
TMS SOFTWARE
TMS Plugin Framework

Advanced Technical Information

The TMS Plugin Framework
Advanced Technical Information

December 2003
Copyright © 2003 by tmssoftware.com bvba

Web: http://www.tmssoftware.com
Email : info@tmssoftware.com

TMS SOFTWARE
TMS Plugin Framework

Advanced Technical Information

Introduction

The TMS Plugin Framework (TPF) allows you to extend your applications using Plugins. Plugins are packages that are
loaded by your application and can add additional functionality to it, without recompiling. This allows you to release
additional features at a later date, post small interim updates and allow third-parties to develop add-ons into your
product.

This release of the TPF has been designed with two key ideas in mind: First, that the system should be easy to use.
Second, it should be able to expand to suit any future needs of your application.

The first goal is provided by a powerful plugin manager, which loads and maintains any loaded plugins. It also supplies
the plugins with a robust application interface allowing for easy menu, toolbar, form and database integration. It is
also provided with a number of plugin wizards, which allow for both code-based and visual plugin development.

The second goal is provided by the interface-based architecture. Since the whole system is designed around interfaces,
it is very easy for an application developer to create a new, extended application or plugin interface and register it
with the application. This is covered in the section Advanced Plugin Design.

This document is not for the casual user of the TPF. It is for the developer who wants to know how the system is
designed, why it was designed this way, and how to add new capabilities to both the application and the plugins.

Interfaces

Before getting into the details of the plugin system, a brief discussion about interfaces is in order. When a class
descends from an interface, it is obligated to provide the methods that the interface defines. For instance, given the
interface:

type
 IMyInterface = interface
 ['{E160C67A-B7F8-4AEF-8651-89D97D957704}']
 procedure DoSomething;
 end;
 TMyClass = class(TInterfacedObject, IMyInterface)
 procedure DoSomething; // this method MUST be implemented
 end;

In this case, the TMyClass declaration is obliged to provide the method DoSomething, since the Interface has it. The
interface acts (conceptually) like a virtual abstract method. There is no stubbed procedure, no default code, just the
requirement that all methods in the interface are implemented.

A quick side note to this: when you implement an interface, you can’t just stub the procedures. Doing this defeats one
of the key purposes of interfaces, and will invoke the wrath of Danny Thorpe!

Now we are able to do things like:

procedure SomeProc(SomeClass : TInterfacedObject);
begin
 if SomeClass is IMyInterface then
 (SomeClass as IMyInterface).DoSomething;
end;

Take a second to let this sink in. What we have here is the ability to inject desirable functionality into a class from the
side, instead of having to directly descend from an ancestor. If the variable SomeClass supports IMyInterface, then we
can safely call any methods defined by IMyInterface.

TMS SOFTWARE
TMS Plugin Framework

Advanced Technical Information

Before moving on, just a quick note about the GUID. While people associate GUIDs with COM objects, they are not
exclusively for COM, and it does not mean that the plugin system is COM compliant. It’s merely a mostly-guaranteed
unique identifier for the interface. Without it, you can’t do things like IS and AS on interfaces.

There are a couple of downsides to interfaces, specifically code size and speed. I won’t go into the details of this, but
simplified, virtual abstract methods have one VMT and interfaces have two. This slows things down a bit (but not
noticeably for most applications). Also, because the linker isn’t aware of all specifically used interfaces at link-time, it
needs to link in all possible code, thus defeating smart linking. The net result is larger executables. Both of these are
things you should be aware of, but will probably not affect you adversely.

What is in the Plugin System?

Plugin systems have a number of responsibilities, including loading and unloading the plugins. However, the real
responsibility of a plugin system is to provide plugins with hooks into the host application. This hook is called the
Application Services, and is represented in the TPF as a variable called ApplicationServices. This variable is
instantiated by the plugin manager, and accessed by the plugins. It is contained in the upfCoreX package (with X being
the Delphi version number).

The TPF comes with a default Application Services provider, called TUPFStandardAppServices, which implements the
IufsApplicationServices and IufsStandardAppServices interfaces. Plugins, since they know about IufsApplicationServices
and IufsStandardAppServices, can interact with the host application.

The Myth of Packages

Most people assume that compiling with packages means you need to deploy all the packages you’ve installed for every
third-party component, as well as the VCL packages. This is simply not true.

Packages are a major technical achievement in Delphi. They allow for a program to dynamically load what are
essentially DLL files and treat them as if they’re a part of your program, including RTTI information. This magic is not
only very difficult to duplicate with standard DLLs, it’s also crazy to try, given that Delphi has already done all the
work for us. We just need to use it.

So, we want to build our application using packages. To do this, click on the Project menu, and select Options. That
brings up the dialog box below. Click on the Packages tab, and at the bottom, click the Build with runtime packages
checkbox. Clear out the items in the edit box below it, and add upfCoreX (X being the Delphi version number you’re
using). This is the only runtime package that you must distribute, since it’s what the plugins are going to communicate
with.

TMS SOFTWARE
TMS Plugin Framework

Advanced Technical Information

When you distribute the application, make sure that upfCoreX.bpl is in the same folder as your application, and it will
be loaded by the application at run time.

There are many benefits to distributing other packages for other components that you use. However, it’s up to you to
decide what packages to use and what packages not to use.

The TPF Architecture

The TPF was designed as a drop-in solution for most applications. It works by supplying the application with an entry
point for the plugin to communicate with the application. There are a number of items involved in this
communication.

TMS SOFTWARE
TMS Plugin Framework

Advanced Technical Information

The Plugin Manager

The TUPFPluginManager component is the key component on the host application side. It creates and manages the
Application Services for the plugin to communicate with, as well as handles the loading and unloading of plugins.

The plugin manager can instantiate any class that implements IUPFApplicationServices as the application service and is
registered into the design-time environment. You can select the class you want to instantiate through the plugin
manager’s ApplicationServicesClass property.

The Application Services

There are a number of classes and interfaces that declare and implement the application services. First, we have
IUPFApplicationServices, which is the key interface. Any class that is to be an application services provider must
implement this interface. There is also a default implementation of the interface that, barring any special needs by
the application, is automatically created by the plugin manager.

The application developer can decide to instantiate a different class that implements IUPFApplicationServices, or a
descendent of it. In addition, the different class could also implement additional interfaces that the plugin could be
aware of.

There is a default class, TUPFApplicationServices that implements the required methods of IUPFApplicationServices,
but does not use IUPFApplicationServices. The default class created by the plugin manager (TUPFStandardAppServices)
is a descendent of TUPFApplicationServices and IUPFApplicationServices.

The default way of handling plugins is that the plugin is responsible for creating and registering an instance of a class
that supports IUPFPlugin. This is not always the desirable behaviour. In some cases you want to register the class with
the host application, and allow it to create instances of this class. To facilitate this, an interaface called
IUPFClassServices is available.

The Core

The core BPL file is the piece that both the plugin and the application communicate with. It contains the
ApplicationServices variable, and knows the interfaces that are used by the application and the plugins. If you wish to
create a new application services interface, you need to include the interface in the core. The core supplied with the
TPF provides a number of common interfaces and classes that can handle most situations. If you require additional
interfaces not defined in the core, you should put them in their own package. This package will be required by both
your application and by any plugin developers, in addition to the upfCoreX file. Changing the contents of the upfCoreX
file should be avoided at all costs.

The Plugin

Plugins implement at minimum the IUPFPlugin interface, and optionally implement additional interfaces, such as
IUPFCommandPlugin (for plugins that add menu items and toolbar buttons) or IUPFComponentPlugin (for plugins that
are components, such as forms, data modules or tab sheets). They can also implement any of the interfaces that the
application has defined in the core. So, if you want to create a new plugin type that does something unique for your
application, simply create the new interface, include it in your core, and handle it in your Application Services
descendant or by handling the OnPluginRegistered event.

TMS SOFTWARE
TMS Plugin Framework

Advanced Technical Information

Helper Classes

The TPF comes with a number of helper classes that make it easy to get started, both from the host application
developer’s point of view, and from the plugin developer’s point of view.

Visual Plugin Development Classes

The first is the TUPFVisualPlugin. This descends from TDataModule and there is a wizard to create it automatically.

What this amounts to is that from the plugin developer’s point of view, developing plugins is done by: click on File,
New, Project, TMS Plugin, you get a datamodule, and can set the properties at design time.

However, in the background, a lot is happening. First, the TUPFVisualPlugin class descends from TDataModule, but it
also implements the IUPFPlugin and IUPFCommandPlugin interfaces. The IUPFCommandPlugin has a property,
Commands, of type IUPFCommands. IUPFCommands (and the related interface, IUPFCommand) are designed around
the TCollection and TCollectionItem classes, so implementing them with a TCollection is pretty easy.

Application Services Classes

The Plugin Manager, as mentioned before in the TPF Architecture section, by default creates an Application Services
class, TUPFStandardAppServices, that can handle a number of the default plugin interfaces, including the IUPFPlugin,
IUPFComponentPlugin and IUPFCommandPlugin. This means that an applications programmer simply needs to drop the
plugin manager component onto a form, and they can handle the majority of plugins that are developed.

The idea behind this is that someone (either the host application developer, TMS, or a third party) can develop
descendants of the TUPFStandardAppServices class (or a replacement for it, descending from TUPFApplicationServices
and implementing IUPFApplicationServices) that can support additional types of interfaces. For example, an interface
could be created that could load in old-style DLL plugins.

The TPF Plugin Wizard

In order to make developing plugins very easy, we’ve included the TPF Plugin Wizard. By default it creates plugins
using both the TUPFStandardPlugin and TUPFVisualPlugin models. This allows developers to quickly create plugins.

The plugin wizard is itself a host to a plugin manager, and uses plugins to do the actual wizard code. This means that
as additional application services come out, and additional plugins types are developed, this wizard can be expanded
to include easy ways to develop them!

