
TrustLeap®

Global-WAN®

(G-WAN v1.0)

User's manual

Copyright notice

All mentioned trademarks and brands are the property of their respective owners.

© 2009 TrustLeap / Global-WAN – User’s Manual 1/15

Disclaimer and Legal Information
NO LICENSE, EXPRESS OR IMPLIED, TO ANY INTELLECTUAL PROPERTY RIGHTS IS
GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN TRUSTLEAP'S TERMS
AND CONDITIONS OF SALE FOR SUCH PRODUCTS, TRUSTLEAP ASSUMES NO
LIABILITY WHATSOEVER, AND TRUSTLEAP DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY, RELATING TO SALE AND/OR USE OF TRUSTLEAP PRODUCTS
INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR
PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT
OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS OTHERWISE AGREED IN WRITING BY TRUSTLEAP, TRUSTLEAP PRODUCTS
ARE NOT DESIGNED NOR INTENDED FOR ANY APPLICATION IN WHICH THE
FAILURE OF THE TRUSTLEAP PRODUCT COULD CREATE A SITUATION WHERE
PERSONAL INJURY OR DEATH MAY OCCUR.

TrustLeap may make changes to specifications and product descriptions at any
time, without notice. TrustLeap shall have no responsibility whatsoever for conflicts
or incompatibilities arising from future changes. The information here is subject to
change without notice. The products described in this document may contain
design defects or errors known as errata which may cause the product to deviate
from published specifications.

© 2009 TrustLeap / Global-WAN – User’s Manual 2/15

Summary
This document consists in three Chapters:

I. web server,
II. dynamic contents,
III. advanced features.

It is recommended to read the user's manual in this order: some options are
transparently handled and may appear to be missing to anyone looking for a setup
program or a configuration file (G-WAN version 1.0 uses none).

The same is true for servlets: useful features are sometimes invoked by not doing
something rather than by calling a dedicated function.

G-WAN's main design rule is “simplicity rules”. Computers hate complexity almost
as much as humans. G-WAN tried to make them all a favour in this matter.

G-WAN offers a very stable, safe and fast web server designed to scale as well as
possible with the many small GET/POST HTTP requests typically used by Web 2.0
(but studies show that 90% of all static contents are smaller than 100KB).

G-WAN is provably safer than other web servers for at least two reasons:

– it contains much less lines of code (which also means far less bugs);
– it does not use libraries and does not copy buffers (no more stack exploits).

These unusual characteristics also make G-WAN unusually more efficient.

While G-WAN is fast with large files, it can really shine with small files only: web
servers don't receive or send data: operating systems do it. If you serve a 1MB file,
the CPU time used by G-WAN is negligible compared to the time used by the
system to send data to the network. Small files (and HTTP keep-alives) let G-WAN
better make the difference because a larger part of the work is done by G-WAN.

Web servers only parse requests and build replies. And G-WAN is doing it properly.
So, if you mostly serve KB-files (instead of MB-files) then G-WAN will still work
seamlessly under loads that will cause others to stop responding.

But G-WAN can also process data (rather than delegating this task).

G-WAN's platform is designed for highly-scalable and low-latency web applications.
The kind that you simply could not make before on a single machine.

© 2009 TrustLeap / Global-WAN – User’s Manual 3/15

Foreword
This is the first public release of a completely new HTTP server.

While we did our best to check it against all the possible attacks we could think
about, the only reliable test in this matter is a public exposure.

So, please, download G-WAN, install it and attack it on your PC by all the possible
ways you can. Creativity is welcome as long as you don't harm people.

If you find a security problem then send us all the details at http://trustleap.com so
we can take action without delay.

© 2009 TrustLeap / Global-WAN – User’s Manual 4/15

I. The web server
Installation and startup

To install G-WAN, download it from gwan.com, copy the zip archive in a folder of
your hard-disk (like C:\G-WAN), decompress it and run the gwan.exe program.

Once you have done that, if you want to benefit from the best possible
performances you will have to reboot your PC in order to let gwan tune the
Windows TCP/IP stack.

Decompressing the zip archive will create the following sub-directories:

C:\GWAN\www where you will copy HTML files and image files
C:\GWAN\csp where you will copy C servlets

(servlets are explained in Chapter II)

To test the server, open a web browser and enter the following address:
http://127.0.0.1

If the welcome page is not displayed then ask someone to assist you with the
network issues (they largely go out of the scope of this manual).

By default, the server will listen to port 80, on all network interfaces.

To make it listen to specific interfaces and port numbers, use the following
command-line options:

usage: gwan [-listen:<addr|'*'>[:port]]...

where <addr> can be '*' to use all the interfaces,
 [port] is a (1-65535) number (80 by default)

examples: gwan (without parameters)
 gwan -listen:*:443
 gwan -listen:192.168.7.8:443

Listeners will not use CPU resources if no incoming connections are hitting the
server.

Log files

G-WAN can use traditional (Apache-like) log files. To activate this feature, just
create a sub-folder called C:\GWAN\logs. Log files will not be generated if the
folder does not exist (or exists under another name).

© 2009 TrustLeap / Global-WAN – User’s Manual 5/15

G-WAN's performances are slightly lower when log files are enabled, so, if you are
doing benchmarks or if you are aiming for the highest possible scalability then you
should think about using a reverse proxy dedicated to logging rather than wasting
CPU on your origin servers.

Supported HTTP features

Protocols HTTP/0.9, HTTP/1.0, HTTP/1.1
Methods GET, HEAD, POST (application/x-www-form-urlencoded), PUT,

DELETE, OPTIONS
Encodings “entity” (but all encodings are parsed for filters to support them)
Conditions If-[Un]Modified-Since

This is for G-WAN version 1.0: future versions may gradually add other HTTP
features.

Supported MIME types

 { 0, "", "application/x-msdownload" }, // fall-back value
 { 0, "mp3", "audio/mpeg" },
 { 0, "wav", "audio/wav" },
 { 0, "avi", "video/x-msvideo" },
 { 0, "mov", "video/quicktime" },
 { 0, "flv", "video/x-flv" },
 { 0, "mng", "video/x-mng" },
 { 0, "mpeg", "video/mpeg" },
 { 0, "mpg", "video/mpeg" },
 { 0, "asx", "video/x-ms-asf" },
 { 0, "wmv", "video/x-ms-wmv" },
 { 0, "bin", "application/octet-stream" },
 { 0, "exe", "application/octet-stream" },
 { 0, "dll", "application/octet-stream" },
 { 0, "swf", "application/x-shockwave-flash" },
 { 0, "der", "application/x-x509-ca-cert" },
 { 0, "pem", "application/x-x509-ca-cert" },
 { 0, "crt", "application/x-x509-ca-cert" },
 { 0, "ps", "application/postscript" },
 { 0, "eps", "application/postscript" },
 { 0, "ai", "application/postscript" },
 { 0, "js", "application/x-javascript" },
 { 0, "json", "application/json" },
 { 0, "atom", "application/atom+xml" },
 { 0, "rss", "application/rss+xml" },
 { 0, "rtf", "text/richtext" },
 { 0, "txt", "text/plain" },

© 2009 TrustLeap / Global-WAN – User’s Manual 6/15

 { 0, "zip", "application/octet-stream" },
 { 0, "pdf", "application/pdf" },
 { 0, "tif", "image/tiff" },
 { 0, "bmp", "image/x-ms-bmp" },
 { 0, "svg", "image/svg+xml" },
 { 0, "css", "text/css" },
 { 0, "jpeg", "image/jpeg" },
 { 0, "jpg", "image/jpeg" },
 { 0, "png", "image/png" },
 { 0, "gif", "image/gif" },
 { 0, "html", "text/html" },
 { 0, "htm", "text/html" }

As this list in hard-coded you cannot add MIME types in G-WAN version 1.0.

If you need a way to complete this list (from C servlets for example), just let us
know. To keep things simple, we try to avoid configuration files but if there's a
demonstrated need for it then we will implement it.

Default style sheet and HTTP Errors

To personalize the HTTP default style sheet, you have to make your CSS style
available under C:\GWAN\www\imgs\style.css.

While G-WAN is supporting all the HTTP error codes (that's useful for C servlets),
only a subset is relevant for the server (like Not found, Internal error, etc.).

To personalize the HTTP error style, you have to create a CSS style sheet and
make it available under C:\GWAN\www\imgs\errors.css.

© 2009 TrustLeap / Global-WAN – User’s Manual 7/15

II. Dynamic contents
Web Servers need scripting capabilities for convenience and hard-coded filters for
performances. G-WAN does both in C -with compiled code performances.

How many languages do you need to learn if one works better than others? C
made Unix, Windows, games, PDF viewers, web browsers. C servlets will be
limited by your sole imagination. C survived 40 years for a reason: it fits the task.

Some will say that C lacks garbage collectors and crash-proof error-recovery.
G-WAN's memory pools and 'graceful' crash handling should calm their fears.

Assuming G-WAN is installed and running, if you look at the files located in the
./csp directory, you will see small C source code files (that we call “servlets”).

C servlets are executed by G-WAN when a client requests the corresponding URL:
http://127.0.0.1/csp?bench

The server will return the bench.c's “reply” buffer to the client that sent this query.

Your first servlet: “301 moved permanently”

Redirecting users is useful after you moved or deleted the previous URI on your
server. We want to send the following to clients asking for the old URI:

All the information necessary for a redirect is in the headers. The body of the
response is typically empty, but we will create one in order to see how to proceed:

int main()
{
 static char szURI[]=”new.html”; // new location

 // create a dynamic buffer and get a pointer on the server response buffer
 xbuf_ctx reply; get_reply(argv, &reply);

 xbuf_xcat(&reply, "HTTP/1.1 301 Moved Permanently\r\n"
 "Content-type: text/html\r\n"
 "Location: new.html\r\n\r\n"
 "<html><head><title>Redirect</title></head>"
 "<body>Click here.</body></html>",
 szURI);

 // (they have changed when more memory is allocated during formatting)
 set_reply(argv, &reply); return(301); // return an HTTP code (301:'Moved')
}

© 2009 TrustLeap / Global-WAN – User’s Manual 8/15

The function xbuf_xcat() works like sprintf() and lets you write the reply that the
server will send to the client (without worrying about the length of the buffer).

Your “reply” buffer can contain HTTP headers only, or just HTML code and no
headers, or both headers and HTML. When HTTP headers are missing, the server
creates headers to match your main()'s return code.

All the standard HTTP status codes are supported but if you use your own custom
codes (in the 600+ range) then the server can't imagine their purpose so you will
have to explicitly define headers and HTML (if you target human clients).

The following example (without headers) is equivalent to the previous example
(which explicitly defined response headers):

int main()
{
 static char szURI[]=”new.html”; // new location
 xbuf_ctx reply; get_reply(argv, &reply);

 xbuf_xcat(&reply, "<html><head><title>Redirect</title></head>"
 "<body>Click here.</body></html>",
 szURI);

 set_reply(argv, &reply); return(301); // return an HTTP code (301:'Moved')
}

A servlet can use this auto-completion feature to reduce the code to its simplest
expression (for example, to filter connections per IP address, CIDR, or country):

int main() // status code 401 means 'Unauthorized'
{
 … // do whatever you need to filter connections
 return 401; // the server will use this code to build headers and an HTML reply
}

At the moment, servlets cannot “insert” headers to the server reply (Request
Handlers can do it): either your servlets will define all the headers or you will expect
the server to do it all for you. Environment variables (like an up-to-date HTTP date
stamp) are available to make it easier to build HTTP headers.

 Note:To send something else than HTML (like a PNG or an XML document), you
MUST explicitly define HTTP headers (servlet examples are provided).

Other dynamic buffer xbuf_xxx routines will help you in the task of building a reply.
Let's quickly review them to understand their purpose.

© 2009 TrustLeap / Global-WAN – User’s Manual 9/15

xbuffer dynamic buffers

Dynamic buffers, like memory pools, are an efficient way to reduce the burden of
memory management for high-performance programs. They are also convenient:
servlets can just fill dynamic buffers without having to care about size, alignment,
allocation lifetime, locks or heap fragmentation.

They are also safer: you can't overflow dynamic buffers (unless you are using all
the memory available on a machine).

Each C servlet has an xbuffer called '”reply” aimed at sending information to clients.

But it may also be useful to create additional dynamic buffers in your servlets (to
load an HTML template file, or to get the reply of a query sent to a web server).

You are expected to call xbuf_free to release any memory you have used (but don't
free the “reply” buffer!).

xbuf_reset() (re)initiatize a dynamic buffer (without freeing memory)
xbuf_frfile() load a file, and store its contents in a dynamic buffer
xbuf_tofile() save the dynamic buffer in a file
xbuf_frurl() make an HTTP request, and store the result in a dynamic buffer
xbuf_cat() like strcat(), but in a dynamic buffer rather than a string
xbuf_ncat() like strncat(), but can also copy binary data in the specified buffer
xbuf_xcat() formatted strcat() (a la printf) in the specified dynamic buffer
xbuf_insert() insert bytes at a given position in the buffer
xbuf_delete() delete bytes at a given position in the buffer
xbuf_getln() get an LF-terminated text line from a buffer
xbuf_findstr() find a given string into the buffer
xbuf_repl() replace a string by another string in a buffer
xbuf_free() release the memory previously allocated for a dynamic buffer
xbuf_replfrto() like the call above, but from/to given pointers in the buffer

All the servlet samples (/csp folder) demonstrate the syntax of those functions.

But sending information is only half of the job: often, you will also need to get
information sent by the client (via GET or POST HTTP requests).

Getting GET/POST parameters

G-WAN transparently process both in the very same way to let you access any
passed parameter with the same code (via the get_arg() call).

Please refer to the csp/contact.c and csp/loan.c servlets for real-life examples.
You can invoke those samples as follows:
http://127.0.0.1/csp?contact and http://127.0.0.1/csp?loan

© 2009 TrustLeap / Global-WAN – User’s Manual 10/15

Getting server “environment” variables

Traditional 'environment' variables are available to servlets. Additions, like the
current Http date have been added: as the work is already done by the server,
there is no need for servlets to do it again.

Please refer to servlet samples like csp/contact.c for a list of all environment
variables and how to access them (via the get_env() call).

Additional functions

The calls below are provided for your convenience:

cycles() get the CPU clock cycle counter's value (32-bit)
cycles64() get the CPU clock cycle counter's value (64-bit)
get_arg() get GET/POST application/x-www-form-urlencoded parameters
get_env() get G-WAN's “environment” variables
url_encode() properly encode an URL so you can use it
escape_html() properly encode a buffer so you can use it in HTML
html2txt() remove all HTML tags from a buffer
s_time() equivalent to time(0); but faster
s_asctime() equivalent to asctime(); but faster (and thread-safe)
time2rfc() format an Http date string from a given time_t value
rfc2time() return a time_t value from an Http date string

Putting it all together

G-WAN's samples are available under the /csp sub-folder. The most advanced
sample is loan.c, which uses AJAX to process a form without reloading the page:

© 2009 TrustLeap / Global-WAN – User’s Manual 11/15

When users press the 'Calculate' button, the loan is displayed in the same page:

As this C servlet is resolving a real-life problem it can be used as a benchmark for

© 2009 TrustLeap / Global-WAN – User’s Manual 12/15

dynamic contents (Webspec is so large that it a lot of requires time to implement).

It would be great to see how the very same* implementation performs in, say, Perl,
PHP, Lua, TCL, Python, Java or ASP.Net.

(*): same means using the same style sheet, number decoration, formatting, inputs,
outputs and general program structure (no pre-calculated loans please).

Another advantage of using AJAX here is the fact that it saves you from using
mod_rewrite to have "normal" search-friendly URLs while taking advantage of the
server-side functionality of servlets.

Execution errors, crashes and debugging

G-WAN will signal syntax errors, undefined symbols, etc. before the code executes.
G-WAN will also “gracefully” handle C servlet crashes and report where the fault
happened (instead of crashing the server). If you let G-WAN run this code:

1. void crash() { *((int*)(0))=0xBADC0DE; } // write access violation
2. int main () { crash(); return(200); }

G-WAN will tell you what line in your source code file did it wrong:

 Exception : c0000005 Write Access Violation
 Address : 06d3b413
 Access Address : 00000000

 Registers : EAX=0badc0de CS=001b EIP=06d3b413 EFLGS=00010246

 EBX=00000000 SS=0023 ESP=0166df34 EBP=0166df3c
 ECX=00000000 DS=0023 ESI=00000104 FS=003b
 EDX=0166fc58 ES=0023 EDI=0166f47c CS=001b

 Call chain :(line) PgrmCntr(EIP) RetAddress FramePtr(EBP) StackPtr(ESP)
 crash(): 1 06d3b413 06d3b4a6 0166df3c 0166df34
 main(): 2 06d3b4a6 0042d1ea 0166df64 0166df34

Servlet: csp/crash.c
Query : /csp?crash
Client : 127.0.0.1

Until you fix the code, G-WAN tells clients that the service is unavailable (503).
Instead of documenting potentially dangerous holes, bugs will just 'not exist'.

Web Applications Security

Cross-site scripting, injection attacks or request forgery are made easy and having
success for simple reasons.

© 2009 TrustLeap / Global-WAN – User’s Manual 13/15

They can easily be pinpointed:

– the surface of vulnerability is expending with new browser features;
– web developers already have a job and just can't cope with these issues;
– fixing the whole stuff would severely harm the advertising business.

An efficient solution, however, can be implemented without changing anything to
the current happy mess.

It just requires proper cryptographic-grade Session tokens, ID tokens and HMACs
(transparently implemented by the server to make sure that they will be used).

Cryptography is typically weakened or avoided to avoid harming performance or
scalability. This is mainly due to the fact that people reuse generic code instead of
writing on-purpose code.

As G-WAN illustrated it, there is room for improvement in this matter.

Any help will be welcome and appreciated. Money buys time -and time is needed to
do good things.

© 2009 TrustLeap / Global-WAN – User’s Manual 14/15

Feedback
Any useful suggestion is welcome, but as our time is limited try to follow the
guidelines below:

– use a relevant subject in your email so we know what you want,
– please go straight to the point and give a *real-life* example,
– be kind: it's version 1.0 so there is obvious room for enhancements.

If many software vendors do not let you contact them (or do it in a way that defeats
the purpose), there is a reason: this is a very time-consuming process.

The only way to keep this service available is to respect its constraints.

© 2009 TrustLeap / Global-WAN – User’s Manual 15/15

