Version History

October 15, 2013

- added TalkFX for other ROCCAT Products
September 26, 2013

- initial version

*contact: support@roccat.org

Contents
Introduction
1 TalkFX enabled Hardware 2
1.1 TalKFX Z0Nes o e e 2
1.2 TalkFX Protocol INfo e e e 2
2 Ryos Capabilities 3
2.1 Ryos Hardware 3
2.2 Ryos Protocol 3
2.3 Ryos LED Functionality 3
3 SDK Usage 5
3.1 BasSICS . .. e 5
Initializing TalkFX Connection e Colour Control e Ryos specific TalkFX Connection e Taking Control of the Ryos LEDs e Get the Ryos Lights
Blinking
3.2 Advanced RyOs 7
Best Performance
3.3 Unobstrusive Integration e e 8
3.4 Example Integration 8
Preparation e Placing Init Code ¢ Show Ammo and Health e Blink on Damage e Reflection
3.5 RYOS CLI . . o 10
4 Effect Design Considerations "
5 APPENDIX: Roccat Talk APl header 13

Introduction

This documentation explains how to access the LEDs of the Ryos MK PRO keyboard from within your program. It also covers the
TalkFX functionality of other ROCCAT devices, which enables access to the RGB LEDs. Furthermore it covers a quick style-guide
with recommendations for adding support for the Ryos and TalkFX in general into your Application.

Please read this document carefully, since using the SDK incorrectly, may cause unexpected (and unneccessary) slowdowns
in your application.

We tried to keep the API slim and functional to suit all needs that could arise, if however you find that the API is missing
a key feature, do not hesitate to contact us at support@roccat.org.

1. TalkFX enabled Hardware

Many Roccat devices are shipped with integrated RGB LED lighting, this includes currently the Kone[+], KoneXTD, Kone Pure,
Kone Pure optical mice and the Isku FX keyboard.

With this SDK you can modify the colour and brightness of these LEDs in your software.

There is no need to worry about individual TalkFX capable products, all are connected with the Roccat Talk software on a single
“colour-bus”. So there is just a one method in the SDK you need to use for changing the colour of all connected TalkFX devices:

void Set_LED_RGB (BYTE bZone, BYTE bEffect, BYTE bSpeed ,BYTE colorR, BYTE colorG, BYTE colorB);

You can call this method whenever you like inside your code, provided you have established connection to the TalkFX software in
the background during your application startup.

In TalkFX we differenciate between two “zones” you can access through the API, Ambient and Event.

Ambient represents slow changing atmospheric lighting, for example a Ambilight-style lighting effect. Or a slow green pulse when
the player is poisoned in an adventure game.

Event represents short atmospheric blinks. For example a red flash, when being struck by an enemy, or a white flash when a
checkpoint is reached.

Currently there is no ROCCAT device at retail that fully differentiates between these two effect areas. So if you are worried about
compatibility then concentrate on the Event zone. However Ambient-zone support for already released ROCCAT hardware and
upcoming ROCCAT hardware is in the works, and can be expected soon. Hence encourage you to implement effects for both zones
so you can guarantee early support for cool lightFX in your software.

To communicate with the current TalkFX software, the native Windows Window-Message-Protocol is used in the background. Each
change of the light configuration requires a window message to be sent.

TalkFX and RYOS // MK PRO SDK Doc v0.2 2/13

2. Ryos Capabilities

In this section, we’ll give you a quick explanation, on what is possible with the Ryos. Please note: the Ryos MK PRO is not able to
change it’s light colour or intensity by software.

Inside the Ryos we used CherryMX switches with LED slots for single coloured LEDs.
The LEDs can be turned on and off by software, using this SDK.
Due to hardware and protocol limitations, the approximate latency for on/off events is currently about 20 to 30ms.

To use any of the features from this SDK, the user needs to have the TalkFX software running in the background. TalkFX is the
direct hardware communication interface used by most ROCCAT products.

Though in theory you could directly communicate with TalkFX directly from your application, we provide you with a much easier
and less complicated way of doing so with this SDK.

When using the SDK you should think of the Ryos as a simple (monochrome) bitmap display. Each key is adressed by an ID
depending on it’s position.

Starting from the top left corner the keys are numbered sequentially, so [Esc] is 0, [F1] is 2, [F2] is 3 and so on up to 110.

You can tell each key (more precisely: the LED inside the key’s CherryMX switch) if it should be turned on or turned off. During
SDK mode (more on that later), the keyboard behaves like a state-machine. This means it will do nothing on it’s own and only
change the light pattern when you tell it to.

This means a single command to light up - for example the [F10] key - can be send once during your program’s runtime
and [F10] will keep glowing until you send it the signal to turn itself off (or you deactivate the SDK mode).

Figure 1. LED numbering on US-keylayout

TalkFX and RYOS // MK PRO SDK Doc v0.2 3/13

If you prefer a frame-based model, you can also buffer the light data for all keys inside your program and send the whole data
each time you want the lights updated. (We suggest you use the frame-based model, if you want to change the lights multiple times
per second).

Note: Since keyboard layouts differ slightly across country zones, keep in mind that some keys might have different posi-
tions, or might not be present at all on certain layouts.

However the ID always corresponds to the physical switch on that particular physical location. So if you want to light up [Y], it will
be 46 on an US keyboard, but on a german DE keyboard on that location will be [Z] and that key will light up.

1] o | 1) 1 o o e
1SRRI/ 15 1 3 1 € 1
= e e e
|28 2] 1) B 1 1/ 91 1)
[JE=11 - LA]

Figure 2. LED numbering on DE-keylayout

TalkFX and RYOS // MK PRO SDK Doc v0.2 4/13

3. SDK Usage

The TalkFX SDK comes with a set of three files:

Roccat_Talk.h The SDK header file. You always need to include this.
Roccat Talk SDK.dll The SDK DLL. If you prefer dynamic linking.

Roccat Talk SDK.lib The SDK Library file, for static linking.

There are more files in the SDK-Package, but only these three are required for implementation.

Simply include the header where you need it, and decide which library to you want to link against.
Keep in mind, that if you link static, any updates made to the SDK will have to be recompiled in your executable each time. If you
link dynamic, you can most likely just replace the DLL without the need to recompile.

The SDK is designed to be used inside a C++ application, if your application is written in another programming language
we suggest using the C/C++ native code binding capabilites of that particular language.

For example: JNI in Java, P/Invoke or Dlllmport in C#.NET, ctypes in Python or Win32API in Ruby. The SDK is not opti-
mized for using it in non-C++ applications, and we currently do not support those officially. But if you manage to use the SDK in

one of the languages above, or even another one, we would love to hear from you, so we can improve this documentation further.

If your programming language is not capable to include native DLLs due to language restrictions you can try using our CLI
interface!.

3.1.1 Initializing TalkFX Connection
By just initiating an instance of CROCCAT _Talk you have the required connection to the TalkFX software. No further connection
required.

3.1.2 Colour Control

As already stated above: once you have created an instance of CROCCAT_Talk, you can start sending RGB codes to all Roccat
devices connected to the current machine.

void Set_LED_RGB (BYTE bZone, BYTE bEffect, BYTE bSpeed ,BYTE colorR, BYTE colorG, BYTE colorB);

bZone The effect zones are Ambient (0x00) and Event (0x01). Use Ambient when you have a low rate of updates. Use Event for
fast paced updates. (When in doubt: use Event (0x01)).

bEffect Off (0x00), On (0x01), Blinking (0x02), Breathing (0x03), Heartbeat (0x04).
bSpeed no Change (0x00), Slow (0x01), Normal (0x02), Fast (0x03).

colorR simple RED value 0x00 to OxFF.

colorG simple GREEN value 0x00 to OxFF.

colorB simple BLUE value 0x00 to OxFF.

Please remember to turn off the SDK mode when your application exits. To restore the user set colour to the TalkFX devices
just use this method:

void RestoreLEDRGB () ;

I At the time this manual was written, the CLI interface was not available, so no further documentation on that topic is currently available.

TalkFX and RYOS // MK PRO SDK Doc v0.2 5/13

3.1.3 Ryos specific TalkFX Connection

Before you can send any messages to the Ryos Keyboard, you first need to ensure that TalkFX is running and that a Ryos MK PRO
is connected.

You can do so by simply doing this:

#include <stdio.h>

/+* the following is neccessary if windows.h is not already included =/
#ifndef WIN32_ LEAN_AND_-MEAN

#define WIN32_.LEAN_AND_MEAN

#endif

#include <Windows.h>

#include "ROCCAT_Talk.h”

int main(int argc, charsx argv) {
CROCCAT_Talk roccat;
/* Try to connect to the Ryos =/
if (lroccat.init_ryos_talk()) {
printf (”Error: Could not connect to Ryos Keyboard!\n”);
} oelse {

printf(”Success: Connection established!\n”);

3.1.4 Taking Control of the Ryos LEDs

Since the user might use the built-in LED control of the Ryos or a custom script for light effects, you need to take control of the
LEDs before you can start switching them on and off.

You can do so by adding this to your code:

#include <stdio.h>
#include “ROCCAT_Talk.h”

/+* the following is neccessary if windows.h is not already included =/
#ifndef WIN32_LEAN_AND_MEAN

#define WIN32_LEAN_AND_MEAN

#endif

#include <Windows.h>

int main(int argc, charsx argv) {
CROCCAT_Talk roccat;
/* Try to connect to the Ryos =/
if (!roccat.init_ryos_talk ()) {
printf (”Error: Could not connect to Ryos Keyboard!\n”);

} oelse {
printf(”Success: Connection established!\n”);
/% Activate SDK mode x/
roccat.set_ryos_kb_SDKmode (TRUE) ;

/*« ... insert LED Control code here ... x/

/+* Give LED control back to system =/
roccat.set_ryos_kb_SDKmode (FALSE) ;

IMPORTANT: Always remember to turn off the SDK mode when your application exits, otherwise the LEDs will keep their last
state indefinitely.

3.1.5 Get the Ryos Lights Blinking
Once you have enabled the connection to TalkFX and the SDK mode, you can start to control the lights.

#include <stdio .h>
#include “ROCCAT_Talk.h”

/+ the following is neccessary if windows.h is not already included x*/

TalkFX and RYOS // MK PRO SDK Doc v0.2

#ifndef WIN32_LEAN_AND_MEAN
#define WIN32_.LEAN_AND_MEAN
#endif

#include <Windows.h>

int main(int argc, charsx argv) {
CROCCAT_Talk roccat;
/* Try to connect to the Ryos =/
if (!roccat.init_ryos_talk()) {
printf (7"Error: Could not connect to Ryos Keyboard!\n”);
} else {
printf (7 Success: Connection established!\n”);
/* Activate SDK mode x/
roccat.set_ryos_kb_SDKmode (TRUE) ;

/* Ensure all LEDS off x/
roccat.turn_off_all _LEDS ();

/* Turn on a single LED x/
roccat.set_ LED_on(0); /« [Esc| =/

/* Send a whole frame =x/

BYTE frame_data[110];

memset (frame_data, 0, 110); /« ensure 0 on all fields =/
frame_data[l] = 1; /« [F1] /

frame_data[3] = 1; /x [F3] /

frame_data[5] = 1; /+ [F5] x/

frame_data[7] = 1; /+ [F7] =%/

frame_data[11] = 1; /+ [FI1] =/
roccat.Set_all _ LEDS (frame_data); /+ send frame to keyboard =/
/+* Give LED control back to system =/

roccat.set_-ryos_kb_SDKmode (FALSE) ;

The SDK provides you with these methods for LED control:
turn_on_all LEDS() simply sets all LEDs to ON
turn_off_all LEDS() simply sets all LEDs to OFF

set LED_on(BYTE pos) sets a single LED at pos ON
set_LED_off(BYTE pos) sets a single LED at pos OFF
Set_all LEDS(BYTE *pos) sets status for all 110 LEDs?2

All_Key_Blinking(int dt, int count) Lets the whole keyboard blink at ’dt’ interval (in ms) for ’count’ times

In the previous section you learned how easy it is to access the LED control of the ROCCAT Ryos MK PRO. In this section we give
you additional advice on how to best utilize the SDK and how to easily integrate Ryos support in your existing applications.

3.2.1 Best Performance
Although we offer you some functions for convenience, like set_LED_on() and All_Key_Blinking(). You should only use those for
debugging or for very simple use cases.

Use primarily Set_all LEDS(BYTE *pos), since with this method you can change the state of all LEDs at once with a sin-
gle call. Every time you send an update to the Ryos a Window-Message is sent to TalkFX, this can affect performance when you
send many of those updates (by setting single LEDs) in a single frame.

Also remember that the Ryos can only achieve slightly more than 30-40fps update rate. When you send updates faster than
the Ryos can handle, those events will get buffered and you will experience visual lag on the keyboard.

It is vital to limit LED updates for optimal visual performance. So when using for example your topmost render_screen() method,
keep in mind that you cannot always safely assume that the framerate is limited by vertical retrace. (Even if you try to enforce
vertical retrace, a user might have turned it off in the graphics driver).

2 Attention: not all Keyboards have identical key layout, for example US and DE keymaps differ slightly. The SDK should map LED positions correctly, but if
you set an LED to on that is not present on certain keyboard layouts, the user simply wont notice.

TalkFX and RYOS // MK PRO SDK Doc v0.2

A wrapper class that keeps a static BYTE* framedata variable can help you to organize the updates. Let only that class send updates
to the Ryos via the SDK. That way you can control when to send the updates, for example once every 2 frames (at 60Hz framerate).
That way all updates to the framedata you perform from within other parts of your code are kept just inside your own application’s
memory until they are finally sent out by the wrapper.

Please note that we currently have no results for using the SDK in a multithreaded application. So do not assume the SDK
to be thread safe and use all API calls from a single thread to avoid problems (for example your primary rendering thread).

We at ROCCAT would love to hear that all your users have a Ryos MK PRO and all other Roccat TalkFX devices at home, but it is
more likely that some users wont have a ROCCAT device at home.
Even ROCCAT device owners might not want your cool lightshow to be active all the time.

Use your wrapper-class to check if your light control should be on or off - a few if-statements should not pose an impact
on performance.
So please add an option to your application settings to let the user turn the SDK mode on or off.

In this section we show you a small example on how we integrated the TalkFX SDK in a real game. We chose Cube by Wouter van
Oortmerssen as our example, since it is open source and has nice, small code.

We are only describing the sourcecode changes we made, and we assume that you are familiar with whatever C++ compiler
you are using.

3.4.1 Preparation

Make sure you can compile Cube from it’s original codebase without any hassle.

Place ROCCAT _Talk.h into the include folder of the project.

Place Roccat Talk SDL.lib into the lib folder of the project.

Ensure the lib is properly recognized by your compiler and is linked to the final executable. (We used static linking in this example,
you can go for dynamic if you want to.)

3.4.2 Placing Init Code
In cube.h add:

/+ the following is neccessary since windows.h is not already included x*/
#ifndef WIN32_LEAN_AND_MEAN

#define WIN32_LEAN_AND_MEAN

#endif

#include <Windows.h>

#include “ROCCAT_.Talk.h”

And in main.c add:

int main(int argc, char skxargv)

{
//if (CROCCAT_Talk::s ROCCATTALK == NULL) CROCCAT_Talk::s_ ROCCATTALK = new CROCCAT_Talk() ;
CROCCAT_Talk * mROCCATTALK = new CROCCAT_-Talk() ;
if (!mROCCATTALK—init_ryos_talk ()) return —1;

m_ROCCATTALK—>set_ryos_kb_SDKmode (TRUE) ;
mROCCATTALK—>Al1l_Key_Blinking (0,9);

bool dedicated = false;
int fs = SDL.FULLSCREEN, par = 0, uprate = 0, maxcl = 4;
char xsdesc = 77, *ip = 77, xmaster = NULL, xpasswd = ”7;

Note that you might need to add:
#pragma comment(lib , "Roccat Talk SDK.lib™)

TalkFX and RYOS // MK PRO SDK Doc v0.2

in the include section of main.c, depending on your compiler of choice.
And don’t forget the cleanup code, so add:

void cleanup (char smsg) /! single program exit point;

CROCCAT_Talk * mROCCATTALK = new CROCCAT_Talk() ;
m_ROCCATTALK—>set_ryos_kb_SDKmode (FALSE) ;

as well.

The SDK uses static variables for TalkFX communication, so you can either go for a single m_ROCCATTALK instance all
the way through your code, or just initiate an instance whenever you need one.

This just just to give you an example on what is possible - the codebase of Cube is very compact compared to classic code styles,
for production code we suggest to integrate the SDK in a more organized fashion to improve maintainablity.

That’s all you need for init and cleanup, next section features integration of the actual effects.

3.4.3 Show Ammo and Health
All you need to add is this code to renderextras.cpp:

CROCCAT_Talk xhud_talk = new CROCCAT_Talk () ;
void gl_-drawhud(int w, int h, int curfps, int nquads, int curvert, bool underwater)
{

// hud_talk —>init_ryos_talk ();

// HERE BE HUD

/" player health

int r_player_health = playerl —>health/10;

static BYTE frame[110];

memset (frame ,0,110); // set all LEDS off

for (int i=0; i<r-player_health; ++i) {

frame[1+i]=1;

}

for (int i=17; i< (playerl —>ammo[playerl —>gunselect])+17 ; ++i) {
frame[i]=1;

}

static int frameskipper = 0;

if (frameskipper%3 == 0)hud_talk —>Set_all_LEDS (frame);
frameskipper ++;

As you can see, we used a global CROCCAT _Talk instance here, you might want to do it a little more elegantly, but this will
also work.
We assumed vertical retrace to be on, so at 60fps we only send updates to the keyboard every 3 frames. This is only a 48ms lag
which is okay for a blinking keyboard.

3.4.4 Blink on Damage
To let the Ryos blink at each hit the player takes, you can simply insert this into weapon.cpp:

CROCCAT_ Talk xdamage_talk = new CROCCAT_ Talk () ;
void hit(int target, int damage, dynent xd, dynent xat)
{
if (d==playerl) {
selfdamage (damage, at==playerl ? —1 : -2, at);
damage_talk—>All_Key_Blinking (1,3);

else if(d—>monsterstate) monsterpain(d, damage, at);
else {
addmsg (1, 4, SVDAMAGE, target, damage, d—>lifesequence); playsound(S_-PAINI+rnd(5), &I—>0);
damage_talk—>All_Key_Blinking (1,3);
+s
particle_splash (3, damage, 1000, d—o0);
demodamage (damage , d—0);

TalkFX and RYOS // MK PRO SDK Doc v0.2

Note that we used the All_Key_Blinking() method here, which is considered harmful to application performance and timing, but
it is an easy way to test out how effects are percieved by the player.

So that’s it! All you need to insert for some nice FX with Ryos while playing Cube.

3.4.5 Reflection

Although the Cube sourcecode might differ a lot from your own personal application, we think it is safe to assume, that somewhere
in your code (at least if your application is a computer game) equivalent methods to the ones discussed above are found.

Those are:

e application startup code (int main())

e application shutdown code (void cleanup())

e a method for HUD rendering (void gl_drawhud())
e a method for damage calucation (void hit())

The Ryos is not bound to the buffer swap of your rendering code, so you can basically insert LED code anywhere in your sourcecode.
We highly recommend to make it a little more organized.

Also consider to add #ifdef statements around all Ryos SDK relevant code, so that you can check if any impact on applica-
tion performance is generated by the SDK’s methods you call.
If you think you are using the SDK correctly and still experience strong performance issues, do not hesitate to contact us.

The Ryos CLI is currently in development and should be released soon.

TalkFX and RYOS // MK PRO SDK Doc v0.2 10/13

4. Effect Design Considerations

Figure 3. How gamer’s will percieve the effects on the Ryos

When planning your desired effects for the Ryos, then try to think from the gamer’s perspective. The keyboard will only be
the in periphal field of vision, so if you show tiny effects, the gamer will most likely not notice them. Of course you are free to
encourage the gamer to look at the keyboard during gameplay by design.

If you are not planning to add a true new gameplay element to your game with the Ryos, then stick with atmospheric effects, like
flashing or a full-scale lifebar. Maybe even some kind of where does the damage come from effects.

TalkFX and RYOS // MK PRO SDK Doc v0.2 1113

Acknowledgments

Thanks go out to Wouter van Oortmerssen for writing the really nice Cubeengine, which we used here for our practical example.
You can find Cube (along with sources) here: http://cubeengine.com/cube.php4

TalkFX and RYOS // MK PRO SDK Doc v0.2 12/13

5. APPENDIX: Roccat Talk APl header

As we are programmers ourselves, we know that sourcecode is often the best and quickest documentation and a good way to get a
feeling of how much work” implementing an API is.
So we included the only header file you need to #include right here:

/+ ROCCAT.

Talk.h x/

#pragma once

class CROCCAT_ Talk

{

public:

/+ init
BOOL

/% take
BOOL

/* basi
void
void

/% turn
void
void

/% send
void

CROCCAT_Talk(void); /x default constructor =/
“CROCCAT_Talk(void); /% default destructor =/

iate connection to Ryos MK PRO keyboard and check if present =x/
init_-ryos_talk (void);

control of a connected Ryos MK PRO keyboard x/

set_ryos_kb_SDKmode (BOOL state);

¢ Ryos MK PRO LED control methods =/
turn_off_all_LEDS (void);
turn_on_all _LEDS (void);

on/off a single LED at specified position x/
set_LED_on (BYTE ucPos) ;
set_LED _off (BYTE ucPos);

a whole array as a frame to the keyboard (manipulate mulitple LEDS) %/
Set_all_LEDS (BYTE *ucLED);

/* simple blinking effect on Ryos MK PRO =x/

void All_Key_Blinking (int DelayTime, int LoopTimes);

/+ TALK FX method — set specified zone to effect and RGB colour x/

void Set_LED_RGB (BYTE bZone, BYTE bEffect, BYTE bSpeed ,BYTE colorR, BYTE colorG, BYTE colorB);
/+* TALK FX method restore user LED colour at end of program =/

void RestoreLEDRGB () ;

protected :
HWND
UINT

BYTE

m_hwnd ;
m_uiMsgIDDiscover;

GetKeyNo (BYTE cMapKey) ;

static HWND m_hTalkWnd ;

static
static
UINT
static
static

UINT m_uiMsgIDAttach, m_uiMsgIDControl;
UINT m_uiMsgIDAttachForFX, m_uiMsgIDControlForFX;
m_uiMsgIDDiscoverForFX;
BYTE bLedOnOff[15];
LRESULT CALLBACK SDKWndProc (HWND hWnd, UINT message, WPARAM wParam, LPARAM [Param);

TalkFX and RYOS // MK PRO SDK Doc v0.2 13/13

