Trugger User Guide

Marcelo Guimaraes

Contents

1 Overview

1.1 What a hell does the name trugger mean? . . . . . ... ... ... .. . .....
1.2 How ToUse . . . . . . . o o
1.3 How ToBuild . . . . . . .. .
1.4 How To Contribute . . . . . . . . . . . . .
1.5 About Maven Repository . . . . . . . . ... .

2 Reflection

2.1 Fields . . . . . e
2.2 Constructors . . . . . . ... e e
2.3 Methods . . . . . . . .
24 Generic Type . . . . . oL e e

3 Class Scanning
3.1 Predicates . . . . . . L

3.2 Resource Finders for Protocols . . . . . . . . . .. ... ... ...

4 Proxy Creation

4.1 The Interception Context . . . . . . . . . . . .

5 Elements of an Object

5.1 What isan Element? . . . . . . .. .. .o
5.2 Obtaining an Element . . . . . . . . . . .. .. ... ...
5.3 Copying Elements . . . . . . . ... e
54 Nested Elements . . . . . . . . ...

5.5 Custom Elements . . . . . . . . . . e

w W w W



Utilities 12
6.1 Annotation Mock . . . . . . ... 12
6.2 Context Factories . . . . . . . . . . 13
6.3 Component Factories . . . . . . . . . . ... 14
Validation 15
7.1 Basic Validation . . . .. . .. . .. 15
7.2 Validation using filters . . . . . . . ... o o 16
7.3 Creating Validators . . . . . . . .. . . . L e 16
7.4 Domain Validations . . . . . . .. .. .. 20
Extending 21
8.1 How To Implement the Fluent Interfaces . . . . . . . .. ... .. ... ...... 21
Changelog 21
9.1 Version 5.1 . . . . . e 21
9.2 Version 5.0 . . . . .. e e 22
9.3 Version 4.3 . . . . . e 23
9.4 Version 4.2 . . . ... e 23
9.5 Version 4.1.1 . . . . . . 24
9.6 Version 4.1 . . . . . . L e 24
9.7 Version 4.0.1 . . . . .. 24
9.8 Version 4.0 . . . . . . L 25
9.9 Version 3.1 . . . . .. e 25
9.10 Version 3.0 . . . . . . 25
9.11 Version 2.8 . . . . . . L e 25
9.12 Version 2.7 . . . . . L e 26
9.13 Version 2.6 . . . . . ... e 26
9.14 Version 2.5 . . . . .. e e 27
9.15 Version 2.4 . . . . .. 27
9.16 Version 2.3.1 . . . . . . L e 27
9.17 Version 2.3 . . . . . e e 27
9.18 Version 2.2.1 . . . . . . L e 28
9.19 Version 2.2 . . . . .. e e 28
9.20 Version 2.1 . . . . . .o e 28



9.21 Version 2.0 . . . . . . .. 29

9.22 Version 1.2 . . . . . . e e 30
9.23 Version 1.1 . . . . . . . e e e 31
9.24 Version 1.0.1 . . . . . . . 31

1 Overview

Trugger is a framework that helps you write code that anyone can read. The idea is to provide
a set of fluent interfaces to deal with operations related to reflection (such as creating proxies,
reflecting members and scanning classes).

Trugger is intended to be a base for creating infrastructure code. While it is not an IoC container,
for example, it could be a part of the core of an IoC container.

1.1 What a hell does the name trugger mean?

When I was learning java, I choosed “Atatec” (Atazexe Technology) to be the name of my
fictitious company and then I sent a message to my friend Ives:

Atatec
And the response was:
trugger
When I asked him why he came up with this, he said:
Isn’t that the name of that special kick in Street Fighter?
The special kick mentioned is the Tatsumaki Senpuu Kyaku and Ken says something like “atatec

trugger” (at least in Portuguese) when he does the kick. So the name Trugger became my first
choice when I start to write this framework.

1.2 How To Use

Just put the jar file on your classpath and you’re done. No dependencies are required by
Trugger at runtime.

1.3 How To Build

Just make sure you have Gradle' and execute the gradle dist command. The markdown files
are converted at build time using pandoc? so you should have it to build the distribution files.
You can also use the command gradle jar to build only the binaries.

Lhttp://gradle.org
2http://johnmacfarlane.net/pandoc/README.html


http://gradle.org
http://johnmacfarlane.net/pandoc/README.html

1.4 How To Contribute

Just fork the project, do some stuff and send me a pull request. You can also fire an issue or tell
your friends to use Trugger.

1.5 About Maven Repository

Trugger currently is not in the Maven Central Repository, but a pom is generated and distributed
in the download so you can import it on your local repository.

2 Reflection

The Reflection module was the first one to show up in Trugger, it allows simple and much
less verbose use of the Reflection API to reflect constructors, methods, fields and generic type
declarations.

The base class of this module is Reflection and you will find a nice fluent interface there with
the methods reflect, invoke and handle.

2.1 Fields
2.1.1 Single

Reflecting a field is done with the code reflect() .field(field name). You can also apply a
filter by using the method filter and the target class (or object) by using the method in. If
you need a recursive search through the entire target class hierarchy, just use the method deep.

Here is some examples (assuming a static import):
Field value = reflect().field("value").in(String.class);
Field name = reflect().field("name").deep().in(MyClass.class);

Field id = reflect().field("id")
.filter(field -> field.getType().equals(Long.class))
.in(somelInstance);

The filter method receive a java.util.function.Predicate to stay in touch with Java 8.

2.1.2 Multiple

If you need to reflect a set of fields, use the reflect().fields(). The same features of a single
reflect is available here.

List<Field> stringFields = reflect().fields()
.filter(field -> field.getType() .equals(String.class))
.deep()

.in(MyClass.class);



2.1.3 Predicates

There are some builtin predicates in the class FieldPredicates.

List<Field> stringFields = reflect().fields()
.filter(type(String.class)) // a static import
.deep()

.in(MyClass.class);

2.1.4 Handling Values
A field can have its value manipulated through the method Reflection#handle. It will create a

handler to set and get the field’s value without the verbosity of the Reflection API. To handle
static fields, you can call the handler methods directly:

String value = handle(field).value(Q);
handle(field) .set("new value");

For instance fields, just specify an instance using the method in:

String value = handle(field).in(instance).value();
handle(field) .in(instance).set("new value");

You can also use a a FieldSelector:

// static import Reflection#field
String value = handle(field("name")).in(instance).value();

2.2 Constructors
2.2.1 Single
To reflect a constructor, use reflect().constructor() and specify the parameter types and

optionally a filter. If the class has only one constructor, it can be reflected without supplying
the parameter types.

Constructor constructor = reflect()
.constructor() .withParameters(String.class) .in(MyClass.class);

Constructor constructor = reflect().constructor()
.withoutParameters().in(MyClass.class);

Constructor constructor = reflect().constructor()
.filter(c -> c.isAnnotationPresent(SomeAnnotation.class))

.withParameters(String.class).in(MyClass.class);

Constructor constructor = reflect().constructor().in(MyClass.class)



2.2.2 Multiple

A set of constructors can be reflected by using reflect().constructors(). As in fields, the
features in single reflection are present in multiple reflection.

List<Constructor> constructors = reflect().constructors().in(MyClass.class);
List<Constructor> constructors = reflect().constructors()

.filter(c -> c.getParameterCount() == 2)
.in(MyClass.class);

Note that in multiple selection you cannot specify the parameter types directly in the fluent
interface (for obvious reasons).

2.2.3 Predicates

A few useful predicates are included in the class ConstructorPredicates.

List<Constructor> constructors = reflect().constructors()
.filter(annotated()) // a static import
.in(MyClass.class);

2.2.4 Invocation

To invoke a constructor you need an Invoker. The method Reflection#invoke returns a
Invoker for a constructor. Specify the parameters and the constructor will be invoked.

Constructor ¢ = reflect().constructor()
.withParameters(String.class).in(String.class)
String name = invoke(c).withArgs("Trugger");

2.3 Methods
2.3.1 Single

To reflect a single method, just pass it name to Reflection#method. Filtering is allowed and
you can specify parameter types too.

Method toString = reflect().method("toString").in(Object.class);

Method remove = reflect().method("remove"
.withParameters(Object.class, Object.class)
.in(Map.class);

Method someMethod = reflect() .method("foo")
.filter (method -> method.isAnnotationPresent (PostConstruct.class))
.in(instance);



As in field reflection, you can do a deep search with deep.

Method toString = reflect().method("toString").deep().in(MyClass.class);

2.3.2 Multiple

A set of methods can be reflected by using Reflection#methods:
List<Method> methods = reflect().methods().in(Object.class);
Deep search and filtering are also supported:

List<Method> methods = reflect() .methods()
.filter (method -> method.isAnnotationPresent (PostConstruct.class)
.deep()
.in(MyClass.class);

2.3.3 Predicates

A set of predicates to deal with methods is in MethodPredicates:

List<Method> methods = reflect() .methods()
.filter(annotatedWith(PostConstruct.class)) // a static import
.deep()

.in(MyClass.class);

2.3.4 Invocation

To invoke a method, use the Invoker returned by Reflection#invoke. Instance methods needs
an instance provided using the method in:

Method toString = reflect() .method("toString").in(String.class);
invoke (toString) .in("A string") .withoutArgs();

Static methods don’t need it:

Method parseInt = reflect().method("parseInt")
.withParameters(String.class)
.in(Integer.class);

int number = invoke(parselnt).withArgs("10");

Note that you can also use a MethodSelector:

invoke (method("toString")).in("A string").withoutArgs();



2.4 Generic Type

Generic declarations in a class are present in the bytecode. Trugger can reflect them by using
the method genericType. Suppose we have this interface:

public interface Repository<T> {
// ... some useful methods here

}
A generic base implementation can use that T:
public class BaseRepository<T> {

private final Class<T> type;

protected BaseRepository() {

this.type = reflect().genericType("T").in(this);

}
¥
The constructor was declared protected to warn that this will only work for subclasses (it is
a Java limitation). A workaround to use this trick in a variable-like way is by declaring an
anonymous class:

Repository<MyType> repo = new BaseRepository<MyType>(){};

I think this is an ugly solution, but works.

3 Class Scanning

Another cool feature Trugger has is the class scanning. Just give a package name and Trugger
will scan it for finding classes. The class scanning feature starts at ClassScan.

The scanning starts in the method ClassScan#scan, which returns a ClassScanner that allows
changing the ClassLoader and defining the package.

List<Class> classes = scan().classes().in("my.package");

This will return every class in the package my.package. To do a deep scan and also return the
classes in subpackages, use the deep method:

List<Class> classes = scan().classes().deep().in("my.package");
You can also filter the classes with the method filter:
List<Class> classes = scan().classes()

.deep()

.filter(c -> c.isAnnotatedWith(Entity.class))
.in("my.package") ;



3.1 Predicates
In ClassPredicates is a set of useful predicates to deal with classes.

List<Class> classes = scan().classes()
.deep()
.filter (annotatedWith(Entity.class)) //static import
.in("my.package") ;

List<Class> classes = scan().classes()
.deep()
.filter(subtypeOf (Repository.class)) //static import
.in("my.package");

3.2 Resource Finders for Protocols

The search is performed based on protocols. The basic protocols are file and jar and are
supported by Trugger. More specific protocols can be handled by creating a ResourceFinder
and registering it with the method ClassScan#register. A ResourceFinder is responsible for
finding any resources in a given package and it must support a protocol. Trugger has a couple of
finders registered to the following protocols:

e jar - for resources in a jar file
e file - for resources in the filesystem

e vfs - for resources in jar files deployed on a JBoss AS 7.x

e vfszip - for resources in jar files deployed on a JBoss AS 5.x and 6.x
e vfsfile - for resources in files deployed on a JBoss AS 5.x and 6.x

Any finder registered to an already supported protocol will override the registered finder.

4 Proxy Creation

A proxy object is created using a interception handler and optionally a fail handler. The DSL
exposed starts at Interception with the method intercept and lets you define one or more
interfaces to intercept. Additionally, you can set a target and its interfaces will be used. After
the behaviour specification, use the method proxy to create the proxy instance.

SomeInterface proxy = Interception.intercept(Somelnterface.class)
.onCall(context -> logger.info("method intercepted: "
+ context.method())
.proxy();

proxy.doSomething() ;
The interception logic happens in the handler passed through the method onCall. The handler

receives a context, which contains all information about the intercepted method. A fail handler
can also be set using the method onFail.



SomeInterface proxy = Interception.intercept(SomeInterface.class)
// sets a target to delegate the call using the context object
.on(instance)
// delegates the call to the target (this ts the default behaviour)
.onCall(context —> context.invoke())
// handles any error occurred
.onFail((context, throwable) -> handleTheFail (throwable))
.proxy();

proxy.doSomething() ;

The fail handler has access to the context so you can delegate the method to the target again (if
a timeout occurs, for example).

4.1 The Interception Context

The interception context holds everything related to the method interception, included:

e The arguments passed

The method intercepted

The declared method intercepted in the target instance

The proxy instance

The target instance (may be null if not specified when creating the proxy)

The context can be used to delegate the method call to the target (using invoke) or to
another instance (using invokeOn). The declared method intercepted can be retrieve by using
targetMethod.

5 Elements of an Object

5.1 What is an Element?

An element is any value that an object holds. It may be accessible through a field, invoking a
method (a getter or a setter) or even a specific way like the Map#get method.

A basic element in Trugger is a Property or a Field. Trugger tries to find a getter and a setter
method for the element name and a field with the same name. This allows manipulate private
fields and properties in the same way without bothering you with the way of handling the value.

5.2 Obtaining an Element
An element is obtained using the method element in Elements. The same features of a field

reflection is here with the addition of getting an element without specifying a name. A set of
predicates are present in ElementPredicates.

10



Element value = element("value").in(MyClass.class);

Element id = element()
.filter(annotatedWith(Id.class)) // static import
.in(MyClass.class) ;

List<Element> strings = elements()

.filter(type(String.class) // static import
.in(MyClass.class);

5.3 Copying Elements

The elements of an object can be copied to another object, even if they are from different types.
The DSL starts at the method copy:

copy () .from(object) .to(anotherObject) ;
This will copy every element. To restrict the copy to non null values, use the notNull method:
copy() .from(object) .notNull() .to(anotherObject) ;

You can also apply a function to transform the values before assigning them to the target object
(useful when copying values to a different type of object).

copy() .from(object)
.applying(copy -> copy.value().toString())
.to(anotherObject) ;

To filter the elements to copy, just give a selector to the copy method:

copy(elements() .filter (annotatedWith(MyAnnotation.class)))
.from(object)
.to(anotherObject) ;

Or filter the copy directly using filter

copy(elements() .filter (annotatedWith(MyAnnotation.class)))
.from(object)
.filter(copy -> copy.dest().isAnnotationPresent(MyAnnotation.class))
.to(another0Object) ;

11



5.4 Nested Elements

Nested elements are supported using a “”’ to separate the elements:

Element element = element("address.street").in(Customer.class);

value = element.in(customer) .value();

You can use any level of nesting;:

Element element = element("customer.address.street").in(Response.class);

value = element.in(response).value();

5.5 Custom Elements

Some classes have a custom definition of elements. A Map has their keys as elements, an Array
has their indexes as elements an so on. Elements are found by an element finder (a class that
implements Finder<Element>) and you can write a custom element finder and register it using
the registry available through the method Elements#registry.

Trugger has custom element finders for a set of java core classes:

Map: keys are used as the elements

ResourceBundle: keys are used as the elements

Properties: keys are used as the elements

ResultSet: the column names are used as the elements

Annotation: the methods as used as elements

List: indexes are used as the elements (and also two special names, first and last)

Arrays: indexes are used as the elements (and also two special names, first and last)

It is important to have clear that since this elements are instance specific, the elements should
be queried by passing an instance instead of a class for the method in or an empty list will be
returned. For a single elements, you may pass a class or an instance but using an instance is
better because you can call the handling methods directly.

You can also use this custom element finders to copy elements easily:

// this will copy every element from the result set to the instance
copy() .from(resultSet) .to(myEntity) ;

6 Utilities

6.1 Annotation Mock

Annotations are interfaces and mocking it should be as easy as mocking an interface. The
problem is the default values that can be omitted. Trugger has an utility module to help mocking
and annotation by using the interception module.

12



To create a mock, you should start by creating an anonymous class that extends
mock.AnnotationMock and maps the elements in a block code inside the class using
the methods map and to.

Resource resource = new AnnotationMock<Resource>(){{
map ("name") .to(annotation.name());
map(false) .to(annotation.shareable());
}}.createMock();

//returns "name'"
String name = resource.name();

//return false
boolean shareable = resource.shareable();

//returns "" because it is the default wvalue
String mappedName = resource.mappedName() ;

// returns javaz.annotation.Resource class
Class<? extends Annotation> type = resource.annotationType();

If you don’t like the anonymous class style, you can still use the classic style.

AnnotationMock<Resource> mock = new AnnotationMock<>(Resource.class);

mock.map("name") .to(annotation.name()) ;
mock.map(false) .to(annotation.shareable());

Resource resource = mock.createMock();

6.2 Context Factories

If you need a lightweight component to invoke a constructor with a predicate based logic to
resolve the parameter values, you can use the ContextFactory.

A ContextFactory is a factory that maps a predicate that evaluates parameters to an object
or supplier. After creating a ContextFactory, you can manipulate the context through the
#context method and create an object with the create method. A set of predicates can be
found in ParameterPredicates class.

ContextFactory factory = new ContextFactory();
factory.context()
//static imports
.use(myImplementation)
.when (type (MyInterface.class))
.use(someObject)
.when (named (" component") )
.use(parameter ->

13



resolve(parameter.getAnnotation(MyAnnotation.class)))
.when (annotatedWith(MyAnnotation.class))
.use(() -> availableWorker())
.when (type (MyWorker.class));

The above factory will:

1. use myImplementation for any parameter of the type MyInterface

2. use someObject for any parameter named “component”

3. use the return of resolve with the annotation MyAnnotation for any parameter annotated
with MyAnnotation

4. use the return of availableWorker to any parameter of type MyWorker

These steps will be done with every public constructor of a type, if a constructor has one
parameter that cannot be resolved to an object, then the next constructor will be used and if
there is no more constructors to use, an exception is thrown.

6.3 Component Factories

Component factories allows creating components defined by annotations. Suppose you have:

public @interface ComponentClass {
Class<? extends Component> value();
}

@ComponentClass (MyComponentImplementation.class)
public @interface MyComponent {

String name();
}
//inside a class

@MyComponent (name = "myName")
private String aField;

The annotation in aField can be used to create an instance of MyComponentImplementation.
The context used to create any components are:

1. Every property of the annotation with their specific types (in that case, the property name
with the value “myName” to a parameter named name and of type String)

2. The annotation itself with its type (in that case, the MyComponent annotation to the type
MyComponent)

14



Since the annotation is used as the context, you can have a constructor in the component
implementation that receives the annotation instead of its properties. This is useful if you don’t
want to compile your code with -parameters parameter.

This behaviour is completely replaceable by using the method configureContextWith. To add
behaviour to the default one, compose the ComponentFactory#defaults with your behaviour:

factory.configureContextWith(
defaults() .andThen(
(context, annotation) -> yourConfigurations

)
)

To instantiate a component, just use a code like this one:

ComponentFactory<ComponentClass, Component> factory =
new ComponentFactory(ComponentClass.class);

// get the annotation from the field
Component component = factory.create(annotation);

Alternatively, you can get a list of components by passing an AnnotatedElement to the method
#createAll:

Element = Elements.element("aField").in(myObject);
List<Component> components = factory.createAll(element) ;

Or creating a single one by passing an AnnotatedElement to the method #create:

Element = Elements.element("aField").in(myObject);
Component component = factory.create(element);

7 Validation

The validation module is not a replacement for the Bean Validation. It combines the utility
factories and Element module to provide a basic and simple engine to do only validations
(message production is out of scope). This is a good component for backend validations or even
to integrate validation in proprietary or old infrastructure codes.

7.1 Basic Validation

To validate an object, you can simply use the Validation class and the provided DSL:
ValidationResult result = Validation.engine().validate(object);

The result will give all information needed to integrate the validation to almost all frameworks

and architectures. (You can access values and use reflection and other DSLs using the invalid
elements.)

15



7.2 Validation using filters

You can pass a selector for restrict the elements to validate:

ValidationResult result = Validation.engine()
.filter(ofType(String.class)))
.validate(object);

The given filter will affect any nested validations that relies on a supplied ValidationEngine.

7.3 Creating Validators
7.3.1 Basic Validators

The validation constraints are defined using two components: an Annotation for defining the
constraint and a Validator to implement it.

Example: A basic validator for null objects.

Q@Retention(RetentionPolicy.RUNTIME)

@ValidatorClass(NotNullValidator.class)

public @interface NotNull { }

public class NotNullValidator implements Validator {
public boolean isValid(Object object) {

return object != null;

}

You can now annotate a field or a getter method:

public class Person {

ONotNull
private String name;

/.

7.3.2 Type Validators

You can create validators for a specific type or a set of types using the validator generic type or
the MultiTypeValidator component.

Example: a regex validator.

16



@Retention(RetentionPolicy.RUNTIME)
@ValidatorClass(PatternValidator.class)
public @interface Pattern {

String value();
}
public class PatternValidator implements Validator<CharSequence> {

private final String pattern;
private final int flags;

// the constraint will be automatically injected in the constructor
public PatternValidator(Pattern constraint) {
this(constraint.value(), constraint.flags());

}

public boolean isValid(CharSequence value) {
if (value != null) {
return true;
}
java.util.regex.Pattern pattern =
java.util.regex.Pattern.compile(annotation.value());
return pattern.matcher(value).matches();
}
}

In this example, everything that is a CharSequence can be validated with @Pattern. If you need
to change the behaviour of the constraint validation without creating one constraint for each
type, just use the MultiTypeValidator (as a superclass or using composition) to map each type
to a validator.

public class NotEmptyValidator extends MultiTypeValidator {

@0verride

protected void initialize() {
map(Collection.class).to(this::isCollectionValid);
mapArray() .to(array -> array.length == 0);
map(Map.class) .to(map -> !map.isEmpty());

}

private isCollectionValid(Collection collection) {
return !collection.isEmpty();

}

17



7.3.3 Validation of arguments

Take a look at the first instruction in the validation method of PatternValidator. That check
can be a pain if you doesn’t like boilerplate code. To avoid that you can use validations in
parameter declared in isValid method.

public boolean isValid(@NotNull CharSequence value) {
java.util.regex.Pattern pattern =
java.util.regex.Pattern.compile(annotation.value());
return pattern.matcher(value) .matches();

}

Much more elegant!

7.3.4 Dependency Injection

7.3.4.1 Constraint values The constraint can be injected in the constructor by passing the
entire constraint (like in the PatternValidator example above) or its properties using their names
(in case you compile the code using “-parameters”) or their types (much less accurate, but works
for constraints that has properties with different types).

The PatternValidator above may have a constructor public PatternValidator(String
pattern, int flags) to get rid of the constraint dependency.

7.3.4.2 Validation Engine If your validator requires a ValidationEngine, you can define a
parameter in the constructor and an engine will be injected here. The difference between this
and calling Validation.engine() directly is that the injected engine will have the same filter
applied before the validation (using the method ValidationEngine#filter).

7.3.4.3 Target Object If your validator requires the object being validated, just declare a
parameter annotated with TargetObject and the target will be injected there.

7.3.4.4 Element If your validator requires the Element being validated, just declare a
parameter of type Element and it will be injected there.

7.3.4.5 Target Elements This is one of the most useful injections. To explain this injection,
suppose you have two dates and one must be after the other.

public class Ticket {
private Date leaving;

private Date arrival;

/.

18



Validating the arrival field will require access to the leaving field. This can be done by using
element references in the annotation. Let’s look the @After constraint:

@Retention(RetentionPolicy.RUNTIME)
@ValidatorClass(AfterValidator.class)
public @interface After {

@TargetElement ("reference")
String value();

}
public class AfterValidator implements Validator<Date> {
private final Date referenceValue;

public AfterValidator (@NotNull Date reference) {
this.reference = reference;

}

public boolean isValid(@NotNull Date value) {
return value.after(referenceValue);

}

Notice that the references can be validated in constructor. If the reference is invalid the validation
will not be processed.

The class will now looks like this:

public class Ticket {

@NotNull
private Date leaving;

ONotNull
Q@After("leaving")
private Date arrival;

/.

The value that will be passed to the constructor will be the element with the same name as the
value property in the constraint After. The dependency resolution will use the property name
(in the example, value) and a parameter name (in the example, reference) to help finding the
value for each constructor parameter (remember to use “-parameters” to compile the code).

19



7.3.5 Merging Invalid Elements

Sometimes is useful to do a complete validation over the element value and incorporate their
invalid elements in the main result. To do such a validation, just add a constructor parameter of
type ValidationEngine:

public class ValidValidator implements Validator {
private final ValidationEngine engine;

public ValidValidator(ValidationEngine engine) {
this.engine = engine;

}

public boolean isValid(@NotNull Object value) {
return !engine.validate(value).isInvalid();

}

This solves the validation problem. But the invalid elements are lost in the validation result
inside the ValidValidator. To incorporate this elements, just annotate the constraint that
maps to the ValidValidator with @MergeElements:

@MergeElements
ORetention(RetentionPolicy.RUNTIME)
@ValidatorClass(ValidValidator.class)
public @interface Valid {

}

This will make the ValidationEngine passed to the validator to incorporate the invalid elements
into the invalid result using nested elements without changing any code in the validator.

7.3.6 Shared Validators

If your validator is thread safe, you can mark it to be shared across every validation by using
the annotation @Shared on it. Keep in mind that validators that uses constraint properties or
dependencies related to the current validation (like a validation engine) will not behave well if
they are shared.

7.4 Domain Validations

Suppose you have some properties that requires more than one validation. You can group then
into a single constraint (a domain constraint) using the DomainValidator as the @ValidatorClass.

Example:

20



ONotNull

@After("leaving")
@Retention(RetentionPolicy.RUNTIME)
@ValidatorClass(DomainValidator.class)
public @interface ArrivalDate {}

public class Ticket {

ONotNull
private Date leaving;

@ArrivalDate
private Date arrival;

/.

By using the DomainValidator you can group validations to create a domain constraint and
reuse code. Just keep in mind that merging elements is a main constraint, so you must annotate
the domain constraint with @MergeElements to merge the invalid elements (if you group a
@Valid constraint, for example).

8 Extending

8.1 How To Implement the Fluent Interfaces

The fluent interfaces are always defined through java interfaces and may be customized by
your own implementation. Trugger uses a ServiceLoader to load a factory that knows the
implementations to instantiate, so you can override the implementation of any fluent interface
by defining a file in your META-INF /services directory with the factory implementation.

The factory interfaces that can be customized are listed bellow:

ElementFactory: used for reflecting elements
ReflectionFactory: used for reflection in general
ClassScannerFactory: used for class scanning
InterceptorFactory: used for method interception
ValidationFactory: used for validation

9 Changelog

9.1 Version 5.1

This release marks the reborn of Validation module in a different way. The validation module
now is a simple solution for manually validating objects (useful in backend processing). It is

21



not an implementation for the JSR-303 nor a competitor but it includes features that I always
wanted in a validation engine to help creating elegant validators with less code.

Also this releases brings a new package name because trugger is now in the Maven Central Repos-
itory. You should replace your imports from org.atatec.trugger to tools.devnull.trugger.

9.1.1 New Modules

e Validation (completely from scratch and much better than the old and ugly validation
module)

9.1.2 New Features

e InterceptionHandler for validating method arguments using the Validation module
e Component ArgumentsValidator for validating arguments of constructors and methods
e New element finder for lists behaving as the element finder for arrays

9.1.3 Major Changes

e Predicate for parameters assignable to a given type (use with caution)

e Predicate for primitive array types

e Method ParameterPredicates#name renamed to named

e Context now throws an UnresolvableValueException instead of returning null to indicate
an unresolvable value.

e Changed ValueHandler#get to #value

e Renamed ElementPredicates#type to ofType

e AnnotationMock removed because its functionality can be achieved using Mockito and a
few lines of code.

e Registry and ImplementationLoader moved to package util

9.1.4 Minor Changes

e Context Factories now sorts the constructors descending using their parameter counts
e EasyMock replaced by Mockito

9.2 Version 5.0

This is a huge update. I'm going to focus on keep this project simple and easy to maintain (since
I don’t have money to put a great effort on it). Lots of code changed and lots of modules gone
to /dev/null.

This release is also the first one to have a README with a basic guide.

22



9.2.1 Major Changes

Java 8 support

— Removed Predicate, Iteration and Date modules
— Removed the tons of selector classes (lambdas are now a good solution) and everything
are now centred in filter methods

Renamed Invoker#handlingExceptionsWith to onError

Unique searches no longer throws exceptions if two or more results are found
Reformulated the Interception module, now the DSL implementation can be changed
Immutable classes

Element copies only applies functions to non null values (to prevent NPEs)

No more single selections for field and method without specifying a name

No more exception handlers for invocations (method and constructor)

Removed Reflection#newInstanceOf method

Changed the return of selections to List

Renamed get and set methods in ValueHandler

Reformulated Class Scan module

recursively changed to deep and belongs now to DeepSelector

ContextFactory utility class

ComponentFactory utility class (a grown up version of the removed AnnotationBasedFactory)

9.2.2 Minor Changes

9.3

Removed non used classes
Renamed some methods and classes to improve code readability

Version 4.3

9.3.1 Major Changes

9.4

Using ServiceLoader for loading implementations

Version 4.2

Three modules removed since I don’t have time/money to maintain them.

9.4.1 Modules removed

Validation
Bind
Annotation (only Domain Annotation was kept)

23



9.4.2 Minor Improvements

9.5

Reflection#newInstanceOf uses Utils#resolveType

Version 4.1.1

9.5.1 Bug Fixes

9.6

Fixed a bug with getter method finder on overrided methods.

Version 4.1

9.6.1 Major Changes

Added the possibility to reflect only public members of a class or the declared ones.
ImplementationLoader#getInstance renamed to instance

Removed AccessSelector

Refactor on ReflectionPredicates

Getter and Setter specs changed to include more cases

Iteration DSL improved

— Finding operation separated in Find class

Class scan DSL improved

Interceptor class simplified and improved DSL to create a proxy
Reflection DSL improved

Predicates improved

Predicable interface removed

Changed scope of EasyMock to test

— Mocks for Element and ElementFinder are now in test packages
— Annotation mock still in the binaries, but is implemented using Interceptor class
instead of EasyMock

Bind DSL improved
Validation DSL improved

— Removed pluggable binders and factories (use the composite ones to override the
default ValidationFactory

9.6.2 Other Changes

9.7

Using Gradle as the build system (good bye, Maven)

Version 4.0.1

Fixed a bug when using a non-named field as selector for binding.

24



9.8 Version 4.0
9.8.1 New Modules

e Exception Handling

9.8.2 Major Changes

Packages renamed from net.sf to org.atatec (back to the origin *__")

pom groupld moved to org.atatec.trugger

Reflection Invokers and Handlers does not throw a NPE if a null object is passed
Class hierarchy helpers removed. Use ClassIterator and Reflection#hierarchyOf
Support for JBoss Virtual Filesystem 3.1 (allows class scanning in JBoss AS 7.x)
Improved API for registering a ResourceFinder.

Method RegistryEntry#registry renamed to RegistryEntry#value

Method Predicates#newComposition removed. Use Predicates#is instead.

ElementFinder for arrays.

9.8.3 Minor Changes

e Using SoftReferences to cache annotation and object elements.

9.9 Version 3.1
9.9.1 Major Changes
e Changed method PredicateSelector#thatMatches to that

e Transformers to all wrapper classes
e Simplified methods like elementsMatching and allElements in iteration module.

9.10 Version 3.0

9.10.1 Major Changes
e Removed cglib and commons collections dependency
e Removed PredicateDSL and TransformerDSL

e Performance improvements in validation
e Interceptor used only for interfaces

9.11 Version 2.8
9.11.1 Major Changes

o Reformulated Reflection DSL

25



e Code improvements
e Support for JBoss Virtual Filesystem (allows class scanning in JBoss AS 5.x and 6.x)

9.11.2 Bug fixes:

e ElementMockBuilder now supports call for get Annotation method.

9.12 Version 2.7
9.12.1 New Modules:

e Domain Annotations

9.12.2 Major changes:

e Reformulated DSL Criteria.

Refactor in Interception module

Non-named element and field selector for bind operations.

AnnotationBased factory now searchs in the entire annotation levels.
Renamed method Bind#newBind to newBinder.

More operations in Reflector.

Renamed BindableElement#getTarget method to target.

Removed generic type “?” from ReflectionPredicates and ClassScanner.

9.12.3 Bug fixes:

e Binder can now bind null values.

9.13 Version 2.6
9.13.1 Major changes:

e Validation Binder for using Seam Components inside of a validator.

e Generic type reflection without specifying the generic parameter name.

e Additions to PredicateDSL.

e Renamed the bind(Resolver) method to use(Resolver).

e Merged Field elements and Property elements, so, if you want a property behaviour use
the Properties class instead of Elements.

New DSL for transform operations.

9.13.2 Bug fixes:

e Element type check on element copies.

26



9.14 Version 2.5
9.14.1 Major changes:

New Element selection without specifying a name.

Created a package for holding annotations for general use.

Reverted method genericTypeFor to genericType (the shortest name is better - IMHO).
New invocation tracker interceptor.

New DSL for predicates.

Scan for one single class.

New method newlnstanceOf in Reflection class.

9.15 Version 2.4
9.15.1 New modules:

e DSL for iterations

— Refactoring in Collection module to Iteration module. Now the iterations are made
using an iterator rather than a collection.

9.15.2 Major changes:

New ValidatorBinder component for customize binds.

Exceptions for validation module.

@Valid can now use context and propagates the root context to nested validators.
@ValidationContext for bind the context into a Validator.

Handler for multiple Element objects.

Removed the Trugger class (since the project grows, it became very large).

9.15.3 Bug fixes:

e Non-null return if the element is not found in the annotation and the target is not a class.

9.16 Version 2.3.1
9.16.1 Major changes:

e Added a method to remove a registry entry (included in a minor release since its a useful
method).

9.17 Version 2.3
9.17.1 New modules:

e DSL for class scan.

27



9.17.2 Major changes:

Implementations are now configured through Registry interface.

Utility class for creating Factories.

New selection for non-named fields or methods.

Changed method Reflector#bridgedMethod to bridgedMethodFor.

Changed method Reflector#genericType to genericTypeFor.

New search operation for CollectionHandler.

Some validators for use in Brazil.

Renamed ValidationStrategy#breakOnFalse method to breakOnFirstInvalidObject.

Moved the ClassLoader option to ProxyCreator.

9.17.3 Minor changes:

e Source encode changed to UTF-8.

9.18 Version 2.2.1
9.18.1 Minor changes:

e Maven support.

9.19 Version 2.2
9.19.1 Major changes:

e ValidatorFactory now receives a context for doing the binds without the ValidationEngine.
e New validators.

9.19.2 Bug fixes:

e Valid annotation doesn’t validate the mapped context.
e NumberFormatException if min or max of Range is not defined.

9.20 Version 2.1
9.20.1 New modules:

e DSL for creating proxies.
e DSL for Validation.

28



9.20.2 Major changes:

Requirements:

— cglib (and its dependencies).
— hibernate-validator (for compile and adapter use).

Mock for annotations.

New methods in AnnotationElementSelector.

Removed the nonSynthetic selection (used by fields and methods selectors).
New assignableTo selection in TypedElementSelector.

Predicates for strict and assignable types.

New interfaces added to MethodSelector and ConstructorSelector.
Selection for return type on methods renamed to returning.

Changed selection SetterMethodSelector#ofType to forType.

Improved ElementMockBuilder class.

— Removed notAnnotatedWith method because the class is using now the nice mock
instead of the normal mock.

— The annotations added will be returned by getDeclared Annotations and get Annota-
tions.

9.20.3 Bug fixes:

Fixed a bug in TruggerElementsSelector that returns a null predicate if no selection is
made.

9.21 Version 2.0

9.21.1 New modules:

DSL for date operations.

9.21.2 Major changes:

Java 6

Easy mock dependency (only for mock package).

Renamed method getPredicate to predicate in PredicateBuilder class.
Removed the prefix all from Reflector and Elements methods.
Corrected misspelling of method isEmpty (epic fail).

Interface BaseElementSelector renamed to ElementSpecifier.

New FieldSpecifier interface.

Changed to in the name of the method on in MethodInvoker interface.
Removed the bind to properties.

Mocks for helping tests.

Removed the Alias annotation.

Refactored ImplementationLoader class.

29



Changed getType to type, getDeclaringClass to declaringClass and getName to name
in Element class.

All references to Property (interface, selector, etc.) are now referenced as Element.
AnnotationProperty migrated to Element module.

Renamed the ElementCopy methods fromElement and toElement for sourceElement and
destinationElement.

Swapped the src and dest in Element copy.

Renamed the methods in Properties and Elements class.

Specific Elements.

Removed the nested properties, nested elements should be used now.

Added another way to define custom finders (via “define” method on Elements).

Added custom element finders for:

ResultSet
ResourceBundle

— Properties
— Map
Added the Finder interface.
Removed the possibility of specifying elements from fields or properties.
New exception hierarchy.
— Removed PropertyManipulationException and added HandlingException.

— Renamed UnreadablePropertyException to UnreadableElementException and
UnwritablePropertyException to UnwritableElementException

9.21.3 Minor changes:

Method toString implemented in predicates for better debugging.
New ofType method in ElementPredicates.
Changed the return type of ElementPredicates.assignableTo to CompositePredicate.

9.22 Version 1.2

9.22.1 Major changes:

Removed the listeners in the ImplementationLoader for prevent anonymous changes.
HierarchySelector replaced by RecursionSelector for better abstraction.

Merged the property factories (finder, selector and copy) into a new one with the “property”
alias.

Changed the “composite-predicate” alias to “predicate”.

Renamed the CompositePredicateFactory to PredicateFactory.

Changed the name of the method “on” (FieldHandler) to “in”.

Changed the name of PropertyHandler to Properties.

9.22.2 New features and improvements:

Improved the cache for Object properties (ObjectPropertyFinder).

30



New reflection of getter and setter methods for a field object.

New element module for more flexibility.

The collection operations now returns the number of affected elements.

New count operation for collections.

New Predicable interface for converting objects into predicates.

Removed the ClassUtils class, its methods are now in the new Utils class.

Removed the methods to return the handled objects (for Field, Method and Constructor).
Some improvements in ImplementationLoader class.

New bind module.

Added the nonFinal selection to the MemberSelector interface.

9.22.3 Bug Fixes:

9.23

Fixed a bug in the CLASS predicate (it allows annotations).

Version 1.1

9.23.1 New features and improvements:

9.24

Added the AnnotatedElementSelector to the FieldSelector.

Unnecessary generic types removed.

Added a package for the selectors.

Changed the property selectors.

Replaced the HierarchyResult with the HierarchySelector

Changed the named member reflection predicate to take only one argument.
Refactoring in the properties implementation.

Refactoring in the reflection implementation.

More selector interfaces:

— PredicateSelector

— AccessSelector

— GetterMethodSelector (used by Reflector)
— SetterMethodSelector (used by Reflector)

Version 1.0.1

9.24.1 New features and improvements:

Improved the object property resolution if a class uses more than one setter to a property.
Added tests to the reflection predicates.

9.24.2 Bug fixes:

Fixed a bug in the not assignable class predicate.

31



	Overview
	What a hell does the name trugger mean?
	How To Use
	How To Build
	How To Contribute
	About Maven Repository

	Reflection
	Fields
	Constructors
	Methods
	Generic Type

	Class Scanning
	Predicates
	Resource Finders for Protocols

	Proxy Creation
	The Interception Context

	Elements of an Object
	What is an Element?
	Obtaining an Element
	Copying Elements
	Nested Elements
	Custom Elements

	Utilities
	Annotation Mock
	Context Factories
	Component Factories

	Validation
	Basic Validation
	Validation using filters
	Creating Validators
	Domain Validations

	Extending
	How To Implement the Fluent Interfaces

	Changelog
	Version 5.1
	Version 5.0
	Version 4.3
	Version 4.2
	Version 4.1.1
	Version 4.1
	Version 4.0.1
	Version 4.0
	Version 3.1
	Version 3.0
	Version 2.8
	Version 2.7
	Version 2.6
	Version 2.5
	Version 2.4
	Version 2.3.1
	Version 2.3
	Version 2.2.1
	Version 2.2
	Version 2.1
	Version 2.0
	Version 1.2
	Version 1.1
	Version 1.0.1


