
ANSI/ISO 9899-1990
(revision and redesignation of

ANSI X3.159-1989)

American National Standard

for Programming Languages –
C

Secretariat

Computer and Business Equipment Manufacturers Association

Approved August 3, 1992

American National Standards Institute, Inc.

2

Contents
Foreword . 8

Introduction . 10

1 Scope . 11

2 Normative references . 11

3 Definitions and conventions . 12

4 Compliance . 14

5 Environment . 14
5.1 Conceptual models . 14

5.1.1 Translation environment . 14
5.1.2 Execution environments . 16

5.2 Environmental considerations . 20
5.2.1 Character sets . 20
5.2.2 Character display semantics . 22
5.2.3 Signals and interrupts . 22
5.2.4 Environmental limits . 22

6 Language . 29
6.1 Lexical elements . 29

6.1.1 Keywords . 30
6.1.2 Identifiers . 30
6.1.3 Constants . 37
6.1.4 String literals . 42
6.1.5 Operators . 43
6.1.6 Punctuators . 44
6.1.7 Header names . 44
6.1.8 Preprocessing numbers . 45
6.1.9 Comments . 45

6.2 Conversions . 46
6.2.1 Arithmetic operands . 46
6.2.2 Other operands . 48

6.3 Expressions . 50
6.3.1 Primary expressions . 51
6.3.2 Postfix operators . 51
6.3.3 Unary operators . 55
6.3.4 Cast operators . 58
6.3.5 Multiplicative operators . 58
6.3.6 Additive operators . 59
6.3.7 Bitwise shift operators . 60
6.3.8 Relational operators . 61
6.3.9 Equality operators . 62
6.3.10 Bitwise AND operator . 63
6.3.11 Bitwise exclusive OR operator . 63
6.3.12 Bitwise inclusive OR operator . 63

3

6.3.13 Logical AND operator . 64
6.3.14 Logical OR operator . 64
6.3.15 Conditional operator . 64
6.3.16 Assignment operators . 66
6.3.17 Comma operator . 67

6.4 Constant expressions . 68
6.5 Declarations . 70

6.5.1 Storage-class specifiers . 71
6.5.2 Type specifiers . 71
6.5.3 Type qualifiers . 77
6.5.4 Declarators . 78
6.5.5 Type names . 82
6.5.6 Type definitions . 83
6.5.7 Initialization . 85

6.6 Statements . 89
6.6.1 Labeled statements . 89
6.6.2 Compound statement, or block . 89
6.6.3 Expression and null statements . 90
6.6.4 Selection statements . 91
6.6.5 Iteration statements . 92
6.6.6 Jump statements . 93

6.7 External definitions . 96
6.7.1 Function definitions . 96
6.7.2 External object definitions . 98

6.8 Preprocessing directives . 100
6.8.1 Conditional inclusion . 101
6.8.2 Source file inclusion . 103
6.8.3 Macro replacement . 104
6.8.4 Line control . 108
6.8.5 Error directive . 109
6.8.6 Pragma directive . 109
6.8.7 Null directive . 109
6.8.8 Predefined macro names . 109

6.9 Future language directions . 111
6.9.1 External names . 111
6.9.2 Character escape sequences . 111
6.9.3 Storage-class specifiers . 111
6.9.4 Function declarators . 111
6.9.5 Function definitions . 111
6.9.6 Array parameters . 111

7 Library . 112
7.1 Introduction . 112

7.1.1 Definitions of terms . 112
7.1.2 Standard headers . 112
7.1.3 Reserved identifiers . 113
7.1.4 Errors <errno.h> . 113

4

7.1.5 Limits <float.h> and <limits.h> . 114
7.1.6 Common definitions <stddef.h> . 114
7.1.7 Use of library functions . 115

7.2 Diagnostics <assert.h> . 117
7.2.1 Program diagnostics . 117

7.3 Character handling <ctype.h> . 118
7.3.1 Character testing functions . 118
7.3.2 Character case mapping functions . 120

7.4 Localization <locale.h> . 122
7.4.1 Locale control . 123
7.4.2 Numeric formatting convention inquiry . 124

7.5 Mathematics <math.h> . 127
7.5.1 Treatment of error conditions . 127
7.5.2 Trigonometric functions . 127
7.5.3 Hyperbolic functions . 129
7.5.4 Exponential and logarithmic functions . 130
7.5.5 Power functions . 131
7.5.6 Nearest integer, absolute value, and remainder functions 132

7.6 Nonlocal jumps <setjmp.h> . 134
7.6.1 Save calling environment . 134
7.6.2 Restore calling environment . 135

7.7 Signal handling <signal.h> . 136
7.7.1 Specify signal handling . 136
7.7.2 Send signal . 137

7.8 Variable arguments <stdarg.h> . 138
7.8.1 Variable argument list access macros . 138

7.9 Input/output <stdio.h> . 141
7.9.1 Introduction . 141
7.9.2 Streams . 142
7.9.3 Files . 143
7.9.4 Operations on files . 144
7.9.5 File access functions . 146
7.9.6 Formatted input/output functions . 149
7.9.7 Character input/output functions . 159
7.9.8 Direct input/output functions . 162
7.9.9 File positioning functions . 163
7.9.10 Error-handling functions . 165

7.10 General utilities <stdlib.h> . 167
7.10.1 String conversion functions . 167
7.10.2 Pseudo-random sequence generation functions 171
7.10.3 Memory management functions . 172
7.10.4 Communication with the environment . 174
7.10.5 Searching and sorting utilities . 176
7.10.6 Integer arithmetic functions . 177
7.10.7 Multibyte character functions . 178
7.10.8 Multibyte string functions . 179

5

7.11 String handling <string.h> . 181
7.11.1 String function conventions . 181
7.11.2 Copying functions . 181
7.11.3 Concatenation functions . 182
7.11.4 Comparison functions . 183
7.11.5 Search functions . 185
7.11.6 Miscellaneous functions . 188

7.12 Date and time <time.h> . 189
7.12.1 Components of time . 189
7.12.2 Time manipulation functions . 189
7.12.3 Time conversion functions . 191

7.13 Future library directions . 195
7.13.1 Errors <errno.h> . 195
7.13.2 Character handling <ctype.h> . 195
7.13.3 Localization <locale.h> . 195
7.13.4 Mathematics <math.h> . 195
7.13.5 Signal handling <signal.h> . 195
7.13.6 Input/output <stdio.h> . 195
7.13.7 General utilities <stdlib.h> . 195
7.13.8 String handling <string.h> . 195

Annexes

A Bibliography . 196

B Language syntax summary . 197
B.1 Lexical grammar . 197
B.2 Phrase structure grammar . 202
B.3 Preprocessing directives . 207

C Sequence points . 209

D Library summary . 210
D.1 Errors <errno.h> . 210
D.2 Common definitions <stddef.h> . 210
D.3 Diagnostics <assert.h> . 210
D.4 Character handling <ctype.h> . 210
D.5 Localization <locale.h> . 210
D.6 Mathematics <math.h> . 211
D.7 Nonlocal jumps <setjmp.h> . 211
D.8 Signal handling <signal.h> . 211
D.9 Variable arguments <stdarg.h> . 212
D.10 Input/output <stdio.h> . 212
D.11 General utilities <stdlib.h> . 213
D.12 String handling <string.h> . 214
D.13 Date and time <time.h> . 215

E Implementation limits . 216

F Common warnings . 218

6

G Portability issues . 219
G.1 Unspecified behavior . 210
G.2 Undefined behavior . 220
G.3 Implementation-defined behavior . 225
G.4 Locale-specific behavior . 228
G.5 Common extensions . 228

Index . 231

7

Foreword
(This foreword is not part of American National Standard ANSI/ISO 9899-1990. This docu-

ment is identical to ISO/IEC 9899:1990 and the following four paragraphs are the original foreword
as it appeared in that document.)

ISO (the International Organization for Standardization) and IEC (the International Elec-
trotechnical Comission) form the specialized system for worldwide standardization. National bod-
ies that are members of ISO and IEC participate in the development of International Standards
through technical committees established by the respective organization to deal with particular
fields of technical activity. ISO and IEC technicall committees collaborate in fields of mutual in-
terest. Other international organizations, govermental and non-govermental, in liaison with ISO
and IEC, also take part in the work.

In the field of information technology, ISO and IEC have established a joint technical committee,
ISO/IEC JTC 1. Draft International Standards adopted by the joint technical committee are
circulated to national bodies for voting. Publication as an International Standard requires approval
by at least 75% of the national bodies casting a vote.

International Standard ISO/IEC 9899 was prepared by Joint Technical Committee ISO/IEC
JTC 1, Information Technology.

Annexes A, B, C, D, E, F and G are for information only.

Requests for interpretation, suggestions for improvment or addenda, or defect reports are wel-
come. They should be sent to the X3 Secretariat, Computer and Business Equipment Manufac-
turers Association, 1250 Eye Street, NW, Suite 200, Washington, DC 20005.

This standard was processed and approved for submittal to ANSI by Accredited Standards
Committee on Information Processing Systems, X3. Committee approval of the standard does not
necessarily imply that all committee members voted for its approval. At the time it approved this
standard, the X3 Committee had the following members:

(Position Vacant), Chairman
Donald C. Loughry, Vice-Chairman
Joanne Flanagan, Secretary

Organization Represented Name of Representative

Allen-Bradley Company . Ronald Reimer
Joe Lenner (Alt.)

American Library Association . Paul Peters
American Nuclear Society . Geraldine C. Main

Sally Hartzell (Alt.)
AMP, Inc. Edward Kelly

Edward Mikoski (Alt.)
Apple Computer, Inc. Karen Higginbottom

Association of the Institute for
Certification of Computer Professionals (AICCP) Kenneth Zemrowski

Eugene Dwyer (Alt.)

AT&T/NCR Corporation . Thomas W. Kern
Thomas F. Frost (Alt.)

Boeing Company . Catherine Howells
Andrea Vanosdoll (Alt.)

Bull HN Information Systems, Inc. David M. Taylor

8

Organization Represented Name of Representative

Compaq Computers . James Barnes
Keith Lucke (Alt.)

Digital Equipment Computer Users Society . Stephen C. Jackson
Dr. Joseph King (Alt.)

Digital Equipment Corporation . Delbert Shoemaker
Kevin Lewis (Alt.)

Eastman Kodak Company . James Converse
Michael Nier (Alt.)

Electronic Data Systems Corporation . Charles M. Durrett
General Services Administration . Douglas Arai

Larry L. Jackson (Alt.)
Guide International, Inc. Frank Kirshenbaum

Harold Kuneke (Alt.)
Hewlett-Packard . Donald C. Loughry
Hitachi America Ltd. John Neumann

Kei Yamashita (Alt.)

Hughes Aircraft Company . Harold Zebrack
IBM Corporation . Robert H. Follett

Mary Anne Lawler (Alt.)

Lawrence Berkeley Laboratory . Robert L. Fink
David F. Stevens (Alt.)

National Communications Systems . Dennis Bodson
George W. White (Alt.)

National Institute of Standards and Technology Robert E. Rountree
Michael Hogan (Alt.)

Northern Telecom, Inc. Mel Woinsky
Subhash Patel (Alt.)

Omnicom, Inc. Harold C. Folts
Kathleen Dally (Alt.)

Open Systems Foundation (OSF) . John S. Morris
Fritz Schulz (Alt.)

Recognition Tech Users Association . Herbert P. Schantz
G. Edwin Hale (Alt.)

Share, Inc. Thomas B. Steel

Gary Ainsworth (Alt.)
Sony Corporation of America . Michael Deese
Storage Technology Corporation . Joseph S. Zajaczkowski

Samuel D. Cheatham (Alt.)

Sun Microsystems, Inc. Scott Jameson
3M Company . Paul D. Jahnke
Unisys Corporation . Stephen Oksala

John Hill (Alt.)

U.S. Department of Defense . William Rinehuls
Thomas Bozek (Alt.)

U.S. Department of Energy . Alton Cox
John Ruatto (Alt.)

U.S. West Corporation . Gary Dempsey
Anislie Bates (Alt.)

Use, Inc. Peter Epstein
Wang Laboratories, Inc. Steve Brody

Barbara Lurvey (Alt.)
Wintergree Information Services . John Wheeler
Xerox Corporation . Roy Pierce

9

Introduction
With the introduction of new devices and extended character sets, new features may be added

to this International Standard. Subclauses in the language and library clauses warn implementors
and programmers of usages which, though valid in themselves, may conflict with future additions.

Certain features are obsolescent, which means that they may be considered for withdrawal in
future revisions of this Internatonal Standard. They are retained because of their widespread use,
but their use in new implementations (for implementation features) or new programs (for language
[6.9] or library features [7.13]) is discouraged.

This International Standard is divided into four major subdivisions:

— the introduction and preliminary elements;

— the characteristics of environments that translate and execute C programs;

— the language syntax, constraints, and semantics;

— the library facilities.

Examples are provided to illustrate possible forms of the constructions described. Footnotes
are provided to emphasize consequences of the rules described in that subclause or elsewhere in this
International Standard. References are used to refer to other related subclauses. A set of annexes
summarizes information contained in this International Standard. The introduction, the examples,
the footnotes, the references, and the annexes are not part of this International Standard.

The language clause (clause 7) is derived from “The C Reference Manual” (see annex A).

The library clause (clause 8) is based on the 1984 /usr/group Standard (see annex A).

10

AMERICAN NATIONAL STANDARD ANSI/ISO 9899-1990

American National Standard

for Programming Languages –
C

1 Scope
This International Standard specifies the form and establishes the interpretation of programs

written in the C programming language.1 It specifies

— the representation of C programs;

— the syntax and constraints of the C language;

— the semantic rules for interpreting C programs;

— the representation of input data to be processed by C programs;

— the representation of output data produced by C programs;

— the restrictions and limits imposed by a conforming implementation of C.

This International Standard does not specify

— the mechanism by which C programs are transformed for use by a data-processing system;

— the mechanism by which C programs are invoked for use by a data-processing system;

— the mechanism by which input data are transformed for use by a C program;

— the mechanism by which output data are transformed after being produced by a C program;

— the size or complexity of a program and its data that will exceed the capacity of any specific
data-processing system or the capacity of a particular processor;

— all minimal requirements of a data-processing system that is capable of supporting a conforming
implementation.

2 Normative references
The following standards contain provisions which, through reference in this text, constitute

provisions of this International Standard. At the time of publication, the editions indicated were
valid. All standards are subject to revision, and parties to agreements based on this International

1This International Standard is designed to promote the portability of C programs among a variety of data-
processing systems. It is intended for use by implementors and programmers. It is accompanied by a Rationale
document that explains many of the decisions of the Technical Committee that produced it.

11

Standard are encouraged to investigate the possibility of applying the most recent editions of
the standards indicated below. Members of IEC and ISO maintain registers of currently valid
International Standards.

ISO 646:1983, Information processing — ISO 7-bit coded character set for information inter-
change.

ISO 4217:1987, Codes for the representation of currencies and funds.

3 Definitions and conventions
In this International Standard, “shall” is to be interpreted as a requirement on an implemen-

tation or on a program; conversely, “shall not” is to be interpreted as a prohibition.

For the purposes of this International Standard, the following definitions apply. Other terms
are defined at their first appearance, indicated by italic type. Terms explicitly defined in this
International Standard are not to be presumed to refer implicitly to similar terms defined elsewhere.
Terms not defined in this International Standard are to be interpreted according to ISO 2382.

3.1 alignment: A requirement that objects of a particular type be located on storage boundaries
with addresses that are particular multiples of a byte address.

3.2 argument: An expression in the comma-separated list bounded by the parentheses in a
function call expression, or a sequence of preprocessing tokens in the comma-separated list bounded
by the parentheses in a function-like macro invocation. Also known as “actual argument” or “actual
parameter.”

3.3 bit: The unit of data storage in the execution environment large enough to hold an object
that may have one of two values. It need not be possible to express the address of each individual
bit of an object.

3.4 byte: The unit of data storage large enough to hold any member of the basic character set
of the execution environment. It shall be possible to express the address of each individial byte of
an object uniquely. A byte is composed of a contiguous sequence of bits, the number of which is
implementation-defined. The least significant bit is called the low-order bit; the most significant
bit is called the high-order bit.

3.5 character: A bit representation that fits in a byte. The representation of each member of
the basic character set in both the source and execution environments shall fit in a byte.

3.6 constraints: Syntactic and semantic restrictions by which the exposition of language ele-
ments is to be interpreted.

3.7 diagnostic message: A message belonging to an implementation-defined subset of the
implementation’s message output.

3.8 forward references: References to later subclauses of this International Standard that
contain additional information relevant to this subclause.

3.9 implementation: A particular set of software, running in a particular translation envi-
ronment under particular control options, that performs translation of programs for, and supports
execution in, a particular execution environment.

12

3.10 implementation-defined behavior: Behavior, for a correct program construct and cor-
rect data, that depends on the characteristics of the implementation and that each implementation
shall document.

3.11 implementation limits: Restrictions imposed upon programs by the implementation.

3.12 locale-specific behavior: Behavior that depends on locale conventions of nationality,
culture, and language that each implementation shall document.

3.13 multibyte character: A sequence of one or more bytes representing a member of the
extended character set of either the source or the execution environment. The extended character
set is a superset of the basic character set.

3.14 object: A region of data storage in the execution environment, the contents of which can
represent values. Except for bit-fields, objects are composed of contiguous sequences of one or more
bytes, the number, order, end encoding of which are either explicitly specified or implementation-
defined. When referenced, an object may be interpreted as having a particular type, see 6.2.2.1.

3.15 parameter: An object declared as part of a function declaration that acquires a value on
entry to the function, or an identifier from the comma-separated list bounded by the parentheses
immediately following the macro name in a function-like macro definition. Also known as “formal
argument” or “formal parameter”.

3.16 undefined behavior: Behavior, upon use of a nonportable or erroneous program con-
struct, of erroneous data, or of indeterminately valued objects, for which this International Stan-
dard imposes no requirements. Permissible undefined behavior ranges from ignoring the situation
completely with unpredictable results, to behaving during translation or program execution in
a document manner characteristic of the environment (with or without issuance of a diagnostic
message), to terminating a translation or execution (with the issuance of a diagnostic message).

If a “shall” or “shall not” requirement that appears outside of a constraint is violated, the
behavior is undefined. Undefined behavior is otherwise indicated in this International Standard by
the words “undefined behavior” or by the omission of any explicit definition of behavior. There is
no difference in emphasis among these three; they all describe “behavior that is undefined.”

3.17 unspecified behavior: Behavior, for a correct program construct and correct data, for
which this International Standard explicitly imposes no requirements.

Examples

1. An example of unspecified behavior is the order in which the arguments to a function are
evaluated.

2. An example of undefined behavior is the behavior on integer overflow.

3. An example of implementation-defined behavior is the propagation of the high-order bit when
a signed integer is shifted right.

4. An example of locale-specific behavior is whether the islower function returns true for char-
acters other than the 26 lowercase English letters.

Forward references: bitwise shift operators (6.3.7), expressions (6.3), function calls (6.3.2.2),
the islower function (7.3.1.6), localization (7.4).

13

4 Compliance
A strictly conforming program shall use only those features of the language and library spec-

ified in this International Standard. It shall not produce output dependent on any unspecified,
undefined, or implementation-defined behavior, and shall not exceed any minimum implementation
limit.

The two forms of conforming implementation are hosted and freestanding. A conforming hosted
implementation shall accept any strictly conforming program. A conforming freestanding imple-
mentation shall accept any strictly conforming program in which the use of the features specified
in the library clause (clause 7) is confined to the contents of the standard headers <float.h>,
<limits.h>, <stdarg.h>, and <stddef.h>. A conforming implementation may have extensions
(including additional library functions), provided they do not alter the behavior of any strictly
conforming program.2

A conforming program is one that is acceptable to a conforming implementation.3

An implementation shall be accompanied by a document that defines all implementation-
defined characteristics and all extensions.

Forward references: limits <float.h> and <limits.h> (7.1.5), variable arguments <stdarg.h>
(7.8), common definitions <stddef.h> (7.1.6).

5 Environment
An implementation translates C source files and executes C programs in two data-processing-

system environments, which will be called the translation environment and the execution envi-
ronment in this International Standard. Their characteristics define and constrain the results of
executing conforming C programs constructed according to the syntactic and semantic rules for
conforming implementations.

Forward references: In the environment clause (clause 5), only a few of many possible toward
references have been noted.

5.1 Conceptual models

5.1.1 Translation environment

5.1.1.1 Program structure

A C program need not all be translated at the same time. The text of the program is kept in
units called source files in this International Standard. A source file together with all the headers
and source files included via the preprocessing directive #include, less any source lines skipped
by any of the conditional inclusion preprocessing directives, is called a translation unit. Previously
translated translation units may be preserved individually or in libraries. The separate translation
units of a program communicate by (for example) calls to function whose identifiers have external
linkage, manipulation of objects whose identifiers have external linkage, or manipulation of data

2This implies that a conforming implementation reserves no identifiers other than those explicitly reserved in
this International Standard.

3Strictly conforming programs are intended to be maximally portable among conforming implementations.
Conforming programs may depend upon nonportable features of a conforming implementation.

14

files. Translation units may be separately translated and then later linked to produce an executable
program.

Forward references: conditional inclusion (6.8.1), linkages of identifiers (6.1.2.2), source file
inclusion (6.8.2).

5.1.1.2 Translation phases

The precedence among the syntax rules of translation is specified by the following phases.4

1. Physical source file characters are mapped to the source character set (including new-line char-
acters for end-of-line indicators) if necessary. Trigraph sequences are replaced by corresponding
single-character internal representations.

2. Each instance of a new-line character and an immediately preceding backslash character is
deleted, splicing physical source lines to form logical source lines. A source file that is not
empty shall end in a new-line character, which shall not be immediately preceded by a backslash
character.

3. The source file is decomposed into preprocessing tokens5 and sequences of white-space char-
acters (including comments). A source file shall not end in a partial preprocessing token or
comment. Each comment is replaced by one space character. New-line characters are retained.
Whether each nonempty sequence of white-space characters other than new-line is retained or
replaced by one space character is implementation-defined.

4. Preprocessing directives are executed and macro invications are expanded. A #include prepro-
cessing directive causes the named header or source file to be processed from phase 1 through
phase 4, recursively.

5. Each source character set member and escape sequence in character constants and string literals
is converted to a member of the execution character set.

6. Adjacent character string literal tokens are concatenated and adjacent wide string literal tokens
are concatenated.

7. White-space characters separating tokens are no longer significant. Each preprocessing token
is converted into a token. The resulting tokens are syntactically and semantically analyzed and
translated.

8. All external object and function references are resolved. Library components are linked to
satisfy external references to functions and objects not defined in the current translation. All
such translator output is collected into a program image which contains information needed
for execution in its execution environment.

Forward references: lexical elements (6.1), preprocessing directives (6.8), trigraph sequences
(5.2.1.1).

4Implementations must behave as if these separate phases occur, even though many are typically folded together
in practice.

5As described in 6.1, the process of dividing a source file’s characters into preprocessing tokens is context-
dependent. For example, see the handling of < within a #include preprocessing directive.

15

5.1.1.3 Diagnostics

A conforming implementation shall produce at least one diagnostic message (identified in an
implementation-defined manner) for every translation unit that contains a violation of any syntax
rule or constraint. Diagnostic messages need not be produced in other circumstances.6

5.1.2 Execution environments

Two execution environments are defined: freestanding and hosted. In both cases, program
startup occurs when a designated C function is called by the execution environment. All objects in
static storage shall be initialized (set to their initial values) before program startup. The manner
and timing of such initialization are otherwise unspecified. Program termination returns control
to the execution environment.

Forward references: initialization (6.5.7).

5.1.2.1 Freestanding environment

In a freestanding environment (in which C program execution may take place without any
benefit of an operating system), the name and type of the function called at program startup are
implementation-defined. There are otherwise no reserved external identifiers. Any library facilities
available to a freestanding program are implementation-defined.

The effect of program termination in a freestanding environment is implementation-defined.

5.1.2.2 Hosted environment

A hosted environment need not be provided, but shall conform to the following specifications
if present.

5.1.2.2.1 Program startup

The function called at program startup is named main. The implementation declares no pro-
totype for this function. It can be defined with no parameters

int main(void) { /*...*/ }

or with two parameters (referred to here as argc and argv, though any names may be used, as
they are local to the function in which they are declared)

int main(int argc, char *argv[]) { /*...*/ }

If they are defined, the parameters to the main function shall obey the following constraints:

— The value of argc shall be nonnegative.

— argv[argc] shall be a null pointer.

— If the value of argc is greater than zero, the array members argv[0] through argv[argc-1]

inclusive shall contain pointers to strings, which are given implementation-defined values by the
host environment prior to program startup. The intent is to supply the program information
determined prior to program startup from elsewhere in the hosted environment. If the host
environment is not capable of supplying strings with letters in both uppercase and lowercase,
the implementation shall ensure that the strings are received in lowercase.

6The intent is that an implementation should identify the nature of, and where possible localize, each violation.
Of course, an implementation is free to produce any number of diagnostics as long as a valid program is still correctly
translated. It may also successfully translate an invalid program.

16

— If the value of argc is greater than zero, the string pointed to by argv[0] represents the
program name; argv[0][0] shall be the null character if the program name is not available
from the host environment. If the value of argc is greater than one, the strings pointed to by
argv[1] through argv[argc-1] represent the program parameters.

— The parameters argc and argv and the strings pointed to by the argv array shall be modifiable
by the program, and retain their last-stored values between program startup and program
termination.

5.1.2.2.2 Program execution

In a hosted environment, a program may use all the functions, macros, type definitions, and
objects described in the library clause (clause 7.)

5.1.2.2.3 Program termination

A return from the initial call to the main function is equivalent to calling the exit function with
the value returned by the main function as its argument. If the main function executes a return
that specifies no value, the termination status returned to the host environment is undefined.

Forward references: definition of terms (7.1.1), the exit function (7.10.4.3).

5.1.2.3 Program execution

The semantic descriptions in this International Standard describe the behavior of an abstract
machine in which issues of optimization are irrelevant.

Accessing a volatile object, modifying an object, modifying a file, or calling a function that
does any of those operations are all side effects, which are changes in the state of the execution
environment. Evaluation of an expression may produce side effects. At certain specified points
in the execution sequence called sequence points, all side effects of previous evaluations shall be
complete and no side effects of subsequent evaluations shall have taken place.

In the abstract machine, all expressions are evaluated as specified by the semantics. An actual
implementation need not evaluate part of an expression if it can deduce that its value is not used
and that no needed side effects are produced (including any caused by calling a function or accessing
a volatile object).

When the processing of the abstract machine is interrupted by receipt of a signal, only the
values of objects as of the previous sequence point may be relied on. Objects that may be modified
between the previous sequence point and the next sequence point need not have received their
correct values yet.

An instance of each object with automatic storage duration is associated with each entry into
its block. Such an object exists and retains its last-stored value during the execution of the block
and while the block is suspended (by a call of a function or receipt of a signal).

The least requirements on a conforming implementation are:

— At sequence points, volatile objects are stable in the sense that previous evaluations are com-
plete and subsequent evaluations have not yet occurred.

— At program termination, all data written into files shall be identical to the result that execution
of the program according to the abstract semantics would have produced.

17

— The input and output dynamics of interactive devices shall take place as specified in 7.9.3.
The intent of these requirements is that unbuffered or line-buffered output appear as soon as
possible, to ensure that prompting messages actually appear prior to a program waiting for
input.

What constitutes an interactive device is implementation-defined.

More stringent correspondences between abstract and actual semantics may be defined by each
implementation.

Examples

1. An implementation might define a one-to-one correspondence between abstract and actual
semantics: at every sequence point, the values of the actual objects would agree with those
specified by the abstract semantics. The keyword volatile would then be redundant.

Alternatively, an implementation might perform various optimizations within each transla-
tion unit, such that the actual semantics would agree with the abstract semantics only when
making function calls across translation unit boundaries. In such an implementation, at the
time of each function entry and function return where the calling function and the called func-
tion are in different translation units, the values of all externally linked objects and of all
objects accessible via pointers therein would agree with the abstract semantics. Furthermore,
at the time of each such function entry the values of the parameters of the called function
and of all objects accessible via pointers therein would agree with the abstract semantics.
In this type of implementation, objects referred to by interrupt service routines activated by
the signal function would require explicit specification of volatile storage, as well as other
implementation-defined restrictions.

2. In executing the fragment

char c1, c2;

/*...*/

c1 = c1 + c2;

the “integral promotions” require that the abstract machine promote the value of each variable
to int size and then add the two ints and truncate the sum. Provided the addition of two
chars can be done without creating an overflow exception, the actual execution need only
produce the same result, possibly omitting the promotions.

3. Similarly, in the fragment

float f1, f2;

double d;

/*...*/

f1 = f2 * d;

the multiplication may be executed using single-precision arithmetic if the implementation
can ascertain that the result would be the same as if it were executed using double-precision
arithmetic (for example, if d were replaced by the constant 2.0, which has type double).
Alternatively, an operation involving only ints or floats may be executed using double-
precision operations if neither range nor precision is lost thereby.

18

4. To illustrate the grouping behavior of expressions, in the following fragment

int a, b;

/*...*/

a = a + 32760 + b + 5;

the expression statement behaves exactly the same as

a = (((a + 32760) + b) + 5);

due to the associativity and precedence of these operators. Thus, the result of the sum
(a + 32760) is next added to b, and that result is then added to 5 which results in the
value assigned to a. On a machine in which overflows produce an exception and in which the
range of values representable by an int is [−32768,+32767], the implementation cannot rewrite
this expression as

a = ((a + b) + 32765);

since if the values for a and b were, respectively, −32754 and −15, the sum a + b would produce
an exception while the original expression would not; nor can the expression be rewritten as

a = ((a + 32765) + b);

or

a = (a + (b + 32765));

since the values for a and b might have been, respectively, 4 and −8 or −17 and 12. However on
a machine in which overflows do not produce an exception and in which the results of overflows
are reversible, the above expression statement can be rewritten by the implementation in any
of the above ways because the same result will occur.

5. The grouping of an expression does not completely determine its evaluation. In the following
fragment

#include <stdio.h>

int sum;

char *p;

/*...*/

sum = sum * 10 - ’0’ + (*p++ = getchar());

the expression statement is grouped as if it were written as

sum = (((sum * 10) - ’0’) + ((*(p++)) = (getchar())));

but the actual increment of p can occur at any time between the previous sequence point and
the next sequence point (the ;), and the call to getchar can occur at any point prior to the
need its returned value.

Forward references: compound statement, or block (6.6.2), expressions (6.3), files (7.9.3),
sequence points (6.3, 6.6), the signal function (7.7), type qualifiers (6.5.3).

19

5.2 Environmental considerations

5.2.1 Character sets

Two sets of characters and their associated collating sequences shall be defined: the set in
which source files are written, and the set interpreted in the execution environment. The values of
the members of the execution character set are implementation-defined, any additional members
beyond those required by this subclause are locale-specific.

In a character constant or string literal, members of the execution character set shall be repre-
sented by corresponding members of the source character set or by escape sequences consisting of
the backslash \ followed by one or more characters. A byte with all bits set to 0, called the null
character, shall exist in the basic execution character set; it is used to terminate a character string
literal.

Both the basic source and basic execution character sets shall have at least the following
members: the 26 uppercase letters of the English alphabet

A B C D E F G H I J K L M

N O P Q R S T U V W X Y Z

the 26 lowercase letters of the English alphabet

a b c d e f g h i j k l m

n o p q r s t u v w x y z

the 10 decimal digits

0 1 2 3 4 5 6 7 8 9

the following 29 graphic characters

! " # % & ’ () * + , - . / :

; < = > ? [\] ^ _ { | }

the space character, and control characters representing horizontal tab, vertical tab, and form feed.
In both the source and execution basic character sets, the value of each character after 0 in the
above list of decimal digits shall be one greater than the value of the previous. In source files, there
shall be some way of indicating the end of each line of text; this International Standard treats
such an end-of-line indicator as if it were a single new-line character. In the execution character
set, there shall be control characters representing alert, backspace, carriage return, and new line.
If any other characters are encountered in a source file (except in a character constant, a string
literal, a header name, a comment, or a preprocessing token that is never converted to a token),
the behavior is undefined.

Forward references: character constants (6.1.3.4), preprocessing directives (6.8), string literals
(6.1.4), comments (6.1.9).

5.2.1.1 Trigraph sequences

All occurrences in a source file of the following sequences of three characters (called trigraph
sequences7) are replaced with the corresponding single character

7The trigraph sequences enable the input of characters that are not defined in the Invariant Code Set as
described in ISO 646:1983, which is a subset of the seven-bit ASCII code set.

20

??= #

??([

??/ \

??)]

??’ ^

??< {

??! |

??> }

??- ~

No other trigraph sequences exist. Each ? that does not begin one of the trigraphs listed above is
not changed.

Example

The following source line

printf("Eh???/n");

becomes (after replacement of the trigraph sequence ??/)

printf("Eh?\n");

5.2.1.2 Multibyte characters

The source character set may contain multibyte characters, used to represent members of the
extended character set. The execution character set may also contain multibyte characters, which
need not have the same encoding as for the source character set. For both character sets, the
following shall hold:

— The single-byte characters defined in 5.2.1 shall be present.

— The presence, meaning, and representation of any additional members is locale-specific.

— A multibyte character may have a state-dependent encoding, wherein each sequence of multibyte
characters begins in an initial shift state and enters other implementation-defined shift states
when specific multibyte characters are encountered in the sequence. While in the initial shift
state, all single-byte characters retain their usual interpretation and do not alter the shift state.
The interpretation for subsequent bytes in the sequence is a function of the current shift state.

— A byte with all bits zero shall be interpreted as a null character independent of shift state.

— A byte with all bits zero shall not occur in the second or subsequent bytes of a multibyte
character.

For the source character set, the following shall hold:

— A comment, string literal, character constant, or header name shall begin and end in the initial
shift state.

— A comment, string literal, character constant, or header name shall consists of a sequence of
valid multibyte characters.

21

5.2.2 Character display semantics

The active position is that location on a display device where the next character output by
the fputc function would appear. The intent of writing a printable character (as defined by the
isprint function) to a display device is to display a graphic representation of that character at
the active position and then advance the active position to the next position on the current line.
The direction of writing is locale-specific. If the active position is at the final position of a line (if
there is one), the behavior is unspecified.

Alphabetic escape sequences representing nongraphic characters in the execution character set
are intended to produce actions on display devices as follows:

\a (alert) Produces an audible or visible alert. The active position shall not be changed.

\b (backspace) Moves the active position to the previous position on the current line. If the active
position is at the initial position of a line, the behavior is unspecified.

\f (form feed) Moves the active position to the initial position at the start of the next logical page.

\n (new line) Moves the active position to the initial position of the next line.

\r (carriage return) Moves the active position to the initial position of the current line.

\t (horizontal tab) Moves the active position to the next horizontal tabulation position on the
current line. If the active position is at or past the last defined horizontal tabulation position,
the behavior is unspecified.

\v (vertical tab) Moves the active position to the initial position of the next vertical tabulation
position. If the active position is at or past the last defined vertical tabulation position, the
behavior is unspecified.

Each of these escape sequences shall produce a unique implementation-defined value which can
be stored in a single char object. The external representations in a text file need not be identical
to the internal representations, and are outside the scope of this International Standard.

Forward references: the fputc function (7.9.7.3), the isprint function (7.3.1.7).

5.2.3 Signals and interrupts

Functions shall be implemented such that they may be interrupted at any time by a signal,
or may be called by a signal handler, or both, with no alteration to earlier, but still active,
invocations’ control flow (after the interruption), function return values, or objects with automatic
storage duration. All such objects shall be maintained outside the function image (the instructions
that comprise the executable representation of a function) on a per-invocation basis.

The functions in the standard library are not guaranteed to be reentrant and may modify
objects with static storage duration.

5.2.4 Environmental limits

Both the translation and execution environments constraint the implementation of language
translators and libraries. The following summarizes the environmental limits on a conforming
implementation.

22

5.2.4.1 Translation limits

The implementation shall be able to translate and execute at least one program that contains
at least one instance of every one of the following limits:8

— 15 nesting levels of compound statements, iteration control structures, and selection control
structures

— 8 nesting levels of conditional inclusion

— 12 pointer, array, and function declarators (in any combination) modifying an arithmetic, a
structure, a union, or an incomplete type in a declaration

— 31 nesting levels of parenthesized declarators within a full declarator

— 32 nesting levels of parenthesized expressions within a full expression

— 31 significant initial characters in an internal identifier or a macro name

— 6 significant initial characters in an external identifier

— 511 external identifiers in one translation unit

— 127 identifiers with block scope declared in one block

— 1024 macro identifiers simultaneously defined in one translation unit

— 31 parameters in one function definition

— 31 arguments in one function call

— 31 parameters in one macro definition

— 31 arguments in one macro invocation

— 509 characters in a logical source line

— 509 characters in a character string literal or wide string literal (after concatenation)

— 32767 bytes in an object (in a hosted environment only)

— 8 nesting levels for #included files

— 257 case labels for a switch statement (excluding those for any nested switch statements

— 127 members in a single structure or union

— 127 enumeration constants in a single enumeration

— 15 levels of nested structure or union definitions in a single struct-declaration-list

5.2.4.2 Numerical limits

A conforming implementation shall document all the limits specified in this subclause, which
shall be specified in the headers <limits.h> and <float.h>.

8Implementations should avoid imposing fixed translation limits whenever possible.

23

5.2.4.2.1 Sizes of integral types <limits.h>

The values given below shall be replaced by constant expressions suitable for use in #if prepro-
cessing directives. Moreover, except for CHAR BIT and MB LEN MAX, the following shall be replaced
by expressions that have the same type as would an expression that is an object of the correspond-
ing type converted according to the integral promotions. Their implementation-defined values shall
be equal or greater in magnitude (absolute value) to those shown, with the same sign.

— number of bits for smallest object that is not a bit-field (byte)
CHAR BIT 8

— minimum value for an object of type signed char

SCHAR MIN -127

— maximum value for an object of type signed char

SCHAR MAX +127

— maximum value for an object of type unsigned char

UCHAR MAX 255

— minimum value for an object of type char
CHAR MIN see below

— maximum value for an object of type char
CHAR MAX see below

— maximum number of bytes in a multibyte character, for any supported locale
MB LEN MAX 1

— minimum value for an object of type short int

SHRT MIN -32767

— maximum value for an object of type short int

SHRT MAX +32767

— maximum value for an object of type unsigned short int

USHRT MAX 65535

— minimum value for an object of type int
INT MIN -32767

— maximum value for an object of type int
INT MAX +32767

— maximum value for an object of type unsigned int

UINT MAX 65535

— minimum value for an object of type long int

LONG MIN -2147483647

— maximum value for an object of type long int

LONG MAX +2147483647

— maximum value for an object of type unsigned long int

ULONG MAX 4294967295

24

If the value of an object of type char is treated as a signed integer when used in an expression,
the value of CHAR MIN shall be the same as that of SCHAR MIN and the value of CHAR MAX shall
be the same as that of SCHAR MAX. Otherwise, the value of CHAR MIN shall be 0 and the value of
CHAR MAX shall be the same as that of UCHAR MAX.9

5.2.4.2.2 Characteristics of floating types <float.h>

The characteristics of floating types are defined in terms of a model that describes a repre-
sentation of floating-point numbers and values that provide information about implementation’s
floating-point arithmetic.10 The following parameters are used to define the model for each floating-
point type:

s sign (±1)
b base or radix of exponent representation (an integer > 1)
e exponent (an integer between a minimum emin and a maximum emax)
p precision (the number of base-b digits in the significand)
fk nonnegative integers less than b (the significand digits)

A normalized floating-point number x (f1 > 0 if x ̸= 0) is defined by the following model:

x = s× be ×
p∑

k=1

fk × b−k, emin ≤ e ≤ emax

Of the values in the <float.h> header, FLT RADIX shall be a constant expression suitable for
use in #if preprocessing directives, all other values need not be constant expressions. All except
FLT RADIX and FLT ROUNDS have separate names for all three floating-point types. The floating-
point model representation is provided for all values except FLT ROUNDS.

The rounding mode for floating-point addition is characterized by the value of FLT ROUNDS.

-1 indeterminable
0 toward zero
1 to nearest
2 toward positive infinity
3 toward negative infinity

All other values for FLT ROUNDS characterize implementation-defined rounding behavior.

The values given in the following list shall be replaced by implementation-defined expressions
that shall be equal or greater in magnitude (absolute value) to those shown, with the same sign:

— radix of exponent representation, b
FLT RADIX 2

— number of base-FLT RADIX digits in the floating-point significand, p

FLT MANT DIG

DBL MANT DIG

LDBL MANT DIG

9See 6.1.2.5.
10The floating-point model is intended to clarify the description of each floating-poit characteristics and does

not require the floating-point arithmetic of the implementation to be identical.

25

— number of decimal digits, q, such that any floating-point number with q decimal digits can be
rounded into a floating-point number with p radix b digits and back again without change to

the q decimal digits, ⌊(p− 1)× log10 b⌋+
{
1 if b is a power of 10
0 otherwise

FLT DIG 6

DBL DIG 10

LDBL DIG 10

— minimum negative integer such that FLT RADIX raised to that power minus 1 is a normalized
floating point number, emin

FLT MIN EXP

DBL MIN EXP

LDBL MIN EXP

— minimum negative integer such that 10 raised to that power is in the range of normalized
floating-point numbers,

⌈
log10 b

emin−1
⌉

FLT MIN 10 EXP -37

DBL MIN 10 EXP -37

LDBL MIN 10 EXP -37

— maximum integer such that FLT RADIX raised to that power minus 1 is a representable finite
floating-point number, emax

FLT MAX EXP

DBL MAX EXP

LDBL MAX EXP

— maximum integer such that 10 raised to that power is in the range of representable finite
floating-point numbers, ⌊log10((1− b−p)× bemax⌋
FLT MAX 10 EXP +37

DBL MAX 10 EXP +37

LDBL MAX 10 EXP +37

The values given in the following list shall be replaced by implementation-defined expressions
with values that shall be equal to or greater than those shown:

— maximum representable finite floating-point number, (1− b−p)× bemax

FLT MAX 1E+37

DBL MAX 1E+37

LDBL MAX 1E+37

The values given in the following list shall be replaced by implementation-defined expressions
with values that shall be equal to or less than those shown:

— the difference between 1 and the least value greater than 1 that is representable in the given
floating point type, b1−p

FLT EPSILON 1E-5

DBL EPSILON 1E-9

LDBL EPSILON 1E-9

26

— minimum normalized positive floating-point number, bemin−1

FLT MIN 1E-37

DBL MIN 1E-37

LDBL MIN 1E-37

Examples

1. The following describes an artificial floating-point representation that meets the minimum
requirements of this International Standard, and the appropriate values in a <float.h> header
for type float:

x = s× 16e ×
6∑

k=1

fk × 16−k, −31 ≤ e ≤ +32

FLT RADIX 16

FLT MANT DIG 6

FLT EPSILON 9.53674316E-07F

FLT DIG 6

FLT MIN EXP -31

FLT MIN 2.93873588E-39F

FLT MIN 10 EXP -38

FLT MAX EXP +32

FLT MAX 3.40282347E+38F

FLT MAX 10 EXP +38

2. The following describes floating-point representations that also meet the requirements for single-
precision and double-precision normalized numbers in ANSI/IEEE 754-1985,11 and the appro-
priate values in a <float.h> header for types float and double

xf = s× 2e ×
24∑
k=1

fk × 2−k, −125 ≤ e ≤ +128

xd = s× 2e ×
53∑
k=1

fk × 2−k, −1021 ≤ e ≤ +1024

FLT RADIX 2

FLT MANT DIG 24

FLT EPSILON 1.19209290E-07F

FLT DIG 6

FLT MIN EXP -125

FLT MIN 1.17549435E-38F

FLT MIN 10 EXP -37

FLT MAX EXP +128

FLT MAX 3.40282347E+38F

FLT MAX 10 EXP +38

DBL MANT DIG 53

DBL EPSILON 2.2204460492503131E-16

11The floating model in that standard sums powers of b from zero, so the values of the exponent limits are one
less than shown here.

27

DBL DIG 15

DBL MIN EXP -1021

DBL MIN 2.2250738585072014E-308

DBL MIN 10 EXP -307

DBL MAX EXP +1024

DBL MAX 1.7976931348623157E+308

DBL MAX 10 EXP +308

Forward references: conditional inclusion (6.8.1).

28

6 Language
In the syntax notation used in the language clause (clause 6), syntactic categories (nonter-

minals) are indicated by italic type, and literal words and character set members (terminals) by
bold type. A colon (:) following a nonterminal introduces its definition. Alternative definitions
are listed on separate lines, except when prefaced by the words “one of.” An optional symbol is
indicated by the subscript “opt,” so that

{ expressionopt }

indicates an optional expression enclosed in braces.

6.1 Lexical elements
Syntax

token:
keyword
identifier
constant
string-literal
operator
punctuator

preprocessing token:
header-name
identifier
pp-number
character-constant
string-literal
operator
punctuator
each non-white-space character that cannot be one of the above

Constraints

Each preprocessing token that is converted to a token shall have the lexcal form of a keyword,
an identifier, a constant, a string literal, an operator, or a punctuator.

Semantics

A token is the minimal lexical element of the language in translation phases 7 and 8. The
categories of tokens are: keywords, identifiers, constants, string literals, operators, and punctuators.
A preprocessing token is the minimal lexical element of the language in translation phases 3 through
6. The categories of preprocessing tokens are: header names, identifiers, preprocessing numbers,
character constants, string literals, operators, punctuators, and single non-white-space characters
that do not lexically match the other preprocessing token categories. If a ’ or a " character matches
the last category, the behavior is undefined. Preprocessing tokens can be separated by white space,
this consists of comments (described later), or white-space characters (space, horizontal tab, new-
line, vertical tab, and form-feed), or both. As described in 6.8, in certain circumstances during
translation phase 4, white space (or the absence thereof) serves as more than preprocessing token
separation. White space may appear within a preprocessing token only as part of a header name
or between the quotation characters in a character constant or string literal.

29

If the input stream has been parsed into preprocessing tokens up to a given character, the next
preprocessing token is the longest sequence of characters that could constitute a preprocessing
token.

Examples

1. The program fragment 1Ex is parsed as a preprocessing number token (one that is not a valid
floating or integer constant token), even though a parse as the pair of preprocessing tokens
1 and Ex might produce a valid expression (for example, if Ex were a macro defined as +1).
Similarly, the program fragment 1E1 is parsed as a preprocessing number (one that is a valid
floating constant token), whether or not E is a macro name.

2. The program fragment x+++++y is parsed as x ++ ++ + y, which violates a constraint on
increment operators, even though the parse x ++ + ++ y might yield a correct expression.

Forward references: character constants (6.1.3.4), comments (6.1.9), expressions (6.3), float-
ing constants (6.1.3.1), header names (6.1.7), macro replacement (6.8.3), postfix increment and
decrement operators (6.3.2.4), prefix increment and decrement operators (6.3.3.1), preprocessing
directives (6.8), preprocessing numbers (6.1.8), string literals (6.1.4).

6.1.1 Keywords

Syntax

keyword: one of
auto double int struct

break else long switch

case enum register typedef

char extern return union

const float short unsigned

continue for signed void

default goto sizeof volatile

do if static while

Semantics

The above tokens (entirely in lowercase) are reserved (in translation phases 7 and 8) for use as
keywords, and shall not be used otherwise.

6.1.2 Identifiers

Syntax

identifier:
nondigit
identifier nondigit
identifier digit

nondigit: one of
a b c d e f g h i j k l m

n o p q r s t u v w x y z

A B C D E F G H I J K L M

N O P Q R S T U V W X Y Z

30

digit: one of
0 1 2 3 4 5 6 7 8 9

Description

An identifier is a sequence of nondigit characters (including the underscore and the lowercase
and uppercase letters) and digits. The first character shall be a nondigit character.

Constraints

In translation phases 7 and 8, an identifier shall not consist of the same sequence of characters
as a keyword.

Semantics

An identifier denotes an object, a function, or one of the following entities that will be described
later: a tag or a member of a structure, union, or enumeration; a typedef name; a label name;
a macro name; or a macro parameter. A member of an enumeration is called an enumeration
constant. Macro names and macro parameters are not considered further here, because prior to
the semantic phase of program translation any occurrences of macro names in the source file are
replaced by the preprocessing token sequences that constitute their macro definitions.

There is no specific limit on the maximum length of an identifier.

Environmental limits

The implementation shall treat at least the first 31 characters of an internal name (a macro
name or an identifier that does not have external linkage) as significant. Corresponding lowercase
and uppercase letters are different. The implementation may further restrict the significance of an
external name (an identifier that has external linkage) to six characters and may ignore distinctions
of alphabetical case for such names.12 These limitations on identifiers are all implementation-
defined.

Any identifiers that differ in a significant character are different identifiers. If two identifiers
differ in a nonsignificant character, the behavior is undefined.

Forward references: linkages of identifiers (6.1.2.2), macro replacement (6.8.3).

6.1.2.1 Scopes of identifiers

An identifier is visible (i.e., can be used) only within a region of program text called its scope.
There are four kind of scopes: function, file, block, and function prototype. (A function prototype
is a declaration of a function that declares the types of its parameters.)

A label name is the only kind of identifier that has function scope. It can be used (in a goto

statement) anywhere in the function in which it appears, and is declared implicitly by its syntactic
appearence (followed by a : and a statement). Label names shall be unique within a function.

Every other identifier has scope determined by the placement of its declaration (in a declarator
or type specifier). If the declarator or type specifier that declares the identifier appears outside
of any block or list of parameters, the identifier has file scope, which terminates at the end of the
translation unit. If the declarator or type specifier that declares the identifier appears inside a
block or within the list of parameter declarations in a function definition, the identifier has block

12See “future language directions” (6.9.1).

31

scope, which terminates at the } that closes the associated block. If the declarator or type specifier
that declares the identifier appears within the list of parameter declarations in a function prototype
(not part of a function definition), the identifier has function prototype scope, which terminates at
the end of the function declarator. If an outer declaration of a lexically identical identifier exists in
the same name space, it is hidden until the current scope terminates, after which it again becomes
visible.

Two identifiers have the same scope if and only if their scopes terminate at the same point.

Structure, union, and enumeration tags have scope that begins just after the appearance of
the tag in a type specifier that declares the tag. Each enumeration constant has scope that begins
just after the apperance of its defining enumerator in an enumerator list. Any other identifier has
scope that begins just after the completion of its declarator.

Forward references: compount statement, or block (6.6.2), declarations (6.5), enumeration
specifiers (6.5.2.2), function calls (6.3.2.2), function declarators (including prototypes) (6.5.4.3),
function definitions (6.7.1), the goto statement (6.6.6.1), labeled statements (6.6.1), name spaces of
identifiers (6.1.2.3), scope of macro definitions (6.8.3.5), source file inclusion (6.8.2), tags (6.5.2.3),
type specifiers (6.5.2).

6.1.2.2 Linkages of identifiers

An identifier declared in different scopes or in the same scope more than once can be made to
refer to the same object or function by a process called linkage. There are three kinds of linkage:
external, internal, and none.

In the set of translation units and libraries that constitutes an entire program, each instance
of a particular identifier with external linkage denotes the same object or function. Within one
translation unit, each instance of an identifier with internal linkage denotes the same object or
function. Identifiers with no linkage denote unique entities.

If the declaration of a file scope identifier for an object or a function contains the storage-class
specifier static, the identifier has internal linkage.13

If the declaration of an identifier for an object or a function contains the storage-class specifier
extern, the identifier has the same linkage as any visible declaration of the identifier with file
scope. If there is no visible declaration with file scope, the identifier has external linkage.

If the declaration of an identifier for a function has no storage-class specifier, its linkage is
determined exactly as if it were declared with the storage-class specifier extern. If the declaration
of an identifier for an object has file scope and no storage-class specifier, its linkage is external.

The following identifiers have no linkage: an identifier declared to be anything other than an
object or a function; an identifier declared to be a function parameter; a block scope identifier for
an object declared without the storage-class specifier extern.

If, within a translation unit, the same identifier appears with both internal and external linkage,
the behavior is undefined.

Forward references: compound statement, or block (6.6.2), declarations (6.5), expressions (6.3),
external definitions (6.7).

13A function declaration can contain the storage-class specifier static only if it is at file scope; see 6.5.1.

32

6.1.2.3 Name spaces of identifiers

If more than one declaration of a particular identifier is visible at any point in a translation unit,
the syntactic context disambiguates uses that refer to different entities. Thus, there are separate
name spaces for various categories of identifiers, as follows:

— label names (disambiguated by the syntax of the label declaration and use);

— the tags of structures, unions, and enumerations (disambiguated by following any14 of the
keyword struct, union, or enum);

— the members of structures or unions, each structure or union has a separate name space for its
members (disambiguated by the type of the expression used to access the member via the . or
-> operator);

— all other identifiers, called ordinary identifiers (declared in ordinary declarators or as enumer-
ation constants).

Forward references: enumeration specifiers (6.5.2.2), labeled statements (6.6.1), structure and
union specifiers (6.5.2.1), structure and union members (6.3.2.3), tags (6.5.2.3).

6.1.2.4 Storage duration of objects

An object has a storage duration that determines its lifetime. There are two storage durations:
static and automatic.

An object whose identifier is declared with external or internal linkage, or with the storage-class
specifier static has static storage duration. For such an object, storage is reserved and its stored
value is initialized only once, prior to program startup. The object exists and retains its last-stored
value throughout the execution of the entire program.15

An object whose identifier is declared with no linkage and without the storage-class specifier
static has automatic storage duration. Storage is guaranteed to be reserved for a new instance of
such an object on each normal entry into the block with which it is associated, or an a jump from
outside the block to a labeled statement in the block or in an enclosed block. If an initialization
is specified for the value stored in the object, it is performed on each normal entry, but not if the
block is entered by a jump to a labeled statement. Storage for the object is no loger guaranteed
to be reserved when execution of the block ends in any way. (Entering an enclosed block suspends
but does not end execution of the enclosing block.) Calling a function suspends but does not end
execution of the block containing the call.) The value of a pointer that referred to an object with
automatic storage duration is no longer guaranteed to be reserved is indeterminate.

Forward references: compound statement, or block (6.6.2), function calls (6.3.2.2), initialization
(6.5.7).

6.1.2.5 Types

The meaning of a value stored in an object or returned by a function is determined by the
type of the expression used to access it. (An identifier declared to be an object is the simplest
such expression, the type is specified in the declaration of the identifier.) Types are partitioned
into object types (types that describe objects), function types (types that describe functions), and
incomplete types (types that describe objects but lack information needed to determine their sizes).

14There is only one name space for tags even though three are possible.
15In the case of a volatile object, the last store may not be explicit in the program.

33

An object declared as type char is large enough to store any member of the basic execution
character set. If a member of the required source character set enumerated in 5.2.1 is stored in a
char object, its value is guaranteed to be positive. If other quantities are stored in a char object,
the behavior is implementation-defined: the values are treated as either signed or nonnegative
integers.

There are four signed integer types, designated as signed char, short int, int, and long int.
(The signed integer and other types may be designated in several additional ways, as described in
6.5.2.)

An object declared as type signed char occupies the same amount of storage as a “plain” char
object. A “plain” int object has the natural size suggested by the architecture of the execution
environment (large enough to contain any value in the range INT MIN to INT MAX as defined in the
header <limits.h>). In the list of signed integer types above, the range of values of each type is
a subrange of the values of the next type in the list.

For each of the signed integer types, there is a corresponding (but different) unsigned integer
type (designated with the keyword unsigned) that uses the same amount of storage (including sign
information) and has the same alignment requirements. The range of nonnegative values of a signed
integer type is a subrange of the corresponding unsigned integer type, and the representation of
the same value in each type is the same.16 A computation involving unsigned operands can never
overflow, because a result that cannot be represented by the resulting unsigned integer type is
reduced modulo the number that is one greater than the largest value that can be represented by
the resulting unsigned integer type.

There are three floating types, designated as float, double, and long double. The set of
values of the type float is a subset of the set of values of the type double, the set of values of the
type double is a subset of the set of values of the type long double.

The type char, the signed and unsigned integer types, and the floating types are collectively
called the basic types. Even if the implementation defines two or more basic types to have the same
representation, they are nevertheless different types.

The three types char, signed char, and unsigned char are collectively called the character
types.

An enumeration comprises a set of named integer constant values. Each distinct enumeration
constitutes a different enumeration type.

The void type comprises and empty set of values; it is incomplete type that cannot be com-
pleted.

Any number of derived types can be constructed from the object, function, and incomplete
types, as follows:

— An array type describes a contiguously allocated nonempty set of objects with a particular
member object type, called the element type.17 Array types are caharcterized by their element
type and by the number of elements in the array. An array type is said to be derived from

16The same representation and alignment requirements are meant to imply interchangeability as arguments to

functions, return values from functions, and members of unions.
17Since object types do not include incomplete types, an array of incomplete type cannot be constructed.

34

its element type, and if its element type is T , the array type is sometimes called “array of T .”
The construction of an array type from an element type is called “array type derivation.”

— A structure type describes a sequentially allocated nonempty set of member objects, each of
which has an optionally specified name and possibly distinct type.

— A union type describes an overlapping nonempty set of member objects, each of which has an
optionally specified name and possibly distinct type.

— A function type describes a function with specified return type. A function type is characterized
by its return type and the number and types of its parameters. A function type is said to be
derived from its return type, and if its return type is T , the function type is sometimes called
“function returning T .” The construction of a function type from a return type is called
“function type derivation.”

— A pointer type may be derived from a function type, an object type, or an incomplete type,
called the referenced type. A pointer type describes an object whose value provides a reference
to an entity of the referenced type. A pointer type derived from the referenced type T is
sometimes called “pointer to T .” The construction of a pointer type from a referenced type is
called “pointer type derivation.”

These methods of constructing derived types can be applied recursively.

The type char, the signed and unsigned integer types, and the enumerated types are collectively
called integral types. The representations of integral types shall define values by use of a pure binary
numeration system.18 The representation of floating types are unspecified.

Integral and floating types are collectively called arithmetic types. Arithmetic types and pointer
types are collectively called scalar types. Array and structure types are collectively called aggregate
types.19

An array type of unknown size is an incomplete type. It is completed, for an identifier of that
type, by specifying the size in a later declaration (with internal or external linkage). A structure
or union type of unknown content (as described in 6.5.2.3) is an incomplete type. It is completed,
for all declarations of that type, by declaring the same structure or union tag with its defining
content later in the same scope.

Array, function, and pointer types are collectively called derived declarator types. A declarator
type derivation from a type T is the construction of a derived declarator type from T by the
application of an array-type, a function-type, or a pointer-type derivation to T .

A type is characterized by its type category, which is either the outermost derivation of a derived
type (as noted above in the construction of derived types), or the type itself if the type consists of
no derived types.

18A positional representation for integers that uses the binary digits 0 and 1, in which the values represented

by successive bits are additive, begin with 1, and are multiplied by successive integral powers of 2, except perhaps
the bit with the highest position. (Adapted from the American National Dictionary for Information Processing
Systems.)

19Note that aggregate type does not include union type because an object with union type can only contain
one member at a time.

35

Any type so far mentioned is an unqualified type. Each unqualified type has three corresponding
qualified versions of its type:20 a const-qualified version, a volatile-qualified version, and a version
having both qualifications. The qualified and unqualified versions of a type are distinct types that
belong to the same category and have the same representation and alignment requirements.16 A
derived type is not qualified by the qualifiers (if any) of the type from which it is derived.

A pointer to void shall have the same representation and alignemnt requirements as a pointer
to a character type. Similarly, pointers to qualified and unqualified versions of compatible types
shall have the same representation and alignemnt requirements.16 Pointer to other types need not
have the same representation or alignment requirements.

Examples

1. The type designated as “float *” has type “pointer to float.” Its type category is pointer,
not a floating type. The const-qualified version of this type is designated as “float * const”
whereas the type designated as “const float *” is not a qualified type — its type is “pointer
to const-qualified float” and is a pointer to a qualified type.

2. The type designated as “struct tag (*[5])(float)” has type “array of pointer to function
returning struct tag.” The array has length five and the function has a single parameter of
type float. Its type category is array.

Forward references: character constants (6.1.3.4), compatible type and composite type (6.1.2.6),
declarations (6.5), tags (6.5.2.3), type qualifiers (6.5.3).

6.1.2.6 Compatible type and composite type

Two types have compatible type if their types are the same. Additional rules for determin-
ing whether two types are compatible are described in 6.5.2 for type specifiers, in 6.5.3 for type
qualifiers, and in 6.5.4 for declarations.21 Moreover, two structure, union, or enumeration types
declared in separate translation units are compatible if they have the same number of members,
the same member names, and compatible member types: for two structures, the members shall be
in the same order; for two structure or unions, the bit-fields shall have the same widths; for two
enumerations, the members shall have the same values.

All declarations that refer to the same object or function shall have compatible type, otherwise,
the behavior is undefined.

A composite type can be constructed from two types that are compatible; it is a type that is
compatible with both of the two types and satisfies the following conditions.

— If one type is an array of known size, the composite type is an array of that size.

— If only one type is a function type with a parameter type list (a function prototype), the
composite type is a function prototype with the parameter type list.

— If both types are function types with parameter type list, the type of each parameter in the
composite parameter type list is the composite type of corresponding parameters.

These rules apply recursively to the types from which the two types are derived.

For an identifier with external or internal linkage declared in the same scope as another decla-
ration for that identifier, the type of the identifier becomes the composite type.

20See 6.5.3 regarding qualified array and function types.
21Two types need not be identical to be compatible.

36

Example

Given the following two file scope declarations:

int f(int (*)(), double (*)[3]);

int f(int (*)(char *), double (*)[]);

The resulting composite type for the function is:

int f(int (*)(char *), double (*)[3]);

Forward references: declarators (6.5.4), enumeration specifiers (6.5.2.2), structure and union
specifiers (6.5.2.1), type definitions (6.5.6), type qualifiers (6.5.3), type specifiers (6.5.2).

6.1.3 Constants

Syntax

constant:
floating-constant
integer-constant
enumeration-constant
character-constant

Constraints

The value of a constant shall be in the range of representable values for its type.

Semantics

Each constant has a type, determined by its form and value, as detailed later.

6.1.3.1 Floating constants

Syntax

floating-constant:
fractional-constant exponent-partopt floating-suffixopt

digit-sequence exponent-part floating-suffixopt

fractional-constant:
digit sequenceopt . digit sequence
digit sequence

exponent-part:
e signopt digit-sequence
E signopt digit-sequence

sign: one of
+ -

digit-sequence:
digit
digit-sequence digit

floating-suffix: one of
f l F L

37

Description

A floating constant has a significand part that may be followed by an exponent part and a suffix
that specifies its type. The components of the significand part may include a digit sequence repre-
senting the whole-number part, followed by a period (.), followed by a digit sequence representing
the fraction part. The components of the exponent part are an e or E followed by an exponent
consisting of an optionally signed digit sequence. Either the whole-number part or the fraction
part shall be present; either the period or the exponent part shall be present.

Semantics

The significand part is interpreted as a decimal rational number; the digit sequence in the
exponent part is interpreted as a decimal integer. The exponent indicates the power of 10 by which
the significand part is to be scaled. If the scaled value is in the range of representable values (for
its type) the result is either the nearest representable value, or the larger or smaller representable
value immediately adjacent to the nearest representable value, chosen in an implementation-defined
manner.

An unsuffixed floating constant has type double. If suffixed by the letter f or F, it has type
float. If suffixed by the letter l or L, it has type long double.

6.1.3.2 Integer constants

Syntax

integer-constant:
decimal-constant integer-suffixopt
octal-constant integer-suffixopt
hexadecimal-constant integer-suffixopt

decimal-constant:
nonzero-digit
decimal-constant digit

octal-constant:
0

octal-constant octal-digit

hexadecimal-constant:
0x hexadecimal-digit
0X hexadecimal-digit
hexadecimal-constant hexadecimal-digit

nonzero-digit: one of
1 2 3 4 5 6 7 8 9

octal-digit: one of
0 1 2 3 4 5 6 7

hexadecimal-digit: one of
0 1 2 3 4 5 6 7 8 9

a b c d e f

A B C D E F

38

integer-suffix:
unsigned-suffix long-suffixopt

long-suffix unsigned-suffixopt

unsigned-suffix: one of
u U

long-suffix: one of
l L

Description

An integer constant begins with a digit, but has no period or exponent part. It may have a
prefix that specifies its base and a suffix that specifies its type.

A decimal constant begins with a nonzero digit and consists of a sequence of decimal digits. An
octal constant consists of the prefix 0 optionally followed by a sequence of the digits 0 through 7

only. A hexadecimal constant consists of the prefix 0x or 0X followed by a sequence of the decimal
digits and the letters a (or A) through f (or F) with values 10 through 15 respectively.

Semantics

The value of a decimal constant is computed base 10; that of an octal constant, base 8, that of
a hexadecimal constant, base 16. The lexically first digit is the most significant.

The type of an integer constant is the first of the corresponding list in which its value can be
represented. Unsuffixed decimal int, long int, unsigned long int; unsuffixed octal or hexadec-
imal: int, unsigned int, long int, unsigned long int; suffixed by the letter u or U: unsigned
int, unsigned long int; suffixed by the letter l or L: long int, unsigned long int; suffixed
by both the letters u or U and l or L: unsigned long int.

6.1.3.3 Enumeration constants

Syntax

enumeration-constant:
identifier

Semantics

An identifier declared as an enumeration constant has type int.

Forward references: enumeration specifiers (6.5.2.2).

6.1.3.4 Character constants

Syntax

character-constant:
’c-char-sequence’
L’c-char-sequence’

c-char-sequence:
c-char
c-char-sequence c-char

39

c-char:
any member of the source character set except

the single-quote ’, backslash \, or new-line character
escape-sequence

escape-sequence:
simple-escape-sequence
octal-escape-sequence c-char
hexadecimal-escape-sequence c-char

simple-escape-sequence: one of
\’ \" \? \\

\a \b \f \n \r \t \v

octal-escape-sequence:
\ octal-digit
\ octal-digit octal-digit
\ octal-digit octal-digit octal-digit

hexadecimal-escape-sequence:
\x hexadecimal-digit
hexadecimal-escape-sequence hexadecimal-digit

Description

An integer character constant is a sequence of one or more multibyte characters enclosed in
single-quotes, as in ’x’ or ’ab’. A wide character constant is the same, except prefixed by the
letter L. With a few exceptions detailed later, the elements of the sequence are any members of
the source character set; they are mapped in an implementation-defined manner to members of
the execution character set.

The single-quote ’, the double-quote ", the question-mark ?, the backslash \, and arbitrary
integral values, are representable according to the following table of escape sequences:

single-quote ’ \’

double-quote " \"

question-mark ? \?

backslash \ \\

octal integer \octal digits
hexadecimal integer \xhexadecimal digits

The double-quote " and question-mark ? are representable either by themselves or by the escape
sequence \" and \?, respectively, but the single-quote ’ and the backslash \ shall be represented,
respectively, by the escape sequences \’ and \\.

The octal digits that follow the backslash in an octal escape sequence are taken to be part of
the construction of a single character for an integer character constant or of a single wide character
for a wide character constant. The numerical value of the octal integer so formed specifies the
value of the desired character or wide character.

The hexadecimal digits that follow the backslash and the letter x in a hexadecimal escape
sequence are taken to be part of the construction of a single character for an integer character
constant or of a single wide character for a wide character constant. The numerical value of the
hexadecimal integer so formed specifies the value of the desired character or wide character.

40

Each octal or hexadecimal escape sequence is the longest sequence of characters that can
constitute the escape sequence.

In addition, certain nongraphic characters are representable by escape sequences consisting of
the backslash \ followed by a lowercase letter: \a, \b, \f, \n, \r, \t, and \v.22 If any other escape
sequence is encountered, the behavior is undefined.23

Constraints

The value of an octal or hexadecimal escape sequence shall be in the range of representable
values for the type unsigned char for an integer character constant, or the unsigned type corre-
sponding to wchar t for a wide character constant.

Semantics

An integer character constant has type int. The value of an integer character constant con-
taining a single character that maps into a member of the basic execution character set is the
numerical value of the representation of the mapped character interpreted as an integer. The value
of an integer character constant containing more than one character, or containing a character or
escape sequence not represented in the basic execution character set, is implementation-defined. If
an integer character constant contains a single character or escape sequence, its value is the one
that results when an object with type char whose value is that of the single character or escape
sequence is converted to type int.

A wide character constant has type wchar t, an integral type defined in <stddef.h> header.
The value of a wide character constant containing a single multibyte character that maps into a
member of the extended execution character set is the wide character (code) corresponding to that
multibyte character, as defined by the mbtowc function, with an implementation-defined current
locale. The value of a wide character constant containing more than one multibyte character, or
containing a multibyte character or escape sequence not represented in the extended execution
character set, is implementation-defined.

Examples

1. The construction ’\0’ is commonly used to represent the null character.

2. Consider implementations that use two’s-complement representation for integers and eight bits
for objects that have type char. In an implementation in which type char has the same range
of values as signed char, the integer character constant ’\xFF’ has the value −1; if type char
has the same range of values as unsigned char, the character constant ’\xFF’ has the value
+255.

3. Even if eight bits are used for objects that have type char, the construction ’\x123’ specifies
an integer character constant containing only one character. (The value of this single-character
integer character constant is implementation-defined and violates the above constraint.) To
specify an integer character constant containing the two characters whose values are 0x12 and
’3’, the construction ’\0223’ may be used, since a hexadecimal escape sequence is terminated
only by a nonhexadecimal character. (The value of this two-character integer character constant
is implementation-defined also.)

22The semantics of these characters were discussed in 5.2.2.
23See “future language directions” (6.9.2).

41

4. Even if 12 or more bits are used for objects that have type wchar t, the construction L’\1234’

specifies the implementation-defined value that results from the combination of the values 0123
and ’4’.

Forward references: characters and integers (6.2.1.1), common definitions <stddef.h> (7.1.6),
the mbtowc function (7.10.7.2).

6.1.4 String literals

Syntax

string-literal:
"s-char-sequenceopt"
L"s-char-sequenceopt"

s-char-sequence:
s-char
s-char-sequence s-char

s-char:
any member of the source character set except

the double-quote ", backslash \, or new-line character
escape-sequence

Description

A character string literal is a sequence of zero or more multibyte characters enclosed in double-
quotes, as in "xyz". A wide string literal is the same, except prefixed by the letter L.

The same considerations apply to each element of the sequence in a character string literal or
a wide string literal as if it were in an integer character constant or a wide character constant,
except that the single-quote ’ is representable either by itself or by the escape sequence \’, but
the double-quote " shall be represented by the escape sequence \".

Semantics

In translation phase 6, the multibyte character sequences specified by any sequence of adjacent
character string literal tokens, or adjacent wide string literal tokens, are concatenated into a single
multibyte character sequence. If a character string literal token is adjacent to a wide string literal
token, the behavior is undefined.

In translation phase 7, a byte or code of value zero is appended to each multibyte character
sequence that results from a string literal or literals.24 The multibyte character sequence is then
used to initialize an array of static storage duration and length just sufficient to contain the
sequence. For character string literals, the array elements have type char, and are initialized with
the individual bytes of the multibyte character sequence; for wide string literals, the array elements
have type wchar t, and are initialized with the sequence of wide characters corresponding to the
multibyte character sequence.

Identical string literals of either form need not be distinct. If the program attempts to modify
a string literal of either form, the behavior is undefined.

24A character string literal need not be a string (see 7.1.1), because a null character may be embedded in it by
a \0 escape sequence.

42

Example

This pair of adjacent string literals

"\x12" "3"

produces a single character string literal containing the two characters whose value are \x12 and
’3’, because escape sequences are converted into single members of the execution character set
just prior to adjacent string literal concatenation.

Forward references: common definitions <stddef.h> (7.1.6).

6.1.5 Operators

Syntax

operator: one of
[] () . ->

++ -- & * + - ~ ! sizeof

/ % << >> < > <= >= == != ^ | && ||

? :

= *= /= %= += -= <<= >>= &= ^= |=

, # ##

Constraints

The operators [], (), and ? : shall occur in pairs, possibly separated by expressions. The
operators # and ## shall occur in macro-defining preprocessing directives only.

Semantics

An operator specifies an operation to be performed (an evaluation) that yields a value, ot yields
a designator, or produces a side effect, or a combination thereof. An operand is an entity on which
an operators acts.

Forward references: expressions (6.3), macro replacement (6.8.3).

6.1.6 Punctuators

Syntax

punctuator: one of
[] () { } * , : = ; ... #

Constraints

The punctuators [], (), and { } shall occur (after translation phase 4) in pairs, possibly sep-
arated by expressions, declarations, or statements. The punctuator # shall occur in preprocessing
directives only.

Semantics

A punctuator is a symbol that has indepenent syntactic and semantic significance but does
not specify an operation to be performed that yields a value. Depending on the context, the same
symbol may also represent an operator or part of an operator.

Forward references: expressions (6.3), declarations (6.5), preprocessing directives (6.8), state-
ments (6.6).

43

6.1.7 Header names

Syntax

header-name:
<h-char-sequence>
"q-char-sequence"

h-char-sequence:
h-char
h-char-sequence h-char

h-char:
any member of the source character set except

the new-line character and >

q-char-sequence:
q-char
q-char-sequence q-char

q-char:
any member of the source character set except

the new-line character and "

Constraints

Header name preprocessing tokens shall only appear within a #include preprocessing directive.

Semantics

The sequences in both forms of header names are mapped in an implementation-defined manner
to headers or external source file names as specified in 6.8.2.

If the characters ’, \, ", or /* occur in the sequence between the < and > delimiters, the
behavior is undefined. Similarly, if the characters ’, \, or /* occur in the sequence between the "

delimiters, the behavior is undefined.25

Example

The following sequence of characters:

0x3<1/a.h>1e2

#include <1/a.h>

#define const.member@$

forms the following sequence of preprocessing tokens (with each individual preprocessing token
delimited by a { on the left and a } on the right)

{0x3}{<}{1}{/}{a}{.}{h}{>}{1e2}
{#}{include} {<1/a.h>}
{#}{define} {const}{.}{member}{@}{$}

Forward references: source file inclusion (6.8.2).

25Thus, sequences of characters that resemble escape sequences cause undefined behavior.

44

6.1.8 Preprocessing numbers

Syntax

pp-number:
digit
. digit
pp-number digit
pp-number nondigit
pp-number e sign
pp-number E sign
pp-number .

Description

A preprocessing number begins with a digit optionally preceded by a period (.) and may be
followed by letters, underscores, digits, periods, and e+, e-, E+, or E- character sequences.

Preprocessing number tokens lexically include all floating and integer constant tokens.

Semantics

A preprocessing number does not have type or a value; it acquires both after a successful
conversion (as part of translation phase 7) to a floating constant token or an integer constant
token.

6.1.9 Comments

Except within a character constant, a string literal, or a comment, the characters /* introduce
a comment. The contents of a comment are examined only to identify multibyte characters and to
find the characters */ that terminate it.26

26Thus, comments do not nest.

45

6.2 Conversions
Several operators convert operand values from one type to another automatically. This sub-

clause specifies the result required from such an implicit conversion, as well as those that result
from a cast operation (an explicit conversion). The list in 6.2.1.5 summarizes the conversions
performed by most ordinary operators, it is supplemented as required by the discussion of each
operator in 6.3.

Conversion of an operand value to a compatible type causes no change to the value or the
representation.

Forward references: cast operators (6.3.4).

6.2.1 Arithmetic operands

6.2.1.1 Character and integers

A char, a short int, or an int bit-field, or their signed or unsigned varieties, or an enumer-
ation type, may be used in an expression wherever an int or unsigned int may be used. If an
int can represent all values of the original type, the value is converted to an int, otherwise, it is
converted to an unsigned int. These are called the integral promotions.27 All other arithmetic
types are unchanged by the integral promotions.

The integral promotions preserve value including sign. As discussed earlier, whether a “plain”
char is treated as signed is implementation-defined.

Forward references: enumeration specifiers (6.5.2.2), structure and union specifiers (6.5.2.1).

6.2.1.2 Signed and unsigned integers

When a value with integral type is converted to another integral type, if the value can be
represented by the new type, its value is unchanged.

When a signed integer is converted to an unsigned integer with equal or greater size, if the value
of the signed integer is nonnegative, its value is unchanged. Otherwise: if the unsigned integer
has greater size, the signed integer is first promoted to the signed integer corresponding to the
unsigned integer; the value is converted to unsigned by adding to it one greater than the largest
number that can be represented in the unsigned integer type.28

When a value with integral type is demoted to an unsigned integer with smaller size, the result is
the nonnegative remainder on division by the number one greater than the largest unsigned number
that can be represented in the type with smaller size. When a value with integral type is demoted
to a signed integer with smaller size, or an unsigned integer is converted to its corresponding signed
integer, if the value cannot be represented the result is implementation-defined.

27The integral promotions are applied only as part of the usual arithmetic conversions, to certain argument
expressions, to the operands of the unary +, -, and ~ operators, and to both operands of the shift operators, as
specified by their respective subclauses.

28In a two’s-complement representation, there is no actual change in the bit pattern except filling the high-order
bits with copies of the sign bit if the unsigned integer has greater size.

46

6.2.1.3 Floating and integral

When a value of floating type is converted to integral type, the fractional part is discarded. If
the value of the integral part cannot be represented by the integral type, the behavior is undefined.29

When a value of integral type is converted to floating type, if the value being converted is in
the range of values that can be represented but cannot be represented exactly, the result is either
the nearest higher or nearest lower value, chosen in an implementation-defined manner.

6.2.1.4 Floating types

When a float is promoted to double or long double, or a double is promoted to long

double, its value is unchanged.

When a double is demoted to float or a long double to double or float, if the value being
converted is outside the range of values that can be represented, the behavior is undefined. If the
value being converted is in the range of values that can be represented but cannot be represented
exactly, the result is either the nearest higher or nearset lower value, chosen in an implementation-
defined manner.

6.2.1.5 Usual arithmetic conversions

Many binary operators that expect operands of arithmetic type cause conversions and yield
result types in a similar way. The purpose is to yield a common type, which is also the type of the
result. This pattern is called the usual arithmetic conversions:

First, if either operand has type long double, the other operand is converted to long

double.

Otherwise, if either operand has type double, the other operand is converted to double.

Otherwise, if either operand has type float, the other operand is converted to float.

Otherwise, the integral promotions are performed on both operands. Then the following
rules are applied:

If either operand has type unsigned long int, the other operand is converted to
unsigned long int.

Otherwise, if one operand has type long int and the other has type unsigned int, if
a long int can represent all values of an unsigned int, the operand of type unsigned
int is converted to long int; if a long int cannot represent all values of an unsigned

int, both operands are converted to unsigned long int.

Otherwise, if either operand has type long int, the other operand is converted to
long int.

Otherwise, if either operand has type unsigned int, the other operand is converted
to unsigned int.

Otherwise, both operands have type int.

29The remaindering operation performed when a value of integral type is converted to unsigned type need not
be performed when a value of floating type is converted to unsigned type. Thus, the range of portable floating values
is (–1,Utype MAX+1).

47

The values of floating operands and of the results of floating expressions may be represented in
greater precision and range than that required by the type; the types are not changed thereby.30

6.2.2 Other operands

6.2.2.1 Lvalues and function designators

An lvalue is an expression (with an object type or an incomplete type other than void) that
designates an object.31 When an object is said to have a particular type, the type is specified by the
lvalue used to designate the object. A modifiable lvalue is an lvalue that does not have array type,
does not have an incomplete type, does not have a const-qualified type, and if it is a structure or
union, does not have any member (including, recursively, any member of all contained structures
or unions) with a const-qualified type.

Except when it is the operand of the sizeof operator, the unary & operator, the ++ operator,
the -- operator, or the left operand of the . operator or an assignment operator, an lvalue that
does not have array type is converted to the value stored in the designated object (and is no longer
an lvalue). If the lvalue has qualified type, the value has the unqualified version of the type of the
lvalue; otherwise, the value has the type of the lvalue. If the lvalue has an incomplete type and
does not have array type, the behavior is undefined.

Except when it is the operand of the sizeof operator or the unary & operator, or is a character
string literal used to initialize an array of character type, or is a wide string literal used to initialize
an array with element type compatible with wchar t, an lvalue that has type “array of type” is
converted to an expression that has type “pointer to type” that points to the initial element of the
array object and is not an lvalue.

A function designator is an expression that has function type. Except when it is the operand of
the sizeof operator32 or the unary & operator, a function designator with type “function returning
type” is converted to an expression that has type “pointer to function returning type.”

Forward references: address and indirection operators (6.3.3.2), assignment operators (6.3.16),
common definitions <stddef.h> (7.1.6), initialization (6.5.7), postfix increment and decrement op-
erators (6.3.2.4), prefix increment and decrement operators (6.3.3.1), the sizeof operator (6.3.3.4),
structure and union members (6.3.2.3).

6.2.2.2 void

The (nonexistent) value of a void expression (an expression that has type void) shall not be
used in any way, and implicit or explicit conversions (except to void) shall not be applied to such
an expression. If an expression of any other type occurs in a context where a void expression is
required, its value or designator is discarded. (A void expression is evaluated for its side effects.)

30The cast and assignment operators still must perform their specified conversions, as described in 6.2.1.3 and
6.2.1.4.

31The name “lvalue” comes originally from the assignment expression E1 = E2, in which the left operand E1

must be a (modifiable) lvalue. It is perhaps better considered as representing an object “locator value.” What is
sometimes called “rvalue” is in this International Standard described as the “value of an expression.”

An obvious example of an lvalue is an identifier of an object. As a further example, if E is a unary expression
that is a pointer to an object, *E is an lvalue that designates the object to which E points.

32Because this conversion does not occur, the operand of the sizeof operator remains a function designator
and violates the constraint in 6.3.3.4.

48

6.2.2.3 Pointers

A pointer to void may be converted to or from a pointer to any incomplete or object type.
A pointer to any incomplete or object type may be converted to a pointer to void and back again:
the result shall compare equal to the original pointer.

For any qualifier q, a pointer to a non-q-qualified type may be converted to a pointer to the
q-qualified version of the type: the values stored in the original and converted pointers shall
compare equal.

An integral constant expression with the value 0, or such an expression cast to type void *, is
called a null pointer constant.33 If a null pointer constant is assigned to or compared for equality to
a pointer, the constant is converted to a pointer of that type. Such a pointer, called a null pointer,
is guaranteed to compare unequal to a pointer to any object or function.

Two null pointers, converted through possibly different sequences of casts to pointer types,
shall compare equal.

Forward references: cast operators (6.3.4), equality operators (6.3.9), simple assignment
(6.3.16.1).

33The macro NULL is defined in <stddef.h> as a null pointer constant; see 7.1.6.

49

6.3 Expressions
An expression is a sequence of operators and operands that specifies computation of a value, or

that designates an object or a function, or that generates side effects, or that perform a combination
thereof.

Between the previous and next sequence point an object shall have its stored value modified at
most once by the evaluation of an expression. Furthermore, the prior value shall be accessed only
to determine the value to be stored.34

Except as indicated by the syntax35 or otherwise specified later (for the function-call operator,
(), &&, ||, ?:, and comma operators), the order of evaluation of subexpressions and the order in
which side effects take place are both unspecified.

Some operators (the unary operator ~, and the binary operators <<, >>, &, ^, and |, collectively
described as bitwise operators) shall have operands that have integral type. These operators return
values that depend on the internal representations of integers, and thus have implementation-
defined aspects for signed types.

If an exception occurs during the evaluation of an expression (that is, if the result is not
mathematically defined or not in the range of representable values for its type), the behavior is
undefined.

An object shall have its stored value accessed only by an lvalue that has one of the following
types:36

— the declared type of the object,

— a qualified version of the declared type of the object,

— a type that is the signed or unsigned type corresponding to the declared type of the object,

— a type that is the signed or unsigned type corresponding to a qualified version of the declared
type of the object,

— an aggregate or union type that includes one of the aforementioned types among its members
(including, recursively, a member of a subaggregate or contained union), or

— a character type.

34This paragraph renders undefined statement expression such as

i = ++i + 1;

while allowing

i = i + 1;
35The syntax specifies the precedence of operators in the evaluation of an expression which is the same as the

order of the major subclauses of this subclause highest precedence first. Thus, for example, the expressions allowed

as the operands of the binary + operator (6.3.6) shall be those expressions defined in 6.3.1 through 6.3.6. The
exceptions are cast exoressions (6.3.4) as operands of unary operators (6.3.3), and an operand contained between
any of the following pairs of operators: grouping parentheses () (6.3.1), subscripting brackets [] (6.3.2.1), function-
call parentheses () (6.3.2.2), and the conditional operator ?: (6.3.15).

Within each major subclause the operators have the same precedence. Left- and right-associativity is indicated

in each subclause by the syntax for the expression discussed therein.
36The intent of this list is to specify those circumstances in which an object may or may not be aliased.

50

6.3.1 Primary expressions

Syntax

primary-expression:
identifier
constant
string-literal
(expression)

Semantics

An identifier is a primary expression, provided it has been declared as designating an object
(in which case it is an lvalue) or a function (in which case it is a function designator).

A constant is a primary expression. Its type depends on its form and value, as detailed in 6.1.3.

A string literal is a primary expression. It is an lvalue with type as detailed in 6.1.4.

A parenthesized expression is a primary expression. Its type and value are identical to those of
the unparenthesized expression. It is an lvalue, a function designator, or a void expression if the
unparenthesized expression is, respectively, an lvalue, a function designator, or a void expression.

Forward references: declarations (6.5).

6.3.2 Postfix operators

Syntax

postfix-expression:
primary-expression
postfix-expression [expression]

postfix-expression (argument-expression-listopt)
postfix-expression . identifier
postfix-expression -> identifier
postfix-expression ++

postfix-expression --

argument-expression-list:
assignment-expression
argument-expression-list , assignment-expression

6.3.2.1 Array subscripting

Constraints

One of the expressions shall have type “pointer to object type,” the other expression shall have
integral type, and the result has type “type.”

Semantics

A postfix expression followed by an expression in square brackets [] is a subscripted designation
of an element of an array object. The definition of the subscript operator [] is that E1[E2] is
identical to (*(E1+(E2))). Because of the conversion rules that apply to the binary operator +,
if E1 is an array object (equivalently, a pointer to the initial element of an array object) and E2 is
an integer, E1[E2] designates the E2-th element of E1 (counting from zero).

51

Successive subscript operators designate an element of a multidimensional array object. If E
is an n-dimensional array (n ≥ 2) with dimensions i × j × . . . × k, then E (used as other than an
lvalue) is converted to a pointer to an (n− 1)-dimensional array with dimensions j× . . .×k. If the
unary * operator is applied to this pointer explicitly, or implicitly as a result of subscripting, the
result is the pointed-to (n− 1)-dimensional array, which itself is converted into a pointer if used as
other than an lvalue. It follows from this that arrays are stored in row-major order (last subscript
varies fastest).

Example

Consider the array object defined by the declaration

int x[3][5];

Here x is a 3 × 5 array of ints; more precisely, x is an array of three element objects, each of
which is an array of five ints. In the expression x[i], which is equivalent to (*(x+(i))), x is first
converted to a pointer to the initial array of five ints. Then i is adjusted according to the type of
x, which conceptually entails multiplying i by the size of the object to which the pointer points,
namely an array of five int objects. The results are added and indirection is applied to yield an
array of five ints. When used in the expression x[i][j], that in turn is converted to a pointer to
the first of ints, so x[i][j] yields an int.

Forward references: additive operators (6.3.6), address and indirection operators (6.3.3.2),
array declarators (6.5.4.2).

6.3.2.2 Function calls

Constraints

The expression that denotes the called function37 shall have type pointer to function returning
void or returning an object type other than an array type.

If the expression that denotes the called function has a type that includes a prototype, the
number of arguments shall agree with the number of parameters. Each argument shall have a type
such that its value may be assigned to an object with the unqualified version of the type of its
corresponding parameter.

Semantics

A postifix expression followed by parentheses () containing a possibly empty, comma-separated
list of expressions is a function call. The postfix expression denotes the called function. The list
of expressions specifies the arguments to the function.

If the expression that precedes the parenthesized argument list in a function call consists solely
of an identifier, and if no declaration is visible for this identifier, the identifier is implicitly declared
exatly as if, in the innermost block containing the function call, the declaration

extern int identifier ();

appeared.38

37Most often, this is the result of converting an identifier that is a function designator.
38That is, an identifier with block scope declared to have external linkage with type function without parameter

information and returning an int. If in fact it is not defined as having type “function returning int,” the behavior
is undefined.

52

An argument may be an expression of any object type. In preparing for the call to a func-
tion, the arguments are evaluated, and each parameter is assigned the value of the corresponding
argument.39 The value of the function call expression is specified in 6.6.6.4.

If the expression that denotes the called function has a type that does not include a prototype,
the integral promotions are performed on each argument and arguments that have type float are
promoted to double. These are called the default argument promotions. If the number of arguments
does not agree with the number of parameters, the behavior is undefined. If the function is defined
with a type that does not include a prototype, and the types of the arguments after promotion
are not compatible with those of the parameters after promotion, the behavior is undefined. If the
function is defined with a type that includes a prototype, and the types of the arguments after
promotion are not compatible with the types of the parameters, or if the prototype ends with an
ellipsis (, ...), the behavior is undefined.

If the expression that denotes the called function has a type that includes a prototype, the
arguments are implicitly converted, as if by assignment, to the types of the corresponding param-
eters. The ellipsis notation in a function prototype declarator causes argument type conversion
to stop after the last declared parameter. The default argument promotions are performed on
trailing arguments. If the function is defined with a type that is not compatible with the type
(of the expression) pointed to by the expression that denotes the called function, the behavior is
undefined.

No other conversions are performed implicitly; in particular, the number and types of arguments
are not compared with those of the parameters in a function definition that does not include a
function prototype declarator.

The order of evaluation of the function designator, the arguments, and subexpressions within
the arguments is unspecified, but there is a sequence point before the actual call.

Recursive function calls shall be permitted, both directly and indirectly through any chain of
other functions.

Example

In the function call

(*pf[f1()]) (f2(), f3() + f4())

the functions f1, f2, f3, and f4 may be called in any order. All side effects shall be completed
before the function pointed to by pf[f1()] is entered.

Forward references: function declarators (including prototypes) (6.5.4.3), function definitions
(6.7.1), the return statement (6.6.6.4), simple assignment (6.3.16.1).

6.3.2.3 Structure and union members

Constraints

The first operand of the . operator shall have a qualified or unqualified structure or union
type, and the second operand shall name a member of that type.

39A function may change the values of its parameters, but these changes cannot affect the values of the argu-
ments. On the other hand, it is possible to pass a pointer to an object, and the function may change the value of the
object pointed to. A parameter declared to have array or function type is converted to a parameter with a pointer

type as described in 6.7.1.

53

The first operand of the -> operator shall have type “pointer to qualified or unqualified struc-
ture” or “pointer to qualified or unqualified union,” and the second operand shall name a member
of the type pointed to.

Semantics

A postfix expression followed by a dot . and an identifier designates a member of a structure
or union object. The value is that of the named member, and is an lvalue if the first expression
is an lvalue. If the first expression has qualified type, the result has the so-qualified version of the
type of the designated member.

A postfix expression followed by an arrow -> and an identifier designates a member of a
structure or union object. The value is that of the named member of the object to which the first
expression points, and is an lvalue.40 If the first expression is a pointer to a qualified type, the
result has the so-qualified version of the type of the designated member.

With one exception, if a member of a union object is accessed after a value has been stored in
a different member of the object, the behavior is implementation-defined.41 One special guarantee
is made in order to simplify the use of unions: If a union contains several structures that share
a common initial sequence (see below), and if the union object currently contains one of these
structures, it is permitted to inspect the common initial part of any of them. Two structures share
a common initial sequence if corresponding members have compatible types (and, for bit-fields, the
same widths) for a sequence of one or more initial members.

Examples

1. If f is a function returning a structure or union, and x is a member of that structure or union,
f().x is a valid postfix expression but is not an lvalue.

2. The following is a valid fragment:

union {

struct {

int alltypes;

} n;

struct {

int type;

int intnode;

} ni;

struct {

int type;

double doublenode;

} nf;

} u;

40If &E is a valid pointer expression (where & is the “address-of” operator, which generates a pointer to its

operand), the expression (&E)->MOS is the same as E.MOS.

41The “byte orders” for scalar types are invisible to isolated programs that do not indulge in type punning (for
example, by assigning to one member of a union and inspecting the storage by accessing another member that is
an appropriately sized array of character type), but must be accounted for when conforming to externally imposed
storage layouts.

54

u.nf.type = 1;

u.nf.doublenode = 3.14;

/*...*/

if (u.n.alltypes == 1)

/*...*/ sin(u.nf.doublenode) /*...*/

Forward references: address and indirection operators (6.3.3.2), structure and union specifiers
(6.5.2.1).

6.3.2.4 Postfix increment and decrement operators

Constraints

The operand of the postfix increment or decrement operator shall have qualified or unqualified
scalar type and shall be a modifiable lvalue.

Semantics

The result of the postfix ++ operator is the value of the operand. After the result is obtained,
the value of the operand is incremented. (That is, the value 1 of the appropriate type is added
to it.) See the discussions of additive operators and compound assignment for information on
constraints, types, and conversions and the effects of operations on pointers. The side effect of
updating the stored value of the operand shall occur between the previous and the next sequence
point.

The postfix -- operator is analogous to the postfix ++ operator, except that the value of the
operand is decremented (that is, the value 1 of the appropriate type is subtracted from it).

Forward references: additive operators (6.3.6), compound assignment (6.3.16.2).

6.3.3 Unary operators

Syntax

unary-expression:
postfix-expression
++ unary-expression
-- unary-expression
unary-operator cast-expression
sizeof unary-expression
sizeof (type-name)

unary-operator: one of
& * + - ~ !

6.3.3.1 Prefix increment and decrement operators

Constraints

The operand of the prefix increment or decrement operator shall have qualified or unqualified
scalar type and shall be a modifiable lvalue.

Semantics

The value of the operand of the prefix ++ operator is incremented. The result is the new value of
the operand after incrementation. The expression ++E is equivalent to (E+=1). See the discussions

55

of additive operators and compound assignment for information on constraints, types, side effects,
and conversions and the effects of operations on pointers.

The prefix -- operator is analogous to the prefix ++ operator, except that the value of the
operand is decremented.

Forward references: additive operators (6.3.6), compound assignment (6.3.16.2).

6.3.3.2 Address and indirection operators

Constraints

The operand of the unary & operator shall be either a function designator or an lvalue that
designates an object that is not a bit-field and is not declared with the register storage-class
specifier.

The operand of the unary * operator shall have pointer type.

Semantics

The result of the unary & (address-of) operator is a pointer to the object or function designated
by its operand. If the operand has type “type,” the result has type “pointer to type.”

The unary * operator denotes indirection. If the operand points to a function, the result is
a function designator; if it points to an object, the result is an lvalue designating the object. If
the operand has type “pointer to type,” the result has type “type.” If an invalid value has been
assigned to the pointer, the behavior of the unary * operator is undefined.42

Forward references: storage-class specifiers (6.5.1), structure and union specifiers (6.5.2.1).

6.3.3.3 Unary arithmetic operators

Constraints

The operand of the unary + or - operator shall have arithmetic type; of the ~ operator, integral
type; of the !, scalar type.

Semantics

The result of the unary + operator is the value of its operand. The integral promotion is
performed on the operand, and the result has the promoted type.

The result of the unary - operator is the negative of its operand. The integral promotion is
performed on the operand, and the result has the promoted type.

The result of the ~ operator is the bitwise complement of its operand (that is, each bit in the
result is set if and only if the corresponding bit in the converted operand is not set). The integral
promotion is performed on the operand, and the result has the promoted type. The expression
~E is equivalent to ULONG MAX-E if E is promoted to type unsigned long, to UINT MAX-E if E

42It is always true that if E is a function designator or an lvalue that is a valid operand of the unary & operator,

*&E is a function designator or an lvalue equal to E. If *P is an lvalue and T is the name of an object pointer type,
*(T)P is an lvalue that has a type compatible with that to which T points.

Among the invalid values for dereferencing a pointer by the unary * operator are a null pointer, an address
inappropriately aligned for the type of object pointed to, and the address of an automatic storage duration object
when execution of the block with which the object is associated has terminated.

56

is promoted to type unsigned int. (The constants ULONG MAX and UINT MAX are defined in the
header <limits.h>.)

The result of the logical negation operator ! is 0 if the value of its operand compares unequal
to 0, 1 if the value of its operand compares equal to 0. The result has type int. The expression
!E is equivalent to (0==E).

Forward references: limits <float.h> and <limits.h> (7.1.6).

6.3.3.4 The sizeof operator

Constraints

The sizeof operator shall not be applied to an expression that has function type or an incom-
plete type, to the parenthesized name of such a type, or to an lvalue that designates a bit-field
object.

Semantics

The sizeof operator yields the size (in bytes) of its operand, which may be an expression or
the parenthesized name of a type. The size is determined from the type of the operand, which is
not itself evaluated. The result is an integer constant.

When applied to an operand that has type char, unsigned char, or signed char, (or a
qualified version thereof) the result is 1. When applied to an operand that has array type, the
result is the total number of bytes in the array.43 When applied to an operand that has structure
or union type, the result is the total number of bytes in such an object, including internal and
trailing padding.

The value of the result is implementation-defined, and its type (an unsigned integral type) is
size t defined in the <stddef.h> header.

Examples

1. A principal use of the sizeof operator is in communication with routines such as storage
allocators and I/O systems. A storage-allocation function might accept a size (in bytes) of an
object to allocate and return a pointer to void. For example:

extern void *alloc(size_t);

double *dp = alloc(sizeof *dp);

The implementation of the alloc function should ensure that its return value is aligned suitably
for conversion to a pointer to double.

2. Another use of the sizeof operator is to compute the number of elements in an array:

sizeof array / sizeof array[0]

Forward references: common definitions <stddef.h> (7.1.6), declarations (6.5), structure and
union specifiers (6.5.2.1), type names (6.5.5).

43When applied to a parameter declared to have array or function type, the sizeof operator yields the size of
the pointer obtained by converting as in 6.2.2.1; see 6.7.1.

57

6.3.4 Cast operators

Syntax

cast-expression:
(type-name) cast-expression

Constraints

Unless the type name specifies void type, the type name shall specify qualified or unqualified
scalar type and the operand shall have scalar type.

Semantics

Preceding an expression by a parenthesized type name converts the value of the expression to
the named type. This construction is called a cast.44 A cast that specifies no conversion has no
effect on the type or value of an expression.

Conversions that involve pointers (other than as permitted by the constraints of 6.3.16.1) shall
be specified by means of an explicit cast; they have implementation-defined and undefined aspects:

A pointer may be converted to an integral type. The size of integer required and the result are
implementation-defined. If the space provided is not long enough, the behavior is undefined.

An arbitrary integer may be converted to a pointer. The result is implementation-defined.45

A pointer to an object or incomplete type may be converted to a pointer to a different
object type or a different incomplete type. The resulting pointer might not be valid if it
is improperly aligned for the type pointed to. It is guaranteed, however, that a pointer
to an object of a given alignment may be converted to a pointer to an object of the same
alignment or a less strict alignment and back again; the result shall compare equal to the
original pointer. (An object that has character type has the least strict alignment.)

A pointer to a function of one type may be converted to a pointer to a function of another
type and back again; the result shall compare equal to the original pointer. If a converted
pointer is used to call a function that has a type that is not compatible with the type of the
called function, the behavior is undefined.

Forward references: equality operators (6.3.9), function declarators (including prototypes)
(6.5.4.3), simple assignment (6.3.16.1), type names (6.5.5).

6.3.5 Multiplicative operators

Syntax

multiplicative-expression:
cast-expression
multiplicative-expression * cast-expression
multiplicative-expression / cast-expression
multiplicative-expression % cast-expression

44A cast does not yield an lvalue. Thus, a cast to a qualified type has the same effect as a cast to the unqualified
version of the type.

45The mapping functions for converting a pointer to an integer or an integer to a pointer are intended to be
consistents with the addressing structure of the execution environment.

58

Constraints

Each of the operands shall have arithmetic type. The operands of the % operator shall have
integral type.

Semantics

The usual arithmetic conversions are performed on the operands.

The result of the binary * operator is the product of the operands.

The result of the / operator is the quotient from the division of the first operand by the second;
the result of the % operator is the remainder. In both operations, if the value of the second operand
is zero, the behavior is undefined.

When integers are divided and the division is inexact, if both operands are positive the result of
the / operator is the largest integer less than the algebraic quotient and the result of the % operator
is positive. If either operand is negative, whether the result of the / operator is the largest integer
less than or equal to the algebraic quotient or the smallest integer greater than or equal to the
algebraic quotient is implementation-defined, as is the sign of the result of the % operator. If the
quotient a/b is respresentable, the expression (a/b)*b + a%b shall equal a.

6.3.6 Additive operators

Syntax

additive-expression:
multiplicative-expression
additive-expression + multiplicative-expression
additive-expression - multiplicative-expression

Constraints

For addition, either both operands shall have arithmetic type, or one operand shall be a pointer
to an object type and the other shall have integral type. (Incrementing is equivalent to adding 1.)

For subtraction, one of the following shall hold:

— both operands have arithmetic type;

— both operands are pointers to qualified or unqualified versions of compatible object types; or

— the left operand is a pointer to an object type and the right operand has integral type. (Decre-
menting is equivalent to subtracting 1.)

Semantics

If both operands have arithmetic type, the usual arithmetic conversions are performed on them.

The result of the binary + operator is the sum of the operands.

The result of the binary - operator is the difference resulting from the subtraction of the second
operand from the first.

For the purpose of these operators, a pointer to a nonarray object behaves the same as a pointer
to the first element of an array of length one with the type of the object as its element type.

59

When an expression that has integral type is added to or subtracted from a pointer, the result
has the type of the pointer operand. If the pointer operand points to an element of an array object,
and the array is large enough, the result points to an element offset from the original element such
that the difference of the subscripts of the resulting and original array elements equals the integral
expression. In other words, if the expression P points to the i-th element of an array object, the
expressions (P)+N (equivalently, N+(P)) and (P)-N (where N has the value n) point to, respectively,
the i+n-th and i–n-th elements of the array object, provided they exist. Moreover, if the expression
P points to the last element of an array object, the expression (P)+1 points one past the last element
of the array object, and if the expression Q points one past the last element of an array object, the
expression (Q)-1 points to the last element of the array object. If both the pointer operand and
the result point to elements of the same array object, or one past the last element of the array
object, the evaluation shall not produce an overflow; otherwise, the behavior is undefined. Unless
both the pointer operand and the result point to elements of the same array object, or the pointer
operand points one past the last element of an array object and the result points to an element of
the same array object, the behavior is undefined if the result is used as an operand of the unary *

operator.

When two pointers to elements of the same array object are subtracted, the result is the
difference of the subscripts of two array elements. the size of the result is implementation-defined,
and its type (a signed integral type) is ptrdiff t defined in the <stddef.h> header. As with any
other arithmetic overflow, if the result does not fit in the space provided, the behavior is undefined.
In other words, if the expressions P and Q point to, respectively, the i-th and j-th elements of an
array object, the expression (P)-(Q) has the value i–j provided the value fits in an object of
type ptrdiff t. Moreover, if the expression P points either to an element of an array object or
one past the last element of an array object, and the expression Q points to the last element of
the same array object, the expression ((Q)+1)-(P) has the same value as ((Q)-(P))+1 and as
-((P)-((Q)+1)), and has the value zero if the expression P points one past the last element of the
array object, even though the expression (Q)+1 does not point to an element of the array object.
Unless both pointers point to element of the same array object, or one past the last element of the
array object, the behavior is undefined.46

Forward references: common definitions <stddef.h> (7.1.6).

6.3.7 Bitwise shift operators

Syntax

shift-expression:
additive-expression
shift-expression << additive-expression
shift-expression >> additive-expression

46Another way to approach pointer arithmetic is first to convert the pointer(s) to character pointer(s); In this
scheme the integral expression added to or subtracted from the converted pointer is first multiplied by the size of the

object originally pointed to, and the resulting pointer is converted back to the original type. For pointer subtraction
the result of the difference between the character pointers is similarly divided by the size of the object originally
pointed to.

When viewed in this way, an implementation need only provide one extra byte (which may overlap another
object in the program just after the end of the object in order to satisfy the “one past the last element” requirements.

60

Constraints

Each of the operands shall have integral type.

Semantics

The integral promotions are performed on each of the operands. The type of the result is that
of the promoted left operand. If the value of the right operand is negative or is greater than or
equal to the width in bits of the promoted left operand, the behavior is undefined.

The result of E1 << E2 is E1 left-shifted E2 bit positions; vacated bits are filled with zeros.
If E1 has an unsigned type, the value of the result is E1 multiplied by the quantity, 2 raised to
the power E2, reduced modulo ULONG MAX+1 if E1 has type unsigned long, UINT MAX+1 otherwise.
(The constants ULONG MAX and UINT MAX are defined in the header <limits.h>.)

The result of E1 >> E2 is E1 right-shifted E2 bit positions. If E1 has an unsigned type or if
E1 has a signed type and a nonnegative value, the value of the result is the integral part of the
quotient of E1 divided by the quantity, 2 raised to the power E2. If E1 has a signed type and a
negative value, the resulting value is implementation-defined.

6.3.8 Relational operators

Syntax

relational-expression:
shift-expression
relational-expression < shift-expression
relational-expression > shift-expression
relational-expression <= shift-expression
relational-expression >= shift-expression

Constraints

One of the following shall hold:

— both operands have arithmetic type;

— both operands are pointers to qualified or unqualified versions of compatible object types; or

— both operands are pointers to qualified or unqualified versions of compatible incomplete types.

Semantics

If both of the operands have arithmetic type, the usual arithmetic conversions are performed.

For the purposes of these operators, a pointer to a nonarray object behaves the same as
a pointer to the first element of an array of length one with the type of the object as its ele-
ment type.

When two pointers are compared, the result depends on the relative locations in the address
space of the objects pointed to. If the objects pointed to are members of the same aggregate object,
pointers to structure members declared later compare higher than pointers to members declared
earlier in the structure, and pointers to array elements with larger subscript values compare higher
than pointers to elements of the same array with lower subscript values. All pointers to members
of the same union object compare equal. If the objects pointed to are not members of the same
aggregate or union object, the result is undefined, with the following exception. If the expression

61

P points to an element of an array object and the expression Q points to the last element of the
same array object, the pointer expression Q+1 compares higher than P, even though Q+1 does not
point to an element of the array object.

If two pointers to object or incomplete types both point to the same object, or both point one
past the last element of the same array object, they compare equal. If two pointers to object or
incomplete types compare equal, both point to the same object, or both point one past the last
element of the same array object.47

Each of the operator < (less than), > (greater than), <= (less than or equal to), and >= (greater
than or equal to) shall yield 1 if the specified relation is true and 0 if it is false.48 The result has
type int.

6.3.9 Equality operators

Syntax

equality-expression:
relational-expression
equality-expression == relational-expression
equality-expression != relational-expression

Constraints

One of the following shall hold:

— both operands have arithmetic type;

— both operands are pointers to qualified or unqualified versions of compatible object types;

— one operand is a pointer to an object or incomplete type and the other is a pointer to a qualified
or unqualified version of void; or

— one operand is a pointer and the other is a null pointer constant.

Semantics

The == (equal to) and the != (not equal to) operators are analogous to the relational opera-
tors except for their lower precedence.49 Where the operands have types and values suitable for
relational operators, the semantics detailed in 6.3.8 apply.

If two pointers to object or incomplete types are both null pointers, they compare equal. If
two pointers to object or incomplete types compare equal, they both are null pointers, or both
point to the same object, or both point one past the last element of the same array object. If two
pointers to function types are both null pointers or both point to the same function, they compare
equal. If two pointers to function types compare equal, either both are null pointers, or both point
to the same function. If one of the operands is a pointer to an object or incomplete type and the
other has type pointer to a qualified or unqualified version of void, the pointer to an object or
incomplete type is converted to the type of the other operand.

47If invalid prior pointer operations, such as accesses outside array bounds, produced undefined behavior, the
effect of subsequent comparisons is undefined.

48The expression a<b<c is not interpreted as in ordinary mathematics. As the syntax indicates, it means

(a<b)<c; in other words, “if a is less than b compare 1 to c; otherwise, compare 0 to c.”
49Because of the precedences, a<b == c<d is 1 whenever a<b and c<d have the same truth-value.

62

6.3.10 Bitwise AND operator

Syntax

AND-expression:
equality-expression
AND-expression & equality-expression

Constraints

Each of the operands shall have integral type.

Semantics

The usual arithmetic conversions are performed on the operands.

The result of the binary & operator is the bitwise AND of the operands (that is, each bit in the
result is set if and only if each of the corresponding bits in the converted operands is set).

6.3.11 Bitwise exclusive OR operator

Syntax

exclusive-OR-expression:
AND-expression
exclusive-OR-expression ^ AND-expression

Constraints

Each of the operands shall have integral type.

Semantics

The usual arithmetic conversions are performed on the operands.

The result of the ^ operator is the bitwise exclusive OR of the operands (that is, each bit in
the result is set if and only if exactly one of the corresponding bits in the converted operands
is set).

6.3.12 Bitwise inclusive OR operator

Syntax

inclusive-OR-expression:
exclusive-OR-expression
inclusive-OR-expression | exclusive-OR-expression

Constraints

Each of the operands shall have integral type.

Semantics

The usual arithmetic conversions are performed on the operands.

The result of the | operator is the bitwise inclusive OR of the operands (that is, each bit in the
result is set if and only if at least one of the corresponding bits in the converted operands is set).

63

6.3.13 Logical AND operator

Syntax

logical-AND-expression:
inclusive-OR-expression
logical-AND-expression && inclusive-OR-expression

Constraints

Each of the operands shall have scalar type.

Semantics

The && operator shall yield 1 if both of its operands compare unequal to 0; otherwise, it yields
0. The result has type int.

Unlike the bitwise binary & operator, the && operator guarantees left-to-right evaluation: there
is a sequence point after the evaluation of the first operand. If the first operand compares equal
to 0, the second operand is not evaluated.

6.3.14 Logical OR operator

Syntax

logical-OR-expression:
logical-AND-expression
logical-OR-expression || logical-AND-expression

Constraints

Each of the operands shall have scalar type.

Semantics

The || operator shall yield 1 if either of its operands compare unequal to 0; otherwise, it yields
0. The result has type int.

Unlike the bitwise | operator, the || operator guarantees left-to-right evaluation: there is a
sequence point after the evaluation of the first operand. If the first operand compares unequal to
0, the second operand is not evaluated.

6.3.15 Conditional operator

Syntax

conditional-expression:
logical-OR-expression
logical-OR-expression ? expression : conditional-expression

Constraints

The first operand shall have scalar type.

One of the following shall hold for the second and third operands:

— both operands have arithmetic type;

— both operands have compatible structure or union types;

64

— both operands have void type;

— both operands are pointers to qualified or unqualified versions of compatible types;

— one operand is a pointer and the other is a null pointer constant; or

— one operand is a pointer to an object or incomplete type and the other is a pointer to a qualified
or unqualified version of void.

Semantics

The first operand is evaluated; there is a sequence point after its evaluation. The second
operand is evaluated only if the first compares unequal to 0; the third operand is evaluated only
of the first compares equal to 0; the value of the second or third operand (whichever is evaluated)
is the result.50

If both the second and third operands have arithmetic type, the usual arithmetic conversions
are performed to bring them to a common type and the result has that type. If both the operands
have structure or union type, the result has that type. If both operands have void type, the result
has void type.

If both the second and third operands are pointers or one is a null pointer constant and the
other is a pointer, the result type is a pointer to a type qualified with all the type qualifiers of
the types pointed-to by both operands. Furthermore, if both operands are pointers to compatible
types or differently qualified versions of a compatible type, the result has the composite type; if
one operans is a null pointer constant, the result has the type of the other operand; otherwise,
one operand is a pointer to void or a qualified version of void, in which case the other operand is
converted to type pointer void, and the result has that type.

Example

The common type that results when the second and third operands are pointers are determined
in two independent stages. The appropriate qualifiers, for example, do not depend on whether the
two pointers have compatible types.

Given the declarations

const void *c_vp;

void *vp;

const int *c_ip;

volatile int *v_ip;

int *ip;

const char *c_cp;

the third column in the following table is the common type that is the result of a conditional
expression in which the first two columns are the second and third operands (in either order):

c_vp c_ip const void *

v_ip 0 volatile int *

c_ip v_ip const volatile int *

vp c_cp const void *

ip c_ip const int *

vp ip void *

50A conditional expression does not yield an lvalue.

65

6.3.16 Assignment operators

Syntax

assignment-expression:
conditional-expression
unary-expression assignment-operator conditional-expression

assignment-operator: one of
= *= /= %= += -= <<= >>= &= ^= |=

Constraints

An assignment operator shall have a modifiable lvalue as its left operand.

Semantics

An assignment operator stores a value in the object designated by the left operand. An as-
signment expression has the value of the left operand after the assignment, but is not an lvalue.
The type of an assignment expression is the type of the left operand unless the left operand has
qualified type, in which case it is the unqualified version of the type of the left operand. The side
effect of updating the stored value of the left operand shall occur between the previous and the
next sequence point.

The order of evaluation of the operands is unspecified.

6.3.16.1 Simple assignment

Constraints

One of the following shall hold:51

— the left operand has qualified or unqualified arithmetic type and the right has arithmetic type;

— the left operand has a qualified or unqualified version of a structure or union type compatible
with the type of the right;

— both operands are pointers to qualified or unqualified versions of compatible types, and the
type pointed to by the left has all the qualifiers of the type pointed by the right;

— one operand is a pointer to an object or incomplete type and the other is a pointer to a qualified
or unqualified version of void, and the type pointed to by the left has all the qualifiers of the
type pointed to by the right; or

— the left operand is a pointer and the right is a null pointer constant.

Semantics

In simple assignment (=), the value of the right operand is converted to the type of the assign-
ment expression and replaces the value stored in the object designated by the left operand.

If the value being stored in an object is accessed from another object that overlaps in any
way the storage of the first object, then the overlap shall be exact and the two objects shall have
qualified or unqualified versions of a compatible type; otherwise, the behavior is undefined.

51The asymmetric appearance of these constraints with respect to type qualifiers is due to the conversion
(specified in 6.2.2.1) that changes lvalues to “the value of the expression” which removes any type qualifiers from
the type category of the expression.

66

Example

In the program fragment

int f(void);

char c;

/*...*/

/*...*/ ((c = f()) == -1) /*...*/

the int value returned by the function may be truncated when stored in the char, and then
converted back to int width prior to the comparison. In an implementation in which “plain” char

has the same range of values as unsigned char (and char is narrower than int), the result of
the conversion cannot be negative, so the operands of the comparison can never compare equal.
Therefore, for full portability, the variable c should be declared as int.

6.3.16.2 Compound assignment

Constraints

For the operators += and -= only, either the left operand shall be a pointer to an object type and
the right shall have integral type, or the left operand shall have qualified or unqualified arithmetic
type and the right shall have arithmetic type.

For the other operators, each operand shall have arithmetic type consistent with those allowed
by the corresponding binary operator.

Semantics

A compound assignment of the form E1 op= E2 differs from the simple assignment expression
E1 = E1 op (E2) only in that the lvalue E1 is evaluated only once.

6.3.17 Comma operator

Syntax

expression:
assignment-expression
expression , assignment-expression

Semantics

The left operand of a comma operator is evaluated as a void expression; there is a sequence
point after its evaluation. Then the right operand is evaluated, the result has its type and value.52

Example

As indicated by the syntax, in contexts where a comma is a punctuator (in lists of arguments
to functions and lists of initializers) the comma operator as described in this subclause cannot
appear. On the other hand, it can be used within a parenthesized expression or within the second
expression of a conditional operator in such contexts. In the function call

f(a, (t=3, t+2), c)

the function has three arguments, the second of which has the value 5.

Forward references: initialization (6.5.7).

52A comma operator does not yield an lvalue.

67

6.4 Constant expressions
Syntax

constant-expression:
conditional-expression

Description

A constant expression can be evaluated during translation rather than runtime, and accordingly
may be used in any place that a constant may be.

Constraints

Constant expressions shall not contain assignment, increment, decrement, function-call, or
comma operators, except when they are contained within the operand of a sizeof operator.53

Each constant expression shall evaluate to a constant that is in the range of representable values
for its type.

Semantics

An expression that evaluates to a constant expression is required in several contexts.54 If a
floating expression is evaluated in the translation environment, the arithmetic precision and range
shall be at least as great as if the expression were being evaluated in the execution environment.

An integral constant expression shall have integral type and shall only have operands that are
integer constants, enumeration constants, character constants, sizeof expressions, and floating
constants that are the immediate operands of casts. Cast operators in an integral constant ex-
pression shall only convert arithmetic types to integral types, except as part of an operand to the
sizeof operator.

More latitude is permitted for constant expressions in initializers. Such a constant expression
shall evaluate to one of the following:

— an arithmetic constant expression;

— a null pointer constant;

— an address constant, or

— an address constant for an object type plus or minus an integral constant expression.

An arithmetic constant expression shall have arithmetic type and shall only have operands that
are integer constants, floating constants, enumeration constants, and sizeof expressions. Cast
operators in an arithmetic constant expression shall only convert arithmetic types to arithmetic
types, except as part of an operand to the sizeof operator.

An address constant is a pointer to an lvalue designating an object of static storage duration,
or to a function designator; it shall be created explicitly, using the unary & operator, or implicitly,
by the use of an expression of array or function type. The array-subscript [] and member-access .
and -> operators, the address & and indirection * unary operators, and pointer casts may be used

53The operand of a sizeof operator is not evaluated (6.3.3.4), and thus any operator in 6.3 may be used.

54An integral constant expression must be used to specify the size of a bit-field member of a structure, the value
of an enumeration constant, the size of an array, or the value of case constant. Further constraints that apply to
the integral constant expressions used in conditional-inclusion preprocessing directives are discussed in 6.8.1.

68

in the creation of an address constant, but the value of an object shall not be accessed by use of
these operators.

An implementation may accept other forms of constant expressions.

The semantic rules for the evaluation of a constant expression are the same as for nonconstant
expressions.55

Forward references: initialization (6.5.7).

55Thus, in the following initialization:

static int i = 2 || 1 / 0;

the expression is a valid integral expression with value one.

69

6.5 Declarations
Syntax

declaration:
declaration-specifiers init-declarator-listopt ;

declaration-specifiers:
storage-class-specifier declaration-specifiersopt
type-specifier declaration-specifiersopt
type-qualifier declaration-specifiersopt

init-declarator-list:
init-declarator
init-declarator-list , init-declarator

init-declarator:
declarator
declarator = initializer

Constraints

A declaration shall declare at least a declarator, a tag, or the members of an enumeration.

If an identifier has no linkage, there shall be no more than one declaration of the identifier (in
a declarator or type specifier) with the same scope and in the same name space, except for tags as
specified in 6.5.2.3.

All declarations in the same scope that refer to the same object or function shall specify
compatible types.

Semantics

A declaration specifies the interpretation and attributes of a set of identifiers. A declaration that
also causes storage to be reserved for an object or function named by an identifier is a definition.56

The declaration specifiers consist of a sequence of specifiers that indicate the linkage, storage
duration, and part of the type of the entities that the declarators denote. The init-declarator-list is
a comma-separated sequence of declarators, each of which may have additional type information,
or an initializer, or both. The declarators contain the identifiers (if any) being declared.

If an identifier for an object is declared with no linkage, the type for the object shall be complete
by the end of its declarator, or by the end of its init-declarator if it has an initializer.

Forward references: declarators (6.5.4), enumeration specifiers (6.5.2.2), initialization (6.5.7),
tags (6.5.2.3).

56Function definitions have a different syntax, described in 6.7.1.

70

6.5.1 Storage-class specifiers

Syntax

storage-class-specifier:
typedef

extern

static

auto

register

Constraints

At most, one storage-class specifier may be given in the declaration specifiers in a declaration.57

Semantics

The typedef specifier is called a “storage-class specifier” for syntactic convience only; it is
discussed in 6.5.6. The meanings of the various linkages and storage durations were discussed in
6.1.2.2 and 6.1.2.4.

A declaration of an identifier for an object with storage-class specifier register suggests that
access to the object be as fast as possible. The extent to which such suggestions are effective is
implementation-defined.58

The declaration of an identifier for a function that has block scope shall have no explicit
storage-class specifier other than extern.

Forward references: type definitions (6.5.6).

6.5.2 Type specifiers

Syntax

type-specifier:
void

char

short

int

long

float

double

signed

unsigned

struct-or-union-specifier
enum-specifier
typedef-name

57See “future language directions” (6.9.3).

58The implementation may treat any register declaration simply as an auto declaration. However, whether

or not addressable storage is actually used the address of any part of an object declared with storage-class specifier
register may not be computed, either explicitly (by use of the unary & operator as discussed in 6.3.3.2) or implicitly
(by converting an array name to a pointer as discussed in 6.2.2.1). Thus the only operator that can be applied to
an array declared with storage-class specifier register is sizeof.

71

Constraints

Each list of type specifiers shall be one of the following sets (delimited by commas, when there
is more than one set ob a line); the type specifiers may occur in any order, possibly intermixed
with the other declaration specifiers.

— void

— char

— signed char

— unsigned char

— short, signed short, short int, or signed short int

— unsigned short, or unsigned short int

— int, signed, signed int, or no type specifiers

— unsigned, or unsigned int

— long, signed long, long int, or signed long int

— unsigned long, or unsigned long int

— float

— double

— long double

— struct-or-union specifier

— enum-specifier

— typedef-name

Semantics

Specifiers for structures, unions, and enumerations are discussed in 6.5.2.1 through 6.5.2.3.
Declarations of typedef names are discussed in 6.5.6. The characterstics of the other types are
discussed in 6.1.2.5.

Each of the above comma-separated sets designates the same type, except that for bit-fields,
the type signed int (or signed) may differ from int (or no type specifiers).

Forward references: enumeration specifiers (6.5.2.2), structure and union specifiers (6.5.2.1),
tags (6.5.2.3), type definitions (6.5.6).

6.5.2.1 Structure and union specifiers

Syntax

struct-or-union-specifier:
struct-or-union identifieropt { struct-declaration-list }
struct-or-union identifier

struct-or-union:
struct

union

72

struct-declaration-list:
struct-declaration
struct-declaration-list struct-declaration

struct-declaration:
specifier-qualifier-list struct-declarator list ;

specifier-qualifier-list:
type-specifier specifier-qualifier-listopt
type-qualifier specifier-qualifier-listopt

struct-declarator-list:
struct-declarator
struct-declarator-list , struct-declarator

struct-declarator:
declarator
declaratoropt : constant-expression

Constraints

A structure or union shall not contain a member with incomplete or function type. Hence it
shall not contain an instance of itself (but may contain a pointer to an instance of itself).

The expression that specifies the width of a bit-field shall be an integral constant expression
that has nonnegative value that shall not exceed the number of bits in an ordinary object of
compatible type. If the value is zero, the declaration shall have no declarator.

Semantics

As discussed in 6.1.2.5, a structure is a type consisting of a sequence of named members, whose
storage is allocated in an ordered sequence, and a union is a type consisting of a sequence of named
members, whose storage overlap.

Structure and union specifiers have the same form.

The presence of a struct-declaration-list in a struct-or-union-specifier declares a new type,
within a translation unit. The struct-declaration-list is a sequence of declarations for the members
of the structure or union. If the struct-declaration-list contains no named members, the behavior
is undefined. The type is incomplete until after the } that terminates the list.

A member of a structure or union may have any object type. In addition, a member may be
declared to consist of a specified number of bits (including a sign bit, if any). Such a member is
called bit-field;59 its width is preceded by a colon.

A bit-field shall have a type that is a qualified or unqualified version of one of int, unsigned
int, or signed int. Whether the high-order bit position of a (possibly qualified) “plain” int

bit-field is treated as a sign bit is implementation-defined. A bit-field is interpreted as an integral
type consisting of the specified number of bits.

An implementation may allocate any addressable storage unit large enough to hold a bit-field.
If enough space remains, a bit-field that immediately follows another bit-field in a structure shall
be packed into adjacent bits of the same unit. If insufficient space remains, whether a bit-field that

59The unary & (address-of) operator may not be applied to a bit-field object; thus, there are no pointers to or
arrays of bit-field objects.

73

does not fit is put into the next unit or overlaps adjacent units is implementation-defined. The
order of allocation of bit-fields within a unit (high-order to low-order or low-order to high-order)
is implementation-defined. The alignment of the addressable storage unit is unspecified.

A bit-field declaration with no declarator, but only a colon and a width, indicates an unnamed
bit-field.60 As a special case of this, a bit-field structure member with a width of 0 indicates that
no further bit-field is to be packed into the unit in which the previous bit-field, if any, was placed.

Each non-bit-field member of a structure or union object is aligned in an implementation-
defined manner appropriate to its type.

Within a structure object, the non-bit-field members and the units in which bit-fields reside
have addresses that increase in the order in which they are declared. A pointer to a structure
object, suitably converted, points to its initial member (or if that member is a bit-field, then to
the unit in which it resides), and vice versa. There may therefore be unnamed padding within a
structure object, but not at its beginning, as necessary to achieve the appropriate alignment.

The size of a union is sufficient to contain the largest of its members. The value of at most one
of the members can be stored in a union object at any time. A pointer to a union object, suitably
converted, points to each of its members (or if a member is a bit-field, then to the unit in which it
resides), and vice versa.

There may also be unnamed padding at the end of a structure or union, as necessary to achieve
the appropriate alignment were the structure or union to be an element of an array.

Forward references: tags (6.5.2.3).

6.5.2.2 Enumeration specifiers

Syntax

enum-specifier:
enum identifieropt { enumerator-list }
enum identifier

enumerator-list:
enumerator
enumerator-list , enumerator

enumerator:
enumeration-constant
enumeration-constant = constant-expression

Constraints

The expression that defines the value of an enumeration constant shall be an integral constant
expression that has a value representable as an int.

Semantics

The identifiers in an enumerator list are declared as constants that have type int and may
appear wherever such are permitted.61 An enumerator with = defines its enumeration constant as
the value of the constant expression. If the first enumerator has no =, the value of its enumeration

60An unnamed bit-field structure member is useful for padding to conform to externally imposed layouts.
61Thus, the identifiers of enumeration constants declared in the same scope shall all be distinct from each other

and from other identifiers declared in ordinary declarators.

74

constant is 0. Each subsequent enumerator with no = defined its enumeration constant as the value
of constant expression obtained by adding 1 to the value of the previous enumeration constant.
(The use of enumerators with = may produce enumeration constants with values that duplicate
other values in the same enumeration.) The enumerators of an enumeration are also known as its
members.

Each enumerated type shall be compatible with an integer type, the choice of type is imple-
mentation-defined.

Example

enum hue { chartreuse, burgundy, claret=20, winedark };

/*...*/

enum hue col, *cp;

/*...*/

col = claret;

cp = &col;

/*...*/

/*...*/ (*cp != burgundy) /*...*/

makes hue the tag of an enumeration, and then declares col as an object that has that type
and cp as a pointer to an object that has that type. The enumerated values are in the set { 0, 1,
20, 21 }.
Forward references: tags (6.5.2.3).

6.5.2.3 Tags

Semantics

A type specifier of the form

struct-or-union identifier { struct-declaration-list }

or

enum identifier { enumerator-list }

declares the identifier to be the tag of the structure, union, or enumeration specified by the list.
The list defines the structure content, union content, or enumeration content. If this declaration
of the tag is visible, a subsequent declaration that uses the tag and that omits the bracketed list
specifies the declared structure, union, or enumerated type. Subsequent declarations in the same
scope shall omit the bracketed list.

If a type specifier of the form

struct-or-union identifier

occurs prior to the declaration that defines the content, the structure or union is an incomplete
type.62 It declares a tag that specifies a type that may be used only when the size of an object of
the specified type is not needed.63 If the type is to be completed, another declaration of the tag in

62A similar construction with enum does not exist and is not necessary as there can be no mutual dependencies
between the declaration of an enumerated type and any other type.

63It is not needed, for example, when a typedef name is declared to be a specifier for a structure or union, or
when a pointer to or a function returning a structure or union is being declared. (See incomplete types in 6.1.2.5.)
The specification shall be complete before such a function is called or defined.

75

the same scope (but not in an enclosed block, which declares a new type known only within that
block) shall define the content. A declaration of the form

struct-or-union identifier ;

specifies a structure or union types and declares a tag, both visible only within the scope in which
the declaration occurs. It specifies a new type distinct from any type with the same tag in an
enclosing scope (if any).

A type specifier of the form

struct-or-union { struct-declaration-list }

or

enum { enumerator-list }

specifies a new structure, union, or enumerated type, within the translation unit, that can only be
referred to by the declaration of which it is a part.64

Examples

1. This mechanism allows declaration of a self-referential structure.

struct tnode {

int count;

struct tnode *left, *right;

};

specifies a structure that contains an integer and two pointers to objects of the same type.
Once this declaration has been given, the declaration

struct tnode s, *sp;

declares s to be an object of the given type and sp to be a pointer to an object of the given
type. With these declarations, the expression sp->left refers to the left struct tnode pointer
of the object to which sp points; the expression s.right->count designates the count member
of the right struct node pointed to from s.

The following alternative formulation uses the typedef mechanism:

typedef struct tnode TNODE;

struct tnode {

int count;

TNODE *left, *right;

};

TNODE s, *sp;

2. To illustrate the use of prior declaration of a tag to specify a pair of mutually referential
structures, the declarations

struct s1 { struct s2 *s2p; /*...*/ }; /* D1 */

struct s2 { struct s1 *s1p; /*...*/ }; /* D2 */

64Of course, when the declaration is of a typedef name, subsequent declarations can make use of the typedef
name to declare objects having the specified structure, union, or enumerated type.

76

specify a pair of structures that contain pointers to each other. Note, however, that if s2 were
already declared as a tag in an enclosing scope, the declaration D1 would refer to it, not to the
tag s2 declared in D2. To eliminate this context sensitivity, the declaration

struct s2;

may be inserted ahead of D1. This declares a new tag s2 in the inner scope; the declaration D2

then completes the specification of the new type.

Forward references: type definitions (6.5.6).

6.5.3 Type qualifiers

Syntax

type-qualifier:
const

volatile

Constraints

The same type qualifier shall not appear more than once in the same specifier list or qualifier
list, either directly or via one or more typedefs.

Semantics

The properties associated with qualified types are meaningful only for expressions that are
lvalues.65

If an attempt is made to modify an object with a const-qualified type through use of an lvalue
with non-const-qualified type, the behavior is undefined. If an attempt is made to refer to an
object defined with a volatile-qualified type through use of an lvalue with non-volatile-qualified
type, the behavior is undefined.66

An object that has volatile-qualified type may be modified in ways unknown to the implementa-
tion or have other unknown side effects. Therefore any expression referring to such an object shall
be evaluated strictly according to the rules of the abstract machine, as described in 5.1.2.3. Fur-
thermore, at every sequence point the value last stored in the object shall agree with that prescribed
by the abstract machine, except as modified by the unknown factors mentioned previously.67 What
constitutes an access to an object that has volatile-qualified type is implementation-defined.

If the specification of an array type includes any type qualifiers, the element type is so-qualified,
not the array type. If the specification of a function type includes any type qualifiers, the behavior
is undefined.68

65The implementation may place a const object that is not volatile in a read-only region of storage. Moreover,
the implementation need not allocate storage for such an object if its address is never used.

66This applies to those objects that behave as if they were defined with qualified types, even if they are never
actually defined as objects in the programs (such as an object at a memory-mapped input/output address).

67A volatile declaration may be used to describe an object corresponding to a memory-mapped input/output
port or an object accessed by an asynchronously interrupting function. Actions on objects so declared shall not be

“optimized out” by an implementation or reordered except as permitted by the rules for evaluating expressions.
68Both of these can only occur through the use of typedefs.

77

For two qualified types to be compatible, both shall have the identically qualified version of a
compatible type; the order of type qualifiers within a list of specifiers or qualifiers does not affect
the specified type.

Examples

1. An object declared

extern const volatile int real_time_clock;

may be modifiable by hardware, but cannot be assigned to, incremented, or decremented.

2. The following declarations and expressions illustrate the behavior when type qualifiers modify
an aggregate type:

const struct s { int mem; } cs = { 1 };

struct s ncs; /* the object ncs is modifiable */

typedef int A[2][3];

const A a = {{4, 5, 6}, {7, 8, 9}}; /* array of array of const int */

int *pi;

const int *pci;

ncs = cs; /* valid */

cs = ncs; /* violates modifiable lvalue constraint for = */

pi = &ncs.mem; /* valid */

pi = &cs.mem; /* violates type constraints for = */

pci = &cs.mem; /* valid */

pi = a[0]; /* invalid a[0] has type “const int *” */

6.5.4 Declarators

Syntax

declarator:
pointeropt direct-declarator

direct-declarator:
identifier
(declarator)
direct-declarator [constant-expressionopt]

direct-declarator (parameter-type-list)
direct-declarator (identifier-listopt)

pointer:
* type-qualifier-listopt
* type-qualifier-listopt pointer

type-qualifier-list:
type-qualifier
type-qualifier-list type-qualifier

parameter-type-list:
parameter-list
parameter-list , ...

78

parameter-list:
parameter-declaration
parameter-list , parameter-declaration

parameter-declaration:
declaration-specifiers declarator
declaration-specifiers abstract-declaratoropt

identifier list:
identifier
identifier-list , identifier

Semantics

Each declarator declares one identifier, and asserts that when an operand of the same form as
the declarator appears in an expression, it designates a function or object with the scope, storage
duration, and type indicated by the declaration specifiers.

In the following subclauses, consider a declaration

T D1

where T contains the declaration specifiers that specify a type, T (such as int) and D1 is a declarator
that contains an identifier ident. The type specified for the identifier ident in the various forms of
declarator is described inductively using this notation.

If, in the declaration “T D1,” D1 has the form

identifier

then the type specified for ident is T .

If, in the declaration “T D1,” D1 has the form

(D)

then ident has the type specified by the declaration “T D1.” Thus, a declarator in parentheses is
identical to the unparenthesized declarator, but the binding of complex declarators may be altered
by parentheses.

Environmental limits

The implementation shall allow the specification of types that have at least 12 pointer, array,
and function declarators (in any valid combinations) modifying an arithmetic, a structure, a union,
or an incomplete type, either directly or via one or more typedefs.

Forward references: type definitions (6.5.6).

6.5.4.1 Pointer declarators

Semantics

If, in the declaration “T D1,” D1 has the form

* type-qualifier-listopt D

and the type specified for indent in the declaration “T D” is “derived-declarator-type-list T,” then
the type specified for ident is “derived-declarator-type-list type-qualifier-list pointer to T .” For each
type qualifier in the list, ident is a so-qualified pointer.

79

For two pointer types to be compatible, both shall be identically qualified and both shall be
pointers to compatible types.

Example

The following pair of declarations demonstrates the difference between a “variable pointer to
a constant value” and a “constant pointer to a variable value.”

const int *ptr_to_constant;

int *const constant_ptr;

The contents of an object pointed to by ptr to constant shall not be modified through that
pointer, but ptr to constant itself may be changed to point to another object. Similarly, the
contents of the int pointed to by constant ptr may be modified, but constant ptr itself shall
always point to the same location.

The declaration of the constant pointer constant ptr may be clarified by including a definition
for the type “pointer to int.”

typedef int *int_ptr;

const int_ptr constant_ptr;

declares constant ptr as an object that has type “const-qualified pointer to int.”

6.5.4.2 Array declarators

Constraints

The expression delimited by [and] (which specifies the size of an array) shall be an integral
constant expression that has a value greater than zero.

Semantics

If, in the declaration “T D1,” D1 has the form

D[constant-expressionopt]

and the type specified for ident in the declaration “T D” is “derived-declaration-type-list T,” then
the type specified for ident is “derived-declaration-type-list array of T.”69 If the size is not present,
the array type is an incomplete type.

For two array types to be compatible, both shall have compatible element types, and if both
size specifiers are present, they shall have the same value.

Examples

1. float fa[11], *afp[17];

declares an array of float numbers and an array of pointers to float numbers.

2. Note the distinction between the declarations

extern int *x;

extern int y[];

The first declares x to be a pointer to int; the second declares y to be an array of int of
unspecified size (an incomplete type), the storage for which is defined elsewhere.

Forward references: function definitions (6.7.1), initialization (6.5.7)

69When several “array of” specifications are adjacent, a multidimensional array is declared.

80

6.5.4.3 Function declarators (including prototypes)

Constraints

A function declarator shall not specify a return type that is a function type or an array type.

The only storage-class specifier that shall occur in a parameter declaration is register.

An identifier list in a function declarator that is not part of a function definition shall be empty.

Semantics

If, in the declaration “T D1,” D1 has the form

D(parameter-type-list)

or

D(identifier-listopt)

and the type specified for ident in the declaration “T D” is “derived-declarator-type-list T,” then
the type specified for ident is “derived-declaration-type-list function returning T.”

A parameter type list specifies the types of, and may declare identifiers for, the parameters of
the function. If the list terminates with an ellipsis (, ...), no information about the number or
types of the parameters after the comma is supplied.70 The specical case of void as the only item
in the list specifies that the function has no parameters.

In a parameter declaration, a single typedef name in parentheses is taken to be an abstract
declarator that specifies a function with a single parameter, not as redundant parentheses around
the identifier for a declarator.

The storage-class specifier in the declaration specifiers for a parameter declaration, if present,
is ignored unless the declared parameter is one of the members of the parameter type list for a
function definition.

An identifier list declares only the identifiers of the parameters of the function. An empty
list in a function declarator that is part of a function definition specifies that the function has
no parameters. The empty list in a function declarator that is not part of a function definition
specifies that no information about the number or types of the parameters is supplied.71

For two function types to be compatible, both shall specify compatible return types.72 Moreover,
the parameter type list, if both are present, shall agree in the number of parameters and in use of
the ellipsis terminator; corresponding parameters shall have compatible types. If one type has a
parameter type list and the other type is specified by a function declarator that is not part of a
function definition and that contains an empty identifier list, the parameter list shall not have an
ellipsis terminator and the type of each parameter shall be compatible with the type that results
from the application of the default argument promotions. If one type has a parameter type list
and the other type is specified by a function definition that contains a (possibly empty) identifier
list, both shall agree in the number of parameters, and the type of each prototype parameter shall
be compatible with the type that results from the application of the default argument promotions

70The macros defined in the <stdarg.h> header (7.8) may be used to access arguments that correspond to the
ellipsis.

71See “future language directions” (6.9.4).

72If both function types are “old style,” parameter types are not compared.

81

to the type of the corresponding identifier. (For each parameter declared with function or array
type, its type for these comparisons is the one that results from conversion to a pointer type, as
in 6.7.1. For each parameter declared with qualified type, its type for these comparisons is the
unqualified version of its declared type.)

Examples

1. The declaration

int f(void), *fip(), (*pfi)();

declares a function f with no parameters returning an int, a function fip with no parameter
specification returning a pointer to an int, and a pointer pfi to a function with no parameter
specification returning an int. It is especially useful to compare the last two. The binding
of *fip() is *(fip()), so that the declaration suggests, and the same construction in an
expression requires: the calling of a function fip, and the using indirection through the pointer
result to yield an int. In the declarator (*pfi)(), the extra parentheses are necessary to
indicate that indirection through a pointer to a function yields a function designator, which is
then used to call the function: it returns an int.

If the declaration occurs outside of any function, the identifiers have file scope and external
linkage. If the declaration occurs inside a function, the identifiers of the functions f and
fip have block scope and either internal or external linkage (depending on what file scope
declarations for these identifiers are visible), and the identifier of the pointer pfi has block
scope and no linkage.

2. The declaration

int (*apfi[3])(int *x, int *y);

declares an array apfi of three pointers to functions returning int. Each of these functions has
two parameters that are pointers to int. The identifiers x and y are declared for descriptive
purposes only and go out of scope at the end of the declaration of apfi.

3. The declaration

int (*fpfi(int (*)(long), int))(int, ...);

declares a function fpfi that returns a pointer to a function returning int. The function
fpfi has two parameters: a pointer to a function returning an int (with one parameter of
type long), and an int. The pointer returned by fpfi points to a function that has one int

parameter and accepts zero or more additional arguments of any type.

Forward references: function definitions (6.7.1), type names (6.5.5).

6.5.5 Type names

Syntax

type-name:
specifier-qualifier-list abstract-declaratoropt

abstract-declarator:
pointer
pointeropt direct-abstract-declarator

82

direct-abstract-declarator:
(abstract-declarator)
direct-abstract-declaratoropt [constant-expressionopt]

direct-abstract-declaratoropt (parameter-type-listopt)

Semantics

In several contexts, it is desired to specify a type. This is accomplished using a type name, which
is syntactically a declaration for a function or an object of that type that omits the identifier.73

Example

The constructions

(a) int

(b) int *

(c) int *[3]

(d) int (*)[3]

(e) int *()

(f) int (*)(void)

(g) int (*const [])(unsigned int, ...)

name respectively the types (a) int, (b) pointer to int, (c) array of three pointers to int,
(d) pointer to an array of three ints, (e) function with no parameter specification returning a
pointer to int, (f) pointer to function with no parameters returning an int, and (g) array of
an unspecified number of constant pointers to functions, each with one parameter that has type
unsigned int and an unspecified number of other parameters, returning an int.

6.5.6 Type definitions

Syntax

typedef-name:
identifier

Semantics

In a declaration whose storage-class specifier is typedef, each declarator defines an identifier to
be a typedef name that specifies the type specified for the identifier in the way described in 6.5.4.
A typedef declaration does not introduce a new type, only a synonym for the type so specified.
That is, in the following declarations:

typedef T type-ident;

type_ident D;

type ident is defined as a typedef name with the type specified by the declaration specifiers in T

(known as T), and the identifier D has the type “derived-declarator-type-list T” where the derived-
declarator-type-list is specified by the declarators of D. A typedef name shares the same name space
as other identifiers declared in ordinary declarators. If the identifier is redeclared in an inner scope
or is declared as a member of a structure or union in the same or an inner scope, the type specifiers
shall not be omitted in the inner declaration.

73As indicated by the syntax, empty parentheses in a type name are interpreted as “function with no parameter
specification” rather than redundant parentheses around the omitted identifier.

83

Examples

1. After

typedef int MILES, KLICKSP();

typedef struct { double re, im; } complex;

the constructions

MILES distance;

extern KLICKSP *metricp;

complex x;

complex z, *zp;

are all valid declarations. The type of distance is int, that of metricp is “pointer to function
with no parameter specification returning int,” and that of x and z is the specified structure;
zp is a pointer to such a structure. The object distance has a type compatible with any other
int object.

2. After the declarations

typedef struct s1 { int x; } t1, *tp1;

typedef struct s2 { int x; } t2, *tp2;

type t1 and the type pointed to by tp1 are compatible. Type t1 is also compatible with
type struct s1, but not compatible with the types struct s2, t2, the type pointed to by
tp2, and int.

3. The following obscure constructions

typedef signed int t;

typedef int plain;

struct tag {

unsigned t:4;

const t:5;

plain r:5;

};

declare a typedef name t with type signed int, a typedef name plain with type int, and a
structure with three bit-field members, one named t that contains values in the range [0,15],
an unnamed const-qualified bit-field which (if it could be accessed) would contain values in
at least the range [–15,+15]. (The choice of range is implementation-defined.) The first two
bit-field declarations differ in that unsigned is a type specifier (which forces t to be the name
of a structure member), while const is a type qualifier (which modifies t which is still visible
as a typedef name). If these declarations are followed in an inner scope by

t f(t (t));

long t;

then a function f is declared with type “function returning signed int with one unnamed
parameter with type pointer to function returning signed int with one unnamed parameter
with type signed int,” and identifier t with type long.

4. On the other hand, typedef names can be used to improve code readability. All three of the
following declarations of the signal function specify exactly the same type, the first without
making use of any typedef names.

84

typedef void fv(int), (*pfv)(int);

void (*signal(int, void (*)(int)))(int);

fv *signal(int, fv *);

pfv signal(int, pfv);

Forward references: the signal function (7.7.1.1).

6.5.7 Initialization

Syntax

initializer:
{ initializer-list }
{ initializer-list , }

initializer-list:
initializer
initializer-list , initializer

Constraints

There shall be no more initializers in an initializer list than there are objects to be initialized.

The type of the entity to be initialized shall be an object type or an array of unknown size.

All the expressions in an initializer list for an object that has static storage duration or in an
initializer list for an object that has aggregate or union type shall be constant expressions.

If the declaration of an identifier has block scope, and the identifier has external or internal
linkage, the declaration shall have no initializer for the identifier.

Semantics

An initializer specifies the initial value stored in an object.

All unnamed structure or union members are ignored during initialization.

If an object that has automatic storage duration is not initialized explicitly, its value is indeter-
minate.74 If an object that has static storage duration is not initialized explicitly, it is initialized
implicitly as if every member that has arithmetic type were assigned 0 and every member that has
pointer type were assigned a null pointer constant.

The initializer for a scalar shall be a single expression, optionally enclosed in braces. The initial
value of the object is that of the expression, the same type constraints and conversions as for simple
assignment apply, taking the type of the scalar to be the unqualified version of its declared type.

A brace-enclosed initializer for a union object initializes the member that appears first in the
declaration list of the union type.

The initializer for a structure or union object that has automatic storage duration either shall
be an initializer list as described below, or shall be a single expression that has compatible structure
or union type. In the latter case, the initial value of the object is that of the expression.

The rest of this subclause deals with initializers for objects that have aggregate or union type.

An array of character type may be initialized by a character string literal, optionally enclosed
in braces. Successive characters of the character string literal (including the terminating null
character if there is room or if the array is of unknown size) initialize the elements of the array.

74Unlike in the base document, any automatic duration object may be initialized.

85

An array with element type compatible with wchar t may be initialized by a wide string literal,
optionally enclosed in braces. Successive codes of the wide string literal (including the terminating
zero-valued code if there is room or if the array is of unknown size) initialize the elements of the
array.

Otherwise, the initializer for an object that has aggregate type shall be a brace-enclosed list of
initializers for the members of the aggregate, written in increasing subscript or member order; and
the initializer for an object that has union type shall be a brace-enclosed initializer for the first
member of the union.

If the aggregate contains members that are aggregates or unions, or if the first member of a union
is an aggregate or union, the rules apply recursively to the subaggregates or contained unions. If
the initializer of a subaggregate or contained union begins with a left brace, the initializers enclosed
by that brace and its matching right brace initialize the members of the subaggregate or the first
member of the contained union. Otherwise, only enough initializers from the list are taken to
account for the members of the subaggregate or the first member of the contained union; any
remaining initializers are left to initialize the next member of the aggregate of which the current
subaggregate or contained union is a part.

If there are fewer initializers in a brace-enclosed list than there are members of an aggregate,
the remainder of the aggregate shall be initialized implicitly the same as objects that have static
storage duration.

If an array of unknown size is initialized, its size is determined by the number of initializers
provided for its elements. At the end of its initializer list, the array no longer has incomplete type.

Examples

1. The declaration

int x[] = { 1, 3, 5 };

defines and initializes x as a one-dimensional array object that has three elements, as no size
was specified and there are three initializers.

2. The declaration

float y[4][3] = {

{ 1, 3, 5 },

{ 2, 4, 6 },

{ 3, 5, 7 },

};

is a definition with a fully bracketed initialization: 1, 3, and 5 initialize the first row of y
(the array object y[0]), namely y[0][0], y[0][1], and y[0][2]. Likewise the next two lines
initialize y[1] and y[2]. The initializer ends early, so y[3] is initialized with zeros. Precisely
the same effect could have been achieved by

float y[4][3] = }

1, 3, 5, 2, 4, 6, 3, 5, 7

};

The initializer for y[0] does not begin with a left brace, so three items from the list are used.
Likewise the next three are taken successively for y[1] and y[2].

86

3. The declaration

float z[4][3] = {

{ 1 }, { 2 }, { 3 }, { 4 }

};

initializes the first column of z as specified and initializes the rest with zeros.

4. The declaration

struct { int a[3], b; } w[] = { { 1 }, 2 };

is a definition with an inconsistently bracketed initialization. It defines an array with two
element structures: w[0].a[0] is 1 and w[1].a[0] is 2; all the other elements are zero.

5. The declaration

short q[4][3][2] = {

{ 1 },

{ 2 , 3 },

{ 4, 5, 6 }

};

contains an incompletely but consistently bracketed initialization. It defines a three-dimensional
array object: q[0][0][0] is 1, q[1][0][0] is 2, q[1][0][1] is 3, and 4, 5, and 6 initialize
q[2][0][0], q[2][0][1], and q[2][1][0], respectively; all the rest are zero. The initializer
for q[0][0] does not begin with a left brace, so up to six items from the current list may be
used. There is only one, so the values for the remaining five elements are initialized with zero.
Likewise, the initializers for q[1][0] and q[2][0] do not begin with a left brace, so each uses
up to siz items, initializing their respective two-dimensional subaggregates. If there has been
more than six items in any of the lists, a diagnostic message would have been issued. The same
initialization result could have been achieved by:

short q[4][3][2] = {

1, 0, 0, 0, 0, 0,

2, 3, 0, 0, 0, 0,

4, 5, 6

};

or by:

short q[4][3][2] = {

{

{ 1 },

},

{

{ 2, 3 },

},

{

{ 4, 5 },

{ 6 },

}

};

in a fully bracketed form.

87

Note that the fully bracketed and minimally bracketed forms of initialization are, in general,
less likely to cause confusion.

6. One form of initialization that completes array types involves typedef names. Given the decla-
ration

typedef int A[];

the declaration

A a = {1, 2}, b = {3, 4, 5};

is identical to

int a[] = {1, 2}, b[] = {3, 4, 5};

due to the rules for incomplete types.

7. The declaration

char s[] = "abc", t[3] = "abc";

defines “plain” char array objects s and t whose elements are initialized with character string
literals. This declaration is identical to

char s[] = { ’a’, ’b’, ’c’, ’\0’ },

t[] = { ’a’, ’b’, ’c’ };

The contents of the arrays are modifiable. On the other hand, the declaration

char *p = "abc";

defines p with type “pointer to char” that is initialized to point to an object with type “array
of char” with length 4 whose elements are initialized with a character string literal. If an
attempt is made to use p to modify the contents of the array, the behavior is undefined.

Forward references: common definitions <stddef.h> (7.1.5).

88

6.6 Statements
Syntax

statement:
labeled-statement
compound-statement
expression-statement
selection-statement
iteration-statement
jump-statement

Semantics

A statement specifies an action to be performed. Except as indicated, statements are executed
in sequence.

A full expression is an expression that is not part of another expression. Each of the following is
a full expression: an initializer; the expression in an expression statement; the controlling expression
of a selection statement (if or switch); the controlling expression of a while or do statement;
each of the three (optional) expressions of a for statement; the (optional) expression in a return

statement. The end of a full expression is a sequence point.

Forward references: expression and null statements (6.6.3), selection statements (6.6.4), itera-
tion statements (6.6.5), the return statement (6.6.6.4).

6.6.1 Labeled statements

Syntax

labeled-statement:
identifier : statement
case constant-expression : statement
default : statement

Constraints

A case or default label shall appear only in a switch statement. Further constraints on such
labels are discussed under the switch statement.

Semantics

Any statement may be preceded by a prefix that declares an identifier as a label name. Labels
in themselves do not alter the flow of control, which continues unimpeded across them.

Forward references: the goto statement (6.6.6.1), the switch statement (6.6.4.2).

6.6.2 Compound statement, or block

Syntax

compound-statement:
{ declaration-listopt statement-listopt }

declaration-list:
declaration
declaration-list declaration

89

statement-list:
statement
statement-list statement

Semantics

A compound statement (also called a block) allows a set of statements to be grouped into one
syntactic unit, which may have its own set of declarations and initializations (as discussed in
6.1.2.4). The initializers of objects that have automatic storage duration are evaluated and the
values are stored in the objects in the order their declarations appear in the translation unit.

6.6.3 Expression and null statements

Syntax

expression-statement:
expressionopt ;

Semantics

The expression in an expression statement is evaluated as a void expression for its side effects.75

A null statement (consisting of just a semicolon) performs no operation.

Examples

1. If a function call is evaluated as an expression statement for its side effects only, the discarding
of its value may be made explicit by converting the expression to a void expression by means
of a cast:

int p(int);

/*...*/

(void)p(0);

2. In the program fragment

char *s;

/*...*/

while (*s++ != ’\0’)

;

a null statement is used to supply an empty loop body to the iteration statement.

3. A null statement may also be used to carry a label just before the closing } of a compound
statement

while (loop1) {

/*...*/

while (loop2) {

/*...*/

if (want_out)

goto end_loop1;

/*...*/

75Such as assignments, and function calls which have side effects.

90

}

/*...*/

end_loop1: ;

}

Forward references: iteration statements (6.6.5).

6.6.4 Selection statements

Syntax

selection-statement:
if (expression) statement
if (expression) statement else statement
switch (expression) statement

Semantics

A selection statement selects among a set of statements depending on the value of a controlling
expression.

6.6.4.1 The if statement

Constraints

The controlling expression of an if statement shall have scalar type.

Semantics

In both forms, the first substatement is executed if the expression compares unequal to 0. In
the else form, the second statement is executed if the expression compares equal to 0. If the first
substatement is reached via a label, the second substatement is not executed.

An else is associated with the lexically immediately preceding else less if that is in the same
block (but not in an enclosed block).

6.6.4.2 The switch statement

Constraints

The controlling expression of a switch statement shall have integral type. The expression of
each case label shall be an integral constant expression. No two of the case constant expressions
in the same switch statement shall have the same value after conversion. There may be at most
one default label in a switch statement. (Any enclosed switch statement may have a default

label or case constant expressions with values that duplicate case constant expressions in the
enclosing switch statement.)

Semantics

A switch statement causes control to jump to, into, or past the statement that is the switch
body, depending on the value of a controlling expression, and on the presence of a default label
and the values of ane case labels on or in the switch body. A case or default label is accessible
only within the closest enclosing switch statement.

The inegral promotions are performed in the controlling expression. The constant expression in
each case label is converted to the promoted type of the controlling expression. If a converted value
matches that of the promoted controlling expression, control jumps to the statement following the
matches case label. Otherwise, if there is a default label, control jumps to the labeled statement.

91

If no converted case constant expression matches and there is no default label, no part of the
switch body is executed.

Implementation limits

As discussed previously (5.2.4.1), the implementation may limit the number of case values in
a switch statement.

Example

In the artificial program fragment

switch (expr)

{

int i = 4;

f(i);

case 0:

i = 17; /* falls through into default code */

default:

printf("%d\n", i);

}

the object whose identifier is i exists with automatic storage duration (within the block) but is
never initialized, and thus if the controlling expression has a nonzero value, the call to the printf
function will access an indeterminate value. Similarly, the call to the function f cannot be reached.

6.6.5 Iteration statements

Syntax

iteration-statement:
while (expression) statement
do statement while (expression) ;

for (expressionopt ; expressionopt ; expressionopt) statement

Constraints

the controlling expression of an iteration statement shall have scalar type.

Semantics

An iteration statement causes a statement called the loop body to be executed repeatedly until
the controlling expression compares equal to 0.

6.6.5.1 The while statement

The evaluation of the controlling expression takes place before each execution of the loop body.

6.6.5.2 The do statement

The evaluation of the controlling expression takes place after each execution of the loop body.

6.6.5.3 The for statement

Except for the behavior of a continue statement in the loop body, the statement

for (expression-1 ; expression-2 ; expression-3) statement

92

ane the sequence of statements

expression-1 ;

while (expression-2) {

statement
expression-3 ;

}

are equivalent.76

Both expression-1 and expression-3 may be omitted. Each is evaluated as a void expression.
An omitted expression-2 is replaced by a nonzero constant.

Forward references: the continue statement (6.6.6.2).

6.6.6 Jump statements

Syntax

jump-statement:
goto identifier ;
continue ;

break ;

return expressionopt ;

Semantics

A jump statement causes an unconditional jump to another place.

6.6.6.1 The goto statement

Constraints

The identifier in a goto statement shall name a label located somewhere in the enclosing
function.

Semantics

A goto statement causes an unconditional jump to the statement prefixed by the named label
in the enclosing function.

Example

It is sometimes convenient to jump into the middle of a complicated set of statements. The
following outline presents one possible approach to a problem based on these three assumptions:

1. The general initialization code accesses objects only visible to the current function.

2. The general initialization code is too large to warrant duplication.

3. The code to determine the next operation must be at the head of the loop. (To allow it to be
reached by continue statements, for example.)

76Thus, expression-1 specifies initialization for the loop; expression-2, the controlling expression, specifies an
evaluation made before each iteration, such that execution of the loop continues until the expression compares equal
to 0; expression-3 specifies an operation (such as incrementing) that is performed after each iteration.

93

/*...*/

goto first time;

for (;;) {

/* determine next operation */

/*...*/

if (need to reinitialize) {

/* reinitialize-only code */

/*...*/

first time:

/* general initialization code */

/*...*/

continue;

}

/* handle other operations */

/*...*/

}

6.6.6.2 The continue statement

Constraints

A continue statement shall appear only in or as a loop body.

Semantics

A continue statement causes a jump to the loop-continuation portion of the smallest enclosing
iteration statement; that is, to the end of the loop body. More precisely, in each of the statements

while (/*...*/) { do { for (/*...*/) {

/*...*/ /*...*/ /*...*/

continue; continue; continue;

/*...*/ /*...*/ /*...*/

contin: ; contin: ; contin: ;

} } while (/*...*/); }

unless the continue statement shown is in an enclosed iteration statement (in which case it is
interpreted within that statement), it is equivalent to goto contin;.77

6.6.6.3 The break statement

Constraints

A break statement shall appear only in or as a switch body or loop body.

Semantics

A break statement terminates execution of the smallest enclosing switch or iteration state-
ment.

6.6.6.4 The return statement

Constraints

A return statement with an expression shall not appear in a function whose return type is
void.

77Following the contin: label is a null statement.

94

Semantics

A return statement terminates execution of the current function and returns control to its
caller. A function may have any number of return statements, with and without expressions.

If a return statement with an expression is executed, the value of the expression is returned
to the caller as the value of the function call expression. If the expression has a type different from
that of the function in which it appears, it is converted as if it were assigned to an object of that
type.

If a return statement without an expression is executed, and the value of the function call
is used by the caller, the behavior is undefined. Reaching the } that terminates a function is
equivalent to executing a return statement without an expression.

95

6.7 External definitions
Syntax

translation-unit:
external-declaration
translation-unit external-declaration

external-declaration
function-definition
declaration

Constraints

The storage-class specifiers auto and register shall not appear in the declaration specifiers in
an external declaration.

There shall be no more than one external definition for each identifier declared with internal
linkage in a translation unit. Moreover, if an identifier declared with internal linkage is used in an
expression (other than as a part of the operand of a sizeof operator), there shall be exactly one
external definition for the identifier in the translation unit.

Semantics

As discussed in 5.1.1.1, the unit of program text after preprocessing is a translation unit, which
consists of a sequence of external declarations. These are described as “external” because they
appear outside any function (and hence have file scope). As discussed in 6.5, a declaration that
also causes storage to be reserved for an object or a function named by the identifier is a definition.

An external definition is an external declaration that is also a definition of a function or an
object. If an identifier declared with external linkage is used in an expression (other than as part
of the operand of a sizeof operator), somewhere in the entire program there shall be exactly one
external definition for the identifier; otherwise, there shall be no more than one.78

6.7.1 Function definitions

Syntax

function-definition:
declaration-specifiersopt declarator declaration-listopt compound-statement

Constraints

The identifier declared in a function definition (which is the name of the function) shall have
a function type, as specified by the declarator portion of the function definition.79

78Thus, if an identifier declared with external linkage is not used in an expression, there need be no external
definition for it.

79The intent is that the type category in a function definition cannot be inherited from a typedef:

typedef int F(void); /* type F is “function of no arguments returning int” */

F f, g; /* f and g both have type compatible with F */

F f { /*...*/ } /* WRONG syntax/constraint error */

F g() { /*...*/ } /* WRONG declares that g returns a function */

int f(void) { /*...*/ } /* RIGHT f has type compatible with F */

int g() { /*...*/ } /* RIGHT g has type compatible with F */

96

The return type of a function shall be void or an object type other than array.

The storage-class specifier, if any, in the declaration specifiers shall be either extern or static.

If the declarator includes a parameter type list, the declaration of each parameter shall include
an identifier (except for the special case of a parameter list consisting of a single parameter of type
void, in which case there shall not be an identifier). No declaration list shall follow.

If the declarator includes an identifier list, each declaration in the declaration list shall have at
least one declarator, and those declarators shall declare only identifiers from the identifier list. An
identifier declared as a typedef name shall not be redeclared as a parameter. The declarations in the
declaration list shall contain no storage-class specifier other than register and no initializations.

Semantics

The declarator in a function definition specifies the name of the function being defined and the
identifiers of its parameters. If the declarator includes a parameter type list, the list also specifies
the types of all the parameters; such a declarator also serves as a function prototype for later calls
to the same function in the same translation unit. If the declarator includes an identifier list,80

the types of the parameters may be declared in a following declaration list. Any parameter that is
not declared has type int.

If a function that accepts a variable number of arguments is defined without a parameter type
list that ends with the ellipsis notation, the behavior is undefined.

On entry to the function the value of each argument expression shall be converted to the type of
its corresponding parameter, as if by assignment to the parameter. Array expressions and function
designators as arguments are converted to pointers before the call. A declaration of a parameter
as “array of type” shall be adjusted to “pointer to type,” and a declaration of a parameter as
“function returning type” shall be adjusted to “pointer to function returning type,” as in 6.2.2.1.
The resulting parameter type shall be an object type.

Each parameter has automatic storage duration. Its identifier is an lvalue.81 The layout of the
storage for parameters is unspecified.

Examples

1. In the following:

extern int max(int a, int b)

{

return a > b ? a : b;

}

extern is the storage-class specifier and int is the type specifier (each of which may be omitted
as those are the defaults), max(int a, int b) is the function declarator; and

F *e(void) { /*...*/ } /* e returns a pointer to a function */

F *((e))(void) { /*...*/ } /* same parentheses irrelevant */

int (*fp)(void); /* fp points to a function that has type F */

F *Fp; /* Fp points to a function that has type F */

80See “future language directions” (6.9.5).

81A parameter is in effect declared at the head of the compound statement that constitutes the function body,
and therefore may not be redeclared in the function body (except in an enclosed block).

97

{ return a > b ? a : b; }

is the function body. The following similar definition uses the identifier-list form for the pa-
rameter declarations:

extern int max(a, b)

int a, b;

{

return a > b ? a : b;

}

Here int a, b; is the declaration list for the parameters, which may be omitted because
those are the defaults. The difference between these two definitions is the the first form acts
as a prototype declaration that forces conversion of the arguments of subsequent calls to the
function, whereas the second form may not.

2. To pass one function to another, one might say

int f(void);

/*...*/

g(f);

Note that f must be declared explicitly in the calling function, as its appearance in the expres-
sion g(f) was not followed by (. Then the definition of g might read

g(int (*funcp)(void))

{

/*...*/ (*funcp)() /* or funcp() ... */

}

or, equivalently,

g(int func(void))

{

/*...*/ func() /* or (*func)() ... */

}

6.7.2 External object definitions

Semantics

If the declaration of an identifier for an object has file scope and an initializer, the declaration
is an external definition for the identifier.

If the declaration of an identifier for an object that has file scope without an initializer, and
without a storage-class specifier or with the storage-class specifier static, constitutes a tentative
definition. If a translation unit contains one or more tentative definitions for an identifier, and the
translation unit contains no external definition for that identifier, then the behavior is exactly as
if the translation unit contains a file scope declaration of that identifier, with the composite type
as of the end of the translation unit, with an initializer equal to 0.

If the declaration of an identifier for an object is a tentative definition and has internal linkage,
the declared type shall not be an incomplete type.

98

Example

int i1 = 1; /* definition, external linkage */

static int i2 = 2; /* definition, internal linkage */

extern int i3 = 3; /* definition, external linkage */

int i4; /* tentative definition, external linkage */

static int i5; /* tentative definition, internal linkage */

int i1; /* valid tentative definition, refers to previous */

int i2; /* 6.1.2.2 renders undefined, linkage disagreement */

int i3; /* valid tentative definition, refers to previous */

int i4; /* valid tentative definition, refers to previous */

int i5; /* 6.1.2.2 renders undefined, linkage disagreement */

extern int i1; /* refers to previous, whose linkage is external */
extern int i2; /* refers to previous, whose linkage is internal */
extern int i3; /* refers to previous, whose linkage is external */
extern int i4; /* refers to previous, whose linkage is external */
extern int i5; /* refers to previous, whose linkage is internal */

99

6.8 Preprocessing directives
Syntax

preprocessing-file:
groupopt

group:
group-part
group group-part

group-part:
pp-tokensopt new-line
if-section
control-line

if-section:
if-group elif-groupsopt else-groupopt endif-line

if-group:
if constant-expression new-line groupopt

ifdef identifier new-line groupopt

ifndef identifier new-line groupopt

elif-groups:
elif-group
elif-groups elif-group

elif-group:
elif constant-expression new-line groupopt

else-group:
else new-line groupopt

endif-line:
endif new-line

control-line:
include pp-tokens new-line
define identifier replacement-list new-line
define identifier lparen identifier-listopt) replacement-list new-line
undef identifier new-line
line pp-tokens new-line
error pp-tokensopt new-line
pragma pp-tokensopt new-line
new-line

lparen:
the left parenthesis character without preceding white-space

replacement-list:
pp-tokensopt

100

pp-tokens:
preprocessing-token
pp-tokens preprocessing-token

new-line:
the new-line character

Description

A preprocessing directive consists of a sequence of preprocessing tokens that begins with a #

preprocessing token that is either the first character in the source file (optionally after white space
containing no new-line characters) or that follows white space containing at least one new-line
character, and is ended by the next new-line character.82

Constraints

The only white-space characters that shall appear between preprocessing tokens within a pre-
processing directive (from just after the introducing # preprocessing token through just before the
terminating new-line character) are space and horizontal-tab (including spaces that have replaced
comments or possibly other white-space characters in translation phase 3).

Semantics

The implementation can process and skip sections of source files conditionally, include other
source files, and replace macros. These capabilities are called preprocessing, because conceptually
they occur before translation of the resulting translation unit.

The preprocessing tokens within a preprocessing directive are not subject to macro expansion
unless otherwise stated.

6.8.1 Conditional inclusion

Constraints

The expression that controls conditional inclusion shall be an integral constant expression
except that: it shall not contain a cast; identifiers (including those lexically identical to keywords)
are interpreted as described below;83 and it may contain unary operator expressions of the form

defined identifier

or

defined (identifier)

which evaluate to 1 if the identifier is currently defined as a macro name (that is, if it is predefined
or if it has been the subject of a #define preprocessing directive without an intervening #undef

directive with the same subject identifier), 0 if it is not.

Each preprocessing token that remains after all macro replacements have occurred shall be in
the lexical form of a token.

82Thus, preprocessing directives are commonly called “lines.” These “lines” have no other syntactic significance
as all white space is equivalent except in certain situations during preprocessing (see the # character string literal
creation operator in 6.8.3.2, for example).

83Because the controlling constant expression is evaluated during translation phase 4, all identifiers either are
or are not macro names — there simply are no keywords, enumeartion constants, etc.

101

Semantics

Preprocessing directives of the forms

if constant-expression new-line groupopt

elif constant-expression new-line groupopt

check whether the controlling constant expression evaluates to nonzero.

Prior to evaluation, macro invocations in the list of preprocessing tokens that will become
the controlling constant expression are replaced (except for those macro names modified by the
defined unary operator), just as in normal text. If the token defined is generated as a result
of this replacement process or use of the defined unary operator does not match one of the two
specified forms prior to macro replacement, the behavior is undefined. After all replacements due
to macro expansion and the defined unary operator have been performed, all remaining identifers
are replaced with the pp-number 0, and then each preprocessing token is converted into a token.
The resulting tokens comprise the controlling constant expression which is evaluated according
to the rules of 6.4 using arithmetic that has at least the ranges specified in 5.2.4.2, except that
int and unsigned int act as if they have the same representation as, respectively, long and
unsigned long. This includes interpreting character constants, which may involve converting
escape sequences into execution character set members. Whether the numeric value for these
character constants matches the value obtained when an identical character constant occurs in an
expression (other than within a #if or #elif directive) is implementation-defined.84 Also, whether
a single-character character constant may have a negative value is implementation-defined.

Preprocessing directives of the forms

ifdef identifier new-line groupopt

ifndef identifier new-line groupopt

check whether the identifier is or is not currently defined as a macro name. Their conditions are
equivalent to #if defined identifier and #if !defined identifier respectively.

Each directive’s condition is checked in order. If it evaluates to false (zero), the group that it
controls is skipped: directives are processed only through the name that determines the directive
in order to keep track of the level of nested conditionals; the rest of the directive’s preprocessing
tokens are ignored, as are the other preprocessing tokens in the group. Only the first group whose
control condition evaluates to true (nonzero) is processed. If none of the conditions evaluates to
true, and there is a #else directive, the group controlled by the #else is processed; lacking a
#else directive, all the groups until the #endif are skipped.85

Forward references: macro replacement (6.8.3), source file inclusion (6.8.2).

84Thus, the constant expression in the following #if directive and if statement is not guaranteed to evaluate
to the same value in these two contexts

#if ’z’ - ’a’ == 25

if (’z’ - ’a’ == 25)
85As indicated by the syntax, a preprocessing token shall not follow a #else or #endif directive before the

terminating new-line character. However, comments may appear anywhere in a source file, including within a
preprocessing directive.

102

6.8.2 Source file inclusion

Constraints

A #include directive shall identify a header or source file that can be processed by the imple-
mentation.

Semantics

A preprocessing directive of the form

include <h-char-sequence> new-line

searches a sequence of implementation-defined places for a header identified uniquely by the speci-
fied sequence between the < and > delimiters, and causes the replacement of that directive by the en-
tire contents of the header. How the places are specified or the header identified is implementation-
defined.

A preprocessing directive of the form

include "q-char-sequence" new-line

causes the replacement of that directive by the entire contents of the source file identified by
the specified sequence between the " delimiters. The named source file is searched for in an
implementation-defined manner. If this search is not supported, or if the search fails, the directive
is reprocessed as if it read

include <h-char-sequence> new-line

with the identical contained sequence (including > characters, if any) from the original directive.

A preprocessing directive of the form

include pp-tokens new-line

(that does not match one of the two previous forms) is permitted. The preprocessing tokens after
include in the directive are processed just as in normal text. (Each identifier currently defined as
a macro name is replaced by its replacement list of preprocessing tokens.) The directive resulting
after all replacements shall match one of the two previous forms.86 The method by which a sequence
of preprocessing tokens between a < and a > preprocessing token pair or a pair of " characters is
combined into a single header name preprocessing token is implementation-defined.

There shall be an implementation-defined mapping between the delimited sequence and the
external source file name. The implementation shall provide unique mappings for sequences con-
sisting of one or more letters (as defined in 5.2.1) followed by a period (.) and a single letter. The
implementation may ignore the distinctions of alphabetical case and restrict the mapping to six
significant characters before the period.

A #include preprocessing directive may appear in a source file that has been read because of
a #include directive in another file, up to an implementation-defined nesting limit (see 5.2.4.1).

86Note that adjacent string literals are not concatenated into a single string literal (see the translation phases
in 5.1.1.2); thus, an expression that results in two string literals is an invalid directive.

103

Examples

1. The most common uses of #include directives are as in the following:

#include <stdio.h>

#include "myprog.h"

2. This illustrates macro-replaced #include directives:

#if VERSION == 1

#define INCFILE "vers1.h"

#elif VERSION == 2

#define INCFILE "vers2.h" /* and so on. */
#else

#define INCFILE "versN.h"

#endif

#include INCFILE

Forward references: macro replacement (6.8.3).

6.8.3 Macro replacement

Constraints

Two replacement lists are identical if and only if the preprocessing tokens in both have the
same number, ordering, spelling, and white-space separation, where all white-space separations
are considered identical.

An identifier currently defined as a macro without use of lparen (an object-like macro) may
be redefined by another #define preprocessing directive provided that the second definition is an
object-like macro definition and the two replacement lists are identical.

An identifier currently defined as a macro using lparen (a function-like macro) may be redefined
by another #define preprocessing directive provided that the second definition is a function-like
macro definition that has the same number and spelling of parameters, and the two replacement
lists are identical.

The number of arguments in an invocation of a function-like macro shall agree with the number
of parameters in the macro definition, and there shall exist a) preprocessing token that terminates
the invocation.

A parameter identifier in a function-like macro shall be uniquely declared within its scope.

Semantics

The identifier immediately following the define is called the macro name. There is one name
space for macro names. Any white-space characters preceding or following the replacement list of
preprocessing tokens are not considered part of the replacement list for either form of macro.

If a # preprocessing token, followed by an identifier, occurs lexically at the point at which a
preprocessing directive could begin, the identifier is not subject to macro replacement.

104

A preprocessing directive of the form

define identifier replacement-list new-line

defines an object-like macro that causes each subsequent instance of the macro name87 to be re-
placed by the replacement list of preprocessing tokens that constiute the remainder of the directive.
The replacement list is then rescanned for more macro names as specified below.

A preprocessing directive of the form

define identifier lparen identifier-listopt) replacement-list new-line

defines a function-like macro with arguments, similar syntactically to a function call. The param-
eters are specified by the optional list of identifiers, whose scope extends from their declaration in
the identifier list until the new-line character that terminates the #define preprocessing directive.
Each subsequent instance of the function-like macro name followed by a (as the next preprocess-
ing token introduces the sequence of preprocessing tokens that is replaced by the replacement list
in the definition (an invocation of the macro). The replaced sequence of preprocessing tokens is
terminated by the matching) preprocessing token, skipping intervening matched pairs of left and
right parenthesis preprocessing tokens. Within the sequence of preprocessing tokens making up an
invocation of a function-like macro, new-line is considered a normal white-space character.

The sequence of preprocessing tokens bounded by the outside-most matching parentheses forms
the list of arguments for the function-like macro. The individual arguments within the list are
separated by comma preprocessing tokens, but comma preprocessing token between matching inner
parentheses do not separate arguments. If (before argument substitution) any argument consists of
no preprocessing tokens, the behavior is undefined. If there are sequences of preprocessing tokens
within the list of arguments that would otherwise act as preprocessing directives, the behavior is
undefined.

6.8.3.1 Argument substitution

After the arguments for the invocation of a function-like macro have been identified, argument
substitution takes place. A parameter in the replacement list, unless preceded by a # or ## prepro-
cessing token or followed by a ## preprocessing token (see below), is replaced by the corresponding
argument after all macros contained therein have been expanded. Before being substituted, each
argument’s preprocessing tokens are completely macro replaced as if they formed the rest of the
translation unit; no other preprocessing tokens are available.

6.8.3.2 The # operator

Constraints

Each # preprocessing token in the replacement list for a function-like macro shall be followed
by a parameter as the next preprocessing token in the replacement list.

Semantics

If, in the replacement list, a parameter is immediately preceded by a # preprocessing token, both
are replaced by a single character string literal preprocessing token that contains the spelling of
the preprocessing token sequence for the corresponding argument. Each occurrence of white space

87Since, by macro-replacement time, all character constants and string literals are preprocessing tokens, not
sequences possibly containing identifier-like subsequences (see 5.1.1.2, translation phases), they are never scanned
for macro names or parameters.

105

between the argument’s preprocessing tokens becomes a single space character in the character
string literal. White space before the first preprocessing token and after the last preprocessing
token comprising the argument is deleted. Otherwise, the original spelling of each preprocessing
token in the argument is retained in the character string literal, except for special handling for
producing the spelling of string literals and character constants: a \ character is inserted before each
" and \ character of a character constant or string literal (including the delimiting " characters).
If the replacement that results is not a valid character string literal, the behavior is undefined. The
order of evaluation of # and ## operators is unspecified.

6.8.3.3 The ## operator

Constraints

A ## preprocessing token shall not occur at the beginning or at the end of a replacement list
for either form of macro definition.

Semantics

If, in the replacement list, a parameter is immediately preceded or followed by a ## prepro-
cessing token, the parameter is replaced by the corresponding argument’s preprocessing token
sequence.

For both object-like and function-like macro invocations, before the replacement list is reexam-
ined for more macro names to replace, each instance of a ## preprocessing token in the replacement
list (not from an argument) is deleted and the preceding preprocessing token is concatenated with
the following preprocessing token. If the result is not a valid preprocessing token, the behavior is
undefined. The resulting token is available for further macro replacement. The order of evaluation
of ## operators is unspecified.

6.8.3.4 Rescanning and further replacement

After all parameters in the replacement list have been substituted, the resulting preprocessing
token sequence is rescanned with all subsequent preprocessing tokens of the source file for more
macro names to replace.

If the name of the macro being replaced is found during this scan of the replacement list (not
including the rest of the source file’s preprocessing tokens), it is not replaced. Further, if any
nested replacements encounter the name of the macro being replaced, it is not replaced. These
nonreplaced macro name preprocessing tokens are no longer available for further replacement even
if they are later (re)examined in contexts in which that macro name preprocessing token would
otherwise have been replaced.

The resulting completely macro-replaced preprocessing token sequence is not processed as a
preprocessing directive even if it resembles one.

6.8.3.5 Scope of macro definitions

A macro definition lasts (independent of block structure) until a corresponding #undef directive
is encountered or (if none is encountered) until the end of the translation unit.

A preprocessing directive of the form

undef identifier new-line

causes the specified identifier no longer to be defined as a macro name. It is ignored if the specified
identifier is not currently defined as a macro name.

106

Examples

1. The simplest use of this facility is to define a “manifest constant,” as in

#define TABSIZE 100

int table[TABSIZE];

2. The following defines a function-like macro whose value is the maximum of its arguments. It
has the advantages of working for any compatible types of the arguments and of generating
in-line code without the overhead of function calling. It has the disadvantages of evaluating
one or the other of its arguments a second time (including side effects) and generating more
code than a function if invoked several times. It also cannot have its address taken, as it has
none.

#define max(a, b) ((a) > (b) ? (a) : (b))

The parentheses ensure that the arguments and the resulting expression are bound properly.

3. To illustrate the rules for redefinition and reexamination, the sequence

#define x 3

#define f(a) f(x * (a))

#undef x

#define x 2

#define g f

#define z z[0]

#define h g(~

#define m(a) a(w)

#define w 0,1

#define t(a) a

f(y+1) + f(f(z)) % t(t(g)(0) + t)(1);

g(x+(3,4)-w) | h 5) & m

(f)^m(m);

results in

f(2 * (y+1)) + f(2 * (f(2 * (z[0])))) % f(2 * (0)) + t(1);

f(2 * (2+(3,4)-0,1)) | f(2 * (~ 5)) & f(2 * (0,1))^m(0,1);

4. To illustrate the rules for creating character string literals and concatenating tokens, the se-
quence

#define str(s) # s

#define xstr(s) str(s)

#define debug(s, t) printf("x" # s "= %d, x" # t "= %s", \

x ## s, x ## t)

#define INCFILE(n) vers ## n /* from previous #include example */

#define glue(a, b) a ## b

#define xglue(a, b) glue(a, b)

#define HIGHLOW "hello"

#define LOW LOW ", world"

107

results in

printf("x" "1" "= %d, x" "2" "= %s", x1, x2);

fputs("strncmp(\"abc\\0d\", \"abc\", ’\\4’) == 0" ": @\n", s);

#include "vers2.h" (after macro replacement, before file access)
"hello";

"hello" ", world"

or, after concatenation of the character string literals:

printf("x1= %d, x2= %s", x1, x2);

fputs("strncmp(\"abc\\0d\", \"abc\", ’\\4’) == 0: @\n", s);

#include "vers2.h" (after macro replacement, before file access)
"hello";

"hello, world"

Space around the # and ## tokens in the macro definition is optional.

5. And finally, to demonstrate the redefinition rules, the following sequence is valid

#define OBJ_LIKE (1-1)

#define OBJ_LIKE /* white space */ (1-1) /* other */

#define FTN_LIKE(a) (a)

#define FTN_LIKE(a)(/* note the white space */ \

a /* other stuff on this line

*/)

But the following redefinitions are invalid.

#define OBJ_LIKE (0) /* different token sequence */

#define OBJ_LIKE (1 - 1) /* different white space */

#define FTN_LIKE(b) (a) /* different parameter usage */

#define FTN_LIKE(b) (b) /* different parameter spelling */

6.8.4 Line control

Constraints

The string literal of a #line directive, if present, shall be a character string literal.

Semantics

The line number of the current source line is one greater than the number of new-line characters
read or introduced in translation phase 1 (5.1.1.2) while processing the source file to the current
token.

A preprocessing directive of the form

line digit-sequence new-line

causes the implementation to behave as if the following sequence of source lines begins with a
source line that has a line number as specified by the digit sequence (interpreted as a decimal
integer). The digit sequence shall not specify zero, nor a number greater than 32767.

108

A preprocessing directive of the form

line digit-sequence "s-char-sequenceopt" new-line

sets the line number similarly and changes the presumed name of the source file to be the contents
of the character string literal.

A preprocessing directive of the form

line pp-tokens new-line

(that does not match one of the two previous forms) is permitted. The preprocessing tokens after
line on the directive are processed just as in normal text (each identifier currently defined as a
macro name is replaced by its replacement list of preprocessing tokens). The directive resulting after
all replacements shall match one of the two previous forms and is then processed as appropriate.

6.8.5 Error directive

Semantics

A preprocessing directive of the form

error pp-tokensopt new-line

causes the implementation to produce a diagnostic message that includes the specified sequence of
preprocessing tokens.

6.8.6 Pragma directive

Semantics

A preprocessing directive of the form

pragma pp-tokensopt new-line

causes the implementation to behave in an implementation-defined manner. Any pragma that is
not recognized by the implementation is ignored.

6.8.7 Null directive

Semantics

A preprocessing directive of the form

new-line

has no effect.

6.8.8 Predefined macro names

The following macro names shall be defined by the implementation.

LINE The line number of the current source line (a decimal constant).

FILE The presumed name of the source file (a character string literal).

DATE The date of translation of the source file (a character string literal of the form
"Mmm dd yyyy", where the names of the months are the same as those generated by the
asctime function, and the first character of dd is a space character if the value is less
than 10). If the date of translation is not available, an implementation-defined valid
date shall be supplied.

109

TIME The time of translation of the source file (a character string literal of the form
"hh:mm:ss" as in the time generated by the asctime function). If the time of translation
is not available, an implementation-defined valid time shall be supplied.

STDC The decimal constant 1, intended to indicate a conforming implementation.

The values of the predefined macros (except for LINE and FILE) remain constant
throughout the translation unit.

None of these macro names, nor the identifier defined, shall be the subject of a #define or a
#undef preprocessing directive. All predefined macro names shall begin with a leading underscore
followed by an uppercase letter or a second underscore.

Forward references: the asctime function (7.12.3.1).

110

6.9 Future language directions

6.9.1 External names

Restriction of the significance of an external name to fewer than 31 characters or to only one
case is an obsolescent feature that is a concession to existing implementations.

6.9.2 Character escape sequences

Lowercase letters as escape sequences are reserved for future standardization. Other characters
may be used in extensions.

6.9.3 Storage-class specifiers

The placement of a storage-class specifier other than at the beginning of the declaration spec-
ifiers in a declaration is an obsolescent feature.

6.9.4 Function declarators

The use of function definitions with separate parameter identifier and declaration lists (not
prototype-format parameter type and identifier declarators) is an obsolescent feature.

6.9.5 Array parameters

The use of two parameters declared with an array type (prior to their adjustment to pointer
type) in separate lvalues to designate the same object is an obsolescent feature.

111

7 Library
7.1 Introduction
7.1.1 Definition of terms

A string is a contiguous sequence of characters terminated by and including the first null
character. A “pointer to” a string is a pointer to its initial (lowest addressed) character. The
“length” of a string is the number of characters preceding the null character and its “value” is the
sequence of the values of the contained characters, in order.

A letter is a printing character in the execution character set corresponding to any of the 52
required lowercase and uppercase letters in the source character set, listed in 5.2.1.

The decimal-point character is the character used by functions that convert floating-point num-
bers to or from character sequences to denote the beginning of the fractional part of such character
sequences.88 It is represented in the text and examples by a period, but may be changed by the
setlocale function.

Forward references: character handling (7.3), the setlocale function (7.4.1.1).

7.1.2 Standard headers

Each library function is declared in a header,89 whose contents are made available by the
#include preprocessing directive. The header declares a set of related functions, plus any necessary
types and additional macros needed to facilitate their use.

The standard headers are

<assert.h> <locale.h> <stddef.h>

<ctype.h> <math.h> <stdio.h>

<errno.h> <setjmp.h> <stdlib.h>

<float.h> <signal.h> <string.h>

<limits.h> <stdarg.h> <time.h>

If a file with the same name as one of the above < and > delimited sequences, not provided as
part of the implementation, is placed in any of the standard places for a source file to be included,
the behavior is undefined.

Headers may be included in any order, each may be included more than once in a given
scope, with no effect different from being included only once, except that the effect of including
<assert.h> depends on the definition of NDEBUG. If used, a header shall be included outside of any
external declaration or definition, and it shall first be included before the first reference to any of
the functions or objects it declares, or to any of the types or macros it defines. However, if the
identifier is declared or defined in more than one header, the second and subsequent associated
headers may be included after the initial reference to the identifier. The program shall not have
any macros with names lexically identical to keywords currently defined prior to the inclusion.

Forward references: diagnostics (7.2).

88The functions that make use of the decimal-point character are localeconv, fprintf, fscanf, printf, scanf,
sprintf, sscanf, vfprintf, vprintf, vsprintf, atof, and strtod.

89A header is not necessarily a source file, nor are the < and > delimited sequences in header names necessarily
valid source file names.

112

7.1.3 Reserved identifiers

Each header declares or defines all identifiers listed in its associated subclause, and option-
ally declares or defines identifiers listed in its associated future library directions subclause and
identifiers which are always reserved either for any use or for use as file scope identifiers.

— All identifiers that begin with an underscore and either an uppercase letter or another under-
score are always reserved for any use.

— All identifiers that begin with an underscore are always reserved for use as identifiers with file
scope in both the ordinary identifier and tag name spaces.

— Each macro name listed in any of the following subclauses (including the future library direc-
tions) is reserved for any use if any of its associated headers is included.

— All identifiers with external linkage in any of the following subclauses (including the future
library directions) are always reserved for use as identifiers with external linkage.90

— Each identifier with file scope listed in any of the following subclauses (including the future
library directions) is reserved for use as an identifier with file scope in the same name space if
any of its associated headers is included.

No other identifiers are reserved. If the program declares or defines an identifier with the same
name as an identifier reserved in that context (other than as allowed by 7.1.7), the behavior is
undefined.91

7.1.4 Errors <errno.h>

The header <errno.h> defines several macros, all relating to the reporting of error conditions.

The macros are

EDOM

ERANGE

which expand to integral constant expressions with distinct nonzero values, suitable for use in #if

preprocessing directives; and

errno

which expands to a modifiable lvalue92 that has type int, the value of which is set to a positive error
number by several library functions. It is unspecified whether errno is a macro or an identifier
declared with external linkage. If a macro definition is suppressed in order to access an actual
object, or a program defines an identifier with the name errno, the behavior is undefined.

The value of errno is zero at program startup, but is never set to zero by any library function.93

90The list of reserved identifiers with external linkage includes errno, setjmp, and va end.
91Since macro names are replaced whenever found, independent of scope and name space, macro names matching

any of the reserved identifier names must not be defined if an associated header, if any, is included.
92The macro errno need not be the identifier of an object. It might expand to a modifiable lvalue resulting

from a function call (for example, *errno()).

93Thus, a program that uses errno for error checking should set it to zero before a library function call, then
inspect it before a subsequent library function call. Of course, a library function can save the value of errno on
entry and then set it to zero, as long as the original value is restored if errno’s value is still zero just before the
return.

113

The value of errno may be set to nonzero by a library function call whether or not there is an error,
provided the use of errno is not documented in the description of the function in this International
Standard.

Additional macro definitions, beginning with E and a digit or E and an uppercase letter,94 may
also be specified by the implementation.

7.1.5 Limits <float.h> and <limits.h>

The headers <float.h> and <limits.h> define several macros that expand to various limits
and parameters.

The macros, their meanings, and the constraints (or restrictions) on their values are listed in
5.2.4.2.

7.1.6 Common definitions <stddef.h>

The following types and macros are defined in the standard header <stddef.h>. Some are also
defined in other headers, as noted in their respective subclauses.

The types are

ptrdiff_t

which is the signed integral type of the result of subtracting two pointers;

size_t

which is the unsigned integral type of the result of the sizeof operator, and

wchar_t

which is an integral type whose range of values can represent distinct codes for all members of the
largest extended character set specified among the supported locales; the null character shall have
the code value zero and each member of the basic character set defined in 5.2.1 shall have a code
value equal to its value when used as the lone character in an integer character constant.

The macros are

NULL

which expands to an implementation-defined null pointer constant; and

offsetof(type, member-designation)

which expands to an integral constant expression that has type size t, the value of which is the
offset in bytes, to the structure member (designated by member-designator), from the beginning
of its structure (designated by type). The member-designator shall be such that given

static type t;

then the expression &(t.member-designator evaluates to an address constant. (If the specified
member is a bit-field, the behavior is undefined.)

Forward references: localization (7.4).

94See “future library directions” (7.13.1).

114

7.1.7 Use of library functions

Each of the following statements applies unless explicitly stated otherwise in the detailed de-
scriptions that follow. If an argument to a function has invalud value (such as a value outside the
domain of the function, or a pointer outside the address space of the program, or a null pointer),
the behavior is undefined. If a function argument is described being an array, the pointer actually
passed to the function shall have a value such that address computations and accesses to objects
(that would be valid if the pointer did point to the first element of such an array) are in fact valid.
Any function declared in a header may be additionally implemented as a macro defined in the
header, so a library function should not be declared explicitly if its header is included. Any macro
definition of a function can be suppressed locally by enclosing the name of the function in paren-
thesis, because the name is then not followed by the left parenthesis that indicates expansion of a
macro function name. For the same syntactic reason, it is permitted to take the address of a library
function even if it is also defined as a macro.95 The use of #undef to remove any macro definition
will also ensure that an actual function is referred to. Any invocation of a library function that is
implemented as a macro shall expand to code that evaluates each of its arguments exactly once,
fully protected by parentheses where necessary, so it is generally safe to use arbitrary expressions
as arguments. Likewise, those function-like macros described in the following subclauses may be
invoked in an expression anywhere a function with a compatible return type could be called.96

All object-like macros listed as expanding to integral constant expressions shall additionally be
suitable for use in #if preprocessing directives.

Provided that a library function can be declared without reference to any type defined in a
header, it is also permissible to declare the function, either explicitly or implicitly, and use it
without including its associated header. If a function that accepts a variable number of arguments
is not declared (explicitly or by including its associated header), the behavior is undefined.

Example

The function atoi may be used in any of several ways:

— by use of its associated header (possibly generating a macro expansion)

#include <stdlib.h>

const char *str;

/*...*/

i = atoi(str);

95This means that an implementation must provide an actual function for each library function, even if it also
provides a macro for that function.

96Because external identifiers and some macro names beginning with an underscore are reserved, implemen-

tations may provide special semantics for such names. For example, the identifier BUILTIN abs could be used to
indicate generation of in-line code for the abs function. Thus, the appropriate header could specify

#define abs(x) BUILTIN abs(x)

for a compiler whose code generator will accept it.

In this manner a user desiring to guarantee that a given library function such as abs will be a genuine function may
write

#undef abs

whether the implementation’s header provides a macro implementation of abs or a built-in implementation. The
prototype for the function, which precedes and is hidden by any macro definition, is thereby revealed also.

115

— by use of its associated header (assuredly generating a true function reference)

#include <stdlib.h>

#undef atoi

const char *str;

/*...*/

i = atoi(str);

or

#include <stdlib.h>

const char *str;

/*...*/

i = (atoi)(str);

— by explicit declaration

extern int atoi(const char *);

const char *str;

/*...*/

i = (atoi)(str);

— by implicit declaration

const char *str;

/*...*/

i = (atoi)(str);

116

7.2 Diagnostics <assert.h>

The header <assert.h> defines the assert macro and refers to another macro,

NDEBUG

which is not defined by <assert.h>. If NDEBUG is defined as a macro name at the point in the
source file where <assert.h> is included, the assert macro is defined simply as

#define assert(ignore) ((void)0)

The assert macro shall be implemented as a macro, not as an actual function. If the macro
definition is suppressed in order to access an actual function, the behavior is undefined.

7.2.1 Program diagnostics

7.2.1.1 The assert macro

Synopsis

#include <assert.h>

void assert(int expression);

Description

The assert macro puts diagnostics into programs. When it is executed, if expression is
false (that is, compares equal to 0), the assert macro writes information about the particular call
that failed (including the text of the argument, the name of the source file, and the source line
number—the latter are respectively the values of the preprocessing macros FILE and LINE

on the standard error file in an implementation-defined format.97 It then calls the abort function.

Returns

The assert macro returns no value.

Forward references: the abort function (7.10.4.1).

97The message written might be of the form

Assertion failed expression, file xyz, line nnn

117

7.3 Character handling <ctype.h>

The header <ctype.h> declares several functions useful for testing and mapping characters.98

In all cases the argument is an int, the value of which shall be representable as an unsigned char

or shall equal the value of the macro EOF. If the argument has any other value, the behavior is
undefined.

The behavior of these functions is affected by the current locale. Those functions that have
implementation-defined aspects only when not in the "C" locale are noted below.

The term printing character refers to a member of an implementation-defined set of characters,
each of which occupies one printing position on a display device; the term control character refers
to a member of an implementation-defined set of characters that are not printing characters.99

Forward references: EOF (7.9.1), localization (7.4).

7.3.1 Character testing functions

The functions in this subclause return nonzero (true) if and only if the value of the argument
c conforms to that in the description of the function.

7.3.1.1 The isalnum function

Synopsis

#include <ctype.h>

int isalnum(int c);

Description

The isalnum function tests for any character for which isalpha or isdigit is true.

7.3.1.2 The isalpha function

Synopsis

#include <ctype.h>

int isalpha(int c);

Description

The isalpha functions tests for any character for which isupper or islower is true, or any
character that is one of an implementation-defined set of characters for which none of iscntrl,
isdigit, ispunct, or isspace is true. In the "C" locale, isalpha returns true only for the
characters for which isupper or islower is true.

7.3.1.3 The iscntrl function

Synopsis

#include <ctype.h>

int iscntrl(int c);

98See “future library directions” (7.13.2).

99In an implementation that uses the seven-bit ASCII character set, the printing characters are those whose
values lie from 0x20 (space) through 0x7E (tilde); the control characters are those whose values lie from 0 (NUL)
through 0x1F (US), and the character 0x7F (DEL).

118

Description

The iscntrl function tests for any control character.

7.3.1.4 The isdigit function

Synopsis

#include <ctype.h>

int isdigit(int c);

Description

The isdigit function tests for any decimal-digit character (as defined in 5.2.1).

7.3.1.5 The isgraph function

Synopsis

#include <ctype.h>

int isgraph(int c);

Description

The isgraph function tests for any printing character except space (’ ’).

7.3.1.6 The islower function

Synopsis

#include <ctype.h>

int islower(int c);

Description

The islower function tests for any character that is a lowercase letter or is one of an imple-
mentation-defined set of characters for which none of iscntrl, isdigit, ispunct, or isspace is
true. In the "C" locale, islower returns true only for the characters defined as lowercase letters
(as defined in 5.2.1).

7.3.1.7 The isprint function

Synopsis

#include <ctype.h>

int isprint(int c);

Description

The isprint function tests for any printing character including space (’ ’).

7.3.1.8 The ispunct function

Synopsis

#include <ctype.h>

int ispunct(int c);

Description

The ispunct function tests for any printing character that is neither space (’ ’) nor a character
for which isalnum is true.

119

7.3.1.9 The isspace function

Synopsis

#include <ctype.h>

int isspace(int c);

Description

The isspace function tests for any character that is a standard white-space character or is one
of an implementation-defined set of characters for which isalnum is false. The standard white-
space characters are the following: space (’ ’), form feed (’\f’), new line (’\n’), carriage return
(’\r’), horizontal tab (’\t’), and vertical tab (’\v’). In the "C" locale isspace returns true only
for the standard white-space characters.

7.3.1.10 The isupper function

Synopsis

#include <ctype.h>

int isupper(int c);

Description

The isupper function tests for any character that is an uppercase letter or is one of an
implementation-defined set of characters for which none of iscntrl, isdigit, ispunct, or iss-
pace is true. In the "C" locale, isupper returns true only for the characters defined as uppercase
letters (as defined in 5.2.1).

7.3.1.11 The isxdigit function

Synopsis

#include <ctype.h>

int isxdigit(int c);

Description

The isxdigit function tests for any hexadecimal-digit character (as defined in 6.1.3.2).

7.3.2 Character case mapping functions

7.3.2.1 The tolower function

Synopsis

#include <ctype.h>

int tolower(int c);

Description

The tolower function converts an uppercase letter to the corresponding lowercase letter.

Returns

If the argument is a character for which isupper is true and there is a corresponding character
for which islower is true, the tolower function returns the corresponding character; otherwise,
the argument is returned unchanged.

120

7.3.2.2 The toupper function

Synopsis

#include <ctype.h>

int toupper(int c);

Description

The toupper function converts a lowercase letter to the corresponding uppercase letter.

Returns

If the argument is a character for which islower is true and there is a corresponding character
for which isupper is true, the toupper function returns the corresponding character; otherwise,
the argument is returned unchanged.

121

7.4 Localization <locale.h>

The header <locale.h> declares two functions, one type, and defines several macros.

The type is

struct lconv

which contains members related to the formatting numeric values. The structure shall contain at
least the following members, in any order.

char *decimal_point; /* "." */

char *thousands_sep; /* "" */

char *grouping; /* "" */

char *int_curr_symbol; /* "" */

char *currency_symbol; /* "" */

char *mon_decimal_point; /* "" */

char *mon_thousands_sep; /* "" */

char *mon_grouping; /* "" */

char *positive_sign; /* "" */

char *negative_sign; /* "" */

char int_frac_digits; /* CHAR_MAX */

char frac_digits; /* CHAR_MAX */

char p_cs_precedes; /* CHAR_MAX */

char p_sep_by_space; /* CHAR_MAX */

char n_cs_precedes; /* CHAR_MAX */

char n_sep_by_space; /* CHAR_MAX */

char p_sign_posn; /* CHAR_MAX */

char n_sign_posn; /* CHAR_MAX */

The macros defined are NULL (described in 7.1.6); and

LC_ALL

LC_COLLATE

LC_CTYPE

LC_MONETARY

LC_NUMERIC

LC_TIME

which expand to integral constant expressions with distinct values, suitable for use as the first
argument to the setlocale function. Additional macro definitions, beginning with the characters
LC and an uppercase letter,100 may also be specified by the implementation.

100See “future library directions” (7.13.3).

122

7.4.1 Locale control

7.4.1.1 The setlocale function

Synopsis

#include <locale.h>

char *setlocale(int category, const char *locale);

Description

The setlocale function selects the appropriate portion of the program’s locale as specified by
the category and locale arguments. The setlocale function may be used to change or query
the program’s entire current locale or portions thereof. The value LC ALL for category names the
program’s entire locale; the other values for category name only a portion of the program’s locale.
LC COLLATE affects the behavior of the strcoll and strxfrm functions. LC CTYPE affects the
behavior of the character handling functions101 and the multibyte functions. LC MONETARY affects
the monetary formatting information returned by the localeconv function. LC NUMERIC affects
the decimal-point character for the formatted input/output functions and the string conversion
functions, as well as the nonmonetary formatting information returned by the localeconv function.
LC TIME affects the behavior of the strftime function.

A value of "C" for locale specifies the minimal environment for C translation, a value of "" for
locale specifies the implementation-defined native environment. Other implementation-defined
strings may be passed as the second argument to setlocale.

At program startup, the equivalent of

setlocale(LC_ALL, "C");

is executed.

The implementation shall behave as if no library function calls the setlocale function.

Returns

If a pointer to a string is given for locale and the selection can be honored, the setlocale

function returns a pointer to the string associated with the specified category for the new locale. If
the selection cannot be honored, the setlocale function returns a null pointer and the program’s
locale is not changed.

A null pointer for locale causes the setlocale function to return a pointer to the string asso-
ciated with the category for the program’s current locale; the program’s locale is not changed.102

The pointer to string returned by the setlocale function is such that a subsequent call with
that string value and its associated category will restore that part of the program’s locale. The
string pointed to shall not be modified by the program, but may be overwritten by a subsequent
call to the setlocale function.

Forward references: formatted input/output functions (7.9.6), the multibyte character functions
(7.10.7), the multibyte string functions (7.10.8), string conversion functions (7.10.1), the strcoll
function (7.11.4.3), the strftime function (7.12.3.5), the strxfrm function (7.11.4.5).

101The only functions in 7.3 whose behavior is not affected by the current locale are isdigit and isxdigit.

102The implementation must arrange to encode in a string the various categories due to a heterogeneous locale
when category has the value LC ALL.

123

7.4.2 Numeric formatting convention inquiry

7.4.2.1 The localeconv function

Synopsis

#include <locale.h>

struct lconv *localeconv(void);

Description

The localeconv function sets the components of an object with type struct lconv with
values appropriate for the formatting of numeric quantities (monetary and otherwise) according to
the rules of the current locale.

The members of the structure with type char * are pointers to strings, any of which (except
decimal point) can point to "", to indicate that the value is not available in the current locale
or is of zero length. The members with type char are nonnegative numbers, any of which can be
CHAR MAX to indicate that the value is not available in the current locale. The members include
the following:

char *decimal point

The decimal-point character used to format nonmonetary quantities.

char *thousands sep

The character used to separate groups of digits before the decimal-point character in for-
matted nonmonetary quantities.

char *grouping

A string whose elements indicate the size of each group of digits in formatted nonmonetary
quantities.

char *int curr symbol

The international currency symbol applicable to the current locale. The first three charac-
ters contain the alphabetic international currency symbol in accordance with those specified
in ISO 4217-1987. The fourth character (immediately preceding the null character) is the
character used to separate the international currency symbol from the monetary quantity.

char *currency symbol

The local currency symbol applicable to the current locale.

char *mon decimal point

The decimal-point used to format monetary quantities.

char *mon thousands sep

The separator for groups of digits before the decimal-point in formatted monetary quanti-
ties.

char *positive sign

The string used to indicate a nonnegative-valued formatted monetary quantity.

char *negative sign

The string used to indicate a negative-valued formatted monetary quantity.

124

char int frac digits

The number of fractional digits (those after the decimal-point) to be displayed in a inter-
nationally formatted monetary quantity.

char frac digits

The number of fractional digits (those after the decimal-point) to be displayed in a formatted
monetary quantity.

char p cs precedes

Set to 1 or 0 if the currency symbol respectively precedes or succeeds the value for a
nonnegative formatted monetary quantity.

char p sep by space

Set to 1 or 0 if the currency symbol respectively is or is not separated by a space from the
value for a nonnegative formatted monetary quantity.

char n cs precedes

Set to 1 or 0 if the currency symbol respectively precedes or succeeds the value for a
negative formatted monetary quantity.

char n sep by space

Set to 1 or 0 if the currency symbol respectively is or is not separated by a space from the
value for a negative formatted monetary quantity.

char p sign posn

Set to a value indicating the positioning of the positive sign for a nonnegative formatted
monetary quantity.

char n sign posn

Set to a value indicating the positioning of the negative sign for a negative formatted
monetary quantity.

The elements of grouping and mon grouping are interpreted according to the following:

CHAR MAX

No further grouping is to be performed.

0 The previous element is to be repeatedly used for the remainder of the digits.

other The integer value is the number of digits that comprise the current group. The next element
is examined to determine the size of the next group of digits before the current group.

The value of p sign posn and n sign posn is interpreted according to the following:

0 Parentheses surround the quantity and currency symbol.

1 The sign string precedes the quantity and currency symbol.

2 The sign string succeeds the quantity and currency symbol.

3 The sign string immediately precedes the currency symbol.

4 The sign string immediately succeeds the currency symbol.

The implementation shall behave as if no library function calls the localeconv function.

125

Returns

The localeconv function returns a pointer to the filled-in object. The structure pointed to by
the return value shall not be modified by the program, but may be overwritten by a subsequent call
to the localeconv function. In addition, calls to the setlocale function with categories LC ALL,
LC MONETARY, or LC NUMERIC may overwrite the contents of the structure.

Example

The following table illustrates the rules which may well be used by four countries to format
monetary quantities.

Country Positive format Negative format International format

Italy L.1.234 -L.1.234 ITL.1.234

Netherlands F 1.234,56 F -1.234,56 NLG 1.234,56

Norway kr1.234,56 kr1.234,56- NOK 1.234,56

Switzerland SFrs.1,234.56 SFrs.1,234.56C CHF 1,234.56

For these four countries, the respective values for the monetary members of the structure
returned by localeconv are:

Italy Netherlands Norway Switzerland

int curr symbol "ITL." "NLG " "NOK " "CHF "

currency symbol "L." "F" "kr" "SFrs."

mon decimal point "" "," "," "."

mon thousands sep "." "." "." ","

mon grouping "\3" "\3" "\3" "\3"

positive sign "" "" "" ""

negative sign "-" "-" "-" "C"

int frac digits 0 2 2 2

frac digits 0 2 2 2

p cs precedes 1 1 1 1

p sep by space 0 1 0 0

n cs precedes 1 1 1 1

n sep by space 0 1 0 0

p sign posn 1 1 1 1

n sign posn 1 4 2 2

126

7.5 Mathematics <math.h>

The header <math.h> declares several mathematical functions and defines one macro. The
functions take double argument and return double values.103 Integer arithmetic functions and
conversion functions are discussed later.

The macro defined is

HUGE_VAL

which expands to a positive double expression, not necessarily representable as a float.104

Forward references: integer arithmetic functions (7.10.6), the atof function (7.10.1.1), the
strtod function (7.10.1.4).

7.5.1 Treatment of error conditions

The behavior of each of these functions is defined for all representable values of its input
arguments. Each function shall execute as if it were a single operation, without generating any
externally visible exceptions.

For all functions, a domain error occurs if an input argument is outside the domain over which
the mathematical function is defined. The description of each function lists any required domain
errors; an implementation may define additional domain errors, provided that such errors are
consistent with the mathematical definition of the function.105 On a domain error, the function
returns an implementation-defined value; the value of the macro EDOM is stored in errno.

Similarly, a range error occurs if the result of the function cannot be represented as a double

value. If the result overflows (the magnitude of the result is so large that it cannot be represented
in an object of the specified type), the function returns the value of the macro HUGE VAL, with the
same sign (except for the tan function) as the correct value of the function; the value of the macro
ERANGE is stored in errno. If the result underflows (the magnitude of the result is so small that it
cannot be represented in an object of the specified type), the function returns zero; whether the
integer expression errno acquires the value of the macro ERANGE is implementation-defined.

7.5.2 Trigonometric functions

7.5.2.1 The acos function

Synopsis

#include <math.h>

double acos(double x);

Description

The acos function computes the principal value of the arc cosine of x. A domain error occurs
for arguments not in the range [−1,+1].

Returns

The acos function returns the arc cosine in the range [0, π] radians.

103See “future library directions” (7.13.4).

104HUGE VAL can be positive infinity in an implementation that supports infinities.
105In an implementation that supports infinities, this allows infinity as an argument to be a domain error if the

mathematical domain of the function does not include infinity.

127

7.5.2.2 The asin function

Synopsis

#include <math.h>

double asin(double x);

Description

The asin function computes the principal value of the arc sine of x. A domain error occurs for
arguments not in the range [−1,+1].

Returns

The asin function returns the arc sine in the range [0, π] radians.

7.5.2.3 The atan function

Synopsis

#include <math.h>

double atan(double x);

Description

The atan function computes the principal value of the arc tangent of x.

Returns

The atan function returns the arc tangent in the range [−π/2,+π/2] radians.

7.5.2.4 The atan2 function

Synopsis

#include <math.h>

double atan2(double y, double x);

Description

The atan2 function computes the principal value of the arc tangent of y/x, using the signs of
both arguments to determine the quadrant of the return value. A domain error may occur if both
arguments are zero.

Returns

The atan function returns the arc tangent of y/x, in the range [−π,+π] radians.

7.5.2.5 The cos function

Synopsis

#include <math.h>

double cos(double x);

Description

The cos function computes the cosine of x (measured in radians).

Returns

The cos function returns the cosine value.

128

7.5.2.6 The sin function

Synopsis

#include <math.h>

double sin(double x);

Description

The sin function computes the sine of x (measured in radians).

Returns

The sin function returns the sine value.

7.5.2.7 The tan function

Synopsis

#include <math.h>

double tan(double x);

Description

The tan function computes the tangent of x (measured in radians).

Returns

The tan function returns the tangent value.

7.5.3 Hyperbolic functions

7.5.3.1 The cosh function

Synopsis

#include <math.h>

double cosh(double x);

Description

The cosh function computes the hyperbolic cosine of x. A range error occurs if the magnitude
of x is too large.

Returns

The cosh function returns the hyperbolic cosine value.

7.5.3.2 The sinh function

Synopsis

#include <math.h>

double sinh(double x);

Description

The sinh function computes the hyperbolic sine of x. A range error occurs if the magnitude
of x is too large.

Returns

The sinh function returns the hyperbolic sine value.

129

7.5.3.3 The tanh function

Synopsis

#include <math.h>

double tanh(double x);

Description

The tanh function computes the hyperbolic tangent of x.

Returns

The tanh function returns the hyperbolic tangent value.

7.5.4 Exponential and logarithmic functions

7.5.4.1 The exp function

Synopsis

#include <math.h>

double exp(double x);

Description

The exp function computes the exponential function of x. A range error occurs if the magnitude
of x is too large.

Returns

The exp function returns the exponential value.

7.5.4.2 The frexp function

Synopsis

#include <math.h>

double frexp(double value, int *exp);

Description

The frexp function breaks a floating-point number into a normalized fraction and an integral
power of 2. It stores the integer in the int object pointed to by exp.

Returns

The frexp function returns the value x, such that x is a double with magnitude in the interval
[1/2, 1) or zero, and value equals x times 2 raised to the power *exp. If value is zero, both parts
of the result are zero.

7.5.4.3 The ldexp function

Synopsis

#include <math.h>

double ldexp(double x, int exp);

Description

The ldexp function multiplies a floating-point number by an integral power of 2. A range error
may occur.

130

Returns

The ldexp returns the value of x times 2 raised to the power exp.

7.5.4.4 The log function

Synopsis

#include <math.h>

double log(double x);

Description

The log function computes the natural logarithm of x. A domain error occurs if the argument
is negative. A range error may occur if the argument is zero.

Returns

The log function returns the natural logarithm.

7.5.4.5 The log10 function

Synopsis

#include <math.h>

double log10(double x);

Description

The log10 function computes the base-ten logarithm of x. A domain error occurs if the
argument is negative. A range error may occur if the argument is zero.

Returns

The log10 function returns the base-ten logarithm.

7.5.4.6 The modf function

Synopsis

#include <math.h>

double modf(double value, double *iptr);

Description

The modf function breaks the argument value into integral and fractional parts, each of which
has the same sign as the argument. It stores the integral part as a double in the object pointed
to by iptr.

Returns

The modf function returns the signed fractional part of value.

7.5.5 Power functions

7.5.5.1 The pow function

Synopsis

#include <math.h>

double pow(double x, double y);

131

Description

The pow function computes x raised to the power y. A domain error occurs if x is negative
and y is not an integral value. A domain error occurs if the result cannot be represented when x

is zero and y is less than or equal to zero. A range error may occur.

Returns

The pow function returns the value of x raised to the power y.

7.5.5.2 The sqrt function

Synopsis

#include <math.h>

double sqrt(double x);

Description

The sqrt function computes the nonnegative square root of x. A domain error occurs if the
argument is negative.

Returns

The log function returns the value of the square root.

7.5.6 Nearest integer, absolute value, and remainder functions

7.5.6.1 The ceil function

Synopsis

#include <math.h>

double ceil(double x);

Description

The ceil function computes the smallest integral value not less than x.

Returns

The ceil function returns the smallest integral value not less than x, expressed as a double.

7.5.6.2 The fabs function

Synopsis

#include <math.h>

double fabs(double x);

Description

The fabs function computes the absolute value of a floating-point number x.

Returns

The fabs function returns the absolute value of x.

7.5.6.3 The floor function

Synopsis

#include <math.h>

double floor(double x);

132

Description

The floor function computes the largest integral value not greater than x.

Returns

The floor function returns the largest integral value not greater than x, expressed as a double.

7.5.6.4 The fmod function

Synopsis

#include <math.h>

double fmod(double x, double y);

Description

The fmod function computes the floating-point remainder of x/y.

Returns

The fmod function returns the value x − i ∗ y, for some integer i such that, if y is nonzero, the
result has the same sign as x and magnitude less than the magnitude of y. If y is zero, whether a
domain error occurs or the fmod function returns zero is implementation-defined.

133

7.6 Nonlocal jumps <setjmp.h>

The header <setjmp.h> defines the macro setjmp, and declares one function and one type, for
bypassing the normal function call and return discipline.106

The type declared is

jmp_buf

which is an array type suitable for holding the information needed to restore a calling environment.

It is unspecified whether setjmp is a macro or an identifier declared with external linkage. If
a macro definition is suppressed in order to access an actual function, or a program defines an
external identifier with the name setjmp, the behavior is undefined.

7.6.1 Save calling environment

7.6.1.1 The setjmp macro

Synopsis

#include <setjmp.h>

int setjmp(jmp_buf env);

Description

The setjmp macro saves its calling environment in its jmp buf argument for later use by the
longjmp function.

Returns

If the return is from a direct invocation, the setjmp macro returns the value zero. If the return
is from a call to the longjmp function, the setjmp macro returns a nonzero value.

Environmental constraint

An invocation of the setjmp macro shall appear only in one of the following contexts:

— the entire controlling expression of a selection or iteration statement;

— one operand of a relational or equality operator with the other operand an integral constant
expression, with the resulting exprssion being the entire controlling expression of a selection or
iteration statement;

— the operand of a unary ! operator with the resulting expression being the entire controlling
expression of a selection or iteration statement; or

— the entire expression of an expression statement (possibly cast to void).

106These functions are useful for dealing with unusual conditions encountered in a low-level function of a
program.

134

7.6.2 Restore calling environment

7.6.2.1 The longjmp function

Synopsis

#include <setjmp.h>

void longjmp(jmp_buf env, int val);

Description

The longjmp function restores the environment saved by the most recent invocation of the
setjmp macro in the same invocation of the program, with the corresponding jmp buf argument.
If there has been no such invocation, or if the function containing the invocation of the setjmp

macro has terminated execution107 in the interim, the behavior is undefined.

All accessible objects have values as of the time longjmp was called, except that the values of
objects of automatic storage duration that are local to the function containing the invocation of
the corresponding setjmp macro that do not have volatile-qualified type and have been changed
between the setjmp invocation and longjmp call are indeterminate.

As it bypasses the usual function call and return mechanisms, the longjmp function shall
execute correctly in contexts of interrupts, signals and any of their associated functions. However,
if the longjmp function is invoked from a nested signal handler (that is, from a function invoked
as a result of a signal raised during the handling of another signal), the behavior is undefined.

Returns

After longjmp is completed, program execution continues as if the corresponding invocation
of the setjmp macro had just returned the value specified by val. The longjmp function cannot
cause the setjmp macro to return the value 0; if val is 0, the setjmp macro returns the value 1.

107For example by executing a return statement or because another longjmp call has caused a transfer to a
setjmp invocation in a function earlier in the set of nested calls.

135

7.7 Signal handling <signal.h>

The header <signal.h> declares a type and two functions and defines several macros, for
handling various signals (conditions that may be reported during program execution).

The type defined is

sig_atomic_t

which is the integral type of an object that can be accessed as an atomic entity, even in the presence
of asynchronous interrupts.

The macros defined are

SIG_DFL

SIG_ERR

SIG_IGN

which expand to constant expressions with distinct values that have type compatible with the
second argument to and return value of the signal function, and whose value compares unequal
to the address of any declarable function; and the following, each of which expands to a positive
integral constant expression that is the signal number corresponding to the specified condition:

SIGABRT abnormal termination, such as is indicated by the abort function

SIGFPE an erroneous arithmetic operation, such as zero divide or an operation resulting in over-
flow

SIGILL detection of an invalid function image, such as an illegal instruction

SIGINT receipt of an interactive attention signal

SIGSEGV an invalid access to storage

SIGTERM a termination request sent to the program

An implementation need not generate any of these signals, except as a result of explicit calls
to the raise function. Additional signals and pointers to undeclarable functions, with macro
definitions beginning, respectively, with the letters SIG and an uppercase letter or with SIG and
an uppercase letter,108 may also be specified by the implementation. The complete set of signals,
their semantics, and their default handling is implementation-defined; all signal numbers shall be
positive.

7.7.1 Specify signal handling

7.7.1.1 The signal function

Synopsis

#include <signal.h>

void (*signal(int sig, void (*func)(int)))(int);

Description

The signal function chooses one of three ways in which receipt of the signal number sig is
to be subsequently handled. If the value of func is SIG DFL, default handling for that signal will

108See “future library directions” (7.13.5). The names of the signal numbers reflect the following terms (re-
spectively): abort, floating-point exception, illegal instruction, interrupt, segmentation violation, and termination.

136

occur. If the value of func is SIG IGN, the signal will be ignored. Otherwise, func shall point to a
function to be called when that signal occurs. Such a function is called a signal handler.

When a signal occurs, if func points to a function, first the equivalent of signal(sig,

SIG DFL); is executed or an implementation-defined blocking of the signal is performed. (If the
value of sig is SIGILL, whether the reset to SIG DFL occurs is implementation-defined.) Next the
equivalent of (*func)(sig); is executed. The function func may terminate by execution a return
statement or by calling the abort, exit, or longjmp function. If func executes a return statement
and the value of sig was SIGFPE or any other implementation-defined value corresponding to a
computational exception, the behavior is undefined. Otherwise, the program will resume execution
at the point it was interrupted.

If the signal occurs other than as the result of calling the abort or raise function, the be-
havior is undefined if the signal handler calls any function in the standard library other than the
signal function itself (with a first argument of the signal number corresponding to the signal that
caused the invocation of the handler) or refers to any object with static storage duration other
than by assigning a value to a static storage duration variable of type volatile sig atomic t.
Furthermore, if such a call to the signal function results in a SIG ERR return, the value of errno
is indeterminate.109

At program startup, the equivalent of

signal(sig, SIG_IGN);

may be executed for some signals selected in an implementation-defined manner; the equivalent of

signal(sig, SIG_DFL);

is executed for all other signals defined by the implementation.

The implementation shall behave as if no library function calls the signal function.

Returns

If the request can be honored, the signal function returns the value of func for the most recent
call to signal for the specified signal sig. Otherwise, a value of SIG ERR is returned and a positive
value is stored in errno.

Forward references: the abort function (7.10.4.1), the exit function (7.10.4.3).

7.7.2 Send signal

7.7.2.1 The raise function

Synopsis

#include <signal.h>

int raise(int sig);

Description

The raise function sends the signal sig to the executing program.

Returns

The raise function returns zero if successful, nonzero if unsuccessful.

109If any signal is generated by an asynchronous signal handler, the behavior is undefined.

137

7.8 Variable arguments <stdarg.h>

The header <stdarg.h> declares a type and defined three macros, for advancing through a list
of arguments whose number and types are not known to the called function when it is translated.

A function may be called with a variable number of arguments of varying types. As described
in 6.7.1, its parameter list contains one or more parameters. The rightmost parameter plays a
special role in the access mechanism, and will be designated parmN in this description.

The type declared is

va_list

which is a type suitable for holding information needed by the macros va start, va arg, and
va end. If access to the varying arguments is desired, the called function shall declare an object
(referred to as ap in this subclause) having type va list. The object ap may be passed as an
argument to another function; if that function invokes the va arg macro with parameter ap, the
value of ap in the calling function is indeterminate and shall be passed to the va end macro prior
to any further reference to ap.

7.8.1 Variable argument list access macros

The va start and va arg macros described in this subclause shall be implemented as macros,
not as actual functions. It is unspecified whether va end is a macro or an identifier declared
with external linkage. If a macro definition is suppressed in order to access an actual function,
or a program defines an external identifier with the name va end, the behavior is undefined. The
va start and va end macros shall be invoked in the function accepting a varying number of
arguments, if access to the varying arguments is desired.

7.8.1.1 The va start macro

Synopsis

#include <stdarg.h>

void va_start(va_list ap, parmN);

Description

The va start macro shall be invoked before any access to the unnamed arguments.

The va start macro initializes ap for subsequent use by va arg and va end.

The parameter parmN is the identifier of the rightmost parameter in the variable parameter list
in the function definition (the one just before the , ...). If the parameter parmN is declared with
the register storage class, with a function or array type, or with a type that is not compatible
with the type that results after application of the default argument promotions, the behavior is
undefined.

Returns

The va start macro returns no value.

138

7.8.1.2 The va arg macro

Synopsis

#include <stdarg.h>

type va_arg(va_list ap, type);

Description

The va arg macro expands to an expression that has the type and value of the next argument
in the call. The parameter ap shall be the same as the va list ap initialized by va start. Each
invocation of va arg modifies ap so that the values of successive arguments are returned in turn.
The parameter type is a type name specified such that the type of a pointer to an object that
has the specified type can be obtained simply by postfixing a * to type. If there is no actual next
argument, or if type is not compatible with the type of the actual next argument (as promoted
according to the default argument promotions), the behavior is undefined.

Returns

The first invocation of the va arg macro after that of the va start macro returns the value
of the argument after that specified by parmN. Successive invocations return the values of the
remaining arguments in succession.

7.8.1.3 The va end macro

Synopsis

#include <stdarg.h>

void va_end(va_list ap);

Description

The va end macro facilitates a normal return from the function whose variable argument list
was referred to by the expansion of va start that initialized the va list ap. The va end macro
may modify ap so that it is no longer usable (without an intervening invocation of va start). If
there is no corresponding invocation of the va start macro, or if the va end macro is not invoked
before the return, the behavior is undefined.

Returns

The va end macro returns no value.

Example

The function f1 gathers into an array a list of arguments that are pointers to strings (but not
more than MAXARGS arguments), then passes the array as a single argument to function f2. The
number of pointers is specified by the first argument to f1.

#include <stdarg.h>

#define MAXARGS 31

void f1(int n_ptrs, ...)

{

va_list ap;

char *array[MAXARGS];

int ptr_no = 0;

139

if (n_ptrs > MAXARGS)

n_ptrs = MAXARGS;

va_start(ap, n_ptrs);

while (ptr_no < n_ptrs)

array[ptr_no++] = va_arg(ap, char *);

va_end(ap);

f2(n_ptrs, array);

}

Each call to f1 shall have visible the definition of the function or a declaration such as

void f1(int, ...);

140

7.9 Input/output <stdio.h>

7.9.1 Introduction

The header <stdio.h> declares three types, several macros, and many functions for performing
input and output.

The types declared are size t (described in 7.1.6);

FILE

which is an object type capable of recording all the information needed to control a stream, in-
cluding its file position indicator, a pointer to its associated buffer (if any), an error indicator that
records whether a read/write error has occurred, and an end-of-file indicator that records whether
the end of the file has been reached; and

fpos_t

which is an object type capable of recording all the information needed to specify uniquely every
position within a file.

The macros are NULL (described in 7.1.6);

_IOFBF

_IOLBF

_IONBF

which expand to integral constant expression with distinct values, suitable for use as the third
argument to the setvbuf function;

BUFSIZ

which expands to an integral constant expression, which is the size of the buffer used by the setbuf
function;

EOF

which expands to a negative integral constant expression that is returned by several functions to
indicate end-of-file, that is, no more input from a stream;

FOPEN_MAX

which expands to an integral constant expression that is the minimum number of files that the
implementation guarantees can be open simultaneously;

FILENAME_MAX

which expands to an integral constant expression that is the size needed for an array of char large
enough to hold the longest file name string that the implementation guarantees can be opened;110

L_tmpnam

which expands to an integral constant expression that is the size for an array if char large enough
to hold a temporary file name string generated by the tmpnam function;

110If the implementation imposes no practical limit on the length of file name strings, the value FILENAME MAX

should instead be the recommended size of an array intended to hold a file name string. Of course, file name string
contents are subject to other system-specific constraints; therefore all possible strings of length FILENAME MAX cannot
be expected to be opened successfully.

141

SEEK_CUR

SEEK_END

SEEK_SET

which expand to integral constant expressions with distinct values, sutable for use as the third
argument to the fseek function;

TMP_MAX

which expands to an integral constant expression that is the minimum number of unqiue file names
that shall be generated by the tmpnam function;

stderr

stdin

stdout

which are expressions of type “pointer to FILE” that point to the FILE objects associated, respec-
tively, with the standard error, input, and output streams.

Forward references: files (7.9.3), the fseek function (7.9.9.2), streams (7.9.2), the tmpnam

function (7.9.4.4).

7.9.2 Streams

Input and output, whether to or from physical devices such as terminals and tape drivers, or
whether to or from files supported on structured storage devices, are mapped into logical data
streams, whose properties are more uniform that their various inputs and outputs. Two forms of
mapping are supported, for text streams and for binary streams.111

A text stream is an ordered sequence of characters composed into lines, each line consisting
of zero or more characters plus a terminating new-line character. Whether the last line requires
a terminating new-line character is implementation-defined. Characters may have to be added,
altered, or deleted on input and output to conform to differing conventions for representing text
in the host environment. Thus, there need not be a one-to-one correspondence between the char-
acters in a stream and those in the external representation. Data read in from a text stream will
necessarily compare equal to the data that were earlier written out to that stream only if: the
data consist only of printable characters and the control characters horizontal tab and new-line; no
new-line character is immediately preceded by space characters; and the last character is a new-line
character. Whether space characters that are written out immediately before a new-line character
appear when read in is implementation-defined.

A binary stream is an ordered sequence of characters that can transparently record internal
data. Data read in from a binary stream shall compare equal to the data that were earlier writ-
ten out to that stream, under the same implementation. Such a stream may, however, have an
implementation-defined number of null characters appended to the end of the stream.

Environmental limits

An implementation shall support text files with lines containing at least 254 characters, includ-
ing the terminating new-line character. The value of macro BUFSIZ shall be at least 256.

111An implementation need not distinguish between text and binary streams. In such an implementation, there
need be no new-line characters in a text stream nor any limit to the length of a line.

142

7.9.3 Files

A stream associated with an external file (which may be a physical device) by opening a file,
which may involve creating a new file. Creating an existing file causes its former contents to be
discarded, if necessary. If a file can support positioning requests (such as a disk file, as opposed to
a terminal), then a file position indicator112 associated with the stream is positioned at the start
(character number zero) of the file, unless the file is opened with append mode in which case it is
implementation-defined whether the file position indicator is initially positioned at the beginning
or the end of the file. The file position indicator is maintained by subsequent reads, writes, and
positioning requests, to facilitate an orderly progression through the file. All input takes place
as if characters were read by successive calls to the fgetc function; all output takes place as if
characters were written by successive calls to the fputc function.

Binary files are not truncated, except as defined in 7.9.5.3. Whether a write on a text stream
causes the associated file to be truncated beyond that point is implementation-defined.

When a stream is unbuffered, characters are intended to appear from the source or at the
destination as soon as possible. Otherwise characters may be accumulated and transmitted to or
from the host environment as a block. When a stream is fully buffered, characters are intended to
be transmitted to or from the host environment as a block when a buffer is filled. When a stream is
line buffered, characters are intended to be transmitted to or from the host environment as a block
when a new-line character is encountered. Furthermore, characters are intended to be transmitted
as a block to the host environment when a buffer is filled, when input is requested in an unbuffered
stream, or when input is requested on a line buffered stream that requires the trsnamission of
characters from the host environment. Support for these characteristics is implementation-defined,
and may be affected via the setbuf and setvbuf functions.

A file may be disassociated from a controlling stream by closing the file. Output streams are
flushed (any unwritten buffer contents are transmitted to the host environment) before the stream
is disassociated from the file. The value of a pointer to a FILE object is indeterminate after the
associated file is closed (including the standard text streams). Whether a file of zero length (on
which no characters have been written by an output stream) actually exists is implementation-
defined.

The file may be subsequently reopened, by the same or another program execution, and its
contents reclaimed or modified (if it can be repositioned at its start). If the main function returns
to its original caller, or if the exit function is called, all open files are closed (hence all output
streams are flushed) before program termination. Other paths to program termination, such as
calling the abort function, need not close all files properly.

The address of the FILE object used to control a stream may be significant; a copy of a FILE

object may not necessarily serve in place of the original.

At program startup, three text streams are predefined and need not be opened explicitly —
standard input (for reading conventional input), standard output (for writing conventional output),
and standard error (for writing diagnostic output). When opened, the standard error stream is
not fully buffered; the standard input and standard output streams are fully buffered if and only
if the stream can be determined not to refer to an interactive device.

112This is described in the Base Document as a file pointer. That term is not used in this International Standard
to avoid confusion with a pointer to an object that has type FILE.

143

Functions that open additional (nontemporary) files require a file name, which is a string. The
rules for composing valid file names are implementation-defined. Whether the same file can be
simultaneously open multiple times is also implementation-defined.

Environmental limits

The value of FOPEN MAX shall be at least eight, including three standard text streams.

Forward references: the exit function (7.10.4.3), the fgetc function (7.9.7.1), the fopen

function (7.9.5.3), the fputc function (7.9.7.3), the setbuf function (7.9.5.5), the setvbuf function
(7.9.5.6).

7.9.4 Operations on files

7.9.4.1 The remove function

Synopsis

#include <stdio.h>

int remove(const char *filename);

Description

The remove function causes the file whose name is the string pointed to by filename to be no
longer accessible by that name. A subsequent attempt to open that file using that name will fail,
unless it is created anew. If the file is open, the behavior of the remove function is implementation-
defined.

Returns

The remove function returns zero if the operation succeeds, nonzero if it fails.

7.9.4.2 The rename function

Synopsis

#include <stdio.h>

int rename(const char *old, const char *new);

Description

The rename function causes the file whose name is the string pointed to by old to be henceforth
known by the name given by the string pointed to by new. The file named old is no longer accessible
by that name. If a file named by the string pointed to by new exists prior to the call to the rename
function, the behavior is implementation-defined.

Returns

The rename function returns zero if the operation succeeds, nonzero if it fails,113 in which case
if the file existed previously it is still known by its original name.

113Among the reasons the implementation may cause the rename function to fail are that the file is open or
that it is necessary to copy its contents to effectuate its renaming.

144

7.9.4.3 The tmpfile function

Synopsis

#include <stdio.h>

FILE *tmpfile(void);

Description

The tmpfile function creates a temporary binary file that will automatically be removed when
it is closed or at program termination. If the program terminates abnormally, whether an open
temporary file is removed is implementation-defined. The file is opened for update with "wb+"

mode.

Returns

The tmpfile function returns a pointer to the stream of the file that it created. If the file
cannot be created, the tmpfile function returns a null pointer.

Forward references: the fopen function (7.9.5.3).

7.9.4.4 The tmpnam function

Synopsis

#include <stdio.h>

FILE *tmpnam(char *s);

Description

The tmpnam function generates a string that is a valid file name and that is not the same as
the name of an existing file.114

The tmpnam function generates a different string each time it is called, up to TMP MAX times. If
it is called more than TMP MAX times, the behavior is implementation-defined.

The implementation shall behave as if no library function calls the tmpnam function.

Returns

If the argument is a null pointer, the tmpnam function leaves its result in an internal static
object and returns a pointer to that object. Subsequent calls to the tmpnam function may modify
the same object. If the argument is not a null pointer, it is assumed to point to an array of at least
L tmpnam chars; the tmpnam writes its result in that array and returns the argument as its value.

Environmental limits

The value of the macro TMP MAX shall be at least 25.

114Files created using strings generated by the tmpnam function are temporary only in the sense that their names
should not collide with those generated by conventional naming rules for the implementation. It is still necessary
to use the remove function to remove such files when their use is ended, and before program termination.

145

7.9.5 File access functions

7.9.5.1 The fclose function

Synopsis

#include <stdio.h>

int fclose(FILE *stream);

Description

The fclose function causes the stream pointed to by stream to be flushed and the associated
file to be closed. Any unwritten buffered data for the stream are delivered to the host environment
to be written to the file, any unread buffered data are discarded. The stream is disassociated from
the file. If the associated buffer was automatically allocated, it is deallocated.

Returns

The fclose function returns zero if the stream was successfully closed, or EOF if any errors
were detected.

7.9.5.2 The fflush function

Synopsis

#include <stdio.h>

int fflush(FILE *stream);

Description

If stream points to an output stream or an update stream in which the most recent operation
was not input, the fflush function causes any unwritten data for that stream to be delivered to
the host environment to be written to the file; otherwise, the behavior is undefined.

If stream is a null pointer, the fflush function performs this flushing action on all streams for
which the behavior is defined above.

Returns

The fflush function returns EOF of a write error occurs, otherwise zero.

Forward references: the fopen function (7.9.5.3), the ungetc function (7.9.7.11).

7.9.5.3 The fopen function

Synopsis

#include <stdio.h>

FILE *fopen(const char *filename, const char *mode);

Description

The fopen function opens the file whose name is the string pointed to by filename, and
associates a stream with it.

146

The argument mode points to a string beginning with one of the following sequences:115

r open text file for reading
w truncate to zero length or create text file for writing
a append, open or create text file for writing at end-of-file
rb open binary file for reading
wb truncate to zero length or create binary file for writing
ab append, open or create binary file for writing at end-of-file
r+ open text file for update (reading and writing)
w+ truncate to zero length or create text file for update
a+ append, open or create text file for update, writing at end-of-file
r+b or rb+ open binary file for update (reading and writing)
w+b or wb+ truncate to zero length or create binary file for update
a+b or ab+ append, open or create binary file for update, writing at end-of-file

Opening a file with read mode (‘r’ as the first character in the mode argument) fails if the file
does not exist or cannot be read.

Opening a file with append mode (‘a’ as the first character in the mode argument) causes all
subsequent writes to the file to be forced to the current end-of-file, regardless of intervening calls to
the fseek function. In some implementations, opening a binary file with append mode (‘b’ as the
second or third character in the above list of mode argument values) may initially position the file
position indicator for the stream beyond the last data written, because of null character padding.

When a file is opened with update mode (‘+’ as the second argument in the above list of mode
argument values), both input and output may be performed on the associated stream. However,
output may not be directly followed by input without an intervening call to the fflush function
or to a file positioning function (fseek, fsetpos, or rewind), and input may not be directly
followed by output without an intervening call to a file position function, unless the input operation
encounters end-of-file. Opening (or creating) a text file with update mode may instead open (or
create) a binary stream in some implementations.

When opened, a stream is fully buffered if and only if ir can be determined not to refer to an
interactive device. The error and end-of-file indicators for the stream are cleared.

Returns

The fopen function returns a null pointer to the object controlling the stream. If the open
operation fails, fopen returns a null pointer.

Forward references: file positioning functions (7.9.9).

7.9.5.4 The freopen function

Synopsis

#include <stdio.h>

FILE *freopen(const char *filename, const char *mode,

FILE *stream);

115Additional characters may follow these sequences.

147

Description

The freopen function opens the file whose name is the string pointed to by filename and
associates the stream pointed to by stream with it. The mode argument is used just as in the
fopen function.116

The freopen function first attempts to close any file that is associated with the specified stream.
Failure to close the file successfully is ignored. The error and end-of-file indicators for the stream
are cleared.

Returns

The freopen function returns a null pointer if the open operation fails. Otherwise, freopen
returns the value of stream.

7.9.5.5 The setbuf function

Synopsis

#include <stdio.h>

void setbuf(FILE *stream, char *buf);

Description

Except that it returns no value, the setbuf function is equivalent to the setvbuf function
invoked with the values IONBF for mode and BUFSIZ for size, or (if buf is a null pointer), with
the value IONBF for mode.

Returns

The setbuf function returns no value.

Forward references: the setvbuf function (7.9.5.6).

7.9.5.6 The setvbuf function

Synopsis

#include <stdio.h>

int setvbuf(FILE *stream, char *buf, int mode, size_t size);

Description

The setvbuf function may be used only after the stream pointed to by stream has been
associated with an open file and before any other operation is performed on the stream. The
argument mode determines how stream will be buffered, as follows: IOFBF causes input/output
to be fully buffered; IOLBF causes input/output to be line buffered; IONBF causes input/output
to be unbuffered. If buf is not a null pointer, the array it points to may be used instead of a
buffer allocated by the setvbuf function.117 The argument size specifies the size of the array.
The contents of the array at any time are indeterminate.

116The primary use of the freopen function is to change the file associated with a standard text stream
(stderr, stdin, or stdout), as those identifiers need not be modifiable lvalues to which the value returned by the
fopen function may be assigned.

117The buffer must have a lifetime at least as great as the open stream, so the stream should be closed before
a buffer that has automatic storage duration is deallocated upon block exit.

148

Returns

The setvbuf function returns zero on success, or nonzero if an invalid value is given for mode
or if the request cannot be honored.

7.9.6 Formatted input/output functions

7.9.6.1 The fprintf function

Synopsis

#include <stdio.h>

int fprintf(FILE *stream, const char *format, ...);

Description

The fprintf function writes output to the stream pointed to by stream, under control of the
string pointed to by format that specifies how subsequent arguments are converted for output. If
there are insufficient arguments for the format, the behavior is undefined. If the format is exhausted
while arguments remain, the excess arguments are evaluated (as always) but are otherwise ignored.
The fprintf function returns when the end of the format string is encountered.

The format shall be a multibyte character sequence, beginning and ending in its initial shift
state. The format is composed of zero or more directives, ordinary multibyte characters (not %),
which are copied unchanged to the output stream, and conversion specifications, each of which
results in fetching zero or more subsequent arguments. Each conversion specification is introduced
by the character %. After the %, the following appear in sequence:

— Zero or more flags (in any order) that modify the meaning of the conversion specification.

— An optional minimum field width. If the converted value has fewer characters that the field
width, it will be padded with spaces (by default) on the left (or right, if the left adjustment
flag, described later, has been given) to the field width. The field width takes the form of an
asterisk * (described later) or a decimal integer.118

— An optional precision that gives the minimum number of digits to appear for the d, i, o, u, x,
and X conversions, the number of digits to appear after the decimal-point character for e, E,
and f conversions, the maximum number of significant digits for the g and G conversions, or the
maximum number of characters to be written from a string in s conversion. The precision takes
the form of a period (.) followed either by an asterisk * (described later) or by an optional
decimal integer; if only the period is specified, the precision is taken as zero. If a precision
appears with any other conversion specifier, the behavior is undefined.

— An optional h specifying that a following d, i, o, u, x, or X conversion specifier applies to short

int or unsigned short int argument (the argument will have been promoted according to
the integral promotions, and its value shall be converted to short int or unsigned short

int before printing); an optional h specifying that a following n conversion specifier applies to
a pointer to a short int argument; an optional l (ell) specifying that a following d, i, o, u, x,
or X conversion specifier applies to a long int or unsigned long int argument; an optional l
specifying that a following n conversion specifier applies to a pointer to a long int argument;
or an optional L specifying that a following e, E, f, g, or G conversion specifier applies to a long

118Note that 0 is taken as a flag, not as the beginning of a field width.

149

double argument. If an h, l, or L appears with any other conversion specifier, the behavior is
undefined.

— A character that specifies the type of conversion to be applied.

As noted above, a field width, or precision, or both, may be indicated by an asterisk. In this
case, an int argument supplies the field width or precision. The arguments specifying field width,
or precision, or both, shall appear (in that order) before the argument (if any) to be converted. A
negative field width argument is taken as a - flag followed by a positive field width. A negative
precision argument is taken as if the precision were omitted.

The flag characters and their meanings are

- The result of the conversion will be left-justified within the field. (It will be right-
justified if this flag is not specified.)

+ The result of a signed conversion will always begin with a plus or minus sign. (It will
begin with a sign only when a negative value is converted if this flag is not specified.)

space If the first character of a signed conversion is not a sign, or if a signed conversion results
in no characters, a space will be prefixed to the result. If the space and + flags both
appear, the space flag will be ignored.

The result is to be converted to an “alternate form.” For o conversion, it increases the
precision to force the first digit of the result to be a zero. For x (or X) conversion, a
nonzero result will have 0x (or 0X) prepended to it. For e, E, f, g, and G conversions,
the result will always contain a decimal-point character, even if no digits follow it.
(Normally, a decimal-point character appears in the result of these conversions only if
a digit follows it.) For g and G conversions, trailing zeros will not be removed from the
result. For other conversions, the behavior is undefined.

0 For d, i, o, u, x, X, e, E, f, g, and G conversions, leading zeros (following any indication
of sign or base) are used to pad to the field width, no space padding is performed. If the
0 and - flags both appear, the 0 flag will be ignored. For d, i, o, u, x, and X conversions,
if a precision is specified, the 0 flag will be ignored. For other conversions, the behavior
is undefined.

The conversion specifiers and their meanings are

d, i The int argument is converted to signed decimal in the style [–]dddd. The precision
specifies the minimum number of digits to appear, if the value being converted can be
represented in fewer digits, it will be expanded with leading zeros. The default precision
is 1. The result of converting a zero value with a precision of zero is no characters.

o, u, x, X The unsigned int argument is converted to unsigned octal (o), unsigned decimal (u),
or unsigned hexadecimal notation (x or X) in the style dddd, the letters abcdef are used
for x conversion and the letters ABCDEF for X conversion. The precision specifies the
minimum number of digits to appear; if the value being converted can be represented
in fewer digits, it will be expanded with leading zeros. The default precision is 1. The
result of converting a zero value with a precision of zero is no characters.

f The double argument is converted to decimal notation in the style [–]ddd.ddd, where the
number of digits after the decimal-point character is equal to the precision specification.
If the precision is missing, it is taken as 6; if the precision is zero, and the # flag is not

150

specified, no decimal-point character appears. If a decimal-point character appears, at
least one digit appears before it. The value is rounded to the appropriate number of
digits.

e, E The double argument is converted in the style [–]ddd.ddde±dd, where there is one digit
before the decimal-point character (which is nonzero if the argument is nonzero) and
the number of digits after it is equal to the precision; if the precision is missing, it
is taken as 6, if the precision is zero and the # flag is not specified, no decimal-point
character appears. The value is rounded to the appropriate number of digits. The E

conversion specifier will produce a number with E instead of e introducing the exponent.
The exponent always contains at least two digits. If the value is zero, the exponent is
zero.

g, G The double argument is converted in style f or e (or in style E in the case of a G

conversion specifier), with the precision specifying the number of significant digits. If
the precision is zero, it is taken as 1. The style used depends on the value converted:
style e (or E) will be used only if the exponent resulting from such a conversion is less
than −4 or greater than or equal to the precision. Trailing zeros are removed from the
fractional portion of the result, a decimal-point character appears only if it is followed
by a digit.

c The int argument is converted to an unsigned char, and the resulting character is
written.

s The argument shall be a pointer to an array of character type.119 Characters from the
array are written up to (but not including) a terminating null character; if the precision
is specified, no more than that many characters are written. If the precision is not
specified or is greater than the size of the array, the array shall contain a null character.

p The argument shall be a pointer to void. The value of the pointer is converted to a
sequence of printable characters in an implementation-defined manner.

n The argument shall be a pointer to an integer into which is written the number of
characters written to the output stream so far by this call to fprintf. No argument is
converted.

% A % is written. No argument is converted. The complete conversion specification shall
be %%.

If a conversion specification is invalid, the behavior is undefined.120

If any argument is, or points to, a union or an aggregate (except for an array of character type
using %s conversion, or a pointer using %p conversion), the behavior is undefined.

In no case does a nonexistent or small field width cause truncation of a field; if the result of a
conversion is wider than the field width, the field is expanded to contain the conversion result.

Returns

The fprintf function returns the number of characters transmitted, or a negative value if an
output error occurred.

119No special provisions are made for multibyte characters.
120See “future library directions” (7.13.6).

151

Environmental limits

The minimum value for the maximum number of characters produced by any single conversion
shall be 509.

Example

To print a date and time in the form “Sunday, July 3, 10:02” followed by π to five decimal
places:

#include <math.h>

#include <stdio.h>

/*...*/

char *weekday, *month; /* pointers to strings */

int day, hour, min;

fprintf(stdout, "%s, %s %d, %.2d:%.2d\n",

weekday, month, day, hour, min);

fprintf(stdout, "pi = %.5f\n", 4 * atan(1.0));

7.9.6.2 The fscanf function

Synopsis

#include <stdio.h>

int fscanf(FILE *stream, const char *format, ...);

Description

The fscanf function reads input from the stream pointed to by stream under control of the
string pointed to by format that specifies the admissible input sequences and how they are to be
converted for assignment, using subsequent arguments as pointers to the objects to receive the
converted input. If there are insufficient arguments for the format, the behavior is undefined. If
the format is exhausted while arguments remain, the excess arguments are evaluated (as always)
but are otherwise ignored.

The format shall be a multibyte character sequence, beginning and ending in its initial shift
state. The format is composed of zero or more directives: one or more white-space characters, an
ordinary multibyte character (neither % nor a white-space character), or a conversion specification.
Each conversion specification is introduced by the character %. After the %, the following appear
in sequence:

— An optional assignment-suppressing character *.

— An optional nonzero decimal integer that specifies the maximum field width.

— An optional h, l (ell) or L indicating the size of the receiving object. The conversion specifiers d,
i, and n shall be preceded by h if the corresponding argument is a pointer to short int rather
than a pointer to int, or by l if it is a pointer to long int. Similarly, the conversion specifiers
o, u, and x shall be preceded by h if the corresponding argument is a pointer to unsigned

short int rather than a pointer to unsigned int, or by l if it is a pointer to unsigned long

int. Finally, the conversion specifiers e, f, and g shall be preceded by l if the corresponding
argument is a pointer to double rather than a pointer to float, or by L if it is a pointer to long
double. If an h, l, or L appears with any other conversion specifier, the behavior is undefined.

152

— A character that specifies the type of conversion to be applied. The valid conversion specifiers
are described below.

The fscanf function executes each directive of the format in turn. If a directive fails, as
detailed below, the fscanf function returns. Failures are described as input failures (due to the
unavailability of input characters), or matching failures (due to inappropriate input).

A directive composed of white-space character(s) is executed by reading input up to the first
non-white-space character (which remains unread), or until no more characters can be read.

A directive that is an ordinary multibyte character is executed by reading the next characters
of the stream. If one of the characters differs from one comprising the directive, the directive fails,
and the differing and subsequent characters remain unread.

A directive that is a conversion specification defines a set of matching input sequences, as
described below for each specifier. A conversion specification is executed in the following steps:

Input white-space characters (as specified by the isspace function) are skipped, unless the
specification includes a [, c, or n specifier.121

An input item is read from the stream, unless the specification includes an n specifier. An
input item is defined as the longest matching sequence of input characters, unless that exceeds a
specified field width, in which case it is the initial subsequence of that length in the sequence. The
first character, if any, after the input item remains unread. If the length of the input item is zero,
the execution of the directive fails; this condition is a matching failure, unless an error prevented
input from the stream, in which case it is an input failure.

Except in the case of a % specifier, the input item (or, in the case of a %n directive, the count
of input characters) is converted to a type appropriate to the conversion specifier. If the input
item is not a matching sequence, the execution of the directive fails; this condition is a matching
failure. Unless assignment suppression was indicated by a *, the result of the conversion is placed
in the object pointed to by the first argument following the format argument that has not already
received a conversion result. If this object does not have an appropriate type, or if the result of
the conversion cannot be represented in the space provided, the behavior is undefined.

The following conversion specifiers are valid:

d Matches an optionally signed decimal integer, whose format is the same as expected for
the subject sequence of the strtol function with the value 10 for the base argument.
The corresponding argument shall be a pointer to integer.

i Matches an optionally signed integer, whose format is the same as expected for the
subject sequence of the strtol function with the value 0 for the base argument. The
corresponding argument shall be a pointer to integer.

o Matches an optionally signed octal integer, whose format is the same as expected for
the subject sequence of the strtoul function with the value 8 for the base argument.
The corresponding argument shall be a pointer to unsigned integer.

u Matches an optionally signed decimal integer, whose format is the same as expected for
the subject sequence of the strtoul function with the value 10 for the base argument.
The corresponding argument shall be a pointer to unsigned integer.

121These white-space characters are not counted against a specified field width.

153

x Matches an optionally signed hexadecimal integer, whose format is the same as ex-
pected for the subject sequence of the strtoul function with the value 16 for the base
argument. The corresponding argument shall be a pointer to unsigned integer.

e, f, g Matches an optionally signed floating-point number, whose format is the same as ex-
pected for the subject string of the strtod function. The corresponding argument shall
be a pointer to floating.

s Matches a sequence of non-white-space characters.122 The corresponding argument shall
be a pointer to the initial character of an array large enough to accept the sequence and
a terminating null character, which will be added automatically.

[Matches a nonempty sequence of characters122 from a set of expected characters (the
scanset). The corresponding argument shall be a pointer to the initial character of an
array large enough to accept the sequence and a terminating null character, which will
be added automatically. The conversion specifier includes all subsequent characters in
the format string, up to and including the matching right bracket (]). The characters
between the brackets (the scanlist) comprise the scanset, unless the character after the
left bracket is a circumflex (^), in which case the scanset contains all characters that do
not appear in the scanlist between the circumflex and the right bracket. If the conversion
specifier begins with [] or [^], the right bracket character is in the scanlist and the
next right bracket character is the matching right bracket that ends the specification;
otherwise the first right bracket character is the one that ends the specification. If a -

character is in the scanlist and is not the first, nor the second where the first character
is a ^, nor the last character, the behavior is implementation-defined.

c Matches a sequence of characters122 of the number specified by the field width (1 if no
field width is present in the directive). The corresponding argument shall be a pointer to
the initial character of an array large enough to accept the sequence. No null character
is added.

p Matches an implementation-defined set of sequences, which should be the same as the
set of sequences that may be produced by the %p conversion of the fprintf function.
The corresponding argument shall be a pointer to a pointer to void. The interpretation
of the input item is implementation-defined. If the input item is a value converted
earlier during the same program execution, the pointer that results shall compare equal
to that value, otherwise the behavior of the %p conversion is undefined.

n No input is consumed. The corresponding argument shall be a pointer to integer into
which is to be written the number of characters read from the input stream so far by
this call to the fscanf function. Execution of a %n directive does not increment the
assignment count returned at the completion of execution of the fscanf function.

% Matches a single %; no conversion or assignment occurs. The complete conversion spec-
ification shall be %%.

If a conversion specification is invalid, the behavior is undefined.123

The conversion specifiers E, G, and X are also valid and behave the same as, respectively, e, g,
and x.

122No special provisions are made for multibyte characters.
123See “future library directions” (7.13.6).

154

If end-of-file is encountered during input, conversion is terminated. If end-of-file occurs before
any characters matching the current directive have been read (other than leading white space,
where permitted), execution of the current directive terminates with an input failure; otherwise,
unless execution of the current directive is terminated with a matching failure, execution of the
following directive (if any) is terminated with an input failure.

If conversion terminates on a conflicting input character, the offending input character is left
unread in the input stream. Trailing white space (including new-line characters) is left unread
unless matched by a directive. The success of literal matches and suppressed assignments is not
directly determinable other than via the %n directive.

Returns

The fscanf function returns the value of the macro EOF if an input failure occurs before any
conversion. Otherwise, the fscanf function returns the number of input items assigned, which can
be fewer than provided for, or even zero, in the event of an early matching failure.

Examples

1. The call:

#include <stdio.h>

/*...*/

int n, i; float x; char name[50];

n = fscanf(stdin, "%d%f%s", &i, &x, name);

with the input line:

25 54.32E-1 thompson

will assign to n the value 3, to i the value 25, to x the value 5.432, and name will contain
thompson\0.

2. The call:

#include <stdio.h>

/*...*/

int i; float x; char name[50];

fscanf(stdin, "%2d%f%*d %[0123456789]", &i, &x, name);

with input:

56789 0123 56a72

will assign to i the value 56 and to x the value 789.0, will skip 0123, and name will contain
56\0. The next character read from the input stream will be a.

3. To accept repeatedly from stdin a quantity, a unit of measure and an item name:

#include <stdio.h>

/*...*/

int count; float quant; char units[21], item[21];

while (!feof(stdin) && !ferror(stdin)) {

count = fscanf(stdin, "%f%20s of %20s",

&quant, units, item);

fscanf(stdin, "%*[^\n]");

}

155

If the stdin stream contains the following lines:

2 quarts of oil

-12.8degrees Celsius

lots of luck

10.0LBS of

dirt

100ergs of energy

the execution of the above example will be analogous to the following assignments:

quant = 2; strcpy(units, "quarts"); strcpy(item, "oil");

count = 3;

quant = -12.8; strcpy(units, "degrees");

count = 2; /* "C" fails to match "o" */

count = 0; /* "1" fails to match "%f" */

quant = 10.0; strcpy(units, "LBS"); strcpy(item, "dirt");

count = 3;

count = 0; /* "100e" fails to match "%f" */

count = EOF;

Forward references: the strtod function (7.10.1.4), the strtol function (7.10.1.5), the strtoul
function (7.10.1.6).

7.9.6.3 The printf function

Synopsis

#include <stdio.h>

int printf(const char *format, ...);

Description

The printf function is equivalent to fprintf with the argument stdout interposed before the
arguments to printf.

Returns

The printf function returns the number of characters transmitted, or a negative value if an
output error occurred.

7.9.6.4 The scanf function

Synopsis

#include <stdio.h>

int scanf(const char *format, ...);

Description

The scanf function is equivalent to fscanf with the argument stdin interposed before the
arguments to scanf.

Returns

The scanf function returns the value of the macro EOF if an input failure occurs before any
conversion. Otherwise, the scanf function returns the number of input items assigned, which can
be fewer than provided for, or even zero, in the event of an early matching failure.

156

7.9.6.5 The sprintf function

Synopsis

#include <stdio.h>

int sprintf(char *s, const char *format, ...);

Description

The sprintf function is equivalent to fprintf, except that the argument s specifies an array
into which the generated output is to be written, rather than to a stream. A null character is
written at the end of the characters written; it is not counted as part of the returned sum. If
copying takes place between objects that overlap, the behavior is undefined.

Returns

The sprintf function returns the number of characters written in the array, not counting the
terminating null character.

7.9.6.6 The sscanf function

Synopsis

#include <stdio.h>

int sscanf(const char *s, const char *format, ...);

Description

The sscanf function is equivalent to fscanf, except that the argument s specifies a string
from which the input is to be obtained, rather than from a stream. Reaching the end of the string
is equivalent to encountering end-of-file for the fscanf function. If copying takes place between
objects that overlap, the behavior is undefined.

Returns

The sscanf function returns the value of the macro EOF if an input failure occurs before any
conversion. Otherwise, the sscanf function returns the number of input items assigned, which can
be fewer than provided for, or even zero, in the event of an early matching failure.

7.9.6.7 The vfprintf function

Synopsis

#include <stdarg.h>

#include <stdio.h>

int vfprintf(FILE *stream, const char *format, va_list arg);

Description

The vfprintf function is equivalent to fprintf, with the variable argument list replaced by
arg, which shall have been initialized by the va start macro (and possibly subsequent va arg

calls). The vfprintf function does not invoke the va end macro.124

Returns

The vfprintf function returns the number of characters transmitted, or a negative value if an
output error occurred.

124As the functions vfprintf, vsprintf, and vprintf invoke va arg macro, the value of arg after the return is
indeterminate.

157

Example

The following show the use of the vfprintf function in a general error-reporting routine.

#include <stdarg.h>

#include <stdio.h>

void error(char *function-name, char *format, ...)

{

va_list args;

va_start(args, format);

/* print out name of function causing error */

fprintf(stderr, "ERROR in %s: ", function_name);

/* print out remainder of message */

vfprintf(stderr, format, args);

va_end(args);

}

7.9.6.8 The vprintf function

Synopsis

#include <stdarg.h>

#include <stdio.h>

int vprintf(const char *format, va_list arg);

Description

The vprintf function is equivalent to printf, with the variable argument list replaced by arg,
which shall have been initialized by the va start macro (and possibly subsequent va arg calls).
The vprintf function does not invoke the va end macro.124

Returns

The vprintf function returns the number of characters transmitted, or a negative value if an
output error occurred.

7.9.6.9 The vsprintf function

Synopsis

#include <stdarg.h>

#include <stdio.h>

int vsprintf(char *s, const char *format, va_list arg);

Description

The vsprintf function is equivalent to sprintf, with the variable argument list replaced
by arg, which shall have been initialized by the va start macro (and possibly subsequent va arg

calls). The vsprintf function does not invoke the va end macro.124 If copying takes place between
objects that overlap, the behavior is undefined.

Returns

The vsprintf function returns the number of characters written in the array, not counting the
terminating null character.

158

7.9.7 Character input/output functions

7.9.7.1 The fgetc function

Synopsis

#include <stdio.h>

int fgetc(FILE *stream);

Description

The fgetc function obtains the next character (if present) as an unsigned char converted to
an int, from the input stream pointed to by stream, and advances the associated file position
indicator for the stream (if defined).

Returns

The fgetc function returns the next character from the input stream pointed to by stream.
If the stream is at end-of-file, the end-of-file indicator for the stream is set and fgetc returns EOF.
If a read error occurs, the error indicator for the stream is set and fgetc return EOF.125

7.9.7.2 The fgets function

Synopsis

#include <stdio.h>

char *fgets(char *s, int n, FILE *stream);

Description

The fgets function reads at most one less than the number of characters specified by n from
the stream pointed to by stream into the array pointed to by s. No additional characters are
read after a new-line character (which is retained) or after end-of-file. A null character is written
immediately after the last character read into the array.

Returns

The fgets function returns s if successful. If end-of-file is encountered and no characters have
been read into the array, the contents of the array remain unchanged and a null pointer is returned.
If a read error occurs during the operation, the array contents are indeterminate and a null pointer
is returned.

7.9.7.3 The fputc function

Synopsis

#include <stdio.h>

int fputc(int c, FILE *stream);

Description

The fputc function writes the character specified by c (converted to an unsigned char) to
the output stream pointed to by stream, at the position indicated by the associated file position
indicator for the stream (if defined), and advances the indicator appropriately. If the file cannot
support positioning requests, or if the stream was opened with append mode, the character is
appended to the output stream.

125An end-of-file and a read error can be distinguished by use of the feof and ferror functions.

159

Returns

The fputc function returns the character written. If a write error occurs, the error indicator
for the stream is set and fputc returns EOF.

7.9.7.4 The fputs function

Synopsis

#include <stdio.h>

int fputs(const char *s, FILE *stream);

Description

The fputs function writes the string pointed to by s to the stream pointed to by stream. The
terminating null character is not written.

Returns

The fputs function returns EOF if a write error occurs; otherwise it returns a nonnegative value.

7.9.7.5 The getc function

Synopsis

#include <stdio.h>

int getc(FILE *stream);

Description

The getc function is equivalent to fgetc, except that if it is implemented as a macro, it may
evaluate stream more than once, so the argument should never be an expression with side effects.

Returns

The getc function returns the next character from the input stream pointed to by stream.
If the stream is at end-of-file, the end-of-file indicator for the stream is set and getc returns EOF.
If a read error occurs, the error indicator for the stream is set and getc return EOF.

7.9.7.6 The getchar function

Synopsis

#include <stdio.h>

int getchar(void);

Description

The getchar function is equivalent to getc with the argument stdin.

Returns

The getchar function returns the next character from the input stream pointed to by stdin.
If the stream is at end-of-file, the end-of-file indicator for the stream is set and getchar returns
EOF. If a read error occurs, the error indicator for the stream is set and getchar return EOF.

160

7.9.7.7 The gets function

Synopsis

#include <stdio.h>

char *gets(char *s);

Description

The gets function reads characters from the input stream pointed to by stdin, into the array
pointed to by s, until end-of-file or a new-line character is read. Any new-line character is discarded,
and a null character is written immediately after the last character read into the array.

Returns

The gets function returns s if successful. If end-of-file is encountered and no characters have
been read into the array, the contents of the array remain unchanged and a null pointer is returned.
If a read error occurs during the operation, the array contents are indeterminate and a null pointer
is returned.

7.9.7.8 The putc function

Synopsis

#include <stdio.h>

int putc(int c, FILE *stream);

Description

The putc function is equivalent to fputc, except that if it is implemented as a macro, it may
evaluate stream more than once, so the argument should never be an expression with side effects.

Returns

The putc function returns the character written. If a write error occurs, the error indicator for
the stream is set and putc returns EOF.

7.9.7.9 The putchar function

Synopsis

#include <stdio.h>

int putchar(int c);

Description

The putchar function is equivalent to putc with the second argument stdout.

Returns

The putchar function returns the character written. If a write error occurs, the error indicator
for the stream is set and putchar returns EOF.

7.9.7.10 The puts function

Synopsis

#include <stdio.h>

int puts(const char *s);

161

Description

The puts function writes the string pointed to by s to the stream pointed to by stdout, and
appends a new-line character to the output. The terminating null character is not written.

Returns

The puts function returns EOF if a write error occurs; otherwise it returns a nonnegative value.

7.9.7.11 The ungetc function

Synopsis

#include <stdio.h>

int ungetc(int c, FILE *stream);

Description

The ungetc function pushes the character specified by c (converted to an unsigned char)
back onto the input stream pointed to by stream. The puched-back characters will be returned by
subsequent reads on that stream in the reverse order of their pushing. A successful intervening call
(with the stream pointed to by stream) to a file positioning function (fseek, fsetpos, or rewind)
discards any pushed-back characters for the stream. The external storage corresponding to the
stream is unchanged.

One character of pushback is guaranteed. If the ungetc function is called too many times
on the same stream without an intervening read or file positioning operation on that stream, the
operation may fail.

If the value of c equals that of the macro EOF the operation fails and the input stream is
unchanged.

A successful call to the ungetc function clears the end-of-file indicator for the stream. The value
of the file position indicator for the stream after reading or discarding all pushed-back characters
shall be the same as it was before the characters were pushed back. For a text stream, the value
of its file position indicator after a successful call to the ungetc function is unspecified until all
pushed-back characters are read or discarded. For a binary stream, its file position indicator is
decremented by each successful call to the ungetc function; if its value was zero before a call, it is
indeterminate after the call.

Returns

The ungetc function returns the character pushed back after conversion, or EOF if the operation
fails.

Forward references: file positioning functions (7.9.9).

7.9.8 Direct input/output functions

7.9.8.1 The fread function

Synopsis

#include <stdio.h>

size_t fread(void *ptr, size_t size, size_t nmemb,

FILE *stream);

162

Description

The fread function reads, into the array pointed to by ptr, up to nmemb elements whose size
is specified by size, from the stream pointed to by stream. The file position indicator for the
stream (if defined) is advanced by the number of characters successfully read. If an error occurs,
the resulting value of the file position indicator for the stream is indeterminate. If a partial element
is read, its value is indeterminate.

Returns

The fread function returns the number of elements successfully read, which may be less than
nmemb if a read error or end-of-file is encountered. If size or nmemb is zero, fread returns zero and
the contents of the array and the state of the stream remain unchanged.

7.9.8.2 The fwrite function

Synopsis

#include <stdio.h>

size_t fwrite(const void *ptr, size_t size, size_t nmemb,

FILE *stream);

Description

The fwrite function writes, from the array pointed to by ptr, up to nmemb elements whose size
is specified by size, to the stream pointed to by stream. The file position indicator for the stream
(if defined) is advanced by the number of characters successfully written. If an error occurs, the
resulting value of the file position indicator for the stream is indeterminate.

Returns

The fwrite function returns the number of elements successfully written, which will be less
than nmemb only if a write error is encountered.

7.9.9 File positioning functions

7.9.9.1 The fgetpos function

Synopsis

#include <stdio.h>

int fgetpos(FILE *stream, fpos_t *pos);

Description

The fgetpos function stores the current value of the file position indicator for the stream
pointed to by stream in the object pointed to by pos. The value stored contains unspecified
information usable by the fsetpos function for repositioning the stream to its position at the time
of the call to the fgetpos function.

Returns

If successful, the fgetpos function returns zero; on failure, the fgetpos function returns
nonzero and stores an implementation-defined positive value in errno.

Forward references: the fsetpos function (7.9.9.3).

163

7.9.9.2 The fseek function

Synopsis

#include <stdio.h>

int fseek(FILE *stream, long int offset, int whence);

Description

The fseek function sets the file position indicator for the stream pointed to by stream.

For a binary stream, the new position, measured in characters from the beginning of the
file, is obtained by adding offset to the position specified by whence. The specified position is
the beginning of the file if whence is SEEK SET, the current value of the file position indicator if
SEEK CUR, or end-of-file if SEEK END. A binary stream need not meaningfully support fseek calls
with a whence value of SEEK END.

For a text stream, either offset shall be zero, or offset shall be a value returned by an earlier
call to the ftell function on the same stream and whence shall be SEEK SET.

A successful call to the fseek function clears the end-of-file indicator for the stream and undoes
any effects of the ungetc function on the same stream. After an fseek call, the next operation on
an update stream may be either input or output.

Returns

The fseek function returns nonzero only for a request that cannot be satisfied.

Forward references: the ftell function (7.9.9.4).

7.9.9.3 The fsetpos function

Synopsis

#include <stdio.h>

int fsetpos(FILE *stream, const fpos_t *pos);

Description

The fsetpos function sets the file position indicator for the stream pointed to by stream

according to the value of the object pointed to by pos, which shall be a value obtained from an
earlier call to the fgetpos function on the same stream.

A successful call to the fsetpos function clears the end-of-file indicator for the stream and
undoes any effects of the ungetc function on the same stream. After an fsetpos call, the next
operation on an update stream may be either input or output.

Returns

If successful, the fsetpos function returns zero; on failure, the fsetpos function returns
nonzero and stores an implementation-defined positive value in errno.

7.9.9.4 The ftell function

Synopsis

#include <stdio.h>

long int ftell(FILE *stream);

164

Description

The ftell function obtains the current value of the file position indicator for the stream pointed
to by stream. For a binary stream, the value is the number of character from the beginning of the
file. For a text stream, its file position indicator contains unspecified information, usable by the
fseek function for returning the file position indicator for the stream to its position at the time
of the ftell call; the difference between two such return values is not necessarily a meaningful
measure of the number of characters written or read.

Returns

If successful, the ftell function returns the current value of the file position indicator for the
stream. On failure, the ftell function returns -1L and stores an implementation-defined positive
value in errno.

7.9.9.5 The rewind function

Synopsis

#include <stdio.h>

void rewind(FILE *stream);

Description

The rewind function sets the file position indicator for the stream pointed to by stream to the
beginning of the file. It is equivalent to

(void)fseek(stream, 0L, SEEK_SET);

except that the error indicator for the stream is also cleared.

Returns

The rewind function returns no value.

7.9.10 Error-handling functions

7.9.10.1 The clearerr function

Synopsis

#include <stdio.h>

void clearerr(FILE *stream);

Description

The clearerr function clears the end-of-file and error indicators for the stream pointed to by
stream.

Returns

The clearerr function returns no value.

7.9.10.2 The feof function

Synopsis

#include <stdio.h>

int feof(FILE *stream);

165

Description

The feof function tests the end-of-file indicator for the stream pointed to by stream.

Returns

The feof function returns nonzero if and only if the end-of-file indicator is set for stream.

7.9.10.3 The ferror function

Synopsis

#include <stdio.h>

int ferror(FILE *stream);

Description

The ferror function tests the error indicator for the stream pointed to by stream.

Returns

The ferror function returns nonzero if and only if the error indicator is set for stream.

7.9.10.4 The perror function

Synopsis

#include <stdio.h>

void perror(const char *s);

Description

The perror function maps the error number in the integer expression errno to an error message.
It writes a sequence of characters to the standard error stream thus: first (if s is not a null pointer
and the character pointed to by s is not the null character), the string pointed to by s followed by
a colon (:) and a space, then an appropriate error message string followed by a new-line character.
The contents of the error message strings are the same as those returned by the strerror function
with argument errno, which are implementation-defined.

Returns

The perror function returns no value.

Forward references: the strerror function (7.11.6.2).

166

7.10 General utilities <stdlib.h>

The header <stdlib.h> declares four types and several functions of general utility, and defines
several macros.126

The types declared are size t and wchar t (both described in 7.1.6),

div_t

which is a structure type that is the type of the value returned by the div function, and

ldiv_t

which is a structure type that is the type of the value returned by the ldiv function.

The macros defined are NULL (described in 7.1.6);

EXIT_FAILURE

and

EXIT_SUCCESS

which expand to integral expressions that may be used as the argument to the exit function to
return unsuccessful or successful termination status, respectively, to the host environment;

RAND_MAX

which expands to an integral constant expression, the value of which is the maximum value returned
by the rand function; and

MB_CUR_MAX

which expands to a positive integer expression whose value is the maximum number of bytes
in a multibyte character for the extended character set specified by the current locale (category
LC TYPE), and whose value is never greater than MB LEN MAX.

7.10.1 String conversion functions

The functions atof, atoi, and atol need affect the value of the integer expression errno on
an error. If the value of the result cannot be represented, the behavior is undefined.

7.10.1.1 The atof function

Synopsis

#include <stdlib.h>

double atof(const char *nptr);

Description

The atof function converts the initial portion of the string pointed to by nptr to double

representation. Except for the behavior on error, it is equivalent to

strtod(nptr, (char **)NULL)

Returns

The atof function returns the converted value.

Forward references: the strtod function (7.10.1.4).

126See “future library directions” (7.13.7).

167

7.10.1.2 The atoi function

Synopsis

#include <stdlib.h>

int atoi(const char *nptr);

Description

The atoi function converts the initial portion of the string pointed to by nptr to int repre-
sentation. Except for the behavior on error, it is equivalent to

(int)strtol(nptr, (char **)NULL, 10)

Returns

The atoi function returns the converted value.

Forward references: the strtol function (7.10.1.5).

7.10.1.3 The atol function

Synopsis

#include <stdlib.h>

long int atol(const char *nptr);

Description

The atol function converts the initial portion of the string pointed to by nptr to long int

representation. Except for the behavior on error, it is equivalent to

strtol(nptr, (char **)NULL, 10)

Returns

The atol function returns the converted value.

Forward references: the strtol function (7.10.1.5).

7.10.1.4 The strtod function

Synopsis

#include <stdlib.h>

double strtod(const char *nptr, char **endptr);

Description

The strtod function converts the initial pointer of the string pointed to by nptr to double

representation. First, it decomposes the input string into three parts: an initial, possibly empty,
sequence of white-space characters (as specified by the isspace function), a subject sequence
resembling a floating-point constant, and a final string of one or more unrecognized characters,
including the terminating null character of the input string. Then, it attempts to convert the
subject sequence to a floating-point number, and returns the result.

The expected form of the subject sequence is an optional plus or minus sign, then a nonempty
sequence of digits optionally containing a decimal-point character, then an optional exponent part
as defined in 6.1.3.1, but no floating suffix. The subject sequence is defined as the longest initial
subsequence of the input string, starting with the first non-white-space character, that is of the

168

expected form. The subject sequence contains no characters if the input string is empty or consists
entirely of white space, or if the first non-white-space character is other than a sign, a digit, or a
decimal-point character.

If the subject sequence has the expected form, the sequence of characters starting with the first
digit or the decimal-point character (whichever occurs first) is interpreted as a floating constant
according to the rules of 6.1.3.1, except that the decimal-point character is used in place of a
period, and that if neither an exponent part nor a decimal-point character appears, a decimal
point is assumed to follow the last digit in the string. If the subject sequence begins with a minus
sign, the value resulting from the conversion is negated. A pointer to the final string is stored in
the object pointed to by endptr, provided that endptr is not a null pointer.

In other than "C" locale, additional implementation-defined subject sequence forms may be
accepted.

If the subject sequence is empty or does not have the expected form, no conversion is performed;
the value of nptr is stored in the object pointed to by endptr, provided that endptr is not a null
pointer.

Returns

The strtod function returns the converted value, if any. If no conversion could be performed,
zero is returned. If the correct value is outside the range of representable values, plus or minus
HUGE VAL is returned (according to the sign of the value), and the value of the macro ERANGE is
stored in errno. If the correct value would cause underflow, zero is returned and the value of the
macro ERANGE is stored in errno.

7.10.1.5 The strtol function

Synopsis

#include <stdlib.h>

long int strtol(const char *nptr, char **endptr, int base);

Description

The strtol function converts the initial portion of the string pointed to by nptr to long int

representation. First, it decomposes the input string into three parts: an initial, possibly empty,
sequence of white-space characters (as specified by the isspace function), a subject sequence
resembling an integer represented in some radix determined by the value of base, and a final string
of one or more unrecognized characters, including the terminating null character of the input string.
Then, it attempts to convert the subject sequence to an integer, and returns the result.

If the value of base is zero, the expected form of the subject sequence is that of an integer
constant as described in 6.1.3.2, optionally preceded by a plus or minus sign, but not including an
integer suffix. If the value of base is between 2 and 36, the expected form of the subject sequence is
a sequence of letters and digits representing an integer with the radix specified by base, optionally
preceded by a plus or minus sign, but not including an integer suffix. The letters from a (or A)
through z (or Z) are ascribed the values 10 to 35; only letters whose ascribed values are less than
that of base are permitted. If the value of base is 16, the characters 0x or 0X may optionally
precede the sequence of letters and digits, following the sign if present.

The subject sequence is defined as the longest initial subsequence of the input string, starting
with the first non-white-space character, that is of the expected form. The subject sequence

169

contains no characters if the input string is empty or consists entirely of white space, or if the first
non-white-space character is other than a sign or a permissible letter or digit.

If the subject sequence has the expected form and the value of base is zero, the sequence of
characters starting with the first digit is interpreted as an integer constant according to the rules of
6.1.3.2. If the subject sequence has the expected form and the value of base is between 2 and 36,
it is used as the base for conversion, ascribing to each letter its value as given above. If the subject
sequence begins with a minus sign, the value resulting from the conversion is negated. A pointer
to the final string is stored in the object pointed to by endptr, provided that endptr is not a null
pointer.

In other than the "C" locale, additional implementation-defined subject sequence forms may
be accepted.

If the subject sequence is empty or does not have the expected form, no conversion is performed;
the value of nptr is stored in the object pointed to by endptr, provided that endptr is not a null
pointer.

Returns

The strtol function returns the converted value, if any. If no conversion could be performed,
zero is returned. If the correct value is outside the range of representable values, LONG MAX or
LONG MIN is returned (according to the sign of the value), and the value of the macro ERANGE is
stored in errno.

7.10.1.6 The strtoul function

Synopsis

#include <stdlib.h>

unsigned long int strtoul(const char *nptr, char **endptr,

int base);

Description

The strtoul function converts the initial portion of the string pointed to by nptr to unsigned

long int representation. First, it decomposes the input string into three parts: an initial, possibly
empty, sequence of white-space characters (as specified by the isspace function), a subject se-
quence resembling an unsigned integer represented in some radix determined by the value of base,
and a final string of one or more unrecognized characters, including the terminating null character
of the input string. Then, it attempts to convert the subject sequence to an unsigned integer, and
returns the result.

If the value of base is zero, the expected form of the subject sequence is that of an integer
constant as described in 6.1.3.2, optionally preceded by a plus or minus sign, but not including an
integer suffix. If the value of base is between 2 and 36, the expected form of the subject sequence is
a sequence of letters and digits representing an integer with the radix specified by base, optionally
preceded by a plus or minus sign, but not including an integer suffix. The letters from a (or A)
through z (or Z) are ascribed the values 10 to 35; only letters whose ascribed values are less than
that of base are permitted. If the value of base is 16, the characters 0x or 0X may optionally
precede the sequence of letters and digits, following the sign if present.

The subject sequence is defined as the longest initial subsequence of the input string, starting
with the first non-white-space character, that is of the expected form. The subject sequence

170

contains no characters if the input string is empty or consists entirely of white space, or if the first
non-white-space character is other than a sign or a permissible letter or digit.

If the subject sequence has the expected form and the value of base is zero, the sequence of
characters starting with the first digit is interpreted as an integer constant according to the rules of
6.1.3.2. If the subject sequence has the expected form and the value of base is between 2 and 36,
it is used as the base for conversion, ascribing to each letter its value as given above. If the subject
sequence begins with a minus sign, the value resulting from the conversion is negated. A pointer
to the final string is stored in the object pointed to by endptr, provided that endptr is not a null
pointer.

In other than the "C" locale, additional implementation-defined subject sequence forms may
be accepted.

If the subject sequence is empty or does not have the expected form, no conversion is performed;
the value of nptr is stored in the object pointed to by endptr, provided that endptr is not a null
pointer.

Returns

The strtoul function returns the converted value, if any. If no conversion could be performed,
zero is returned. If the correct value is outside the range of representable values, ULONG MAX is
returned, and the value of the macro ERANGE is stored in errno.

7.10.2 Pseudo-random sequence generation functions

7.10.2.1 The rand function

Synopsis

#include <stdlib.h>

int rand(void);

Description

The rand function computes a sequence of pseudo-random integers in the range 0 to RAND MAX.

The implementation shall behave as if no library function calls the rand function.

Returns

The rand function returns a pseudo-random integer.

Environmental limit

The value of the RAND MAX macro shall be at least 32767.

7.10.2.2 The srand function

Synopsis

#include <stdlib.h>

void srand(unsigned int seed);

Description

The srand function uses the argument as a seed for a new sequence of pseudo-random numbers
to be returned by subsequent calls to rand. If srand is then called with the same seed value, the

171

sequence of pseudo-random numbers shall be repeated. If rand is called before any calls to srand

have been made, the same sequence shall be generated as when srand is first called with a seed
value of 1.

The implementation shall behave as if no library function calls the srand function.

Returns

The srand function returns no value.

Example

The following functions define a portable implementation of rand and srand.

static unsigned long int next = 1;

int rand(void) /* RAND_MAX assumed to be 32767 */

{

next = next * 1103515245 + 12345;

return (unsigned int)(next/65536) % 32768;

}

void srand(unsigned int seed)

{

next = seed;

}

7.10.3 Memory management functions

The order and contiguity of storage allocated by successive calls to the calloc, malloc, and
realloc functions is unspecified. The pointer returned if the allocation succeeds is suitably aligned
so that it may be assigned to a pointer to any type of object and then used to access such an object
or an array of such objects in the space allocated (until the space is explicitly freed or reallocated).
Each such allocation shall yield a pointer to an object disjoint from any other object. The pointer
returned points to the start (lowest byte address) of the allocated space. If the space cannot be
allocated, a null pointer is returned. If the size of the space requested is zero, the behavior is
implementation-defined; the value returned shall be a null pointer or a unique pointer. The value
of a pointer that refers to freed space is indeterminate.

7.10.3.1 The calloc function

Synopsis

#include <stdlib.h>

void *calloc(size_t nmemb, size_t size);

Description

The calloc function allocates space for an array of nmemb objects, each of whose size is size.
The space is initialized to all bits zero.127

Returns

The calloc function returns either a null pointer or a pointer to the allocated space.

127Note that this need not be the same as the representation of floating-point zero or a null pointer constant.

172

7.10.3.2 The free function

Synopsis

#include <stdlib.h>

void free(void *ptr);

Description

The free function causes the space pointed to by ptr to be deallocated, that is, made available
for further allocation. If ptr is a null pointer, no action occurs. Otherwise, if the argument does
not match a pointer earlier returned by the calloc, malloc, or realloc function, or if the space
has been deallocated by a call to free or realloc, the behavior is undefined.

Returns

The free function returns no value.

7.10.3.3 The malloc function

Synopsis

#include <stdlib.h>

void *malloc(size_t size);

Description

The malloc function allocates space for an object whose size is specified by size and whose
value is indeterminate.

Returns

The malloc function returns either a null pointer or a pointer to the allocated space.

7.10.3.4 The realloc function

Synopsis

#include <stdlib.h>

void *realloc(void *ptr, size_t size);

Description

The realloc function changes the size of the object pointed to by ptr to the size specified by
size. The contents of the object shall be unchanged up to the lesser of the new and old sizes. If
the new size is larger, the value of the newly allocated portion of the object is indeterminate. If
ptr is a null pointer, the realloc function behaves like the malloc function for the specified size.
Otherwise, if ptr does not match a pointer earlier returned by the calloc, malloc, or realloc,
or if the space has been deallocated by a call to the free or realloc function, the behavior is
undefined. If the space cannot be reallocated, the object pointed to by ptr is unchanged. If size
is zero and ptr is not a null pointer, the object it points to is freed.

Returns

The realloc function returns either a null pointer or a pointer to the possibly moved allocated
space.

173

7.10.4 Communication with the environment

7.10.4.1 The abort function

Synopsis

#include <stdlib.h>

void abort(void);

Description

The abort function causes abnormal program termination to occur, unless the signal SIGABRT
is being caught and the signal handler does not return. Whether open output streams are flushed
or open streams closed or temporary files removed is implementation-defined. An implementation-
defined form of the status unsuccessful termination is returned to the host environment by means
of the function call raise(SIGABRT).

Returns

The abort function cannot return to its caller.

7.10.4.2 The atexit function

Synopsis

#include <stdlib.h>

int atexit(void (*func)(void));

Description

The atexit function registers the function pointed to by func to be called without arguments
at normal program termination.

Implementation limits

The implementation shall support registration of at least 32 functions.

Returns

The atexit function returns zero if the registration succeeds, nonzero if it fails.

Forward references: the exit function (7.10.4.3).

7.10.4.3 The exit function

Synopsis

#include <stdlib.h>

void exit(int status);

Description

The exit function causes normal program termination to occur. If more than one call to the
exit function is executed by a program, the behavior is undefined.

First, all functions registered by the atexit function are called, in the reverse order of their
registration.128

128Each function is called as many times as it was registered.

174

Next, all open streams with unwritten buffered data are flushed, all open streams are closed,
and all files created by the tmpfile function are removed.

Finally, control is returned to the host environment. If the value of status is zero or
EXIT SUCCESS, an implementation-defined form of the status successful termination is returned. If
the value of status is EXIT FAILURE, an implementation-defined form of the status unsuccessful
termination is returned. Otherwise the status returned is implementation-defined.

Returns

The exit function cannot return to its caller.

7.10.4.4 The getenv function

Synopsis

#include <stdlib.h>

char *getenv(const char *name);

Description

The getenv function searches an environment list, provided by the host environment, for a
string that matches the string pointed to by name. The set of environment names and the method
for altering the environment list are implementation-defined.

The implementation shall behave as if no library function calls the getenv function.

Returns

The getenv function returns a pointer to a string associated with the matched list member. The
string pointed to shall not be modified by the program, but may be overwritten by a subsequent
call to the getenv function. If the specified name cannot be found, a null pointer is returned.

7.10.4.5 The system function

Synopsis

#include <stdlib.h>

int system(const char *string);

Description

The system function passes the string pointed to by string to the host environment to be
executed by a command processor in an implementation-defined manner. A null pointer may be
used for string to inquire whether a command processor exists.

Returns

If the argument is a null pointer, the system function returns nonzero only if a command
processor is available. If the argument is not a null pointer, the system function returns an
implementation-defined value.

175

7.10.5 Searching and sorting utilities

7.10.5.1 The bsearch function

Synopsis

#include <stdlib.h>

void *bsearch(const void *key, const void *base,

size_t nmemb, size_t size,

int (*compar)(const void *, const void *));

Description

The bsearch function searches an array of nmemb objects, the initial element of which is pointed
to by base, for an element that matches the object pointed to by key. The size of each element of
the array is specified by size.

The comparison function pointed to by compar is called with two arguments that point to the
key object and to an array element, in that order. The function shall return an integer less than,
equal to, or greater than zero if the key object is considered, respectively, to be less than, to match,
or to be greater than the array element. The array shall consists of: all the elements that compare
less than, all the elements that compare equal to, and all the elements that compare greater than
the key object, in that order.129

Returns

The bsearch function returns a pointer to a matching element of the array, or a null pointer
if no match is found. If two elements compare as equal, which element is matched is unspecified.

7.10.5.2 The qsort function

Synopsis

#include <stdlib.h>

void qsort(void *base, size_t nmemb, size_t size,

int (*compar)(const void *, const void *));

Description

The qsort function sorts an array of nmemb objects, the initial element of which is pointed to
by base. The size of each object is specified by size.

The contents of the array are sorted into ascending order according to a comparison function
pointed to by compar, which is called with two arguments that point to the objects being compared.
The function shall return an integer less than, equal to, or greater than zero if the first argument
is considered to be respectively less than, equal to, or greater than the second.

If two elements compare as equal, their order in the sorted array is unspecified.

Returns

The qsort function returns no value.

129In practice, the entire array is sorted according to the comparison function.

176

7.10.6 Integer arithmetic functions

7.10.6.1 The abs function

Synopsis

#include <stdlib.h>

int abs(int j);

Description

The abs function computes the absolute value of an integer j. If the result cannot be repre-
sented, the behavior is undefined.130

Returns

The abs function returns the absolute value.

7.10.6.2 The div function

Synopsis

#include <stdlib.h>

div_t div(int numer, int denom);

Description

The div function computes the quotient and remainder of the division of the numerator numer
by the denominator denom. If the division is inexact, the resulting quotient is the integer of lesser
magnitude that is the nearset to the algebraic quotient. If the result cannot be represented, the
behavior is undefined, otherwise, quot * denom + rem shall equal numer.

Returns

The div function returns a structure of type div t, comprising both the quotient and the
remainder. The structure shall contain the following members, in either order:

int quot; /* quotient */

int rem; /* remainder */

7.10.6.3 The labs function

Synopsis

#include <stdlib.h>

long int labs(long int j);

Description

The labs function is similar to the abs function, except that the argument and the returned
value each have type long int.

7.10.6.4 The ldiv function

Synopsis

#include <stdlib.h>

ldiv_t ldiv(long int numer, long int denom);

130The absolute value of the most negative number cannot be represented in two’s complement.

177

Description

The ldiv function is similar to the div function, except that the arguments and the members
of the returned structure (which has type ldiv t) all have type long int.

7.10.7 Multibyte character functions

The behavior of the multibyte character functions is affected by the LC CTYPE category of the
current locale. For a state-dependent encoding, each function is placed into its initial state by
a call for which its character pointer argument, s, is a null pointer. Subsequent calls with s as
other than a null pointer cause the internal state of the function to be altered as necessary. A call
with s as a null pointer causes these functions to return a nonzero value if encodings have state
dependency, and zero otherwise.131 Changing the LC CTYPE category causes the shift state of these
functions to be indeterminate.

7.10.7.1 The mblen function

Synopsis

#include <stdlib.h>

int mblen(const char *s, size_t n);

Description

If s is not a null pointer, the mblen function determines the number of bytes contained in the
multibyte character pointed to by s. Except that the shift state of the mbtowc function is not
affected, it is equivalent to

mbtowc((wchar_t *)0, s, n);

The implementation shall behave as if no library function calls the mblen function.

Returns

If s is a null pointer, the mblen function returns a nonzero or zero value, if multibyte character
encodings, respectively, do or do not have state-dependent encodings. If s is not a null pointer,
the mblen function returns 0 (if s points to the null character), or returns the number of bytes
that are contained in the multibyte character (if the next n or fewer bytes form a valid multibyte
character), or returns –1 (if they do not form a valid multibyte character).

Forward references: the mbtowc function (7.10.7.2).

7.10.7.2 The mbtowc function

Synopsis

#include <stdlib.h>

int mbtowc(wchar_t *pwc, const char *s, size_t n);

Description

If s is not a null pointer, the mbtowc function determines the number of bytes that are contained
in the multibyte character pointed to by s. It then determines the code for the value of type wchar t

that corresponds to that multibyte character. (The value of the code corresponding to the null

131If the implementation employs special bytes to change the shift state, these bytes do not produce separate
wide character codes, but are grouped with an adjacent multibyte character.

178

character is zero.) If the multibyte character is valid and pwc is not a null pointer, the mbtowc

function stores the code in the object pointed to by pwc. At most n bytes of the array pointed to
by s will be examined.

The implementation shall behave as if no library function calls the mbtowc function.

Returns

If s is a null pointer, the mbtowc function returns a nonzero or zero value, if multibyte character
encodings, respectively, do or do not have state-dependent encodings. If s is not a null pointer,
the mbtowc function returns 0 (if s points to the null character), or returns the number of bytes
that are contained in the converted multibyte character (if the next n or fewer bytes form a valid
multibyte character), or returns –1 (if they do not form a valid multibyte character).

In no case will the value returned be greater than n or the value of the MB CUR MAX macro.

7.10.7.3 The wctomb function

Synopsis

#include <stdlib.h>

int wctomb(char *s, wchar_t wchar);

Description

The wctomb function determines the number of bytes needed to represent the multibyte charac-
ter corresponding to the code whose value is wchar (including any change in shift state). It stores
the multibyte character representation in the array object pointed to by s (if s is not a null pointer).
At most MB CUR MAX characters are stored. If the value of wchar is zero, the wctomb function is left
in the initial shift state.

The implementation shall behave as if no library function calls the wctomb function.

Returns

If s is a null pointer, the wctomb function returns a nonzero or zero value, if multibyte character
encodings, respectively, do or do not have state-dependent encodings. If s is not a null pointer, the
wctomb function returns –1 if the value of wchar does not correspond to a valid multibyte character,
or returns the number of bytes that are contained in the multibyte character corresponding to the
value of wchar.

In no case will the value returned be greater than the value of the MB CUR MAX macro.

7.10.8 Multibyte string functions

The behavior of the multibyte string functions is affected by the LC CTYPE category of the
current locale.

7.10.8.1 The mbstowcs function

Synopsis

#include <stdlib.h>

size_t mbstowcs(wchar_t *pwcs, const char *s, size_t n);

Description

The mbstowcs function converts a sequence of multibyte characters that begins in the initial
shift state from the array pointed to by s into a sequence of corresponding codes and stores not

179

more than n codes into the array pointed to by pwcs. No multibyte characters that follow a null
character (which is converted into a code with value zero) will be examined or converted. Each
multibyte character is converted as if by a call to the mbtowc function, except that the shift state
of the mbtowc function is not affected.

No more than n elements will be modified in the array pointed to by pwcs. If copying takes
place between objects that overlap, the behavior is undefined.

Returns

If an invalid multibyte character is encountered, the mbstowcs function returns (size t)-1.
Otherwise, the mbstowcs function returns the number of array elements modified, not including a
terminating zero code, if any.132

7.10.8.2 The wcstombs function

Synopsis

#include <stdlib.h>

size_t wcstombs(char *s, const wchar_t *pwcs, size_t n);

Description

The wcstombs function converts a sequence of codes that correspond to multibyte characters
from the array pointed to by pwcs into a sequence of multibyte characters that begins in the
initial shift state and stores these multibyte characters into the array pointed to by s, stopping if
a multibyte character would exceed the limit of n total bytes or if a null character is stored. Each
code is converted as if by a call to the wctomb function, except that the shift state of the wctomb

function is not affected.

No more than n bytes will be modified in the array pointed to by s. If copying takes place
between objects that overlap, the behavior is undefined.

Returns

If a code is encountered that does not correspond to a valid multibyte character, the wcstombs
function returns (size t)-1. Otherwise, the wcstombs function returns the number of bytes
modified, not including a terminating null character, if any.132

132The array will not be null- or zero-terminated if the value returned is n.

180

7.11 String handling <string.h>

7.11.1 String function conventions

The header <string.h> declares one type and several functions, and defined one macro useful
for manipulating arrays of character type and other objects treated as arrays of character type.133

The type is size t and the macro is NULL (both described in 7.1.6). Various methods are used
for determining the lengths of the arrays, but in all cases a char * or void * argument points to
the initial (lowest addressed) character of the array. If an array is accessed beyond the end of an
object, the behavior is undefined.

7.11.2 Copying functions

7.11.2.1 The memcpy function

Synopsis

#include <string.h>

void *memcpy(void *s1, const void *s2, size_t n);

Description

The memcpy function copies n characters from the object pointed to by s2 into the object
pointed to by s1. If copying takes place between objects that overlap, the behavior is undefined.

Returns

The memcpy function returns the value of s1.

7.11.2.2 The memmove function

Synopsis

#include <string.h>

void *memmove(void *s1, const void *s2, size_t n);

Description

The memmove function copies n characters from the object pointed to by s2 into the object
pointed to by s1. Copying takes place as if the n characters from the object pointed to by s2 are
first copied into a temporary array of n characters that does not overlap the objects pointed to by
s1 and s2, and then n characters from the temporary array are copied into the object pointed to
by s1.

Returns

The memmove function returns the value of s1.

7.11.2.3 The strcpy function

Synopsis

#include <string.h>

char *strcpy(char *s1, const char *s2);

133See “future library directions” (7.13.8).

181

Description

The strcpy function copies the string pointed to by s2 (including the terminating null char-
acter) into the array pointed to by s1. If copying takes place between objects that overlap, the
behavior is undefined.

Returns

The strcpy function returns the value of s1.

7.11.2.4 The strncpy function

Synopsis

#include <string.h>

char *strncpy(char *s1, const char *s2, size_t n);

Description

The strncpy function copies not more than n characters (characters that follow a null character
are not copied) from the array pointed to by s2 to the array pointed to by s1.134 If copying takes
place between objects that overlap, the behavior is undefined.

If the array pointed to by s2 is a string that is shorter than n characters, null characters are
appended to the copy in the array pointed to by s1, until n characters in all have been written.

Returns

The strncpy function returns the value of s1.

7.11.3 Concatenation functions

7.11.3.1 The strcat function

Synopsis

#include <string.h>

char *strcat(char *s1, const char *s2);

Description

The strcat function appends a copy of the string pointed to by s2 (including the terminating
null character) to the end of the string pointed to by s1. The initial character of s2 overwrites the
null character at the end of s1. If copying takes place between objects that overlap, the behavior
is undefined.

Returns

The strcat function returns the value of s1.

7.11.3.2 The strncat function

Synopsis

#include <string.h>

char *strncat(char *s1, const char *s2, size_t n);

134Thus, if there is no null character in the first n characters of the array pointed to by s2, the result will not
be null-terminated.

182

Description

The strncat function appends not more than n characters (a null character and characters
that follow it are not appended) from the array pointed to by s2 to the end of the string pointed to
by s1. The initial character of s2 overwrites the null character at the end of s1. A terminating null
character is always appended to the result.135 If copying takes place between objects that overlap,
the behavior is undefined.

Returns

The strncat function returns the value of s1.

Forward references: the strlen function (7.11.6.3).

7.11.4 Comparison functions

The sign of a nonzero value returned by the comparison functions memcmp, strcmp, and strncmp

is determined by the sign of the difference between the values of the first pair of characters (both
interpreted as unsigned char) that differ in the objects being compared.

7.11.4.1 The memcmp function

Synopsis

#include <string.h>

int memcmp(const void *s1, const void *s2, size_t n);

Description

The memcmp function compares the first n characters of the object pointed to by s1 to the first
n characters of the object pointed to by s2.136

Returns

The memcmp function returns an integer greater than, equal to, or less than zero, accordingly
as the object pointed to by s1 is greater than, equal to, or less than the object pointed to by s2.

7.11.4.2 The strcmp function

Synopsis

#include <string.h>

int strcmp(const char *s1, const char *s2);

Description

The strcmp function compares the string pointed to by s1 to the string pointed to by s2.

Returns

The strcmp function returns an integer greater than, equal to, or less than zero, accordingly
as the string pointed to by s1 is greater than, equal to, or less than the string pointed to by s2.

135Thus, the maximum number of characters that can end up in the array pointed to by s1 is strlen(s1)+n+1.
136The contents of “holes” used as padding for purposes of alignment within structure objects are indeterminate.

Strings shorter than their allocated space and unions may also cause problems in comparison.

183

7.11.4.3 The strcoll function

Synopsis

#include <string.h>

int strcoll(const char *s1, const char *s2);

Description

The strcoll function compares the string pointed to by s1 to the string pointed to by s2,
both interpreted as appropriate to the LC COLLATE category of the current locale.

Returns

The strcoll function returns an integer greater than, equal to, or less than zero, accordingly
as the string pointed to by s1 is greater than, equal to, or less than the string pointed to by s2

when both are interpreted as appropriate to the current locale.

7.11.4.4 The strncmp function

Synopsis

#include <string.h>

int strncmp(const char *s1, const char *s2, size_t n);

Description

The strncmp function compares not more than n characters (characters that follow a null
character are not compared) from the array pointed to by s1 to the array pointed to by s2.

Returns

The strncmp function returns an integer greater than, equal to, or less than zero, accordingly
as the possibly null-terminated array pointed to by s1 is greater than, equal to, or less than the
possibly null-terminated array pointed to by s2.

7.11.4.5 The strxfrm function

Synopsis

#include <string.h>

int strxfrm(char *s1, const char *s2, size_t n);

Description

The strxfrm function transforms the string pointed to by s2 and places the resulting string
into the array pointed to by s1. The transformation is such that if the strcmp function is applied to
two transformed strings, it returns a value greater than, equal to, or less than zero, corresponding
to the result of the strcoll function applied to the same two original strings. No more than
n characters are placed into the resulting array pointed to by s1, including the terminating null
character. If n is zero, s1 is permitted to be a null pointer. If copying takes place between objects
that overlap, the behavior is undefined.

Returns

The strxfrm function returns the length of the transformed string (not including the termi-
nating null character). If the value returned is n or more, the contents of the array pointed to by
s1 are indeterminate.

184

Example

The value of the following expression is the size of the array needed to hold the transformation
of the string pointed to by s.

1 + strxfrm(NULL, s, 0);

7.11.5 Search functions

7.11.5.1 The memchr function

Synopsis

#include <string.h>

void *memchr(const void *s, int c, size_t n);

Description

The memchr function locates the first occurence of c (converted to unsigned char) in the initial
n characters (each interpreted as unsigned char) of the object pointed to by s.

Returns

The memchr function returns a pointer to the located character, or a null pointer if the character
does not occur in the object.

7.11.5.2 The strchr function

Synopsis

#include <string.h>

char *strchr(const char *s, int c);

Description

The strchr function locates the first occurence of c (converted to a char) in the string pointed
to by s. The terminating null character is considered to be part of the string.

Returns

The strchr function returns a pointer to the located character, or a null pointer if the character
does not occur in the string.

7.11.5.3 The strcspn function

Synopsis

#include <string.h>

size_t strcspn(const char *s1, const char *s2);

Description

The strcspn function computes the length of the maximum initial segment of the string pointed
to by s1 which consists entirely of characters not from the string pointed to by s2.

Returns

The strcspn function returns the length of the segment.

185

7.11.5.4 The strpbrk function

Synopsis

#include <string.h>

char *strpbrk(const char *s1, const char *s2);

Description

The strpbrk function locates the first occurrence in the string pointed to by s1 of any character
from the string pointed to by s2.

Returns

The strpbrk function returns a pointer to the character, or a null pointer if no character from
s2 occurs in s1.

7.11.5.5 The strrchr function

Synopsis

#include <string.h>

char *strrchr(const char *s, int c);

Description

The strrchr function locates the last occurence of c (converted to a char) in the string pointed
to by s. The terminating null character is considered to be part of the string.

Returns

The strrchr function returns a pointer to the located character, or a null pointer if c does not
occur in the string.

7.11.5.6 The strspn function

Synopsis

#include <string.h>

size_t strspn(const char *s1, const char *s2);

Description

The strspn function computes the length of the maximum initial segment of the string pointed
to by s1 which consists entirely of characters from the string pointed to by s2.

Returns

The strspn function returns the length of the segment.

7.11.5.7 The strstr function

Synopsis

#include <string.h>

char *strstr(const char *s1, const char *s2);

Description

The strstr function locates the first occurrence in the string pointed to by s1 of the sequence
of characters (excluding the terminating null character) in the string pointed to by s2.

186

Returns

The strstr function returns a pointer to the located string, or a null pointer if the string is
not found. If s2 points to a string with zero length, the function returns s1.

7.11.5.8 The strtok function

Synopsis

#include <string.h>

char *strtok(char *s1, const char *s2);

Description

A sequence of calls to the strtok function breaks the string pointed to by s1 into a sequence
of tokens, each of which is delimited by a character from the string pointed to by s2. The first call
in the sequence has s1 as its first argument, and is followed by calls with a null pointer as their
first argument. The separator string pointed to by s2 may be different from call to call.

The first call in the sequence searches the string pointed to by s1 for the first character that is
not contained in the current separator string pointed to by s2. If no such character is found, then
there are no tokens in the string pointed to by s1 and the strtok function returns a null pointer.
If such a character is found, it is the start of the first token.

The strtok function then searches from there for a character that is contained in the current
separator string. If no such character is found, the current token extends to the end of the string
pointed to by s1, and subsequent searches for a token will return a null pointer. If such a character
is found, it is overwritten by a null character, which terminates the current token. The strtok

function saves a pointer to the following character, from which the next search for a token will
start.

Each subsequent call, with a null pointer as the value of the first argument, starts searching
from the saved pointer and behaves as described above.

The implementation shall behave as if no library function calls the strtok function.

Returns

The strtok function returns a pointer to the first character of a token, or a null pointer if
there is no token.

Example

#include <string.h>

static char str[] = "?a???b,,,#c";

char *t;

t = strtok(str, "?"); /* t points to the token "a" */

t = strtok(NULL, ","); /* t points to the token "??b" */

t = strtok(NULL, "#,"); /* t points to the token "c" */

t = strtok(NULL, "?"); /* t is a null pointer */

187

7.11.6 Miscellaneous functions

7.11.6.1 The memset function

Synopsis

#include <string.h>

void *memset(void *s, int c, size_t n);

Description

The memset function copies the value of c (converted to an unsigned char) into each of the
first n characters of the object pointed to by s.

Returns

The memset function returns the value of s.

7.11.6.2 The strerror function

Synopsis

#include <string.h>

char *strerror(int errnum);

Description

The strerror function maps the error number in errnum to an error message string.

The implementation shall behave as if no library function calls the strerror function.

Returns

The strerror function returns a pointer to the string, the contents of which are implementa-
tion-defined. The array pointed to shall not be modified by the program, but may be overwritten
by a subsequent call to the strerror function.

7.11.6.3 The strlen function

Synopsis

#include <string.h>

size_t strlen(const char *s);

Description

The strlen function computes the length of the string pointed to by s.

Returns

The strlen function returns the number of characters that precede the terminating null char-
acter.

188

7.12 Date and time <time.h>

7.12.1 Components of time

The header <time.h> defines two macros, and declares four types and several functions for
manipulating time. Many functions deal with a calendar time that represents the current date
(according to the Gregorian calendar) and time. Some functions deal with local time, which is the
calendar time expressed for some specific time zone, and with Daylight Saving Time, which is a
temporary change in the algorithm for determining local time. The local time zone and Daylight
Saving Time are implementation-defined.

The macros defined are NULL (described in 7.1.6); and

CLOCKS_PER_SEC

which is the number per second of the value returned by the clock function.

The types declared are size t (described in 7.1.6);

clock_t

and

time_t

which are arithmetic types capable of representing times; and

struct tm

which holds the components of a calendar time, called the broken-down time. The structure shall
contain at least the following members and their normal ranges are expressed in the comments.137

int tm_sec; /* seconds after the minute — [0, 61] */

int tm_min; /* minutes after the hour — [0, 59] */

int tm_hour; /* hours since midnight — [0, 23] */

int tm_mday; /* day of the month — [1, 31] */

int tm_mon; /* months since January — [0, 11] */

int tm_year; /* years since 1900 */

int tm_wday; /* days since Sunday — [0, 6] */

int tm_yday; /* days since January 1 — [0, 365] */

int tm_isdst; /* Daylight Saving Time flag */

The value of tm isdst is positive if Daylight Saving Time is in effect, zero if Daylight Saving Time
is not in effect, and negative if the information is not available.

7.12.2 Time manipulation functions

7.12.2.1 The clock function

Synopsis

#include <time.h>

clock_t clock(void);

Description

The clock function determines the processor time used.

137The range [0, 61] for tm sec allows for as many as two leap second.

189

Returns

The clock function returns the implementation’s best approximation to the processor time
used by the program since the beginning of an implementation-defined era related only to the
program invocation. To determine the time in seconds, the value returned by the clock function
should be divided by the value of the macro CLOCKS PER SEC. If the processor time used is not
available or its value cannot be represented, the function returns the value (clock t)-1.138

7.12.2.2 The difftime function

Synopsis

#include <time.h>

double difftime(time_t time1, time_t time0);

Description

The difftime function computes the difference between two calendar times: time1 - time0.

Returns

The difftime function returns the difference expressed in seconds as a double.

7.12.2.3 The mktime function

Synopsis

#include <time.h>

time_t mktime(struct tm *timeptr);

Description

The mktime function converts the broken-down time, expressed as local time, in the structure
pointed to by timeptr into a calendar time value with the same encoding as that of the values
returned by the time function. The original values of the tm wday and tm yday components of
the structure are ignored, and the original values of the other components are not restricted to
the ranges indicated above.139 On successful completion, the values of the tm wday and tm yday

components of the structure are set appropriately, and the other components are set to represent
the specified calendar time, but with their values forced to the ranges indicated above; the final
value of tm mday is not set until tm mon and tm year are determined.

Returns

The mktime function returns the specified calendar time encoded as a value of type time t. If
the calendar time cannot be represented, the function returns the value (time t)-1.

Example

What day of the week is July 4, 2001?

138In order to measure the time spent in a program the clock function should be called at the start of the
program and its return value subtracted from the value returned by subsequent calls.

139Thus, a positive or zero value for tm isdst causes the mktime function to presume initially that Daylight
Saving Time, respectively, is or is not in effect for the specified time. A negative value causes it to attempt to
determine whether Daylight Saving Time is in effect for the specified time.

190

#include <stdio.h>

#include <time.h>

static const char *const wday[] = {

"Sunday", "Monday", "Tuesday", "Wednesday",

"Thursday", "Friday", "Saturday", "-unknown-"

};

struct tm time_str;

/*...*/

time_str.tm_year = 2001 - 1900;

time_str.tm_mon = 7 - 1;

time_str.tm_mday = 4;

time_str.tm_hour = 0;

time_str.tm_min = 0;

time_str.tm_sec = 1;

time_str.tm_isdst = -1;

if (mktime(&time_str) == -1)

time_str.tm_wday = 7;

printf("%s\n", wday[time_str.tm_wday]);

7.12.2.4 The time function

Synopsis

#include <time.h>

time_t time(time_t *timer);

Description

The time function determines the current calendar time. The encoding of the value is unspec-
ified.

Returns

The time function returns the implementation’s best approximation to the current calendar
time. The value (time t)-1 is returned if the calendar time is not available. If timer is not a null
pointer, the return value is also assigned to the object it points to.

7.12.3 Time conversion functions

Except for the strftime function, these functions return values in one of two static objects: a
broken-down time structure and an array of char. Execution of any of the functions may overwrite
information returned in either of these objects by any of the other functions. The implementation
shall behave as if no other library functions call these functions.

7.12.3.1 The asctime function

Synopsis

#include <time.h>

char *asctime(const struct tm *timeptr);

191

Description

The asctime function converts the broken-down time in the structure pointed to by timeptr

into a string in the form

Sun Sep 16 01:03:52 1973\n\0

using the equivalent of the following algorithm

char *asctime(const struct tm *timeptr)

{

static const char wday_name[7][3] = {

"Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat"

};

static const char mon_name[12][3] = {

"Jan", "Feb", "Mar", "Apr", "May", "Jun",

"Jul", "Aug", "Sep", "Oct", "Nov", "Dec"

};

static char result[26];

sprintf(result, "%.3s %.3s%3d %.2d:%.2d:%.2d %d\n",

wday_name[timeptr->tm_wday],

mon_name[timeptr->tm_mon],

timeptr->tm_mday, timeptr->tm_hour,

timeptr->tm_min, timeptr->tm_sec,

1900 + timeptr->tm_year);

return result;

}

Returns

The asctime function returns a pointer to the string.

7.12.3.2 The ctime function

Synopsis

#include <time.h>

char *ctime(const struct tm *timeptr);

Description

The ctime function converts the calendar time pointed to by timer to local time in the form
of a string. It is equivalent to

asctime(localtime(timer))

Returns

The ctime function returns the pointer returned by the asctime function with that broken-
down time as argument.

Forward references: the localtime function (7.12.3.4).

192

7.12.3.3 The gmtime function

Synopsis

#include <time.h>

struct tm *gmtime(const time_t *timer);

Description

The gmtime function converts the calendar time pointed to by timer into a broken-down time,
expressed as Coordinated Universal Time (UTC).

Returns

The gmtime function returns a pointer to that object, or a null pointer if UTC is not available.

7.12.3.4 The localtime function

Synopsis

#include <time.h>

struct tm *localtime(const time_t *timer);

Description

The localtime function converts the calendar time pointed to by timer into a broken-down
time, expressed as local time.

Returns

The localtime function returns a pointer to that object.

7.12.3.5 The strftime function

Synopsis

#include <time.h>

size_t strftime(char *s, size_t maxsize,

const char *format, const struct tm *timeptr);

Description

The strftime function places characters into the array pointed to by s as controlled by the
string pointed to by format. The format shall be a multibyte character sequence, beginning and
ending in its initial shift state. The format string consists of zero or more conversion specifiers and
ordinary multibyte characters. A conversion specifier consists of a % character followed by a char-
acter that determines the behavior of the conversion specifier. All ordinary multibyte characters
(including the terminating null character) are copied unchanged into the array. If copying takes
place between objects that overlap, the behavior is undefined. No more than maxsize characters
are placed into the array. Each conversion specifier is replaced by appropriate characters as de-
scribed in the following list. The appropriate characters are determined by the LC TIME category
of the current locale and by the values contained in the structure pointed to by timeptr.

%a is replaced by the locale’s abbreviated weekday name
%A is replaced by the locale’s full weekday name.
%b is replaced by the locale’s abbreviated month name.
%B is replaced by the locale’s full month name.
%c is replaced by the locale’s appropriate date and time representation.

193

%d is replaced by the day of the month as a decimal number (01-31).
%H is replaced by the hour (24-hour clock) as a decimal number (00-23).
%I is replaced by the hour (12-hour clock) as a decimal number (01-12).
%j is replaced by the day of the year as a decimal number (001-366).
%m is replaced by the month as a decimal number (01-12).
%M is replaced by the minute as a decimal number (00-59).
%p is replaced by the locale’s equivalent of the AM/PM designations with a 12-hour clock.
%S is replaced by the second as a decimal number (00-61).
%U is replaced by the week number of the year (the first Sunday as the first day of week 1)

as a decimal number (00-53).
%w is replaced by the weekday as a decimal number (01-6), where Sunday is 0.
%W is replaced by the week number of the year (the first Monday as the first day of week 1)

as a decimal number (00-53).
%x is replaced by the locale’s appropriate date representation.
%X is replaced by the locale’s appropriate time representation.
%y is replaced by the year without century as a decimal number (00-99).
%Y is replaced by the year with century as a decimal number.
%Z is replaced by the time zone name or abbreviation, or by no characters if no time zone

is determinable.
%% is replaced by the % .

If a conversion specifier is not one of the above, the behavior is undefined.

Returns

If the total number of resulting characters including the terminating null character is not more
than maxsize, the strftime function returns the number of characters placed into the array
pointed to by s not including the terminating null character. Otherwise, zero is returned and the
contents of the array are indeterminate.

194

7.13 Future library directions
The following names are grouped under individual headers for convenience. All external names

are reserved no matter what headers are included by the program.

7.13.1 Errors <errno.h>

Macros that begin with E and a digit or E and an uppercase letter (followed by any combination
of digits, letters, and underscore) may be added to the declarations in the <errno.h> header.

7.13.2 Character handling <ctype.h>

Function names that begin with either is or to, and a lowercase letter (followed by any com-
bination of digits, letters, and underscore) may be added to the declarations in the <ctype.h>

header.

7.13.3 Localization <locale.h>

Macros that begin with LC and an uppercase letter (followed by any combination of digits,
letters, and underscore) may be added to the definitions in the <locale.h> header.

7.13.4 Mathematics <math.h>

The names of all existing functions declared in the <math.h> header, suffixed with f or l,
are reserved respectively for corresponding functions with float and long double arguments and
return values.

7.13.5 Signal handling <signal.h>

Macros that begin with either SIG and an uppercase letter or SIG and an uppercase letter
(followed by any combination of digits, letters, and underscore) may be added to the definitions in
the <signal.h> header.

7.13.6 Input/output <stdio.h>

Lowercase letters may be added to the conversion specifiers in fprintf and fscanf. Other
characters may be used in extensions.

7.13.7 General utilities <stdlib.h>

Function names that begin with str and a lowercase letter (followed by any combination of
digits, letters, and underscore) may be added to the declarations in the <stdlib.h> header.

7.13.8 String handling <string.h>

Function names that begin with str, mem, or wcs and a lowercase letter (followed by any
combination of digits, letters, and underscore) may be added to the declarations in the <string.h>
header.

195

Annex A
(informative)
Bibliography

1. “The C Reference Manual” by Dennis M. Ritchie, a version of which was published in The
C Programming Language by Brian W. Kernighan and Dennis M. Ritchie, Prentice-Hall, Inc.,
(1978). Copyright owned by AT&T.

2. 1984 /usr/group Standard by the /usr/group Standards Committee, Santa Clara, California,
USA.

2. ANSI X3/TR-1-82 (1982), American National Dictionary for Information Processing Systems,
Information Processing Systems Technical Report.

4. ANSI/IEEE 754-1985, American National Standard for Binary Floating-Point Arithmetic.

196

Annex B
(informative)

Language syntax summary

Note — The notation is described in the introduction to clause 3 (Language).

B.1 Lexical grammar
B.1.1 Tokens

(6.1) token:
keyword
identifier
constant
string-literal
operator
punctuator

(6.1) preprocessing token:
header-name
identifier
pp-number
character-constant
string-literal
operator
punctuator
each non-white-space character that cannot be one of the above

B.1.2 Keywords

(6.1.1) keyword: one of
auto double int struct

break else long switch

case enum register typedef

char extern return union

const float short unsigned

continue for signed void

default goto sizeof volatile

do if static while

B.1.3 Identifiers

(6.1.2) identifier:
nondigit
identifier nondigit
identifier digit

197

(6.1.2) nondigit: one of
a b c d e f g h i j k l m

n o p q r s t u v w x y z

A B C D E F G H I J K L M

N O P Q R S T U V W X Y Z

(6.1.2) digit: one of
0 1 2 3 4 5 6 7 8 9

B.1.4 Constants

(6.1.3) constant:
floating-constant
integer-constant
enumeration-constant
character-constant

(6.1.3.1) floating-constant:
fractional-constant exponent-partopt floating-suffixopt

digit-sequence exponent-part floating-suffixopt

(6.1.3.1) fractional-constant:
digit sequenceopt . digit sequence
digit sequence

(6.1.3.1) exponent-part:
e signopt digit-sequence
E signopt digit-sequence

(6.1.3.1) sign: one of
+ -

(6.1.3.1) digit-sequence:
digit
digit-sequence digit

(6.1.3.1) floating-suffix: one of
f l F L

(6.1.3.2) integer-constant:
decimal-constant integer-suffixopt
octal-constant integer-suffixopt

hexadecimal-constant integer-suffixopt

(6.1.3.2) decimal-constant:
nonzero-digit
decimal-constant digit

(6.1.3.2) octal-constant:
0

octal-constant octal-digit

198

(6.1.3.2) hexadecimal-constant:
0x hexadecimal-digit
0X hexadecimal-digit
hexadecimal-constant hexadecimal-digit

(6.1.3.2) nonzero-digit: one of
1 2 3 4 5 6 7 8 9

(6.1.3.2) octal-digit: one of
0 1 2 3 4 5 6 7

(6.1.3.2) hexadecimal-digit: one of
0 1 2 3 4 5 6 7 8 9

a b c d e f

A B C D E F

(6.1.3.2) integer-suffix:
unsigned-suffix long-suffixopt

long-suffix unsigned-suffixopt

(6.1.3.2) unsigned-suffix: one of
u U

(6.1.3.2) long-suffix: one of
l L

(6.1.3.3) enumeration-constant:
identifier

(6.1.3.4) character-constant:
’c-char-sequence’
L’c-char-sequence’

(6.1.3.4) c-char-sequence:
c-char
c-char-sequence c-char

(6.1.3.4) c-char:
any member of the source character set except

the single-quote ’, backslash \, or new-line character
escape-sequence

(6.1.3.4) escape-sequence:
simple-escape-sequence
octal-escape-sequence c-char
hexadecimal-escape-sequence c-char

(6.1.3.4) simple-escape-sequence: one of
\’ \" \? \\

\a \b \f \n \r \t \v

199

(6.1.3.4) octal-escape-sequence:
\ octal-digit
\ octal-digit octal-digit
\ octal-digit octal-digit octal-digit

(6.1.3.4) hexadecimal-escape-sequence:
\x hexadecimal-digit
hexadecimal-escape-sequence hexadecimal-digit

B.1.5 String literals

(6.1.4) string-literal:
"s-char-sequenceopt"
L"s-char-sequenceopt"

(6.1.4) s-char-sequence:
s-char
s-char-sequence s-char

(6.1.4) s-char:
any member of the source character set except

the double-quote ", backslash \, or new-line character
escape-sequence

B.1.6 Operators

(6.1.5) operator: one of
[] () . ->

++ -- & * + - ~ ! sizeof

/ % << >> < > <= >= == != ^ | && ||

? :

= *= /= %= += -= <<= >>= &= ^= |=

, # ##

B.1.7 Punctuators

(6.1.6) punctuator: one of
[] () { } * , : = ; ... #

B.1.8 Header names

(6.1.7) header-name:
<h-char-sequence>
"q-char-sequence"

(6.1.7) h-char-sequence:
h-char
h-char-sequence h-char

(6.1.7) h-char:
any member of the source character set except

the new-line character and >

200

(6.1.7) q-char-sequence:
q-char
q-char-sequence q-char

(6.1.7) q-char:
any member of the source character set except

the new-line character and "

B.1.9 Preprocessing numbers

(6.1.8) pp-number:
digit
. digit
pp-number digit
pp-number nondigit
pp-number e sign
pp-number E sign
pp-number .

201

B.2 Phrase structure grammar
B.2.1 Expressions

(6.3.1) primary-expression:
identifier
constant
string-literal
(expression)

(6.3.2) postfix-expression:
primary-expression
postfix-expression [expression]

postfix-expression (argument-expression-listopt)
postfix-expression . identifier
postfix-expression -> identifier
postfix-expression ++

postfix-expression --

(6.3.2) argument-expression-list:
assignment-expression
argument-expression-list , assignment-expression

(6.3.3) unary-expression:
postfix-expression
++ unary-expression
-- unary-expression
unary-operator cast-expression
sizeof unary-expression
sizeof (type-name)

(6.3.3) unary-operator: one of
& * + - ~ !

(6.3.4) cast-expression:
(type-name) cast-expression

(6.3.5) multiplicative-expression:
cast-expression
multiplicative-expression * cast-expression
multiplicative-expression / cast-expression
multiplicative-expression % cast-expression

(6.3.6) additive-expression:
multiplicative-expression
additive-expression + multiplicative-expression
additive-expression - multiplicative-expression

(6.3.7) shift-expression:
additive-expression
shift-expression << additive-expression
shift-expression >> additive-expression

202

(6.3.8) relational-expression:
shift-expression
relational-expression < shift-expression
relational-expression > shift-expression
relational-expression <= shift-expression
relational-expression >= shift-expression

(6.3.9) equality-expression:
relational-expression
equality-expression == relational-expression
equality-expression != relational-expression

(6.3.10) AND-expression:
equality-expression
AND-expression & equality-expression

(6.3.11) exclusive-OR-expression:
AND-expression
exclusive-OR-expression ^ AND-expression

(6.3.12) inclusive-OR-expression:
exclusive-OR-expression
inclusive-OR-expression | exclusive-OR-expression

(6.3.13) logical-AND-expression:
inclusive-OR-expression
logical-AND-expression && inclusive-OR-expression

(6.3.14) logical-OR-expression:
logical-AND-expression
logical-OR-expression || logical-AND-expression

(6.3.15) conditional-expression:
logical-OR-expression
logical-OR-expression ? expression : conditional-expression

(6.3.16) assignment-expression:
conditional-expression
unary-expression assignment-operator conditional-expression

(6.3.16) assignment-operator: one of
= *= /= %= += -= <<= >>= &= ^= |=

(6.3.17) expression:
assignment-expression
expression , assignment-expression

(6.4) constant-expression:
conditional-expression

203

B.2.2 Declarations

(6.5) declaration:
declaration-specifiers init-declarator-listopt ;

(6.5) declaration-specifiers:
storage-class-specifier declaration-specifiersopt
type-specifier declaration-specifiersopt
type-qualifier declaration-specifiersopt

(6.5) init-declarator-list:
init-declarator
init-declarator-list , init-declarator

(6.5) init-declarator:
declarator
declarator = initializer

(6.5.1) storage-class-specifier:
typedef

extern

static

auto

register

(6.5.2) type-specifier:
void

char

short

int

long

float

double

signed

unsigned

struct-or-union-specifier
enum-specifier
typedef-name

(6.5.2.1) struct-or-union-specifier:
struct-or-union identifieropt { struct-declaration-list }
struct-or-union identifier

(6.5.2.1) struct-or-union:
struct

union

(6.5.2.1) struct-declaration-list:
struct-declaration
struct-declaration-list struct-declaration

204

(6.5.2.1) struct-declaration:
specifier-qualifier-list struct-declarator list ;

(6.5.2.1) specifier-qualifier-list:
type-specifier specifier-qualifier-listopt
type-qualifier specifier-qualifier-listopt

(6.5.2.1) struct-declarator-list:
struct-declarator
struct-declarator-list , struct-declarator

(6.5.2.1) struct-declarator:
declarator
declaratoropt : constant-expression

(6.5.2.2) enum-specifier:
enum identifieropt { enumerator-list }
enum identifier

(6.5.2.2) enumerator-list:
enumerator
enumerator-list , enumerator

(6.5.2.2) enumerator:
enumeration-constant
enumeration-constant = constant-expression

(6.5.3) type-qualifier:
const

volatile

(6.5.4) declarator:
pointeropt direct-declarator

(6.5.4) direct-declarator:
identifier
(declarator)
direct-declarator [constant-expressionopt]

direct-declarator (parameter-type-list)
direct-declarator (identifier-listopt)

(6.5.4) pointer:
* type-qualifier-listopt
* type-qualifier-listopt pointer

(6.5.4) type-qualifier-list:
type-qualifier
type-qualifier-list type-qualifier

(6.5.4) parameter-type-list:
parameter-list
parameter-list , ...

205

(6.5.4) parameter-list:
parameter-declaration
parameter-list , parameter-declaration

(6.5.4) parameter-declaration:
declaration-specifiers declarator
declaration-specifiers abstract-declaratoropt

(6.5.4) identifier list:
identifier
identifier-list , identifier

(6.5.5) type-name:
specifier-qualifier-list abstract-declaratoropt

(6.5.5) abstract-declarator:
pointer
pointeropt direct-abstract-declarator

(6.5.5) direct-abstract-declarator:
(abstract-declarator)
direct-abstract-declaratoropt [constant-expressionopt]

direct-abstract-declaratoropt (parameter-type-listopt)

(6.5.6) typedef-name:
identifier

(6.5.7) initializer:
{ initializer-list }
{ initializer-list , }

(6.5.7) initializer-list:
initializer
initializer-list , initializer

B.2.3 Statements

(6.6) statement:
labeled-statement
compound-statement
expression-statement
selection-statement
iteration-statement
jump-statement

(6.6.1) labeled-statement:
identifier : statement
case constant-expression : statement
default : statement

(6.6.2) compound-statement:
{ declaration-listopt statement-listopt }

206

(6.6.2) declaration-list:
declaration
declaration-list declaration

(6.6.2) statement-list:
statement
statement-list statement

(6.6.3) expression-statement:
expressionopt ;

(6.6.4) selection-statement:
if (expression) statement
if (expression) statement else statement
switch (expression) statement

(6.6.5) iteration-statement:
while (expression) statement
do statement while (expression) ;

for (expressionopt ; expressionopt ; expressionopt) statement

(6.6.6) jump-statement:
goto identifier ;
continue ;

break ;

return expressionopt ;

B.2.4 External definitions

(6.7) translation-unit:
external-declaration
translation-unit external-declaration

(6.7) external-declaration
function-definition
declaration

(6.7.1) function-definition:
declaration-specifiersopt declarator declaration-listopt compound-statement

B.3 Preprocessing directives
(6.8) preprocessing-file:

groupopt

(6.8) group:
group-part
group group-part

(6.8) group-part:
pp-tokensopt new-line
if-section
control-line

207

(6.8.1) if-section:
if-group elif-groupsopt else-groupopt endif-line

(6.8.1) if-group:
if constant-expression new-line groupopt

ifdef identifier new-line groupopt

ifndef identifier new-line groupopt

(6.8.1) elif-groups:
elif-group
elif-groups elif-group

(6.8.1) elif-group:
elif constant-expression new-line groupopt

(6.8.1) else-group:
else new-line groupopt

(6.8.1) endif-line:
endif new-line

control-line:
(6.8.2) # include pp-tokens new-line
(6.8.3) # define identifier replacement-list new-line
(6.8.3) # define identifier lparen identifier-listopt) replacement-list new-line
(6.8.3) # undef identifier new-line
(6.8.4) # line pp-tokens new-line
(6.8.5) # error pp-tokensopt new-line
(6.8.6) # pragma pp-tokensopt new-line
(6.8.7) # new-line

(6.8.3) lparen:
the left parenthesis character without preceding white-space

(6.8.3) replacement-list:
pp-tokensopt

(6.8) pp-tokens:
preprocessing-token
pp-tokens preprocessing-token

(6.8) new-line:
the new-line character

208

Annex C
(informative)

Sequence points

The following are the sequence points described in 5.1.2.3.

— The call to a function, after the arguments have been evaluated (6.3.2.2).

— The end of the first operand of the following operators: logical AND && (6.3.13); logical OR ||

(6.3.14); conditional ? (6.3.15); comma , (6.3.17).

— The end of a full expression; an initializer (6.5.7); the expression in an expression statement
(6.6.3); the controlling expression of a selection statement (if or switch) (6.6.4); the controlling
expression of a while or do statement (6.6.5); each of the three expressions of a for statement
(6.6.5.3); the expression in a return statement (6.6.6.4).

209

Annex D
(informative)

Library summary

D.1 Errors <errno.h>

EDOM

ERANGE

errno

D.2 Common definitions <stddef.h>

NULL

offsetof(type, member-designation)
ptrdiff_t

size_t

wchar_t

D.3 Diagnostics <assert.h>

NDEBUG

void assert(int expression);

D.4 Character handling <ctype.h>

int isalnum(int c);

int isalpha(int c);

int iscntrl(int c);

int isdigit(int c);

int isgraph(int c);

int islower(int c);

int isprint(int c);

int ispunct(int c);

int isspace(int c);

int isupper(int c);

int isxdigit(int c);

int tolower(int c);

int toupper(int c);

D.5 Localization <locale.h>

LC_ALL

LC_COLLATE

LC_CTYPE

LC_MONETARY

LC_NUMERIC

LC_TIME

NULL

struct lconv

char *setlocale(int category, const char *locale);

struct lconv *localeconv(void);

210

D.6 Mathematics <math.h>

HUGE_VAL

double acos(double x);

double asin(double x);

double atan(double x);

double atan2(double y, double x);

double cos(double x);

double sin(double x);

double tan(double x);

double cosh(double x);

double sinh(double x);

double tanh(double x);

double exp(double x);

double frexp(double value, int *exp);

double ldexp(double x, int exp);

double log(double x);

double log10(double x);

double modf(double value, double *iptr);

double pow(double x, double y);

double sqrt(double x);

double ceil(double x);

double fabs(double x);

double floor(double x);

double fmod(double x, double y);

D.7 Nonlocal jumps <setjmp.h>

jmp_buf

int setjmp(jmp_buf env);

void longjmp(jmp_buf env, int val);

D.8 Signal handling <signal.h>

sig_atomic_t

SIG_DFL

SIG_ERR

SIG_IGN

SIGABRT

SIGFPE

SIGILL

SIGINT

SIGSEGV

SIGTERM

void (*signal(int sig, void (*func)(int)))(int);

int raise(int sig);

211

D.9 Variable arguments <stdarg.h>

va_list

void va_start(va_list ap, parmN);

type va_arg(va_list ap, type);
void va_end(va_list ap);

D.10 Input/output <stdio.h>

_IOFBF

_IOLBF

_IONBF

BUFSIZ

EOF

FILE

FILENAME_MAX

FOPEN_MAX

fpos_t

L_tmpnam

NULL

SEEK_CUR

SEEK_END

SEEK_SET

size_t

stderr

stdin

stdout

TMP_MAX

int remove(const char *filename);

int rename(const char *old, const char *new);

FILE *tmpfile(void);

FILE *tmpnam(char *s);

int fclose(FILE *stream);

int fflush(FILE *stream);

FILE *fopen(const char *filename, const char *mode);

FILE *freopen(const char *filename, const char *mode,

FILE *stream);

void setbuf(FILE *stream, char *buf);

int setvbuf(FILE *stream, char *buf, int mode, size_t size);

int fprintf(FILE *stream, const char *format, ...);

int fscanf(FILE *stream, const char *format, ...);

int printf(const char *format, ...);

int scanf(const char *format, ...);

int sprintf(char *s, const char *format, ...);

int sscanf(const char *s, const char *format, ...);

int vfprintf(FILE *stream, const char *format, va_list arg);

int vprintf(const char *format, va_list arg);

int vsprintf(char *s, const char *format, va_list arg);

212

int fgetc(FILE *stream);

char *fgets(char *s, int n, FILE *stream);

int fputc(int c, FILE *stream);

int fputs(const char *s, FILE *stream);

int getc(FILE *stream);

int getchar(void);

char *gets(char *s);

int putc(int c, FILE *stream);

int putchar(int c);

int puts(const char *s);

int ungetc(int c, FILE *stream);

size_t fread(void *ptr, size_t size, size_t nmemb,

FILE *stream);

size_t fwrite(const void *ptr, size_t size, size_t nmemb,

FILE *stream);

int fgetpos(FILE *stream, fpos_t *pos);

int fseek(FILE *stream, long int offset, int whence);

int fsetpos(FILE *stream, const fpos_t *pos);

long int ftell(FILE *stream);

void rewind(FILE *stream);

void clearerr(FILE *stream);

int feof(FILE *stream);

int ferror(FILE *stream);

void perror(const char *s);

D.11 General utilities <stdlib.h>

EXIT_FAILURE

EXIT_SUCCESS

MB_CUR_MAX

NULL

RAND_MAX

div_t

ldiv_t

size_t

wchar_t

double atof(const char *nptr);

int atoi(const char *nptr);

long int atol(const char *nptr);

double strtod(const char *nptr, char **endptr);

long int strtol(const char *nptr, char **endptr, int base);

unsigned long int strtoul(const char *nptr, char **endptr,

int base);

int rand(void);

void srand(unsigned int seed);

void *calloc(size_t nmemb, size_t size);

void free(void *ptr);

213

void *malloc(size_t size);

void *realloc(void *ptr, size_t size);

void abort(void);

int atexit(void (*func)(void));

void exit(int status);

char *getenv(const char *name);

int system(const char *string);

void *bsearch(const void *key, const void *base,

size_t nmemb, size_t size,

int (*compar)(const void *, const void *));

void qsort(void *base, size_t nmemb, size_t size,

int (*compar)(const void *, const void *));

int abs(int j);

div_t div(int numer, int denom);

long int labs(long int j);

ldiv_t ldiv(long int numer, long int denom);

int mblen(const char *s, size_t n);

int mbtowc(wchar_t *pwc, const char *s, size_t n);

int wctomb(char *s, wchar_t wchar);

size_t mbstowcs(wchar_t *pwcs, const char *s, size_t n);

size_t wcstombs(char *s, const wchar_t *pwcs, size_t n);

D.12 String handling <string.h>

NULL

size_t

void *memcpy(void *s1, const void *s2, size_t n);

void *memmove(void *s1, const void *s2, size_t n);

char *strcpy(char *s1, const char *s2);

char *strncpy(char *s1, const char *s2, size_t n);

char *strcat(char *s1, const char *s2);

char *strncat(char *s1, const char *s2, size_t n);

int memcmp(const void *s1, const void *s2, size_t n);

int strcmp(const char *s1, const char *s2);

int strcoll(const char *s1, const char *s2);

int strncmp(const char *s1, const char *s2, size_t n);

int strxfrm(char *s1, const char *s2, size_t n);

void *memchr(const void *s, int c, size_t n);

char *strchr(const char *s, int c);

size_t strcspn(const char *s1, const char *s2);

char *strpbrk(const char *s1, const char *s2);

char *strrchr(const char *s, int c);

size_t strspn(const char *s1, const char *s2);

char *strstr(const char *s1, const char *s2);

char *strtok(char *s1, const char *s2);

void *memset(void *s, int c, size_t n);

char *strerror(int errnum);

size_t strlen(const char *s);

214

D.13 Date and time <time.h>

CLOCKS_PER_SEC

NULL

clock_t

time_t

size_t

struct tm

clock_t clock(void);

double difftime(time_t time1, time_t time0);

time_t mktime(struct tm *timeptr);

time_t time(time_t *timer);

char *asctime(const struct tm *timeptr);

char *ctime(const struct tm *timeptr);

struct tm *gmtime(const time_t *timer);

struct tm *localtime(const time_t *timer);

size_t strftime(char *s, size_t maxsize,

const char *format, const struct tm *timeptr);

215

Annex E
(informative)

Implementation limits

The contents of a header <limits.h> are given below, in alphabetic order. The minimum
magnitudes shown shall be replaced by implementation-defined magnitudes with the same sign.
The values shall all be constant expressions suitable for use in #if preprocessing directives. The
components are described further in 5.2.4.2.1.

#define CHAR_BIT 8

#define CHAR_MAX UCHAR_MAX or SCHAR_MAX

#define CHAR_MIN 0 or SCHAR_MIN

#define INT_MAX +32767

#define INT_MIN -32767

#define LONG_MAX +2147483647

#define LONG_MIN -2147483647

#define MB_LEN_MAX 1

#define SCHAR_MAX +127

#define SCHAR_MIN -127

#define SHRT_MAX +32767

#define SHRT_MIN -32767

#define UCHAR_MAX 255

#define UINT_MAX 65535

#define ULONG_MAX 4294967295

#define USHRT_MAX 65535

The contents of a header <float.h> are given below. The value of FLT RADIX shall be a
constant expression suitable for use in #if preprocessing directives. Values that need not be
constant expressions shall be supplied for all other components. The components are described
further in 5.2.4.2.2.

#define FLT_ROUNDS

The values given in the following list shall be replaced by implementation-defined expressions
that shall be equal or greater in magnitude (absolute value) to those shown, with the same sign:

#define DBL_DIG 10

#define DBL_MANT_DIG

#define DBL_MAX_10_EXP +37

#define DBL_MAX_EXP

#define DBL_MIN_10_EXP -37

#define DBL_MIN_EXP

#define FLT_DIG 6

#define FLT_MANT_DIG

#define FLT_MAX_10_EXP +37

#define FLT_MAX_EXP

#define FLT_MIN_10_EXP -37

#define FLT_MIN_EXP

#define FLT_RADIX 2

216

#define LDBL_DIG 10

#define LDBL_MANT_DIG

#define LDBL_MAX_10_EXP +37

#define LDBL_MAX_EXP

#define LDBL_MIN_10_EXP -37

#define LDBL_MIN_EXP

The values given in the following list shall be replaced by implementation-defined exoressions
that shall be equal to or greater than those shown:

#define DBL_MAX 1E+37

#define FLT_MAX 1E+37

#define LDBL_MAX 1E+37

The values given in the following list shall be replaced by implementation-defined exoressions
that shall be equal to or less than those shown:

#define DBL_EPSILON 1E-9

#define DBL_MIN 1E-37

#define FLT_EPSILON 1E-5

#define FLT_MIN 1E-37

#define LDBL_EPSILON 1E-9

#define LDBL_MIN 1E-37

217

Annex F
(informative)

Common warnings

An implementation may generate warnings in many situations, none of which is specified as
part of this International Standard. The following are few of the more common situations.

— A block with initialization of an object that has automatic storage duration is jumped into
(6.1.2.4).

— An integer character constant includes more than one character or a wide character constant
includes more than one multibyte character (6.1.3.4).

— The characters /* are found in a comment (6.1.7).

— An implicit narrowing conversion is encountered, such as the assignment of a long int or a
double to an int, or a pointer to void to a pointer to any type other than a character type
(6.2).

— An “unordered” binary operator (not comma, && or ||) contains a side-effect to an lvalue in
one operand, and a side-effect to, or an access to the value of, the identical lvalue in the other
operand (6.3).

— A function is called but no prototype has been supplied (6.3.2.2).

— The arguments in a function call do not agree in number and type with those of the parameters
in a function definition that is not a prototype (6.3.2.2).

— An object is defined but not used (6.5).

— A value is given to an object of an enumeration type other than by assignment of an enumeration
constant that is a member of that type, or an enumeration variable that has the same type, or
the value of a function that returns the same enumeration type (6.5.2.2).

— An aggregate has a partly bracketed initialization (6.5.7).

— A statement cannot be reached (6.6).

— A statement with no apparent effect is encountered (6.6).

— A constant expression is used as the conditioning expression of a selection statement (6.6.4).

— A function has return statement with and without expressions (6.6.6.4).

— An incorrectly formed preprocessing group is encountered while skipping a preprocessing group
(6.8.1).

— An unrecognized #pragma directive is encountered (6.8.6).

218

Annex G
(informative)

Portability issues

This annex collects some information about portability that appears in this International Stan-
dard.

G.1 Unspecified behavior
The following are unspecified:

— The manner and timing of static initialization (5.1.2).

— The behavior if a printable character is written when the active position is at the final position
of a line (5.2.2).

— The behavior if a backspace character is written when the active position is at the initial
position of a line (5.2.2).

— The behavior if a horizontal tab character is written when the active position is at or past the
last defined horizontal tabulation position (5.2.2).

— The behavior if a vertical tab character is written when the active position is at or past the
last defined vertical tabulation position (5.2.2).

— The representations of floating types (6.1.2.5).

— The order in which expressions are evaluated — in any order conforming to the precedence
rules, even in the presence of parentheses (6.3).

— The order in which side effects take place (6.3).

— The order in which the function designator and the arguments in a function call are evaluated
(6.3.2.2).

— The alignment of the addressable storage unit allocated to hold a bit-field (6.5.2.1).

— The layout of storage for parameters (6.7.1).

— The order in which # and ## operations are evaluated during macro substitution (6.8.3.3).

— Whether errno is a macro or an external identifier (7.1.4).

— Whether setjmp is a macro or an external identifier (7.6.1.1).

— Whether va end is a macro or an external identifier (7.8.1.3).

— The value of the file position indicator after a successful call to the ungetc function for a text
stream, until all pushed-back characters are read or discarded (7.9.7.11).

— The details of the value stored by the fgetpos function on success (7.9.9.1).

— The details of the value returned by the ftell function for a text stream on success (7.9.9.4).

— The order and contiguity of storage allocated by the calloc, malloc, and realloc functions
(7.10.3).

— Which of two elements that compare as equal is returned by the bsearch function (7.10.5.1).

219

— The order in an array sorted by the qsort function of two elements that compare as equal
(7.10.5.2).

— The encoding of the calendar time returned by the time function (7.12.2.3).

G.2 Undefined behavior
The behavior in the following circumstances is undefined:

— A nonempty source file does not end in a new-line character, end in new-line character imme-
diately preceded by a backslash character, or ends in a partial preprocessing token or comment
(5.1.1.2).

— A character not in the required character set is encountered in a source file, except in a prepro-
cessing token that is never converted to a token, a character constant, a string literal, a header
name, or a comment (5.2.1).

— A comment, string literal, character constant, or header name contains an invalid multibyte
character or does not begin and end in the initial shift state (5.2.1.2).

— An unmatched ’ or " character is encountered on a logical source line during tokenization (6.1).

— The same identifier is used more than once as a label in the same function (6.1.2.1).

— An identifier is used that is not visible in the current scope (6.1.2.1).

— Identifiers that are intended to denote the same entity differ in a character beyond the minimal
significant characters (6.1.2).

— The same identifier has both internal and external linkage in the same translation unit (6.1.2.2).

— The value stored in a pointer that referred to an object with automatic storage duration is
used (6.1.2.4).

— Two declarations of the same object or function specify types that are not compatible (6.1.2.6).

— An unspecified escape sequence is encountered in a character constant or a string literal
(6.1.3.4).

— An attempt is made to modify a string literal of either form (6.1.4).

— A character string literal token is adjacent to a wide string literal token (6.1.4).

— The characters ’, \, ", or /* are encountered between the < and > delimiters or the characters
’, \, or /* are encountered between the " delimiters in the two forms of a header name
preprocessing token (6.1.7).

— An arithmetic conversion produces a result that cannot be represented in the space provided
(6.2.1).

— An lvalue with an incomplete type is used in a context that requires the value of the designated
object (6.2.2.1).

— The value of a void expression is used or an implicit conversion (except to void) is applied to
a void expression (6.2.2.2).

— An object is modified more than once, or is modified and accessed other than to determine the
new value, between two sequence points (6.3).

220

— An arithmetic operation is invalid (such as division or modulus by 0) or produces a result that
cannot be represented in the space provided (such as overflow or underflow) (6.3).

— An object has its stored value accessed by an lvalue that does not have one of the following
types: the declared type of the object, a qualified version of the declared type of the object, the
signed or unsigned type corresponding to the declared type of the object, the signed or unsigned
type corresponding to a qualified version of the declared type of the object, an aggregate or
union type that (recursively) includes one of the aforementioned types among its members, or
a character type (6.3).

— An argument to a function is a void expression (6.3.2.2).

— For a function call without a function prototype, the number of arguments does not agree with
the number of parameters (6.3.2.2).

— For a function call without a function prototype, if the function is defined without a function
prototype, and the types of the arguments after promotion do not agree with those of the
parameters after promotion (6.3.2.2).

— If a function is called with a function prototype and the function is not defined with a compatible
type (6.3.2.2).

— A function that accepts a variable number of arguments is called without a function prototype
that ends with an ellipsis (6.3.2.2).

— An invalid array reference, null pointer reference, or reference to an object declared with auto-
matic storage duration in a terminated block occurs (6.3.3.2).

— A pointer to a function is converted to point to a function of a different type and used to call
a function of a type not compatible with the original type (6.3.4).

— A pointer to a function is converted to a pointer to an object or a pointer to an object is
converted to a pointer to a function (6.3.4).

— A pointer is converted to other than an integral or pointer type (6.3.4).

— A pointer that does not behave like a pointer to an element of an array object is added to or
subtracted from (6.3.6).

— Pointers that do not behave as if they point to the same array object are subtracted (6.3.6).

— An expression is shifted by a negative number or by an amount greater than or equal to the
width in bits of the expression being shifted (6.3.7).

— Pointers are compared using a relational operator that do not point to the same aggregate or
union (6.3.8).

— An object is assigned to an overlapping object (6.3.16.1).

— An identifier for an object is declared with no linkage and the type of the object is incomplete
after its declarator, or after its init-declarator if it has an initializer (6.5).

— A function is declared at block scope with a storage-class specifier other than extern (6.5.1).

— A structure or union is defined as containing only unnamed members (6.5.2.1).

— A bit-field is declared with a type other than int, signed int, or unsigned int (6.5.2.1).

221

— An attempt is made to modify an object with const-qualified type by means of an lvalue with
non-const-qualified type (6.5.3).

— An attempt is made to refer to an object with volatile-qualified type by means of an lvalue
with non-volatile-qualified type (6.5.3).

— The value of an uninitialized object that has automatic storage duration is used before a value
is assigned (6.5.7).

— An object with aggregate or union type with static storage duration has a non-brace-enclosed
initializer, or an object with aggregate or union type with automatic storage duration has either
a single expression initializer with a type other than that of the object or a non-brace-enclosed
initializer (6.5.7).

— The value of function is used, but no value was returned (6.6.6.4).

— An identifier with external linkage is used but there does not exist exactly one external definition
in the program for the identifier (6.7).

— A function that accepts a variable number of arguments is defined without a parameter list
that ends with the ellipsis notation (6.7.1).

— An identifier for an object with internal linkage and an incomplete type is declared with a
tentative definition (6.7.2).

— The token defined is generated during the expansion of a #if or #elif preprocessing directive
(6.8.1).

— The #include preprocessing directive that results after expansion does not match one of the
two header name forms (6.8.2).

— A macro argument consists of no preprocessing tokens (6.8.3).

— There are sequences of preprocessing tokens within the list of macro arguments that would
otherwise act as preprocessing directive lines (6.8.3).

— The result of the preprocessing operator # is not a valid character string literal (6.8.3.2).

— The result of the preprocessing concatenation operator ## is not a valid preprocessing token
(6.8.3.3).

— The #line preprocessing directive that results after expansion does not match one of the two
well-defined forms (6.8.4).

— One of the following identifiers is the subject of a #define or #undef preprocessing directive:
defined, LINE , FILE , DATE , TIME , or STDC (6.8.8).

— An attempt is made to copy an object to an overlapping object by use of a library function
other than memmove (clause 7).

— The effect of a standard header is included within an external definition; is included for the
first time after the first reference to any of the functions or objects it declares, or to any of the
types or macros it defines; or is included while a macro is defined with a name the same as a
keyword (7.1.2).

— The effect if the program redefines a resered external identifier (7.1.3).

— A macro definition errno is suppressed to obtain access to an actual object (7.1.4).

222

— The parameter member-designator of an offsetof macro is an invalid right operand of the .

operator for the type parameter or designates bit-field member of a structure (7.1.6).

— A library function argument has an invalid value, unless the behavior is specified explicitly
(7.1.7).

— A library function that accepts a variable number of arguments is not declared (7.1.7).

— The macro definition assert is suppressed to obtain access to an actual function (7.2).

— The argument to a character handling function is out of the domain (7.3).

— A macro definition of setjmp is suppressed to obtain access to an actual function (7.6).

— An invocation of the setjmp macro occurs in a context other than as the controlling expression
in a selection or iteration statement, or in a comparison with an integral constant expression
(possibly as implied by the unary ! operator) as the controlling expression of a selection or
iteration statement, or as an expression statement (possibly cast to void) (7.6.1.1).

— An object of automatic storage class that does not have volatile-qualified type has been changed
between a setjmp invocation and a longjmp call and then has its value accessed (7.6.2.1).

— The longjmp function is invoked from a nested signal routine (7.6.2.1).

— A signal occurs other than as the result of calling the abort or raise function, and the signal
handler calls any function in the standard library other than the signal function itself or refers
to any object with static storage duration other than by assigning a value to a static storage
duration variable of type volatile sig atomic t (7.7.1.1).

— The value of errno is referred to after a signal occurs other than as the result of calling the
abort or raise function and the corresponding signal handler calls the signal function such
that it returns the value SIG ERR (7.7.1.1).

— The macro va arg is invoked with the parameter ap that was passed to a function that invoked
the macro va arg with the same parameter (7.8).

— A macro definition of va start, va arg, or va end or a combination thereof is suppressed to
obtain access to an actual function (7.8.1).

— The parameter parmN of a va start macro is declared with the register storage class, or
with a function or array type, or with a type that is not compatible with the type that results
after application of the default argument promotions (7.8.1.1).

— There is no actual next argument for a va arg macro invocation (7.8.1.2).

— The type of the actual next argument in a variable argument list disagrees with the type
specified by the va arg macro (7.8.1.2).

— The va end macro is invoked without a corresponding invocation of the va start macro
(7.8.1.3).

— A return occurs from a function with a variable argument list initialized by the va start macro
before the va end macro is invoked (7.8.1.3).

— The stream for the fflush function points to an input stream or to an update stream in which
the most recent operation was input (7.9.5.2)

223

— An output operation on an update stream is followed by an input operation without an in-
tervening call to the fflush function or a file positioning function, or an input operation on
an update stream is followed by an output operation without an intervening call to a file
positioning function (7.9.5.3).

— The format for the fprintf or fscanf function does not match the argument list (7.9.6).

— An invalid conversion specification is found in the format for the fprintf or fscanf function
(7.9.6).

— A %% conversion specification for the fprintf or fscanf function contains characters between
the pair of % characters (7.9.6).

— A conversion specification for the fprintf function contains an h or l with a conversion specifier
other than d, i, n, o, u, x, or X, or an L with a conversion specifier other than e, E, f, g, or G
(7.9.6.1).

— A conversion specification for the fprintf function contains a # flag with a conversion specifier
other than o, x, X, e, E, f, g, or G (7.9.6.1).

— A conversion specification for the fprintf function contains a 0 flag with a conversion specifier
other than d, i, o, u, x, X, e, E, f, g, or G (7.9.6.1).

— An aggregate or union, or a pointer to an aggregate or union is an argument to the fprintf

function, except for the conversion specifiers %s (for an array of character type) or %p (for a
pointer to void) (7.9.6.1).

— A single conversion by the fprintf function produces more than 509 characters of output
(7.9.6.1).

— A conversion specification for the fscanf function contains an h or l with a conversion specifier
other than d, i, n, o, u, or x, or an L with a conversion specifier other than e, f, or g (7.9.6.2).

— A pointer value printed by %p conversion by the fprintf function during a previous program
execution is the argument for %p conversion by the fscanf function (7.9.6.2).

— The result of a conversion by the fscanf function cannot be represented in the space provided,
or the receiving object does not have an appropriate type (7.9.6.2).

— The result of converting a string to a number by the atof, atoi, or atol function cannot be
represented (7.10.1).

— The value of a pointer that refers to space deallocated by a call to free or realloc function
is referred to (7.10.3).

— The pointer argument to the free or realloc function does not match a pointer earlier returned
by calloc, malloc, or realloc, or the object pointed to has been deallocated by a call to free
or realloc (7.10.3).

— A program executes more than one call to the exit function (7.10.4.3).

— The result of an integer arithmetic function (abs, div, labs, ldiv) cannot be represented
(7.10.6).

— The shift states for the mblen, mbtowc, and wctomb functions are not explicitly reset to the
initial state when the LC CTYPE category of the current locale is changed (7.10.7).

224

— An array written to by a copying or concatenation function is too small (7.11.2, 7.11.3).

— An invalid conversion specification is found in the format for the strftime function (7.12.3.5).

G.3 Implementation-defined behavior
Each implementation shall document its behavior in each of the areas listed in this subclause.

The following are implementation-defined:

G.3.1 Translation

— How a diagnostic is identified (5.1.1.3).

G.3.2 Environment

— The semantics of the arguments to main (5.1.2.2.1).

— What constitutes an interactive device (5.1.2.3).

G.3.3 Identifiers

— The number of significant initial characters (beyond 31) in an identifier without external linkage
(6.1.2).

— The number of significant initial characters (beyond 6) in an identifier with external linkage
(6.1.2).

— Whether case distinctions are significant in an identifier with external linkage (6.1.2).

G.3.4 Characters

— The members of the source and execution character sets, except as explicitly specified in this
International Standard (5.2.1).

— The shift states used for the encoding of multibyte characters (5.2.1.2).

— The number of bits in a character in the execution character set (5.2.4.2.1).

— The mapping of members of the source character set (in character constants and string literals)
to members of the execution character set (6.1.3.4).

— The value of an integer character constant that contains a character or escape sequence not rep-
resented in the basic execution character set or the extended character set for a wide character
constant (6.1.3.4).

— The value of an integer character constant that contains more then one character ot a wide
character constant that contains more than one multibyte character (6.1.3.4).

— The current locale used to convert multibyte characters into corresponding wide characters
(codes) for a wide character constant (6.1.3.4).

— Whether a “plain” char has the same range of values as signed char or unsigned char

(6.2.1.1).

G.3.5 Integers

— The representations and sets of values of the various types of integers (6.1.2.5).

— The result on converting an integer to a shorter signed integer, or the result of converting an
unsigned integer to a signed integer of equal length, if the value cannot be represented (6.2.1.2).

225

— The results of bitwise operations on signed integers (6.3).

— The sign of the remainder on integer division (6.3.5).

— The result of a right shift of a negaive-valued signed integral type (6.3.7).

G.3.6 Floating point

— The representation and sets of values of the various types of floating-point numbers (6.1.2.5).

— The direction of truncation when an integral number is converted to a floating-point number
that cannot exactly represent the original value (6.2.1.3).

— The direction of truncation or rounding when a floating-point number is converted to a narrower
floating-point number (6.1.2.4).

G.3.7 Arrays and pointers

— The type of integer required to hold the maximum size of an array — that is, the type of the
sizeof operator, size t (6.3.3.4, 7.1.1).

— The result of casting a pointer to an integer or vice versa (6.3.4).

— The type of integer required to hold the difference between two pointers to elements of the
same array, ptrdiff t (6.3.6, 7.1.1).

G.3.8 Registers

— The extent to which objects can actually be placed in registers by use of the register storage-
class specifier (6.5.1).

G.3.9 Structures, unions, enumerations, and bit-fields

— A member of a union object is accessed using a member of a different type (6.3.2.3).

— The padding and alignment of members of structures (6.5.2.1). This should present no problem
unless binary data written by one implementation are read by another.

— Whether a “plain” int bit-field is treated as a signed int bit-field or as an unsigned int

bit-field (6.5.2.1).

— The order of allocation of bit-fields within a unit (6.5.2.1).

— Whether a bit-field can straddle a storage-unit boundary (6.5.2.1).

— The integer type chosen to represent the values of an enumeration type (6.5.2.2).

G.3.10 Qualifiers

— What constitutes an access to an object that has volatile-qualified type (6.5.5.3).

G.3.11 Declarators

— The maximum number of declarators that may modify an arithmetic, structure, or union type
(6.5.4).

G.3.12 Statements

— The maximum number of case values in a switch statement (6.6.4.2).

226

G.3.13 Preprocessing directives

— Whether the value of a single-character constant in a constant expression that controls condi-
tional inclusion matches the value of the same character constant in the execution character
set. Whether such a character constant may have a negative value (6.8.1).

— The method for locating includable source files (6.8.2).

— The support of quoted names for includable source files (6.8.2).

— The mapping of source file character sequences (6.8.2).

— The behavior of each recognized #pragma directive (6.8.6).

— The definitions for DATE and TIME when respectively, the date and time of translation
are not available (6.8.8).

G.3.14 Library functions

— The null pointer constant to which the macro NULL expands (7.1.6).

— The diagnostic printed by and the termination behavior of the assert function (7.2).

— The sets of characters tested for by the isalnum, isalpha, iscntrl, islower, isprint, and
isupper functions (7.3.1).

— The values returned by the mathematics functions on domain errors (7.5.1).

— Whether the mathematics functions set the integer expression errno to the value of the macro
ERANGE on underflow range errors (7.5.1).

— Whether a domain error occurs or zero is returned when the fmod function has a second
argument of zero (7.5.6.4).

— The set of signals for the signal function (7.7.1.1).

— The semantics for each signal recognized by the signal function (7.7.1.1).

— The default handling and the handling at program startup for each signal recognized by the
signal function (7.7.1.1).

— If the equivalent of signal(sig, SIG DFL); is not executed prior to the call of a signal handler,
the blocking of the signal that is performed (7.7.1.1).

— Whether the default handling is reset if the SIGILL signal is received by a handler specified to
the signal function (7.7.1.1).

— Whether the last line of a text stream requires a terminating new-line character (7.9.2).

— Whether space characters that are written out to a text stream immediately before a new-line
character appear when read in (7.9.2).

— The number of null characters that may be appended to data written to a binary stream (7.9.2).

— Whether the file position indicator of an appended mode stream is initially positioned at the
beginning or end of the file (7.9.3).

— Whether a write on a text stream causes the associated file to be truncated beyond that point
(7.9.3).

— The characteristics of file buffering (7.9.3).

227

— Whether a zero-length file actually exists (7.9.3).

— The rules for composing valid file names (7.9.3).

— Whether the same file can be open multiple times (7.9.3).

— The effect of the remove function on an open file (7.9.4.1).

— The effect if a file with the new name exists prior to a call to the rename function (7.9.4.2).

— The output for %p conversion in the fprintf function (7.9.6.1).

— The input for %p conversion in the fscanf function (7.9.6.2).

— The interpretation of a - character that is neither the first nor the last character in the scanlist
for %[conversion in the fscanf function (7.9.6.2).

— The value to which the macro errno is set by the fgetpos or ftell function on failure (7.9.9.1,
7.9.9.4).

— The messages generated by the perror function (7.9.10.4).

— The behavior of the calloc, malloc, or realloc function if the size requested is zero (7.10.3).

— The behavior of the abort function with regard to open and temporary files (7.10.4.1).

— The status returned by the exit function if the value of the argument is other than zero,
EXIT SUCCESS, or EXIT FAILURE (7.10.4.3).

— The set of environment names and the method for altering the environmental list used by the
getenv function (7.10.4.4).

— The contents and mode of execution of the string by the system function (7.10.4.5).

— The contents of the error message strings returned by the strerror function (7.11.6.2).

— The local time zone and Daylight Saving Time (7.12.1).

— The era for the clock function (7.12.2.1).

G.4 Locale-specific behavior
The following characteristics of a hosted environment are locale-specific:

— The content of the execution character set, in addition to the required members (5.2.1).

— The direction of prnting (5.2.2).

— The decimal-point character (7.1.1).

— The implementation-defined aspects of character testing and case mapping functions (7.3).

— The collation sequence of the execution character set (7.11.4.4).

— The formats for time and date (7.12.3.5).

G.5 Common extensions
The following extensions are widely used in many systems, but are not portable to all im-

plementations. The inclusion of any extension that may cause a strictly conforming program to
become invalid renders an implementation nonconforming. Examples of such extensions are new

228

keywords, or library functions declared in standard headers or predefined macros with names that
do not begin with an underscore.

G.5.1 Environment arguments

In a hosted envirionment, the main function receives a third argument, char *envp[], that
points to a null-terminated array of pointers to char, each of which points to a string that provides
information about the environment for this execution of the process (5.1.2.2.1).

G.5.2 Specialized identifiers

Characters other than the underscore , letters, and digits, that are not defined in the required
source character set (such as the dollar sign $, or characters in national character sets) may appear
in an identifier (6.1.2).

G.5.3 Lengths and cases identifiers

All characters in identifiers (with or without external linkage) are significant and case distinc-
tions are observed (6.1.2).

G.5.4 Scopes of identifiers

A function identifier, or the identifier of an object the declaration of which contains the keyword
extern, has file scope (6.1.2.1).

G.5.5 Writable string literals

String literals are modifiable. Identical string literals shall be distinct (6.1.4).

G.5.6 Other arithmetic types

Other arithmetic types, such as long long int, and their appropriate constants are defined
(6.2.2.1).

G.5.7 Function pointer casts

A pointer to an object or to void may be cast to a pointer to a function, allowing data to be
invoked as a function (6.3.4). A pointer to a function may be cast to a pointer to an object or to
void, allowing a function to be inspected or modified (for example, by a debugger) (6.3.4).

G.5.8 Non-int bit-field types

Types other than int, unsigned int, or signed int can be declared as bit-fields, with appro-
priate maximum widths (6.5.2.1).

G.5.9 The fortran keyword

The fortran declaration specifier may be used in a function declaration to indicate that calls
suitable for FORTRAN should be generated, or that different representations for external names
are to be generated (6.5.4.3).

G.5.10 The asm keyword

The asm keyword may be used to insert assembly language code directly into the translator
output. The most common implementation is via a statement of the form

asm (character-string-literal);

(6.6)

229

G.5.11 Multiple external definitions

There may be more than one external definition for the identifier of an object, with or without
the explicit use of the keyword extern. If the definitions disagree, or more than one is initialized,
the behavior is undefined (6.7.2).

G.5.12 Empty macro arguments

A macro argument may consist of no preprocessing tokens (6.8.3).

G.5.13 Predefined macro names

Macro names that do not begin with an underscore, describing the translation and execution
environments, may be defined by the implementation before translation begins (6.8.8).

G.5.14 Extra arguments for signal handlers

Handlers for specific signals may be called with extra arguments in addition to the signal
number (7.7.1.1).

G.5.15 Additional stream types and file-opening modes

Additional mappings from files to streams may be supported (7.9.2), and additional file-opening
modes may be specified by characters appended to the mode argument of the fopen function
(7.9.5.3).

G.5.16 Defined file position indicator

The file position indicator is decremented by each successful call to the ungetc function for a
text stream, except of its value was zero before a call (7.9.7.11).

230

