DATASTEAD SOFTWARE
RTSP/RTMP/HTTP/ONVIF Directshow Source Filter

version 6.2.1
Copyright ©2017 Datastead. All rights reserved.
www.datastead.com
contact@datastead.com

L = V7=, 4
What's new in this VEISION...........ooo e 4
== L] = PP 4
DOWNIOAA. ... 5
IR0 Y T PP 5
Limitations of the evaluation Version................ooo 5

Filter install/Uninstall..........ccooiiiiiiiiiirrrr s s s n s 6
A. installing the filter with the self installer (DatasteadRTSPFilterInstall.exe) (simplest and fastest).....6

* to install the package automatically from the command lin€:............cccooooviiiiiiiiicce 6
* to uninstall the package automatically from the command line:...........ccoeeeeeei 6
* to install the package ManUAIlY:.............euueeueiiei e e e e e e e nanaaas 6
* to uninstall the package ManUAIlY:.........ooo e 6
B. installing the filter manually..............oooi i 6

[10 o I o) (=Y o3 £ 8
Using the filter through the TVideoGrabber SDK.............ou i 8
Building the DIreCtSROW Graph.........oooo e e e e e e e e as 8

Microsoft DireCtSNOW SDK (CA)...coiiiiiiiiiiiee e 8
CH# With DIreCtSNOW (INET ...ttt e e e e e e e e e e e e e e e s s a e e e e e e e e e e e eaaaaaeens 8

ONVIF: RTSP SIr@amS......cceiicccemmrrrrriissssssssssmmsrersssssssssssssmssssssssssssssssnmsssssssssssssssssnnssnsssssssssssssnnnssssssnnnnnnnns 9
RTSP stream of the first Onvif media profile (default)............cccooi e, 9
RTSP stream selected by the index of the Onvif media profile................uveeiiiiiiiiiiiiie e, 9
RTSP stream selected by the name of the Onvif media profile...........ccooooiiiiiiiiii 9

RTSP, RTMP, HTTP, TCP, UDP, MSSH and other protocols..........ccccciiiiiiiieemmmnniseeess e 9

Configuring the filter through the URL............umiiiiiiirr e 9

ONVIF: JPEG SNAPShOL.......ceeiiiiii i s s s smmn s mmn e e e e e e s mmmn e n e e e e e nnnaas 10

Backtimed recording (Pre-roll reCOrding)........ccuueeeeerremmmmmmmmmmmmmmmmmmmmmmmmsmmssmmmmmmsssmssmmsssmssssssmmmssssssssssessnnnns 11

Quick start from the TVideoGrabber SDK....... . insnsssssrss s ssssssssssssssssssssssssssssssnnes 11
Preview or an ONVIF CamMera:.... ..o 11
Recording of an ONVIF camera, without preview (saves CPU):..........cciiiiieeeeees 11

http://www.datastead.com/products/rtsprtmpsrc.html
mailto:contact@datastead.com?subject=RTSP/RTMP/HTTP/ONVIF%20Directshow%20Source%20Filter

e oYYy = W o [o =T g o [=T o T PP 12
Preview + MP4 recording (VIAE0 ONIY):...cooiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeee ettt e e e e e e e e e e e e 12
Preview + audio rendering + MP4 audio/Video reCording:............uueiiiiiiiiiiiiiiiiiieeee e 12
Generating a new file NAME 0N the flY i e e e e e e e e 12
Pausing/resuming the reCOIAING:...... .. i e e e e e s e e e e e e eeeeeeseeennnnes 13
Quick start from GraphEdit.eXe........cccco i —————— 13
AULO rECONNECLION.......ce s 13
Auto reconnNection diSADIEA.............o.u i a 13
Auto reconnection €nabled............oooo e 14
About RTSP transport, HTTP and Iate@nCy........cccccommmiriiiiiicccscrrre e rssssssssms s 14
RTSP TRANSPORT MODE..... ..ottt ettt e e e e e e e e st e e e e e e e e e e e sannssneneeeaaeeeeaaaaaaaans 14
HTTP URLs in JPEG, MJPEG or MXPEG MOGE........ccciiiiiiieee ettt 15
O A I 1 TP 15
0 I 2 16
FILTER CONFIGURATION.......ceueiiteiiiiiiisssssnmnenrrresssssssssssmssnsssssssssssssnmsssssssssssssssssnnsnssssssssssssssnnnnsnsssssnsnnnnnns 16
A. setting the parameters programmatiCally..............ccooooriiiiiii i 16
B. specifying the settings as parameters at the end of the URL.........cccoooiiiiiiiiiiiiiiii e, 16
[DT(=Yex €57 Lo XA o3 o 01 Lo L T 7= 1 £ o) o N 17
OVEBIVIBW. ...ttt oottt e e e e e ettt e e e e e e e et e e et e e eeeeeeeseeataa s eeeaeeeeeessaaneeeennn e eeesaeeensanns 17
Building and starting the DirectShow graph synchronously (the function blocks until the connection
(oo 0 0] o] (=] (=13 TP 17
Building and starting the DirectShow graph asynchronously without blocking the main thread:...... 17
LT O 1 1 O EEPRPRR 18
Passing settings to the filter..........ccc i ————— 19
Filter configuration through IFileSourceFilter............co i 20
Filter configuration through IDatasteadRtspSourceConfig........ccccccimriiriimmmmnrin e 21
OVEBIVIBW. ...ttt e e e e e ettt e e e e e e e et e e e taa e e eeeeeee s e ssaaa s eeeaeeeeeesssaneeeesnn e eeesaneeensanns 21
LU ET= o 1S 21
T 0= 1 PSS 22
a) the parameter identifier name reminds the the corresponding Get.../Set... function to invoke.....22
b) string returned by GetStr()........ooo oo 22
Actions that can be applied once the graph is ruNNING.........ccoooiiiiiiiii e 22
Generating a new recording file On the fly......cccooooiiiioiie e 22
Pausing the URL.......ooo et e e e e e 23
ReSUMING The URL......e et e e e e ettt e e e e e e e e e e aaa e e e e ta e e e easaeeaesnnaaeeees 23
Examples of processings applied to the video stream.............ccoooommmriiiiicccccccer e 24
RV =T 107> B 1T o1 T OO TOR 24
[[0 o = 1 I 0] o1 o PP 24

AViTo Yo (o] 7= 11 [0] o FRUUT TR TR TR 24

o [T = 1 (1] = (o] o PR 24
NEGALIVE VIGO0 ettt e e e e e e nnnn s 25
=\ T o To) Qo] = I e | 4 o PP PP EEPT PR 25
LU 0TS g =T o 25
CombinNiNg SEVEral PrOCESSINGS.uueiiiiiiiiiiiiieiieessnnnneeeees 25
L0 I =5 =Y 0110 27
= O L o - 1N 28
Brightness / Hue / Saturation..............cccimmmmmiiiiiieeins s s e 29
=171 0.0 1= (=Y ol o (=) 01 =Y 30
TROUBLESHOOTING.......ccttiiiiiiiiiissssnseeeesssssssssssssssssssssssssssssssssssssssesssssssssssnsssssssssssssssssnnnsssessssssssssssssses 38
Sometimes the image jumps or some artifact appear in the middle of the image...........ccc.............. 38
When starting the preview the video appears very pixelated, or the bottom of the frame seems
o111 =0 P PP OOR PP 38
The video freezes PeriOdiCaAIlY............oviiiiiiiiiiiiiiieeeee ettt e e e e e e e e e e e eeeeeesaaeeeeeeeeseas 38
The MP4 recorded file iS trunCated.........ccooooiiii s 39
The RTSP URL fails 10 CONNECL..........oeiiiiiiieeeiee e e e e e e e e e e eees 39
The filter fails to connect to the VMR (Video Mixing Renderer 9)..........oooooiiii 39
FAQL....oooiiiiiiicecciiee e e s s s ss s s s mnnr e e e e eessa s s s mmneeeeeeeeaaaa s anmEEEeeeEeeeaaaaaaaRRRRREEEeeeeaenaaaARRRRREEEeeeeeeeaaaaaaeeeeenennrnnennnn 40
LICENSING. ...ttt ettt e e e e e e e e e e e e et eeeeeee e e e e ssasaeeeeeeaeeeeaasssssaneeaaaeeeenannnsnnnes 40
Should | buy one license for each one of my clients?..........oooooiiiiiiiie e, 40
IN S T AL L ...ttt e ettt et e e e e e e e e et et eaee e e e e e aab————aeeaeeeaa e a———aaneeeaeeaeaaannnnanaaaaaeaaaaaaaan 40
In the DatasteadRTSPSource.zip there are two folders, x64 and x86. Which one should | use
when?
For example,Windows 7 32 bit, WINdOWS 7 64 Dit?...........ooooviiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e 40
LIMITATIONS OF THE EVALUATION VERSION......ooiiiiiiiiiiieee ettt 40
When testing the filter under GraphEdit the graphs stops and reports an error 0x200.................... 40
Our application creates periodically a new graph and re-load the filter, but after some time we can’t
add the RTSPfilterto the graph............ e, 41
FILTER USAGEttt e e ettt e e e e e e e st a e e e eeaeeeseasasssseeeeeeeeeeeeesssnsnsnnnnnns 41
How to get the minimum [atENCY........cooo e e e e e ees 41
How can reduce the CPU 10ad?..........oooi i 41
How can | minimize the [atenCyo 41
How can | specify the RTSP transport Mode?...........ooveeiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeee e 41
Does the filter support UDP transport sStreams?..........oooooiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeee e 42
Can | decode ONly KeY framMES 7.t e e e e e e e e e e e e e eees 42
SPECIFIC STREAMING DEVICES....... oottt ettt e e e e e e e e e e e e aaeeaees 42
Can | capture the video from an ArdroNE?.........coo oo i 42
Is the HD HOMERUN SUPPOIEA?........eeee e e e e e e e e e e e e eeaaa s 42
RTSP /HTTP URL to use for a given IP camera or IP streaming SOUrce.............cccuuvveeeeeiiiiiiiinnnnnns 42

Overview

The Datastead RTSP/RTMP/ONVIF DirectShow Source Filter SDK is able to record and/or decode
ONVIF, RTSP, RTMP, HTTP, UDP, TCP, MMS streams. It can:

- decompress the audio and video streams to render them,

- record the streams to a MP4, MKV, AVI, MP3 or other container format, without video transcoding,
- capture snapshots,

- re-stream the source to UDP or RTSP.

What's new in this version

- Backtimed recording: possibility to catch the few seconds of video before the recording command was
sent (e.g. for 5 seconds >backtimedstart=5)

- possibility to set the title of the video clip (e.g. >title="my MP4 video clip")

- NVidia CUVID hardware acceleration (>hwaccel=3)

- possibility to play the clip while is being recorded (>playablewhilerecording=1)

- possibility to continue the recording while the graph is stopped/restarted (>continuousrecording=1)

Features

The filter can:

- decode and render live audio/video sources received through the ONVIF, RTSP, RTMP, HTTP, UDP,
TS, MMS/MMSH protocols,

- decode H264, H265 and most of the other audio/video codecs,

- record at the same time the audio/video streams in their native format without transcoding, directly to a
file (MP4, FLV, MOV, AVI, or MKV file),

- perform backtimed recording (pre-roll recording),

- while recording is running, generate new files on the fly without loosing frames and without
pausing/stopping/restarting the graph.

- connect asynchronously to the URL without blocking the main thread (the filter graph receives a
notification when the connection completes),

- expose the uncompressed pins,

- capture snapshots to a memory bitmap or to a file in BMP, JPG, PNG or TIFF format,

- apply multiple text overlays over the decoded frames,

- adjust the brightness, hue, saturation,

- capture snapshots to a memory bitmap or to a file in BMP, JPG, PNG or TIFF format,

- re-stream the URL to another destination in UDP unicast, UDP multicast or RTSP format
- act as a RTSP server to resteam the URL(s),

- use a DirectShow audio capture device as audio source (instead of the audio stream of the RTSP
source, if any),

The filter includes sample callback capabilities. It includes internally the required multiplexers (MP4, FLV,
MOV, AVI and MKV mux) and does not transcode to H264, it saves directly the native H264/H265
samples to the file.

Download

The evaluation package can be downloaded here:

http://www.datastead.com/products/dsfilters/rtsprtmpsrc.html.

License

Our license is a er-developer, royalty-free license.
Once the license purchased, the application developed can be distributed on as many PCs as needed,
without having to pay end-user fees.

The license can be purchased from our online store:
http://www.datastead.com/purchase.html

Limitations of the evaluation version

The evaluation version of the filter overlays a logo over the video window.

The filter stops running after a variable time, from a few minutes to a few hours (when the filter stops
because of the evaluation it notifies the graph with a EC_ERRORABORT event, Param1 = 0x200)

- after the evaluation timed out occurred, the filter will NOT restart anymore until the application is
restarted.

- if several filters are running concurrently in the same application, when a filter stops upon evaluation
time out the other filters go on running independently independently until they time out by themselves.

- if several filters are used concurrently in the same application, once one filter has timed out, none of
the other filters can restart until the application is restarted.

These limitations are removed in the licensed version.

http://www.datastead.com/purchase.html
http://www.datastead.com/products/dsfilters/rtsprtmpsrc.html

Filter install/Uninstall
Note: if the filter is used through our TVIDEOGRABBER SDK, installing the filter can be avoided:

it is alternatively possible to just copy the filter binaries (.dll and .ax) into the .EXE's application folder, at
runtime the TVideoGrabber SDK will prioritarily use the RTSP filter DLLs if it finds them in the
application's folder, before trying to instanciate the filter through the Directshow mechanisms.

If the application is built for both x86 and x64 (e.g. like a C# or VB application), create 2 folders named
x86 and x64 under the application folder, and just copy the respective filter's .dll and .ax files into them)

A. installing the filter with the self installer (DatasteadRTSPFilterinstall.exe)
(simplest and fastest)

The installer will install and register automatically the x86 filter on a 32bit OS, and both the x86 and x64
filters on a 64 bit OS.

* to install the package automatically from the command line:

The command line to run the installer is:

DatasteadRTSPFilter_x.x.x_Evaluation_Installer.exe /Isilent

or

DatasteadRTSPFilter_x.x.x_Evaluation_Installer.exe /verysilent

* to uninstall the package automatically from the command line:

The command line to run the uninstaller is:

"C:\Program Files\Datastead\Rtsp\unins000.exe"

* to install the package manually:
Double-click on the .exe installer, and accept each confirmation dialog.

* to uninstall the package manually:
Control panel — Add/Remove program — uninstall the Datastead RTSP/RTMP DirectShow source filter

B. installing the filter manually

To install the filter manually:

- unzip the package in a folder of your choice

- register the DatasteadRtspSource_x86.ax or DatasteadRtspSource_x64.ax file with regsvr32.exe
(the DLLs must be located in the .ax folder)

E.g.:

regsvr32.exe c:\filterfolder\DatasteadRtspSource x86.ax

http://www.datastead.com/products/tvideograbber.html

To uninstall it, run regsvr32.exe /u, then delete the files. E.g.:

regsvr32.exe /u c:\filterfolder\DatasteadRtspSource x64.ax
If you are using a third-party installer, it should include an option that let COM-register the .ax binaries.
Note 1:

- to run an application compiled for x86 only, register only the x86 filter, it can run on both 32bit and 64bit
OS without problem.

- to run an application compiled for both x86 and x64:
. on a 32bit PC, register only the x86 filter
. on a 64bit PC, register both the x86 and x64 filters

Note 2:

the x86 DLLs must be copied in the folder where is located DatasteadRtspSource x86.ax folder, the and
x64 DLLs in the folder where is located DatasteadRtspSource x64.ax.

Alternatively it is possible to copy the DLLs in the window system folders:
on a 32bit PC:
- copy the x86 DLLs to \windows\system32

on a 64bit PC:
- copy the x86 DLLs to \windows\syswow64
- copy the x64 DLLs to \windows\system32

Demo projects

Using the filter through the TVideoGrabber SDK

The filter is natively supported by our TvideoGrabber SDK, that builds and handles the DirectShow
graphs automatically.

To use the filter from the TvideoGrabber SDK:
- install the RTSP filter as explained in the chapter 2.

- download and unzip the TvideoGrabber SDK,

- quick verify the filter installation by running the pre-compiled MainDemo.exe — "IP camera" tab, enter
a RTSP URL and click "start preview", if you see the preview the filter is correctly installed, exit
MainDemo.exe

- locate the MainDemo project corresponding to your development language
- open the MainDemo project and compile it

- run it and go to the "IP Camera" tab, enter the RTSP URL and click "Start preview" to verify all it
working correctly.

The TvideoGrabber sample code to start the preview and MP4 recording of RTSP URLs is explained in
the chapter 4. of this manual.

Building the DirectShow graph

This package includes several demo projects that are provided as sample code and can be reused:

Microsoft DirectShow SDK (C++)
- a simple C++ demo project derived from PlayCap, with synchronous connection

C# with DirectShow .NET

- the package includes C# demo project based on DirectShow.NET and derived from PlayCap, with
asynchonous connection (he filter does not block the main thread while connecting, for more information
see "DirectShow configuration" and "RTSP_OpenURLAsync").

http://directshownet.sourceforge.net/
http://www.datastead.com/products/tvideograbber.html
http://www.datastead.com/products/tvideograbber.html

ONVIF: RTSP streams

RTSP stream of the first Onvif media profile (default)

onvif://[onvifuser]:[onvifpassword]@[IP address or host name]:[onvif HTTP port]

e.g.:
onvif:/luser:pass@192.168.2.55:8080

RTSP stream selected by the index of the Onvif media profile

The index of the media profile must be in the 0..n-1 range.

onvif://[onvifuser]:[onvifpassword]@[IP address or host name]:[onvif HTTP port])/[index of the onvif
profile]

e.g.:
onvif:/luser:pass@192.168.2.55:8080/1

RTSP stream selected by the name of the Onvif media profile

This is the name of the media profile as it has been configured in the IP camera settings.

onvif://[onvifuser]:[onvifpassword]@[IP address or host name]:[onvif HTTP port]/[name of the onvif
media profile]

e.g. by supposing the name of the profile is "high quality":
onvif://luser:pass@192.168.2.55:8080/high quality

RTSP, RTMP, HTTP, TCP, UDP, MSSH and other protocols

e.g. rtsp://192.168.1.30/axis-media/media.amp?videocodec=h264&audio=1

or

[protocol]://[user:password]@[IP address or host name]/[URL params]

e.g. rtsp://root:admin@192.168.1.30/axis-media/media.amp?videocodec=h264&audio=1

Configuring the filter through the URL

The configuration parameters of the filter can be passed:

- either programmatically

- either as text parameters at the end of the URL, prefixed by a ">" or
e.g.:

onvif://luser:pass@192.168.2.55:8080>buffer=0>vidsync=0

or

onvif://luser:pass@192.168.2.55:8080!buffer=0!vidsync=0

character.

For more information see FILTER CONFIGURATION.

ONVIF: JPEG snapshot

It is possible to get a JPEG snaphot synchronously or asynchronously, by just adding the filter to the
graph and loading the URL (without running the graph).

The snapshot can be returned as a JPEG file and/or as a pointer to a memory buffer containing the
JPEG image.

Configuration steps to capture a JPEG snapshot of the IP camera 192.168.5.22:
(sample code in the CSharp "DatasteadRTSPSource_ONVIF_Shapshot" demo project)

1. add the filter to the graph
2. set the user name and password

DatasteadRTSPSourceConfig.SetStr (RTSP_Source AuthUser str, "username")
DatasteadRTSPSourceConfig.SetStr (RTSP_Source AuthPassword str, "password")

3. set a non-default connection timeout if needed, e.g. for 5 seconds:

DatasteadRTSPSourceConfig.SetInt (RTSP_Source ConnectionTimeOut int, 5000)

4. if a JPEG file is needed, set also the recording file name:
DatasteadRTSPSourceConfig.SetStr (RTSP_Source RecordingFileName str,"c:\folder\shot.jpg")

A) to capture the snapshot synchronously, invoke:

int hr = DatasteadRTSPSourceConfig.Action (RTSP_Action GetONVIFSnapshot,
"onvif://192.168.1.22")
if (hr == 0) {

byte *pJPEGBuffer

DatasteadRTSPSourceConfig2.GetIntPtr (RTSP_ONVIF LastJPEGSnapshotBuffer intptr,
&pJPEGBuffer)

int JpegSize;

DatasteadRTSPSourceConfig.GetInt (RTSP ONVIF LastJPEGSnapshotSize int, &pJPEGSize)
1

B) to capture the snapshot asynchronously, invoke:
DatasteadRTSPSourceConfig.Action(RTSP_Action_GetONVIFSnapshotAsync, "onvif://192.168.5.22");

The connection and download will run in a separate thread, then IMediaEvent will return one of the
following event:

- upon failure:
EC _RTSPNOTIFY with Paraml

EC _RTSP_PARAMI ONVIF SNAPSHOT FAILED

- upon success:
EC RTSPNOTIFY with Paraml

EC_RTSP_PARAM1 ONVIF SNAPSHOT SUCCEEDED

Upon success, if needed, access the memory JPEG buffer as follows:
byte *pJPEGBuffer

DatasteadRTSPSourceConfig2.GetIntPtr (RTSP_ONVIF LastJPEGSnapshotBuffer intptr,
&pJPEGBuffer)

int JpegSize;

DatasteadRTSPSourceConfig.GetInt (RTSP_ONVIF LastJPEGSnapshotSize int, &pJPEGSize)

Note: NO NEED TO RUN THE GRAPH FOR THE SNAPSHOT CAPTURE.

10

Backtimed recording (pre-roll recording)

It is possible to specify a number of seconds that must be included at the beginning of the recording,
BEFORE the "start recording" action was invoked.

This is designed to additionally include in the video clip the few seconds of video just before the user
decided to start the recording.

To use this feature the filter must be configured with the recording in a "paused" mode by invoking:
(e.g. for an additional pre-roll duration of 5 seconds)

DatasteadRTSPSourceConfig.Setint (RTSP_Source_RecordingBacktimedStartSeconds_int, 5)
DatasteadRTSPSourceConfig.SetStr (RTSP_Source_RecordingFileName_str, "nul.mp4")

Run the graph, so the filter is in fact previewing, but ready to record.
While the graph is running, when it's time to start the recording, invoke:
DatasteadRTSPSourceConfig.Action (RTSP_Action_RecordToNewFileNow, "newfilename.mp4")

When the graph is stopped, the "newfilename.mp4" clip will contain the duration of the recording more
-at the beginning- the specified number of seconds before RTSP_Action_RecordToNewFileNow was
invoked.

Quick start from the TVideoGrabber SDK

To use the filter with the Datastead TVideoGrabber SDK just ignore all the other chapters in this
documentation, you just need to install the filter and then use the following TVideoGrabber sample code,
in the examples below for an Axis IP Camera.

Note:

The TvideoGrabber SDK starts by default the RTSP filter asynchronously, so invoking StartPreview() or
StartRecording() returns true if the URL syntax is connect and exits immediately without waiting for the
connection to complete, a notification occurs later when the preview or recording starts by the
OnPreviewStarted or OnRecordingStarted events (a connection that fails is reported by the OnLog
event)

(to make the connection to be sychrone and wait when invoking StartPreview, disable the
VideoGrabber.OpenURLAsync property)

Preview or an ONVIF camera:

VideoGrabber.VideoSource = vs IPCamera

VideoGrabber.IPCameraURL = "onvif://192.168.0.25"
VideoGrabber.SetAuthentication (at IPCamera, "onvifuser", "onvifpassword");
VideoGrabber.StartPreview ()

Recording of an ONVIF camera, without preview (saves CPU):

VideoGrabber.VideoSource = vs_ IPCamera

VideoGrabber.IPCameraURL = "onvif://192.168.0.25"
VideoGrabber.SetAuthentication (at IPCamera, "onvifuser", "onvifpassword");
VideoGrabber.VideoRenderer = vr None;

1"

VideoGrabber.FrameGrabber = fg Disabled;
VideoGrabber.RecordingMethod = rm MP4;
VideoGrabber.StartRecording ()

Preview or an RTSP URL:

VideoGrabber.VideoSource = vs_ IPCamera

VideoGrabber.IPCameraURL = "rtsp://192.168.0.25/axis-media/media.amp?
videocodec=h264"

VideoGrabber.SetAuthentication (at IPCamera, "root", "admin");
VideoGrabber.StartPreview ()

Preview + audio rendering:

VideoGrabber.VideoSource = vs_ IPCamera

VideoGrabber.IPCameraURL = "rtsp://192.168.0.25/axis-media/media.amp?
videocodec=h264&audio=1"

VideoGrabber.SetAuthentication (at IPCamera, "root", "admin");
VideoGrabber.AudioDeviceRendering = true

VideoGrabber.StartPreview ()

Preview + MP4 recording (video only):

VideoGrabber.VideoSource = vs IPCamera

VideoGrabber.IPCameraURL = "rtsp://192.168.0.25/axis-media/media.amp?
videocodec=h264"

VideoGrabber.SetAuthentication (at IPCamera, "root", "admin");
VideoGrabber.RecordingMethod = rm MP4

VideoGrabber.RecordingFileName = "c:\thefolder\thefilename.MP4" (%)
VideoGrabber.StartRecording ()

Preview + audio rendering + MP4 audio/video recording:

VideoGrabber.VideoSource = vs_ IPCamera

VideoGrabber.IPCameraURL = "rtsp://192.168.0.25/axis-media/media.amp?
videocodec=h264&audio=1"

VideoGrabber.SetAuthentication (at IPCamera, "root", "admin");
VideoGrabber.AudioDeviceRendering = true

VideoGrabber.RecordingMethod = rm MP4

VideoGrabber.AudioRecording = true

VideoGrabber.RecordingFileName = "c:\thefolder\thefilename.MP4" (%)
VideoGrabber.StartRecording ()

Generating a new file name on the fly:

(we suppose the recording is currently running)

VideoGrabber.RecordToNewFileNow ("c:\thefolder\thenewfilename.mp4", true)

12

To let TvideoGrabber generate the file names automatically pass an empty string as file name.

To pause the recording, pass a "nul" file name with the same extension and without file path, e.g:

VideoGrabber.RecordToNewFileNow ("nul.mp4", true)

Pausing/resuming the recording:

(we suppose the recording is currently running)
To pause the recording, invoke:

DatasteadRtspSourceConfig.Action (RTSP _Action PauseRecording, "");

To resume the recording, invoke:

DatasteadRtspSourceConfig.Action (RTSP _Action ResumeRecording, "");

Quick start from GraphEdit.exe

- run GraphEdit -> Graph -> Insert Filters -> DirectShow Filters
- locate "Datastead RTSP/RTMP DirectShow Source" filter, double-click on it to insert it,

- when the popup dialog appears to select a file, press the "Esc" key, or click "Cancel",

- right-click on the filter properties, enter the RTSP URL (followed by the optional parameters, if any, see the "in-URL optional parameters”
chapter below), e.g. to record a .MP4 clip with an Axis camera:

rtsp://root:pass@192.168.1.32/axis-media/media.amp?videocodec=h264&audio=1>buffer=500>recordingfilename=c:\test. mp4

- wait a few seconds for the filter to connect(*), then render the desired pin(s) and run the graph.

Auto reconnection

When no frames are received after a "device lost" time out, the filters tries to reconnect automatically or
notifies the graph that the device has been lost.

By default the filter tries to reconnect automatically. The auto reconnection can be disabled:

- either by specifying >autoreconnect=0 at the end of the RTSP URL,

- either by invoking
DatasteadRtspSourceConfig.SetBool(RTSP_Source AutoReconnect bool, false)
when configuring the filter.

Auto reconnection disabled

When the device lost timeout occurs, an EC_DEVICE_LOST notification event is notified to the filter
graph, that stops.

13

http://msdn.microsoft.com/en-us/library/windows/desktop/dd319488(v=vs.85).aspx

Auto reconnection enabled

When the device lost timeout occurs:

-an EC_RTSPNOTIFY (EC_RTSP_PARAM1_DEVICELOST_RECONNECTING, 0) notification event is
sent to the filter graph,

- the filter graph is paused,
- the auto reconnection process begins

When the reconnection completes:

- the filter graph is run again,

- a custom EC_RTSPNOTIFY (EC_RTSP_PARAM1_DEVICELOST_RECONNECTED, 0) notification is
sent to the filter graph.

If the reconnection fails again after the device lost timeout, the reconnection cycle is repeated until it
succeeds or the graph stops.

About RTSP transport, HTTP and latency

RTSP TRANSPORT MODE

When connecting to RTSP URLs, if the connection fails or take too long, the origin of the problem can be
default transport mode, retry after specifying the tcp, udp or http transport as follows:

- at the end of the RTSP URL

by adding >rtsp_transport=value as follows, e.g.:

tcp:

rtsp://admin:admin@192.168.0.33>rtsp_transport=tcp

udp:

rtsp://admin:admin@192.168.0.33>rtsp_transport=udp

http:

rtsp://admin:admin@192.168.0.33>rtsp_transport=http

multicast:
rtsp://admin:admin@192.168.0.33>rtsp_transport=udp_multicast

- or programmatically

14

by invoking IDatasteadRTSPSourceConfig.Setint (RTSP_Source_ RTSPTransport_int, Value).

The possible values are:

0: automatic (default, UDP is tried first)
1: tcp

2:udp

3: http

4: udp_multicast

HTTP URLs in JPEG, MJPEG or MXPEG mode

If the connection to an HTTP URL in JPEG or MJPEG mode fails, specify the MJPEG mode:

- at the end of the RTSP URL, e.g.:
http://192.168.0.24>srcformat=mjpeg

- or programmatically
by invoking IDatasteadRTSPSourceConfig.SetStr (RTSP_Source Format_str, "mjpeg").

(If the URL is a MXPEG URL, specify "mxg" instead of "mjepg")

LOW DELAY

The filter includes a low delay mode that is enabled by default under certain conditions.

Enabling it may reduce the latency, but, with some video source it can introduce problems (jerkiness,
etc...)

It can be forced enabled (1) or disabled (0) as follows:

- at the end of the RTSP URL, e.g.:
rtsp://192.168.0.24>lowdelay=0

- or programmatically
IDatasteadRTSPSourceConfig.Setint (RTSP_Source_LowDelay int, 0).

15

LATENCY

To minimize the latency, specify a zero buffering, and eventually force the low delay mode and disable
the video synchronization:

- at the end of the RTSP URL, e.g.:
rtsp://192.168.0.24>buffer=0
rtsp://192.168.0.24>buffer=0>lowdelay=1
rtsp://192.168.0.24>buffer=0>lowdelay=1>vidsync=0

- or programmatically

IDatasteadRTSPSourceConfig.SetIint (RTSP_Source_BufferDuration_int, 0);
IDatasteadRTSPSourceConfig.Setint (RTSP_Source_LowDelay int, 0);
IDatasteadRTSPSourceConfig.SetBool (RTSP_VideoStream_Synchronized_bool, false);

FILTER CONFIGURATION

The optional Datastead's parameters can be either
- either set programmatically
- either passed at the end of the URL (so the filter can be configured without writing code)

A. setting the parameters programmatically

The parameters can be set the classic programmatical way through the IDaConfigtasteadRtspSource
interface exposed by the IBaseFilter interface of the filter. This is described later in this manual.

B. specifying the settings as parameters at the end of the URL
This method consists to specify the parameters and values directly at the end of the RTSP URL:

The parameter must be specified as >identifier=value. The ">" character is required and used as
separator and parameter identified to distinguish it from the real URL parameters.

E.g.:
rtsp://root:admin@192.168.0.24/axis-media/media.amp>timeout=20000>buffer=0>lowdelay=1

The parameters that can be specified after the URL are listed in the "URL parameter indentifiers" column
of the "Parameter identifier" array at the end of this document.

16

DirectShow configuration

Overview

Building and starting the DirectShow graph synchronously (the function blocks until the
connection completes):

- create the filter graph instace,

- create the instance with CoCreatelnstance,

- add the filter to the graph

- query the filter instance for the IDatasteadRTSPSourceConfig interface

- invoke Hresult hr = DatasteadRTSPSourceConfig.SetAction (RTSP_Action_OpenURL, "rtsp://...") to
open the URL

- if hr ==8_OK, render the video and/or audio pins and run the graph

If a recording file name has been specified the file writing starts along with the video/audio rendering.

Building and starting the DirectShow graph asynchronously without blocking the main
thread:

sample code in the C# demo project included

A) create an initialization function that starts the connection and exits immediately

- create the filter graph instace,

- create the instance with CoCreatelnstance,

- add the filter to the graph

- query the ImediaEventEx and invoke mediaEventEx.SetNotifyWindow (AppHandle) to receive the
graph events

- query the filter instance for the IDatasteadRTSPSourceConfig interface

- invoke Hresult hr = DatasteadRTSPSourceConfig.SetAction (RTSP_Action_OpenURLAsync,
"rtsp://...") to open the URL

- the function exits immediately and returns S_OK if the URL syntax is correct

(so at this point the app remains responsive while the filter is connecting in the background)

B)

when the connection completes, the graph event callback occurs with a EC_RTSPNOTIFY (param1,
param2):

param1 returns EC_RTSP_PARAM1_OPENURLASYNC_ CONNECTION_RESULT as param1
Param2 returns 0 if the connection failed, and 1 if the connection succeeded

From this event:

- if the connection failed, release the graph

- if the connection succeeded, render the video and/or audio pins and run the graph

Note: if a recording file name has been specified the filter starts writing to the file as soon as the
connection succeeds.

17

Filter CLSID

Filter CLSID: {55D1139D-5E0D-4123-9AED-575D7B039569}

C#

public static readonly Guid DatasteadRtspRtmpSource = new Guid ("55D1139D-5E0D-4123-9AED-575D7B039569") ;

C++:

// {55D1139D-5E0D-4123-9AED-575D7B039569}
static const GUID CLSID DatasteadRtspRtmpSource =
{ 0x55D1139D, Ox5EOD, 0x4123, { 0x9A, OxED, 0x57, 0x5D, 0x7B, 0x03, 0x95, 0x69 } };

Delphi:

const
CLSID DatasteadRtspRtmpSource: TGUID = '{55D1139D-5E0D-4123-9AED-575D7B039569}";

18

Passing settings to the filter

Most of the initialization parameters can be passed to the filter in 2 ways:

1. either programmatically through the ldatasteadRtspSourceConfig interface (described later in this
documentation)

2. either as string parameter at the end of the RTSP URL, by adding a ">" character followed by the

parameter identifier, a "=", and the value.

The parameter indentifiers are not case-sensitive.

E.g.

>buffer=0

>Buffer=0

>lowdelay=1

>Buffer=0>LowDelay=1

Example with a full RTSP URL (in blue) with filter settings added at the end of the RTSP URL (in black):
rtsp://root:admin@192.168.0.25/axis-media/media.amp?

videocodec=h264>Buffer=0>LowDelay=1>DestIPAddress=192.168.0.231>DestIPPort=30000>DestB
itRate=1500>DestKeyFramelnterval=15

For readability it is also possible to pass to URL with parameters as a multi-line string, each line being
separated by CR/LF characters, e.g.:

rtsp://root:admin@192.168.0.25/axis-media/media.amp?videocodec=h264
>Buffer=0

>LowDelay=1

>DestIPAddress=192.168.0.231

>DestIPPort=30000

>DestBitRate=1500

>DestKeyFramelnterval=15

19

Filter configuration through IFileSourceFilter

This method is provided for easier testing from GraphEdit or GraphStudio and quick test, however for
the development we recommend to use the IDatasteadRtspSourceConfig interface instead.

To configure the filter through the common IfilterSourceFilter interface and pass the optional parameters,
if any, at the end of the URL:

- add the "Datastead RTSP/RTMP DirectShow Source" filter to the graph,
- query the IFileSourceFilter interface,

- invoke FileSourceFilter.Load to pass the RTSP URL (can be followed by the in-URL optional
parameters, if any), e.g.:

FileSourceFilter.Load ("rtsp://root:admin@192.168.0.25/axis-media/media.amp?
videocodec=h264&audio=1>rtsp transport=udp multicast>recordingfilename=c:\folder\recfile.mp4", NULL);

- render the desired pin(s),

- run the graph.

20

Filter configuration through IDatasteadRtspSourceConfig
Overview

The IDatasteadRtspSourceConfig interface declarations are located in the package under the following
folders:

C#
Include\C#\DatasteadRTSPSourceFilter.cs

VB.NET
Include\C#\DatasteadRTSPSourceFilter.vb

C++
Include\C++\DatasteadRTSPSourceFilter.n

Delphi
Include\Dephi\DatasteadRTSPSourceFilter.pas

The IDatasteadRtspSourceConfig interface lets configure the filter at initialization time, as well as apply
realtime actions, like pausing the recording, resuming the recording, generating a new file name on the
fly, etc...

The initalization settings:
- can be set by invoking SetStr(), Setint(), SetBool(), SetDouble()
- can be retrieved by invoking GetStr(), getint(), GetBool(), GetDouble()

The actions can be applied by invoking Action()

Usage

- add the "Datastead RTSP/RTMP DirectShow Source" filter to the graph,
- query the IDatasteadRtspSourceConfig interface,

- configure the optional parameters, if needed, and then at last invoke .Action(RTSP_Action_OpenURL,
"rtsp://...") to load the URL according to the parameters previously set, e.g.:

DatasteadRtspSourceConfig.SetStr (RTSP Source AuthUser str, "root");
DatasteadRtspSourceConfig.SetStr (RTSP_Source AuthPassword str, "admin");
DatasteadRtspSourceConfig.SetInt (RTSP Source RTSPTransport int, 4); // 4 =
UDP multicast, see next page
DatasteadRtspSourceConfig.SetBool (RTSP_Source AutoReconnect bool, false);
DatasteadRtspSourceConfig.SetStr (RTSP Source RecordingFileName str,
"c:\\folder\\camerarec.mp4d") ;

DatasteadRtspSourceConfig.Action (RTSP_Action OpenURL,
"rtsp://192.168.0.25/axis-media/media.amp?videocodec=h264&audio=1") ;

21

Then, once the graph is started, e.g. to pause the recording after a few minutes:

DatasteadRtspSourceConfig.Action (RTSP Action PauseRecording, "");

and then later, e.g.:

DatasteadRtspSourceConfig.Action (RTSP_Action ResumeRecording, "");

Remarks

a) the parameter identifier name reminds the the corresponding Get.../Set... function to
invoke

Note: the type of the parameter is included at the end of the name as a reminder. The function invoked
must match the parameter type, otherwise the function will return E_INVALIDARG. E.g.:

int BufferDuration;
if (DatasteadRtspSourceConfig.GetInt (RTSP_ Source BufferDuration_int,
&BufferDuration) == S OK) {
// got the BufferDuration value
}

DatasteadRtspSourceConfig.SetStr (RTSP_Source_ AuthUser str, "admin");
DatasteadRtspSourceConfig.SetStr (RTSP Source AuthPassword_ str, "pass");
wchar t *RtspUrl = L"rtsp://192.168.1.32/axis-media/media.amp?
videocodec=h264";

DatasteadRtspSourceConfig.Action (RTSP Action OpenURL, RtspUrl);

b) string returned by GetStr()

Although the string pointer returned by GetStr() is valid as long as the filter exists, we recommend to
make copy of the string returned immediately after invoking GetStr(), to prevent any use of this string
pointer after the filter has been released.

Actions that can be applied once the graph is running
Generating a new recording file on the fly

To generate a new file name during the recording, invoke, e.g.:

DatasteadRtspSourceConfig.Action (RTSP Action RecordToNewFileNow,
"c:\folder\newfilename3.mp4") ;

To pause the recording, pass a "nul" file name with the same extenstion:

22

DatasteadRtspSourceConfig.Action (RTSP Action RecordToNewFileNow, "nul.mp4");

Pausing the URL

Invoke:
DatasteadRtspSourceConfig.Action (RTSP Action Pause URL, "");

Resuming the URL

Invoke:
DatasteadRtspSourceConfig.Action (RTSP Action Resume URL, "");

23

Examples of processings applied to the video stream

The RTSP filter supports some of the video filters available in FFmpeg, if they are compatible.
The FFmpeg filters are listed here.

If a given FFmpeg filter is not supported, the RTSP filter may fail to start.

To activate a given filter, invoke:
IDatasteadRTSPSourceConfig.SetStr (RTSP_VideoStream_Filter_str, filter setting(s))
or pass the filter setting at the end of the RTSP URL as follows, e.qg.:

rtsp://192.168.0.24/live.sdp>videofilter=setting(s)

Vertical flipping
IDatasteadRTSPSourceConfig.SetStr (RTSP_VideoStream_Filter_str, "vflip")

Horizontal flipping
IDatasteadRTSPSourceConfig.SetStr (RTSP_VideoStream_Filter_str, "hflip")

Video rotation
Orthogonal:

transpose=dir=clock

transpose=dir=clock_flip

transpose=dir=cclock

transpose=dir=cclock_flip

E.g:

IDatasteadRTSPSourceConfig.SetStr (RTSP_VideoStream_Filter_str, "transpose=dir=cclock_flip")
or as URL parameter:

rtsp://192.168.0.24/live.sdp>videofilter=transpose=dir=clock

Any angle:

E.g. for 45°: rotate=45*P1/180

IDatasteadRTSPSourceConfig.SetStr (RTSP_VideoStream_Filter_str, "rotate=45*P1/180")

Hue / saturation
E.g.

hue=h=90:s=1

24

http://ffmpeg.org/ffmpeg-all.html#Video-Filters

where h = hue angle in degrees and s = saturation in the -10..10 range
IDatasteadRTSPSourceConfig.SetStr (RTSP_VideoStream_Filter_str, "hue=h=90:s=1")
or as URL parameter:

rtsp://192.168.0.24/live.sdp>videofilter=hue=h=90:s=1

Negative video

negate

E.g.

IDatasteadRTSPSourceConfig.SetStr (RTSP_VideoStream_Filter_str, "negate")
or as URL parameter:

rtsp://192.168.0.24/live.sdp>videofilter=negate

Draw a box or a grid
E.g.:

drawbox=10:20:200:60:red@0.5
drawgrid=width=100:height=100:thickness=2:color=red@0.5
IDatasteadRTSPSourceConfig.SetStr (RTSP_VideoStream_Filter_str, "10:20:200:60:red@0.5")

or as URL parameter:
rtsp://192.168.0.24/live.sdp>videofilter=10:20:200:60:red@0.5

Unsharp
E.g.

unsharp=luma_msize_x=7:luma_msize_y=7:luma_amount=2.5
unsharp=7.7:-2.7:7:-2

IDatasteadRTSPSourceConfig.SetStr (RTSP_VideoStream_Filter_str,
"unsharp=luma_msize_x=7:luma_msize_y=7:luma_amount=2.5")

or as URL parameter:

rtsp://192.168.0.24/live.sdp>videofilter=unsharp=7:7:-2:7:7:-2

Combining several processings

After the 1% processing, add " -vf " between each processing, e.g. to combine negate and Vflip:
IDatasteadRTSPSourceConfig.SetStr (RTSP_VideoStream_Filter_str, "negate -vf vflip")

25

mailto:red@0.5
mailto:red@0.5

or as URL parameter:

rtsp://192.168.0.24/live.sdp>videofilter="negate -vf vflip'

26

URL re-streaming

The filter can act as a RTSP server that re-streams the streams received.
Example:

- the PC that will act as a RTSP "re-streamer”, on which the application having RTSP filter instances
running, has the IP 192.168.1.100

- the URL of the IP camera to re-stream is:
rtsp://192.168.1.25/axis-media/media.amp?videocodec=h264

- we want to re-stream this URL so the RTSP "clients" can connect to this PC to on the port 10000 with
the URL path "live1":

rtsp://192.168.1.100:10000/live1
This can be activated:

- either as parameter at the end of the RTSP URL by adding:

>desturl=rtspsrv://192.168.1.100:10000/live1
rtsp://192.168.1.25/axis-media/media.amp?videocodec=h264>desturl=rtspsrv://192.168.1.100:10000/live1

- either programmatically by invoking:
DatasteadRTSPSourceConfig.SetStr ("RTSP_Dest URL_str", "rtspsrv://192.168.1.100:10000/live1")

From the same application it is possible that several RTSP filter instances re-stream several IP cameras
on different RTSP ports, e.g.:

rtsp://192.168.1.25/axis-media/media.amp?videocodec=h264>desturl=rtspsrv://192.168.1.100:10000/live1
rtsp://192.168.1.26/axis-media/media.amp?videocodec=h264>desturl=rtspsrv://192.168.1.100:10000/live2
rtsp://192.168.1.27/axis-media/media.amp?videocodec=h264>desturl=rtspsrv://192.168.1.100:12345/live1
rtsp://192.168.1.28/axis-media/media.amp?videocodec=h264>desturl=rtspsrv://192.168.1.100:12345/live2

The only constraint is that 2 applications (2 different executables) must not re-stream on the same
RTSP port, otherwise the second executable may crash.

27

Text Overlays

A text overlay is configured by passing a text overlay string containing the text and the overlay settings
(width, height, font, etc...) as follows:

DatasteadRTSPConfig.SetStr(RTSP_VideoStream_ConfigureTextOverlay_str, OVERLAYSTRING);

E.g.: DatasteadRTSPConfig.SetStr(RTSP_VideoStream_ConfigureTextOverlay_str, "|overlayid=1|
text=Hello World!|fontsize=40|x=20|y=20|fontcolor=white");

- the 1% character of the string is used as separator for all the parameters. In this example it is "|" (ASCII
124), but any other character that is not a letter or number can be used.

- "overlayid" can specify any short string that is used to identify this text overlay. This identified will be
used by the filter to retrieve the overlay when updating it in real time while the filter is running.

- THE OVERLAYS MUST BE SET BEFORE OPENING THE URL. If an overlay must not be displayed
immediately, configure it with an empty string, then invoke the function again

while the filter is running and pass the string to display.

- passing an incorrect string syntax may crash the filter (e.g. wrong color name)

In the example below 2 overlays are defined at startup, and the 2™ is not displayed (empty string), then
they are updated in real time while the filter is running.

— before running the filter, invoke:
DatasteadRTSPConfig.SetStr(RTSP_VideoStream_ConfigureTextOverlay_str, "| overlayid=first |
text=this is the first text displayed at startup | fontsize=40 | x=20 | y=20 | fontcolor=white");
DatasteadRTSPConfig.SetStr(RTSP_VideoStream_ConfigureTextOverlay_str, |
overlayid=second | text= | fontsize=40 | x=60 | y=60 | fontcolor=white");

— then, later, while the filter is running, invoke:
DatasteadRTSPConfig.SetStr(RTSP_VideoStream_ConfigureTextOverlay_str, "| overlayid=first |
text=now the 1° text is updated | fontsize=40 | x=20 | y=20 | fontcolor=white");
DatasteadRTSPConfig.SetStr(RTSP_VideoStream_ConfigureTextOverlay_str, |
overlayid=second | text=now the 2" text appears | fontsize=40 | x=60 | y=60 |
fontcolor=white");

28

Brightness / Hue / Saturation

These settings can be enabled as follows, e.g.:

DatasteadRTSPConfig.SetStr(RTSP_VideoStream_ConfigureHueBrightSat_str, "|b=1.4|s=1.5|h=180");

The 1% character of the string is used as separator for all the parameters. In this example it is "|" (ASCII
124), but any other character that is not a letter or number can be used.

Brightness (b): in the -10..10 range (default 0)
hue (h): in degrees (default 0)
saturation (s): in the -10..10 range (default 1)

Note that the brightness/hue/saturation setting must be set BEFORE LOADING the URL to be activated.

To prevent it to be applied immediately, set the default value(s) (b=0,h=0,s=1), then update them when
needed while the filter is running, e.g.:

- before loading the URL.:

DatasteadRTSPConfig.SetStr(RTSP_VideoStream_ConfigureHueBrightSat_str, "|b=0");

- while the filter is running:

DatasteadRTSPConfig.SetStr(RTSP_VideoStream_ConfigureHueBrightSat_str, "|b=1.4");

29

Parameter identifiers

The parameter identifiers are constant strings declared in the include files.

- the 1% column is the name of the identifier that can be passed as parameter from the
IdatasteadRtspSourceConfig interface

- the 2" column is the name of the |datasteadRtspSourceConfig's function that accepts this parameter

- the 3™ column is the name of this parameter. If it exist it can be passed alternatively at the end of the
URL (instead of using IdatasteadRtspSourceConfig)
E.g. rtsp://192.168.0.25/axis-media/media.amp?

videocodec=h264&audio=1>recordingfilename=c:\folder\test.mp4

30

parameter string identifier for the associate |parameter description
IdatasteadRtspSourceConfig interface d identifier (if set
interface | at the end of
function | the the RTSP
URL)
ACTIONS
RTSP_Action_OpenURL Action() Set the URL and connects the filter synchronously
This function must be invoked while configuring the filter, at last,
after setting all the optional parameters, if needed.
Returns S_OK upon success
RTSP_Action_OpenURLAsync Action() Set the URL and initiates the connection, but returns immediately

without waiting for the connection to complete.

The filter is connecting in the background and will notify when the
connection complete through the ImediaEventEx notification or a
callback function (see below).

Note that invoking OpenURLAsync EXITS IMMEDIATELY without
waiting for the connection to complete. So you must wait for
callback before trying to render the pins, because the pin formats
are not available until the filter connection is completed.

This function must be invoked while configuring the filter, at last,
after setting all the optional parameters, if needed.

The function initiates the connection and returns S_OK if the URL
syntax is correct.

Then, when the filter completes the connection, the application can
get notified in 2 ways:

1) the EC_RTSPNOTIFY (param1, param2) graph event occurs
with:

param1 =
EC_RTSP_PARAM1_OPENURLASYNC_CONNECTION_RESULT
param2 = 1 if the connection succeeds, 0 if the connection fails.
For sample code earch for "HandleGraphEvent()" in Form1.cs of
the C# demo project

2) if OpenURLAsyncCompletionCB has been configured with
SetAsyncOpenURLCallback, the callback occurs and the Result
parameter returns S_OK upon success, or an error code upon
failure

RTSP_Action_RecordToNewFileNow

Action()

Close the current file being written and starts writing to a new file
specified as parameter. The new file must have the same extension
than the previous one.

- if no file name is specified as parameter, the current file is closed,
reopened and overwritten.

- to temporarily suspend the recording without sopping the graph,
pass a file name having the same extension and "nul" as name,
e.g. if recording in MP4, pass nul.mp4 as parameter (as is, without
file path). The recording remains suspended until you pass a new
valid file name to resume the recording.

Note: this action applies only while the graph is running and
recording.

To start a new recording graph:

- first set the recording file name with SetStr
(RTSP_Source_RecordingFileName_str, filename)

- then invoke Action (RTSP_Action_OpenURL, URL) or Action
(RTSP_Action_OpenURLAsync, URL)

RTSP_Action_CancelPendingConnectio
n

Action()

Cancels a pending URL connection, previously initiated by
RTSP_Action_OpenURLAsync

It can be invoked e.g. when exiting the application, just before
clearing the graph, to ensure any pending connection is cancelled
immediately.

RTSP_Action_PauseURL

Action()

Pauses the URL

RTSP_Action_ResumeURL

Action()

Resumes the URL

RTSP_Action_PauseRecording

Action()

Pauses the recording of the current file, while the preview keeps
running.

RTSP_Action_ResumeRecording

Action()

Resumes the recording of the current file.

RTSP_Action_CaptureFrame

Action()

Captures a frame as snapshot. The format of the captured frame
depends on the Option parameter:

- file name:

the next frame is captured in the format specified by the extension.
The supported formats are: BMP, TIFF, PNG, JPG

E.g. to capture a JPEG image:
DatasteadRTSPSourceConfig.Action
(RTSP_Action_CaptureFrame, "c:\folder\nextimage.jpg")

- HBITMAP (keyword):

the next frame is captured to a bitmap handle, and this bitmap
handle is returned by an EC_RTSPNOTIFY
(EC_RTSP_PARAM1_FRAME_CAPTURE_SUCCEEDED,
BitmapHandle) notification event sent to the filter graph.

E.g.:

31

DatasteadRTSPSourceConfig.Action
(RTSP_Action_CaptureFrame, "HBITMAP")

note: do not delete the bitmap handle, it may be reused for the next
capture and will be released by the filter

SOURCE URL

RTSP_Source_IsURLConnected_bool

GetBool()

Returns true if the URL is connected.

It returns false if:

- the URL is not yet connected

- the URL is reconnecting when AutoReconnect is enabled

RTSP_Source_Format_str

SetStr()
GetStr()

srcformat

Used to specify the input format for some HTTP URLs if the filter
does not detect them properly.

The possible values are:

"mjpeg": IP camera, HTTP in JPG or MJPEG mode

"mxg": IP camera, HTTP in MXPEG mode

"ipeg:WidthxHeight": specifies the image dimensions when the
RTSP stream is a MJPEG stream and the size is not properly
detected by the filter

RTSP_Source_RecordingFileName_str

SetStr()
GetStr()

recordingfilena

me

Sets the recording file name. Setting this property enables the
recording of the RTSP stream to a file. The extension determines
the format of the recording.

The formats supported by the current version are:
mp4, flv, mov, avi, mkv

Examples:
c:\folder\recfile.mp4
c:\folder\recfile.flv
c:\folder\recfile.mov
c:\folder\recfile.avi
c:\folder\recfile.mkv

To configure the filter in recording mode without starting
immediately the recording, set a nul file name without path with the
desired extension, e.g.:

nul.mp4

Then, once the filter is running, when you want to really start the
recording, just invoke:

Action (RTSP_Action_RecordToNewFileNow,
c:\folder\realfilename.mp4)

to start writing to the file.

Remarks:
- the filter does not include an H264 encoder, it just saves the
native H264 samples to the recording file.

- if the audio recording is enabled, it encodes the audio stream to
PCM, MP3 or AAC depending on the recording format selected.

- if the recording file name is set while the filter is running, this
closes the current file being recorded and starts saving to a
new file on the fly.

RTSP_Source_RecordingBacktimedStar
tSeconds_int

Setint()
Getlnt()

backtimedstart

see #10.Backtimed recording

RTSP_Source_Recording_Title_str

SetStr()
GetStr()

tilte

Sets a title for the video clip (for containers that support this
feature, like MP4)

32

RTSP_Source_PlayableWhileRecording | Setint() playablewhiler | O: the clip is not playable while recording (default)
_int Getlint() ecording 1: the clip is playable while recording if the container supports this
possibility (like MP4 or ASF)
2 : idem, different mode
RTSP_Source_ContinuousRecording_b | SetBool() | continuousrec | When enabled, the recording does not stop when the graph is
ool GetBool() | ording stopped / restarted. The recording stops only when the graph is
destroyed (default: disabled)
RTSP_Source_AutoReconnect_bool SetBool() |autoreconnect | Enables/disables the automatic reconnection of the filter.
GetBool() Default: enabled
RTSP_Source_MaxAnalyzeDuration_int | Setint() maxanalyzedu | Maximum duration of the anaysis of the stream during the initial
Getint() |ration connection, expressed in milliseconds, e.g.:
>maxanalyzeduration=1000
RTSP_Source_DeviceLostTimeOut_int | Setint() devicelosttime | If no frame is received after this timeout (expressed in milliseconds,
Getint() |out default = 10000) the auto reconnection (if autoreonnect=1) or
device lost event (if autoreconnect=0) occurs (see the Auto
reconnection chapter)
Default: 10 sec. (10000)
RTSP_Source_BufferDuration_int Setint() buffer Specifies the buffering duration in milliseconds.
Getlint() Default: 0 if no audio, 1000 milliseconds if audio
RTSP_Source_ConnectionTimeOut_int | Setint() timeout Connection timeout in milliseconds
Getlnt() Default: 20000 (20 seconds)
RTSP_Source_ RTSPTransport_int Setint() rtsptransport | RTSP transport mode:
Getlint() 0: automatic
1: tcp
2:udp
3: hitp
4: udp_multicast
RTSP_Source_RTSPRange_str SetStr() | rtsprange Optional Rtsp range specification (e.g. to start playing a clip stored
GetStr() on the RTSP source at the specified date/time). E.g.:
clock=20150217T153000Z-
RTSP_Source_AuthUser_str SetStr() User name, if required
RTSP_Source_AuthPassword_str SetStr() Password, if required
RTSP_Source_StartTime_int Setint() starttime If the source URL supports seeking, you can specify the start time
Getlnt() expressed in milliseconds.
E.g. if the start time should be 2 min 30 sec — 2x60 + 30 = 150
seconds = 150000 milliseconds, invoke Setint
("Source_StartTime_int", 150000)
RTSP_Source_Threads_int Setint() threads Number of threads assigned to the decoding (and eventually
Getint() encoding) of the source.

Default: 1
0: auto

33

RTSP_Source_GetAudioDevices_str GetStr() Retrieves the list of the DirectShow audio capture devices
(microphone, line input, webcam mic., etc...) currently available on
the PC.

It is returned as an array of strings separated by a "\n" (line feed or
chr(10) character), e.g.:

Microphone (Realtek High Definition Audio)\nMicrophone (HD
Webcam C525\nDecklink Audio Capture

RTSP_Source_SetAudioDevice_str SetStr() Sets the name of the audio capture device to use. The name must
be one of the names returned by GetStr
(RTSP_Source_GetAudioDevices_str,...)

Setting this property invalidates the audio of the RTSP source or IP
camera (if any), and selects the use of the specified audio capture
device instead.

RTSP_Source_LowDelay _int Setint() lowdelay Used to enable/disable the low delay mode.

Getlnt() Enabling the low delay mode may help to reduce the latency.
However, when enabled, in some rare cases the video may appear
jerky. In this case this setting must be kept disabled to avoid the
jerkiness.
-1 :auto
0: disabled
1: enabled
RTSP_Source_FrameRate_double SetDoubl |srcframerate | Used to specify the native frame rate of the video stream in the
e() case it would not be properly detected (this has been reported with
GetDoubl some video streams configured in Variable Bit Rate mode (VBR))
e()
E.g. to specify 30 fps:
- programmatically:
DatasteadRTSPSourceConfig.Action
(RTSP_Source_FrameRate_double, 30.0)
- at the end of the URL:
>srcframerate=30.0
VIDEO OUTPUT PIN
RTSP_VideoStream_Enabled_bool SetBool() | videostreamen | Enables/disables the video decompression and the rendering of the
GetBool() | abled video pin
Default: true
RTSP_VideoStream_PinFormat_str SetStr() | videopinformat | By default the video pin can connect in RGB32 or RGB24 format.
GetStr() This property allows to force one of the following pin formats (not
case-sensitive):
RGB32
RGB24
RGB565
RGB555
NV12
uyvy
1420
RTSP_VideoStream_Recorded_bool SetBool() If the recording is enabled (by setting
GetBool() Source_RecordingFileName_str) and the RTSP URL outputs audio

34

and video, allows record audio only by disabling the recording of
the video stream.
Default: true

RTSP_VideoStream_ConfigureTextOverl | SetStr() | textoverlay Enables a text overlay
ay_str GetStr() To enable more than one overlay, invoke the function more than
one time with a different overlay ID.
Note: the overlay(s) must be enabled before loading the URL. If
they must not be displayed immediately, set an empty string, then
update it while the filter is running.
See the_Text overlay chapter above for the syntax.
RTSP_VideoStream_ConfigureHueBrigh | SetStr() | brighthuesat | Enables the brightness/hue/saturation adjustment.
tSat_str GetStr() Note: must be enabled before loading the URL. If they must not be
applied immediately, set the default values (b=0,h=0,s=1), then
update them while the filter is running.
See the_Brightness/Hue/Saturation chapter for the syntax.
RTSP_VideoStream_HWAcceleration_in | Setint() hwaccel Enables hardware-accelerated decoding:
t Getlint() 0: no hardware acceleration
1: dxva2 acceleration
2: Intel QuickSync acceleration
3: NVidia CUVID acceleration
RTSP_VideoStream_Index _int Setint() videostreamin | If the RTSP URL outputs more than 1 video stream, you can
Getlint() dex specify the index of the video stream to use (in the 0..n-1 range)
Default: 0
RTSP_VideoStream_Deinterlacing_int | Setint() deint Enables the deinterlacing:
Getlnt() 0: no deinterlacing (default)
1: yadif deinterlacing
2: w3fdif deinterlacing (consumes more CPU)
RTSP_VideoStream_Width_int Setint() width Used to specify a non-default frame width for the video pin
Getlnt() note: when the URL is connected, Getint
(RTSP_VideoStream_Width_int, Value) returns the video width of
the decoded video stream
RTSP_VideoStream_Height_int Setint() height Used to specify a non-default frame height for the video pin
Getlint() note: when the URL is connected, Getint
(RTSP_VideoStream_Height_int, Value) returns the video height of
the decoded video stream
RTSP_VideoStream_FrameRateMax_do | SetDoubl | maxframerate |Used to specify the frame rate of the video pin
uble e() Default: native frame rate of the video stream
GetDoubl
e() Note: passing -1 as value let enable the keyframe-only
decoding mode, only the key frames are decoded. In this case the
frame rate depend on the key frame spacing of the IP camera or
RTSP / RTMP source.
RTSP_VideoStream_Synchronized_bool | SetBool() |vidsync If disabled, the filter removes the sample times, so the samples are
GetBool() rendered as fast as possible (the samples are not scheduled for
rendering)
Default: true
RTSP_VideoStream_Filter_str SetStr() | videofilter Specifies a Ffmpeg video filter to use, e.g. hflip for an horizontal
flipping, vflip for a top-down image
Note: depending on the context, some filters may not be useable
FRAME CAPTURE
RTSP_FrameCapture_Width_int Setint() framecapture | Specifies a non-default width for the next captured frame

35

Getint() | width
RTSP_FrameCapture_Height_int Setint() framecaptureh | Specifies a non-default height for the next captured frame
Getlint() eight
RTSP_FrameCapture_Time_int Setint() framecaptureti | Schedules the sream time the next frame will be captured,
Getlint() me expressed in milliseconds
RTSP_FrameCapture_FileName_str SetStr() | framecapturefi | Specifies the full path and file name of the next frame to capture.
GetStr() |lename The extension specifies the format, the supported formats are:
BMP, JPG, PNG, TIFF
E.g.:
DatasteadRTSPSourceConfig.SetStr
(RTSP_FrameCapture_FileName_str, "c:\folder\nextframe.png")
AUDIO OUTPUT PIN
RTSP_AudioStream_BitRate_int Setint() audiobitrate Specifies the encoding bit rate for the audio codec (PCM, MP3 or
Getlnt() AAC)
RTSP_AudioStream_Enabled_bool SetBool() | audiostreame | Enables/disables the audio decompression and the rendering of
GetBool() | nabled the audio pin
Default: true
RTSP_AudioStream_Recorded_bool SetBool() If the recording is enabled (by setting
GetBool() Source_RecordingFileName_str) and the RTSP URL outputs audio
and video, allows record video only by disabling the recording of
the audio stream.
Default: true
RTSP_AudioStream_Index_int Setint() audiostreamin | If the RTSP URL outputs more than 1 audio stream, you can
Getint() |dex specify the index of the audio stream to use (in the 0..n-1 range)
Default: 0
RTSP_AudioStream_Filter_str SetStr() audiofilter Specifies a Ffmpeg audio filter to use
GetStr() Note: depending on the context, some filters may not be useable
RTSP_AudioStream_Volume_int Setint() audiovolume | audio volume adjustment.
Getlint() 65535 = default volume
0 = muted
< 65535: reduces the volume
> 65535: increases the volume
RESTREAMING: DESTINATION URL AND ENCODING
RTSP_Dest URL_str SetStr() | desturl Sets the re-streaming URL.
GetStr() Examples (at the end of the RTSP URL)

RTSP server on port 6000 (the IP address is the address of a
network card on the PC running the filter)
>desturl=rtspsrv://192.168.0.25:6000

UDP unicast on port 5000 (the IP address is the IP address of the
client PC
>desturl=udp://192.168.0.200:5000

UDP multicast on port 4000

36

>desturl=udp://239.255.0.10:4000

Programmatical example:
DatasteadRTSPSourceConfig.SetStr ("RTSP_Dest_URL_str",
"rtspsrv://192.168.0.25:6000")

RTSP_Dest_Video_BitRate Setint() destvideobitrat | Sets the re-streaming video bit rate expressed in kb/s
Getlnt() e
RTSP_Dest_Video_Quality Setint() destvideoquali | Sets the re-streaming video quality in the 0..31 range
Getint() |ty (-1 = disabled, 0 = best quality, other values decrease the quality)
Note: setting a value enables the VBR encoding mode
RTSP_Dest_Video_KeyFramelnterval Setint() destvideokeyfr | Sets the key frame spacing (default 30)
Getlint() ameinterval
READ-ONLY PROPERTIES

RTSP_Source_Streaminfo_str GetStr() Retrieves information about the streams
Note: this is a multi-line string, each line is separated by CHR(13) +
CHR(10).

RTSP_Source_GetState_int Getlnt() returns the current source state. Possible values include:
state_disconnected, state_connecting_async,
state_connecting_sync, state_reconnecting, state_connected,
state_previewing, state_recording_paused, state_recording_active

RTSP_CurrentRecorded_FileName_str | GetStr() Returns the file name of the current recording

RTSP_CurrentRecording_FileSizeKb_int | GetInt() Returns the file size in Kb of the current recording

RTSP_CurrentRecording_ClipDurationM | GetInt() Returns the duration In milliseconds of the current recording

s_int

RTSP_CurrentRecording_VideoFrameC | Getint() Returns the video frame count of the current recording

ount_int

RTSP_LastRecorded_FileName_str GetStr() Returns the name of the last file recorded

RTSP_LastRecording_FileSizeKb_int Getlint() Returns the file size in Kb of the last file recorded

RTSP_LastRecording_ClipDurationMs_i | GetInt() Returns the duration In milliseconds of the last file recorded

nt

RTSP_LastRecording_VideoFrameCoun | Getint() Returns the video frame count of the last file recorded

t_int

RTSP_Filter_Version_int Setint() Retuns the filter version number (READ ONLY)

Getlnt()
RTSP_Filter_Build_int Setint() Retuns the filter build number (READ ONLY)
Getlnt()

37

TROUBLESHOOTING

Sometimes the image jumps or some artifact appear in the middle of the image
Retry after disabling the lowdelay feature:
- either as parameter at the end of the RTSP URL.:

>lowdelay=0
E.g.:
rtsp://192.168.100.20/cam0_0>lowdelay=0>vidsync=0>audiostreamenabled=0

- or programmatically before loading the URL by invoking:
DatasteadRtspSourceConfig.SetInt ("RTSP_Source_ LowDelay int", 0)

When starting the preview the video appears very pixelated, or the bottom of the frame
seems blurred

This could be a problem related to UDP, retry in TCP mode by specifying the RTSP transport as follows:
rtsp://192.168.1.43/stream>rtsp_transport=tcp

The video freezes periodically

1. Retry after specifying a higher buffer duration, e.g. 500 or 1000 milliseconds:

- at the end of the URL:
>buffer=1000

- or programmatically:
DatasteadRtspSourceConfig.SetInt ("Source BufferDuration int", 1000)

2. retry with the Intel QuickSync hardware decoding:

- at the end of the URL:
>hwaccel=2

- or programmatically:
DatasteadRtspSourceConfig.SetInt ("RTSP VideoStream HWAcceleration int", 2)

3. specify a number of threads > 1 (they are set to 1 by default), or 0 to select automatically the number
of threads

- at the end of the URL:
>threads=0 (or specify a value > 1)

- or programmatically:
DatasteadRtspSourceConfig.SetInt ("RTSP_ Source Threads int", 0)
E.g.

rtsp://192.168.100.20/cam0_0>buffer=1000
rtsp://192.168.100.20/cam0_0O>hwaccel=2
rtsp://192.168.100.20/cam0_0>threads=0

38

The MP4 recorded file is truncated

The evaluation timeout occurred and stopped the recording.

The RTSP URL fails to connect

Try to force a non-default transport mode by adding one of the following settings at the end of the RTSP
URL.:

>rtsp_transport=udp

>rtsp_transport=tcp

>rtsp_transport=http

>rtsp_transport=udp_multicast

E.g.
rtsp://192.168.0.25/axis-media/media.amp?videocodec=h264>rtsp_transport=udp

Or programmatically: TCP=1,UDP=2,HTTP=3,Udp_Multicast=4
E.g. for HTTP:
DatasteadRtspSourceConfig.SetInt ("RTSP Source RTSPTransport int", 3)

The filter fails to connect to the VMR9 (Video Mixing Renderer 9)

Retry after adding:
>videopinformat=NV12
at the end of the URL, or configure the filter as follows:

DatasteadRtspSourceConfig.SetStr ("RTSP VideoStream PinFormat str", "nv12");

39

FAQ
LICENSING
Should | buy one license for each one of my clients?

No, it's a per-developer, royalty-free license. After purchasing the developer license you can distribute
the filter along with your end-user application on as many PCs as needed, without having to pay
anything else.

INSTALL

In the DatasteadRTSPSource.zip there are two folders, x64 and x86. Which one shouid |
use when?
For example,Windows 7 32 bit, Windows 7 64 bit?

Note:; if the filter is used through our TvideoGrabber SDK, you can just copy the filter binaries (.dll
and .ax) in your .EXE's application folder, in this case it is not necessary to register the filter or run the
filter installer.

The simpler is to run the DatasteadRTSPFilter_Installer.exe from the command line, it installs
automatically the x86 version on 32 bit PCs, and both the x86 and x64 versions on 64 bits PC.

You can install silently from the command line with:
DatasteadRTSPFilter Licensed Installer.exe /silent

or

DatasteadRTSPFilter Licensed Installer.exe /verysilent

The important point is to determine how the app is compiled: only as x86, or both x86 and x64:

1) if the app is compiled only as x86, or if you set "x86" as target platform in VS.NET, you just need to
distribute the x86 filter, it will run without problem on both 32bit and 64bit OS.

2) if the app is compiled for both x86 and x64, or if "Any" is set as target platform in VS.NET, install:
- the x86 filter only on 32 bit PCs
- the x86 filter AND x64 filter only on 64 bit PCs

LIMITATIONS OF THE EVALUATION VERSION
When testing the filter under GraphEdit the graphs stops and reports an error 0x200

The timeout of the evaluation filter has occurred and has stopped the graph .This is a normal behavior of
the evaluation version. This limitation is removed with the licensed version.

40

Our application creates periodically a new graph and re-load the filter, but after some time
we can’t add the RTSP filter to the graph.

This is a limitation of the evaluation version of the filter. Once one of the filters used in the application
has reached his evaluation timeout, no other new instance of the filter can be instantiated until the
application is restarted.

FILTER USAGE

When doing a Ctrl+Alt+Del the video stops

This is a problem of the standard DirectShow renderers.

Render instead the video pin to our Datastead Video Renderer (CLSID C7CC1A23-8B8A-4BFD-A96C-
B5E735E055BA), that in included in the filter package, this video renderer is compatible with the lock
screen

How to get the minimum latency

1. Add >buffer=0>lowdelay=1 at the end of the RTSP URL, e.qg.:
rtsp://192.168.0.25/axis-media/media.amp?videocodec=h264>buffer=0>lowdelay=1
2. Add >buffer=0>lowdelay=1>vidsync=0 at the end of the RTSP URL, e.g.:

rtsp://192.168.0.25/axis-media/media.amp?
videocodec=h264>buffer=0>lowdelay=1>vidsync=0

Note: with vidsync=0 the video samples are rendered immediately

How can reduce the CPU load?

If the video display frame rate is not critical, it is possible to decode only the H264 key-frames to
minimize the CPU consumption.
To enable the keyframe-only decoding, pass maxframerate=-1 as parameter, e.g.:

rtsp://239.192.1.1:59001>maxframerate=-1

How can | minimize the latency?

Specify a 0 buffering and enable the low delay mode:

- at the end of the RTSP URL
rtsp://192.168.0.25/axis-media/media.amp?videocodec=h264>buffer=0>lowdelay=1
- or programmatically:

DatasteadRtspSourceConfig.SetInt (RTSP_Source BufferDuration int, 0)
DatasteadRtspSourceConfig.SetInt (RTSP Source LowDelay int, 1)

Note:

- the low delay mode can cause jerkiness problem with some video sources, in this case keep it
disabled.

- if you notice periodical freezings with buffer=0, try slighly higher values, e.g. buffer=50 or buffer=100

Y|

How can | specify the RTSP transport mode?

The tranport mode can be specified in 2 ways:
A) At the end of the RTSP URL by adding >rtsp_transport=value as follows, e.g.:

tep:

rtsp://admin:admin@192.168.0.33>rtsp_transport=tcp

udp:

rtsp://admin:admin@192.168.0.33>rtsp_transport=udp

http:

rtsp://admin:admin@192.168.0.33>rtsp_transport=http

multicast:
rtsp://admin:admin@192.168.0.33>rtsp_transport=udp multicast

B) programmatically by invoking:
IDatasteadRtspSourceConfig.SetInt (RTSP_Source RTSPTransport int, Value).

The possible values are:

0: automatic (default, UDP is tried first)
1: tep

2: udp

3: http

4: udp_multicast

Does the filter support UDP transport streams?
Yes, simply enter the UDP URL and port, unicast and multicast are supported, e.g.:
udp://localhost: 1234

udp://239.255.0.10:10124

Can | decode only key frames?
Yes, to decode only H264 key-frames, pass maxframerate=-1 as parameter, e.g.:
rtsp://239.192.1.1:59001>maxframerate=-1

SPECIFIC STREAMING DEVICES

Can | capture the video from an Ardrone?
Yes, use the following URL, e.g.:
tcp://IPADDRESS:5555

Is the HD HomeRun supported?
Yes, it should work in UDP or RTP with URLSs like e.g.:

42

udp://239.192.1.1:59001
rtp://234.5.6.7:59001

RTSP / HTTP URL to use for a given IP camera or IP streaming source

If you don't know the RTSP or HTTP URL for your IP camera, contact our support at
support@datastead.com and specify your license ref# and the exact model of IP camera, we will be
assist you to determine the URL syntaxes supported by your camera.

43

	Overview
	What's new in this version
	Features
	Download
	License
	Limitations of the evaluation version

	Filter install/Uninstall
	A. installing the filter with the self installer (DatasteadRTSPFilterInstall.exe) (simplest and fastest)
	* to install the package automatically from the command line:
	* to uninstall the package automatically from the command line:
	* to install the package manually:
	* to uninstall the package manually:

	B. installing the filter manually

	Demo projects
	Using the filter through the TVideoGrabber SDK
	Building the DirectShow graph
	Microsoft DirectShow SDK (C++)
	C# with DirectShow .NET

	ONVIF: RTSP streams
	RTSP stream of the first Onvif media profile (default)
	RTSP stream selected by the index of the Onvif media profile
	RTSP stream selected by the name of the Onvif media profile

	RTSP, RTMP, HTTP, TCP, UDP, MSSH and other protocols
	Configuring the filter through the URL
	ONVIF: JPEG snapshot
	Backtimed recording (pre-roll recording)
	Quick start from the TVideoGrabber SDK
	Preview or an ONVIF camera:
	Recording of an ONVIF camera, without preview (saves CPU):
	Preview or an RTSP URL:
	Preview + audio rendering:
	Preview + MP4 recording (video only):
	Preview + audio rendering + MP4 audio/video recording:
	Generating a new file name on the fly:
	Pausing/resuming the recording:

	Quick start from GraphEdit.exe
	Auto reconnection
	Auto reconnection disabled
	Auto reconnection enabled

	About RTSP transport, HTTP and latency
	RTSP TRANSPORT MODE
	HTTP URLs in JPEG, MJPEG or MXPEG mode
	LOW DELAY
	LATENCY

	FILTER CONFIGURATION
	A. setting the parameters programmatically
	B. specifying the settings as parameters at the end of the URL

	DirectShow configuration
	Overview
	Building and starting the DirectShow graph synchronously (the function blocks until the connection completes):
	Building and starting the DirectShow graph asynchronously without blocking the main thread:

	Filter CLSID

	Passing settings to the filter
	Filter configuration through IFileSourceFilter
	Filter configuration through IDatasteadRtspSourceConfig
	Overview
	Usage
	Remarks
	a) the parameter identifier name reminds the the corresponding Get.../Set... function to invoke
	b) string returned by GetStr()

	Actions that can be applied once the graph is running
	Generating a new recording file on the fly
	Pausing the URL
	Resuming the URL

	Examples of processings applied to the video stream
	Vertical flipping
	Horizontal flipping
	Video rotation
	Hue / saturation
	Negative video
	Draw a box or a grid
	Unsharp
	Combining several processings

	URL re-streaming
	Text Overlays
	Brightness / Hue / Saturation
	Parameter identifiers
	TROUBLESHOOTING
	Sometimes the image jumps or some artifact appear in the middle of the image
	When starting the preview the video appears very pixelated, or the bottom of the frame seems blurred
	The video freezes periodically
	The MP4 recorded file is truncated
	The RTSP URL fails to connect
	The filter fails to connect to the VMR9 (Video Mixing Renderer 9)

	FAQ
	LICENSING
	Should I buy one license for each one of my clients?
	INSTALL
	In the DatasteadRTSPSource.zip there are two folders, x64 and x86. Which one should I use when? For example,Windows 7 32 bit, Windows 7 64 bit?
	LIMITATIONS OF THE EVALUATION VERSION
	When testing the filter under GraphEdit the graphs stops and reports an error 0x200
	Our application creates periodically a new graph and re-load the filter, but after some time we can’t add the RTSP filter to the graph.
	FILTER USAGE
	When doing a Ctrl+Alt+Del the video stops
	How to get the minimum latency
	How can reduce the CPU load?
	How can I minimize the latency?
	How can I specify the RTSP transport mode?
	Does the filter support UDP transport streams?
	Can I decode only key frames?
	SPECIFIC STREAMING DEVICES
	Can I capture the video from an Ardrone?
	Is the HD HomeRun supported?
	RTSP / HTTP URL to use for a given IP camera or IP streaming source

