
Horizontal menu bars with CSS
This article will show you, how to build horizontal menu bars with WebYep.
In your career as a web designer, you have probably seen many different stylings for navigation
menues. Back in the dark millennium, it was considered good practise to take an innocent table tag
and stuff it with links and images.

To achieve those fancy new rollover effects, one would have added things like
onMouseOver="MM_swapImage('Image12','',imageo3,1) to the links (and of course
another for onMouseOut). The result was a bloated monster, unaccessible by anything but sight
and a nightmare to maintain. If you've ever had to redesign such a menu, you'll know what I'm
talking about. Those were the days...

Today there really is no need to abuse tables for menues, because the support for CSS has grown
among all modern browsers. This article will show you, how to implement menues in web pages
with HTML and CSS alone.

Simple menu bars
As for menues, it has become widely accepted to use unordered lists and this is what WebYep does.

Let's start with a simple example. Consider the following markup:

 Menu 1
 Menu 2
 Menu 3

This will define a simple structure with 3 entries. Throughout this tutorial, we'll wrap the unordered
list containing the menu in a <div> with an id='myMenu', so we can easily address the
by its parents id and wont mess up other elements on the page.

The first thing we want to change, is the default behaviour and appearance of this .

#myMenu ul {
 list-style-type: none;
 position: relative;
 margin: 0;
 padding: 0;
}

#myMenu ul li {
 float: left;
}

By floating the items left, the will no longer go from top down, but will rather look
like a horizontal bar. Now we have to take care of the actual links. In order to give the whole thing
the look and feel of an actual bar, we'll display the links as blocks, so we can give them dimensions,
as well as padding.

#myMenu ul li a {
 display: block;
 padding: 3px 10px 1px;
 background-color: #444;
 color: #fff;
 font-family: sans-serif;
 text-decoration: none;
}

© 2011 Objective Development Page 1 of 3

Now this looks more like it, but we'd like to have a different style when hovering the mouse over an
entry. For this we'll use the CSS pseudo class :hover, which applies only if the mouse is over the
specified item. We dont need to specify every style rule again, just the ones that are supposed to
change when the mouse is over the link.

#myMenu ul li a:hover {
 color: #0b0;
}

So far, we've only taken care of the menu itself, but since it's content is floated, we need to make
sure, that content after the menu doesn't wrap itself around the floating menu. In our example pages,
we've put the page content in another <div> with an id='myContent' and cleared the previous
float rule.

#myContent {
 clear: both;
 padding: 10px 0;
}

More complex
Now that we have a vertical menu bar, we'd like to have submenues as well. This is achieved by
nesting unordered lists, so we take our previous example and extend it:

 Menu 1

 Submenu 1.1
 Submenu 1.2

 Menu 2

 Submenu 2.1
 Submenu 2.2

 Menu 3

 Submenu 3.1
 Submenu 3.2

Each list item has now got an additional unordered list with 2 list items. At this point, notice how
lean the code still is. Everything is still easily readable, editing is no problem and the markup is not
cluttered with things only good for decoration.

Of course, we don't want the submenues to be displayed all the time, so we add another rule to our
style sheet:

#myMenu ul ul {
 display: none;
 position: absolute;
}

© 2011 Objective Development Page 2 of 3

But how do we display the submenues now? Again, the :hover pseudoclass comes in handy and
since we don't want the submenues to be vertical bars as well, we also quit floating subsequent list
items.

#myMenu li:hover ul {
 display: block;
}
#myMenu li ul li {
 float: none;
}

Going fancy
We now have a working menu bar with submenues that pop up, when the mouse hovers over them.
Now we want to give them the little extra, that will distinguish our site from the rest.

Popping up is no longer good enough - we want our submenues to elegantly fade in! This will be
possible with the new generation of CSS, but since not all browsers support this, we'll have to use
JavaScript for now.

For this example we'll use the popular library jQuery. Simply include the library and the program
code for the effect in the head section of your page:

<script type="text/javascript" src="jquery-1.5.1.min.js"></script>
<script type="text/javascript">//<![CDATA[
$(document).ready(function(){
 $('#myMenu ul ul').css({display:'none'});
 $('#myMenu > ul > li').hover(
 function(){$(this).find('ul').stop(true,true).fadeIn(300);},
 function(){$(this).find('ul').stop(true,true).fadeOut(300);}
);
});
//]]></script>

Also remove the style rules that show/hide the submenues, since they will interfere with the
animation:

#myMenu ul ul {
 display: none;
 position: absolute;
}

#myMenu li:hover ul {
 display: block;
}

Conclusion
As you can see, there really is no need to abuse tables for menues nowadays. With a little
knowledge of CSS, such menues are easy to create. Download the packed examples and toy with
the styles or the script code. For example, try to replace fadeIn and fadeOut in the jQuery code
with slideDown and slideUp. After all, the best way to get experience with something, is to
actually do it.

© 2011 Objective Development Page 3 of 3

	Horizontal menu bars with CSS
	Simple menu bars
	More complex
	Going fancy
	Conclusion

