.ToolStripItem[] { tsmConfigure, tss1,
tsmSaveToDatabase, tsmDataManager });

 #region Menu definition
 //
 // tsmSQLInterfaceMainMenu
 //
 tsmMainMenu.Image = PGT.SQLInterface.Resource1.color_wheel_16xLG;
 tsmMainMenu.ImageTransparentColor = System.Drawing.Color.Black;

Pretty Good Terminal v7.0

September 13, 2016

 tsmMainMenu.Name = "PGT.SQLInterface.tsmMainMenu";
 tsmMainMenu.Text = "Scripting Projects";
 //
 // tsmConfigure
 //
 tsmConfigure.Image = Resource1.ManageCounterSets_8769;
 tsmConfigure.ImageTransparentColor = System.Drawing.Color.Black;
 tsmConfigure.Name = "PGT.SQLInterface.tsmConfigure";
 tsmConfigure.Text = "Configure module";
 tsmConfigure.Click += tsmConfigure_Click;
 //
 // tsmSQLInterfaceMainMenu
 //
 tsmSaveToDatabase.Image = Resource1.build_Selection_16xLG;
 tsmSaveToDatabase.ImageTransparentColor = System.Drawing.Color.Black;
 tsmSaveToDatabase.Name = "PGT.SQLInterface.tsmSaveToDatabase";
 tsmSaveToDatabase.Text = "Save result to database";
 tsmSaveToDatabase.Click += tsmSaveToDatabase_Click;
 //
 // tsmDataManager
 //
 tsmDataManager.Image = Resource1.Guage_16xLG;
 tsmDataManager.ImageTransparentColor = System.Drawing.Color.Black;
 tsmDataManager.Name = "PGT.SQLInterface.tsmDataManager";
 tsmDataManager.ShortcutKeys = ((System.Windows.Forms.Keys)((System.Windows.Forms.Keys.Control |
System.Windows.Forms.Keys.P)));
 tsmDataManager.Text = "Manage projects";
 tsmDataManager.Click += tsmDataManager_Click;
 #endregion
 return tsmMainMenu;
 }
 void tsmConfigure_Click(object sender, EventArgs e)
 {
 (new SqlConnectionEditor()).ShowDialog();
 }

 void tsmSaveToDatabase_Click(object sender, EventArgs e)
 {
 // First try to get the reference to the scripting form's ScriptManager whose result should be saved
 ScriptManager _ScriptManager = ScriptingFormManager.GetActiveScriptingFormManager();
 if (_ScriptManager != null) (new SaveToDatabase()).ShowDialog();
 else MessageBox.Show("The active window is not a Script Executor. Please select the Script Executor window
before using this function.", "Unable to save results", MessageBoxButtons.OK, MessageBoxIcon.Warning);
 }

 void tsmDataManager_Click(object sender, EventArgs e)
 {
 _workInProgress = new System.ComponentModel.BackgroundWorker();
 _workInProgress.WorkerSupportsCancellation = true;
 _workInProgress.DoWork += DoWorkAnimation;
 _workInProgress.RunWorkerAsync();
 try
 {
 ScriptingProjectManager sMgr = new ScriptingProjectManager();
 sMgr.Show();
 sMgr.MdiParent = AppMainForm;
 }
 finally
 {
 _workInProgress.CancelAsync();
 }
 //sMgr.WindowState = FormWindowState.Maximized;
 }
 public void SetMainForm(System.Windows.Forms.Form mainForm)
 {
 AppMainForm = mainForm;
 }

 private void DoWorkAnimation(object sender, System.ComponentModel.DoWorkEventArgs e)
 {
 WorkInProgressAnimation L = null;
 DateTime waitStartedAt = DateTime.Now;
 while (true)
 {
 System.Threading.Thread.Sleep(20);
 if ((DateTime.Now - waitStartedAt).TotalMilliseconds > 500)
 {
 if (L == null)
 {
 L = new WorkInProgressAnimation("Loading module, please wait", "Loading");
 L.Show();
 }
 }
 Application.DoEvents();

Pretty Good Terminal v7.0

September 13, 2016

 if (_workInProgress.CancellationPending)
 {
 if (L != null) L.Close();
 break;
 }
 }
 }

 #endregion
 }
}

6.6 AUTOMATE SCRIPT CREATION

PGT works fine with CSV and Excel files until a certain number of devices. When one has to work
with several thousands of devices, managing Excel tables will get overwhelming. I came across
this problem when had to script more than 45k devices, and realised that a solution must be made
to circumvent the Excel-hell.

The solution is to create an interface for PGT, through which scripts can be generated
programmatically from a database for instance. If we already has the capability to include and
display a custom UI form within PGT, why not to let this form – basically external code – to create
the scrip, run the script, evaluate the results and update a database based on that.

This is a very effective way of handling several thousands of devices while maintain an always
up-to-date status about them.

As a result PGT provides the following functionality :

1. Open Script Executors programmatically
2. Populate a Script Executor with script
3. Run the script
4. Get back the results
5. Close the Script Executor window

To enable all of the above functionality in a class library, an additional references must be added
to PrettyGoodTermal.exe. As PGT itself does not have references to the external class libraries
containing the CustomActionHandler or CustomMenuHandler classes, adding a reference to the
main executable will not impose a circular reference problem.

6.6.1 OPENING A SCRIPT EXECUTOR

Scripts in PGT are displayed on ScriptingForm forms. This is the form displayed when the user
clicks on Action/New Script Executor menu item. The Form is responsible to load, display and
start or stop (pause/resume) the execution of a script. This functionality of the form is managed
by the ScriptManager internal class of the ScriptingForm.

To manage this kind of form from code, a ScriptingFormManager static class exists in the PGT
namespace. This class can be used to query for opened ScriptingForm windows and also to open
a new one :

 public static List<ScriptManager> GetScriptManagers() member will return a list of
ScriptManager for all opened ScriptingForm

Pretty Good Terminal v7.0

September 13, 2016

 public static ScriptManager OpenNewScriptingForm() will open a new ScriptingForm

and return the reference for its ScriptManager

Once a reference to an ScriptManager is obtained, it is possible to programmatically create a
script and execute it.

6.6.2 CREATING AND EXECUTING A SCRIPT

To create a script the ScriptManager class can be used, once obtained through a call to
ScriptingFormManager.GetScriptManagers() or ScriptingFormManager.OpenNewScriptingForm(). This
class is declared as :

namespace PGT
{
 public abstract class ScriptManager
 {
 /// <summary>
 /// Returns the name of the script
 /// </summary>
 /// <returns></returns>
 public abstract string GetScriptName();
 /// <summary>
 /// this will close the Scripting Form
 /// </summary>
 /// <param name="NotifyUser"></param>
 public abstract void CloseForm(bool NotifyUser = true);
 /// <summary>
 /// This notifies the form that the script was saved externally
 /// </summary>
 public abstract void SetScriptSaved();
 /// <summary>
 /// Clear the script lines
 /// </summary>
 public abstract void ClearItems();
 /// <summary>
 /// Before adding multiple script lines, BeginAddEntries should be called for performance reasons
 /// </summary>
 public abstract void BeginAddingEntries();
 /// <summary>
 /// Must be called after finished adding multiple entries
 /// </summary>
 public abstract void EndAddingEntries();
 /// <summary>
 /// Extends the standard(default) ListView columns with extra columns from the passed header.
Should be called before adding entries
 /// </summary>
 /// <param name="Header"></param>
 public abstract void UpdateHeader(string[] Header);
 /// <summary>
 /// Add a single script line
 /// </summary>
 /// <param name="scriptLine"></param>
 /// <returns></returns>
 public abstract bool AddEntry(string scriptLine, ScriptLineState sls =
ScriptLineState.Undetermined, Color? ForeColor = null, Color? BackColor = null);
 /// <summary>
 /// Returns all script lines
 /// </summary>
 /// <returns></returns>
 public abstract List<ScriptListViewItem> GetItems();
 /// <summary>
 /// Starts script execution
 /// </summary>
 /// <param name="NotifyUser"></param>

Pretty Good Terminal v7.0

September 13, 2016

 public abstract void ExecuteScript(bool NotifyUser = true);
 /// <summary>
 /// Stops script execution
 /// </summary>
 public abstract void StopScript();
 /// <summary>
 /// Pauses the script execution
 /// </summary>
 public abstract void PauseScript();
 /// <summary>
 /// Resumes script execution
 /// </summary>
 public abstract void ResumeScript();
 /// <summary>
 /// Returns the text content of the ActionPane
 /// </summary>
 public abstract string GetActionPane { get; }
 /// <summary>
 /// Returns the text content od the TerminalPane
 /// </summary>
 public abstract string GetTerminalPane { get;}
 /// <summary>
 /// ScriptFinished will be called when the script execution was finished
 /// </summary>
 /// <param name="sender"></param>
 /// <param name="e"></param>
 public delegate void ScriptFinished(object sender, ScriptEventArgs e);
 public abstract event ScriptFinished OnScriptFinished;
 /// <summary>
 /// ScriptAborted will be called when the script execution was canceled or the form was closed
 /// </summary>
 /// <param name="sender"></param>
 /// <param name="e"></param>
 public delegate void ScriptAborted(object sender, ScriptEventArgs e);
 public abstract event ScriptAborted OnScriptAborted;
 }
}

Once a reference retrieved to the ScriptManager of the ScriptingForm, it is possible to add lines
to the script as strings programmatically. The format of the string representing a script line is
exactly the same as the format of the input CSV file, and must contain the following items
separated by colon:

Order Name
0 Selected (1 or 0)
1 JumpServerList

2 Vendor

3 DeviceIP

4 HostName

5 ConnectionProtocol

6 Command

7 PrivilegedModeRequired

8 ReconnectRequired

9 RegExSearch

10 CustomActionID

Example line to add: “1,192.168.1.1,cisco,172.16.0.1,,telnet,conf t,yes,,,”

So creating a script is very easy, and consist of the following three steps :

1. Acquire a reference to a ScriptManager by either enlisting the opened ScriptingForm
windows or opening a new one;

2. Add script lines by calling ScriptManager.AddEntry();
3. Call ScriptManager.ExecuteScript();

Pretty Good Terminal v7.0

September 13, 2016

The generated script may contain additional columns beyond the required columns as necessary.
In this case the example string above can be extended like :

“1,192.168.1.1,cisco,172.16.0.1,,telnet,conf t,yes,,,itemIDValue”

Before adding such a line, it must be signalled that the header is not the standard one. For this
purpose use the UpdateHader() member, like this :

// Get the standard headers list
string sExtenderHeader = PGT.Common.Helper.ArrayToString(Enum.GetNames(typeof(InputFileHeader)),
sepChar);
// Extend it with one extra column
sExtenderHeader += "Item ID";
// Notify the scriptManager about extended columns
_ScriptManager.UpdateHeader(sExtenderHeader.Split(sepChar.ToCharArray(),StringSplitOptions.RemoveEmpty
Entries));

If many lines are to be added, the BeginAddingEntries() should be called before and
EndAddingEntries() at the end. These members encapsulates the ListView.BeginUpdate() and
EndUpdate() methods for the same purpose.

Once script is created, it can be executed by calling the ExecuteScript() method.

To get notified when the script finished successfully or was aborted, use the OnScriptFinished and
OnScriptAborted event handlers. The event handler’s sender parameter will be set to the
ScriptManager instance sending the event. Using this sender it is possible to close the form fr
instance.

6.6.3 GETTING THE RESULTS

After the script finished, the results can be retrieved by calling ScriptManager.GetItems(). This
call will return a list of ScriptListViewItems corresponding to the script results as can be seen
in the ScriptingForm which executed the script. Each ScriptListViewItem item contains the
information in its SubItems, which can be reached via the ScriptListViewItem.SubItems
collection. In order to easily access these SubItems by the indexer property of the collection, the
following helper enumeration can be used :

public enum LVISubItem {JumpServerList, Vendor, DeviceIP, HostName, ConnectionProtocol, Command,
PrivilegedModeRequired, ReconnectRequired, RegExSearch, CustomActionID, RegexResult, CommandResult };

Using the enum, one can refer for instance to DeviceIP of a ScriptListViewItem like this :

string thisDevice = lvi.SubItems[(int)LVISubItem.DeviceIP].Text;

where the lvi variable is a ScriptListViewItem.

Each item also has a LogonResult property, the type of LogonResult enumeration :

public enum LogonResult {Success, Fail, TelnetTimeout, MethodNotSupported, TACACSRejected,
ConnectionRefused, OpenedButTimedout, ClosedByRemoteHost, EnableAccessDenied, EnableAccessFailed,
LoginInvalid, ConnectionTimeout, ResendUsername, PasswordRejected };

Pretty Good Terminal v7.0

September 13, 2016

The meaning of the above items are :

Value Description

Success Success

Fail Primary control channel (Telnet/SSH) could not be established to host or jump server

TelnetTimeout Telnet/SSH timeout from the jump server to the host

Method Not Supported Enable password was supplied but vendor is not "cisco"

TACACS Rejected TACACS authentication error

Connection Refused Connection refused by remote host

Opened But Timed out Connection was opened, but no response

Closed By Remote Host Connection method not accepted

Enable Access Denied Enable access was rejected or timed out after issuing "enable" command, but before sending password

Enable Access Failed Enable password was not accepted for some reason

Login Invalid Logon Username/Password was not accepted

Connection Timeout Telnet/SSH connection attempt returned timeout message

Password Rejected When only password is required but the given password is not accepted

DeviceUnreachable When no response was received to ping

Besides examining the LogonResult value, each item also contains the CommandResult subitem,

which can be checked against the returned text

Furthernore, a ScriptLsitViewItem has the IsSuccess property of type :

public enum ScriptLineSuccess { Undetermined, Success, Error};

Using this property it can be checked whether the execution of the script line succeeded or not.
The value of Undetermined means that the line was not executed.

Pretty Good Terminal v7.0

September 13, 2016

6.7 USING PGT AS AN SSH/TELNET LIBRARY

Another option of development is to use PGT as a high level SSH/Telnet library. This means that
only limited functionality is exposed at a high level hiding protocol details completely.

When a reference is added to STerminal.dll, the ScriptableTTYTerminal class can be used from
the PGT namespace. This class has many methods focusing on functionality rather than protocol
details.

At the very basic level, the ScriptableTTYTerminal class can establish connection to a host and
then send commands to the device. You can directly connect to a device, or through a jump server.
In the latter case, the initial connection is made to the jump server by calling
ConnectoToJumpServer(), and then the final device with LogonToHost(). Generally, you should never
call Connect() method directly, because connections are handled by ConnectToJumpServer() and
LogonToHost() methods. Both methods checks if a connection has already been established or not.
If not, calls Connect() internally to establish the network connection to the device specified. If yes,
however, uses the JS_TelnetCommand or JS_SSHCommand properties to connect to the specified
device over an existing terminal conenction. This is equivalent of typing the command “telnet
10.0.0.1” on a terminal to connect to host 10.0.0.1.

Likewise, if multiple jump servers are chained, ConnectoToJumpServer() should be called for each
connection. For instance, if one has the following setup :

PGT computer  Jump Server (10.0.0.1)  Jump Server(192.168.1.1)  EndHost (172.16.1.1)

Then the following calls should be made on PGT computer to reach EndHost :

3. ConnectToJumpServer(10.0.0.1);
4. ConnectoToJumpServer(192.168.1.1);

5. LogonToHost(172.16.1.1);

Below you can see the member methods with a description of their function:

public sealed class ScriptableTTYTerminal
{

/// <summary>
/// Creates a new ScriptableTerminal instance
/// </summary>
/// <param name="TerminalScreenLength"></param>
public ScriptableTTYTerminal(int TerminalScreenLength)
/// <summary>
/// The command to be issued on the jump server in order to connect to a device via Telnet
/// </summary>
public string JS_TelnetCommand { get; set; }
/// <summary>
/// The command to be issued on the jump server in order to connect to a device via SSH
/// </summary>
public string JS_SSHCommand { get; set; }
/// <summary>
/// Specifies the general timeout value used for wait operations after sending commands
/// </summary>
public TimeSpan DefaultCommandTimeout { get; set; }
/// <summary>
/// Specifies the general timeout value used for wait operations when connecting via telnet or ssh
/// </summary>
public TimeSpan DefaultConnectTimeout { get; set; }
/// <summary>
/// Returns the connection state
/// </summary>
public bool IsConnected{ get;}
/// <summary>
/// Connects to a host as specified by ConnectionParameters
/// </summary>

Pretty Good Terminal v7.0

September 13, 2016

/// <param name="CD"></param>
/// <returns>Returns true if connection succeeds</returns>
public bool Connect(ConnectionParameters CD)
/// <summary>
/// Connects to a host as specified by the parameters
/// </summary>
/// <param name="CD"></param>
/// <returns>Returns true if connection succeeds</returns>
public bool Connect(string Protocol, string DeviceIP, string Username, string Password)
/// <summary>
/// Sends the text to the terminal connection.
/// </summary>
/// <param name="Text">The text to be sent</param>
/// <returns>Returns the terminal screen line number in which the text is sent</returns>
public int SendText(string Text)
/// <summary>
/// Sends a NewLine char sequence, based on the terminal's TransmitNL seettings
/// </summary>
public void SendNewLine(string Text)
/// <summary>
/// Executes a single command. Wait prompt is determined automatically based on the current connection settings.
/// The prompt is awaited before returning or a CommandTimeoutException is thrown.
/// </summary>
/// <param name="Command">The command to execute. Multiple commands must be separated by semicolons. </param>
/// <returns>Returns the command result text</returns>
public string ExecCommand(string Command, string waitPrompts)
/// <summary>
/// Executes a single command. If a prompt is passed, it also waits for the prompt before returning.
/// The prompt is awaited before returning or a CommandTimeoutException is thrown.
/// </summary>
/// <param name="Command">The command to execute. Multiple commands must be separated by semicolons. </param>
/// <param name="waitPrompts">If set, waits for any of the prompts before returning. MUST be set to NULL if no
wait operation is expected </param>
/// <returns>Returns the command result text</returns>
public string ExecCommand(string Command, string waitPrompts)
/// <summary>
/// Executes multiple commands. Between commands waits for any of the given prompts.
/// CommandTimeoutException can be thrown in case of timeout error.
/// </summary>
/// <param name="commands">An array of commands</param>
/// <param name="Prompts">An array of acceptable prompt</param>
/// <returns>Returns the command result text</returns>
public string ExecCommand(string[] commands, string waitPrompts)
/// <summary>
/// Waits for the given prompts. The prompt is always verified only in the last terminal line !
/// </summary>
/// <param name="timeout">Waits this much time for prompts at most. Minimum is 2 seconds</param>
/// <param name="Prompts">The valid prompts to wait for. Multiple prompts must be separated by semicolon</param>
/// <param name="exitConditionStrings">Aborts waiting for prompts if any of the listed strings detected in the
response</param>
/// <returns>Returns the index of the prompt found, or 1000 + the index of the exit condition string. If wait
operation times out, returns -1</returns>
public int WaitForPrompt(TimeSpan timeout, string Prompts, string ExitConditionString = null, int SearchFrom = 0)
/// <summary>
/// Waits for the given prompt. The prompt is always verified ine the last terminal line !
/// </summary>
/// <param name="timeout">Waits this much time for prompts at most</param>
/// <param name="Prompts">The valid prompts to wait for. Multiple prompts must be separated by semicolon</param>
/// <param name="exitConditionStrings">Aborts waiting for prompts if any of the listed strings detected in the
response</param>
/// <param name="searchFrom">Prompts and exitConditionStrings are searched beyond this line number only</param>
/// <returns>Returns the index of the prompt found, or 1000 + the index of the exit condition string. If wait
operation times out, returns -1</returns>
public int WaitForPrompt(TimeSpan timeout, string[] Prompts, string[] exitConditionStrings = null, int searchFrom
= 0)
/// <summary>
/// Waits for the given text. The text is searched among the terminal lines starting at the specified line
number.
/// </summary>
/// <param name="timeout">Waits this much time before timing out. Minimum is 2 seconds, smaller values will be
ignored</param>
/// <param name="Text">The texts to wait for. The text may contain semicolons as a text separator if multiple
texts may be expected.</param>
/// <param name="searchFrom">The terminal line number to start the search at </param>
/// <returns>Returns the index of the text found, or -1 if no text was found or timed out</returns>
public int WaitForText(TimeSpan timeout, string Text, int searchFrom)
/// <summary>
/// Pings a device and returns true if it is reachable
/// </summary>
/// <param name="MaxWait">wait no more time for an answer. Minimum is 2 seconds, smaller values will be
ignored</param>
/// <param name="commandtemplate">the ping command template containing %DEVICEIP placeholder. If empty, the
default is to use ping %DEVICEIP</param>

Pretty Good Terminal v7.0

September 13, 2016

/// <param name="deviceIP">what to ping</param>
/// <param name="waitprompt">waits for this prompt before and after ping</param>
/// <param name="WaitUntilRechable">if true, waits until a response is received at most for MaxWait</param>
/// <returns></returns>
public bool TestHostReachability(TimeSpan MaxWait, string commandtemplate, string deviceIP, string waitprompt,
bool WaitUntilRechable = false)
/// <summary>
/// Retrieves the hostname of the currently connected device. If the prompt contains other stuff, that will be
returned !
/// <param name="promptDelimiter">The character terminating the prompt, like $ or #</param>
/// </summary>
/// <returns></returns>
public string GetHostName(string promptDelimiter)
/// <summary>
/// Retrieves the current prompt including the hostname, such as R1#
/// CommandTimeoutException might be thrown.
/// <param name="promptDelimiter">The character terminating the prompt, like $ or #</param>
/// </summary>
/// <returns></returns>
public string GetFullPrompt(string PromptDelimiter)
/// <summary>
/// Logs on to a device via telnet or ssh1/2 protocol. Also enters to priviledged mode if needed.
/// </summary>
/// <param name="CD">Parameters required for the connection</param>
/// <param name="inPrivilegedMode">In case of a cisco device returns true if we are in privileged mode</param>
/// <returns>Returns the logon result</returns>
public LogonResultEx LogonToHost(ConnectionParameters CD, out bool inPrivilegedMode)
/// <summary>
/// Depending on the current connection status calls ConnectToPrimaryJumpserver or ConnectToSecondaryJumpserver
/// </summary>
/// <param name="Protocol">The connection protocol text. Valid values are Telnet, SSH1 or SSH2</param>
/// <param name="DeviceIP">The IPv4 address of the host to connect to</param>
/// <param name="Username">The logon username</param>
/// <param name="Password">The logon password</param>
/// <param name="ServerPrompt">The jump server prompt</param>
/// <returns></returns>
public bool ConnectToJumpServer(string Protocol, string DeviceIP, string Username, string Password, string
ServerPrompt)
/// <summary>
/// Disconnets the current communication channel.
/// </summary>
/// <returns>Returns true if it was connected before, false otherwise</returns>
public bool Disconnect()

}

Where ConnectionParameters is :

 public class ConnectionParameters
 {
 public ConnectionProtocol Protocol;
 public string DeviceIP;
 public string DeviceVendor;
 public string LogonUserName;
 public string LogonPassword;
 /// <summary>
 /// should be specified for devices having elevated exec mode (like enable mode on cisco)
 /// </summary>
 public string EnablePassword;
 /// <summary>
 /// the prompt expected
 /// </summary>
 public string ServerPrompt;
 /// <summary>
 /// the current prompt (from where we are connecting, mainly for secondary connections)
 /// </summary>
 public string CurrentPrompt;
 /// <summary>
 /// Used to further parametrize telnet command. The format of the final command sent to the device is constructed
 /// as JumpServer.Telnetcommand ConnectionParameters.DeviceIP ConnectionParameters.TelnetParameters
 /// </summary>
 public string TelnetParameters;
 /// <summary>
 /// Used to further parametrize ssh command. The format of the final command sent to the device is constructed
 /// as JumpServer.SSHcommand ConnectionParameters.DeviceIP ConnectionParameters.SSHParameters
 /// </summary>
 public string SSHParameters;
 /// <summary>
 /// Selects reuired authentication type
 /// </summary>
 public TermAuthType AuthType;
 /// <summary>
 /// When public key authentication is required, this is name of the private key file
 /// </summary>

Pretty Good Terminal v7.0

September 13, 2016

 public string IdentityFile;
 }

public enum TermAuthType { Password, PublicKey };

The ultimate goal of TelnetParameters and SSHPArameters is to make it possible to send a
formatted command like "telnet 192.168.1.2 /vrf purple" to a host for example. Used by
ScriptableTTYTerminal.LogonToHost()

Pretty Good Terminal v7.0

September 13, 2016

6.8 ACCESSING PGT’S SETTINGS

When executing business login in scripts, it is sometimes necessary to access properties set in
Tools/Options, like DeviceUsername or DevicePassword. For this purpose, the static class
PGTSettingsManager can be used from the PGT.Common namespace. To access this namespace, a
reference must be added to Common.dll.

For instance, PGTSettingsManager.GetCurrentScriptSettings() returns the settings for the currently
active profile.

Pretty Good Terminal v7.0

September 13, 2016

7 PYTHON DEVELOPMENT SUPPORT

Starting with version 6.0, PGT supports running and debugging Python scripts. PGT can run
Python scripts 3 different ways :

 from Python script files loaded on demand in the background
 interactively, using the Python Interactive window
 as Visual Script files (see chapter 8, Visual Script Development)

Python script development is fully covered by the users’ manual.

Pretty Good Terminal v7.0

September 13, 2016

8 VISUAL SCRIPT DEVELOPMENT

In this chapter I want to show you the Visual Scripting capability of Pretty Good Terminal.

Although simple vScripts does not require any programming skills, vScripts provide a general

infrastructure to include user defined c# classes, variables and code, even referencing and using

external assemblies.

In fact, visual scripts in PGT are nothing else than CustomActionHandlers - described in details in

previous chapters – which are built and compiled at runtime by the vScript engine. Under the hood,

the vScript execution engine is a c# compiler using CodeDOM and Reflection to provide an intuitive

code editor with intelli-sense like controls, where users can enter their own c# code.

I will to show you the object model used and how the script execution engine works. If you

understand these topics, you will be able to create sophisticated and complex scripts.

8.1 THE CONCEPT

Most of the time scripts - and humans, too :-) - repeat the following basic steps:

- check a device configuration element by issuing show commands

- analyse the response

- based on the result construct a configuration command

Of course, one step is rarely enough to decide what to do and more configuration checks are

required until enough information is collected to build the final configuration change.

The best way to design a script is to represent the required steps visually and organizing them to

a flowchart. This is exactly what you can do with PGT's Visual Script Editor. You can add visual script

elements and connect them to create a flowchart. Then each element will have its own code

executed at runtime, using its own local variables or script global variables to memorize command

results. Then connectors again have their own code which is evaluated to decide about the control

flow direction, that is, which is the next step to be taken.

A visual script - or vScript - must have a single start element and may have many stop elements.

Execution of the vScript starts whenever PGT made a successful connection to a device as specified

in a script (not the vScript, but the legacy script which is actually a list a devices along with

connection parameters). Then PGT will pass the execution to the vScript.

Let me show you what a vScript is.

8.2 CREATING A SIMPLE SCRIPT

The best way to understand what a vScript is and how it operates is to discuss through a simple

example (you can find the more detailed description of this task in the users’s guide). For this reason

let us assume we have a list of routers and we need to update the dialer interface only if :

Pretty Good Terminal v7.0

September 13, 2016

 It is a Cisco router

 Belongs to a specific BGP AS

 The dialer if bandwidth equals to 128

Without vScript, using only the conventional, CLI commands driven simple scripts this would be a

challenging task. However, with vScript it is very simple, straightforward and does not even involve

any programming.

Now let’s see how it works, how to build and use the script.

Just open a new Visual Script Editor from the Actions menu of PGT. If there is any default script

presented, select all elements by pressing Ctrl-A - or select with the mouse - and press delete to

clear the workspace.

First of all, we need a Start Element. Right click the workspace and from the Add elements menu

select the Start element:

In its simplest form, there is nothing to configure on

the Start element, so we can continue with adding a

Simple Decision element for checking if we are on a

Cisco router.

For this purpose, select Simple Decision element

from the context menu shown above.

When the Simple Decision Editor appears, enter the

following data to the editor:

 Name : IsCisco

 Label: Is Cisco ?

 Command : show version | i [cC][iI][sS][cC][oO]

 Text to check in answer : Cisco

This will work exactly as one would expect: sends the command “sh version” to the connected

device and checks whether the received answer CONTAINS the word “Cisco”. This is a simple

Pretty Good Terminal v7.0

September 13, 2016

decision: the answer can be “yes” or “no”. Please note, that this is a case-sensitive operation both

at the router operating system (in case of Cisco IOS and also when parsing the response text. In

other words, “cisco” is not equal to “Cisco” when evaluating the response. For the command, we

can use the syntax SHOW VERSION | I [CC][II][SS][CC][OO] to match any letter case but the

decision element will still evaluate the response in a case sensitive way.

We also need to connect the Start element to this Simple Decision. To do so, go to Start, and select

Add Connector from the context menu. The Visual Script designer gets into connection mode and

as the mouse is moved over a possible connection target, the element will be highlighted.

From the IsCisco decision element, we have two options: in case the answer was “yes”, continue to

the next check, if “no”, stop the script and report back the results.

Let’s start with the “no” branch: first add a Stop element to the script from the context menu.

Then go back to the simple decision element, right click on it, and select Add Connector and

connect it to the newly added Stop element.

Now it must be decided whether the added

connector will represent the “No” or the “Yes”

branch of the decision. For this example select

“No” as the goal is to stop the script if we are

not on a Cisco device.

At this point we may want to report the result

with text and also with a logical expression if

the configuration was successful or not. To do

so, go to the added Stop element and open its

editor by double clicking on it.

Then go to the Main tab, and enter the following :

As you start typing you will notice that the editor will bring up a popup window for auto completion

of the entered text. This way syntax errors can be avoided and you also do not need to remember

the correct wording of variables.

The text assigned to the ActionResult variable will be the one appearing in the PGT script window

as the Command result. Depending the value of ScriptSuccess, the line in the PGT script window

will be coloured green or red.

Pretty Good Terminal v7.0

September 13, 2016

Following the steps described above, you can build the complete script to get the final one as :

Okay, we have now visually built a simple script, we can run it, debug it, and deploy it. These topics

are covered in detail in the user’s manual and I do not want to repeat it, instead, at this point I want

to switch to the underlying c# code and the object model used as it is essential to understand the

model to effectively develop more complex vScripts.

8.3 THE VSCRIPT OBJECT MODEL

Each visual element of the script represent an individual class. More precisely a nested, public class

under a class named as ScriptProxy. The ScriptProxy is the implementation of the IScriptProxy

interface which defines all the members required for PGT to interact with the script elements. That

is, PGT does not interact directly with the visual script elements, but through the ScriptProxy as it

provides a well-defined interface independent of the actual classes inside it.

Let's see how the above simple script appears at code level. Below is the code as generated by

PGT internally from the visually constructed script. I know the code seems long to read, but

actually very simple and the interesting point is its structure, not what it does:

#define DEBUG
using PGT.ExtensionInterfaces;
using PGT.VisualScripts;
using System;
using System.Collections;
using System.Collections.Generic;
using System.Diagnostics;
using System.Text;
using System.Text.RegularExpressions;

namespace PGT.VisualScripts.vs_DialerUpdate4SGT
{
 public partial class ScriptProxy:IScriptProxy
 {
 public static string Name = "vs_DialerUpdate4SGT";
 public static bool BreakExecution = false;
 public static string ActionResult = "vScript <vs_DialerUpdate4SGT> processed successfully";
 public static bool ConnectionDropped = false;
 public static bool ScriptSuccess = true;
 public static IScriptExecutorBase Executor;
 public static IscriptableSession Session;
 public static DeviceConnectionInfo ConnectionInfo;

Pretty Good Terminal v7.0

September 13, 2016

 private List<RuntimeScriptElement> Elements;

 public static TStart Start;
 public static TIsCisco IsCisco;
 public static TStop_0 Stop_0;
 public static TCheckBGP CheckBGP;
 public static TStop_1 Stop_1;
 public static TDialerBandwidth DialerBandwidth;
 public static TStop_2 Stop_2;
 public static TBW128 BW128;
 public static TStop_3 Stop_3;
 public static TStart_IsCisco Start_IsCisco;
 public static TIsCisco_Stop_0 IsCisco_Stop_0;
 public static TIsCisco_CheckBGP IsCisco_CheckBGP;
 public static TCheckBGP_Stop_1 CheckBGP_Stop_1;
 public static TCheckBGP_DialerBandwidth CheckBGP_DialerBandwidth;
 public static TDialerBandwidth_BW128 DialerBandwidth_BW128;
 public static TDialerBandwidth_Stop_2 DialerBandwidth_Stop_2;
 public static TBW128_Stop_3 BW128_Stop_3;

 #region ScriptProxy members
 public ScriptProxy()
 {
 Elements = new List<RuntimeScriptElement>();

 Start = new TStart();
 Elements.Add(Start);
 IsCisco = new TIsCisco();
 Elements.Add(IsCisco);
 Stop_0 = new TStop_0();
 Elements.Add(Stop_0);
 CheckBGP = new TCheckBGP();
 Elements.Add(CheckBGP);
 Stop_1 = new TStop_1();
 Elements.Add(Stop_1);
 DialerBandwidth = new TDialerBandwidth();
 Elements.Add(DialerBandwidth);
 Stop_2 = new TStop_2();
 Elements.Add(Stop_2);
 BW128 = new TBW128();
 Elements.Add(BW128);
 Stop_3 = new TStop_3();
 Elements.Add(Stop_3);
 Start_IsCisco = new TStart_IsCisco();
 Elements.Add(Start_IsCisco);
 IsCisco_Stop_0 = new TIsCisco_Stop_0();
 Elements.Add(IsCisco_Stop_0);
 IsCisco_CheckBGP = new TIsCisco_CheckBGP();
 Elements.Add(IsCisco_CheckBGP);
 CheckBGP_Stop_1 = new TCheckBGP_Stop_1();
 Elements.Add(CheckBGP_Stop_1);
 CheckBGP_DialerBandwidth = new TCheckBGP_DialerBandwidth();
 Elements.Add(CheckBGP_DialerBandwidth);
 DialerBandwidth_BW128 = new TDialerBandwidth_BW128();
 Elements.Add(DialerBandwidth_BW128);
 DialerBandwidth_Stop_2 = new TDialerBandwidth_Stop_2();
 Elements.Add(DialerBandwidth_Stop_2);
 BW128_Stop_3 = new TBW128_Stop_3();
 Elements.Add(BW128_Stop_3);

 }

 public class TStart : RuntimeScriptCommand
 {

 public TStart()
 {
 ID = Guid.Parse("6753d40b-e34d-4108-8b89-d1dcec192fe0");
 }
 public override void Run()
 {

 }
 public override string CommandProvider()
 {
 return "";
 }

 }

 public class TIsCisco : RuntimeScriptCommand
 {

 public TIsCisco()
 {
 ID = Guid.Parse("b40fbd34-bdee-4c92-beb0-540166176ff5");
 }
 public override void Run()
 {

 }
 public override string CommandProvider()
 {
 return "sh version";
 }

 }

Pretty Good Terminal v7.0

September 13, 2016

 public class TStop_0 : RuntimeScriptCommand
 {

 public TStop_0()
 {
 ID = Guid.Parse("071e0418-fc1d-4a26-8083-0987cef8be42");
 }
 public override void Run()
 {
 ActionResult = "Not a Cisco device";
 ScriptSuccess = false;
 }
 public override string CommandProvider()
 {
 return "";
 }

 }

 public class TCheckBGP : RuntimeScriptCommand
 {

 public TCheckBGP()
 {
 ID = Guid.Parse("045319ba-65ea-4c5e-8c23-4e323281e9a2");
 }
 public override void Run()
 {

 }
 public override string CommandProvider()
 {
 return "sh run | in router bgp";
 }

 }

 public class TStop_1 : RuntimeScriptCommand
 {

 public TStop_1()
 {
 ID = Guid.Parse("7042f2f5-3087-4fcf-8c35-d96c398f23ea");
 }
 public override void Run()
 {
 ActionResult = "Wrong AS number";
 ScriptSuccess = false;
 }
 public override string CommandProvider()
 {
 return "";
 }

 }

 public class TDialerBandwidth : RuntimeScriptCommand
 {

 public TDialerBandwidth()
 {
 ID = Guid.Parse("38022f47-a25e-4756-b466-98a2eae7ca1b");
 }
 public override void Run()
 {

 }
 public override string CommandProvider()
 {
 return "sh run int dialer 1 | inc bandwidth";
 }

 }

 public class TStop_2 : RuntimeScriptCommand
 {

 public TStop_2()
 {
 ID = Guid.Parse("98b449df-1131-4874-902f-e1fc86e85202");
 }
 public override void Run()
 {
 ActionResult = "Other BW";
 ScriptSuccess = false;
 }
 public override string CommandProvider()
 {
 return "";
 }

 }

 public class TBW128 : RuntimeScriptCommand
 {

Pretty Good Terminal v7.0

September 13, 2016

 public TBW128()
 {
 ID = Guid.Parse("e83bb686-125f-4f34-b5eb-529d09f62be0");
 }
 public override void Run()
 {

 }
 public override string CommandProvider()
 {
 return "dialer load-threshold 100 either";
 }

 }

 public class TStop_3 : RuntimeScriptCommand
 {

 public TStop_3()
 {
 ID = Guid.Parse("761fbbc6-c029-482a-b0c8-5614ca1e6830");
 }
 public override void Run()
 {
 ActionResult = "Dialer IF updated successfully";
 ScriptSuccess = true;
 }
 public override string CommandProvider()
 {
 return "";
 }

 }

 public class TStart_IsCisco : RuntimeScriptConnector
 {

 public TStart_IsCisco()
 {
 ID = Guid.Parse("56f137bc-3b69-4c9d-ba04-8c2d7c76f934");
 }
 public override bool EvaluateCondition()
 {
 return true;;
 }
 }

 public class TIsCisco_Stop_0 : RuntimeScriptConnector
 {

 public TIsCisco_Stop_0()
 {
 ID = Guid.Parse("75c0be8d-cebe-421c-b008-429291d03118");
 }
 public override bool EvaluateCondition()
 {
 return IsCisco.CommandResult.IndexOf("Cisco") < 0;;
 }
 }

 public class TIsCisco_CheckBGP : RuntimeScriptConnector
 {

 public TIsCisco_CheckBGP()
 {
 ID = Guid.Parse("b4938aec-f5cc-4006-8fe2-5ef85e0a179f");
 }
 public override bool EvaluateCondition()
 {
 return IsCisco.CommandResult.IndexOf("Cisco") >= 0;;
 }
 }

 public class TCheckBGP_Stop_1 : RuntimeScriptConnector
 {

 public TCheckBGP_Stop_1()
 {
 ID = Guid.Parse("1cb0c89d-5ddc-4420-ba88-3b7ee645e828");
 }
 public override bool EvaluateCondition()
 {
 return CheckBGP.CommandResult.IndexOf("65100") < 0;;
 }
 }

 public class TCheckBGP_DialerBandwidth : RuntimeScriptConnector
 {

 public TCheckBGP_DialerBandwidth()
 {
 ID = Guid.Parse("d9948aaf-d569-4b76-a291-a821a25b7671");
 }
 public override bool EvaluateCondition()
 {
 return CheckBGP.CommandResult.IndexOf("65100") >= 0;;
 }

Pretty Good Terminal v7.0

September 13, 2016

 }

 public class TDialerBandwidth_BW128 : RuntimeScriptConnector
 {

 public TDialerBandwidth_BW128()
 {
 ID = Guid.Parse("5a71de56-3f39-42fa-82b6-565b8d10dc0d");
 }
 public override bool EvaluateCondition()
 {
 return DialerBandwidth.CommandResult.IndexOf("128") >= 0;;
 }
 }

 public class TDialerBandwidth_Stop_2 : RuntimeScriptConnector
 {

 public TDialerBandwidth_Stop_2()
 {
 ID = Guid.Parse("f992b6a5-7a78-496b-9666-3dad51bd4b61");
 }
 public override bool EvaluateCondition()
 {
 return DialerBandwidth.CommandResult.IndexOf("128") < 0;;
 }
 }

 public class TBW128_Stop_3 : RuntimeScriptConnector
 {

 public TBW128_Stop_3()
 {
 ID = Guid.Parse("a0c54fb8-94d3-45f3-9c30-e18ccd9de7c3");
 }
 public override bool EvaluateCondition()
 {
 return true;;
 }
 }
 #endregion

 }
}

It can be seen that each visual script element corresponds to a runtime class nested into ScriptProxy

class. ScriptProxy implements the IScriptProxy interface (no need to go into details of it) and

provides a means of interaction between the vScript execution engine and the runtime generated

script elements. The important point is that each script element have its own unique which is the

link between the runtime generated class and the visually designed element. All of them are

instantiated in the ScriptProxy constructor and are added to the list of known elements which list

is used internally by ScriptProxy to provide interaction.

The runtime generated classes descend either from RuntimeScriptCommand or

RuntimeScriptConnector, while their common ancestor is RuntimeScriptElement as shown below:

Pretty Good Terminal v7.0

September 13, 2016

The key to script execution is that both RuntimeScriptCommand and RuntimeScriptConnector

classes have abstract methods which PGT can call as the script executes.

For example, look at TStart:

public class TStart : RuntimeScriptCommand
{
 public TStart()
 {
 ID = Guid.Parse("6753d40b-e34d-4108-8b89-d1dcec192fe0");
 }
 public override void Run()
 {
 }
 public override string CommandProvider()
 {
 return "";
 }
}

CommandProvider() is used to get the CLI comand that will be sent to a device, and Run() contains

the code entered in the Main block of a Command element. PGT will call these two methods when

the Start element is executed.

Connectors, on the other hand, are more simple stuff. They have just one method, the

EvaluateCondition() which returns a boolean value. If the returned value is True, PGT assumes

execution should flow to the connected element of this connector. For instance the connector

pointing from Check BGP AS 6500? to Dialer BW 128? element evaluates the CommandResult

variable of CheckBGP if the answer contained the string 65000:

public class TCheckBGP_DialerBandwidth : RuntimeScriptConnector
{
 public TCheckBGP_DialerBandwidth()
 {
 ID = Guid.Parse("d9948aaf-d569-4b76-a291-a821a25b7671");
 }
 public override bool EvaluateCondition()
 {
 return CheckBGP.CommandResult.IndexOf("65100") >= 0;;
 }
}

As Start actually does not do anything interesting in this example, let’s see another script which is

about adding a new static route to a host.

First see the script in the Visual Script Editor, focusing on the "Static route add" command element

first:

Pretty Good Terminal v7.0

September 13, 2016

As you can see, this command element has some variables and a Main code block to process the

CommandResult variable of the start element - will show you what it is - and extract the next hop

address of a route to store it in its local variable next_hop_ip. Then in the Commands block uses

this variable to construct the CLI command to be sent to the router.

Let's see the generated code of the vScript:

 using PGT.ExtensionInterfaces;
 using PGT.VisualScripts;
 using System;
 using System.Collections;
 using System.Collections.Generic;
 using System.Diagnostics;
 using System.Text;
 using System.Text.RegularExpressions;

Pretty Good Terminal v7.0

September 13, 2016

 namespace PGT.VisualScripts.new_vScript
 {
 public partial class ScriptProxy:IScriptProxy
 {
 public static string Name = "new_vScript";
 public static bool BreakExecution = false;
 public static string ActionResult = "vScript <new_vScript> processed successfully";
 public static bool ConnectionDropped = false;
 public static bool ScriptSuccess = true;
 public static IScriptExecutorBase Executor;
 public static IScriptableSession Session;
 public static DeviceConnectionInfo ConnectionInfo;
 private List<RuntimeScriptElement> Elements;

 public static TStart Start;
 public static TCommand Command;
 public static TStop_0 Stop_0;
 public static TStop_1 Stop_1;
 public static TKnownGW KnownGW;
 public static TStart_CommandOnNo Start_CommandOnNo;
 public static TNoGW NoGW;

 #region ScriptProxy members
 public ScriptProxy()
 {
 Elements = new List<RuntimeScriptElement>();

 Start = new TStart();
 Elements.Add(Start);
 Command = new TCommand();
 Elements.Add(Command);
 Stop_0 = new TStop_0();
 Elements.Add(Stop_0);
 Stop_1 = new TStop_1();
 Elements.Add(Stop_1);
 KnownGW = new TKnownGW();
 Elements.Add(KnownGW);
 Start_CommandOnNo = new TStart_CommandOnNo();
 Elements.Add(Start_CommandOnNo);
 NoGW = new TNoGW();
 Elements.Add(NoGW);

 }

 public class TStart : RuntimeScriptCommand
 {

 public TStart()
 {
 ID = Guid.Parse("6442f81e-1ce9-4148-9bdc-9707f475ae8c");
 }
 public override void Run()
 {

 }
 public override string CommandProvider()
 {
 return "sh run | i ip route 192.168.10.0";
 }

 }

 public class TCommand : RuntimeScriptCommand
 {
 public string[] fields;
 public string next_hop_ip;
 public TCommand()
 {
 ID = Guid.Parse("5e054322-8eb4-40dd-b754-2949933bc6de");
 }
 public override void Run()
 {
 fields = Start.CommandResult.Split(" ".ToCharArray(), StringSplitOptions.RemoveEmptyEntries);
 if(fields.Length>0) next_hop_ip = fields[4].Replace("\r", "").Replace("\n", "");
 }
 public override string CommandProvider()
 {
 if (string.IsNullOrEmpty(next_hop_ip)) return "";
 else return "conf t;ip route 10.1.1.1 255.255.255.255 " + next_hop_ip +";exit";
 }

Pretty Good Terminal v7.0

September 13, 2016

 }

 public class TStop_0 : RuntimeScriptCommand
 {

 public TStop_0()
 {
 ID = Guid.Parse("dade9f45-0a91-4daa-b1e1-4c422e814b51");
 }
 public override void Run()
 {
 ActionResult = "Static route configured";
 ScriptSuccess = true;
 }
 public override string CommandProvider()
 {
 return "";
 }

 }

 public class TStop_1 : RuntimeScriptCommand
 {

 public TStop_1()
 {
 ID = Guid.Parse("b0d144b8-56d2-4e7a-8672-f8c904d7c4f0");
 }
 public override void Run()
 {
 ActionResult = "Could find gateway";
 ScriptSuccess = false;
 }
 public override string CommandProvider()
 {
 return "";
 }

 }

 public class TKnownGW : RuntimeScriptConnector
 {

 public TKnownGW()
 {
 ID = Guid.Parse("22537898-4633-4b25-8940-791cff434f45");
 }
 public override bool EvaluateCondition()
 {
 return true;;
 }
 }

 public class TStart_CommandOnNo : RuntimeScriptConnector
 {

 public TStart_CommandOnNo()
 {
 ID = Guid.Parse("7a781dbf-4e46-4448-8f5f-b770472a1be0");
 }
 public override bool EvaluateCondition()
 {
 return true;;
 }
 }

 public class TNoGW : RuntimeScriptConnector
 {

 public TNoGW()
 {
 ID = Guid.Parse("e209a3c1-80d1-4c68-986d-732c4eb80642");
 }
 public override bool EvaluateCondition()
 {
 return string.IsNullOrEmpty(Command.next_hop_ip);
 }
 }

 #endregion
 }
 }

Pretty Good Terminal v7.0

September 13, 2016

First check the Start element code. The CommandProvider() method will now return a valid

command to check for an existing route, so it will be sent to the connected router. All runtime

script elements has a variable named CommandResult which will store the response received from

the connected device. As the CommandResult are usually a multiline text, PGT also provides the

aCommandResult variable which is a string array and contains CommandResult lines. Using

aCommandResult can eliminate the need of splitting CommandResult to lines. We will use this in

TCommand's Run() method to extract the next hop ip from the response - which is the fourth word

- and store it in the local variable next_hop_ip:

public class TCommand : RuntimeScriptCommand
{
 public string[] fields;
 public string next_hop_ip;
 public TCommand()
 {
 ID = Guid.Parse("5e054322-8eb4-40dd-b754-2949933bc6de");
 }
 public override void Run()
 {
 fields = Start.CommandResult.Split(" ".ToCharArray(), StringSplitOptions.RemoveEmptyEntries);
 if(fields.Length>4) next_hop_ip = fields[4].Replace("\r", "").Replace("\n", "");
 }
 public override string CommandProvider()
 {
 if (string.IsNullOrEmpty(next_hop_ip)) return "";
 else return "conf t;ip route 10.1.1.1 255.255.255.255 " + next_hop_ip +";exit";
 }
}

Then in CommandProvider() method we check the variable, and if it is not empty, we build the

configuration commands we want to send to the router.

8.4 A STEP FURTHER

For the vScript to successfully execute, PGT requires that a runtime command element has the

Run() and CommandProvider() methods. But why limit the class to only these two methods? To

make a runtime command element more versatile, you can define a custom code block of the

element, which code is injected to the class as is. That is, the code block should be formatted to

syntactically fit into a class. Let’s see an example how to extend our TCommand class from the

above example:

public class TCommand : RuntimeScriptCommand
{
 public string[] fields;
 public string next_hop_ip;
 public TCommand()
 {
 ID = Guid.Parse("5e054322-8eb4-40dd-b754-2949933bc6de");
 }
 public override void Run()
 {
 fields = Start.CommandResult.Split(" ".ToCharArray(), StringSplitOptions.RemoveEmptyEntries);
 if(fields.Length>4) next_hop_ip = fields[4].Replace("\r", "").Replace("\n", "");
 }
 public override string CommandProvider()
 {
 if (string.IsNullOrEmpty(next_hop_ip)) return "";
 else return "conf t;ip route 10.1.1.1 255.255.255.255 " + next_hop_ip +";exit";

Pretty Good Terminal v7.0

September 13, 2016

 }

 //<This is the placeholder of a custom code block>

}

As you see, the custom code block can contain any number of methods or variables. Although

PGT will not directly call these methods, you can then can do so in either the Main code block or

the Commands code block. Consider the below example, where we add two class methods:

Then we can make use of them from Main:

And the code generated in the background is:

public class TCommand : RuntimeScriptCommand
{
 public string[] fields;
 public string next_hop_ip;
 public TCommand()
 {
 ID = Guid.Parse("5e054322-8eb4-40dd-b754-2949933bc6de");
 }
 public override void Run()
 {
 fields = Start.CommandResult.Split(" ".ToCharArray(), StringSplitOptions.RemoveEmptyEntries);
 if(fields.Length>0) next_hop_ip = fields[4].Replace("\r", "").Replace("\n", "");
 Foo();
 }

 public override string CommandProvider()
 {
 if (string.IsNullOrEmpty(next_hop_ip)) return "";
 else return "conf t;ip route 10.1.1.1 255.255.255.255 " + next_hop_ip +";exit";
 }

 public void Foo()
 {
 if (DummyCheck(3)) Debug.Write("wow, 3 is greater than 0");
 else Debug.Write("I am confused about math...");
 }

Pretty Good Terminal v7.0

September 13, 2016

 public bool DummyCheck(int i)
 {
 return (i > 0);
 }
}

To make things even more elastic, you can add custom usings and external assembly references to

the vScript. For instance, if you need to do some file operation from within the script, you need to

add System.IO to the usings, and afterwards you can use the File class in your script:

And so the File class gets known to the code editor:

Pretty Good Terminal v7.0

September 13, 2016

9 CUSTOMACTIONHANDLER ARCHITECTURE

The following diagram show PGT internal architecture for CustomActionHandlers. The aim of
this diagram to make it clear how objects are created and maintained:

Pretty Good Terminal v7.0

September 13, 2016

10 LICENSE

Portions of the software are licensed under Apache License v2.0

Copyright, 2014-2016, Laszlo Frank

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except
in compliance with the License.
You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License
is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
express or implied. See the License for the specific language governing permissions and
limitations under the License.

11 LIMITATION OF LIABILITY

UNDER NO LEGAL THEORY, INCLUDING, BUT NOT LIMITED TO, NEGLIGENCE, TORT, CONTRACT, STRICT

LIABILITY, OR OTHERWISE, SHALL THE AUTHOR OF THE PROGRAM CODE BE LIABLE FOR ANY INDIRECT,

SPECIAL, INCIDENTAL, PUNITIVE, EXEMPLARY, RELIANCE OR CONSEQUENTIAL DAMAGES INCLUDING,

WITHOUT LIMITATION, DAMAGES FOR LOST PROFITS, LOSS OF GOODWILL, WORK STOPPAGE, ACCURACY

OF RESULTS, COMPUTER FAILURE OR MALFUNCTION, OR DAMAGES RESULTING FROM USE. THE AUTHOR

OF THE PROGRAM CODE LIABILITY FOR DAMAGES OF ANY KIND WHATSOEVER ARISING OUT OF THIS

AGREEMENT SHALL BE LIMITED TO THE FEES PAID BY LICENSEE FOR THE SOFTWARE.

WARRANTY DISCLAIMER. THE AUTHOR OF THE PROGRAM CODE PROVIDES THE SOFTWARE "AS IS" AND

WITHOUT WARRANTY OF ANY KIND, AND HEREBY DISCLAIMS ALL EXPRESS OR IMPLIED WARRANTIES,

INCLUDING, WITHOUT LIMITATION, WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR

PURPOSE, PERFORMANCE, ACCURACY, RELIABILITY, QUIET ENJOYMENT, INTEGRATION, TITLE, NON-

INTERFERENCE AND NON-INFRINGEMENT. FURTHER, THE AUTHOR OF THE PROGRAM CODE DOES NOT

WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS THAT THE SOFTWARE WILL BE FREE FROM

BUGS OR THAT ITS USE WILL BE UNINTERRUPTED OR THAT THE SOFTWARE OR WRITTEN MATERIALS

WILL BE CORRECT, ACCURATE, OR RELIABLE. THIS DISCLAIMER OF WARRANTY CONSTITUTES AN
ESSENTIAL PART OF THIS AGREEMENT..

http://www.apache.org/licenses/LICENSE-2.0.html

