
User Guide

For:
Rhyscitlema Calculator

By:
Rhyscitlema

http:// www. rhyscitlema.com/ application s/calculator

30 August 2017

1

http://www.rhyscitlema.com/applications/calculator
http://www.rhyscitlema.com/applications/calculator
http://www.rhyscitlema.com/applications/calculator
http://www.rhyscitlema.com/applications/calculator
http://www.rhyscitlema.com/applications/calculator

Contents
 1 General Information...3

 2 Rhyscitlema Function Expression Text (RFET)...4

 3 RFET Component...5

 3.1 As a variable and as a function...5

 3.2 As a container – Parent vs Inner container...6

 3.3 Base vs Derived container – OOP Inheritance...6

 3.4 Component Access Control – OOP Encapsulation...7

 3.5 Calling a Component – Relative vs Absolute path...8

 3.6 GLOBAL.RFET components...8

 3.7 Evaluating the given example...9

 4 RFET Statement – syntax...10

 4.1 Value-Structure...10

 4.2 Supported Operators...10

 4.3 Software-Defined Math-Constants...11

 4.4 Software-Defined Math-Functions...11

 4.5 Software-Defined Extra-Functions...12

 4.6 Replacement Operator :=..12

 4.7 Conditional Operators “ ? : ”..13

 4.8 Per-value Operation..13

 4.9 String / Text Expression..13

 4.10 Commenting..14

 4.11 More about RFET...14

 5 Graphical User Interface...15

 5.1 GUI on Android..15

 5.2 GUI on Windows..16

 5.3 Software-specific Menu features..16

 5.4 1st layer buttons and text field..16

 5.5 3rd layer buttons and text field...17

 5.6 Hidden layers..17

 6 Character vs Partly-Code-Number Text Display..18

 7 Few Simple Examples..19

 7.1 Basic Example..19

2

 7.2 Circles and Spheres...19

 7.3 Quadratic Equation...19

 1 General Information
Rhyscitlema Calculator is an application to evaluate complex mathematical expressions expressed
in the Rhyscitlema Function Expression Text (RFET) language.

RFET enables the representation of mathematical expressions in plain text in simple and effective
ways. Instead of only thinking of a single-value, vector or matrix, the fully general value-structure
is used: an example is (1,(2,3,4),5).

RFET enables evaluating simple expressions such as 1+1, to evaluating advanced expressions such
as 2*f(3); f(x)=4x, to evaluating highly complex expressions in an Object-Oriented Programming
model (using inheritance and encapsulation).

You can simply evaluate “4*5”. Suppose you later want a few more of the form 4*X. In that case
you evaluate say “4*(5, 6, 7, 8)”. Suppose you later want to also use 2 and 3 besides 4. In that case
you evaluate say “f(2), f(3), f(4) ; f(x)=x*(5, 6, 7, 8)”. The result will be a 3-by-4 matrix. Suppose
you later want to keep the current results but also evaluate with the vector (50, 61, 72, 83). In that
case you evaluate “

f(2,a), f(3,a), f(4,a),
f(2,b), f(3,b), f(4,b) ;
f(x,y) = x*y ;
a = (5, 6, 7, 8) ;
b = (50, 61, 72, 83) ;

”. The result will be a 6-by-4 matrix.

RFET is designed and developed to be USERFOIL:

• Useful: can be used to do something important

• Simple: has as little different things as possible

• Efficient: provides high quantity+quality service

• Robust: survives unintended usage

• Flexible: gives full control to the user

• Original: not a cheap copy of some other

• Interesting: definitely worth your time

• Lasting: will survive the test of time

For now only technical information is provided.

Rhyscitlema products are provided for free, under the simple usage agreement: use at your own
risk. In order to encourage improvement please consider donating at http://rhyscitlema.com/donate.

3

http://rhyscitlema.com/donate

 2 Rhyscitlema Function Expression Text (RFET)
An RFET is simply a block of text that evaluates to some result.

At the very beginning we have “1+1”, which is a basic math expression that evaluates to 2.
The expression can be made slightly more complex:

• 5-6/2+3*4
• 4*sin(3+2) + (5-2)^3!^-4!

Such a basic expression that only makes use of already-defined features along with operators, is
called an RFET statement, or simply: a statement.

The RFET block of text can be made even more complex:
1. 5a; a=4
2. 2*f(3); f(x)=4x
3. 5a+2*f(3); a=4; f(x)=4x

1. The 1st case evaluates 5a where a=4, so the result is 5*4 = 20.
2. The 2nd case evaluates 2*f(3) where f(x)=4x, so the result is 2*(4*3) = 24.
3. The 3rd case evaluates 5a+2*f(3) where a=4 and f(x)=4x, so the result is 20+24 = 44.

In these cases there are user-defined variable and functions. Since they are user-defined, there is
therefore no more restriction to only using software-defined variables and functions, like sin().

However, a user-defined variable or function essentially defines a basic math expression. That is for
example: a=4 evaluates the math expression “4”, while f(x)=4x evaluates the math expression “4x”.
Each of these basic expressions, including “5a+2*f(3)”, is called a statement.

A statement should be terminated by the end-of-statement character, which is the semi-colon ';'.
However it can still be terminated by the end of a text or the end of a file.

Essentially, both a variable and a function are types of components. An RFET block of text is thus a
block of component definitions, the first of which is directly an RFET statement. This very first
statement is implicitly assigned to a special variable (or function as shall be seen) called main.

The RFET block of text, which is a collection of component definitions, is also called a container.
A container can be inserted inside another container as an inner-container to a parent-container.
This inner-container will be itself a component sitting besides variables and functions components.
As it is given a name, an inner-container can be called just like variables and functions are called.

4

 3 RFET Component
Beyond the concept of an RFET statement, such as for example “1+1”, is the concept of an RFET
component. A component can be a variable, a function or an inner-container. Every component has
a name. All components inside a containing container have unique names.

Consider the following example of two file contents which shows variables, functions, inner-
containers and parent-containers:

For file1.rfet
 1+1;
 name = "file1.rfet";

 \rfet{variable1;
 name = "container1";
 private variable1 = 10;
 enclosed variable2 = 20;
 protected variable3 = 30 + variable4;
 public variable4 = 40;
 }
 \rfet{variable2, variable4;
 type = "container1";
 name = "container2";
 public variable4 = 400;
 }

For file2.rfet
 2*f(3) ;
 f(x) = 4x ;

 type = "file1.rfet" ;
 name = "file2.rfet" ;

 \rfet{variable3 , "container2".variable3 ;
 type = "container1" ;
 name = "container3" ;
 replace variable4 = 4000 ;
 }

 3.1 As a variable and as a function
A component as a variable is defined in the form:

• variable_name = an_RFET_statement

A component as a function is defined in the form:
• function_name(parameter) = an_RFET_statement

The main difference between a variable and a function is that, since a variable does not take
parameters, it evaluates to a constant at parsing-time. In future, when sequential execution using
loops will be introduced, it will become possible to change the value of a variable at run-time.

5

 3.2 As a container – Parent vs Inner container
An RFET statement, such as for example “1+1”, is the definition of a single component (of some
containing container) called the main component. Beyond it there are variables and functions, each
of which may be thought of as a container having only its own main component.

An RFET container can be defined as a collection of components definitions, of which there is at
least the main component’s definition, and optionally the variables, functions and inner-containers.

An inner-container, as itself a component inside a containing container, is defined in the form:
• \rfet{ the_RFET_container_text }

The classical components are variables and functions. The collection of all components defined
within the same block forms a container. But this is yet considered to be itself a component (as an
inner-container) inside another container (its parent-container). At the top-most level of this
hierarchy is the Root container. The Root container has no variable nor function. It can only have
inner-containers, the later which are said to be top-level containers.

The example with file1.rfet and file2.rfet illustrates multiple inner-components and their parent-
containers. It should be observed that an RFET statement is always a main-component definition.

A file that defines an RFET container is called an RFET file. It is typically loaded as a top-level
container. It is recommended to not provide a name component in an RFET file. The file’s name
will be detected and used implicitly upon loading it. If however provided then this name component
must be equal to the file name.

A container can be called in the same way as a variable/function. The call will call the container’s
main-component, which is usually a variable, but which can be defined as a function by using:

• \rfet{\(parameter)= rest_of_the_RFET_container_text }

Parent Container vs Containing Container
It is rather easy to get confused with the difference between a parent container and a containing
container. It is all a matter of point of view. For a container C that looks at its inner-container I as
just another one of its contained components, C is the containing-container of I, and is the parent-
container to a variable/function found inside I. A variable/function is typically not thought of as
being an inner-container itself. But if it was, then its containing-container will be thought of as the
parent-container to its main component. Notice how the point of view changes. In summary, a
parent-container is parent to a containing-container, not to a component definition.

 3.3 Base vs Derived container – OOP Inheritance
The Object-Oriented Programming concept of inheritance is achieved using the type and name
components of an RFET container. Both must be provided as direct strings.

Essentially, a derived container can inherit from a base container by setting its type to be equal to
the name of that base container. The base container must be a sibling to the derived container. Also,
the base container must be defined before the derived container.

Containers are considered to be siblings if they have the same parent, or the parent of one inherits

6

from the parent of another. In the example RFET provided, the inner-containers inside the files are
all siblings because file2.rfet inherits from file1.rfet. container1 is a direct sibling to container2
because they have the same parent (i.e: file1.rfet), meanwhile, these two are indirect siblings to
container3 since container3 is inside a different parent, file2.rfet, which inherits from file1.rfet.

If the container type is not specified then the container does not inherit anything. If the container
name is equal to that of an indirect sibling (direct siblings cannot have the same name), and is
thereby overriding that indirect sibling, then the type must also be equal to that name.

 3.4 Component Access Control – OOP Encapsulation
The Object-Oriented Programming concept of encapsulation is achieved using a component access
control mechanism that controls who can access the inner component of a containing container.
This is done by preceding the component’s definition by one of the 4 access control identifiers:

1. private: accessible only by its containing container (this includes the inner-containers)
2. enclosed: accessible only by a container of same parent as its containing container
3. protected: accessible only by a container of same grand-parent as its containing container
4. public: accessible by anyone from anywhere

The example with file1.rfet and file2.rfet illustrates the component access control mechanism.
Containers within an RFET file have that file as their containing container. Therefore, a component
of one with enclosed access will be accessible to a sibling within the file. RFET files are typically
loaded as top-level containers, thereby sharing the Root container as their parent. Thus, inner-
containers from these files will share the same grand parent, thereby having protected access level.

The access level of an overridden component cannot be downgraded. That is if a derived container
overrides a component of a base container, then the access level of the new component definition
(found inside the derived container) must not be less than that found inside the base container.

Important:
1. When not specified, the access type is made protected by default.

2. Top-level containers are always set to have public access type.

3. The name component is always set to private access irrespective of what the user specifies.

4. Upon moving up the hierarchy, that is from inner to parent container, the access level does
not change. So the call "..|..|..|..".var will access var even if var has private access.

5. Upon moving down the hierarchy, that is from parent to inner container, the access level
increases by 1, and increases no more when it becomes public access. So a parent container
can access its inner-container component only if the later has at least enclosed access type.

A certain feature that acts like an access control, although it is technically not one, is the replace
component identifier. A component inside a derived container, is marked as replace provided that it
overrides an existing component found inside a base container and which it can access.

The purpose of the replace identifier is for a derived container to tell the target base container that
any usage of that replaced component must be made using the replaced component definition. In the

7

example RFET provided, container3 evaluates variable3 while haven replaced variable4. So the
result will be 30+4000 = 4030. It could not have used variable2 because it cannot access it.

The replace identifier behaves as an access control with access level 5, which is higher than public.
This is so that a component marked as replace cannot be overridden by a derived container into a
component not marked with as replace. This aim certainly can be achieved in a different way...!

 3.5 Calling a Component – Relative vs Absolute path
A useful feature is the ability to call a component inside an RFET statement. This is done using:

• "path".name
path is the path to the container that contains the component of name name.

A path that starts:
• with ‘|’ , implying an absolute path, starts the search from the Root container,

and with public access level.
• with ‘.’ , which denotes current, starts the search from the containing container,

and with private access level.
• with ‘..’, which denotes parent, starts the search from the parent container,

and with enclosed access level.
• else, the search defaults to starting at the parent container, again

and with enclosed access level.

In the example RFET provided, the call "container2".variable3 starts the search from the parent
container, which is the container with name “file2.rfet”. If the call was ".|container2".variable3
then the search would have started from the containing container, which has name “container3”.

Note that the call "path".main is always valid even for variables and functions, since every
component is a container containing at least this main-component. So even the call
"path|var|main|main".main is valid, and will resolve to the exact same as doing "path".var .

Note: the call "|filename".component will automatically load the RFET file if not already loaded.

 3.6 GLOBAL.RFET components
Software-defined variables and functions (such as sin(), cos() and pi) are characterised by the
property that they can be called from anywhere. There is no concept of inheritance involved.

In order to provide this same property to user-defined variables and functions, the concept of
globally accessible components is used. Basically, all global-scope user-defined components must
be defined inside a top-level container with name "GLOBAL.RFET".

For example, evaluating the below will make my_cos to become globally accessible for future use:
 0;
 name = "GLOBAL.RFET" ;
 my_cos(x) = cos(2*x) ;

One may consider it convenient to define globally accessible components inside an RFET file, then
load the file directly after launching the software.

8

 3.7 Evaluating the given example
The example RFET provided can be loaded by evaluating the first file content (which will result to
2, due to “1+1”) and then evaluating the second file content (which will result to 24). The RFET file
contents will load as top-level containers. Everything will load properly, except that there will be no
useful result to observe and play with! Below is a single container that takes in the two file contents
as inner-containers. Evaluating it will produce useful results to observe and play with.

".|file1.rfet".container1 ,
".|file1.rfet".container2 ,
".|file2.rfet".container3 ,
".|file2.rfet".main ,
".|file1.rfet".main ;

\rfet{
 1+1;
 name = "file1.rfet";

 \rfet{variable1;
 name = "container1";
 private variable1 = 10;
 enclosed variable2 = 20;
 protected variable3 = 30 + variable4;
 public variable4 = 40;
 }
 \rfet{variable2, variable4;
 type = "container1";
 name = "container2";
 public variable4 = 400;
 }
}
\rfet{
 2*f(3) ;
 f(x) = 4x ;

 type = "file1.rfet" ;
 name = "file2.rfet" ;

 \rfet{variable3 , "container2".variable3 ;
 type = "container1" ;
 name = "container3" ;
 replace variable4 = 4000 ;
 }
}
The result of evaluation is:
(10,
 (20, 400),
 (4030, 70),
 24,
 2)

9

 4 RFET Statement – syntax
The concept of an RFET component has been discussed. A variable or function is defined using an
RFET statement. The following sub-sections discuss the syntax of an RFET statement in details.

 4.1 Value-Structure
The value-structure defines the structure of the result of an expression after it has been evaluated.
Particularly:

• A value structure is represented using brackets, comma-separators and names.
◦ ((w,x,y),z) , {w,x,{y,z}}

• A single value is the most common value structure
◦ x , (x) , ((x))

• Vectors and matrices are special types of value structures
◦ (w,x,y,z)
◦ ((w,x), (y,z))

• The parameter to a function is defined using a value structure
The brackets () must be used.
◦ f((x,y),z) = x+y+z ;

• The brackets pairs {} and () are always interchangeable. The only exception is that () is used
when specifying a function parameter or a function call argument.

 4.2 Supported Operators
All the available operators are listed below. The order in which they are listed is also their
precedence order. That is what comes lastly is evaluated firstly. For example, because the operator
times * comes after the operator plus +, an expression such as 2+3*4 will evaluate as (2+(3*4)).
However some have equal precedence, such as times and divide. Do not rely on these: use brackets
wherever possible. The logical operators always evaluate to the integer value 1 or 0. Any single-
value operand is considered as true if it evaluates to non-zero and as false if it evaluates to zero (or
null). The concept of per-value operation is mentioned here but is explained later.

• open-close brackets () and { }
• brackets for subscripting []
• comma separator ,

• mix/combine .,
• Replacement :=
• Conditional ? :

• Logical OR or (does only per-value operation)
• Logical AND and (does only per-value operation)
• Logical NOT not

• Not equal != (or .!= for per-value operation)
• Equal == (or .== for per-value operation)
• Less than < (or .< for per-value operation)

10

• Greater than > (or .> for per-value operation)
• Less than or equal to <= (or .<= for per-value operation)
• Greater than or equal to >= (or .>= for per-value operation)

• Plus + (does only per-value operation)
• Minus - (does only per-value operation)
• Positive +
• Negative -
• Times * (or .* for per-value operation)
• Divide / (or ./ for per-value operation)
• To-power ^ (or .^ for per-value operation)
• modulo/remainder mod (does only per-value operation)

• Bitwise right shift >> (these do only per-value operations)
• Bitwise left shift <<
• Bitwise xor ^+
• Bitwise or |
• Bitwise and &
• Bitwise not ~

• DotProduct •
• factorial ! (also possible for a real number x, as gamma_function(x+1))
• Transpose ^T

 4.3 Software-Defined Math-Constants
• e constant e
• PI constant pi
• square root of -1 i

 4.4 Software-Defined Math-Functions
• e raised to power exp()
• logarithm base 10 log()
• logarithm base e ln()
• square root sqrt()
• ceiling ceil()
• floor floor()

• complex number magnitude cabs()
• complex number argument carg()
• complex number real part real()
• complex number imaginary part imag()
• complex number conjugate conj()
• complex number projection proj()

• trigonometric sine sin()
• trigonometric cosine cos()

11

• trigonometric tangent tan()
• trigonometric sine inverse asin()
• trigonometric cosine inverse acos()
• trigonometric tangent inverse atan()

• hyperbolic sine sinh()
• hyperbolic cosine cosh()
• hyperbolic tangent tanh()
• hyperbolic sine inverse asinh()
• hyperbolic cosine inverse acosh()
• hyperbolic tangent inverse atanh()

 4.5 Software-Defined Extra-Functions
• convert to string tostr()
• convert to number n/a
• convert to big number n/a
• convert to small number n/a

• minimum of all single-value elements min()
• maximum of all single-value elements max()
• summation of all single-value elements sum()
• count of all single-value elements length()
• size of a vector or matrix size() , the result is a 2-value vector: (rows, columns)

• get a vector in given range range(start, increment, stop)
e.g: vector(1,(4,2),50) = (1, 5, 7, 11, 13, 17, 19, 23, 25, 29, 31, 35, 37, 41, 43, 47, 49)

• get a vector of given length vector(start, increment, length)
e.g: vector(1,(4,2),17) = (1, 5, 7, 11, 13, 17, 19, 23, 25, 29, 31, 35, 37, 41, 43, 47, 49)

• get prime factorisation n/a
• get prime numbers in range n/a
• fullfloor fullfloor() , see http://rhyscitlema.com/algorithms/math-fullfloor-function

• try expression try(this, that, ..., catch)
Evaluate the expression this. If no error then return the result to the caller. Else evaluate the
expression that, if error then keep evaluating the next one up until the last one called catch.

• print expression print() , evaluate and print the result as an error message.

 4.6 Replacement Operator :=
Consider the following expression:

• 2 := current + 1
The replacement operator := evaluates what is on its right-hand-side (RHS), then replaces what is
on its left-hand-side (LHS) with the result. 'current' is a special variable associated with the
replacement operator. It is considered special only when there is an associated replacement
operator. It simply is the value of the current LHS. This causes the replacement to be an update.

12

http://rhyscitlema.com/algorithms/math-fullfloor-function/

 4.7 Conditional Operators “ ? : ”
The pair of conditional operators enables the use of conditional expressions; so it enables piece-
wise definition of variables and functions.

The syntax is:
• (condition) ? (on true) : (on false)

which is similar to:
• (on true) if (condition) or

(on false) otherwise

If 'condition' evaluates:
• to non-zero then (on true) is evaluated and (on false) is ignored
• to zero then (on true) is ignored and (on false) is evaluated

For example, consider the expression: 2 + ((5>6) ? 1 : -1)
The result is evaluated as 2 + (-1) because the expression (5>6) evaluates to zero → false.

The two operators have the same precedence level. So an expression like
• 2 + ((5>6) ? 1 : (5<6) ? 0 : -1)

which can be rewritten as
• 2 + ((5>6) ? 1 :

 (5<6) ? 0 : -1)
will evaluate as

• 2 + 1 if (5>6) or
 0 if (5<6) or
 -1 otherwise

 4.8 Per-value Operation
Some operators are described to do per-value operation. This means that the operator is applied to
each of the corresponding values of the value-structures of the operands, with the output being of
the same value-structure as the operands. Typically, the plus + operator does per-value operation.
Ex:

• (1, 2, 3) + 4 evaluates as (1+4, 2+4, 3+4)
• (1, 2, 3) + (4, 5, 6) evaluates as (1+4, 2+5, 3+6)

An operation that can only be performed on a single-value argument (mainly the Math functions)
will do a per-value operation when the operand is a value-structure like a vector or a matrix. Ex:

• sin(1, 2, 3) evaluates as (sin(1), sin(2), sin(3))

 4.9 String / Text Expression
A string (or a text expression in general) is anything found inside the pair of double quotes " ". It is
a type of value. The result of evaluating (2+3,"text") is (5, text).

Operations on text expressions are not yet possible.

13

 4.10 Commenting
The character # is used to comment a single line. That is everything from the character up to the
encounter of a newline is ignored, except that newline.

#{ and }# are used for block-commenting. That is everything from the specific starting point to the
specific stopping point is ignored. A }# only closes a matching #{. Therefore a block-comment can
contain another block-comment.

Priority is given to the first encountered commenting. That is for example: #...#{ or #...}# on a
single line, is a valid and single-line comment instance – the line is commented. Also #{...#...}# is a
valid and single block-comment instance – the block of text is commented.

 4.11 More about RFET
• By default a given vector, say (0,0,0) for example, is a column vector.

• A function parameter overrides any component (that is any user-defined variable or function
or container), which in turn overrides any software-defined variable or function.

• Recursive function call is possible.
e.g: “ fib(10); fib(n) = (n<=1) ? n : fib(n-1) + fib(n-2); ” = 55
e.g: “ gcd(35, 65); gcd(a, b) = (a==0) ? b : gcd(b mod a, a) ; ” = 5

• The value structure can change during evaluation.
e.g: “ f(1), f(2,3); f(x) = x+x; ” = (2, (4,6))

• An example given number in base 2 is 0b101.01 , in base 8 is 0o273.14 , in base 16 is
0xFEA.8D . A number can be given in an arbitrary base B as: tonum(w,x,B,y,z) , where
w,x,y,z are the digits in the interval [0, B), and B denotes the position of the decimal point.

• tostr(base, (value structure)) converts the value structure into a string in the given base.
e.g: tostr(2, (4,5,6)) = (0b100, 0b101, 0b110)

• Vectored indexing is possible, e.g: (6,7,8,9)[3,2,1] = (9,8,7).
Also, the index can change during evaluation. However for optimization to be possible, it is
extremely recommended for all elements of the indexed vector to be of the same value type.

• The combine/mix operator ., mixes 1st level values. e.g: (1,2) ., (4,5) = (1,2,4,5)

• Changes made to an inner-container reflects in all its ancestor containers.

14

 5 Graphical User Interface

 5.1 GUI on Android

15

 5.2 GUI on Windows

The user interface largely does text and file editing. Features that are common to most text file
editing software will not be discussed.

When an RFET file is loaded its content is displayed in the large user entry text field. This content
is then automatically evaluated and the result is displayed in the small result text field.

 5.3 Software-specific Menu features
• Menu → Edit → Go To:

◦ Repositions the caret. The provided entry is an RFET.

• Menu → Edit → Convert Text:
◦ These are features to choose whether to show a text in its normal character form, partly-

code-number form, or fully-code-number form. Refer to the next section for details.

• Menu → Tools → Evaluate:
◦ Does the same thing as the evaluate/equal '=' button.

 5.4 1st layer buttons and text field
The Evaluate (or Equal) button, denoted as '=', evaluates the content of the large user entry text
field as an RFET entry, then displays the result (of evaluating the main component) in the small
message text field. Evaluation can also be performed by using the key combination Shift+Enter.

16

The evaluation may commit further changes to the software depending on what has been evaluated.
For example if an RFET container of type User Interface Definition Text (UIDT) is evaluated, then
this container will be used to update the GUI of the software.

For example evaluating the below RFET will increase the height of the first layer of the GUI:
 0;
 type = "User_Interface_Definition_Text" ;
 name = "My Custom GUI" ;
 replace h1 = 100 ;

The Lock button is used to provide keyboard data to the evaluated RFET. Consider for example:
 0 := current + (Key_a or Key_A) - (Key_b or Key_B) ;

Then after selecting the Lock button, pressing the character ‘a’ or ‘A’ will increment the left-hand-
side of the replacement operator, meanwhile pressing the character ‘b’ or ‘B’ will decrement it.

 5.5 3rd layer buttons and text field
At the far right of the 3rd layer is a text field that evaluates the RFET: (TimerPeriod, time). Both are
software-defined variables. TimerPeriod is the periodic interval (in milliseconds), after which the
value of time is increased by TimerPeriod/1000 seconds.

The user entry is re-evaluated again each time the time variable is updated. Pressing the
Play/Resume button ‘►’ will start the timer. The button will then switch to the Pause button ‘||’, the
later which when pressed will stop the timer.

Pressing the Reverse/Forward/Backward button reverses the sign of the timer period. If
TimerPeriod is negative then the time variable will decrease on every update. Pressing the Lower
button ‘[]’ will reduce the timer interval by an amount specified in the User Interface Definition
Text (UIDT); by default it is 25 milliseconds. Pressing the Higher button ‘[]’ will increase the
timer interval in the same way. Note that for all these cases, as the value of time does not change,
the user entry is not re-evaluated.

The time text field can be updated directly by editing the text, then pressing the Done/Enter key.

 5.6 Hidden layers
There are more GUI features, such as the 2nd and 4th layers of buttons, which are only discussed in
the user guide for the Rhyscitlema Graph Plotter 3D software. They are hidden in the Rhyscitlema
Calculator software because of being rarely needed. However the functionalities of the 2nd layer
buttons are made available through Menu→Tools:

• Prev and Next container: are both used to scroll through all containers.
• Delete container: is used to delete the selected container (the

container name shows in the path text field).
• Clear container path: is used to clear the path text field, meaning no container is selected.

17

 6 Character vs Partly-Code-Number Text Display
This is a feature for file editing. It is especially useful to:

• Efficiently use the Find-Replace feature
• Provide a character through its code number
• Know the code number associated to a character

A character is stored in a computing device in the form of a number. The displayed character is just
the meaning given to that number. For example the character '0' is stored as the hexadecimal
number 30 (or 0x30), corresponding to the decimal number 3*16+0 = 48. This is the Code Number.

Here, a character with a 4-digit hexadecimal code number of XXXX is represented as \uXXXX. For
example the character '0' is represented as \u0030. This is described as the fully-code-number
representation.

In certain contexts such as software programming, some characters have alternative representations.
Particularly:

• The tab character is represented as \t (code number \u0009)
• The carriage-return character is represented as \r (code number \u000D)
• The line-feed or newline character is represented as \n (code number \u000A)

In regard to this feature of the user interface, a character that is said to be displayed as partly-code-
number is a character displayed in one of the following forms:

• The normal character display
◦ The '0' character will display as '0'
◦ The newline character will display a new line

• The alternative representation if it is available
◦ The '0' character will display as '0' (since it has no alternative representation)
◦ The newline character will display as \n (and there will be no actual new line)

• The fully-code-number representation
◦ The '0' character will display as \u0030
◦ The newline character will display as \u000A

The feature “Set Partly is Fully Code Number” is a feature to redefine the partly-code-number
representation of a character, so that using the feature “Character to Partly Code Number” will keep
most characters unchanged while showing the fully-code-number representation of the affected
characters only. To use this feature a text is first selected, which contains the targeted characters in
their fully-code-number representation.

These features can be applied to any selected text, including texts found in the find-replace dialog
boxes – and yes this, is the original reason why these features were developed in the first place!

18

 7 Few Simple Examples

 7.1 Basic Example
RFET:

 123 * β * ƒ(1,2,3) ;

 β = 2 ; ƒ(x,y,z) = y/(x+z) ;

Result of evaluation:
123

 7.2 Circles and Spheres
RFET:
 Result ;

 r = 1 ; # radius
 C = 2*π*r ; # Circumference of a circle
 A = π*r^2 ; # Area of a circle
 S = 4*π*r^2 ; # Surface of a sphere
 V = (4/3)*π*r^3 ; # Volume of a sphere
 π = pi ; # 'pi' is software-defined

 Result = (C , A) , (S , V) ;

Result of evaluation:
((6.283, 3.142),
 (12.566, 4.189))

 7.3 Quadratic Equation
RFET:
 x1 , x2 , f(x1) , f(x2) ;

 x1 = (-b + sqrt(b^2 - 4*a*c)) / (2a) ;

 x2 = (-b - sqrt(b^2 - 4*a*c)) / (2a) ;

 f(x) = a x^2 + b x + c ;

 a = 2; b = -2; c = 1;

 # Solving for x where f(x) = 0
 # Change the coefficients a, b and c

Result of evaluation:
(0.5+0.5i, 0.5-0.5i, 0, 0)

19

	1 General Information
	2 Rhyscitlema Function Expression Text (RFET)
	3 RFET Component
	3.1 As a variable and as a function
	3.2 As a container – Parent vs Inner container
	3.3 Base vs Derived container – OOP Inheritance
	3.4 Component Access Control – OOP Encapsulation
	3.5 Calling a Component – Relative vs Absolute path
	3.6 GLOBAL.RFET components
	3.7 Evaluating the given example

	4 RFET Statement – syntax
	4.1 Value-Structure
	4.2 Supported Operators
	4.3 Software-Defined Math-Constants
	4.4 Software-Defined Math-Functions
	4.5 Software-Defined Extra-Functions
	4.6 Replacement Operator :=
	4.7 Conditional Operators “ ? : ”
	4.8 Per-value Operation
	4.9 String / Text Expression
	4.10 Commenting
	4.11 More about RFET

	5 Graphical User Interface
	5.1 GUI on Android
	5.2 GUI on Windows
	5.3 Software-specific Menu features
	5.4 1st layer buttons and text field
	5.5 3rd layer buttons and text field
	5.6 Hidden layers

	6 Character vs Partly-Code-Number Text Display
	7 Few Simple Examples
	7.1 Basic Example
	7.2 Circles and Spheres
	7.3 Quadratic Equation

